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Summary

The main objective of the present investigation is to gain a better understanding of the
complex flow in the near wake of a flat plate subjected to an adverse pressure gradient. To
realize this objective a combined experimental and numerical investigation is carried out.
A three-component LDA (3D LDA) is used to acquire data on mean velocities, Reynolds
stresses and triple-velocity correlations. LDA was also used for the measurement of power
spectra and spatial correlation functions. These data were used for a detailed comparison
between the experiments and the numerical predictions based on the Reynolds-averaged
Navier Stokes equations. Two turbulence models were employed: a k — ¢ model and a
differential Reynolds-stress transport model. The comparison between the experiments
and the numerical predictions aided the interpretation of the experimental results and
enabled the tracing of deficiencies in the turbulence models for computations in the wake
in adverse pressure gradient.

The use of a 3D LDA for measurements in a turbulent flow is hampered by three error
sources. A general configuration for the 3D LDA is suggested that eliminates the three
error sources. Furthermore, the random sampling in LDA gives rise to problems such
as velocity bias and large statistical scatter in the measured autocorrelation functions
and power spectra. An experimental investigation confirmed the existence of the velocity
bias and it was shown that the effects of the velocity bias can be compensated for by the
use of weighting factors that are based on the inverse of the velocity. The problem of the
large statistical scatter in the measured autocorrelation functions (and power spectra)
was partly solved by the introduction of a “locally scaled” version of the slotting method
(and a variable-windowing technique).

The experiments in the trailing-edge flow of the flat plate in an adverse pressure
gradient indicated a rapid growth of the shear-layer thickness, a large increase of the
turbulence kinetic energy in the streamwise direction and the presence of a backflow
region some distance downstream of the trailing edge. The balance of the turbulence
kinetic energy equation in the near wake showed that the dissipation decreased in the
downstream direction while the production of turbulence kinetic energy remained at a
high level. The power spectra measured in the near wake revealed the presence of a
significant amount of turbulence kinetic energy in the (very) low frequency range.

Neither the k — € model nor the differential Reynolds stress model were able to repro-
duce the measured mean flow reversal and the large increase of the turbulence kinetic
energy on the wake centreline. Both turbulence models predicted too much dissipation in
the near wake. It is shown that this is the result of a deficiency in the transport equations
for the dissipation, which are similar in both turbulence models. The transport equations
for the dissipation respond to the high level of production of turbulence kinetic energy by
maintaining a high level of dissipation. However, this is an incorrect response, because
a significant part of the produced kinetic energy remains in the low frequency range and
is not dissipated in the near wake.
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Nomenclature
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A amplitude of Doppler burst, Eq (3.19) A%
A, projected area of measuring volume, Fig. 4.1 m?
B, bandwidth of BSA processor Hz
o coefficient in Reichardt’s mean-velocity distribution, Eq (2.57)
Cy skin friction coefficient, Cy = 27,,/(pU2)
Cp static pressure coefficient, Cp = 2(P — Pres)/(pUZ)
Ch length scale ratio for one-dimensional case, Eq (4.59)
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C, closure coeflicient, Eq (2.18)
Ce, closure coefficient, Eq (2.21)
Ce, closure coeflicient, Eq (2.21)
E; plane light wave, Eq (3.1) V/m
E;, amplitude of plane light wave, Eq (3.1) V/m
E, spherical light wave, Eq (3.2) V/m
F velocity defect function, Eq (2.55)
Fins Klebanov intermittency function, Eq (2.17)
G wake function, Eq (2.58)
H shape factor, H = §*/8
H(kAT) number of cross products per slot, Eq (4.26)
I intensity of light in overlap region of laser beams, Eq (3.15) W /m?
J(kAT) local variance of velocity fluctuations, Eq (4.33) m? /s?
L flow length scale for z-direction m
L1 integral length scale, Eq (2.25) . m
M number of particles per unit volume, Eq (4.2)
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Nt number of divisions of time axis, Eq (4.20)
P(Az) probability density function of Az, Eq (4.55) m™!
R;;(AZ%) spatial covariance function, Eq (2.22) m?/s?
Ryq(T) volume-averaged autocovariance function, Eq (4.52) m?/s?
Ry Reynolds number at trailing edge, Ry = U 6/v
R(t1,t2) (temporal) autocovariance function, Eq (2.35) m? /s?
Re, turbulent Reynolds number, Re; = k?/(ev)
R(kAT) slotted autocovariance function, Eq (4.26) m? /s?
S radiant sensitivity, Eq (3.8)
S(w) (normalised) spectral density function of velocity

fluctuations u’, Eq (4.25) s

S1 spectral estimator, Eq (4.31) s
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spectral estimator, Eq (4.38)

spectral density where variance of S; (or S3) exceeds
the value 625%(w)

measuring time

time constant of photomultiplier, Eq (3.8)

integral time scale, Eq (2.37)

mean velocity at edge of shear layer, Eq (2.46)
reference velocity

constant in one-dimensional spectrum, Eq (2.34)
constant in Eq (2.59)

structural parameter, a,, = —u'v',/k

speed of light, ¢ ~ 3.0 x 10® m/s in vacuum

constant in Eq (4.32)

diameter of measuring volume

fringe distance, Eq (3.15)

diameter of particle, Eq (3.21)

unit vector for direction of incident laser beam, Fig. 3.1
unit vector for direction of detector, Fig. 3.1

centre frequency of BSA processor

Doppler frequency, Eq (3.7)

frequency shift, Eq (3.13)

sampling frequency of BSA processor, fsam = 1/tsam
frequency of scattered light at detector, Eq (3.5)
frequency of laser light, fo = c¢/Xo

function, Eq (2.63)

turbulence kinetic energy per unit mass, k = uju}/2
wave number, k = |k|

,-component of wave vector k

wave number of laser light, kg = 27/ )Xo

wave vector, k = (k1, k2, k3)

flow length scale for y-direction

length of measuring volume

wake halve width, Eq (2.58)

average number of samples per time interval, Eq (4.20)
coordinate normal to plate surface

noise error in instantaneous velocity, Eq (4.41)
record length of BSA processor

static pressure, Eq (2.6)

probability density function of z, Eq (4.53)
probability density function of At, Eq (4.1)
fluctuating static pressure, Eq (2.6)

mean static pressure, Eq (2.6)

mean static pressure at edge of shear layer, Eq (2.45)
radius of curvature, Eq (6.13)
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Td

S
s(w)
Sij
Sr

t

t;

ts
tSﬂm
U
UCOT
ur
Uj

7}
Up
Ur
ur

location of detector, Fig. 3.1

coordinate along plate surface normal to z

spectral density function of velocity fluctuations u’, Eq (2.39)
rate of strain tensor, Eq (2.4)

arithmetic average of (u? + v? + w?)!/2-values, Eq (4.18)
time

arrival time of i-th particle

sampling interval, Fig. 4.2

sampling interval of BSA processor, tsam = 1/ fsam

mean velocity on centreline

mean velocity corrected for velocity bias, Eq (4.23)
velocity of fluid, Eq (3.21)

instantaneous velocity in z;-direction, Eq (2.6)

arithmetic average of velocities on I-th time interval, Eq (4.20)
velocity of particle, Eq (3.21)

arithmetic average of velocity samples, u, = N—! Zf\;l U
time averaged velocity, Eq (2.7)

maximum velocity defect in wake, Eq (2.58)

friction velocity, u, = (1, /p)'/?

dimensionless mean velocty, ut = @/u,

root-mean-square value u’

fluctuating velocity in z;-direction, Eq (2.6)

measured velocity fluctuation, Eq (4.41)

variance of velocity fluctuations v’

mean velocity in x;-direction, Eq (2.6)

(kinematic) Reynolds stress tensor

(kinematic) Reynolds shear stress

(kinematic) Reynolds shear stress in streamline
coordinates, Eq (6.5)

velocity component measured by “blue” channel, Eq (3.23)
velocity component measured by “green” channel, Eq (3.23)
primary velocity component

velocity component measured by “violet” channel, Eq (3.23)
variance of velocity fluctuations v’

velocity vector

lag window function, Eq (4.31)

variance of velocity fluctuations w’

streamwise coordinate

input signal of photomultiplier, Eq (3.9)

virtual origin of z-coordinate, Eq (2.59)

lateral coordinate

output signal of photomultiplier, Eq (3.8)

dimensionless y-coordinate, y* = yu, /v

spanwise coordinate

m2 /52

m?/s?
m? /s?

m? /s?
m/s
m/s
m/s
m/s
m? /s?

m2/s2
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Az spatial separation in z-direction, Eq (2.24) m
Az, spatial separation in z;-direction, Eq (2.24) m
AT spatial separation vector, Eq (2.22)
Ap discontinuity in measured autocorrelation function, Eq (4.44)
Ar slot width, At = 7, /(M — 1) s
d phase of spherical wave at detector, Eq (3.5) rad
®,;;(k) three-dimensional spectrum, Eq (2.31) m3 /s?
« closure coefficient in Cebeci-Smith model, o = 0.0168
a angle between velocity vector and z-axis, Eq (3.12) rad
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0| amplitude ratio, Eq (3.22)
0 momentum thickness, Eq (2.51) m
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K Von Karman constant
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At Taylor time scale of velocity fluctuations u', Eq (2.38) ]
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Chapter 1

Introduction

1.1 Background of the Investigation

1.1.1 High-lift systems in aircraft aerodynamics

The wing of a transport aircraft is designed to give optimum performance during cruise
flight because this is generally the longer part of the flight. Here, optimum performance
means that the required lift coefficient for cruise flight is achieved with a minimum of
drag. However, the resulting wing is usually not well suited to generate sufficient lift
at low speed as needed during take off and landing. To generate high lift at low speed
the shape of the wing is adapted in flight by means of a mechanical high-lift system
comprising trailing-edge flaps and, sometimes, leading-edge slats. A practical high-lift
system is a complex mechanism that significantly contributes to the weight and cost of
an airplane. Manufacturers aim to reduce the weight and cost by improving the aerody-
namic efficiency of the high-lift system. Extensive research in high-lift aerodynamics is
required to achieve better low-speed performance in terms of shorter landing and take-off
distances, an increased payload and a reduction of noise in areas surrounding airports.

The increased camber and the larger chordwise extent of a multi-element airfoil will
increase the lift. However, as discussed by Smith [1975], the main contribution to the lift
increase stems from the successful manipulation of the pressure distribution by the “gaps”
between the different airfoil elements. Smith’s classical paper greatly contributed to the
understanding of the physics of the flow around a multi-element airfoil. However, more
than 20 years later the aerodynamic design of a high-lift system still poses a challenging
problem. Major causes for this are the various viscous phenomena that affect the flow
around a multi-element airfoil, see e.g. Butter [1984] or Meredith [1992]. A number of
these viscous phenomena are listed below and illustrated in Fig. 1.1.

e The large suction peak on the most forward element may cause local supersonic
flow, even if the free-stream Mach number is as low as 0.2. The shock wave interacts
with the boundary layer on the slat.

e Near the sharp edge of a cavity the boundary layer is forced to separate and a
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confluent boundary layer /
recirculation shear layers wake interaction

supersonic relaminarisation recirculation boundary-layer
flow zone separation

Figure 1.1: Viscous phenomena that affect the flow around a multi-element airfoil.

recirculation zone is formed in the cavity.

e Near the leading edge of the main element the turbulent boundary layer may re-
laminarize as a result of strong favourable pressure gradients.

o At high angles of attack, the slat wake may become confluent with the boundary
layer on the main element. The wake of the main element may interact with the
boundary layer that develops on the flap.

¢ Due to the large effective camber the shear layers are strongly curved, giving rise
to significant static-pressure variations across the shear layers.

e Strong adverse pressure gradients promote the growth of wakes and boundary lay-
ers, and can lead to flow separation.

Considering the complexity of the different flow phenomena, and their possible interac-
tions, it is not surprising that the numerical prediction of the flow around a multi-element
airfoil is extremely difficult. Modern computational methods based on the Reynolds-
averaged Navier-Stokes equations can accurately predict the lift up to moderate angles
of attack, provided the flow remains attached, whereas the drag cannot be predicted
accurately. At higher angles of attack, i.e. near the maximum-lift conditions, the compu-
tational methods fail to predict correctly either the lift or the drag as discussed by Adair
and Horne [1989]. A decade later the situation is essentially still the same. The improve-
ment of the existing calculation methods requires not only advances in grid generation
and numerical schemes, but, perhaps even more important, it also requires turbulence
models that properly describe the different phenomena that are essential to the flow
around high-lift systems. In turn, this requires a better understanding of the physics of
these flow phenomena, which can be achieved by studying isolated features of these phe-
nomena. Experimental investigations of elementary flows, such as a turbulent boundary
layer that separates from a wall [Simpson et al. 1981], [Simpson 1989], the development
of a curved wake [Ramjee et al. 1987] or the flow over a backward-facing step [Eaton
and Johnston 1981}, can provide insight into the different flow phenomena.
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mean velocity profiles

main element  attached boundary layer )
on flap element

Figure 1.2: Illustration of free-separation in the flow around a multi-element airfoil as observed
by Petrov [1980].

1.1.2 Free separation in flows about multi-element airfoils

The present investigation of the adverse pressure gradient wake, to be described in de-
tail in Chapter 5, is related to one particular feature of high-lift aerodynamics, i.e. the
development of the wake of the main element in the pressure field that is induced by the
flap. An accurate numerical prediction of the near wake of the main element is highly
desirable because it has a significant effect on the lift, especially at high incidence. How-
ever, as was shown by Adair and Horne [1989] and Nakayama et al. [1990], this wake is
extremely complex owing to the combined effects of curvature, asymmetry, crosswise and
streamwise pressure gradients and the interaction between the wake and the boundary
layer on the flap. In a most interesting series of wind-tunnel tests on a multi-element
airfoil, Petrov [1980] showed that the wake of the main element can exhibit a region
with mean-flow reversal that is detached from the surfaces of the various elements, see
Fig. 1.2. Petrov called this phenomenon “detached separation,” because the backflow re-
gion is separated from the surfaces of the elements by a relatively thin zone that consists
of an attached boundary layer and a region of potential flow. Perhaps “free separation”
is a better label, because “detachment” usually refers to the location in a separating
turbulent boundary-layer where the wall-shear stress vanishes [Simpson et al. 1981].

The free-separation phenomenon is interesting since it does not occur in flows about
single-element airfoils where separation takes place on the surface of the airfoil. Contrary
to conventional wisdom, the stall of a multi-element airfoil is not always caused by
boundary-layer separation on the flap or the aft portion of the main element. The stall
can also occur when a zone of reversed flow in the wake of the main airfoil rapidly widens
and propagates upstream. In fact, due to the thickening of this main-airfoil wake, the
boundary-layer separation on the flap, which occurred at moderate angles of attack in
Petrov’s experiment, disappeared with increasing incidence. Consequently, the flow on
the flap and on the main element remained fully attached during the stall. This was also
reported by, for example, Johnston and Horton [1986].

To the author’s knowledge, there are no detailed investigations of the free-separation
phenomenon, despite its practical significance in high-lift aerodynamics or other technical
applications in which free shear layers are subjected to severe streamwise pressure gradi-
ents. An exception is the experiment performed by Hill et al. [1963], who investigated the
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Figure 1.3: The mean flow around an airfoil-like flat plate with an imposed adverse pressure
gradient in the streamwise direction.

effects of streamwise pressure gradients on the decay of wakes. They subjected the wake
of a thick plate with a streamlined nose to adverse pressure gradients of various strengths
by means of a diffusing wind-tunnel section with variable side walls. The wake generating
body was placed in the test section of a wind tunnel with its trailing edge close to the
entrance of the diffusing section. For all pressure gradients considered, the maximum
velocity defect of the wake profile that entered the diffuser was (U, — @) = 0.4U,, in
which U, is the edge velocity and U is the mean velocity at the centreline of the wake.
The experiments of Hill et al. [1963] showed that the maximum velocity defect in an
adverse pressure gradient wake decreases at a slower rate than in the constant pressure
wake of the same body. For a sufficiently strong pressure gradient, the maximum velocity
defect increased rather than decreased, so that a zone of reversed mean flow developed in
the central portion of the wake. This backflow region is not attached to the surface of the
wake generating body. For all but the largest pressure gradient, i.e. the one that caused
the mean-flow reversal, Hill et al. were able to predict the mean flow reasonably well
with a simple calculation method based on von Karmén’s integral momentum equation
and an eddy viscosity that is uniform across the wake. However, they could not indicate
whether the turbulence was predicted accurately, because the measurements were limited
to time-averaged values of velocity and pressure.

The present investigation can be considered as a follow-up of the study carried out by
Hill et al. [1963]. The present investigation concentrates on the development of the near
wake of an “airfoil-like” flat plate that is subjected to a strong adverse pressure gradient,
see Fig. 1.3. The pressure distribution was tuned such that the boundary layer at the
trailing edge of the plate was close to separation. This simulates the trailing-edge flow on
the suction side of an airfoil near maximum lift. A zone with mean-flow reversal occurred
some distance downstream of the trailing edge of the plate. As in the experiment of Hill
et al. [1963], the recirculation zone is not attached to the surface of the plate, so that
it can be considered a simulation of free separation in the flow about a multi-element
airfoil. In addition to mean velocities and mean pressures, turbulence quantities, such as
Reynolds stresses, triple-velocity correlations and power spectra of streamwise velocity
fluctuations, were measured in both the boundary layer and in the near wake of the plate.
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1.2 Objectives of the Investigation

The primary objective of the present investigation is to gain better understanding of the
complex turbulent flow that results when a strong adverse pressure gradient is imposed
on the wake of an “airfoil-like” flat plate. The underlying assumption is that the im-
proved understanding of the decelerating wake will ultimately improve the tools for the
numerical prediction of flows about multi-element airfoils. To achieve the objective, a
combined experimental and numerical investigation is carried out, although the emphasis
will be on experimentation. Great effort is made to produce reliable experimental data
on mean velocities, Reynolds stresses, triple-velocity correlations, and more complex tur-
bulence statistics, such as spectral densities and spatial correlation functions. Numerical
predictions are compared to the results of the experiment to investigate the suitability
of several turbulence models for computations in wakes subjected to a severe adverse
pressure gradient.

As discussed in Section 1.1.2, the wake of the flat plate is expected to exhibit mean-
flow reversal when it is subjected to a sufficiently strong adverse pressure gradient. Also,
turbulent velocity fluctuations may cause instantaneous flow reversal in this wake. Laser
Doppler Anemometry (LDA) is needed to perform reliable measurements in such a highly
turbulent flow. Although the mean flow about the plate is two-dimensional, the turbu-
lence is a three-dimensional phenomenon. A special LDA will therefore be used to mea-
sure the three components of the velocity simultaneously. However, the three component
LDA (3-D LDA) is not a standard instrument and, hence, there is little experience with
its operation as compared to a one- or two-component LDA. As a consequence, extensive
research is required to overcome the problems associated with the use of the instrument.
One of the secondary objectives of the present investigation is to explain these problems
and discuss possible solutions, resulting in practical guidelines for the operation of the
3-D LDA.

Irrespective of the number of components that is measured, the random nature of the
LDA sampling process is a source of problems. LDA measures the velocity of particles
that pass through the overlap region of intersecting laser beams. The sampling times
are random because the particles are randomly distributed in space. Two effects of the
random sampling are thoroughly investigated: (1) the correlation between the sampling
process and the instantaneous velocity, commonly referred to as the velocity bias, and
(2) the high statistical scatter of spectral estimates in the high-frequency range. Both
effects may cause severe problems when inferring turbulence statistics from the LDA
velocity samples. The explanation of these problems and the presentation of possible
solutions is another secondary objective of the investigation.

1.3 Outline of the Thesis

Chapter 2 is concerned with the basics of turbulent flows. Section 2.1 focuses on the
Reynolds-averaged equations of motion for incompressible turbulent flows, the Reynolds-
stress modelling and several statistical quantities, like power spectral densities and corre-
lation functions. This is followed by a summary of the main characteristics of turbulent
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boundary layers and wakes. Section 2.2 considers the near wake of a flat plate without
an imposed pressure gradient. This flow provides a reference for the investigation of the
near wake in adverse pressure gradient.

Chapters 3 and 4 are devoted to the laser Doppler measurement technique. Chapter 3
starts with the basic principles of LDA, followed by a discussion of the problems related
to the use of a 3-D LDA. Chapter 4 discusses the results of an investigation of the LDA
sampling process.

Details on the experimental and the numerical investigation of the adverse-pressure-
gradient wake are given in Chapter 5. Section 5.1 describes the wind tunnel, the model
and the various optical configurations of the LDA. The measurement programme is also
described. Details on the two turbulence models that are used to compute the wake, i.e.
a standard k — € model and a (differential) Reynolds-stress transport model, are given in
Section 5.2.

Chapter 6 gives the results of the investigation of the adverse-pressure-gradient wake.
Section 6.1 presents and analyzes the main experimental results on the mean veloci-
ties, the integral parameters, the Reynolds stresses and the triple-velocity correlations.
Section 6.2 presents a comparison between the experimental results and the numerical
predictions of the two turbulence models. The findings of the spatial correlation mea-
surements and the spectral measurements are discussed in Section 6.3 and Section 6.4,
respectively. The discrepancies found between the experiment and the calculations are
discussed in Section 6.5.

Finally, the general conclusions of the investigation are given in Chapter 7.



Chapter 2

Turbulent Flows

Chapter 2 is split into two sections. The aim of the first section is to introduce a number
of tools that are common in turbulence research. Perhaps it is fair to say that the aim is
even more limited: only those tools are introduced that are needed in later chapters as
part of the combined experimental and numerical investigation of the adverse pressure
gradient wake. For an introduction to turbulence the reader is referred to textbooks such
as those by Tennekes and Lumley [1972], Townsend [1976] and Hinze [1975]. The second
section concentrates on one particular turbulent flow, namely the wake of a flat plate in
zero pressure gradient. Clearly, this flow is of importance, because it can be seen as a
reference when studying the effects of the adverse pressure gradient on the wake.

2.1 Basics of Turbulent Flows

2.1.1 Equations of motion

The equations of motion for a turbulent flow can be derived from the conservation of
mass and momentum. For an incompressible flow with constant density, the conservation
of mass is expressed by the continuity equation

aui _
o = 0, (2.1)

where u; is the instantaneous velocity component in the z;-direction. In Eq (2.1) the
usual summation convention applies, i.e. a term containing a repeated suffix is summed
over all three values of the suffix. The tensor notation will be used here and in subsequent
chapters for compactness. Sometimes, the z,y,2 form will be used when it appears to be
more convenient.

The conservation of momentum for a constant density flow is expressed by

6u,' 8u,— _ 60’ij .
P (Ft— + Uuj a—x]) = axj (Z = 1, 2,3) (22)
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where p is the fluid density and g;; is the stress tensor. The term between brackets on the
left-hand side is the acceleration of a fluid element, whereas the term on the right-hand
side represents the forces acting on that fluid element. In a Newtonian fluid the stress
tensor is given by

0ij = —pdij + 2usi; , (2.3)

where p is the hydrodynamic pressure, d;; is the Kronecker delta, p is the dynamic
viscosity and s;; is the rate of strain tensor given by

1 Bui Buj
8ii = = + . 2.4
R (sz oz; 24
Note that the viscous stress 2us;; is assumed to be proportional to the rate of strain
sij, which is a flow property, and the dynamic viscosity p, which is a fluid property.

Combining Eq (2.1) through Eq (2.4) yields the well known Navier-Stokes equations (NS
equations) for a flow with constant density

Bui 6“,’ 1 ap Bzui
ot ij p6:c,~ 61‘1‘31]‘

(i=1,2,3) (2.5)

where v(= p/p) is the kinematic viscosity, which is assumed to be constant. The NS
equations and the continuity equation, together with the boundary conditions and the
initial conditions, are generally considered to describe the turbulent motion in all its
temporal and spatial detail. The NS equations can therefore be seen as an exact model
for the turbulence, but this interpretation is of little practical use since there is no exact
solution to the NS equations. Although direct numerical simulations (DNS) can be seen
as good approximations of exact solutions, DNS for complex geometries or high Reynolds
numbers is beyond the capacity and speed of existing computers, and this will remain
so in the foreseeable future. As a consequence, engineering practice heavily relies on
experimental data, which in general are expensive to obtain, and on numerical solutions
of the Reynolds-averaged NS equations (RANS equations).

2.1.2 Reynolds-averaged Navier-Stokes equations

The instantaneous velocity u; and the instantaneous pressure p are random processes in
the sense that their instantaneous values fluctuate in time and cannot be predicted (see,
for example, Priestley [1981]). However, the velocity and the pressure can be described
in terms of probability. This leads to the introduction of mean values. Reynolds [1895]
introduced the decomposition of the instantaneous turbulence quantities in a mean value
and a fluctuating component, i.e.

w;=U;+u; (1=1,2,3) and p=p+p'. (2.6)

In these expressions, the overbar denotes ensemble averaging and the fluctuating compo-
nent is denoted by a prime. The ensemble average is defined as the arithmetic average
over infinitely many realizations of a particular experiment. It is the most general type
of averaging and it allows for time-dependent mean turbulence quantities in instationary
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processes. However, if the turbulence is assumed to be ergodic, which implies stationarity,
then the ensemble average can be replaced by a simple time average, such as
T/2
J— — 2.7
T = Tlinoo T T/2 ( )

At this moment, however, no assumptions will be made about the stationarity of the
turbulence. Applying the Reynolds averaging to the continuity equation results in
ou;
6%@

which has the same form as the continuity equation for the instantaneous velocity,
Eq (2.1). The Reynolds-averaged NS equations are given by

=0, (2.8)

ou;  __0u; 1 9p Ou  Ou

ot M O pdz; + Vaxjaxj Ox;

(i=1,2,3). (2.9)

The difference between the Reynolds averaged and the instantaneous NS equations is the
appearance of the velocity correlations uju;. These correlations originate from the non-
linear convection terms in the NS equations in conjunction with the Reynolds averaging.
The quantity —pu;u;. is known as the Reynolds-stress tensor. This symmetrical tensor
has six independent components that, in addition to the three mean-velocity components
%; and the mean pressure P, are unknowns in the Reynolds-averaged NS equations. In
order to close the set of equations, appropriate expressions for the Reynolds stresses have
to be devised, an activity known as “turbulence modeling.” In essence, the turbulence
model replaces the information that is lost during the averaging of the equations of
motion.

2.1.3 Reynolds-stress transport equations

To gain insight into the Reynolds stresses it is helpful to consider the so-called Reynolds-
stress transport equations. These equations can be derived by taking moments of the NS
equations, see e.g. Wilcox [1993]. To be more precise: adding the product of the velocity
fluctuation uj and the z;-component of the NS equation to the product of u and the
;- component of the NS equation yields, after averaging:

Bu;ug. N u_au;ug o Fai_j+u'u’au’ +_ ou; +8u
at Tom — \"i"ag TGy, oz, * B

2“}_2 du, Ouj

[
J
a.’El 63;, 811[ ' (2'10)

A detailed physical interpretation of the different terms can be found in, for example,
Bradshaw [1976]. The formulation of the transport equation does not solve the basic
problem of determining the Reynolds stresses, because Eq (2.10) contains many (22)
new unknown correlations. This is not surprising, since the procedure that is followed to
derive Eq (2.10), i.e. taking moments of the NS equations followed by Reynolds averaging,
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does not supply any new information. Eventually, empirical information in the form of
a turbulence model is needed to replace the information that is lost as a result of the
Reynolds averaging.

Before turning to turbulence modeling, attention will be directed to a special case of
the Reynolds-stress transport equation that follows by setting ¢ = j in Eq (2.10) and
dividing the result by 2. This yields the transport equation for the turbulence kinetic
energy per unit mass, k, defined as

k= o= Yom i omyom
= uiu; = §(u + 02 4+ w'?). (2.11)
The transport equation for k reads

ok ok 0% 9 [ 1o 1 Ok]_ Fudu

—+ T— = —ulu + — |- suluiu, — —pup +v— 12
ot l(’)z, ¢ 161'1 81:1 2! it pp ! 81:1 (9:171 6:1:1 ( )
—_——— . ~ N —
advection  production transport dissipation

The equation’s left-hand side is the sum of an unsteady term and the advection. It
represents the change of the kinetic energy when moving with the mean flow. The first
term on the right-hand side is known as production. It is the work of the Reynolds
stresses against the mean strain and represents the transfer of energy from the mean flow
to the turbulence. The second term on the right-hand side is the spatial transport of
turbulence. It can be split into three contributions: transport by velocity fluctuations
(—ujulu;/2), by pressure fluctuations (—p'u;/p) and by viscosity (v0k/0z;). The last
term in Eq (2.12) is the dissipation per unit mass, i.e. the transfer of the turbulence
kinetic energy into heat. It is usually denoted by the Greek symbol e:

6u ou;
€= Bzz 3561 . (2.13)

Both the turbulence kinetic energy k and the dissipation € appear in the well known k£ —e€
turbulence model as will be discussed below.

2.1.4 Turbulence modeling

The Reynolds stresses are frequently modeled as

ou; Ou; 2
_ - t 2 _Z21S..
ul W =n (31:1- + 81:i> 3k5,], (2.14)

where v, is the “eddy viscosity”. The term with ¢;; is included in Eq (2.14) to obtain
the correct value of the trace of the Reynolds stress tensor. The assumption that the
Reynolds stresses are proportional to the mean rate of strain is known as the Boussinesq
approximation. A comparison between Eq (2.3), Eq (2.4) and Eq (2.14) shows that this
approximation mimics the behaviour of the viscous stresses. Dimensional analysis of
Eq (2.14) shows that

w~UL, (2.15)
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where U is a velocity scale and £ is a length scale. For a two-dimensional flow, Eq (2.14)
can be written as

—u’

t= Bu/oy + 0vjox

This suggests that, in general, the scales I/ and £ depend on both mean flow and turbu-
lence quantities. The popular Cebeci-Smith turbulence model [Cebeci and Smith 1974]
expresses the eddy viscosity in mean-flow quantities only. In this model, the eddy viscos-
ity in, for example, the outer region of the turbulent boundary layer or in the turbulent
wake is given by

(2.16)

vy = aUe 0" Fint, (2.17)

where a(= 0.0168) is a closure coefficient, U, is the mean velocity at the edge of the
boundary layer and 0* is the displacement thickness as defined by Eq (2.50). Further-
more, Fj,; is an empirical function that takes into account the effects of the intermittent
behaviour of the flow. On the other hand, the well known k — ¢ model, see e.g. Launder
and Sharma [1974], expresses the eddy viscosity exclusively in turbulence quantities. It
uses U = k'/? and £ = k3/? /e yielding

2
=C, k— (2.18)

where C), is a closure coeflicient. The k — € model uses a modeled transport equation for
the kinetic energy k, reading

o T =g o (7 ) 5] (219

A comparison between the modeled equation and the exact transport equation for &,
Eq (2.12), shows that the triple-velocity correlations and the pressure-velocity correla-
tions are taken together and are modeled as a “gradient-diffusion process,” i.e.

11— 1— Vi Ok

culuiu) + —-_— 2.20

2 i Pp gy 0x; ’ ( )
where oy, is a closure coefficient. The remaining unknown in Eq (2.19) is the dissipation
€. It is possible to derive an exact transport equation for € from the NS equations, see
Wilcox [1993] for details. However, the e-equation that is used in the k — € model shows
only qualitative resemblance to the exact transport equation, so that the latter is not
given here. In the k — e model the transport equation for € usually has the following form

Oe B¢ —0u; 0 ve\ Oe €2
5t +Uja—zj Celk ; ]6% + Bz, [(V+ Z) E] ~Cats (2.21)

where C,, C., and o, are closure coeflicients. The basic mechanisms that govern the
transport of kinetic energy, i.e. advection, production, transport and dissipation, are also
recognized in the modeled equation for e. The first term on the equation’s right-hand side
expresses that the dissipation increases in response to a high production of turbulence
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kinetic energy, whereas the third term acts as a sink to decrease the dissipation levels in
case of zero production.

After specification of the boundary conditions and the initial conditions, the system
of partial differential equations that form the k — € model is ready to be solved. Some
details on the numerical procedure for the computations in a turbulent wake are given
in Section 5.2. There, the values of the closure coefficients will also be specified.

Turbulence models based on the Boussinesq eddy viscosity, Eq (2.14), are found to be
unreliable in cases such as boundary-layer separation or flows over curved surfaces, see,
for example, Wilcox [1993]. It seems more natural for these situations to describe the
Reynolds-stresses with a transport equation, such as Eq (2.10). However, as mentioned
before, the Reynolds-stress transport equations contain many unknowns that have to
be modelled to solve the set of equations. Details on a turbulence model based on the
Reynolds-stress transport equation are given in Section 5.2.

2.1.5 Correlations and spectra

In the previous sections, turbulence was described in terms of single-point statistics,
which are averages defined in one point in time or in one point in space. However, single-
point statistics do not always give sufficient insight into the structure of turbulence.
The simplest statistical quantities to describe the turbulence structure are two-point
correlations from which several turbulence length scales can be derived. These are briefly
described below.

Spatial correlations and length scales
The simultaneous measurement of the fluctuating velocity component at two locations
in space enables the construction of the spatial covariance function

Rij(AT) = ui(D)u}(T + AL), (2.22)
where, for simplicity, it is assumed that the turbulence is homogeneous, so that R;;

depends on the spatial separation AZ only. It is common practice to present R;; in a
normalized form, yielding the spatial correlation function (scf)

uj(E)u; (£ + AZ)
(u(@)? uj(Z + AZ)2)1/2
The scf p;;(AZ) has 27 components which makes it tedious to discuss (and to measure).

In a drastic simplification, the present discussion will be limited to the longitudinal
correlation p11(Az;,0,0), i.e.

(2.23)

pij(AT) =

u'(z)u'(x + Ax)
(w'(z)? u'(z + Az)2)1/2’
where, for convenience, 4} and Az, are replaced by u' and Az, respectively. In turbulence

research the spatial correlation p;;(Ax) is frequently used to determine a number of
length scales of the flow. The integral length scale, L,,, defined as

L11 = / pll(Az‘)dAz, (225)
0

pll(Awlaoa 0) = pll(Ax) = (2'24)
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can be seen as a typical length scale for the large, energy-containing eddies of the turbu-
lence. After some manipulation of Eq (2.24) it can be shown that [Hinze 1975]

d’p11(Ax) (Bul%c)2 .

TdAg?  |Ae=0=- - (2.26)

This means that the curvature of p1;(Az) at zero spatial separation contains information
on the small length scales of the turbulence, because the gradient of a velocity fluctua-
tion as appearing in Eq (2.26) is dominated by small scales. Consider the Taylor-series
expansion of p;1(Az) around zero spatial separation

9p11(Az) 2

R T Sk = o= . 2.2
AL IA 0A3§+2 N |A 0o Az + ( 7)

It follows from Eq (2.24) that p;1(0) = 1. Furthermore, the second term on the right-

hand side of Eq (2.27) is zero because p;1(Az) is an even function. Combining Eq (2.26)

and Eq (2.27) yields

152 A
p11(Az) = p11(0) + C)

(B [9z7)?

2Ul2

2
Az2+...:1——(£) o, (2.28)

p11(Az) =1 - X

where we have introduced the Taylor length scale X,, defined as

22

AZ _
* 7 (0u']dzx)?

(2.29)

The Taylor length scale A is the value of Az where the osculating parabola 1— (Az/);)?
intersects the spatial separation axis.

The curvature of the scf at zero separation contains information on (du’/dz)?. Such
a quantity is related to the dissipation of the turbulence kinetic energy. It appears as an
unknown in the transport equation for the turbulence kinetic energy, see Eq (2.12). This
provides a clue on how to measure the dissipation of k. The basic idea is to measure
the shape of the appropriate scf for very small values of the separation vector AZ. (The
adjective “appropriate” refers to the choice of the suffices ij and the orientation of the
separation vector AZ in Eq (2.23) such that the desired correlation is obtained.) Then
the curvature of the measured scf at zero separation is determined in the form of a Taylor
length scale, which effectively determines the value of a correlation such as (8u’/9x)2.
Multiplied with the kinematic viscosity, v, this yields a contribution to the dissipation
of k.

The direct measurement of the dissipation of k£ by means of the “correlation approach”
is not without problems. As can be seen from Eq (2.13), the total dissipation involves
contributions from a large number of terms. Consequently, an equally large number of

scfs must be measured. However, in locally isotropic flow the dissipation of k is given by
[Hinze 1975]

N\ 2
6:151/(%—1;) : (2.30)
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so that only one spatial correlation function has to be determined. Other issues related to
the correlation approach for the direct measurement of dissipation of turbulence kinetic
energy are discussed in Appendix C.

Instead of the spatial covariance R;;(AZ) itself, it is more usual in turbulence research
to consider the Fourier transform of R;;(Ax). This yields the three-dimensional spectrum

®;; (E) defined as

®,;(k) @ / / / Ri;(AZ) e~ FAZ gAgZ, (2.31)

where k is the wave vector and k = |k| is the wave number, so that k/k represents
the propagation direction of the wave. To facilitate the interpretation of ®;;, the wave
number k may be related to the size of the turbulent eddies, in the sense that high values
of k correspond to small eddies, and vice versa. In theory ®;; is well suited to describe
the spatial structure of turbulence, but in (measurement) practice it is too complex to
handle. In experimental studies it is more convenient to study one-dimensional spectra,
such as the Fourier transform of R;;(Az)

b11(ky) = / Ry (Az)e™ %182 AL, (2.32)

where k; is the z;-component of the wave vector k. The small scales (high wave numbers)
are mainly responsible for the dissipation of energy. Typical length and velocity scales
of the dissipating eddies are the Kolmogorov scales n = (v3/€)!/4 and v = (ve)'/4,
respectively. These are the smallest length scale and velocity scale of the turbulence.
Dimensional analysis suggests that the one-dimensional spectrum ¢,;; in the high wave
number region is given by

¢11 (k1) = v’ f(nky). (2.33)

A well known result in turbulence states that for sufficiently high Reynolds number there
is a range of wave numbers where viscous effects are not important and the turbulent
eddies are isotropic. In this “inertial subrange” the one-dimensional spectrum has the
following appearance

d11(ky) = ae?/3 k753, (2.34)
Experiments suggest that the constant a is about 0.26.

Autocorrelation and time scales

Time resolved measurements (or DNS data) of, for example, the fluctuating velocity
component in the x;-direction allow for the computation of the (temporal) autocovariance
function, R, defined as

R(t1,t2) = uj (t1)uy(t2) = o' (t1)w(t2), (2.35)
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where u] is replaced by v’ for convenience. For stationary turbulence, R(t;,t) depends
only on the lag time 7 = t3 —¢;. It is common practice to normalize R(7) with R(0) = u'.
This yields the autocorrelation function (acf):

_R(r) _ w(t'(t+7)
~ R(0) u? '

p(7) (2.36)
In terms of signal-processing, p(7) measures the similarity between a realization of u'(t)
and the same realization shifted over time 7. Therefore, it is said that p(7) represents
the “memory” of the process u/(t). In analogy to the scf, the autocorrelation function
p(7) can be used to determine a number of time scales of the turbulence, such as the
integral time scale, T, defined as

T, = / p(1)dT, (2.37)
0
and the Taylor time scale, A;, defined as
12
v (2.38)
(Ou'/Bt)?

The inverse of A; is a measure for the highest frequencies that are present in the fluctu-
ating velocity «'(t). In practice, A; can be determined from the curvature of a measured
acf at zero lag time. This procedure is followed in Section 6.4 for measurements in a
turbulent wake.

As in case of the spatial covariance function R;;(AZ), it is possible to Fourier trans-
form the autocovariance function R(r). This yields the spectral density function (sdf),
defined as

s(w) = % /_ " R(r)em dr = % /0 ~ R() cos(wr) dr. (2.39)

The quantity s(w)dw can be interpreted as the contribution to u2 of components with
frequencies between w and w + dw. It follows directly from the definition of the sdf that
its low-frequency range is related to the large scale structure, because s(0) = u'2 T, /7.
The interpretation of the sdf is aided by the close relation that exists between the Fourier
transforms of R;;(Az) and R(7) for flows with low turbulence intensity. This relation is
known as Taylor’s hypothesis.

Taylor’s hypothesis

In theoretical studies on turbulence there is usually more emphasis on the spatial de-
pendency of the turbulence quantities than on the temporal dependency. On the other
hand, most experimental research concerns Eulerian measurements where a quantity is
measured as a function of time at a fixed location in space. Often, the time-dependent
signal is converted into a space-dependent signal using Taylor’s hypothesis, which can be
expressed in mathematical terms as [Hinze 1975]

0 0

—a—t = -u %, (240)
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where % is the mean velocity. Taylor’s hypothesis is valid only if the mean velocity is
large compared to the mean level of the velocity fluctuations, i.e. @ > u'2. According
to Taylor’s hypothesis the temporal fluctuations at a fixed point in space are caused
by the passage of a turbulence velocity field that remains unaltered during the time of
passage. The latter condition is known as “frozen turbulence.” With the help of Taylor’s
hypothesis, the sdf s(w), defined by Eq (2.39), can be interpreted as a one-dimensional
spectrum ¢y (k)

s(w/w) = ¢11(k1). (2.41)

Similarly, the acf p(7), defined by Eq (2.36), can be interpreted as a spatial correlation
p11(Az) by means of the substitution 7 = Az /7, i.e.

p(Tu) = p11(Ax). (2.42)
Also, the Taylor length scale ), is related to the Taylor time scale \; as Ay = \; @.

2.1.6 Turbulent boundary layers and wakes

The boundary-layer approximation

For turbulent boundary layers and wakes it is often assumed that the change of flow
quantities in the mean-flow direction (z-direction) is much smaller than that in the
lateral direction, the y-direction. This can be expressed in mathematical terms as

0 7]

oz < By (2.43)
Alternatively, one may say that the length scale (L) for flow variations in the z-direction
is much larger than that in the y-direction (), i.e. L > I. This is known as the “boundary-
layer” approximation, sometimes called the “thin shear-layer” approximation to under-
line that its validity is not restricted to boundary layers along fixed walls, but that it is
also valid for turbulent wakes, and certain other flows, such as jets and thermal plumes.
The boundary-layer approximation can be used to simplify the Reynolds-averaged equa-
tions of motion for turbulent boundary layers and wakes. In case these flows are two-
dimensional, Eq (2.9) with ¢ = 2 simplifies to (see Tennekes and Lumley [1972] for
details)

(2.44)

For convenience the tensor notation is replaced by the z,y-notation. The above equa-
tion states that the lateral pressure gradient is determined only by the gradient of the
Reynolds stress v'2 in y-direction. Integration of Eq (2.44) yields

p+pv? =p,(z), (2.45)
where the subscript e refers to conditions at the edge of the turbulent shear layer. Clearly,
P, is related to the velocity just outside the shear layer, U,, by

dU, 1dp,

“de ~  pdz’

(2.46)
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Eq (2.45) can be used to obtain the following approximation to the Reynolds-averaged
momentum equation for the z-direction

o au__ld_pi_a(ﬁ.—ﬁ)_awﬂa’j
dr Oy  pdz Or Ay oy?’

The term d(u”2 — v'2)/dz is often small and is, therefore, often neglected as part of the
thin shear-layer approximation. However, the term cannot be neglected in, for example,
boundary layers subjected to adverse pressure gradients near separation. A useful relation
can be derived by integrating Eq (2.47) and the continuity equation, Eq (2.8), across
a boundary layer from y = 0 (wall) to y = +00. After some manipulation, see e.g.
Hinze [1975], the Von Karmén integral momentum equation is obtained, reading

(2.47)

de dU. 4 T, 1 d [ —= —
- 2 H e v —_ w - 12 a2 d , 24
w e pUg+U3dz/0(“ v™) dy (248)
where 7, is the shear stress at the wall, given by
ou
Tw = ﬂ@b:o . (2.49)

The displacement thickness §* and the momentum thickness 8 are characteristics of the
mean-velocity profile, and defined as

5 = /Ooo (1 - UE) dy (2.50)

= 2({1-X)q. 2.
0 /0 i ( Ue> dy (2.51)

Furthermore, H(= ¢*/6) is known as the “shape factor” of the mean-velocity profile.
The integral momentum equation, Eq (2.48), is also valid for the wake if the integrals in
Eqgs (2.50) and (2.51) are evaluated from y = —o00 to y = +oo and if 7, is set to zero.

The boundary-layer approximation can also be applied to the transport equation for
the turbulence kinetic energy, Eq (2.12). This yields (for a stationary flow)

Eg—: + Ug—:j = —_vgs (,;Z [—%(u'%’ + v’ + w'?y') — %W+ l/g—z —e€ (2.52)
Note that the production consists of “shear-stress production” only, and that the stream-
wise derivative of the transport term is neglected. The expression for the dissipation ¢ is
unaltered under the boundary-layer approximation, and is given by Eq (2.13).

It should be mentioned that the boundary-layer approximations are valid only if the
ratio I/L is sufficient small. For a constant-pressure turbulent wake, experiments, e.g.
Andreopoulos and Bradshaw [1980], suggest that the boundary-layer approximation is
accurate. However, it is unlikely that the approximations are still accurate for wakes
with a large pressure increase in the streamwise direction. The adverse pressure gradient,
is expected to enhance the spreading of the wake so that the streamlines are no longer
nearly parallel to the z-axis. This suggests an increase of the ratio {/L as compared to
the turbulent wake in zero pressure gradient.

and
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Figure 2.1: Different scaling regions in the boundary layer.

Turbulent boundary layers

A characteristic that makes turbulent boundary layers generally more complicated than
turbulent far wakes is the fact that a boundary layer consist of different regions, each
with distinct scales. This complication has its origin in the fluid viscosity that imposes
the no-slip condition on a solid wall, a condition that is clearly absent in a turbulent
wake. Figure 2.1 illustrates the different regions in the boundary layer. In the region
close to the wall the viscosity is important and a suitable length scale is formed by
v/u,. The friction velocity u, (u, = (1,/p)'/?, where 7, is the wall shear stress) is a
relevant velocity scale. The mean velocity in the inner region can be described by the
“law-of-the-wall” [Tennekes and Lumley 1972]

and yt =L (2.53)

ut =f(y") with ot = ”

§la

where f does not depend on the streamwise coordinate . The law-of-the-wall expresses
that the flow near the wall is independent of the large-scale motion in the outer region
of the boundary layer. Close to the wall the Reynolds stresses are negligible compared
to the viscous stresses, and the law-of-the-wall takes the following form

ut =yt for yt <3 (2.54)

The region where Eq (2.54) is valid is called the “viscous sublayer.”

The boundary-layer thickness, §, is an appropriate length scale for the larger part of
the turbulent boundary layer, except close to the wall. The friction velocity u, can still
be used as a velocity scale in the outer region. The mean-velocity profile in the outer
region of the boundary layer may be expressed in defect form

Ueu: U_p (%) , (2.55)
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where U, is the mean velocity outside the boundary layer. Eq (2.55) is called a “defect
law” if F does not depend on the streamwise coordinate z, so that the mean-velocity
profile has the same functional form at different streamwise locations.

The “inertial sublayer” is the region of the boundary layer where both the defect
law and the law-of-the-wall are valid. It follows from Eq (2.55) and Eq (2.53) that the
mean-velocity profile in the inertial sublayer is given by [Tennekes and Lumley 1972]

1
ut = - Iny* + C, (2.56)

where « is the Von Kdrman constant the value of which is approximately 0.41. Depending
on the experiment, the value of the coefficient C ranges between 5.0 and 5.5 for smooth
surfaces. In the inertial sublayer the Reynolds stresses are much larger than the viscous
stresses, so that the latter can be neglected. In between the inertial sublayer and the
viscous sublayer one finds the “buffer layer”, where the viscous stresses and the Reynolds
stresses have comparable magnitude.

A frequently used expression for the mean-velocity distribution in the inner region is
due to Reichardt [1951]

1 Crk—1 =+ oyt
ut = ~In (T+ry™) + % (1 —eTir — Zi_le—o.33y+> . (2.57)

This expression reduces to the linear mean-velocity profile, Eq (2.54), for small values of
y* while for large values of y* the mean-velocity distribution of Eq (2.56) is obtained.
Eq (2.57) can be conveniently used to determine the friction velocity, u,, from experi-
mental data using a method introduced by Clauser [1954]. In this method the theoretical
mean-velocity distribution, Eq (2.57), is matched to the experimental data in the inner
region by variation of u,. The matching is usually carried out by visual inspection of a so
called “Clauser plot” in which both the experimental and the theoretical mean-velocity
distributions are plotted against In(y™).

Self-preserving wakes

The distributions of the mean velocity and turbulence quantities in a turbulent wake
change in downstream direction. For large distances behind the wake-generating body,
it is often assumed that the flow development is “self-preserving,” also referred to as
“self-similar.” In that case the variation of, for example, the mean velocity in the wake
is assumed to have the following form

= (at) (2.58)

in which ug(z) is a velocity scale, e.g. the maximum velocity defect, and ly(z) is a trans-
verse length scale, e.g. the wake width at half the maximum velocity defect. Eq (2.58)
expresses that the lateral distribution of % has the same functional form at different
streamwise locations, i.e. the universal function G is independent of z. The streamwise
development of the distribution is accounted for by the dependence of ug and lp on z.
Substitution of the expressions for self-preserving development, such as Eq (2.58), in the
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equations of motion relates the different universal functions and imposes conditions on
the dependence of ug and ly on z. However, a complete discussion of self-similarity of a
wake is not within the scope of this chapter; it is discussed in detail in several textbooks
on turbulence. It suffices here to mention the necessary conditions for self-preservation of
a wake with small velocity defect. In the case that the edge velocity, U,, is proportional
to (z — z0)?, where o is some virtual origin and a is a constant, the velocity scale ug
and the length scale Iy should behave as (see Townsend [1976])

up(z) o (z — To) 2710 and  lo(z) o (z — z)2™ 20, (2.59)

In a zero streamwise pressure gradient (a = 0) the above expressions simplify to the
following well-known result

up(z) x (z — xo)_% and  lo(z) x (z — :co)%. (2.60)

The behaviour of the scales up and Iy as given by the above expressions is confirmed by
several experiments, such as those by Pot [1979] and Andreopoulos and Bradshaw [1980].

Of considerable importance is the downstream distance from the wake-generating
body beyond which the wake has reached the self-preserving state. For the wake of a
flat plate this issue was addressed by Ramaprian et al. [1982]. After a careful analysis of
the available experimental data, they concluded that the mean velocity reached the self-
preserving state at z/6 ~ 25, where 6 is the momentum thickness of the wake (which is
constant in a zero pressure gradient wake). Turbulence quantities generally require much
longer downstream distances before self-similar development is attained. The observation
that the mean velocity reaches an asymptotic state at z/0 = 25 has, perhaps somewhat
arbitrary, led to the labeling “far wake” for z/0 > 25, while the region z/8 < 25
is known as the ”"near wake”. The near wake will be discussed in some detail in the
following section.

2.2 Turbulent Near Wakes

2.2.1 Characteristics of the near wake

When a boundary layer moves past the trailing edge of a streamlined body, there is a
sudden change in the boundary conditions due to the removal of the no-slip condition.
The flow adjusts itself to the new boundary conditions, and then transforms into the
far wake at large distances beyond the trailing edge. Both the turbulent boundary
layer and the far wake have been the subject of numerous experimental and numerical
investigations. But investigations into these flows are unlikely to give information on the
way the boundary layer evolves into the far wake. By definition, the transformation from
the boundary layer into the far wake takes place in the near wake.

The near wake of a streamlined body, such as an airfoil or a flat plate, consists of two
regions, which are commonly referred to as the “outer wake” and the “inner wake”, see
Fig. 2.2. Both regions have distinct velocity and length scales, not unlike the turbulent
boundary layer. The outer wake is the part of the near wake that is unaffected by the
sudden change of the boundary conditions at the trailing edge (z = 0). The outer wake
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Figure 2.2: Definition of the different scaling regions in the near wake. The y-direction is not
drawn to scale. (Adapted from Alber [1980].)

can be seen as the remnant of the velocity distribution in the boundary layer that is
convected downstream by the mean flow. Chevray and Kovasznay [1969] were the first
to report the observation that only the centre portion of the near wake changes, while the
outer wake remains practically the same. For the zero-pressure-gradient case Chevray and
Kovasznay [1969] also noted the very small spreading of the near wake beyond the initial
distributions of the boundary layer at the trailing edge. As indicated by Andreopoulos
and Bradshaw [1980] this is actually the result of two opposing effects. First, there is
the natural growth of the outer region of the boundary layer when it moves downstream
of the trailing edge into the wake. Secondly, there is a rapid increase in z of the mean
velocity near the centre line. This rapid acceleration of the mean velocity in the inner
wake, to be discussed shortly, induces an inflow towards the centre of the wake. For a
constant-pressure wake the two opposing effects apparently cancel each other, thereby
causing negligible growth of the near wake.

The inner wake is the region of the near wake in the direct vicinity of the trailing edge
where the flow changes rapidly in both lateral and streamwise direction. In the inner
wake the mean velocity distribution scales with the same length and velocity scales that
are used in the law-of-the-wall region of the boundary layer, i.e., u, is a characteristic
velocity and v/u, is a characteristic length. According to Alber [1980] the value of ., at
the trailing edge should be used'. The inner wake is divided into two regions, namely the
“viscous inner wake” and the “turbulent inner wake” as illustrated in Fig 2.2. Alber [1980]
derived approximate solutions for the mean velocity in, and the thickness of, both regions
of the inner wake. In the viscous inner wake the viscous stresses dominate the Reynolds
stresses so that the latter can be ignored. The viscous inner wake grows into the remnants
of the viscous sublayer of the original boundary layer. The region extends in streamwise

INote that Alber’s choice for the relevant value of u, is reasonable in case an “infinitely thin” plate
is considered, but is likely to cause problems when the aft portion of the wake generating body is shaped
in such a way that u, rapidly changes towards the trailing edge.




22 CHAPTER 2. TURBULENT FLOWS

24 7
& if/
20 o x
duu v Z};/
16 z/“nx‘# « Chevray & Kovasznay
5 /9y o Haji-Haidary & Smith
T ol N 4t \ » Nakayama & Liu
v 12 Ny + Ramaprian et al.
'3 %, .Eq(262) » Starke
8 /J’c 27 x Andreopoulos & Bradshaw
S
4 > <8
o+ “Eq(261)
oLl
10! 107 10° 10* 10°
x*=xuefy

Figure 2.3: Dimensionless centreline velocity for the zero-pressure-gradient wake.

direction from the trailing edge (z = 0) up to z ~ 100 v/u,. The inner wake’s centreline
velocity behaves as

, (2.61)

where the subscript ¢l denotes conditions on the centreline. The thickness of the viscous
inner wake also increases proportional to z1/3. Furthermore, Alber [1980] reasoned that
once the viscous inner wake has consumed the viscous sublayer, a turbulent inner wake
will develop in the region of the convected turbulent boundary layer where Reynolds
stresses are not negligible compared to viscous stresses. Assuming that the eddy viscosity
near the centreline varied linearly in y, Alber [1980] derived the following expression for
the centreline velocity in the turbulent inner wake

in} 1

=4 = ~[inglou,/v) - 1)+, (2.62)

Uy K
where k = 0.41, C = 5.0, v = 0.5772 and the function g(z) is implicitly defined by

g(z) [Ing(z) — 1] = k*az. (2.63)

Alber determined the values of & and C from a matching of Chevray and Kovasznay’s
mean-velocity distribution at the trailing edge to the mean-velocity profile in the inertial
sublayer, Eq (2.56).

It is interesting to compare Alber’s predictions to the results of several other exper-
iments in the near wakes of flat plates. Figure 2.3 shows the predicted mean velocity
along the centreline in dimensionless form. The dashed line in Fig. 2.3 is the centreline
velocity in the viscous part of the near wake, Eq (2.61), whereas the full line represents
the centreline velocity in the turbulent part given by Eq (2.62). Also shown in Fig. 2.3
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are the results of various experiments in flat-plate wakes. Starke’s results [Starke 2000]
are somewhat special because they were obtained in the wake of the same plate as used
in the experiment described later in this thesis. The agreement between Eq (2.61) and
the experimental data is poor. To the author’s knowledge there are no experiments that
support the validity of Eq (2.61). A close examination of Starke’s data reveals that
the centreline velocity is nearly linear in z for small trailing-edge distances. In other
words: the centreline velocity behaves nearly as 7, « z instead of T, o< z!/3. This is in
agreement with the findings of Haji-Haidari and Smith [1988].

In the logarithmic region there is excellent agreement between Alber’s theory and
the measurements of Chevray and Kovasznay [1969]. The data of Andreopoulos and
Bradshaw [1980] indicate a slightly larger slope and intercept. The experiments of Starke
and Haji-Haidari and Smith reveal even larger slopes in the logarithmic region, whereas
the data of Ramaprian et al. [1982] are unique in the sense that these data indicate a
slope that is slightly smaller than that of Alber.

It is clear from Fig. 2.3 that the different experiments on flat plate wakes do not
indicate a unique set of values for x and C. It should be noted that the investigation of
Nakayama and Liu [1990] revealed a correlation between the Reynolds number based on
the momentum thickness of the boundary layer at the trailing edge, Ry, and the value of
the intercept C'. They found that an increase of Ry generally resulted in an increase of C.
However, Table 2.1 shows that this Rg-effect alone cannot explain the differences observed
in Fig. 2.3. It is therefore likely that another effect exists. Table 2.1 also gives the angles
of the tapered trailing edges for various experiments. Chevray and Kovasznay [1969]
apparently used an extremely “thin” flat plate with an included angle at the trailing
edge of 0.13°. On the other hand, Starke [2000] and Haji-Haidari and Smith [1988) used
“thick” flat plates with trailing-edge angles of 8.9° and 8.0°, respectively.

It is obvious that the pressure distribution in the tapered part of the trailing edge will
differ from that of a plate with “zero” thickness. Figure 2.4 sketches the inviscid static-
pressure distribution along the plate surface (solid line) and along a streamline some
distance away from the surface (dashed line). The taper induces an adverse pressure
gradient in the trailing-edge region of the boundary layer. This reduces the friction
velocity, u., thereby increasing the slope of the velocity distribution in the logarithmic
region. In the direct vicinity of the trailing edge there is an even larger adverse pressure
gradient, causing a further reduction of the friction velocity. Interestingly, there is a
strong favourable pressure gradient over some distance in the wake, which induces an
additional acceleration of the centreline velocity.

2.2.2 Calculation of the near wake of a flat plate

Patel and Scheuerer [1982] have calculated the wake of a flat plate in zero pressure
gradient. Numerical solutions of the Reynolds-averaged Navier-Stokes equations (under
boundary-layer approximation) were obtained by using a standard k— e turbulence model.
To assess the performance of the k — € model for computations in both the near and the
far wake, Patel and Scheuerer compared the numerical solutions with several sets of
experimental data. Far downstream of the trailing edge, say z/8 > 350, the comparison
with the far-wake data of Pot [1979] indicated that the k — e model underpredicts the
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[ Investigation [B81°1] Re |
Chevray & Kovasznay 0.13 | 1582
Andreopoulis & Bradshaw | 1.8 | 13600
Ramaprian et al. 1.5 5220
Nakayama & Liu 24 2747
Haji-Haidari & Smith 8.0 | 13600
Starke 8.9 1400

Table 2.1: The trailing-edge angle 8 and the Reynolds number Ry at the trailing edge for
various experiments.

static pressure

Figure 2.4: Effects of taper on the static-pressure distribution. The full line represents the
static-pressure distribution on the plate surface and along the wake centreline. The dashed line
is the static-pressure distribution along a streamline some distance away from the plate.

spreading rate of the far wake. This, however, is a well-known defect of the k£ — ¢ model.
Figures 2.5 and 2.6 show important results of the comparison with the near-wake data
of Ramaprian et al. [1982] and Andreopoulos and Bradshaw [1980], respectively. Both
figures illustrate that the calculated values of the maximum velocity defect, ug, the wake
half-width, Iy, and the shape factor, H, are in good agreement with the experimental
data for the range of trailing-edge distances covered by the experiments. Later, these
conclusions were confirmed by the findings of a more detailed investigation of the trailing-
edge region by Patel and Chen [1987).

More recently, Tummers et al. [1997] computed the nominally zero-pressure-gradient
near wake of a tapered flat plate using both a k— e model [Launder and Sharma 1974] and
a differential Reynolds-stress transport model (RSTM) [Hanjali¢ et al. 1992]. These com-
putations were based on the elliptic formulation of the RANS-equations (no boundary-
layer approximation). The same near wake was also investigated experimentally by
Starke [2000] using the same experimental facility and wake-generating flat plate as in
the experiment described in Section 5.1. It is important to note that the trailing edge of
this plate has a relatively large taper angle. As discussed in Section 2.2.1, the pressure
field induced by the taper has significant effects on the flow field in the trailing-edge
region. One cannot exclude beforehand the possibility that the “internal” pressure varia-
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Figure 2.5: Comparison between calcula- Figure 2.6: Comparison between calcu-
tions of Patel and Scheuerer [1982] and the ex- lations of Patel and Scheuerer [1982] and
periments of Ramaprian et al. [1982]. (Taken the experiments of Andreopoulos and Brad-
from Patel and Scheuerer [1982]). shaw [1980]. (Taken from Patel and

Scheuerer [1982]).

tions caused by the tapering form a complication for the turbulence models that prevents
successful prediction of this trailing-edge flow. However, it will be shown below that this
is not the case.

Figure 2.7 depicts the measured and the computed centreline velocity in the wake
of the tapered plate. The turbulent kinetic energy on the centreline and the maximum
value of the turbulent kinetic energy at various z-stations are shown in Fig. 2.8. Both
graphs indicate good agreement between the experiments and the numerical predictions.

The streamwise development of the displacement thickness §* and the momentum
thickness 8 are given in Fig. 2.9. The values of §* and 6 for both the measured and com-
puted mean-velocity profiles were determined from the definitions given by Egs (2.50) and
(2.51), respectively. The upper (lower) limit in the integrals defining 6* and § was chosen
as the largest (smallest) y-coordinate of the measurement grid at each z-station?. The
computations accurately reproduce the measured decrease of the momentum thickness
from § = 4.7 mm at the trailing edge to § = 3.3 mm further downstream. At first glance,
it appears surprising that the momentum thickness varies significantly in the nominally
zero-pressure-gradient wake. However, the variation of the momentum thickness can be
easily explained from the computed static-pressure distribution in the near wake that is
plotted in Fig. 2.10. C}, is the static-pressure coeflicient as will be defined in Section 6.1.
The graph confirms that the static pressure is practically constant at the outer edge of

2Strictly speaking the concept of the “integral parameters” is valid only in flows without lateral pres-
sure gradients (boundary-layer approximation). Although extensions to flows with lateral pressure gra-
dients are known (e.g. Lock [1981} and Lock and Firmin [1982]), the above procedure is followed, thereby
accepting that the thus determined values of 6* and 6 do not have the original physical interpretation.

shape factor H




26 CHAPTER 2. TURBULENT FLOWS

1 0.016
L o centreline k
; « maximum k
o 0012 —RSTM
- k-¢
o 0.5 w
2 o measurements % 0.008
s —RSTM ey
0.25 3 ~ ke
0.004
0 b
-0.25 L A il 0 L L 1
0 100 200 300 400 0 100 200 300 400
x [mm] x [mm]
Figure 2.7: The centreline velocity % for Figure 2.8: The turbulent kinetic energy k
the wake in zero pressure gradient. [Tum- for the wake in zero pressure gradient. [Tum-
mers et al. 1997) mers et al. 1997]

the computational domain (y = 80 mm). This boundary condition followed from static-
pressure measurements. The static pressure is also practically constant across the wake
far downstream of the trailing edge. There, the very small static-pressure variations in
y-direction are caused by the variation of the Reynolds stress v with y, in agreement
with the Reynolds-averaged momentum equation for the y-direction. However, owing to
the tapering of the trailing edge of the plate, there are significant pressure gradients in
both lateral and streamwise direction near the trailing edge. The taper causes an increase
of the static pressure in the boundary layer when moving towards the trailing edge. This
explains the relatively high value of the shape factor (H = 1.55) of the mean-velocity pro-
file at the trailing edge in Starke’s experiment [Starke 2000]. The static pressure reaches
a local maximum at the trailing edge and then relaxes in the wake. As a result, the near
wake is subjected to a favourable pressure gradient even though the static pressure is
practically constant at the outer edge at y = 80 mm. The favourable pressure gradient
induced by the tapering is responsible for the decrease of the momentum thickness. Note
that this phenomenon could not have been predicted when the boundary-layer approx-
imation to the RANS-equations had been used for the computations in the near wake.

The above discussion can be summarized as follows. The near wake of a flat plate in
a nominally zero pressure gradient can be accurately computed using either a standard
k — e model or a RSTM. Furthermore, it has been shown that both turbulence models
can cope with the internal pressure variations caused by the tapering of the trailing edge.
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Figure 2.9: The displacement thickness §*
and the momentum thickness 8 for the wake
in zero pressure gradient. [Tummers et al.
1997]
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Figure 2.10: The static-pressure distribu-
tion in the near wake, as found from the
Reynolds-stress transport model. [Tummers
et al. 1997]
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Chapter 3

Laser Doppler Anemometry

Sections 3.1 and 3.2 briefly summarize the basic principles of laser Doppler anemom-
etry (LDA). For a more comprehensive treatment of these principles, the reader is re-
ferred to standard text books such as those by Durst et al. [1976], Durrani and Greated
[1977], Somerscales [1981] and Absil [1995]. Aspects of LDA that are typical for a three-
component system are described in some detail in Section 3.3, since, to the author’s
knowledge, these are not treated in the standard literature. Readers who are familiar
with all this may proceed to the next chapter.

3.1 Introduction

In LDA the Doppler-shift is determined of light scattered by a small particle that moves
with the flow. This Doppler-shift provides a measure for the velocity of the particle,
and, therefore, for the flow velocity. Since the introduction of the technique by Yeh and
Cummins [1964] the use of LDA has become widespread in both research and industrial
applications. The main advantage of the technique over conventional measuring tech-
niques, such as hot-wire anemometry (HWA) and pressure probes, is that it does not
require a physical probe in the flow, i.e. it is a non-intrusive technique. Therefore, the
flow is not disturbed during a measurement. Other advantages of the technique are:

o The Doppler frequency is a measure for the velocity component in a direction that
is determined by the geometry of the optical arrangement;

e There is a linear relationship between the Doppler frequency and the velocity,
resulting in a single calibration factor. The calibration factor depends only on the
geometry of the optical arrangement and the frequency of the light source, and is
independent of the flow properties;

e The LDA combines a good spatial resolution with a high temporal resolution.
Especially for multi-component measurements, the spatial resolution of LDA is
superior to that of HWA;

29
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¢ The technique is directionally sensitive which means that it is able to measure flow
reversal.

The combination of the different items makes the technique ideally suited for measure-
ments in turbulent flows. Both the magnitude and the direction of the instantaneous
velocity vector can be measured. It does not only give accurate information on relatively
simple statistics, such as mean velocities and Reynolds stresses, but the non-intrusive na-
ture also enables the measurement of more complex quantities such as spatial correlation
functions.

The list of advantages is impressive, it resembles the specification of an ideal measuring
instrument. However, it is not difficult to list some serious drawbacks of LDA:

e LDA samples the velocity when a particle transits the measuring volume, i.e. the
region in space where the measurements are taken. Since the particles are randomly
distributed in space, the sampling times are random as well. The random nature of
the sampling process precludes the use of many standard data-processing methods
(such as the fast Fourier transform (FFT) algorithm) for the spectral analysis of
the turbulent velocity fluctuations;

e The processing of the randomly sampled data is further complicated by the de-
pendence of the sampling process on the flow velocity. This phenomenon is known
as the velocity bias [McLaughlin and Tiederman 1973]. Erroneous statistics will
result if the velocity bias is ignored during the processing of the data;

¢ LDA measures the velocity of small particles that move with the flow. Since the
quantity of interest is the fluid velocity, the relationship between the particle ve-
locity and the fluid velocity must be known.

However, the main disadvantage lies in the complexity of the measuring technique. The
complexity not only results in relatively high cost of purchasing an LDA system, it also
requires an experienced operator who is familiar with all the peculiarities of the measuring
technique.

3.2 Basic Principles of LDA

3.2.1 Doppler frequency

The Doppler effect forms the basis of LDA. Light scattered by a small moving particle
undergoes a shift in frequency. This frequency shift is called the Doppler frequency and
it is related to the velocity of the particle. Below, the relationship between the Doppler
frequency and the velocity is derived.

Consider Fig. 3.1 which shows a light source that generates a plane light wave with
frequency fo. The direction of propagation of the plane wave is given by the unit vector
€;. In complex notation the plane wave is given by

Ei(Z) = E; e i(3nfot=ko@:Z+¢:) (3.1)
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Figure 3.1: The light-scattering configuration.

where ¢; is the initial phase and kg = 27/)¢ is the wave number. The wavelength Xg is
related to the frequency of the light source as Ag = ¢/ fo where c is the speed of light. A
particle passing through the plane wave scatters light in all directions and some of the
light will be received by a detector. The orientation of the detector is determined by the
unit vector €y, and the detector is located at 7= ;. The spherical wave emitted by the
particle may be represented by [Goldstein 1983]:

Eoyos g
E,(F—7) = |Fsi_0:i’| e i fat=kalP=El400) (3:2)

where o5 depends on the scattering characteristics of the particle. At the particle (F = &)
it follows from Eq (3.1) and Eq (3.2) that

2m fot — ko€ + ¢; = 2w fst + ¢s. (33)

This yields the following expression for the phase ® of the spherical wave at the detector
(F=7q)

®

27 fot + @i — ko€iT — ks |7y — T (3.4)
27Tf0t + ¢i — ko, T — kg <R - gdi—::t) s

where it is assumed that at time # = 0 the distance between the particle and the detector
is R. Furthermore, dZ/dt = ¥ is the velocity vector of the particle at t = 0. The
frequency of the scattered light as seen by the detector, f,, is proportional to the time
derivative of @, i.e.

do
21 fy = Et— =27 fo + ﬁ(ksgd - kogi) . (35)
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Figure 3.2: The optical arrangement for the dual-beam heterodyne LDA.

If the velocity of the particle is small compared to the speed of light, it can be assumed
that kg ~ k, in Eq (3.5), so that the frequency of the scattered light at the detector, f,,,
becomes

v(€q — ;)

" (3.6)

fw= fo+
The second term on the right-hand side of Eq (3.6) is known as the Doppler frequency.
It contains information on the component of the velocity in the direction of the vector

€4 — €;. This vector is determined by the geometry of the optical arrangement of the
LDA.

3.2.2 Heterodyne detection

It is the task of the detector to generate an output signal from which the Doppler fre-
quency fp can be determined. The direct measurement of the Doppler frequency requires
a very high resolution of the detector, because the Doppler frequency is much smaller
than the frequency of light; typically fp/fo ~ 107!3. In the low-velocity range, say
|#] < 300 m/s, the Doppler frequency can be determined with an “optical mixing” or
“heterodyne” technique in conjunction with a square-law detector. The essence of het-
erodyning is that when two light waves with slightly different frequencies, f,, and fu,,
are mixed on the surface of a square-law detector, the output signal oscillates with the
difference frequency fi,,, — fu,. Because of its superior signal-to-noise ratio, the most
widely used optical configuration is the dual-beam heterodyne configuration. Figure 3.2
shows the optical arrangement for the dual-beam configuration. Eq (3.6) can be applied
to both incident beams, resulting in

fw1 = fO + 77(€d - gzl)/AO ,‘-)‘(-0 _ 512)

S ID = fup — fun = o2 ) (3.7)
fuws = fo+ U(€q — €,)/ Mo

Ao
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The unit vectors €;, and €;, indicate the direction of the incident beams, and the Doppler
frequency fp is now defined as the difference between f,,, and f,. Inspection of Eq (3.7)
shows that fp is a measure for the velocity component in the direction of €;, — &;,. The
Doppler frequency is independent of the orientation of the detector with respect to the
incident beams, which enables the use of large apertures to collect more scattered light.

When a particle passes through the overlap region of the incident beams, i.e. the
so-called measuring volume, it scatters light in all directions. A square-law detector,
usually a photomultiplier tube, then receives light with two slightly different frequencies,
fuw, and fu,. The relationship between the output signal y(t) and the input signal z(t)
of a photomultiplier is given by [Somerscales 1981]

/ T ey )
o(t)2dt 3.8
T T, T,/2 (

where T is the time constant of the photomultiplier and the constant S represents the
radiant sensitivity. According to Eq (3.5) the input signal can be written as

z(t) = a1 cos(2m fu, t + ¢1) + a2 cos(27 fy,t + o), (3.9)

where ¢; — ¢2 is the phase difference between the two light waves. The phase difference
is assumed to be constant, which indicates the need for a coherent light source such as
a laser. On combining Eqs (3.7) through (3.9) the following expression for the output
signal of the photomultiplier is obtained (assuming T f,,, > 1 and T fy, > 1)

| sin(7fpTs)|

ool cos(2m fpt + ¢1 — ¢2). (3.10)

1
y(t) = §Safa§ + Sa1a2

For small values of the time constant T, say Ts ~ 107° s, Eq (3.10) reduces to the
following well-known expression for the output signal of the photomultiplier

1
y(t) = 550%0% + Sa1a2 cos(27rth + ¢1 - ¢2) . (311)

The first term on the equation’s right-hand side is known as the pedestal; it is the result
of the spatial distribution of the light intensity in the overlap region of both beams.
The second term, called the Doppler burst, carries the desired information, because it
oscillates with the Doppler frequency fp.

3.2.3 Directional ambiguity

Referring to Fig. 3.2, it is easy to see that the expression for the Doppler frequency,

Eq (3.7), can be rewritten as

17(€i1 - giz) _ 2sm(0/2)
Ao T o

fp= |¥] sin v, (3.12)
where 6 is the angle between the unit vectors €;, and &;,, i.e. 8 is the crossing angle of the
incident laser beams. Furthermore, o is the angle between the velocity vector and the
z-axis. The frequency difference fp can be positive or negative depending on the value
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Figure 3.3: The effect of frequency shift on Figure 3.4: The interference of two plane
the relationship between the particle velocity light waves.

and the frequency of the photomultiplier out-

put signal.

of a. However, the output of the photomultiplier cannot distinguish between positive
and negative values of fp because cos(—fp) = cos(fp). As a result, the LDA in its basic
form is unable to determine the sign of the velocity. The insensitivity to the direction of
the particle velocity is usually referred to as the “directional ambiguity.” The common
method to remove this ambiguity is frequency shifting. In that case the frequency of one
of the incident beams in Fig. 3.2 is shifted by a constant value f;. This can be achieved
with an acousto-optic Bragg cell. Due to the frequency shift the relationship between
Doppler frequency and particle velocity becomes (assuming f; < fo)

25in(6/2)

|7] sin v, (3.13)
Ao

f D = f s+
as illustrated in Fig. 3.3. If the shift frequency fs is chosen larger than the Doppler
frequency that corresponds to the smallest anticipated velocity in the flow, vgin, each
value of |fp| is uniquely related to one velocity value, and, as a consequence, the direc-
tional ambiguity is removed. In practice, one usually sets the shift frequency f, about
two times larger than the Doppler frequency that corresponds to v,,;, [Tropea 1986).

3.2.4 Fringe model

An alternative procedure to derive the relationship between the Doppler frequency and
the velocity for the dual-beam LDA, Eq (3.12), is given by the “fringe model,” which
is due to Rudd [1969]. The fringe model is often used to visualize different aspects of
the dual-beam configuration, such as the nature of the detector output signals in case
the incident beams are improperly aligned [Durst and Stevenson 1979]. It also gives an
interpretation of the proportionality constant between the Doppler frequency and the
velocity in Eq (3.12). However, the fringe model should be considered with some reserve,
because it is incorrect in the sense that it ignores the fact that heterodyning takes place
on the surface of the photomultiplier and not at the particle, see Durst [1982]. However,
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most of the predictions of the fringe model are in accordance with the Doppler theory,
as will be shown below.

If the incident beams shown in Fig. 3.4 are properly aligned, their wavefronts are
nearly plane in the overlap region, so that the light waves can be described with Eq (3.1).
The intensity of the light in the overlap region of both beams is then given by

I (Er, + B, )(EY, + E3,) (3.14)
= E? + E} +2E, B, cos(2koysin(6/2) + ¢, — ¢s),

I

where 6 is the angle between the unit vectors €;, and &;,, y is a coordinate in the direction
of €, - €, and ¢; — ¢, is the phase difference between the two light waves. According to
Eq (3.14) the intensity varies periodically in y, and the distance between two consecutive
lines of constant intensity in the interference pattern is given by

Ao

The quantity d; is known as the fringe distance, and inspection of Eq (3.12) reveals
that it is the inverse of the proportionality constant between the Doppler frequency and
the velocity. A small particle passing through the interference pattern with a velocity
component in the y-direction of v(= |v]sina), scatters light with an intensity that is
proportional to the local value of I. The intensity of the scattered light then oscillates
with frequency

v _ 2sin(6/2)
dy Ao

—

|7] sin a. (3.16)
It follows from a comparison with Eq (3.12) that this is identical to the Doppler frequency.

The fringe model can also be used to visualize the effects of applying a frequency shift
to remove the directional ambiguity. If in Fig. 3.4 the frequency of one of the beams,
say beam 1, is increased with a value f,, the intensity of the light in the overlap region
becomes

I = E} + E3 +2Ey,Es, cos(2nft + 2koy sin(8/2) + ¢y — ¢2) . (3.17)

The fringes in the interference pattern now move with velocity vs = d #fs in the positive
y-direction. As a result, a detector sees intensity variations with a frequency

2sin(8/2)

v
fs+$—fs+ /\0

|U]sina = fp, (3.18)
which is identical to Eq (3.13), the result obtained using the Doppler theory.

3.2.5 Amplitude bias

Durao and Whitelaw [1979] have shown experimentally that there is a relationship be-
tween the amplitude of a Doppler burst and the particle velocity. There study revealed
that there is a tendency for low-speed particles to produce high-amplitude Doppler bursts,
and vice versa. Through this mechanism low-velocity particles have (on the average) a
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Figure 3.5: The amplitude A versus the velocity v for several values of T, ranging between 2 ns
and 32 ns.

larger probability of being detected and validated by the LDA signal processor than
high-velocity particles. This bias towards low velocities was termed “amplitude bias” by
Durao and Whitelaw. They argued that the amplitude bias was due to the fact that fast
moving particles (on the average) spend less time in the measuring volume than slow
particles. The fast moving particles scatter less photons and, therefore, produce Doppler
bursts with smaller amplitude.

It was already shown in Section 3.2.2 (Eq (3.10)) that, in principle at least, the
amplitude A of a Doppler burst depends on the Doppler frequency through the term

' Sin(ﬂ'fDTs)l
'/deTs ’

where T is the time constant of the photomultiplier and fp is the Doppler frequency.
Substitution of Eq (3.18) in Eq (3.19) yields the following expression for 4

|sin(a(f, + £)T)]
w(fs + 2T,

where f; is the shift frequency, v is the velocity component and dy is the fringe dis-
tance. Figure 3.5 depicts the amplitude A as a function of v for several values of the
photomultiplier time constant T, ranging between 2 ns and 32 ns. Furthermore, it is
assumed that df = 3 pm and f, = 40 MHz. Figure 3.5 shows that the amplitude A will
significantly vary with the particle velocity only when the value of T is large. Clearly,
photomultipliers with large time constants are not suited for LDA, because such pho-
tomultipliers give rise to the amplitude bias. Figure 3.5 also shows that the amplitude
A is practically constant for small values of Ts. This means that the dependence of the
amplitude A on the particle velocity can be conveniently ignored when a so-called “fast
response” photomultiplier is used, which is usually the case.

A= Sa1a2 (319)

A= Sa1a2 5 (320)




3.2. BASIC PRINCIPLES OF LDA 37

3.2.6 Particle characteristics

The light-scattering particles form an essential element of the LDA measuring system.
In each application the suitability of the particles must be determined in the same way
as any other element of the LDA instrumentation. In general, it is highly appreciated
if the particles are cheap, easy to generate, non-corrosive and non-toxic. However, the
suitability of the particles for application in LDA mainly depends on their dynamical
and optical characteristics.

The optical characteristics should be such that the particles scatter light with sufficient
intensity for the photodetector to generate high-quality Doppler signals. Investigations
based on Mie’s scattering theory, e.g. Durst [1982], show that the amplitude and the
visibility of the Doppler signals are dependent on the particle diameter, the refractive
index of the particle material, the wavelength of the laser light, the angle between the
incident laser beams and the aperture and orientation of the receiving optics. Generally
speaking, the amplitude and visibility of the Doppler signals increase with increasing
particle size and increasing index of refraction.

The dynamical characteristics of particles determine their ability to accurately fol-
low the fluctuations in the fluid velocity even at high frequencies. The motion of a
rigid, spherical particle in a viscous flow is governed by the Basset-Boussinesg-Oseen
(BBO) equation, see Somerscales [1981]. Solutions of the BBO equation are discussed by
Hjelmfelt and Mockros [1966]. A simplified equation of motion is given by (see Somer-
scales [1981])

7d> du

Pt ok = 3mupsdy(uy — ), (3.21)
where v is the fluid kinematic viscosity, d, is the particle diameter, u, and uy are the
particle and fluid velocities and p, and py are the particle and fluid densities, respectively.
The equation’s left-hand side represents the force to accelerate the particle. The term
on the right-hand side is the drag of the particle for which Stokes’ drag law is used. The
validity of Eq (3.21) is restricted to large values of the density ratio o, = p,/ps and
not too large acceleration. Furthermore, the effects of, for example, centrifugal forces,
electrostatic forces and gravity are ignored.

Eq (3.21) will be used here to formulate a criterion for the diameter of the particles.
Following Hjelmfelt and Mockros [1966] the fluid velocity and the particle velocity are
expressed in terms of Fourier components. Substitution of u; = e™* and u, = n(w)e™?
in Eq (3.21) yields the amplitude ratio |n| as

Q 18v
= —_— ith = —. .22

The amplitude ratio can be interpreted as a measure for the sensitivity of the particles
to changes in the fluid velocity. It is seen from Eq (3.22) that the particle motion is
attenuated at high frequencies. The maximum diameter of a particle that follows the
velocity fluctuations up to 1 kHz, 5 kHz and 10 kHz for || = 0.99 can be determined from
Eq (3.22). For a number of frequently used seed materials the thus obtained diameters
are listed in Table 3.1. From these results it can be concluded that oil particles with
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seed density ratio ¢, | maximum diameter [pm]

material (in air) 1 kHz | 5 kHz | 10 kHz
silicone oil 620 3.1 1.4 1.0
rizella oil 711 2.9 1.3 0.9
polystyreen 865 2.6 1.2 0.8
teflon 1800 1.8 0.8 0.6
titanium oxide 3500 1.3 0.6 0.4

Table 3.1: Maximum particle diameter for various seed materials.

a diameter of typically 1 pym accurately track the velocity fluctuations in low-speed
air flows. High-speed flows generally require smaller particles, because of the energy
of the velocity fluctuations at higher frequencies. The presence of a shock wave in a
supersonic flow provides a further motivation to use submicron particles. Due to the
strong decelerations across the shock wave the particle velocity lags the fluid velocity.
This phenomenon has been studied by Yanta et al. [1971] and more recently by Maurice
[1992]. The particle lag may result in a severe overestimation of the mean velocity and
the turbulence intensity at locations directly downstream of the shock wave if too large
particles are used. In general, particles that accurately follow the abrupt velocity changes
in supersonic flows should have diameters less than 0.3 pum.

There are flows with practical relevance for which Eq (3.21) is invalid. In vortical
flows the centrifugal forces induce a migration of particles away from the core region (for
o, > 1), thus reducing the particle concentration in the core. The particle concentration
may become so low that LDA measurements in the core become almost impossible as
reported by Meyers and Hepner [1988]. Details on the particle motion in vortical flows
can be found in e.g. Dring and Sou [1978].

3.2.7 Signal processor

The principle task of a signal processor is to extract the Doppler frequency (i.e. velocity)
from the photomultiplier output signal. Usually, the signal processor also measures other
quantities such as the arrival time of the particles and the duration of the Doppler bursts,
i.e. the transit time of the particles. Two commonly used signal processors for sparsely
seeded flows are “counter processors” and “spectrum analyzers.” A detailed discussion
of the characteristics of the two types of processors and a comparison between their
performances is beyond the scope of this thesis. Instead, this section describes only the
basic principles of one representative of the latter type of signal processor. The processor
to be described is the Burst Spectrum Analyzer (BSA) which is manufactured by Dantec,
and available since the late 1980s.

The BSA processor performs a spectral analysis of the bandpass-filtered output signal
of the photomultiplier. The Doppler frequency then follows from the location of the peak
in the computed power spectrum. The basic principles of the Dantec BSA are illustrated
in Fig. 3.6. The output signal of the photomultiplier is first amplified by a factor set
by the operator and then bandpass filtered to remove frequency components outside the
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Figure 3.6: The basic principles of the Dantec BSA processor.

anticipated range of Doppler frequencies. A burst detection scheme determines whether
the bandpass filtered signal contains a Doppler burst or not. Burst detection can be based
on the pedestal or on the so called “envelope.” The envelope is obtained by rectifying and
low-pass filtering of the bandpass filtered signal. When the envelope exceeds a 25 mV
threshold, the sampler and the transit time counter are started and the arrival time
is measured. The sampler is restarted each time the envelope exceeds the next higher
threshold level (50 mV, 75 mV etc.). This is done to ensure that the samples are taken
from the central part of the Doppler burst. The transit time counter is stopped when
the envelope decreases below 12.5 mV.

While the burst detection scheme is carried out, the bandpass filtered signal is led
through a mixer unit which shifts the power spectrum by a value of f. towards lower
frequencies. The aim of this shift is to increase the resolution of the computed power
spectrum. The centre frequency f. is selected by the operator in conjunction with the
bandwidth B, so that the cut-off frequencies of the bandpass filter are given by f.+B,,/2.
The down-shifted signal is low-pass filtered and then sampled at regular time intervals,
tsam. The number of samples n,.. is called the “record length,” and its value can be
set by the operator at 8, 16, 32 or 64. The inverse of the time interval t,um, is called
the sampling frequency fsam. The resolution of the computed spectrum is proportional
t0 foam/Mrec, Which reduces to 1.5B,/nr. because the BSA has a fixed relationship
between the sampling frequency and the bandwidth: f.u, = 1.5B,,. A hardwired FFT
processor then computes a spectrum from the samples.

In the next step a sinc function is fitted to the computed spectrum at the frequency
with the highest peak and its neighbouring frequencies. The Doppler frequency follows
as the frequency for which the sinc function achieves a maximum. The thus determined
Doppler frequency is validated by means of a comparison between the two highest peaks
in the spectrum. The Doppler frequency is validated if the primary peak of the spectrum
exceeds the secondary peak by a factor of 4 or higher. After validation the Doppler
frequency together with the arrival time (optional) and the transit time (optional) are
transferred to a computer.
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Unlike, for example, TSI counter processors, the BSA processors cannot carry out a
time-coincidence test to ensure that the measured Doppler frequencies originate from the
same particle in case of a multi-component measurement. However, the time-coincidence
test can be performed in the software that is used to reduce the raw data, provided that
for each processor the arrival times of the particles are stored on disk. Alternatively, the
different BSA processors can be run in the so called “hardware-coincident mode.” This
mode of operation and its consequences are discussed later in this chapter.

3.3 The Three-Component LDA

3.3.1 Introduction

The interest of fluid-dynamics researchers for the three-component LDA (3-D LDA) is
clear, because turbulence is a three-dimensional phenomenon and in many industrial
flows even the mean flow is three-dimensional. In its early stages of development the
3-D LDA was notorious as far as the measurement accuracy of turbulence statistics was
concerned. An increasing number of researchers came to the conclusion that the simul-
taneous measurement of three velocity components involved much more than bearing
the financial burden for adding one LDA channel to an existing two-component system.
The 3-D LDA poses a set of problems that are unique to this instrument. Meyers, a
recognized expert in the field, sketched the development of the 3-D LDA in a paper
entitled “The Elusive Third Component” [Meyers 1985]. Perhaps the title reflects the
many problems encountered during the search for the right optical arrangement for the
instrument. This section intends to discuss these problems and their remedies, thereby
resulting in the following optical arrangement for the 3-D LDA:

e the transmitting optics are arranged such that three (nearly) orthogonal velocity
components are measured by the individual LDA channels;

e the receiving optics are configured such that only light from the overlap region of
the three measuring volumes is collected;

o the three signal processors are operated in a “hardware-coincident mode,” i.e. the
Doppler signals are processed only when these signals show (partial) overlap in
time on all three channels, otherwise the processor is inhibited.

The discussion of the 3-D LDA will be limited to the dual-beam configuration, because
of its superior signal-to-noise ratio.

3.3.2 Orthogonality requirement

Each channel of the 3-D LDA measures the velocity component in a direction that is
determined by the orientation of the corresponding beam pair in space. In general, these
primary or colour components are non-orthogonal and they do not coincide with one of
the cartesian velocity components u, v or w. Therefore, the primary velocity components
that are measured by the 3-D LDA must be transformed into the cartesian coordinate
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Figure 3.7: The orientation of a primary velocity component.

system. In this section the propagation of uncertainties in the primary velocities into the
cartesian velocity components is investigated. The analysis of the transformation matrix
will show that the orientation of the three beam pairs should be such that the primary
velocity components are as close to orthogonal as possible.

Figure 3.7 portrays a primary velocity component v, that is measured by one of
the LDA channels. The orientation of this velocity component in the z,y, z-coordinate
system is given by the angles o and 8. A 3-D LDA gives rise to the following set of
equations:

vg = ucosfycosay + vcos Gy sinay + wsin B, (3.23)
vp = wucosfpcosay + vcosPysinay + wsin By
Uy = ucosfycosay + vcosfysina, +wsin By,

where u, v and w are the components of the velocity in the orthogonal coordinate system
and vy, vp and v, are the primary velocity components measured by the green, blue and
violet LDA channels, respectively. If, for reasons of simplicity, it is assumed that the
blue and green channels form an orthogonal two-component LDA (a = @y — 7/2) that
senses velocity components in the zy-plane (8, = 3, = 0) then Eq (3.23) reduces to

vy = wucosay+vsina, (3.24)
Uy = wusinag—vCosa,
Uy = ucosfy cosay, + vcos By, sina, +wsin G, .

Without loss of generality it may also be assumed that @, = 7/2, so that the third
component, w, can be expressed in terms of the primary velocities as

COs Qg sin ag LW
w = Vp — v T .
tan G, tan3, °  sinf,

This equation shows that the coeflicients of the primary velocities become large for small
values of 3,. This causes the third component w to be very sensitive to uncertainties in

(3.25)
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the measured primary velocities caused by, for example, calibration errors or processor
inaccuracies. In case the third component is measured directly, i.e. 8, = /2, this
extreme sensitivity is absent. So, ideally the transmitting optics of the 3-D LDA should
be configured such that the device senses nearly-orthogonal velocity components.

In a more detailed analysis of the coordinate transform, Morrison et al. [1990] showed
that the uncertainty propagation into the third component is even more severe for higher-
order statistics, such as the Reynolds stress w'2, than it is for the mean velocity @. They
conclude that the tilt angle B, should be at least 30° to keep the error propagation
within reasonable limits. This requirement on the tilt angle poses a number of practical
problems. Because many researchers do not know how to solve these problems (or are
simply unaware of the orthogonality requirement), most operational 3-D LDAs are of
the non-orthogonal type with small 3,. The practical problems are as follows. First,
a large tilt angle requires optical access to the experimental facility from two adjacent
sides which is difficult to realize in many existing wind tunnels. The second problem has
to do with the alignment of the three beam pairs. The conventional procedure to align
the beam pairs involves either a small pinhole or a microscope objective [Absil 1995].
Both methods can still be applied to the 3-D LDA as long as the tilt angle 3, remains
small, say 8, < 15°, but they cannot be used for larger tilt angles. Consequently, the
orthogonal 3-D LDA requires a new alignment procedure. Appendix A gives full details
on an alignment method for the orthogonal 3-D LDA. The method centres around an
extremely thin pinhole with a 50 ym diameter that allows simultaneous passage of three
beam pairs for tilt angles up to 3, = 90°. The procedure is quick, reliable and can be
used in both gases and liquids.

3.3.3 Virtual particles

In a study of the accuracy of a 3-D LDA, Boutier et al. {1985] found that some of the
measured Reynolds stresses were systematically high, due to a phenomenon that they
called “virtual particles.” The phenomenon is a consequence of the fact that any 3-D
LDA has at least one measuring volume that does not fully overlap the other two. Only
partial overlap of the measuring volumes can be achieved because the different optical
axes cannot all coincide in 3-D LDA. This is in contrast to the two-component LDA
where both measuring volumes usually share a single optical axis. The typical situation
for a 3-D LDA is sketched in Fig. 3.8 where the optical axes of measuring volumes A
and B include an angle 3. One of these measuring volumes actually consists of two fully
overlapping volumes that is formed by two beam pairs (but that is not essential here.)
Assume that each measuring volume senses a velocity component that lies in the plane
spanned by the optical axes of measuring volumes A and B.

Now consider the following “multiple-particle” event. Volume A measures a particle
with velocity component v, at time t, whereas a particle with velocity component vy is
measured by volume B at time t,. To verify whether the measurements on the two LDA
channels stem from a single particle, it is common to apply a simultaneity criterion. In
other words: if the arrival times ¢, and t, satisfy the criterion |t, — ty| < 7y, Where T,
is a user-selected time-coincidence window, then it is assumed that both measurements
stem from a single particle. The LDA subsequently produces the velocity pair (va,vs) as
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Figure 3.8: The virtual-particle phenomenon in 3-D LDA.

if it represents the velocity components of a single particle. However, in the case of the
multiple-particle event sketched in Fig. 3.8, the arrival times t, and ¢, may satisfy the
simultaneity criterion, but they do not originate from the same particle. As a result, a
“virtual particle” with velocity components (v,, vs) is created, which will cause erroneous
velocity statistics.

Boutier reasoned that the virtual-particle phenomenon was a complicated function of
the tilt angle 3, the time-coincidence window 7, the local flow conditions and the seed
density. However, a solution to the problem was not given. Intuitively, it is clear that
lowering the seed density will decrease the probability that virtual particles will occur,
but it will not eliminate the problem. The only sensible way to circumvent the virtual-
particle phenomenon is to collect data only from the region in space that is common
to all (three) measuring volumes, which can be achieved by the positioning of small
pinholes in front of the photomultipliers in conjunction with a large (near 90°) off-axis
light-collection angle. This “spatial filtering” also happens to be the remedy for the
geometry-bias problem that will be discussed below.

3.3.4 Geometry bias

In an attempt to quantify the findings of Boutier’s investigation, Brown [1989] simulated
the operation of a typical 3-D LDA using a Monte-Carlo approach. The results of this
study confirmed the existence of the virtual-particle phenomenon, and showed that, as
expected, the probability of a virtual-particle occurrence increases with increasing seed
density. Recall from the previous section that the virtual particles were able to pass
the simultaneity criterion, thereby causing erroneous velocity statistics. Brown’s study
showed that even without virtual particles, which was easy to realize in the simulation,
the velocity statistics as measured by the 3-D LDA were in error. As a result, the study
revealed a previously unidentified error source. This error was termed the “geometry
bias,” and it is a direct result of the 3-D LDA measuring-volume geometry in conjunction
with the concept of a time-coincidence window.
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Figure 3.9: The geometry bias in 3-D LDA.

Figure 3.9 depicts the measuring-volume geometry that was used in Brown’s study.
The geometry is identical to that shown in Fig. 3.8 for a tilt angle 8 = 60°. Consider
particle a that passes through the overlap region of the measuring volumes. For simplicity
it is assumed that its velocity component in the y-direction is zero. Clearly, this particle
will satisfy the time-coincidence criterion regardless of the magnitude of the velocity
components v and w. This is not the case for particles b and ¢ which do not pass through
the overlap region. Particle b is assumed to have zero w-component and it will satisfy
the time-coincidence criterion only if the in-plane velocity component u is sufficiently
large. Particle ¢ is supposed to have a non-zero w-component and it cannot pass the
time-coincidence test if the w-component is large compared to the u-component, simply
because it will not arrive at the other measuring volume. This illustrates that the 3-D
LDA measuring-volume geometry in combination with the time-coincidence window will
cause a bias towards high in-plane velocity components and small out-of-plane velocity
components.

The time-coincidence concept, which works very satisfactorily for a conventional two-
component LDA, is inadequate for the 3-D LDA. To circumvent the geometry bias, Brown
[1989] suggested a new mode of operation for the LDA signal processors known as the
“channel-blanking mode” or the “hardware-coincident mode.” In this mode of operation
each signal processor will process a Doppler burst only when Doppler bursts are also
present on the other two channels, in the sense that the three Doppler bursts (partially)
overlap in time. If this is not the case, the signal processors are inhibited. Due to the
hardware-coincident mode, data will be acquired only from the overlap region of the three
measuring volumes, so that particle a will be measured by the 3-D LDA while particles b
and c are ignored!.

The hardware-coincident mode removes the geometry bias, which is a single-particle
event. But it does not eliminate the virtual-particle phenomenon, because this is a

'In practice the same result can be obtained using the conventional simultaneity criterion, if the
time coincidence window is (much) smaller than the transit time of the particles as suggested by Bene-
dict [1995].
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multiple-particle event. To eliminate both error sources, the 3-D LDA requires both
the channel-blanking mode and the collection of scattered light from the overlap region
only, as mentioned in the previous section. The beneficial effect of these measures is
that the spatial resolution of the 3-D LDA is high compared to that of a conventional
two-component LDA. The latter is usually operated in the (off-axis) forward-scatter or
backward-scatter mode, resulting in a sensitive region with relatively large dimensions.
The sensitive region for the 3-D LDA is reduced to the overlap region of the three
measuring volumes. This more-or-less spherical region has a characteristic length equal
to the diameter of the individual measuring volumes which is typically 10 times smaller
than the length of the measuring volumes. On the other hand, the smaller measuring
volume of the 3-D LDA will result in a much lower mean data rate as compared to the
two-component LDA for the same seed density.
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Chapter 4

Research on the LDA
Sampling Process

4.1 Introduction

Most measurement techniques acquire samples at equidistant time intervals. For exam-
ple, the hot-wire anemometer takes velocity samples at a constant rate which is set by
the operator. The mean velocity and the variance of the velocity fluctuations can be
computed from the equidistant samples through simple arithmetic averages. Also, the
spectral density function can be computed from the equidistant samples by using the
fast Fourier transform (FFT). However, LDA is a measurements technique that natu-
rally operates with random sampling times. The objective of this chapter is to discuss
two important consequences of the random sampling in LDA.

Section 4.2 considers the case where the instantaneous data rate is assumed to be cor-
related with the instantaneous velocity, giving rise to a much debated and controversial
phenomenon known as the “velocity bias.” Attention will be given to the possible de-
pendence of the velocity bias on the mean data rate, and the ability of existing detection
methods to verify the presence of the velocity bias for LDA measurements at low mean
data rate. In addition, the different correction methods for the computation of relatively
simple statistics, such as the mean velocity and the variance of velocity fluctuations, are
evaluated.

Section 4.3 discusses the calculation of the autocorrelation function and the spectral
density function from the randomly sampled LDA data, initially only for the relatively
simple case in which the instantaneous data rate is not correlated with the instantaneous
fluid velocity. Even in the absence of the velocity bias, special data-processing methods
are required because of the randomness of the sampling times. It will be shown that
existing methods for the estimation of spectral density functions from randomly sampled
LDA data exhibit a large statistical scatter at high frequencies. The statistical variability
is so large that it obscures the behaviour of the spectral density function in the high-
frequency range, thereby making it practically impossible to study the small time scales of
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the turbulent velocity fluctuations. A new data-processing method for the estimation of
the spectral density function is proposed that overcomes some of the variability problems.

4.2 Velocity Bias

LDA measures the velocity of small particles when they move through the measuring
volume. Because the particles are randomly distributed in space, the sampling times are
random as well. A frequently used model for the interarrival times, i.e. the times between
consecutive samples, assumes that these times obey Poisson statistics. The probability
density function of the interarrival times, At, is then given by

p(At) = ve VAL, (4.1)

where v is the “rate parameter” of the Poisson process. The rate parameter can be
interpreted as the mean number of samples per unit time, or, in other words, v is the
mean data rate.

In the early days of LDA it was assumed that velocity statistics, like the mean ve-
locity and the variance of the velocity fluctuations, could be computed from the LDA
velocity samples through simple arithmetic averages as in hot-wire anemometry. Several
researchers, see e.g. George [1978], have shown theoretically that this is indeed correct
if the interarrival times obey Poisson statistics without any correlation between the in-
stantaneous data rate and the instantaneous velocity of the fluid. However, McLaughlin
and Tiederman [1973] recognized that there is a correlation between the instantaneous
data rate and the instantaneous fluid velocity when LDA measurements are made in
time-varying flows. This correlation is commonly referred to as “velocity bias”, and it
leads to erroneous velocity statistics if the LDA velocity samples are processed as arith-
metic averages. It is important to realize that the velocity bias itself does not cause the
errors in the velocity statistics. The errors occur only when the statistical quantities are
computed as arithmetic averages. Furthermore, the velocity bias is absent in equidistant
sampling because in that case there is no correlation between the instantaneous velocity
and the instantaneous data rate. Arithmetic averages can then be used to compute the
velocity statistics.

To explain the velocity bias consider a measuring volume that is placed in a time
varying flow as depicted in Fig. 4.1. The projection of the measuring volume on the
plane normal to the instantaneous velocity vector, 7, is denoted by A,. The expected
number of particles that pass through the measuring volume per unit time is then given
by

A= |d] 4, M. (4.2)

Here, M is the particle concentration (the number of particles per unit volume), which
is supposed to be constant in flows with constant density. Note that A = |0]4,M is a
time varying quantity. It is seen from Eq (4.2) that A is proportional to the volume flux
through the measuring volume. Hence, the probability of measuring a particle with a
high velocity is higher than the probability of measuring a low-velocity particle. As a
result, the histogram of measured velocity samples will be biased towards high velocities
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Figure 4.1: The measuring volume in a time-varying flow.

and statistical quantities that are computed as arithmetic averages will be erroneous.
For the mean velocity this can be illustrated as follows. Consider a one-dimensional flow
with mean velocity @ and variance «/2. If it is assumed that the instantaneous data
rate is proportional to the instantaneous volume flux, as in Eq (4.2), then the arithmetic
average u, of the velocity samples is a measure for

_u@®A _ u(@u®)|ApM _ u(®)lu()]
Up = —— = e = (4.3)
A lu(t)| 4 M u(t)]
because A, does not vary with time in a one-dimensional flow and M is constant. For
low turbulence intensity, i.e., u2 < %2, this reduces to

[

u(t)2 o
Up = —— =U + —
u(t) u

; ' (4.4)

which shows that the arithmetic average u, is higher than the true mean velocity %. Fur-
thermore, Eq (4.4) illustrates that the effects of the velocity bias increase with increasing
turbulence intensity.

4.2.1 Correction methods

It was stated in Section 4.2 that the calculation of the velocity statistics by means of
arithmetic averages is incorrect in the presence of velocity bias. Instead, data-processing
methods should be used that take the effects of the velocity bias into account. Such data-
processing methods are called “correction methods” in the literature. Even though the
terminology “correction method” is somewhat inconsistent (perhaps “correct method” is
more appropriate), it will be maintained here for compatibility with the existing literature
on this subject. The correction methods can be divided into two categories, namely
sampling techniques and weighting factors.
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Figure 4.2: Three frequently used sampling techniques. The arrows mark the samples used by
the controlled processor and the saturated processor.

Sampling techniques

Sampling techniques attempt either to reconstruct the original velocity signal or to sam-
ple the velocity at approximately equidistant times, thereby eliminating the correlation
between the sampling process and the instantaneous velocity. There are three sampling
techniques, which are usually referred to as “processors,” because they can be imple-
mented in both software and hardware. For all sampling techniques (and some of the
weighting factors) the “data density” plays a crucial role. The data density is defined
as the product of the mean data rate v and a characteristic time scale of the velocity,
such as the Taylor time scale A;. Sometimes, the integral time scale T, is used as a
characteristic time scale.

1. controlled processor:
The time axis is divided into equal intervals of length t,, see Fig. 4.2 (top). Only
the first sample on each interval is used to compute the velocity statistics. For high
data density, vA; > 5, and small time intervals, ¢; < A;, an equidistant sampling
scheme is approximated [Edwards 1987]. Unbiased velocity statistics can then be
computed using the arithmetic average of the (nearly) equidistant velocity samples.

2. saturated processor:
The processor is inhibited during a time span ¢, after a velocity sample is taken,
as shown in Fig. 4.2 (middle). Under the same conditions as for the controlled
processor (v\s > 5 and t; < )¢) a nearly equidistant time series is generated from
which unbiased statistics can be computed as indicated by Edwards et al. [1987].

3. sample-and-hold processor:
A continuous signal is constructed by holding the last velocity value until the next
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sample is taken. In variations on this method linear and higher-order polynomials
are fitted to the measured velocity values. The continuous signal is resampled
at regular time intervals. The set of equidistant velocity samples is subsequently
used to compute the velocity statistics. The sample-and-hold processor will work
properly for high data densities only: »vA; > 10 as indicated by Edwards et al.
[1987].

The sample-and-hold processor can be seen as a representative of the much wider class
of “reconstruction techniques.” The essence of all reconstruction methods is to replace
the discrete, randomly-sampled time series by a continuous signal that is subsequently
resampled at regular time intervals. The use of reconstruction techniques has become
widespread nowadays because, if successful, the reconstruction not only eliminates the
velocity bias, but it also enables the spectral analysis of the equidistant data to be carried
out efficiently with the FFT algorithm. On the other hand, it is widely known [Adrian
and Yao 1987] that reconstruction methods require very high sampling rates. For LDA
measurements in gas flows it is seldom possible to achieve sufficiently high sampling rates,
so that reconstruction techniques are of limited importance there.

Weighting factors

The weighting factors form the second category of correction methods. Weighting factors
are used to compensate for the effect of the velocity bias during the processing of the
velocity samples. For simple statistical quantities, such as the mean velocity and the
variance of the velocity fluctuations, the processing methods take the following form

N N 12
. UiW; —_— X wEw:
———Zl_l = (mean VEIOCity) u'?2 = ————ZL—I 2

N N
Ei:l Wi Zi:l wi
Here, the subscript i denotes the i-th velocity sample, N is the total number of velocity

samples and w is the weighting factor. Note that w = 1 corresponds to the unweighted,
arithmetic average. Weighting methods in use are:

T = (variance) (4.5)

1. inverse-velocity:
Inspection of Eq (4.2) shows that the inverse of the volume flux can be used as
a weighting factor in flows with constant density. (The limitation to constant-
density flows is due to the assumption M = constant.) This is better known as the
inverse-velocity weighting [McLaughlin and Tiederman 1973)

1 1

B Ap|7] B Ap u? + o2 +w?

w

(4.6)

The above weighting factor requires some knowledge of the shape of the measuring
volume to evaluate the projected area A,. For an ellipsoidal measuring volume
with its long axis parallel to the z-direction, Eq (4.6) reduces to [McDougall 1980)

1
w= ,
Vu? + v + (df1)2w?

4.7)
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where d/1 is the diameter-to-length ratio of the ellipsoid. For a cylindrical measur-
ing volume with its axis along the z-axis, the weighting factor becomes [Johnson
et al. 1984]

1
w= .
Vu? +v? 4+ $(d/1)|w|

(4.8)

The weighting factors given by Eqs (4.7) and (4.8) are known as 3D inverse-velocity
weighting, because all three components of the velocity vector have to be measured
simultaneously in order to compute the value of the weighting factor for each ve-
locity sample. The latter requirement is often not met and it is common practice
to approximate Eqs (4.7) and (4.8) by the 2D inverse-velocity weighting, given by

1

Due to the omission of one of the instantaneous velocity components, this weight-
ing factor will be systematically high, resulting in a tendency to over-correct the
velocity bias. On the other hand, in many practical cases d/l = 0.1 so that ignoring
the contribution of the third velocity component is not unreasonable. However, the
over-correction will be much more severe when two of the three velocity compo-
nents are omitted as in the 1D inverse-velocity weighting, i.e. w = 1/[u|. Therefore,
it is generally accepted that the 1D inverse-velocity weighting should not be used.

Nakayama [1985] incorporated the effect of the unmeasured third component in
Eqgs (4.7) and (4.8) through an estimate of its mean value. For example, the
weighting factor for the ellipsoidal measuring volume, Eq (4.7), is approximated by
Nakayama as

w= 1 , (4.10)

\/u2 + v + (d/)2(T* + w'?)

which, for a two-dimensional flow with @ = 0, reduces to
1
Vu? + o2 + (d/)2ur

(4.11)

W =

Furthermore, Nakayama approximated the value of w2 as (u? + v'2)/2 in the
boundary layer and the wake of an airfoil. The weighting factor given by Eq (4.11)
is referred to as 2DT weighting. A beneficial consequence of the inclusion of the
additional term is that the weighting factor can no longer produce infinite weights
when both the u and v velocity components are zero simultaneously, whereas the
additional term has negligible influence for higher velocities as was shown by Petrie
et al. [1988].
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2. transit-time weighting:
Hoesel and Rodi [1977] proved mathematically that weighting with the inverse
volume flux according to Eq (4.6) is equivalent to weighting with the mean time

for particles to pass through the measuring volume for a given velocity vector,
defined as

tre = —1—/ trdA,, (4.12)
Ap Ja,

where #r is the time that an individual particle spends in the measuring volume,
see Fig. 4.1. However, the mean transit time tr. is an unmeasurable quantity.
Therefore, Hoesel and Rodi {1977] and Buchhave et al. [1979] suggested to use the
transit time of each individual particle, ¢tr, instead of tr.. In other words, they
suggested the following weighting factor:

w=tr. (4.13)

Petrie et al. [1988] argued that the transit times of the particles are dependent on
the trajectory of the particle through the measuring volume. As a result, the indi-
vidual transit times exhibit a large scatter around their mean value, tr,. However,
for large numbers of particles the scatter is expected to average out, because the
particle trajectory is not correlated to the magnitude of the velocity vector. Still,
the weighting with the transit times of the particles according to Eq (4.13) will
cause an increased statistical variability as compared to weighting with the inverse
velocity, Eq (4.6).

3. interarrival-time weighting:
Another frequently used weighting factor is the time between successive samples or
the interarrival time [Barnett and Bentley 1974], [Dimotakis 1976]

w = At, = ti+1 - tlx (414)

This will be referred to as IT weighting. Some researchers do not interpret the
IT weighting as a correction method. For example, Barnett and Bentley [1974]
consider the definition of the time-averaged velocity ur:

1 (T
ur =7 / u(t)dt, (4.15)
0
and approximate this expression for ur as
SN it — )
Sty (e — 1)

Clearly, this is identical to the IT weighting. Note that Eq (4.16) reduces to the
arithmetic mean u, for equidistant samples. An important advantage of the in-
terarrival time weighting over the inverse-velocity weighting is that it can be used

uT ~ (4.16)
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when the particle concentration is correlated with the instantaneous velocity. In
that case the inverse-velocity weighting will fail, because it is based on the assump-
tion that the particle concentration M is constant. The results of the IT weighting
are closely related to those of the sample-and-hold processor. The IT weighting
yields unbiased results for high data densities only. Edwards et al. [1987] give the
following criterion for the data density

vA > 10, (4.17)

where v is the mean data rate and )\; is the Taylor time scale. Application of
the interarrival time weighting for lower data densities results in a reduction of the
effects of the velocity bias, but it does not eliminate the bias. Often the Taylor time
scale A; in Eq (4.17) is replaced by the integral time scale, T, resulting in a less
strict criterion for the mean data rate, because A\ <« T,,. As shown by Winter et al.
(1991] this new criterion is sufficient to guarantee bias free results for statistics such
as the mean velocity. However, it is often not realized that the relaxed condition
vT, > 10 does not yield unbiased results for other statistical quantities, such as
the autocorrelation function, as was shown by Tummers et al. [1992].

4.2.2 Relationship between velocity bias and mean data rate

More than 20 years after McLaughlin and Tiederman [1973] published their findings
there is still controversy on the velocity bias. The controversy is not just on the type of
correction procedure that should be applied, but even on the fundamental issue whether
velocity bias correction schemes should be applied at all. The controversy exists because
a number of investigators claim that the velocity bias vanishes at low data rates, see
e.g. Barnett and Bentley [1974]. They argue that long time delays between samples
destroy any correlation between the instantaneous velocity and the instantaneous data
rate, thereby eliminating the velocity bias. If this is true, then the application of velocity
bias correction schemes to low data rate LDA measurements could actually introduce a
bias error in an otherwise unbiased result.

The claim that the velocity bias depends on the mean data rate seems to be supported
by an experiment performed by Adams [1984]. Adams investigated the dependence of
the arithmetic average of the velocity samples, u,, on the mean data rate, v. The results
given in Fig. 4.3 show a decrease of u, with decreasing mean data rate, indicating a
decrease of the effects of the velocity bias with decreasing mean data rate. However,
Adams himself indicated that the results shown in Fig. 4.3 should be interpreted with
some reserve, because during the experiment the mean data rate was varied by varying
the laser power instead of varying the particle seeding rate. This may have affected the
measuring system causing the observed trend in the measured data shown in Fig. 4.3.

Johnson et al. [1984] also investigated the dependence of the velocity bias on the mean
data rate. An important result of their investigation is given in Fig. 4.4. From this graph
Johnson et al. [1984] concluded that the arithmetic mean, u,, was independent of the
mean data rate over a wide range of v. This means that the velocity bias is independent
of the mean data rate as well. The decrease of u, for data rates higher than 3000 Hz
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is likely to be caused by the relatively large (60 us) cycle time of the data-acquisition
system, in the sense that for higher mean data rates the system increasingly acts like
a saturated processor. Clearly, the findings of Johnson et al. [1984] contradict those
of Adams [1984]. Still, the view that the velocity bias is absent, or at least strongly
reduced, at low data rates is held by many. It is one of the reasons why a great deal
of published LDA data are uncorrected for the velocity bias. The other reason is the
possible coexistence of other bias sources that may (partially) compensate for the effects
of the velocity bias. As discussed in Section 3.2.5, the amplitude bias may cause a reduced
visibility of the Doppler bursts of fast moving particles. In that case, the probability of
measuring a high-velocity particle is smaller than that of a low-velocity particle, thereby
causing some degree of compensation for the effects of velocity bias (in case there is no
frequency shift). Because of the compensating effects of the amplitude bias, or other bias
sources, it has been suggested in the literature that the degree of velocity bias should
first be determined from a velocity bias detection method before any correction method
is applied. Of course, this suggestion implies that the velocity bias correction methods
should not be used if the detection methods indicate that the velocity bias is absent. In
the following section it will be shown that this may have adverse consequences for the
computed velocity statistics.

4.2.3 Detection methods

Adams [1984] introduced a simple detection method that uses the inverse of the interar-
rival times as a measure for the instantaneous data rate. In Adams’ method the velocity
range is divided into a number of intervals, and for each interval the mean interarrival
time is computed from the samples. A graph of the mean interarrival time as a func-
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tion of the velocity displays the correlation between the instantaneous data rate and the
instantaneous velocity. A decreasing trend would indicate the presence of velocity bias,
while the histogram is flat in case the velocity bias is absent. Note that there is a clear
link between this detection method and the interarrival time weighting, because both use
the interarrival times to model the instantaneous data rate. As a consequence, it can be
expected that Adams’ detection method requires a high data density.

Instead of detecting the velocity bias from the inspection of a graph, one may also
compute a correlation between the instantaneous data rate and the instantaneous veloc-
ity. For Adams’ method the correlation coefficient p4 is computed as

N

1 2, .9 2 1
_ [+ vw?—s,) (v— , 4.18
P4 Nos a0¢,4 Z ( ui + v kW o s v At; (4.18)

i=1

where N is the number of samples, v is the mean data rate, At; is the interarrival time of
the i-th velocity sample and s, is the arithmetic average of all values of \/u? + v? + w?.
Of course, the instantaneous particle speed \/u? + v} + w? must be approximated when
a two-component LDA is used. The quantities 05 4 and o4 4 are defined as

L & 2 1 1\2
02 4= N Z (\/uf + v + wi — s,) and of 4= N (1/ - KE) (4.19)
i=1 i=

A slightly more complicated detection method was introduced by Meyers [1988]. As in
Adams’ method, the velocity range is divided in a number, say 10, intervals. Then a time
scale, A, defined as the average time that consecutive samples remain in one velocity
interval, is computed. This time scale represents a coherence time of the velocity signal
and it is closely related to the Taylor time scale, A;. Next, the time axis is divided
into intervals of length A, and two velocity histograms are formed. The first histogram
contains only the first measured velocity samples on each time interval, similar to the
procedure followed in the controlled processor. The remaining or additional velocity
samples on each time interval are used to construct the second histogram. In a final
step, the height of each column of the second histogram is divided by the height of
the corresponding column of the first histogram. This yields a third histogram which
indicates the “average number of additional velocity samples per time interval A,,” as
a function of velocity. According to Meyers [1988] the third histogram displays the
instantaneous data rate as a function of the instantaneous velocity, thereby indicating
the degree of velocity bias. As in Adams’ method, it is possible to quantify the degree of
correlation between the instantaneous data rate and the instantaneous velocity through
a correlation coefficient pps defined by Meyers as

Nint
1
- E: - - , 4.20
M NintOu, MOm, M =1 (w = ur)(my = m) ( )

where Nj,,; is the number of divisions of the time axis (N;ns = T/Am), w is the arithmetic
average of the velocities in the [-th time interval and u, is the conventional arithmetic
average of all (V) velocity samples. Furthermore, m; is the number of samples on the I-th
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time interval and m is the average number of samples per time interval (m = N/Njp;).
The quantities o, as and o, ar are defined by

Nint Nint
1 in
ai,M = N, (ui - “r)2 and UTZL,M = Z(mz - m)z . (4.21)

int =1 int 1=

Tummers et al. [1992] clearly show that both detection methods require a high data
density. At low data density neither detection method can be used to prove the presence,
or absence, of the velocity bias. Ironically, most LDA experiments in air are carried out
at low data density. This precludes the application of the above-mentioned detection
methods to low data density measurements, because the detection methods may falsely
indicate that the velocity bias is absent. As a result, there still is a need for detection
methods that are independent of the data density, so that the degree of velocity bias can
be established at low data densities as well.

4.2.4 Experimental investigation of the velocity bias

This section summarizes the findings of a detailed experimental investigation of the
velocity bias that was performed by the present author in partial fulfillment of the re-
quirements for the M.Sc. degree at the Low-Speed Aerodynamics Laboratory (LSA) of
Delft University of Technology in 1992. The experiments were aimed at clearing some of
the controversies surrounding the velocity bias. The investigation focused on the possible
influence of the mean data rate on the velocity bias and an evaluation of different velocity
bias correction and detection techniques. All experiments were performed in the wake
of a flat plate in adverse pressure gradient along a lateral traverse located at 360 mm
downstream of the trailing edge. This traverse was chosen because of the presence of
regions with mean flow reversal and high turbulence intensities so that the effects of the
velocity bias are expected to be severe. The experimental set-up used in the velocity-bias
investigation was, in principle, identical to that used in the investigation of the wake in
an adverse pressure gradient that is described in Section 5.1 of this thesis.

The summary of the findings presented here provides sufficient insight into the velocity
bias to decide on a proper method for the processing of LDA data as given in Section 5.1.
More details of the velocity bias investigation are reported in Tummers [1992], Tummers
et al. [1992] and Absil [1995].

Velocity bias and mean data rate

A series of measurements was performed at different mean data rates to examine the
dependence of the velocity bias on this quantity. The mean data rate was varied between
20 Hz and 400 Hz by changing the seed density while all other measurement parameters
were kept constant. During each run 10* velocity samples were acquired. For each run
the arithmetic mean, u,, was computed and the results are shown in Fig. 4.5. It is seen
that the statistical scatter of u, increases with increasing data rate, which is caused by
the shorter measuring times. Figure 4.5 shows a 40-band centered around the mean of
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Figure 4.5: Arithmetic average as a function of the mean data rate. The dashed line represents
the ‘true’ mean that is computed from the 2D weighting.

all measured u, values to indicate the expected statistical scatter. The value of o2 is
computed from [George 1978]

L

o= 2y o (4.22)
where T is the measuring time and 7, is the integral time scale of u(t). For a Gaussian
distribution the 40-band should contain about 97% of the estimates. It can be concluded
from the results in Fig. 4.5 that, within the experimental uncertainty, the arithmetic
average u, is independent of the mean data rate. This is an important conclusion because
it implies that the velocity bias is independent of the mean data rate. It should be
mentioned that this conclusion is not just based on the results shown in Fig. 4.5. The
measurements were repeated at several other locations on the traverse and the same
conclusion could be drawn from each of these measurements.

The outcome of the experiment confirms the findings of Johnson et al. [1984], and is,
therefore, in clear disagreement with the assertion of Barnett and Bentley [1974] that the
velocity bias vanishes at low data rates, see Section 4.2.2. Note that Barnett and Bentley’s
reasoning contains an erroneous assumption. Of course, long time delays will destroy the
correlation between the velocity samples because of the finite time scale of turbulence.
However, the velocity bias has to do with the correlation between the instantaneous data
rate and the instantaneous velocity, and not with the correlation between the velocity
at two different times. Irrespective of the mean data rate, the probability of measuring
high-velocity particles is higher than the probability of measuring low-velocity particles,
because more fluid is swept through the measuring volume at high velocities than at low
velocities. This means that the effects of the velocity bias are independent of the mean
data rate, which is confirmed by the present experiment.




4.2. VELOCITY BIAS 59

25 4
s 0 v=363 Hz
In
2 ] | {0 v=29Hz |
s |

mean interarrival time [ms]
average number of additional samples

|
|
K
]ll il [’
i

.1 0.3
@? +v2)1/2 / Uset

0.7 09

Figure 4.6: Results of Adams’ detection Figure 4.7: Results of Meyers’ detection
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Bias detection methods

The bias detection methods proposed by Adams [1984] and Meyers [1988] were evaluated
at several locations in the flow. Attention was focused on the ability of the methods to
detect the velocity bias at low data densities. Therefore, a number of measurements was
performed at different mean data rates. The results of these measurements are presented
in Fig. 4.6 for Adams’ method and in Fig. 4.7 for Meyers’ method. Both methods indicate
a strong correlation between the instantaneous velocity and the instantaneous data rate
for the measurement with the high mean data rate (v = 363 Hz). The correlation is much
smaller at low mean data rate (v = 29 Hz). To quantify the degree of correlation between
the instantaneous data rate and the instantaneous velocity, the correlation coeflicients
were computed for Adams’ method, Eq (4.18), and for Meyers’ method, Eq (4.20). The
correlation coefficients are given in Fig. 4.8 for a series of measurements at different
mean data rates. These results confirm the decrease of the correlation with decreasing
mean data rate. It can be observed that the correlation reaches an asymptotic value at
v ~ 300 Hz, which corresponds to a data density of vT,, =~ 10.

Recall that Fig. 4.5 indicated that the effect of the velocity bias on the arithmetic
average, ur, is independent of the mean data rate v. Therefore, the findings in Figs. 4.6
and 4.7 demonstrate that neither detection method can be used to prove the presence,
or absence, of the velocity bias at low data density, because the detection methods them-
selves, and not the velocity bias, are dependent on the mean data rate. Neither method
is able to accurately describe the instantaneous data rate at low data density, and the
detection methods only give meaningful results for data densities vT,, > 10.
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Figure 4.9: The amount of correction for
three different correction schemes.

Meyers’ method versus the mean data rate.

Correction methods
To evaluate the different correction methods it is convenient to introduce “the amount
of correction” Au:

Au = Up — Ugor . (4.23)

Here, uc., represents a corrected mean velocity using, for example, 2D, 2D* or IT
weighting. Figure 4.9 presents the amount of correction, Au, for three different correc-
tion schemes. It can be seen that the 2D weighting and the 2D weighting give almost
identical results. Any significant difference between the results of these methods is caused
by the overweighting of the 2D correction method when both the u and v velocity com-
ponents are close to zero simultaneously. Therefore, the 2D* weighting is preferred over
the standard 2D weighting.

Figure 4.9 also shows that, as expected, the interarrival time weighting depends on the
mean data rate. The amount of correction increases with increasing data rate, and reaches
an asymptotic value at approximately v = 350 Hz, which corresponds to a data density
of vT,, ~ 11. Under these circumstances the results of the interarrival time weighting
are nearly identical to those of the 2Dt weighting. This is further demonstrated in
Fig. 4.10, which shows the distribution of the measured velocity samples together with
the distributions that result from application of the interarrival time weighting at high
mean data rate and the 2D+ weighting. Figure 4.10 also illustrates that a correction
method based on the inverse volume flux, such as the 2Dt weighting, does not cause
significant over-compensation at high turbulence levels as has been suggested in the
literature.

Figure 4.11 shows the results of the controlled processor and the saturated processor
for three different data densities vT,. It can be seen that both sampling techniques
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give nearly identical results, and that the amount of correction increases with increasing
value of the parameter vt,, which is the average number of velocity samples per time
interval ¢, see Fig 4.2. For a constant data density, the amount of correction reaches an
asymptotic value at vt; > 10. However, the asymptotic value increases with increasing
data density, which illustrates that a partial correction for the velocity bias is achieved
if the sampling techniques are used at too low data densities. A full correction for the
velocity bias is achieved only if both vt; > 10 and vT, > 10. In that case the sampling
techniques yield results that are equivalent to the IT weighting.

4.2.5 Concluding remarks

The main findings of the research on the velocity bias can be summarized as follows:

¢ Experiments show that the arithmetic mean u, is independent of the data density,
implying that the velocity bias is independent of the data density;

e The detection methods of Adams and Meyers require a high data density (vT,, >
10). Both methods falsely indicate that the velocity bias is absent at low data

density;

e The IT weighting and the sampling techniques (controlled processor and saturated
processor) require a high data density (vT, > 10). In addition, the sampling
techniques require a high value of the sampling parameter, i.e. vt; > 10. A partial
correction for the velocity bias is obtained at lower data density;

e The 3D weighting is preferred when all three velocity components are measured
simultaneously as in 3D LDA. For two-component measurements (2D LDA), the
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2D* weighting is preferred over the 2D weighting in order to prevent the occur-
rence of “infinite weights” when both measured velocity components are near zero
simultaneously.

The velocity-bias investigation was carried out in a low-speed wake with relatively
large integral time scales (T, & 50 ms). Therefore, a high data density could be achieved
at a relatively low mean data rate. However, in many practical situations it is extremely
difficult to achieve the required data density of vT, > 10, because much smaller integral
time scales are found in many turbulent flows, and the mean data rate is inherently low
in reverse flow regions. As a result, the interarrival time weighting and the sampling
techniques often cannot be used. However, weighting methods that are based on the
inverse volume flux, such as the 2D* weighting and the 3D weighting, are excellent al-
ternatives, provided the flow is incompressible and there is no further correlation between
velocity and particle concentration. Since the transit-time weighting is equivalent to the
inverse-volume flux weighting, see Section 4.2.1, the transit times can also be used to
compensate for the velocity bias.

4.3 Spectral Analysis of LDA Data

The autocorrelation function (acf) of the velocity fluctuation u'(t) was introduced in
Chapter 2 as

p(r) = %, (4.24)

where R(7) = u'(t)u'/(t + 7) is the autocovariance function and 7 is the lag time. In
general terms, the acf is a measure for the similarity between a realization of u'(t) and
the same realization shifted over time 7. In fluid mechanics p(7) is used to determine a
number of time scales of the turbulent flow, such as the Taylor time scale, \;, and the
integral time scale T, defined by Eq (2.37) and Eq (2.38), respectively. The normalized
spectral density function (sdf) is defined as the Fourier transform of p(7), which reduces
to a cosine transform because p(7) is an even function:

1 [ : 1 [
S(w) = ——/ p(r)e ™™ dr = —/ p(7) coswr dr. (4.25)
27 J_o T Jo
The estimation of the acf or the sdf from LDA data poses unique data-processing prob-
lems. The random sampling times in LDA preclude the use of the methods for equidistant
sampling. Spectral estimators for randomly sampled data were developed by e.g. Mayo
[1974], and Gaster and Roberts [1975] [1977]. The work of these investigators revealed
that the random sampling causes an additional (in comparison to equidistant sampling)
statistical scatter of the spectral estimates that obscures the behaviour of the sdf in the
high-frequency range. The maximum frequency at which reliable estimates can be made
is usually much less than the mean data rate. For LDA measurements in gas flows, the
mean data rate is often small compared to the highest frequencies of the turbulent veloc-
ity fluctuations. As a consequence, the small scales of the turbulent fluctuations cannot
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be studied from the estimated sdfs with the presently available data-processing methods.
The objective of this section is to modify an existing data-processing method such that
information on the spectral density function can be revealed at higher frequencies. The
modified estimator is applied to two fypes of simulated data to illustrate its performance.
The spectral analysis in this section largely pertains to the relatively simple case where
the velocity bias is absent, although the effects of the velocity bias on the acf are briefly
addressed in Section 4.3.5.

4.3.1 Spectral estimation using the correlation method

The conventional method to compute the discretized autocovariance function from the
random samples is known as the slotting technique. This technique can be described by
the following algorithm [Mayo 1974]

) Y (RA
R(kAT) = Sumg‘ngA}T() D ithk=0.1,... M1, (4.26)

where sum{uju}}(kAT) denotes the sum of all cross-products u'(¢;)u’(t;) having a lag
time in the interval (k — 3)A7 < t; —t; < (k + 3)A7. This interval is usually called
a “slot.” The slot width At is determined from A7 = 7., /(M — 1), where M is the
number of slots and 7,,, is the maximum lag time. H(kAr) is the number of cross
products within a slot. Self-products, i.e., cross-products with zero lag time are excluded
from the algorithm. In case of Poisson sampling the expected number of cross products
per slot is given by

H(kA7T) = vN At (1 - 5%) , (4.27)

which shows that the Poisson sampling process provides cross products at all lag times,
including the smallest lag times. An expression for the statistical variance of the auto-
covariance estimates R is derived by Scott [1974]

R2(0) + R*(kAT) 4

var{R(kAT)} = H{kAT) + T /000 R*(u) du, (4.28)

where T is the measuring time. The first term on the right-hand side of Eq (4.28) is the
statistical variability caused by the finite number of cross products per slot. The second
term on the right-hand side of Eq (4.28) is inversely proportional to the measuring time
T. It gives rise to a smooth, but incorrect, estimate of the autocovariance function, and
is sometimes called the run-to-run variance. For a given value of the slot width Az, the
value of H(kAT) can be increased by increasing the mean data rate v or by increasing the
number of samples N, see Eq (4.27). However, when the number of samples N(= vT)
is fixed, for example, because of limited storage capacity, than an increase of the mean
data rate results in a decrease of the measuring time, which in turn will increase the
magnitude of the second term. Therefore, a reduction of the variance of the R(kA7)
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values requires both an increase of the mean data rate and longer measuring times. The
discretized autocorrelation function (kA7) can be computed from

pkAT) = R(féﬂ with k=0,1,..., M -1, (4.29)
u

where R(kAT) is given by Eq (4.26) and w2 = R(0) is the variance of the process u(t),
which is usually estimated from

—_ 1 X
= N Z U’(ti)z- (430)

Once the discretized acf is available, a spectral estimate can be formed from [Gaster and
Roberts 1975]

Si(w) = AT{ p +Z (kAT)w kAT)cos(kwAT)} (4.31)

where w(t) is a lag-window function. The numerical integration over 7 is performed using
the trapezoidal rule. Due to the discretization of the lag-time axis, and the subsequent
smearing of the time information, the slot width must be chosen sufficiently small so that
the aliasing error is negligible. In absence of an exact mathematical expression for the
variance of S;, Gaster and Roberts [1975] suggested to use the following expression

2
var{S(w)} = Zme {52( ) + %WL (i) } (4.32)

2y

which is based on a mathematical analysis of the variance of a closely related spectral
estimator (see Gaster and Roberts [1975] for details). In Eq (4.32), v is the mean data
rate and the constant ¢ depends on the lag window function, e.g. ¢ = 3/4 for the Tuckey-
Hanning window. The first term between the brackets is also found in the expression
for the variance in case of periodically sampled data (see e.g. Priestley [1981]). The
second and third term represent the extra variability of the spectral estimates due to the
random sampling. The third term, (27v)~2, will dominate at high frequencies. When
LDA measurements are performed in gas flows it is seldom possible to obtain mean data
rates that are sufficiently high to neglect this term. In that case the extra variability will
obscure the behaviour of S{w) at high frequencies, as will be illustrated in Section 4.3.4.

4.3.2 Improved spectral estimation_

A new spectral estimator will now be proposed that overcomes some of the variability
problems at high frequencies. This estimator is a modified version of S; (w), the estimator
that is based on the slotting technique. The modification consists of two elements. First,
the discretized autocorrelation function, p(kA7), is replaced by a locally scaled version,
p(kAT), see Tummers et al. [1994] or Tummers and Passchier [1996b]. Secondly, the
width of the lag window is varied with frequency as proposed by Gaster and Roberts
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[1975]. It is important to note that each of these modifications alone is insufficient to
improve the spectral estimate at high frequencies significantly. The combination of the
two, however, is found to yield the desired result.

Local normalization of the slotted covariance function

Because u'(t) is a stationary process (u u'(t)2 u/(t + 7)2)}/2 is equivalent to u’?. Therefore,

the discrete autocovariance R(kAr) can be scaled alternatively with a discretized version
of (u'(t)2 u/(t+7)2)Y2, ie.

\/.;Lm {u/*}(kAT) sum{u}2 HkAT)
H{kAT) ’

J(kAT) = (4.33)

where H(kAT) is defined as in Eq (4.26) and sum{u,’} and sum{u’ } are the sums
of the squares of the samples u'(t;) and u'(t;) for which the lag time is in the interval
(k= HAT < t;—t; < (k+ 2)Ar. This means that for each time interval a separate
estimate of the variance of the velomty fluctuations is made, involving only those samples
that contribute to the sum of the cross-products in that slot. The slotted autocorrelation
function then follows from!

R(kAT) sum{uju} } (kAT)

p(kAT) = = '
PRAT) = Z0 AT sum{u?} (kA7) sum{u}?} (kA7)

(4.34)

The advantage of the local normalisation is that at very small lag times, i.e. when the
autocorrelation is near 1, the use of Eq (4.34) to scale R(kA7) leads to a significant
reduction of the variance of the correlation values as compared to the conventional scaling
of R(kA7) with w2 as in Eq (4. 29). This characteristic enables a direct determination of
the Taylor time scale from the curvature of a measured acf at zero lag time, as was shown
by Tummers et al. [1994]. To the author’s knowledge, there is no theoretical derivation
of an expression for the statistical variance of the locally scaled autocorrelation values
p(kAT). In absence of such a derivation, one can use the following empirical expression:

var{p(kAr)} = &%AT)& var{R(kAT)}, (4.35)

where var{R(kA7)} is given by Eq (4.28).
Another advantage of the local normalization is that the p(kA7) values cannot be-
come larger than 1. This is because the same samples that are used to compute the

autocovariance function R(kAT) are also used for the computation of the scale factor
J(kAT) in such a way that R(kAT) < J(kAT) for all k.

INote that the normalization of R(kAr) with the local variance J(kAT) shows a resemblance to the
scaling of a two-point covariance function, u/(z)u’(z + Az), with the variance of velocity fluctuations
computed from the samples acquired at both measuring locations (u/(z)?2 u/(z + Az)2)'/2.
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Variation of the window width with frequency

The selection of the width of the window is a trade-off between the smoothness and the
resolvability of the spectral estimates. An increase of the width of the spectral window
decreases the variance of the spectral estimates. If the window width is chosen such that
the narrowest peak in the sdf can be resolved then there is more than enough resolution
at all frequencies. In regions where the sdf is relatively flat, the excess resolution can be
used to increase the width of the window without creating a large bias error. This forms
the basis for the variable window [Priestley 1981].

In the following, a Tuckey-Hanning window will be used

w(r)=1/2+1/2 cos(ﬂ) (4.36)
Tm
with 7 < 7,,. The width of this window can be conveniently varied with frequency by
varying the value of 7, with frequency as

Tm (W wo . 27
(@) =k— with wp =
Trmo w Tmo

(4.37)

Here, 7,,,, is the maximum lag time and « is approximately equal to the ratio of the centre
frequency w and the width of the spectral window. As a result of the variation of 7, with
the frequency, the resolvability will be relatively low at high frequencies. However, when
the sdf does not have sharp peaks or troughs in the high frequency range, the variation
of the window width with frequency works satisfactory.

Combining the locally normalized autocorrelation p(kA7) with the variable window
width, yields the following spectral estimator

52(w)_AT{ Z (kAT)w kAT)cos(kwAr)} (4.38)
k=1

where p(kAT) is given by Eq (4.34), the window w(7) is given by Eq (4.36) and 7, is
varied with frequency as in Eq (4.37).

4.3.3 Application to simulated data

To asses the two spectral estimators S; and Ss, simulated data were generated on a
computer using the methods given in Appendix B. The simulated data have known sdfs,
thereby enabling a direct verification of the ability of each estimator to infer the correct
sdf from the data. Second-order autoregressive (AR(2)) data have the following spectral
density (see e.g. Priestley [1981])

1 a1 Qs

T 02w + (g — w?)? (4.39)

S(w) =

The coefficients a; and ay can be used to prescribe two time scales that characterize the
simulated data, such as the Taylor time scale A; and the integral time scale T,. This is
discussed in detail in Appendix B. When plotted on double-log axes, the sdf of an AR(2)
process has fixed slopes of —2 and —4. It may be argued that this does not represent a
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realistic behaviour of the sdfs that are found in fluid mechanics. Therefore, the use of
AR(2) data as the only test case for the assessment of the different spectral estimators
may be insufficient. To meet some of this criticism, the spectral estimators should also be
applied to simulated data with a more realistic behaviour of the sdf at high frequencies.
For this the following spectral density was chosen

Sw) = B
T+ (5)3)A+(5)%)

(4.40)

The constant 7 has been introduced in the denominator so that S(0) = T,/ in accor-
dance with Eq (4.25). For high frequencies S(w) behaves as w=%/3 and then falls off as
w™" as suggested by Heisenberg, see Hinze [1975].

Two data records were generated. Both records consist of 2 x 10° samples and have
a duration of 200 s. Record I was generated with the AR(2) model. The constants
in Eq (4.39) were chosen as a; = 10* rad/s, as = 2/9 x 10° rad®/s?, resulting in a
Taylor time scale of 3.0 ms and an integral scale of 45.0 ms. Furthermore, the record
has variance u/2 = 1 m?/s? and zero mean. Record II was generated using Heisenberg’s
spectral density, Eq (4.40). The constants in Heisenberg’s sdf were set at 3 = 20.7 rad/s
and B, = 1500.0 rad/s, while the integral time scale was chosen as T, = 40.0 ms. This
resulted in a Taylor time scale of approximately 6.0 ms. The mean and variance are
identical to those of record I

4.3.4 Performance of the new estimator

Figure 4.12 gives a detailed view of the acf in the region near zero lag time for the
conventional slotting technique, Eq (4.29), and the locally scaled variant, Eq (4.34), as
computed from record 1. The corresponding results for record II are shown in Fig. 4.13.
In both figures the slot width equals 25us. The error bar at 7 = 1.5 ms has length 4¢,
where 02 is the variance of the (kA7) estimates as calculated from Scott’s formula,
Eq (4.28). Recall that the 40-band contains approximately 97% of the (kA7) estimates
for a Gaussian distribution. Even though there is no theoretical expression for the vari-
ability of the p(kAr) values, it is clear from Figs. 4.12 and 4.13 that the local scaling
results in a dramatic decrease of the variability. The local scaling enables an accurate
description of the acf. The beneficial effect of the local scaling is most pronounced at
the smallest lag times, i.e. in the region where the value of the correlation coefficient is
near 1. The scatter increases with decreasing correlation, and in the limiting case of zero
correlation, e.g. at very large lag times, the variability of p(kAT) becomes equal to that
of p(kAT).

Figure 4.14 shows the results of the conventional spectral estimator S; for record I
The estimator S; used the Tuckey-Hanning window and the maximum lag time was set
at Tm, = 1 s. The lag-time axis was divided into 10° intervals of 10 us. The spectral
density for which the variance of S; exceeds 6252 (w) as determined from Eq (4.32) is S5 =
292 x107%s at w = 570 rad/s for § = % This value compares reasonably well with the
experimentally observed value of S5—; /3 = 1.24 x 107°s at w = 820 rad/s in Figure 4.14.
It illustrates that Eq (4.32) can be used to predict the lowest spectral density that can
be accurately estimated with S,. Note that the frequency w = 820 rad/s corresponds
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Figure 4.13: The influence of local scaling on
the acf for record II. The error bar denotes the
40-band as computed from Scott’s formula,
Eq (4.28).

Figure 4.12: The influence of local scaling on
the acf for record I. The error bar denotes the
4o0-band as computed from Scott’s formula,
Eq (4.28).

to approximately 1/8 of the mean data rate. For higher frequencies the spectral density
function becomes increasingly obscured by the variability of the estimates.

The individual effects of the local scaling and the variation of the window width on the
spectral density are also shown in Figure 4.14. First, the standard autocorrelation p(kAT)
in Eq (4.31) was replaced by the locally scaled autocorrelation g(kA7). Theoretically, this
should lead to some improvement, but this is not noticeable from the results. Apparently,
the reduction of the scatter of the autocorrelation values near 7 = 0 had negligible
influence on the calculated spectral density function, because the integration in Eq (4.25)
is performed up to the maximum lag time, i.e. 7 = 7,,,. As indicated by Gaster and
Roberts [1975], the use of the variable window alone alleviates some of the variability
problems. The value of Ss5—;/3 was determined as 2.0 x 107% s at w = 1600 rad/s.

Figure 4.15 shows the results of the S; estimator together with the results of the new
spectral estimator S3 when applied to record I. The latter estimator combines the locally
scaled autocorrelation (kA7) and the variable window. The width of the window is
varied according to Eq (4.37) with k = 6. The choice of the value of & is not critical. As
shown by Tummers and Passchier [1996a)] a variation of x between 3 and 9 did not yield
significant differences in the results. Both spectral estimators used the Tuckey-Hanning
window and the maximum lag time was 7,,, = 1 s. The lag-time axis was again divided
into 10° slots each having a width of 10 us. The estimator S; gives reliable estimates up
to w = 820 rad/s. The variability of S; is much lower; the value of S5_, /3 was determined
as 1.8 x 1077 s at w = 4660 rad/s. Now, advantage is taken of the smaller variance of the
autocorrelation values near 7 = 0, because the upper limit of the integration in Eq (4.25)
decreases with frequency. The use of Ss results in a gain of about 2 decades in the
spectral density. The same result could have been achieved with S; if 2 x 10? instead of
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Figure 4.14: The individual influences of the Figure 4.15: Comparison between the

local scaling and the variable window on the
spectral density for record I. The dashed lines
represent (1 +1/3)S(w).

spectral estimators S; (slotted correlation
method) and the new spectral estimator S»
for record I. The dashed lines represent (1 +

1/3)S(w).

2 x 10° samples were processed.

Figure 4.16 shows the results for .S; and S, when applied to record II. Both estimators
used the Tuckey-Hanning window and S, employed x = 6. The maximum lag time,
Tmos Was set at 1 s and the width of the time slots was 10 us. The variance of the S,
estimates exceeds 625 (w)? at w = 610 rad/s for § = . The equivalent frequency for S,
is determined as w = 2000 rad/s. Through the use of S, instead of S; about 1.5 decades
in spectral density are gained. In particular, the estimator S, is able to reveal the change

of the slope from —5/3 to —7 in the Heisenberg sdf.

4.3.5 Lifting the model restrictions

The preceding spectral analysis implicitly assumed that the LDA measuring volume was
infinitely small, that the time at which particles passed through the measuring volume
could be determined exactly, that the velocities were measured without error, and that
the sampling process was independent of the process being sampled, i.e. there was no
velocity bias. To some extent all these assumptions are violated in practice. It is the aim
of this section to reveal some of the consequences of the model restrictions. First, the
model requirements will be somewhat relaxed by the allowance of velocity errors in the
form of uncorrelated noise. Secondly, the influence of the velocity bias on the acf will be
studied. Some consequences of ignoring the velocity bias will be revealed, and ways are
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indicated to correct for the velocity bias. This is followed by a discussion on the effects
of the limited spatial resolution.

Effects of uncorrelated noise

In practice a measured velocity fluctuation u], consists of the true velocity fluctuation
u' and an error n, which is modeled here as uncorrelated noise

' m(t) = u'(t) + n(t). (4.41)

The subscript m denotes a measured value. If it is assumed that the velocity and the
noise are uncorrelated then the measured autocovariance function will, in theory at least,
not be affected by the noise:

WUmBunE+7) = wEWE+T)+u(E)n(t +7) (4.42)
n(u'(t+7) + nt)n(t + 7)
i raT)

+

for 7 # 0. However, the variance of the measured velocity fluctuations will be too high
because it contains self products, i.e. zero lag time products, of the noise

W ()2 = W' (£)2 + 2u/(H)n(t) + n(t)2 = u'? 4 n2. (4.43)

When the measured variance is used to scale the autocovariance function R(7), the
resulting autocorrelation function p(7) exhibits a discontinuity at zero lag time with
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magnitude (see, for example, Absil et al. [1990])

n2

Ap = (4.44)

w? +n?’

The locally scaled autocorrelation function (kA7) that is used in the spectral estimator
Sz will also exhibit a discontinuity at zero lag time, because it utilizes self products of
the noise component for the scaling of the R(kA7) values. Note that R(kAT) is not
directly affected by the uncorrelated noise, because the algorithm given by Eq (4.26)
excludes all self products. The magnitude of the discontinuity Ap can be determined
accurately if the p(kAr) values reveal the behaviour of the autocorrelation function near
zero lag time in detail. As pointed out earlier, the discrete autocorrelation function
p(kAT), as determined with the local normalisation according to Eq (4.34), has a very
small statistical variance in regions where the (absolute) value of 5(kA7) is near 1. This
property enables a reliable determination of Ap from the experimental data, if the noise
level n2/u'? is small, say n%/u'? < 0.05. For large values of n?/u’? the measured values
of p(kAT) near kAT = 0 are significantly smaller than 1 due to the discontinuity. As a
result, the statistical variance of the j(kAr) values near kAT = 0 will be relatively large,
so that it is difficult to determine Ap from the measured values of p(kA7) (despite the use
of the local scaling). If the value of Ap is determined accurately then the discontinuity
in p(kAT) can be eliminated as in

p(kAT)
1-Ap

pe(kAT) = with k=0,1,...,M —1. (4.45)

Here, the subscript ¢ denotes a “noise-corrected” value. After rescaling according to
Eq (4.45), the discrete autocorrelation function (kA7) can be used in the spectral
estimator Sy instead of p(kAT).

From the preceding it is clear that the signal-to-noise ratio (SNR) defined as

[

14
S

SNR =

: (4.46)

®

n

should be as high as possible. A high SNR results in a small discontinuity at 7 = 0, since

n? 1
w2 +n2 1+ SNR

Ap = (4.47)

Apart from the spike at zero lag time, the uncorrelated noise also has another, more
subtle, effect on the spectral estimates. In deriving Eqs (4.42) and (4.43) the ensem-
ble averaging causes correlations, such as u/(t)n(t), to vanish. In practice, however, the
averaging process is based on a finite number of samples. As a consequence, the cross
correlations will not vanish completely, and this effectively increases the statistical vari-
ability of R(kAr) and (kAr), thereby increasing the statistical variability of the spectral
estimates. This again illustrates the importance of increasing the SNR.
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Figure 4.17: The effects of uncorrelated noise Figure 4.18: Inference of the AR(2)-process
on the acf of the AR(2) process. acf from a biased data record.

Effects of velocity bias on the autocorrelation function

The standard slotting technique, Eq (4.29), and its locally normalised version, Eq (4.34),
can only be used to estimate the acf from randomly sampled data if there is no correlation
between the sampling process and the velocity. Since this correlation is inherent to the
LDA measurement technique, it should be taken into account when processing measured
data.

Buchhave et al. [1979] were the first to warn for the effects that ignoring the velocity
bias has on the measured acf. It remained unclear what these effects were until the
simulations of Edwards and Kolodzy [1986] revealed that the computed acf could rise
above 1 at small lag times, which is physically unrealistic because the true acf is always
less than 1. This physically unrealistic behaviour was also observed by Van Strien [1988]
for measurements in a stirred vessel, and by Tummers [1992] for measurements in a low-
speed turbulent wake. For the simple case of a one-dimensional flow with low turbulence
intensity and a Gaussian velocity distribution, it is easy to show that the velocity bias
causes p(kA7) to become larger than 1 [Tummers 1992)

1+ u?/u?

dm, ) =

Here, 7 is the mean velocity and u’2 is the variance of the velocity fluctuations. Clearly,
this abnormal behaviour of s(kAT) at small lag times will have adverse consequences for
the spectral density S;. This indicates that there is a strong need to modify the existing
algorithms for the estimation of the acf such that the effects of velocity bias are taken
into account. Buchhave et al. [1979] argued that the autocorrelation function p(kAT)

should be corrected for the velocity bias by weighting each cross-product u'iu’j with the
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transit times of the particles according to

sum{uiu; wiw; }(kAT)
sum{w;w; HkAT)

R(kAT) = (4.49)
where w; is the transit time of the i-th particle. The autocorrelation function p(kAT)
then follows from R(kAT) by scaling with the corrected variance

N N
W = Z uizwi/ Z wi. (450)
i=1 i=1

Instead of the transit times other quantities, such as the time between successive par-
ticle arrivals (i.e. the particle interarrival times) or the inverse of the instantaneous
volume flux, can be considered to construct a suitable weighting factor w, as explained
in Section 4.2.1.
Van Strien [1988] noted that the rise above 1 of (kA7) could be avoided by scaling
R(kA7T) with a “local variance” similar to Eq (4.34). Even though j(kA7) does not
exhibit the unrealistic behaviour, it is incorrect to assume that j(kA7) is insensitive to
the effects of velocity bias. On the contrary, as shown by Van Maanen and Tummers
[1996] the values of 5(kAT) are affected by the velocity bias at all lag times, except at
7 = 0. Fortunately, the locally normalized autocorrelation g(kA7) can be modified to
yield unbiased values as follows [Tummers and Passchier 1996a]

sum{uju} w;w;(kAT)}

\/.fmm{u;- wiw; }(kAT) sum{u}2 w,-wj}(kA'r).

plkAT) = (4.51)

This reduces to Eq (4.34) for w = 1. Figure 4.18 clearly illustrates that the algorithm
given by Eq (4.51) with the transit times of the particles as a weighting factor, infers
the correct acf from a “biased” data record?, albeit at the cost of a small increase of the
statistical scatter as can be seen from a comparison between the results in Figs (4.18)
and (4.12). Processing the biased data record as if the velocity bias was absent, by
using Eq (4.34) instead of Eq (4.51), results in severe errors. Ignoring the effects of
the velocity bias has resulted in an acf that is too “flat” for small lag times, which
results in a too high a value of the Taylor time scale. However, this is not a general
conclusion, because the effects of the velocity bias on the computed acf depend on the
relative turbulence intensity. A detailed study on the effects of the velocity bias on the
acf, and various methods to correct the acf for the velocity bias, is given by Tummers
and Passchier [1999].

It is worth noting that the velocity bias itself does not cause errors in statistical quan-
tities. The errors arise when the LDA user applies algorithms that ignore the existence
of the velocity bias. However, the velocity bias further complicates the already inefficient
processing algorithms, and often additional information is needed (e.g. in the form of
two or three velocity components or the transit times of the particles) to take the bias
into account. If this information is not available, it is inevitable that errors will result.

2Methods to generate “biased” simulated velocity data and the transit times of particles are briefly
described in appendix B.
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Effects of spatial averaging

The spatial averaging for the (individual-realization) LDA is radically different from
that for the hot-wire anemometer. In case of a hot-wire anemometer, all parts of the
wire contribute to a certain extent to the instantaneous output of the device. So, the
instantaneous velocity measured by the hot wire is the result of an averaging process over
the complete wire. In contrast, the LDA measures the velocity of a single particle that
passes through the otherwise empty measuring volume. Therefore, the spatial resolution
of a LDA is limited only by the distance that the particle travels through the measuring
volume during the time span that the signal processor needs to analyze the Doppler burst.
The instantaneous velocity measured by a LDA thus resembles a “point measurement,”
unaffected by the size of the measuring volume. However, it should not be concluded from
this that the LDA has a near perfect spatial resolution, because during the process of
inferring statistical quantities from the velocity samples, significant spatial averaging may
take place. Whether or not the spatial averaging is relevant depends on the dimensions of
the measuring volume, the local properties of the turbulence field and on the statistical
quantity that is under consideration3.

There is considerable confusion among the LDA users on the nature of the volume
averaging in case of an (individual realization) LDA. This has resulted in different ap-
proaches in formulating a mathematical model for the spatial averaging. Below, a pro-
cedure is put forward that takes the “point measurements” into account. The analysis
is presented for the simple case of a measuring volume of zero width and length I. The
analysis for a more realistic shape, such as a cylinder or an ellipsoid, is straightforward
but it involves a much larger algebraic effort, while hardly yielding any additional insight
into the effects of the spatial averaging, as was shown by Kraan [1995].

Let ! be the length of a measuring volume that is oriented along the z-axis. Further-
more, it will be assumed that the turbulence is homogeneous in z-direction. Consider two
velocity fluctuations; one measured at location z = z; on time ¢ and another measured
at location 2 = 2z, on time ¢t + 7. FEach individual velocity fluctuation is assumed to
be uninfluenced by the length the measuring volume. The product of the two velocity
fluctuations wu'(21,t)u’(z2,t + 7) is an estimate of the autocovariance function R(7) only
if 21 = z5. This condition is not fulfilled in practice, because of the finite extent of the
measuring volume. As a consequence, the cross product u’(z1,t)u’(22,t + 7) should be
considered an estimate of the space-time covariance R(7,z3 — z1). Recall that the slot-
ting technique (see Eq (4.26)) involves the summing of such cross products, so that some
degree of spatial averaging is incurred when the autocovariance function is calculated
from the samples. The autocovariance R(A7) is a measure for

1/2 1/2
/ o 0w (et + Tpl21)p(22) e dza, (4.52)
12 1/2

where the subscript va denotes a volume-averaged quantity and p(z) is the probability

3In addition to the spatial resolution, there is the related issue of temporal resolution. In practice
all signal processors calculate some average Doppler frequency during the passage of a particle through
the measuring volume. Therefore, the shape of the acf will be obscured for lag times smaller than the
mean transit time of the particles. If the mean transit time is larger than the Kolmogorov scale, then it
is inevitable that some information on the turbulence is lost.
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density that a particle will pass through the measuring volume between z and z + dz.
For simplicity it is assumed here that p is uniformly distributed, i.e.
e if-1/2<2<1)2
p(z) = { 0  otherwise. (4.53)
Because of the homogeneity of the flow in z-direction, only the difference Az = zy — 2;
is of relevance, so that Eq (4.52) reduces to

l
Ryo(1) = /—z u'(z, t)u'(z + dz,t + 7)P(Az) dAz. (4.54)

The probability density function of Az is given by (e.g. Papoulis [1991})
_ T
P(Az) = { (l)/l [Az|/l? if -l <Az <

otherwise.

(4.55)

Expanding the velocity fluctuation u'(z + Az,t + 7) in a Taylor series around ¢,z and
integrating yields [Kraan 1995]

— ou!
— "2 _ el 2 4
Rua(t) = u 12(6 ) 2+ oY

1 ,83u’
12" 3t622

' 2
- (6”>T+1 D 2y opt

12 + 01 (4.56)

ot 24" 912922

The right-hand side of this equation is organised as follows. The first line gives the
constant terms, while the second (third) line gives the terms which are linear (quadratic)
in 7. The Taylor expansion of the true autocorrelation function R(7) reads [Hinze 1975]

R =7+ 55 (53) () =7 H( W) roen. s

A comparison between Eq (4.56) and Eq (4.57) shows that the finite size of the measur-
ing volume has resulted in unwanted constant, linear and higher-order terms that may
obscure the behaviour of the true autocovariance function. In particular, it is seen that
the finite size of the measuring volume causes a too low covariance at small lag times.
To a first approximation the discrepancy is given by

du u2[?
R(0) - hm Ryo(7) = (8z> 2= TR (4.58)
where A, is the Taylor length scale for the z-direction.

Using the same procedure as for the covariance function, an expression can be derived
for the effects of volume averaging on the variance of the velocity fluctuations u'2. The
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outcome of the calculation is simply u’2,, = u'2, indicating that the size of the measuring
volume has no effect on the measured value of the variance in homogeneous turbulence.
This is in agreement with the findings of an experimental investigation carried out by
Luchik and Tiederman [1985], and it illustrates the fundamental difference between the
effects of spatial averaging for an (individual realization) LDA and instruments such as
the hot-wire anemometer.

Once it is known that the variance u2 is unaffected by the spatial averaging, it
follows from Eq (4.56) that the imperfect resolution of the measuring volume causes a
discontinuity in the measured acf. Combining the influences of the spatial averaging
and the uncorrelated noise (see Section 4.3.5), yields the following expression for the
magnitude of the discontinuity of the measured acf at zero time lag

ﬁ+ ’U._'201 . _ 2
Ap = W“ with Cl = m (459)

Tummers et al. [1995] give the magnitude of the discontinuity in case the measuring
volume is modeled as a cylinder with diameter d and length {:

n? + WCg d? &2 12
g TV SV

== (4.60)

where Az, Ay and A; are the Taylor length scales for the z, y and z-direction, respectively.
Eqgs (4.59) and (4.60) illustrate the dilemma that one faces when measuring acfs using
LDA. To avoid the occurrence of a large spike at zero lag time, the dimensions of the
measuring volume should be small compared to the corresponding Taylor length scale.
This often necessitates that the light-collection optics are placed in a plane perpendicular
to the axis of the transmitting optics, i.e. a side-scatter configuration should be used to
reduce the effective length of the measuring volume. However, in that case the intensity
of the received light is small compared to the intensity that can be received in forward
or backward scatter. This will reduce the signal-to-noise ratio (SNR) of the Doppler
signals, thereby increasing the noise component n(t) of the individual samples. It is seen
from Eqs (4.59) and (4.60) that this will increase the magnitude of the discontinuity.
Therefore, it can be concluded that the measurement of an acf is a trade-off between the
effects of the uncorrelated noise and the spatial averaging.

Experiment on the effects of spatial averaging on the acf

To investigate the effects of spatial averaging, Tummers et al. [1995] measured a large
number of autocorrelation functions in the turbulent near wake of a flat plate with
different pinholes placed in front of the photomultipliers. Scattered light was collected
using a side-scatter configuration. The effective length of the measuring volume could be
varied by using pinholes with different diameters. The resulting effective length of the
measuring volume was equal to the pinhole diameter, because the magnification factor
of the receiving optics was nearly 1. For each pinhole 40 blocks of 10* samples were
acquired at an average rate of 1 kHz. The increase of the mean data rate caused by
the increase of the pinhole diameter was compensated for by lowering the seed rate. All
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Figure 4.19: The effect of the effective measuring-volume length on the measured acf.

other parameters, like the settings of the BSA signal processors and the photomultiplier
gain, were the same for each measurement.

The results of the experiment for pinhole diameters of 0.3 mm and 1.2 mm are given
in Fig. 4.19. The transit times are used as a weighting factor to compensate for the effects
of the velocity bias. (The acfs reported in Tummers et al. [1995] were computed as arith-
metic averages.) The results for the small pinhole reasonably approximate the expected
parabolic behaviour for small lag times, except for the smallest lag times, i.e. 7 < 20 ps,
where the results are affected by the limited temporal resolution of the measurement.
The results for the large pinhole do not show a parabolic behaviour at all, indicating the
need for a small effective measuring volume. Therefore, all acfs that are reported in this
thesis were measured using a small pinhole in conjunction with the side-scatter arrange-
ment. The larger measuring volume length apparently obscured the expected parabolic
behaviour of the acf as indicated by the simple theory presented above. Eq (4.60) pre-
dicts a discontinuity of magnitude Ap = 0.03186, assuming { = 1.2 mm, A\; = 3.9 mm,
isotropic relations between the length scales and a negligible contribution of the uncor-
related noise. The discontinuity reduces to Ap = 0.0023 for I = 0.3 mm. These values
are in good agreement with the values observed in Fig. 4.19.

4.3.6 Concluding remarks

The main findings of the research on the spectral estimation can be summarized as
follows. It is shown that the conventional spectral estimator S; exhibits a large statistical
scatter due to the randomness of the sampling process. As a result, this estimator is
unable to reveal the spectral density at high frequencies. A new spectral estimator, Ss,
is proposed that overcomes some of the variability problems. This estimator combines a
window of variable width and a locally normalized autocorrelation function p.

At small lag times the local normalisation strongly reduces the statistical variability
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of the autocorrelation estimates compared to g, the estimates resulting from the standard
slotting technique. The characteristics of the locally-scaled autocorrelation function p
were investigated regarding the effects of (1) uncorrelated noise, (2) velocity bias and
(3) spatial averaging.

1. Uncorrelated noise: a low signal-to-noise ratio of the Doppler signals causes an
increase of the error in the individual velocities measured by the LDA. These noise
errors are presumed to be uncorrelated with the velocity and result in a disconti-
nuity of g at zero lag time.

2. Velocity bias: the correlation between the instantaneous velocity and the sampling
probability is inherent to the use of LDA and should therefore be taken into account.
An algorithm (Eq (4.51)) is given to compute the correct autocorrelation function
from a biased time series while using the local normalisation.

3. Spatial resolution: the effects of the spatial averaging for an individual realization
LDA are fundamentally different from that of an instrument such as the hot wire.
A method is proposed that can be used to investigate the effects of spatial averaging
for an individual realization LDA. The model indicates that the finite size of the
measuring volume distorts the shape of the autocorrelation function. In particular,
the measured autocorrelation function shows a discontinuity at zero lag time of
which the magnitude depends on the size of the measuring volume relative to the
Taylor length scale.

The new spectral estimator S, was applied to two types of simulated data, i.e. the
AR(2) process and the Heisenberg spectral density. The new spectral estimator proved
to be superior to the existing estimator S;. It was shown that approximately two decades
in spectral density were gained through the use of S;. Also, the spectral estimator S,
can be used to compute the spectral density function from a biased data record when
the locally scaled autocorrelation function g is computed from Eq (4.51).




Chapter 5

Investigation of the Adverse
Pressure Gradient Wake

The first section of this chapter provides information on the experimental aspects of the
investigation of the adverse pressure gradient wake. It includes a description of the wind-
tunnel facility, the model, the instrumentation and the measurement programme. The
description of the instrumentation has an emphasis on the different optical arrangements
of the LDA. The numerical investigation of the wake in adverse pressure gradient is
outlined in the second section. It consists of a brief description of the turbulence models
and the numerical procedures.

5.1 Experimental Investigation

5.1.1 Wind tunnel and model

The experimental facility used is an open-circuit wind tunnel at the Low-Speed Aerody-
namics Laboratory of Delft University of Technology. A centrifugal fan accelerates the
air which passes through a diffusing section, the settling chamber and the contraction
(1:8) before it reaches the test section with dimensions 400 x 400 mm?. The test section
is followed by a plane diffuser that is made from perspex to allow optical access. The
diffuser has a length of 920 mm and the side walls include a 15° angle. The large pres-
sure rise in the diffuser causes a rapid growth of the boundary layers along the diffuser
walls. This might cause the diffuser flow to stall if adequate measures were not taken.
To prevent boundary-layer separation along the diffuser walls, a screen was placed at the
outlet of the channel and the diffuser walls were equipped with regularly spaced slots. A
straight duct with a length of 1000 mm was placed between the diffuser and the screen.
The screen induces an over-pressure inside the channel which causes the boundary layers
that develop on the diffuser walls to be blown out through the slots. The absence of
flow separation at the diffuser walls was confirmed with tufts and by a flow visualization
using a laser sheet and oil smoke.

79
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flat plate plane diffuser straight duct

boundary- layer suction

Figure 5.1: Top view of the test configuration for the investigation of the wake in adverse
pressure gradient.
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Figure 5.2: Definition of the two coordinate systems in the trailing-edge region of the plate.

An airfoil-like flat plate with a 600 mm chord and a thickness of 18 mm served as
a wake generator. The plate has an elliptic nose and the last 116 mm was tapered to
form a sharp trailing edge with a thickness of approximately 0.2 mm. The change in the
surface contour from the constant-thickness region of the plate to the tapered region was
rounded to avoid flow separation. The model was placed at zero incidence in the test
section of the wind tunnel, and the aft portion of the plate (50% chord) was located in the
diffuser as shown in Fig. 5.1. The boundary layers on both sides of the plate were tripped
with wires to ensure uniform transition across the span. The wires had a diameter of
1 mm and were positioned at 6 % chord from the leading edge. The divergence of the
diffuser and the width of the slots in the diffuser walls were tuned such that the turbulent
boundary layers at the trailing edge of the plate were nearly separated (H = 2.91). This
simulates the flow field on the suction side of a highly loaded airfoil in the trailing-edge
region.

An orthogonal coordinate system (z,y, z) was defined having its origin at the trailing
edge of the plate at mid span, see Fig. 5.2. The z-coordinate is measured along the wind
tunnel axis and taken positive in the streamwise direction. The z-coordinate is measured
in the spanwise direction and taken positive in the upward direction. A second orthogonal
system (s,n, z) is used for measurements in the boundary layer on the tapered region of
the plate. The z-coordinate is identical to the one mentioned above. The n-coordinate
is measured normal to the plate surface.




5.1. EXPERIMENTAL INVESTIGATION 81

0.1
0.06
oofb"
0.05 ¥,
0.05 % 0.04 o

autocorrelation p(7)

-0.05 - : :
0 250 500 750 1000

lag time 7 [ms]

Figure 5.3: Autocorrelation function in the empty test-section (with detailed view for small lag
times).

5.1.2 Flow quality

Ideally, the flow in the empty test section of a wind tunnel is uniform and has no fluc-
tuations in time. Also, the mean flow about the flat plate should be perfectly two-
dimensional. However, this is not the case in the real world. At the onset of the investi-
gation the quality of the flow was investigated in a number of ways.

o The uniformity of the flow across the empty test section was examined with Pitot-
tube measurements;

¢ Time-resolved measurements of the streamwise velocity component were performed
in the empty test section (using a one-component LDA) to determine the intensity
of the free-stream disturbances and their spectral distribution;

¢ A number of spanwise traverses were made in the turbulent wake of the plate (using
a one-component LDA) to determine the degree of two-dimensionality.

First, total pressures were measured across the empty test section using Pitot tubes.
These measurements indicated that the deviations in total pressure were negligibly small.
Secondly, a one-component LDA (to be described in Section 5.1.3) was used to perform
time-resolved measurements of the streamwise velocity component. Figure 5.3 shows the
autocorrelation function of the velocity fluctuations measured on the wind-tunnel axis
near the junction of the test-section and the diffuser. The root-mean-square value of the
velocity fluctuations was computed as u/,,,, = 3.61 x 1072 m/s at a free stream velocity of
approximately 10.2 m/s. However, Fig. 5.3 shows that the measured autocorrelation has
a very large discontinuity at zero lag time. As discussed in Section 4.3.5, this indicates
that the measured mean-square value of the velocity fluctuations is much higher than its
true value due to a large contribution of uncorrelated noise. In other words, the accuracy
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with which the LDA measured the extremely small velocity fluctuations in the empty
test section was relatively low. This resulted in a too high a value of 4/2. The detail in
Fig. 5.3 shows the measured autocorrelation value at zero lag time as 0.053. By using the
simple theory presented in Section 4.3.5, in particular Eq (4.44), a much more accurate
value of u? can be computed: w2 = 6.89 x 10~°m?/s> = u!,,, = 0.83 x 1072m/s,
corresponding to a relative turbulence intensity of 0.11% which is an acceptable value.
Interestingly, the autocorrelation in Fig. 5.3 reveals a periodic component of 12.2 Hz.
Since the wind-tunnel fan revolves at a frequency of 12.3 + 0.2 Hz, the presence of the
periodic component is probably caused by an imperfection of one of the six blades of the
fan or a mechanical vibration of the fan. Autocorrelation functions that were measured
at more downstream locations on the diffuser axis revealed the same periodic component.
However, spectral density functions of turbulent velocity fluctuations that are measured
in the wake of the flat plate are not affected by the small amount of energy in the 12.2 Hz
component.

The two-dimensionality of the mean flow was examined by performing spanwise tra-
verses with a one-component LDA, measuring the velocity component in the z-direction.
The spanwise traverses were carried out at a station 175 mm downstream of the trailing
edge at three lateral locations: y = 0, y = 47 mm and y = 100 mm. The latter posi-
tion is near the edge of the wake, whereas y = 47 mm is the location of the maximum
kinetic energy, k. The spanwise coordinate, z, was varied between z = —28 mm and
z = +35 mm. This range of z values corresponds to about 16 % of the span of the
flat plate. In the following, z = 0 can be seen as a reference, because all subsequent
measurements were performed in this mid-span plane. For each measurement run the
mean velocity @ and the rms value of the velocity fluctuations u/,,, were calculated as
arithmetic averages, because bias corrections are irrelevant when assessing the variation
of @ and ul,,, in z-direction.

Figure 5.4 shows the spanwise variation of the mean-velocity component, w. At y =
100 mm the maximum variation of @ is small, i.e. less than 1.0 % of the edge velocity
U.. Somewhat larger variations of @ occur at y = 0 and y = 47 mm. In particular, at
y = 47 mm the mean velocity has a tendency to increase with increasing values of the
spanwise coordinate. However, the change of @ with 2z remains within 3.0 % of the edge
velocity. Figure 5.5 shows the rms value of the velocity fluctuations, u!,,,, as a function
of the spanwise coordinate. At station y = 0, z = 0 three measurements were taken to
indicate the amount of statistical scatter in the results. It is seen that the change of
Uj,s With z is slightly larger than the statistical scatter. The smallest variation of u!, .
with z occurs again near the edge of the wake at y = 100 mm. The largest variation in
ul,,, occurs at ¥y = 47 mm and equals 9.6 % of the maximum value of u!, , at station
z = 175 mm. On the basis of the results shown in Figs. 5.4 and 5.5 it was concluded

that there are no major three-dimensionalities in the mean flow.

5.1.3 Optical arrangements and instrumentation

Set-up 1: single-point statistics
The single-point statistics were measured with a three-component LDA system that was
built according to the guidelines for a 3-D LDA given in Section 3.3. The complete LDA
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Figure 5.4: The mean velocity %/U,; versus Figure 5.5: The rms of the velocity fluctua-
the spanwise coordinate 2. tions uy,,, /U versus z.

was mounted on a rigid frame that spans the wind tunnel, see Fig. 5.6. A traversing
mechanism enabled displacements of the frame in steps of 5 um. The green (514.5 nm),
blue (488.0 nm) and violet (476.5 nm) colours of a 5 W argon-ion laser were used to
measure the three components of the velocity simultaneously. A modular-optics TSI
system employed the blue and green colours to measure two velocity components in
the z,y-plane that were oriented at +45° and at —45° with respect to the z-axis, so
that (on the average) the blue and green channels measured velocities of comparable
magnitude. One beam of each colour was frequency shifted over 40 MHz by Bragg cells
to enable detection of instantaneous flow reversals. A beam expander (3.75x) together
with a 750 mm focal-length lens were used to create two overlapping measuring volumes
each having a length of 1.3 mm and a diameter of 0.11 mm. A fibre-optic Dantec LDA
used the violet colour to measure the velocity component in the z-direction, i.e. the
spanwise velocity component. This LDA channel also included a Bragg cell to introduce
an optical shift of 40 MHz. Both violet beams passed through separate beam expanders
before intersecting. The length and diameter of the violet measuring volume were 1.7 mm
and 0.12 mm, respectively.

The three fringe patterns have a nominally orthogonal orientation. The fringe spacings
and the precise orientation of the fringe patterns in the z,y, z-coordinate system were
determined with a theodolite using procedures similar to those described by Absil [1995].
Recall from Section 3.3 that the advantage of the orthogonality, as compared to the
situation for non-orthogonal fringe patterns, lies in the strongly reduced sensitivity of
the measured velocity components to small calibration errors. On the other hand, the
orthogonal 3-D LDA poses a number of practical problems with regard to the alignment
of the transmitting and receiving optics. The solutions to these problems are discussed
in Appendix A.

The receiving optics were placed in a plane perpendicular to the optical axes of the
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Figure 5.6: Experimental set-up for 3-D single-point statistics.

transmitting optics, i.e. a side-scatter configuration was used for each channel. This was
done to collect scattered light from the overlap region of the three measuring volumes
only. However, in case of a side-scatter configuration the intensity of the scattered light is
small compared to the intensity that could have been obtained if forward-scattered light
were collected. In the present set-up, the loss of light intensity was partly compensated
for by the use of large-aperture lenses in the receiving optics. The blue and green channel
used the same 145 mm aperture lens to collect scattered light. The collected light was
separated using a dichroic mirror before it was focused on separate photomultipliers.
Each photomultiplier was equipped with a small pinhole which resulted in a reduction
of the effective length of the measuring volumes to 0.2 mm. The receiving optics for the
violet channel included a 110 mm aperture lens and a small pinhole was placed in front
of the photomultiplier to reduce the effective length of the violet measuring volume to
about 0.2 mm. Cross talk between the blue, green and violet channels was eliminated by
narrow-band optical filters placed in front of each photomultiplier. Note that the small
pinholes in conjunction with the side-scatter configuration act as spatial filters that limit
the probe size of the 3-D LDA to 0.2 x 0.2 x 0.2 mm3.

The photomultiplier output signals were electronically down-mixed to an effective
frequency pre-shift of 5 MHz and then fed to one Dantec BSA model 57N10 (clock
master) and two BSAs model 57N35 (clock slaves). These processors were operated in
the “hardware coincident mode,” which means that the Doppler signals were processed
only when signals were detected on all three channels simultaneously. Recall, that it is
explained in Section 3.3 that this mode of operation is needed to ensure that each BSA
analyses Doppler bursts that originate from the same particle. Some of the Doppler bursts
that pass this hardware-coincidence test are rejected by the internal validation procedures
performed by each processor. Since the processors apply the internal validation test
independently of each other, it is possible that from triplets of hardware coincident
Doppler bursts only one or two bursts are validated. Therefore, a conventional (software)
time-coincidence window has to be applied during the later data reduction on a computer.
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Figure 5.7: Experimental set-up for two-point statistics.

Set-up 2: autocorrelation functions
Most of the autocorrelation functions were measured with a Dantec one-component fibre-
optic LDA that is almost identical to the fibre-optic channel described in “set-up 1.” The
laser beams were oriented to measure the streamwise component of the velocity. The
measuring volume length and diameter were 1.7 mm and 0.12 mm respectively. Scattered
light was collected using a side-scatter configuration. A small pinhole positioned in front
of the photomultiplier reduced the effective length of the measuring volume to 0.2 mm.
The photomultiplier output signals were electronically downmixed and subsequently
processed by the model 57N10 BSA. The Doppler frequency and the arrival time of
each particle were stored on disk. The transit times, i.e. the duration of each Doppler
burst, were also measured to enable a velocity bias correction for this one-component
measurement as explained in Section 4.2.

Set-up 3: two-point statistics
The spatial correlation functions were measured with a TSI two-component modular-
optics LDA in conjunction with a Dantec one-component fibre-optics LDA, see Fig. 5.7.
Both LDA channels are nearly identical to the ones described in “set-up 1.” Only the
relevant differences are described here. The fringe pattern of the one-component channel
was oriented to measure the streamwise component of the velocity and it was mounted
on a manual z,y,z-traversing mechanism. The two-component channel, which measured
the velocity components in the x, y-plane, could be traversed in = and y-direction by the
computer-controlled traversing mechanism. For spatial correlation measurements with
the separation vector in the zy-plane, the one-component LDA channel formed the fixed
probe and the two-component channel was traversed in small steps. The situation was
reversed for separations in the z-direction.

A special 50 pm pinhole (see Appendix A) positioned at the measurement location was
used to align the beams of both channels at “zero” separation. Side-scattered light was
collected and small pinholes were used in the receiving optics to limit the effective length




86 CHAPTER 5. INVESTIGATION OF THE APG WAKE

of each measuring volume to 0.2 mm. The BSA processors were used in the “hardware
coincident mode” to ensure that the two LDA channels acquired time-coincident velocity
samples.

5.1.4 Additional instrumentation

The barometric pressure and the temperature were measured to determine the density
of air, p, using the equation of state of a perfect gas. The temperature was also used to
calculate the dynamic viscosity, u, from Sutherland’s formula, see e.g. Schlichting [1987].
The difference between the static pressure in the settling chamber and in the test section,
was measured using a manometer with an inaccuracy of +0.3 Pa. This pressure difference
together with the contraction ratio of the wind tunnel and the density of the air, were
used to determine the test-section speed, U,es. The velocity Upes is used to make all
measured data dimensionless. The experiments were performed at a constant chord-based
Reynolds number of 4 x 10%, corresponding to a test-section speed of about 10.2 m/s.
When atmospheric conditions changed, small adjustments of the test-section speed were
made in between measurement runs (but not during the runs) to maintain the constant
Reynolds number.

The Doppler bursts were monitored on an oscilloscope to verify that high quality
bursts are generated by each LDA channel. The simultaneous visualisation of Doppler
bursts produced by two LDA channels allowed the detection of small misalignments in
streamwise direction of the corresponding measuring volumes from a time lag between the
bursts. An air-blast atomizer was used to seed the flow with small oil droplets (Rizella
oil). The size distribution of the droplets was measured [Plomp 1986], and found to
have an average value of 0.98 um, while 95 % of the particles were smaller than 2.0 pm.
The droplets were injected into the flow upstream of the centrifugal fan to ensure a
homogeneous distribution in space.

5.1.5 Measuring programme and data reduction

Single-point statistics (set-up 1) were measured in the wake of the plate on a grid con-
sisting of a centreline traverse and 6 lateral traverses located between £ = 17 mm and
z = 175 mm. In addition, the boundary layer in the trailing-edge region was surveyed
with 5 traverses located between z = —137 mm and the trailing edge (z = 0 mm). Each
wake traverse consisted of approximately 60 measurement stations, whereas the number
of stations per boundary layer traverse was slightly less, about 50. At each measurement
location at least 2 x 10* velocity samples were acquired with the 3-D LDA. During these
measurements the mean data rate varied between 200 Hz in the outer regions of the shear
layer and 25 Hz near the centreline or close to the walls. The velocity samples were used
to calculate the following statistical quantities

e the mean velocity components 4,7 and w.

e the Reynolds stresses u'2, v'2, w'? and u'v'.

e the triple-velocity correlations u'3, u'v'2, u'w'2, v'u'2, v"3 and v'w'2.
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The overall uncertainty in the measured statistical quantities is as follows (see Ab-
sil [1995] for a detailed analysis of the various error sources). The mean-velocity compo-
nents are accurate up to £1 % of U,es. The Reynolds normal stresses and the Reynolds
shear stress are accurate up to 5 % and +8 % of their local maximum values, respec-
tively. The uncertainty in the triple-velocity correlations is about +20 % of the local
maximum value.

Autocorrelation functions (set-up 2) of the streamwise velocity component were mea-
sured in the wake along the contour of maximum kinetic energy (10 locations) and
along the centreline (9 locations). Furthermore, the wake traverse at £ = 30 mm (and
z = 130 mm) was surveyed at 7 (8) locations. At each measurement station the one-
component LDA acquired 4.5 x 10° samples at a mean data rate of about 1 kHz. These
conditions were selected to obtain accurate estimates of the acf at small lag times, thereby
enabling the determination of the Taylor time scales.

Spatial correlation functions (set-up 3) were measured at a limited number of loca-
tions in the wake, mainly along the contour of maximum kinetic energy and along the
centreline. Most of the spatial correlations concerned the streamwise velocity compo-
nent, but spatial correlations of the lateral and spanwise velocity components were also
measured to assess the degree of anisotropy of the turbulence. Integral length scales
were not measured, because priority was given to the small scale behaviour of the scfs to
determine the Taylor length scales.

The merits of the different velocity bias correction methods were extensively discussed
in Chapter 4. The algorithms that were used to compute statistical quantities in the
present study are given below. All single-point statistics were calculated using the 3D
inverse-velocity weighting. For example, the mean velocity in z-direction is calculated
from

N
a= _——Zij} Gt (5.1)
Dy Wi
while the 3D inverse-velocity weighting factor was evaluated as
1
wi = (5.2)

2 2’
\/u? + vy +w;

because the three velocity components were measured simultaneously in an approxi-
mately spherical measuring volume. The remaining mean-velocity components, the
Reynolds stresses and the triple-velocity correlations were evaluated from expressions
similar to Eq (5.1). The autocorrelation functions were computed using the local nor-
malisation procedure:

S(kAT) = : sum{uju; wiwj(kATz} . (5.3)
V/sum{ug? wiw;}(kAT) sum {u;? wiw;} (kAT)

The weighting factor w; again accounts for the effects of the velocity bias. Because the
acfs were measured with a one-component LDA, the use of the inverse-velocity weighting
is inappropriate. The transit times were used as a weighting factor, i.e. w; = tr;.
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The spatial correlation function of the streamwise velocity component with a stream-
wise spatial separation Az was computed as

N f '
. . f + A
pll(A:L‘lvOa 0) = Pll(AfC) = N Zl:l UZ(:I:]?]UZ(:I: z) 3
(il ui(@)? 3L, ui(z + Az)?)1/2

Similar expressions were used for the spatial correlation functions of different velocity
components and different spatial separations. Note that the spatial correlation function
p11(Azy,0,0) is not corrected for the effects of the velocity bias.

An executable of the program BURSTware (version 3.0) developed by Dantec was
used during the data acquisition stage. The further reduction of the raw data files to the
various statistical quantities was done using the software developed by Passchier [1992].

(5.4)

5.2 Numerical Investigation

A detailed comparison between the experimental data and the numerical solutions of
the Reynolds-averaged Navier-Stokes equations can be used to trace the deficiencies in
existing turbulence models. The comparison may also suggest ways to improve these
models for predictions in turbulent wakes with strong adverse pressure gradients. In the
present investigation the continuity equation, Eq (2.8), and the Reynolds-averaged NS
equations, Eq (2.9), were numerically solved for the two-dimensional, turbulent near wake
in adverse pressure gradient. Two turbulence models were considered; the two-equation
k—e model of Launder and Sharma [1974] and the (differential) Reynolds-stress transport
model of Hanjali¢ et al. [1992]. These two models yielded excellent results for the near
wake of the flat plate in zero pressure gradient, see Section 2.2.2 for details. However,
the standard k — € model is known to be inaccurate in flows with adverse pressure
gradients. It is therefore unrealistic to expect this model to perform well in the near
wake that is subjected to a strong adverse pressure gradient. The expectations regarding
the performances of the RSTM in the near wake in adverse pressure gradient are higher.
Details on both turbulence models are given below.

Low-Reynolds-number k£ — ¢ model

The use of the k£ — € model was first reported by Jones and Launder [1972]. Since then,
the model has been applied to a wide variety of flows in both industry and research, and
it may be considered as the most popular two-equation turbulence model today. The
k — € model employs the Boussinesq approximation, which relates the Reynolds stresses
to the mean strain rate according to

_ (om  om\ 2
=1 (ax] + 5;) ‘3“k5”. (55)

I'I
iy

The eddy viscosity, v, has dimensions length x velocity. As discussed in Section 2.1.4,
the k — e model derives the length scale and the velocity scale from the turbulence kinetic
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energy, k, and the dissipation, e. More specific: k/2 is used as the velocity scale and the

length scale is given by k%/2/e. This yields the following expression for the eddy viscosity
kz

ve=cufu Pl (5.6)

The kinetic energy k and the turbulent energy dissipation € are described by the following
two differential equations

ok __ 0k 8 v\ Ok ou;  Ou;\ Ou;

ot +u] 613 - al‘j [(V+ O'k) %] t (6:::] + 8:1:1) 61?]‘ €+D’ (57)
and

de __0e O v\ Oe € €

E+U16—%-a—%[<v+a—é) a—%]+E+cnf1%Pk~cmf2?- (5-8)

The above equations for v, k and e are essentially identical to the corresponding
equations given in Section 2.1.4, i.e. Eq (2.18), Eq (2.19) and Eq (2.21), respectively.
However, the latter equations do not include the low-Reynolds-number functions f,,
fi, fo, D and E. These functions are introduced in the turbulence model to bring
into account the effects of wall proximity and viscosity. An overview of different low-
Reynolds-number formulations is given by Patel et al. [1985]. In the present investigation
the formulation of Launder and Sharma [1974] is adopted, i.e.

_ —3.4
Ju = exP((1+Ret/5O)2)’

fH = 1.0,
fo = 1.0-0.3exp(—Res?),
D = =2v vk ovk ,
Oz; Oz;
azu—i azu—z

E = 5.

2vvy O0z;0zy Or;j0zy ’ (5.9)

where Re; is the turbulent Reynolds number, defined as
k2

Re; = e (5.10)

The high-Reynolds-number closure coefficients have the standard values [Launder and
Sharma 1974]:

¢y =0.09, ¢, =144, ¢, =1.92, 0, =1.0 and o, = 1.3. (5.11)

Reynolds-stress transport model

The Reynolds-stress transport model (RSTM) has its origin in the exact transport equa-
tion for the Reynolds stresses, Eq (2.10). After a rearrangement of its terms, the exact
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transport equation for u} 3 reads
8u;u] . Ouguj —— 0 5“1 N 0 Oupj
T B = \%ag, T, ) T 5 Ba
+ Dtt-j + Qij — €ij, (5.12)
where
J SR [— 1—
Dt = — ! - = - = i 1
ij axk [ uzu ppu 10 ik pPU L6; k:l (5 3)
P ou' Bug
== —L+-—2L), .14
J pP (6.’1)] + 6.’1),’ (5 )
ou; Bu
i = 2v 5.1
€ 8z, Bwl ( 5)

As explained in Section 2.1.3, the quantities D”, ®;;, €;; contain unknown correlations
that have to be modeled. The remainder of this section describes the RSTM as proposed
by Hanjali¢ et al. {1992].

The triple-velocity correlations, u u,, and the pressure-velocity correlations, (p ufdj+
P u;.é,g) /p, are taken together and modeled using the generalized gradient-diffusion hy-
pothesis [Daly and Harlow 1970], i.e.

ot =2 |c, T (5.16)
LY 8.’17 uk azl ) .

where C; is a closure coeflicient with value 0.22. Note that the modeling of the turbulent
diffusion is very similar to the approach followed in the k — ¢ model, see Eq (2.20). The
pressure-strain correlation, ®;;, is commonly split into two parts,

®ij = Bija + Bijz2, (5.17)

which are known as the slow pressure strain and the rapid pressure strain, respectively.
The slow pressure strain, ®;; 1, is modeled using Rotta’s “return-to-isotropy hypothesis,”
ie.

q)ij,l = —016 aij, (518)

where a;; is the Reynolds-stress anisotropy tensor, defined as

uiul 2
G..,;j = 1]{;] — 55” . (519)

The rapid-strain term, ®;; -, is modeled using the “isotropization-of-production hypoth-
esis” [Launder et al. 1975]

2
Bij2 = —Ch (Pij - §Pk5ij> , (5.20)
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where P, = %P,-i is the production of the turbulence kinetic energy, k. The C and (> that
appear in Eq (5.18) and Eq (5.20), respectively, are functions of the turbulent Reynolds
number, Re;, and parameters derived from the Reynolds-stress anisotropy tensor, such
as the “flatness,” A, defined by

A=1- g (As — Aj) | (5.21)

where Ay = a;;a;; and A3 = a,ja;,a; are the first and second invariants of the Reynolds-
stress anisotropy tensor, a;;. The values of C; and C; depend on Re;, A2 and Aj; as
suggested by Launder and Shima [1989], i.e.

C, =0.75 AY/2, (5.22)
Ci=1— fs +2.5844,"/* [1 — exp(—(0.0067Res)?)] , (5.23)

where f; is a low-Reynolds-number function given by

1

fs = (1+0.1Re,)’

(5.24)
The RSTM as formulated by Hanjali¢ et al. [1992] contains expressions for the effects of
the wall reflections of the pressure fluctuations on the pressure-strain correlation. For
compactness, these expressions are omitted here, because the wall-reflection terms are
set to zero for computations in the wake.

The dissipation tensor ¢;; is modeled as

. 2
€ij = fsfij +(1- fs)§5ij€, (5.25)
where
. wiuy + fs(ufugning + wjupnmg + upumnenngmn;) (5.26)
i3 = —_— . .
k 143 3 uhuly B g e

Here, 7 is the unit-vector normal to the wake centreline, i.e. ny =1, ny = ng = 0. For
fully turbulent and isotropic flow fs = 0, so that the dissipation tensor €;; obtains its
isotropic value

2
€ij = 5(5,']' €. (5.27)

The Hanjali¢ RSTM employs the following differential equation for the isotropic dis-
sipation €

0e 0 0O k—\ Oe 6“1
'a_t_{-uké}_k' - a—zk[(’/’lf'cceuiuj) 61‘1:| Cnfﬂk i1 ]6
k—— 0%w; 0O%°w;
Cafaf g T Car g kaacgazz 9zrdz Seas (5:28)




92 CHAPTER 5. INVESTIGATION OF THE APG WAKE

where € is given by

2
E=¢€e—2v (%ﬁ) , (5.29)

so that € = 0 is prescribed at a solid wall. In its original formulation [Hanjali¢ et al.
1992] the equation for € did not include the term Se,. This term was later added by
Jakirli¢ et al. [1994] to improve the numerical prediction of flows with strong streamwise
pressure gradients. For a two-dimensional flow S, is given by

5., = 064% (v'2 - u'2) Z_Z’ (5.30)
where C¢, is a closure coefficient. The inclusion of S, is meant to differentiate the effects
of the “rotational strains” and the “irrotational strains” on the source dissipation, as
suggested by Hanjali¢ and Launder [1980]. Note that (v/Z —u'2) 8u/dz is the production
of kinetic energy by the working of Reynolds stresses against an irrotational strain. This
type of production is sometimes called the “normal production.” The term S,, favours
the increase of dissipation in response to normal production above the increase due to
“shear production,” when it is used in conjunction with a positive value of the closure
coefficient C,,. This means that the value of the closure coeflicient C,, in the source
term of Eq (5.28), is adapted depending on the type of strain that causes the increase of
bPy.

The high-Reynolds-number closure coefficients in Eq (5.28) have the following values
[Hanjalié¢ et al. 1992]

C.=018, C, =144, C;, =1.92, C;, =05 and C., = L.16. (5.31)
The low-Reynolds-number functions are given by
0.52 )
fe =10 and f,=10- 1—92exp(—(Ret/6) ). (5.32)

Numerical procedure

To solve the equations numerically, the spatial derivatives in the equations are discretized
with the finite volume method on a staggered grid. A Cartesian grid was used with a
strong refinement in the y-direction near the centreline, whereas the grid was equidistant
in the z-direction. The inlet (west) and the outlet (east) of the computational domain
were located at £ = 17 mm and z = 600 mm, respectively. The outer edge (north) of the
domain was located at y = 200 mm. Only one wake halve was calculated because flow
symmetry is assumed with respect to the centreline at y = 0 mm (south). The convection
terms are discretized with the second-order accurate upwind scheme. An unsteady fully
implicit time integration is performed to obtain the steady solution at large time. At
each new time level the discrete systems belonging to each of the transport equations
are iteratively solved by a line Gauss-Seidel method. Alternating Gauss-Seidel sweeps
from the west to the east side and from the east to the west side of the computational
domain are performed. After each sweep the pressure is calculated from the discretized
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Poisson equation for the pressure-correction by using a conjugate gradient solver. The
calculation was started with a certain initial solution at ¢t = 0 and the time integration
is performed until a steady final solution is reached.
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Chapter 6

Results of the Investigation of
the Wake

Chapter 6 reports the results of both the experimental and the numerical investigations
of the adverse pressure gradient wake. Section 6.1 presents the experimental results
regarding the mean flow and the turbulence statistics. This section also provides an in-
depth analysis to aid the interpretation of the experimental results. Section 6.2 reports on
the comparison between the experimental findings and the outcome of the computations
in the wake. Section 6.3 presents the results of the spatial correlation measurements.
The outcome of the spectral measurements is given in Section 6.4. Finally, Section 6.5
discusses explanations for some of the findings of the investigation.

6.1 Results of the Single-Point Measurements

6.1.1 Pressure distribution

Pressure measurements were performed in the undisturbed flow outside the wake us-
ing a static pressure probe. The measurements were taken along a line given by y =
130.0 4- 0.14z, where = and y were measured in mm. This is approximately a streamline
well outside the wake. The static pressures were also measured along a number of lines
z = constant to determine the lateral pressure gradient. The measurements allowed an
accurate interpolation of the static-pressure distribution along the edge of the computa-
tional domain at y = 200 mm. Static pressures were not measured in the wake itself,
because of the high local turbulence intensities.

The distribution of the static-pressure coefficient, Cp = 2(p — Dyes)/ (pref), along
the line ¥ = 200 mm is shown in Fig. 6.1. It is seen that the adverse pressure gradient
gradually decreases in the downstream direction, but it remains positive over the complete
region of investigation.
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Figure 6.1: Static-pressure distribution at
y = 200 mm.

y [mm]

Figure 6.2: Components of the mean veloc-
ity at £ = 53 mm. The line drawn between

70 < y < 100 is the v distribution that is com-
puted from the static pressure measurements
and the continuity equation.

6.1.2 Mean-flow characteristics

Mean-velocity components and integral parameters

Figure 6.2 shows the three components of the mean velocity measured at station z =
53 mm. The centreline velocity is small, but there is not yet mean-flow reversal at this
station. Outside the wake, the transverse component shows an increase in the positive
y-direction. This is a consequence of the flow developing in a diffusing tunnel section,
because according to the continuity equation, Eq (2.8), a decrease of @ in the z-direction
causes an increase of ¥ in the y-direction. The continuity equation together with the
measured static-pressure distribution were used to compute the value of 8v/dy at location
z = 53 mm, y = 100 mm. The solid line in Fig. 6.2 shows the inferred distribution of ¥
(matched at y = 100 mm) outside the wake, i.e.,

v = 5,45 (6.1)

where the subscript m denotes a measured value at location £ = 53 mm, y = 100 mm.
The good agreement between the measured and the inferred 7-distribution indicates two-
dimensional flow. The spanwise velocity, w, is smaller than 1.6 % of the edge velocity
at all locations. This is another indication for two-dimensional flow. Furthermore, it is
seen that the mean flow is reasonably symmetric.

The streamwise development of the x-component of the mean velocity is shown in
Fig. 6.3. The five stations in the upper half of the graph were measured in the boundary
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layer of the plate. The boundary layer at the station furthest upstream (z = —137 mm)
has a displacement thickness §* = 3.7 mm and a shape factor H = 1.62!. The thickness
of the boundary layer rapidly increases owing to the large pressure rise, and near the
trailing edge the velocity profiles develop an inflexion point. The boundary layer is still
attached at the trailing edge. There, the characteristics of the mean-velocity profile are
H =291 and ¢* = 18.9 mm.

A more detailed view of the streamwise development of the integral parameters, H,
0" and 6 is given in Figs. 6.4 and 6.5. After a steady rise in the boundary layer, the shape
factor remains at a more or less constant value of about 3.2 in the wake up to z = 85 mm.
The nearly constant value of H indicates a nearly constant centreline velocity in that
region. For larger values of x the shape factor increases again. Clearly, for trailing-edge
distances up to = 175 mm, the present wake shows no tendency to attain a self-similar
behaviour, which is characterized by a constant shape factor.

The momentum thickness increases towards the trailing edge due to the effects of
the skin friction and the adverse pressure gradient. The latter alone causes the increase
of the momentum thickness in the wake. The integral momentum equation was used
to assess the self-consistency of the experimental data, despite the fact that the integral
momentum equation is based on the “thin-shear layer” approximation so that its accuracy
is questionable in this particular flow. The integral momentum equation

dg W, 8 ¢ 1d [ — .
d.’l? (2 H) iz 5,; + 2 + 6555/0 (U v )dy, (62)

was integrated with respect to z using the experimental values of the shape factor H,
the static-pressure coefficient C, and the skin-friction coefficient C;. Details on the
measurement of the skin friction will be discussed shortly. The constant of integration

! As described in Section 2.2.2, the values of the integral parameters §* and § are determined directly
from their definitions, Eq (2.50) and Eq (2.51), respectively.
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was chosen such that the inferred distribution of 8 matched the measured distribution
at the trailing edge £ = 0. The results of this procedure are shown in Fig. 6.4 as a
solid line. Two comments on the development of the momentum thickness are in place.
First, the inclusion of the last term on the right-hand side of Eq (6.2), i.e. the term that
incorporates the effect of the streamwise development of Reynolds stresses, is important
in this wake. Without this term the computed values of # would increase at a much
slower rate than in the experiments. Secondly, the pressure-gradient term is much larger
than the skin-friction term in the region of the flow that is covered by the experiments.
As a result, the contribution of the skin friction to the growth rate of 8 is very small,
which is essentially different from the zero-pressure-gradient boundary layer.

Skin-friction data

The skin-friction coefficient C'y was determined by means of the Clauser-chart method as
described in Section 2.1.6. Figure 6.6 portrays the Clauser charts for each boundary-layer
station. It is well known that errors in the determination of the wall distance of the LDA
measuring volume can have large effects on the outcome of the Clauser-chart method.
In the present experiment the wall distance could be determined with an accuracy of
40.03 mm. The error bars in the Clauser chart for station £ = —137 mm indicate that a
+0.03 mm error will have a negligible effect on the outcome of the matching procedure.
Also shown in the Clauser chart for x = —137 mm are the curves for Cy = 0.0026+0.0002
to indicate the sensitivity of the matching procedure to variations in the selected value

of Cy.
For £ = —137 mm it is seen that Reichardt’s formulation of the law of the wall,
1 - —yt +
ut = - In (1+xy") + Or — Inw (1 —eiT — z—le_o'33y+) , (6.3)
K

agrees well with the experimental data up to y* =~ 50. This range of y* values does not
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include the logarithmic region of Reichardt’s mean-velocity distribution. The absence
of any noticeable logarithmic behaviour of the measured mean-velocity profile is not
surprising considering the relatively small value of Rg. At £ = —137 mm the value of
Ry is 1430. It is known from both experiments and DNS studies [Spalart 1988] that
the boundary layer of a flat plate in zero pressure gradient has only a small logarithmic
region at this Reynolds number. In addition to the effect of the low-Reynolds number,
there is the effect of the adverse pressure gradient. As can be seen from Fig. 6.6, the
discrepancy between Reichardt’s mean-velocity distribution and the experimental data
increases when approaching the trailing edge. The discrepancy increases especially near
the outer region, and it has a tendency to propagate into the inner region. For example, at
z = —95 mm there is good overlap up to y* = 30, but at the trailing edge (zx = —0 mm)
it has become practically impossible to match Reichardt’s velocity distribution to the
experimental data. This underlines the basic weakness of the Clauser-chart method:
the reliance on the validity of the law of the wall. It is unrealistic to expect that the
mean-velocity distribution in a boundary layer that is in strong non-equilibrium can be
described by a law of the wall. Consequently, the skin-friction coefficients that follow
from the Clauser charts become increasingly unreliable when moving towards the trailing
edge. Unfortunately, it was not possible to determine the friction velocity directly from
the slope of the mean-velocity profiles at the wall, because the minimum wall distance
for the boundary-layer traverses is approximately 0.3 mm, corresponding to y* a2 6. No
further attempts were made to determine the skin friction.

Centreline velocity

It is seen from Fig. 6.3 that, in addition to an increase of the width of the wake, the
wake defect increases in the downstream direction. A detailed view of the mean velocity
on the wake centreline, #.y, is shown in Fig. 6.7. The graph shows that there is an initial
increase of the centreline velocity in the region between the trailing edge (where @, = 0)
and the first measuring point at z ~ 2 mm. This is followed by a gradual decrease
of the centreline velocity and a backflow region is formed downstream of z ~ 80 mm.
The centreline velocity decreases to about —0.15U, at the measurement station farthest
downstream. There, the lateral extent of the backflow region has grown to approximately
29 mm. Because the pressure gradient relaxes beyond z = 400 mm, the mean velocity
will increase somewhere further downstream. Unfortunately, this region was not covered
by the present experiment.

Also plotted in Fig. 6.7 are the results for the zero-pressure-gradient wake measured
by Starke [2000], who used the same wake generator and experimental facility as in
the present investigation. Starke’s data clearly show a logarithmic behaviour of the
centreline velocity for large trailing-edge distances. This common feature of the constant-
pressure wake of a flat plate was discussed in some detail in Section 2.2.1. A qualitative
explanation for the large differences between the two wakes follows from the Reynolds-
averaged momentum equation, Eq (2.9). For the z-direction this equation reads

ﬂa—ﬂ+ﬁ@ _1@_@_@4-1/@4-”@
oz = 0y = pdz dxr By gz ~ Oy

Of course, 7 = 0 along the centreline. Furthermore, the viscous terms can be neglected

(6.4)
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Figure 6.7: Mean velocity on the centreline  Figure 6.8: Mean-velocity distribution at the
for two pressure gradients. trailing edge (z = —0 mm).

some distance from the trailing edge. In the zero-pressure-gradient wake the centreline
velocity rapidly increases owing to the large gradient in Reynolds shear stress. The shear
stress gradient is smaller in the adverse-pressure-gradient wake. In addition, the adverse
pressure gradient stimulates the streamwise growth of the Reynolds normal stress. This
opposes the tendency of the shear-stress gradient to accelerate the mean flow. In the
present wake, the combined effects of the adverse pressure gradient and the two Reynolds-
stress gradients have resulted in an increase of the maximum velocity defect instead of
the decrease that is found in case of a mild adverse or zero pressure gradient.

Interestingly, the mean-flow reversal begins some distance downstream of the trailing
edge at x ~ 80 mm. This means that “free separation” takes place, since the recircu-
lation zone is detached from the surface of the plate. Clearly, the mean-flow reversal
occurs because the adverse pressure gradient increases the maximum velocity defect of
the wake. The decrease of the centreline velocity is preceded by an initial increase di-
rectly downstream of the trailing edge. The explanation for this initial increase of the
centreline velocity follows from Fig. 6.8, which shows the mean velocity in the boundary
layer at the trailing edge (x = —0 mm). As mentioned before, this boundary layer is
close to separation. The mean-velocity profile has a wake-like shape, except for a thin
region directly above the wall. In this region, the mean velocity rapidly increases from
zero at the wall to 0.07U, at n ~ 2 mm. The relatively high turbulent viscosity in this
region is also responsible for the increase of the centreline velocity directly downstream
of the trailing edge. Therefore, one may speculate that if the flow were separated at the
trailing edge, then there would not have been an initial rise of the centreline velocity.
Consequently, a more conventional recirculation zone would have occurred with negative
centreline velocities occurring immediately downstream of the trailing edge of the plate.
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6.1.3 Turbulence quantities

Reynolds stresses

Recall from Section 5.1 that two coordinate systems are used in the experiments. In
the boundary layer the s,n, 2-coordinate system is used with axes parallel and normal
to the plate surface. The wind-tunnel axes (z,y, z) are used as a coordinate system in
the wake. The (kinematic) Reynolds shear stress, —u'v’, is dependent on the orientation
of the coordinate system. One obvious consequence is the unrealistic variation in the
measured shear-stress profiles at the trailing edge, where the coordinate system changes
from wall orientation to tunnel-axis orientation. This may complicate the interpretation
of the measured data. To avoid these problems, the Reynolds stresses were transformed
into local streamline coordinates according to (see Cutler and Johnston [1984])

- S 1l (— —
wv'y = u'v' cos(2a) — 3 (u’2 - v’2) sin(2a), (6.5)

tan~!(v/%). The development of —u'v’, is shown in Fig. 6.9. For the most upstream
station, there is little difference between u/v’, and u/v’, because there the boundary layer
thickens only slowly. However, near the trailing edge and in the wake the growth rate of
the shear layer has increased dramatically, so that u'v', and u/v’ are quite different.
The Reynolds normal stresses were summed as (u2 4+ 2 + w'2) /2 to yield the kinetic
energy of the velocity fluctuations, k. Of course, k is an invariant quantity so that a
coordinate transformation similar to Eq (6.5) is unnecessary. The streamwise develop-
ment of k is shown in Fig. 6.10. At station £ = —137 mm the distribution of k has its
maximum value very close to the wall. This peak gradually moves away from the surface
as the flow approaches the trailing edge. This is a common phenomenon in a turbulent

where « is the angle between the mean velocity vector and the z-axis given by a =
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boundary layer approaching separation, see e.g. Simpson et al. [1981]. The locations of
the peaks practically coincide with the inflexion point of the mean-velocity profiles. As
the flow moves past the trailing edge, the kinetic energy continues to rise in the down-
stream direction. Such a substantial growth of the kinetic energy is not observed in
the constant-pressure wake of a flat plate. Usually, there is a slight initial increase of
k when moving downstream of the trailing edge, but the “overshoot” is generally small
[Hayakawa and Iida 1992]. The explanation for the large increase of the kinetic energy
in the present wake is discussed on page 107, where the balance of the kinetic energy is
considered.

A comparison of the results in Figs. 6.9 and 6.10 suggests that there is a similarity
between the growth of the shear-stress profiles and the kinetic-energy profiles. The degree
of similarity can be expressed by a “structural parameter,” defined as

—u'v'y

k

(6.6)

asp =

Experiments in zero-pressure-gradient boundary layers, see e.g. Townsend [1976], suggest
that as, = 0.3. For the present experiment the maximum value of asp for various stations
in the boundary layer and the wake is plotted in Fig. 6.11. The value of @sp 15 less than
0.3 for the range of z values that is covered by the experiments. However, it is likely
that a,p asymptotes to 0.3 for z « ~137 mm. The decrease of a,, below 0.3 is common
in adverse-pressure-gradient flows.
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Reynolds-stress anisotropy
The contribution of the different Reynolds normal stresses to the kinetic energy can be
defined as 7y, = u’2/(2k). The quantity 2(v, — 1/3) is a direct measure for the degree of
anisotropy of the Reynolds stress u/2, as discussed in Section 5.2, Eq (5.19). Figure 6.12
gives the values of v, as determined from the centreline traverse. The full symbols
followed from the lateral traverses at the intersection with the centreline. Note that the
tunnel-axis coordinates and the streamline coordinates coincide on the centreline of the
wake, because of flow symmetry. As a result, there is no need for a transformation of the
Reynolds stresses into local streamline coordinates. L

It is seen in Fig. 6.12 that the contribution of the lateral fluctuations, v'2, to the
kinetic energy is small close to the trailing edge. In the same region the spanwise velocity
fluctuations, w'?, are dominant. Some of these observations can be explained as follows.
Near the plate surface the lateral velocity fluctuations, v'2, are small compared to the
streamwise fluctuations, 2, and the spanwise fluctuations, w2, owing to the surface
boundary conditions. Therefore, the contribution of v2 to k at the trailing edge is small.
However, this contribution is expected to increase in the wake once the wall constraint is
removed at the trailing edge. Consistent with this reasoning, Fig 6.12 indicates a small
value of v"2/(2k) near z =~ 0, with an increasing trend in the streamwise direction after
an initial decay. It should be noted, however, that the reason for this initial decrease
of v"2/(2k) is not known. Also unclear is the reason for the large contribution of the
spanwise fluctuations w'? to k close to the trailing edge.

Triple-velocity correlations
The triple-velocity correlations were grouped as u’q’ = (u +u'v”? + w'w’?)/2 and v'q’ =
(u'v'2 + v"3 + v'w'?)/2. As such, u'q’ and v'q’ are the z- and y-components of a vector
which is related to the kinetic-energy transport. More precisely:

U 1l

oz Oy
is the transport of turbulence kinetic energy by velocity fluctuations. In the present
study all six triple-velocity correlations were measured, so that the components of the
transport vector could be determined accurately?.

The streamwise development of —u’q’ and —v’q’ is depicted in Fig. 6.13. The graph on
the left-hand side shows that there is a strong growth of —u’q’ in the streamwise direction.
This indicates that the z-derivative of —u/q’ in Eq (6.7) may not everywhere be negligible
compared to the y-derivative of —v'¢’, as is often assumed within the framework of the

T, =

2In many studies the spanwise velocity component is not measured. In these cases it is sometimes
assumed, see e.g. Nakayama and Kreplin {1994], that the triple-velocity correlations that include the
unmeasured spanwise velocity correlations w’ can be approximated by

W s (B TE) and vl (T +09)

These expressions mimic the well-known approximation for the variance of the spanwise velocity fluctu-
ations w2 = (u/2 + v'2)/2. In the present investigation it was found that the above expressions yield
inaccurate results, especially for the more downstream stations.
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Figure 6.13: Streamwise development of —u/q’ (left) and —v'q’ (right). top: boundary layer,
bottorn: wake. The measured values of —1000v'q’ at station x = 17 mm are shifted over 0.1.

boundary-layer approximation. Another observation in Fig. 6.13 concerns the ability
of gradient-diffusion models to predict the qualitative behaviour of the triple-velocity
correlations in the present flow. For example, in the & — e model described in Section 5.2
the following model for the triple-velocity correlations is used

g = Ok
for the z-direction, and
g = Ok
Ve = ey (6.9)

for the y-direction. In these expressions the effect of the pressure-velocity correlations
on the transport of kinetic energy is neglected. Figure 6.13 reveals slightly negative
values of —u’q’ near the wake centreline for z > 130 mm. This indicates counter-gradient
transport, because the kinetic energy k continuously increases along the centreline. Apart
from this small region near the centreline, the measured values of —u'q’ are in qualitative
agreement with Eq (6.8). However, the situation is different for transport in the y-
direction. In large parts of the wake and boundary layer the signs of the measured
values of —v'q’ are opposite to those predicted by the gradient-diffusion model, Eq (6.9).
The only exceptions are the most upstream stations, where the boundary layer is still
thin. There, the lateral transport of kinetic energy is described reasonably well by the
gradient-diffusion model (qualitatively, at least) and the streamwise transport of kinetic
energy is small compared to the lateral transport.

Balance of the momentum equation
Once the mean-velocity components and the Reynolds stresses are known from the ex-
periment, one may attempt to evaluate the terms in the Reynolds-averaged momentum
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Figure 6.14: Balance of the Reynolds-averaged momentum equation for the z-direction at
station £ = 30 mm. The full triangle represents the streamwise pressure gradient as determined
from the static-pressure measurements outside the wake.

equation, Eq (6.4). To obtain the different lateral derivatives in Eq (6.4), polynomials
were least-squares fitted to the measured profiles. Two successive y-traverses were used
to determine the streamwise derivatives. The results of both wake halves were averaged
to reduce the experimental scatter.

The individual terms in the momentum equation are shown in Fig 6.14 for station
2 = 30 mm. The pressure-gradient term followed from the balance. Unfortunately, the
variation in y-direction of this term could not be checked from independent measure-
ments, because static pressures were not measured across the wake. The full triangle in
Fig. 6.14 gives the streamwise pressure gradient as determined from the static-pressure
measurements outside the wake, see Section 6.1.1. It is seen that this pressure gradient
agrees well with that found from the balance.

The sum of the two Reynolds-stress gradients is locally larger than the pressure-
gradient term. Therefore, the present wake is neither dominated by pressure forces
nor is it dominated by turbulent stresses. The balance shows that both Reynolds-stress
gradients are of equal importance. The effect of the Reynolds normal stress, —u/2, cannot
be neglected compared to the effect of the Reynolds shear stress —u'v’. Furthermore, it
is seen that the streamwise growth of u'? opposes the acceleration of the mean velocity
near the centreline. There, all terms of the momentum equation have roughly the same
magnitude and accurate modeling of the Reynolds stresses is required to predict the
correct mean flow behaviour.
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Balance of the kinetic-energy equation
It is possible to use the experimental data to evaluate the terms in the kinetic-energy
equation. The equation for the kinetic energy, k, is given by
Ok ‘ﬁaﬁi 0 Y

Uu + 1u ubu 1 u’, + v Ok €
u-u' —_ —-—=uulu. — — . _ -
¢ Jail'j Bz',- 2 vt pp I sz

Uy =
7 ,
Ox;

(6.10)

Figures 6.15 and 6.16 show the balances of the kinetic-energy equation at z = 30 mm
and x = 130 mm, respectively. The effects of the molecular diffusion and the pressure
diffusion on the transport of k are neglected. The viscous term is small in the wake
so that its neglect has no serious consequences. As noted before, all six triple-velocity
correlations were measured in the present study, so that the transport by the velocity
fluctuations is described with reasonable accuracy. The dissipation € was determined
from the balance. At both stations the shear production is zero at the centreline due
to flow symmetry, whereas the normal production is small due to the slowly varying
mean velocity on the centreline. Integration of the transport profiles between y = 0 mm
and the edge of the wake yields a non-zero value. This is the result of the streamwise
derivatives of the triple-velocity correlations. Close to the centreline, the gain caused by
the transport is balanced by the dissipation. The transport also causes the increase of
the kinetic energy along streamlines near the edge of the wake.

It is seen from Figs. 6.15 and 6.16 that the approximate relation € = P, holds in the
outer region of the wake. However, this relation underestimates the dissipation near the
centreline and it overestimates the dissipation near the location of maximum production.
The overestimation is especially large for the more downstream station. Both balances
indicate that the wake is in strong non-equilibrium, because the production-to-dissipation
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Figure 6.17: Streamwise development of the production of turbulence kinetic energy, Pj.

ratios are significantly larger than one. Near the location of maximum production the
ratios were determined as P /e = 1.3 for station z = 30 mm and P /e = 2.6 for station
z = 130 mm. The development of the production of kinetic energy, as given in Fig. 6.17,
goes some way in explaining the large increase of the production-to-dissipation ratio.
(Note that a different symbol type is used in Fig. 6.17 for station £ = —95 mm to avoid
confusion with the neighbouring stations.) Figure 6.17 shows that the peak values of Py
remain nearly constant in the wake. However, the total production of the kinetic energy,
defined as the integral of Py across the wake, continues to rise in the streamwise direction
due to the widening of the Py profiles. It appears that the increase of the production is
not matched by a similar growth of the dissipation. Since the transport cannot cause an
overall increase or decrease of the kinetic energy, it is inevitable that k steadily increases
in the downstream direction.

A few comments on the accuracy of the kinetic energy balances should be made. First,
the effect of the pressure-velocity correlation on the balance is neglected, because it can-
not be measured. Secondly, the extraction of the transport term from the experimental
data involves the differentiation of triple-velocity correlations. This is not an easy task
considering the relatively high statistical scatter (£20%) in these correlations. However,
at station x = 30 mm the inferred € is positive everywhere and it has no unexpected
indentations. At station z = 130 mm the e distribution has unrealistic indentations at
y ~ 10 mm and y = 45 mm. Also, € becomes negative near y = 70 mm. These errors are
believed to be caused mainly by uncertainties in the transport term.

6.2 Numerical Results

The continuity equation, Eq (2.8), and the (elliptical) Reynolds-averaged momentum
equations, Eq (2.9), are numerically solved for both a k — € model [Launder and Sharma
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1974] and a differential Reynolds stress transport model (RSTM) [Hanjali¢ et al. 1992]
using the procedures described in Section 5.2.

The boundary conditions for the calculations in the wake were specified as follows.
The calculation is started at a distance of 17 mm behind the trailing edge of the plate.
There, the measured mean-velocity profiles and the turbulence profiles are prescribed,
whereas the initial € profile is guessed by assuming a local equilibrium of production
and dissipation of turbulent kinetic energy, i.e. ¢ = P;. The consequences of this some-
what inaccurate assumption regarding the initial e profile will be discussed at the end of
Section 6.2.1. Furthermore, the effects of the term S, in the transport equation of the
isotropic part of the dissipation in the RSTM, were neglected in the initial calculations
(ie., Ce, was set to zero). The effects of the term S, on the numerical predictions are
discussed in Section 6.2.2.

At the outer edge of the wake (y = 200 mm) the measured static pressure is prescribed.
Homogeneous Neumann conditions are prescribed for all turbulence quantities. Varying
the position of the wake outer edge was verified to have negligible effect on the solution.
Symmetry was assumed at the wake centreline (y = 0 mm). Therefore, only one half
of the wake was calculated. Zero streamwise gradients were assumed at the end of the
computational domain (z = 600 mm). Varying the location of the end of the domain
between z = 600 mm and £ = 1200 mm was checked to have negligible effect on the
numerical solution in the region where experimental data were available. Results were
obtained on a coarse grid consisting of 50 x 50 points and on a fine grid with 100 x 100
points. The differences in the results on these two grids are negligibly small, indicating
that almost grid-independent solutions were obtained.
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6.2.1 Mean velocity and kinetic energy

Figures 6.18 and 6.19 show the measured and calculated z-component of the mean ve-
locity @ and the kinetic energy k at station £ = 175 mm. The width of the wake appears
to be well predicted. However, at the edge of the wake the measured kinetic energy is
higher than the computed values. This may be caused by the intermittent behaviour of
the interface that separates turbulent from non-turbulent air3. There are also large dis-
crepancies between the experiments and the predictions near the centreline of the wake.
This is further illustrated in Fig. 6.20 which shows the mean velocity and the kinetic
energy along the centreline. The graph shows that neither model is able to reproduce
the measured mean-flow reversal. As far as the mean velocity is concerned, the RSTM
is only slightly more accurate than the £ — ¢ model.

It may be argued, however, that the size and position of regions of reversed flow are
often sensitive to the strength of the pressure gradient, so that a slight inaccuracy in the
prescribed static-pressure distribution at the outer edge of the wake (y = 200 mm) may
alter the mean flow significantly. For the present flow this sensitivity was investigated by
means of a comparison of the numerical solutions for slightly different pressure gradients.
The results of the analysis are given in Fig. 6.21. The curve for p = p,, is the numerical
solution of the RSTM for the measured static-pressure distribution. Of course, the
curves for p = 7, are identical to those shown in Fig. 6.20. The other two curves are the
results for § = ¢p,,, where ¢ was varied between 0.95 and 1.05 to simulate an error in the
measured static-pressure distribution. It is seen that a 5% error in the static pressure has
only a small effect on the mean velocity on the wake centreline. The difference between

3An explicit modeling of the effects of the intermittency, as suggested by e.g. Cho and Chung [1992],
may reduce the discrepancies between the measurements and the computations near the edge of the
wake. However, the effects of such a modification of the turbulence models were not explored in the
present investigation.
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Figure 6.21: The effect of static-pressure variations and the initial ¢ profile on the outcome of
the RSTM.

the measured and the calculated mean velocity on the centreline is much larger and
cannot be explained from a possible error in the measured static pressure distribution.
Figure 6.21 also indicates that a 5% error in the static pressure has negligible effect on
the kinetic-energy level on the centreline.

Another point of concern is the effect of an inaccurate boundary condition for the
dissipation. The results presented so far pertain to the initial condition € = Py, that
is, a local equilibrium of production and dissipation is assumed. However, the balance
of the kinetic-energy equation shown in Fig. 6.15, indicates that, apart from the region
near the edge of the wake, the assumption € = Py is inaccurate. It seems therefore
more realistic to use the dissipation profile that was determined from-the balance of the
kinetic-energy equation at z = 30 mm, denoted by € = €pgiance, as a boundary condition
for the dissipation. The results of the RSTM for this new boundary condition are shown
in Fig. 6.21 (dashed lines). It is seen that the new boundary condition for € has resulted
in a generally higher kinetic energy level, although the computed level is still much lower
than the measured values of k at large trailing-edge distances. Also, the mean velocity on
the centreline has slightly increased. So, despite the more realistic boundary condition of
the dissipation, there is no overall improvement of the numerical prediction. The same
conclusion was drawn from the predictions of the k — € model with € = €paance as a
boundary condition. These results are not shown here for brevity.

6.2.2 Effect of the S, term in the RSTM

The transport equation for the isotropic part of the dissipation tensor in the RSTM, see
Eq (5.28), contains the term S,,, given by

€ o7 — wr) 8 (6.11)

Sea = C“E Oz’
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Figure 6.22: Effects of the S., term on the mean velocity (left) and the kinetic energy (right)
for various values of the closure coefficient C¢,.

with C,, = 1.16. Figure 6.22 visualizes the effect of S, on the development of the mean
velocity (left) and the kinetic energy (right) along the centreline of the wake for various
values of C,,. Note that the curves for (., = 0 are identical to the results that were
reported in the previous section. In the adverse-pressure-gradient wake with 6u/9x < 0
and v'? < u'?, the additional term S, will be positive for positive values of C¢,, thereby
increasing the dissipation while reducing the kinetic energy. The smaller kinetic energy
together with the larger dissipation reduces the eddy viscosity, which in turn reduces
the mean velocity on the centreline. Figure 6.22 shows that the inclusion of S, (with
C., > 0) improves the agreement between measurements and computations as far as the
mean velocity is concerned. However, the price paid for this improvement is a worsening
of the numerical predictions of the kinetic energy. For the standard value of C,, = 1.16,
the extra term in the dissipation equation causes a dramatic decrease of k along the
centreline, so that the flow nearly relaminarizes. Such a behaviour is not in accordance
with the experiments.

Summarizing, the results of Fig. 6.22 show that it is impossible to find a value of C.,
with which one can achieve both a decrease of the centreline velocity and an increase of
the kinetic energy on the centreline. For completeness it is remarked here that the same
conclusion can be drawn if € = €pqignce 18 used as a boundary condition at £ = 17 mm
instead of € = P;. It is not clear why the inclusion of S., has not resulted in an
improvement of the numerical prediction of the adverse-pressure-gradient wake, especially
since it is known to work very well in wall boundary layers subjected to adverse pressure
gradients, see Henkes [1997].
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Figure 6.23: Measured and computed values of the anisotropy parameter ~, on the centreline.
The symbols represent the measurements; the lines are the results for the RSTM.

6.2.3 Prediction of the Reynolds-stress anisotropy

It is seen in Fig. 6.20 that the kinetic energy on the centreline is strongly underpre-
dicted. However, the distribution of the kinetic energy over the different Reynolds nor-
mal stresses, as found with the RSTM, agrees quite well with the experiments. This
can be observed in Fig. 6.23 which shows the measured and the computed values of
Yo = u'2/(2k) on the wake centreline.

6.2.4 Predictions of Reynolds shear stress and kinetic energy
Figure 6.24 compares the measured and the calculated Reynolds shear stress, —u'v’,, for
the k—e model (left) and the RSTM (right). The k—e model overpredicts the shear-stress
values everywhere. This is hardly surprising, considering the well-known characteristic
of the standard k¥ — € model to produce too high Reynolds shear stresses in flows with
adverse pressure gradients. This characteristic is usually attributed to deficiencies in the
e-equation. However, even if the mean-velocity field, the k values and the e values were
somehow known exactly, the £ — € model would still produce too high Reynolds shear
stresses due to the Boussinesq hypothesis, Eq (2.14), which fixes the relationship between
the mean strain rates and the Reynolds stresses.

The RSTM, on the other hand, does not rely on the Boussinesq hypothesis, but instead
solves a transport equation for each Reynolds stress. It is seen in Fig. 6.24 (right) that the
RSTM yields significantly better predictions of the Reynolds shear stress profiles than the
k — € model. However, the RSTM also tends to overpredict the Reynolds shear stress.
The predicted gradients of —u/v’s in y-direction on the centreline are larger than the
measured gradients, especially for the upstream stations. This is a serious shortcoming,
because too high Reynolds-shear-stress gradients result in a too fast increase of the mean
velocity on the centreline. The consequences of this can be observed in Fig. 6.20.
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Figure 6.25: Measured and computed kinetic-energy profiles for the k — ¢ model (left) and the
RSTM (right).

Even though the RSTM gives much better predictions of the Reynolds shear stress
than the k — € model, there is not much difference between the two models as far as the
kinetic energy is concerned. As seen in Fig. 6.25, the RSTM is slightly more accurate for
the measuring stations close to the trailing edge, but both models tend to underpredict
the kinetic-energy levels farther in the wake.

The severe overprediction of the Reynolds shear stress by the k& — ¢ model is an
indication that this model will also overpredict the production of kinetic energy Pj.
That this is indeed the case is illustrated in Fig. 6.26. The computed P, is much larger
than the measured values at the upstream stations in the wake. However, the agreement
between the measured and the computed values of Py is very good for the station farthest
downstream. The RSTM gives a more realistic behaviour of P; than the k¥ — € model,
because the severe overprediction of Py, at the upstream stations is absent. On the other
hand, the computed values of Pi are consistently higher than the measured values, but
the differences are relatively small.
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6.2.5 The computed kinetic-energy balances

Figures 6.27 and 6.28 depict the measured and computed balances of the kinetic-energy
equation at station z = 30 mm for the k — ¢ model and the RSTM, respectively. A com-
parison of the two graphs clearly shows the superiority of the RSTM over the k —e model.
Both the dissipation and the production of kinetic energy are strongly overestimated by
the k£ — € model, but the predictions of the RSTM agree well with the experimental
results. The ratio of production and dissipation Py /¢, determined at the location of
maximum production, is 1.61 for the k — € model and 1.27 for the RSTM. Recall that
the measurements indicated Py /e = 1.3.

The RSTM also produces better results for the transport terms than the k — € model.
Still, even with the RSTM there are significant differences between the experiment and
the predictions of the transport terms. More specifically, neither the k — € model nor the
RSTM reproduces the significant advection of k near the edge of the wake caused by the
transport by turbulent velocity fluctuations. As a result, both turbulence models fail to
predict the relatively high kinetic-energy levels near the edge of the wake as observed in
Fig. 6.19.

Figures 6.29 and 6.30 show the measured and computed kinetic-energy balances as
determined at z = 130 mm for the k — € model and the RSTM, respectively. Several
interesting observations can be made. First, as was seen above in the kinetic-energy
balance at station z = 30 mm, neither model predicted the significant transport of k by
the turbulent velocity fluctuations near the edge of the wake. Secondly, both computed
balances are very similar at station x = 130 mm. For example, both models computed
almost the same values of the production of turbulence kinetic energy Py, (and these values
are slightly larger than the measured values). However, the most important observation
is that both models predicted a much too high dissipation level. Neither model has
predicted the large decrease of the measured dissipation in between z = 30 mm and
z = 130 mm. Instead, both models predicted relatively small changes of the dissipation
levels in the streamwise direction. It can therefore be concluded that, even though the
computed production of kinetic energy Py is nowhere smaller than the measured Py, the
computations yield too low levels of k, because the computed dissipation of turbulence
kinetic energy is too high.
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6.2.6 Concluding remarks on the computations

Whenever major differences occurred between the predictions of the k — e model and
the RSTM, the latter proved to be superior. For example, the RSTM predicted much
more accurate Reynolds shear stresses than the k¥ — € model. The RSTM was also able
to predict the anisotropy of the Reynolds normal stresses with good accuracy. Still, the
overall performance of the RSTM is not better than that of the standard k — € model for
the present wake flow. Neither model was able to predict the measured large increase
of the kinetic energy on the wake centreline together with the mean flow reversal that
occurred some distance downstream of the trailing edge.

The comparison between the measured and the computed kinetic energy balances
indicated that both models computed too high dissipation levels at the more downstream
station. This is an indication that the inability of the turbulence models to accurately
predict the large increase of k is caused by a deficiency in the transport equation for
the dissipation €. Recall that the transport equation for the dissipation in the k — €
model, Eq (5.8), and the transport equation for the isotropic part of the dissipation in
the RSTM, Eq (5.28), are very similar. For example, in both equations the production of
€ is directly linked to the production of turbulence kinetic energy P. If this model for the
production of € is inaccurate in the present wake flow, then the natural superiority of the
RSTM over the standard k—e model is negated by the use of an improper scale-providing
e-equation.

At this stage it is not clear if, and how, the transport equations in the turbulence
models can be adapted to realize both an increase of the turbulence kinetic energy and a
decrease of the mean velocity on the wake centreline, because increased turbulence kinetic
energy will generally increase the mean velocity as well. Further experimentation in the
adverse present gradient wake may indicate directions for improvement of the turbulence
models. This is reported in the following sections.

6.3 Results of the Spatial Correlation Measurements

6.3.1 Correlation values for small separations

Spatial correlation functions were measured in the adverse pressure gradient wake of the
flat plate using experimental set-up 3 described in Section 5.1. As an example, Fig. 6.31
shows the scf py1(Az) measured at station £ = 130 mm, y = 0 mm. Starting at zero
separation, one probe was traversed in small steps (initially 25um) in the z-direction.
In total, 32 measurement runs cover a separation range of 1.1 mm. During each run
approximately 3 x 10® hardware-coincident velocity pairs were acquired. Clearly visible
in Fig. 6.31 is the bump in the correlation values in the overlap region as discussed in
Appendix C. Information on the scf is obtained only when the measuring volumes are
completely separated, which in this particular set-up amounts to a minimum separation
of about 0.1 mm. At zero separation the mean data rate was about 400 Hz, which is
relatively high as a result of “single particles” crossing the overlap region, see Appendix C
for details. When the separation between the measuring volumes was increased, the mean
data rate remained nearly constant in the range Az < 0.1 mm. As the separation was
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further increased, the mean data rate suddenly dropped to about 25 Hz, and this value
remained nearly constant during the remainder of the measurement.

Figure 6.32 shows the longitudinal correlation p;;(Ax) together with the two lateral
correlations p11(Ay) and p;1(Az) measured at station £ = 30 mm, y = 0 mm. Note
that the value of p11(Az = 0) is relatively low, indicating a relatively low signal-to-
noise ratio of the Doppler signals for this particular measurement. This may be the
result of an imperfect alignment of the optical components. Furthermore, the bump in
the correlation values is less pronounced for the separation in the z-direction than for
the other two directions; the reason for this is not known. Despite these shortcomings,
Fig. 6.32 clearly reveals that the small scale part of the turbulence is anisotropic at
this measurement station, because p11(Ay) decays more rapidly than p,;(Az) for small
separations.

6.3.2 Determination of Taylor length scales

The Taylor length scales were estimated from the spatial correlation functions using the
following procedure. First, the measured correlation values were replotted as p(Ax) ver-
sus Az?. This graph was then used to determine an upper limit of a range in which
the replotted data showed a nearly linear behaviour. Of course, the data points inside
this interval will show a nearly quadratic behaviour when plotted on linear axes. The
reason for the intermediate step is that it proved to be easier to detect a linear behaviour
of data points instead of a quadratic behaviour. Then, a lower limit of this range was
selected to prevent the inclusion of correlation values that lie within the overlap region
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Figure 6.33: The development of the Taylor
length scale A; in the streamwise direction.

of the measuring volumes. A fourth order polynomial ag + a;Az? + a2 Az* was subse-
quently “least squares” fitted to the measured correlation coefficients that lie within the
selected range of Az values. The fourth order term served as a correction for the errors
introduced when some of the selected data points lie just outside the region where the
spatial correlation function can be closely approximated by a parabola. The parabolic
part of the polynomial was then used to determine the Taylor length scale, while the
value of 1 — ap indicated the magnitude of the discontinuity of the measured scf at zero
spatial separation.

In practice, it can be difficult to determine the Taylor length scale from the measured
correlation values. For example, in Fig. 6.32 the scf for the y-direction decays so rapidly
that a significant part of the parabolic region is obscured by the bump in the overlap
region of the measuring volumes. This makes an estimate of the Taylor length scale for
the y-direction speculative. On the other hand, the turbulence scales in the z-direction
are much larger so that it is well possible to determine the Taylor length scale for the
z-direction with reasonable accuracy.

6.3.3 Variation of Taylor length scales in streamwise direction

Figure 6.33 presents the values of the Taylor length scales A, as determined from the scf
p11(Az) for various locations in the wake. The bullets were measured on the contour
of maximum kinetic energy, whereas the squares were measured along the centreline
of the wake. These results indicate an increase of the Taylor length scale A, in the
streamwise direction on the contour of maximum kinetic energy. Along the centreline
there is negligible variation of A;. The table on the right of Fig. 6.33 lists the Taylor
length scales that were measured at several locations in the wake. Also given in this
table are the estimates of the dissipation of kinetic energy that were obtained from the
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assumption of local isotropy (see Section 2.1.5 for details):

o'\’ u?
€iso — 15v (—3;) = 30v —g . (612)

The values of ¢;5, are plotted in the balances of the kinetic energy at x = 30 mm
(Fig. 6.15) and at ¢ = 130 mm (Fig. 6.16) as large bullets. For the lateral traverse
at £ = 130 mm there is good agreement between €;5, and the values of the dissipation
that follow from the balance, €psiance. For the lateral traverse at z = 30 mm the values
of €5, are systematically lower than that of €pgiance. The difference may be caused by
deviations from the assumption of local isotropy. Figure 6.32 indicates that this is indeed
the case for measurement station z = 30 mm, y = 0 mm. Furthermore, the measured
Taylor length scales may be subject to a systematic error because the spatial correlation
functions are not corrected for the effects of the velocity bias. Despite these possible
uncertainties, the measured values of ¢;5, confirm the earlier important finding that the
dissipation of turbulence kinetic energy decreases with increasing trailing edge distance
between stations £ = 30 mm and z = 130 mm.

6.4 Spectral Measurements

6.4.1 Small-scale characteristics of the autocorrelation function

The small scale temporal behaviour of the velocity fluctuations in the z-direction was
studied at two stations in the wake at £ = 30 mm (7 measurement locations ranging
between the centreline and y = 42 mm) and at z = 130 mm (8 measurement locations
ranging between the centreline and y = 63 mm). The shear-layer thickness d9 g5 is
45 mm at station £ = 30 mm and .95 = 70 mm at station z = 130 mm. At each
location 4.5 x 105 velocity samples were acquired at a mean data rate of about 1 kHz
using the one-component LDA described in Section 5.1.3 (experimental set-up 2). The
transit times of the particles, tr, were also measured to enable a correction for the effects
of the velocity bias. The acfs were computed using the local normalisation algorithm,
Eq (4.51), with weighting factor w; = tr;.

The acfs measured at stations £ = 30 mm and z = 130 mm are shown in Figs. 6.34
and 6.35, respectively. Two acfs are shown for location z = 30 mm, y = 42 mm to
indicate the effect of the velocity bias on the computed acf. Figure 6.34 indicates a small
decrease of the (downward) curvature of the acf at zero lag time towards the centreline of
the wake. This indicates a small increase of the Taylor time scale towards the centreline.
The same trend can be observed in Fig. 6.35, but the change of the (downward) curvature
in the y-direction is even less here, suggesting that the Taylor time scale remains nearly
constant across the wake at x = 130 mm. Furthermore, it is seen that there is hardly
any difference between the two acfs that are measured on the centreline, indicating that
the small scale (temporal) behaviour of the velocity fluctuations doesn’t change along
the centreline in between both measurement stations.
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Figure 6.34: Detailed view of the autocor- Figure 6.35: Detailed view of the autocor-
relation functions measured at cross-section relation functions measured at cross-section
z = 30 mm. The y-range is divided into equal z = 130 mm. The y-range is divided into
steps of 7 mm. The crosses (+) are the biased equal steps of 9 mm.

acf at y = 42 mm.

6.4.2 Spectral density functions in the wake

Spectral density functions (sdfs) of the velocity fluctuations in the z-direction were mea-
sured at various locations in the wake. The sdfs for nine locations on the centreline
between £ = 30 mm and z = 255 mm are shown in Fig. 6.36. The sdfs measured on a
lateral traverse at £ = 130 mm are given in Fig. 6.37. This lateral traverse comprises
eight measurement locations between y = 0 mm (centreline) and the edge of the wake at
y = 63 mm.

Each graph shows the sdf as computed from both the standard spectral estimator S}
(+ marker) and the improved spectral estimator S» (o marker). The characteristics of
the two estimators are extensively discussed in Section 4.3. Here, only the results for
the improved spectral estimator So will be considered. The spectral density functions
computed from Sy are accurate up to a frequency of approximately 2000 rad/s. This
value for the upper frequency is based on the results of the simulated velocity data
as discussed in Section 4.3.4. The upper frequency may vary slightly at the different
measuring locations due to, for example, small variations in the mean data rate.

The results in Fig. 6.36 indicate that there is little change in the high frequency part
of the sdfs along the centreline of the wake. This is consistent with the observations made
in Figs. 6.34 and 6.35. A striking feature of the sdfs is the presence of a “bump” for
frequencies lower than approximately 25 rad/s. This low-frequency bump is relatively
strong at * = 30 mm and gradually weakens farther downstream. Consequently, the
integral time scale decreases in the downstream direction along the centreline (although
the integral time scale has a maximum value at station £ = 53 mm and not at z =
30 mm). The low-frequency bump is also visible in the sdfs measured on the lateral
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Figure 6.36: Spectral density functions measured at various stations along the wake centreline.
The crosses (+) result from the standard spectral estimator S; and the open bullets (o) result
from the modified spectral estimator Sz, see Section 4.3 for details.




6.4. SPECTRAL MEASUREMENTS 123

102 -'\_\ S 102 | 107
y=0mm y=9mm y=18mm
10° | \.' : : 10° %, ; 107 | ",
— .'o. — .'-' —_— .".
o0t} % =10t} %, o 104 "
k) % ¥ % # %
L % . x
N v o el et s
10° PR 108 | . BRI 10° &
o ° ¥ N Q. -4
T b M * a%n N ® R
108 F vy 108 : kg 109 | . tag
i . .
107 1 . . . 107 . . 2 Lo 107 e . i
10° 100 10* 10 100 10 10° 100 10* 10 10t 10° 10° 100 1?2 10 1t 10
© [rad/s) @ [rad/s] © [rad/s)
n\ u-\
102 F N . - 0y - - - 102F - % .
\ y=27mm *, . y=36mm KN y=45mm
0°F N 10° ., 10° ~, ;
o [N .
= " = R = k
S e =10} S o100} ,
B Kl %, 3 %
3, + bt + + 4
A ** o4 + L "
108 - o 10% | Sy e w0y the
¢ wﬂg °°. s ot
% - o4 o+
10° ¢ + 1 10° ¢ : . 108} e
. n“ +
107 " . " Lot 107 . il " Vi) 107 . " . A
10° 100 10* 10° 100 10° 10° 100 18 100 10 10° 10° 100 10 10 10t 10
@ [rad/s) w {rad/s] w [rad/s]
10° ", : 10? ¢ ‘o.‘
".\ y=54mm ".'. y=63mm
3 [ . 3 L . .
10° -, 10° ha
[ %
= % = ‘9‘
2 .l , = i .
k| 10 &N‘u‘ PRI § 10t EA
a4 + B4 +
P o + B
10° | P wE - : e
o o
&» + . ®
hY o
10¢ ¢ - 10° | o8
o7 L L L ° 107 L | i i
10° 100 12 10 10" 10° 10° 100 12 100 100 10°
@ [rad/s] © [rad/s]

Figure 6.37: Spectral density functions measured at station £ = 130 mm. The crosses (+) result
from the standard spectral estimator S; and the open bullets (o) result from the modified spectral
estimator Sz, see Section 4.3 for details. The local shear-layer thickness 84 g5 is approximately
70 mm.
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Figure 6.38: Spectral density functions (computed using the estimator S») measured in the
zero-pressure-gradient wake at a station 10.01 mm downstream of the trailing edge. The shear-
layer thickness d¢.95 at this particular station is approximately 14 mm.

traverse at £ = 130 mm, see Fig 6.37. The strength of the bump appears to increase
with increasing values of the y-coordinate, i.e. with increasing distance from the wake
centreline.

It is interesting to explore the origin of the low-frequency content of the measured sdfs.
If the largest turbulence structures of approximate size dy.95 move past the measuring
volume with velocity U., than this gives rise to a frequency of wy = 27U, /6y 95 = 6.6 x
10% rad/s, when U, = 7.4 m/s and 9. 95 = 70 mm (these values pertain to station z =
130 mm). However, there are frequencies lower than w, in a turbulent wake or boundary
layer due to the presence of an interface that separates the turbulent air from the non-
turbulent air. The location of the interface changes with time so that a (stationary)
measuring volume is sometimes in the turbulent air and sometimes in the non-turbulent
air. This intermittent behaviour of the flow results in frequencies as low as ws = 0.1xw; =
6.6 x 10! rad/s, see e.g. Antonia et al. [1987]. Clearly, even the lower frequency w is well
outside the range of frequencies where the bump occurs: w < 25rad/s. It can therefore be
concluded that the intermittency of the flow cannot explain the observed low-frequency
behaviour. For completeness, it is remarked here that the low-frequency bump in the sdfs
is not an artifact of the experimental facility or the data-processing method. This follows
from Fig. 6.38 which shows two sdfs measured in the near wake of the flat plate in zero
pressure gradient using the same experimental facility and data-processing algorithm as
in the present investigation.

6.5 Discussion

In a further attempt to explain the low-frequency content of the spectral density functions
it is useful to consider the effects of streamline curvature. Concave curvature can have
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large effects on a turbulent boundary layer, see Bradshaw [1973] for details. The degree
of curvature is usually measured by the curvature parameter §/r, where § is the local
thickness of the boundary layer and r is the local radius of curvature of the streamlines.
According to Bradshaw [1973] concave curvature tends to destabilize the flow and its
effects are already noticeable for values of §/r as small as 0.01.

The effects of concave curvature on the structure of a turbulent boundary layer were
investigated by Jeans and Johnston [1982] and Barlow and Johnston [1988]. In their
experiments a turbulent boundary layer that developed on a flat wall in a nominally
zero-pressure-gradient was led through a 90° bend with a constant radius of curvature
of r = 1.36 m. The curvature parameter d/r varied between zero at the start of the
bend and 0.088 at a station 60° into the bend. The Reynolds number based on € at
the latter station was Ry = 1680. Flow visualisation with a laser light sheet and dye
revealed that the concave curvature induced the formation of large scale “roll cells” in the
turbulent boundary layer with their axis in the mean flow direction. These roll cells have
their origin in the same centrifugal-instability mechanism that leads to the formation of
Taylor-Gortler vortices in a concave laminar boundary layer. Clearly, if such roll cells
have a stationary location in the turbulent boundary layer, they will give rise to a periodic
variation in the spanwise direction of time-averaged quantities, i.e. a three-dimensional
mean flow will occur. However, the experiments of Jeans and Johnston [1982] and Barlow
and Johnston [1988] showed that the roll cells did not have a stationary behaviour.
Instead, the roll cells grew, merged, disappeared and wandered in spanwise direction in
a random manner so that long-term time averages were two-dimensional. However, the
presence of the large-scale roll cells in the turbulent boundary layer introduced velocity
fluctuations with very large time scales. More precisely, the spectral measurements of
Barlow and Johnston [1988] showed that the differences between the flat and the curved
boundary layer were confined to the very low frequency range. The high-frequency
content of the power spectra was hardly affected by the concave curvature.

In the present experiment in the adverse pressure gradient wake, the surface of the
wake generating plate is not curved except for a small region with convex curvature where
the tapered trailing edge begins. However, the streamlines in the trailing-edge region are
curved as a result of the rapid increase of the shear-layer thickness. The local radius of
curvature of the streamlines r can be determined from the mean-velocity measurements
using the following approximate expression (see Fig. 6.39):

= \/(-Tb —,)2 + (Yo — Ya)?
tan(v, — Ya) .

Here, 7, (75) is the angle between the mean-velocity vector at location A (B) and the
x-axis. The numerator in Eq (6.13) is the distance between 4 and B. For example, with
A located on the boundary layer traverse at z = —95 mm and B located at z = —55 mm,
a typical value of the radius of curvature was determined as r &~ 1.1 m. This yields a
curvature parameter §/r ~ 0.025 when § is evaluated as the average value of dp g5 at
stations £ = —95 mm and = —55 mm. Figure 6.40 shows the (dimensionless) angular
momentum (2% + 2)}/2 /U, in the boundary layer at station z = —95 mm. It is
seen that the angular momentum decreases towards the wall, i.e. the angular momentum
decreases in the direction away from the centre of curvature as is the case in concave

(6.13)
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curvature. This concave curvature tends to destabilize the flow. Furthermore, a curvature
parameter with a value of 0.025 can be interpreted as a moderate degree of curvature
[Bradshaw 1973].

An analysis of the mean-velocity data indicated that the streamlines were concavely
curved at the other boundary layer stations as well. Interestingly, the radius of curvature
changes sign downstream of the trailing edge of the plate. For example, in between the
wake stations z = 30 mm and z = 53 mm the curvature parameter is §/r ~ —0.019.
There, the curvature of the streamlines is convex and tends to stabilize the flow. The
effects of convex curvature on the flow are much smaller than that of concave curvature
[Bradshaw 1973]. Farther downstream the radius of curvature changes sign again; the
value of §/r in between stations £ = 85 mm and ¢ = 130 mm was determined as
approximately 0.011.

It is now reasonable to speculate as follows. The rapid increase of the thickness of
the boundary layer towards the trailing edge of the plate has resulted in streamlines
with concave curvature. The concave curvature (with /7 ~ 0.025 in between station
z = —95 mm and £ = —55 mm) may have affected the structure of the boundary layer
in the trailing-edge region through the formation of roll cells. The roll cells contain
a significant amount of low-frequency energy, which appears in the measured spectral
density functions as a bump in the low-frequency range, see Figs. 6.36 and 6.37.

Just downstream of the trailing edge the streamline curvature is convex so that there
is no drive for the formation of roll cells. Also, the streamline curvature on the wake
centreline is zero because of flow symmetry. This may explain the change in shape of
the sdfs that were measured on the centreline (shown in Fig. 6.36). The bump in the
low-frequency range gradually decreases with increasing distance from the trailing edge,
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indicating the gradual fading of the roll cells along the centreline. The sdfs that were
measured on the lateral traverse at z = 130 mm (shown in Fig. 6.37) indicate that the
relatively small bump in the low-frequency range at y = 0 mm increases with increasing
y. This suggests that the remnants of the roll cells that were formed in the boundary
layer are convected downstream by the mean flow. As a result, the roll cells also appear
in the near wake especially in the outer regions, and, for sufficiently small trailing-edge
distances, the rolls cells even appear at the wake centreline.

It was concluded in Section 6.2.6 that the cause for the discrepancies between the
computations and the measurements is the failure of the length-scale supplying, trans-
port equations for € to predict the measured decrease of the dissipation levels in the
downstream direction. The relation between the inability of the turbulence models to
predict the decrease of the dissipation and the presence of the rolls cells will now be
discussed.

Although the presence of roll cells in the trailing-edge region of the plate is speculative
(the rolls cells are not visualised), the measured sdfs clearly indicate the presence of
turbulence structures that are characterised by very low frequencies. Such turbulence
structures are absent in the trailing-edge region of the flat plate in case of a zero pressure
gradient as can be seen from the sdfs in Fig. 6.38. Because the near wake of the flat
plate in zero pressure gradient can be accurately predicted by the standard & — e model
and the RSTM (see Section 2.2.2), it is plausible to assume that the failure of the same
models to accurately predict the present wake is caused by the low-frequency turbulence
structures (which are thought to be roll cells).

In the present wake in adverse pressure gradient a significant amount of the produced
turbulence kinetic energy ends up as low-frequency velocity fluctuations. Unaware of this
phenomenon, the transport equation for € in both turbulence models interprets all of the
kinetic energy that is produced as conventional, well-behaved turbulence and produces
€ at a rate proportional to Py through the source term: C., Pre/k. It appears that
this is an inaccurate model in the present flow, because a large part of the produced
turbulence kinetic energy accumulates in the low-frequency range of the spectrum, and,
as a consequence, the energy transfer to the high-frequency, dissipation range of the
spectrum takes place at a rate that is lower than C¢, Pye/k. Therefore, both turbulence
models predict too high dissipation levels. A possible solution to this problem would be
the use of a multi-scale model in which the energy containing region of the spectrum is
split into two parts. The turbulence in both parts of the spectrum can then be modelled
in different ways.
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Chapter 7

Conclusions

In this chapter the conclusions are presented in regard to the objectives that were for-
mulated in Section 1.2. The primary objective was to gain better understanding of the
complex flow that results when a strong adverse pressure gradient is imposed on the
wake of an “airfoil-like” flat plate. Secondary objectives concerned the operation of the
three-component LDA, the velocity bias and the high statistical scatter in the power
spectra that are measured with LDA.

Conclusions regarding the flow

The experiments in the turbulent trailing-edge flow of the flat plate in an adverse pressure
gradient indicate a rapid growth of the shear-layer thickness in the streamwise direction.
The boundary layer on the plate remains fully attached, although it is close to separation
at the trailing edge. After a slight initial increase, the mean velocity on the centreline
decreases so that a region with mean-flow reversal is formed some distance downstream
of the trailing edge. The turbulence kinetic energy steadily rises in the downstream di-
rection on the centreline. The measured balances of the kinetic energy equation show the
importance of transport by turbulent velocity fluctuations in the present wake, especially
near the edges. The balances also indicated a significant decrease of the dissipation in the
streamwise direction while the production of turbulence kinetic energy remains nearly
constant. Power spectra measured in the wake revealed the presence of a significant
amount of turbulence kinetic energy in the very-low frequency range; a phenomenon not
seen in the zero pressure gradient wake of the same flat plate. It is speculated (but not
proved) that this is caused by the formation of “roll cells” in the turbulent shear layer
as a result of concave streamline curvature.

The comparison between the experiments and the numerical solutlons of the Reynolds-
averaged Navier-Stokes equations for a k¥ — € model and a differential Reynolds-stress
transport model, show that neither model reproduces the measured mean-flow reversal
together with the large increase of the turbulence kinetic energy on the wake centreline.
Both turbulence models also fail to predict the measured decrease of the dissipation
in the streamwise direction, indicating a deficiency in the transport equations for the
dissipation, which are rather similar in both turbulence models. The response of the
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source term of the dissipation equation to the production of turbulence kinetic energy
is to produce dissipation. In the present flow this is not the correct response because
a significant portion of the produced kinetic energy ends up in the very-low frequency
range and is not dissipated at this stage.

Conclusions regarding the measurement technique

The use of a three-component LDA (3D LDA) poses a number of problems that are not
encountered in the more conventional one- or two-component LDA. The angle between
the “third velocity component” and the plane spanned by the other two velocity com-
ponents should be at least 30° otherwise all statistical quantities that involve this third
velocity component are extremely sensitive to small inaccuracies of the signal processor
or small inaccuracies in, for example, the calibration factors. Furthermore, the statistical
quantities measured by the 3D LDA can be in error due to so-called “virtual particles”
[Boutier et al. 1985] and the “geometry bias” [Brown 1989]. The analysis of the different
problems related to the 3D LDA, and the remedies to these problems, has resulted in
the following recommendation for the arrangement of the 3D LDA:

e the transmitting optics should be arranged such that three (nearly) orthogonal
velocity components are measured by the individual LDA channels. This removes
the extreme sensitivity of the third velocity component to the various small errors;

o the receiving optics should be configured such that only light from the overlap
region of the three measuring volumes is collected. This eliminates the virtual
particles;

e the three signal processors should be operated in the “hardware-coincident mode.”
In conjunction with the previous item, this eliminates the geometry bias.

To realize the desired optical configuration (items 1 and 2) a new alignment procedure
is introduced that centers around a “thin” pinhole.

Irrespective of the number of velocity components being measured, the LDA measure-
ment technique naturally operates with particles that are randomly distributed in space.
As a result, the times at which the velocity is sampled are also random. The random
sampling times give rise to two major problems which were thoroughly investigated in
this thesis: (1) the correlation between the instantaneous data rate and the instantaneous
velocity (velocity bias) and (2) the high statistical scatter in the power spectra and the
autocorrelation functions that are computed from the LDA data. The outcome of the
investigations is as follows:

e The existence of the velocity bias is confirmed experimentally and it is found to be
independent of the data density (defined as the product of the mean data rate v
and the integral time scale T,). The velocity-bias detection methods developed by
Adams [1984] and Meyers [1988] are shown to be valid only at high data density
(vT,, > 10). Both detection methods falsely indicate the absence of the velocity
bias at low data density.
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Various velocity-bias correction methods are evaluated. The different sampling
techniques and the interarrival time weighting all require high data densities (v7T}, >
10). A partial correction for the effects of the velocity bias is observed when these
correction methods are applied at low data densities. The 3D inverse-velocity
weighting is preferred when all three velocity components are measured simulta-
neously as in 3D LDA. In case only two velocity components are measured, the
3D inverse-velocity weighting can be approximated by the 2D* inverse-velocity
weighting, which was found to yield good results. The 1D inverse-velocity weight-
ing should never be used. If only one velocity component is measured it is better
to resort to the transit time weighting.

Using simulated turbulence data it is confirmed that existing spectral estimators
for randomly sampled data, like the one developed by Gaster and Roberts [1975],
exhibit a large statistical scatter in the high-frequency range of the power spec-
trum. A new spectral estimator [Tummers and Passchier 1996b] is evaluated and
found to yield significant improvements. The new spectral estimator combines a
window function of variable width and a “locally scaled” autocorrelation function.
At small lag times the local scaling results in a strong reduction of the statistical
scatter of the autocorrelation values as compared to those calculated with the stan-
dard “slotting technique.” This characteristic enables the direct determination of
Taylor time scales from the curvature of the acf at zero lag time. The effects of
uncorrelated noise, velocity bias and spatial averaging on the locally scaled autocor-
relation function are also investigated. The results of this investigation stress the
importance of using small measuring volumes while maintaining Doppler signals
with high signal-to-noise ratios. Furthermore, a correction scheme is given that
enables the computation of unbiased, locally scaled autocorrelation values from
biased LDA data.
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Appendix A

Alignment of the 3-D LDA

The unique problems of three-component LDA measurements were discussed in Sec-
tion 3.3. The remedies to these problems imposed in a number of demands on the
optical arrangement of the 3-D LDA, including the orthogonality requirement. However,
details on how to realize the desired optical arrangement were not given. This appendix
describes practical aspects of the alignment of the orthogonal 3-D LDA. The calibrating
procedure of the 3-D LDA, i.e. the determination of the crossing angles of the beams and
the orientation of each beam in space, is described in detail by Absil [1995].
The alignment of the orthogonal 3-D LDA is carried out in two steps

1. manipulation of six incident laser beams to create three measuring volumes with
(nominally) orthogonal fringe patterns that share a common region in space.

2. positioning of the receiving optics such that scattered light is collected only from
the overlap region of the three measuring volumes.

First, the transmitting optics of, say, the blue and green beams are manipulated
to form two completely overlapping measuring volumes with orthogonal fringe patterns
using the procedures as described by Absil [1995]. (The complete overlapping implies
that the blue and green beam pairs have the same optical axis.) Then a small pinhole
is placed at the centre of the two overlapping measuring volumes at a 45° orientation as
shown in Fig. A.1. The aim of the pinhole is to allow simultaneous passage of the three
beam pairs even if the axis of the violet beam pair and the axis of the blue and green
beam pairs include a 90° angle. The pinhole has a 50 um diameter, which is somewhat
smaller than the nominally 0.1 mm waists of the laser beams. The simultaneous passage
of the six beams requires that the thickness of the pinhole is much smaller than its
diameter. Commercially available pinholes do not meet this requirement. Therefore, an
extremely thin pinhole was produced. The pinhole consists of a glass plate with a 0.1 ym
aluminium layer coated on one of its surfaces. An etching technique is used to remove
the aluminium in an elliptical region having a short axis of 50 pm and a long axis of
71 pm as illustrated in Fig. A.2. The 71/50 (= v/2) ratio was chosen so that the opening
appeared circular when viewed from a 45° angle.
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Figure A.1: The pinhole at 45° orientation. Figure A.2: Detailed view of the pinhole.

To place the pinhole in the centre of the overlapping blue and green measuring vol-
umes, the pinhole position is adjusted until all four beams pass through the opening
and are visible on a screen. Fine adjustments of the pinhole position in the z, y and
z-direction are made to maximize the light intensity of the four beam kernels on the
screen. The pinhole can be positioned very accurately in the measuring volume centre,
because displacements in the plane perpendicular to the optical axis as small as 10 ym
cause a noticeable change in light intensity of the beam kernels on the screen. Of course,
displacements along the optical axis are less sensitive. Then the violet beams are passed
through the pinhole so that two violet beams are visible on a second screen. Finally, the
orientation of violet beams is fine adjusted to maximize the light intensity of both violet
kernels, while the pinhole location is fixed.

The above procedure results in three measuring volumes with nominally orthogonal
fringe patterns that share a common region in space, as illustrated in Fig. A.3. The next
step is to align the receiving optics such that scattered light is collected only from the
overlap region of the three measuring volumes. To achieve this, the violet receiving optics
are placed on the solid angle . This angle is chosen close to 90° so that side-scattered
light is collected. A small, conventional pinhole placed in front of the photomultiplier acts
as a spatial filter, thereby reducing the effective length of the violet measuring volume.
Ideally, the diameter of this pinhole is chosen such that the effective length matches the
size of the overlap region. The same procedure is followed for the collection optics of the
blue and green channels. The angle x should be near 90° to collect side-scattered light,
and small pinholes in front of the photomultipliers limit the effective length of the blue
and green measuring volumes to collect scattered light from the overlap region only.

A thin transparent foil placed in the overlap region of the three measuring volumes is
used to align the receiving optics. The foil acts as a light-scattering source and is used
as a target for the light collection optics. Therefore, it is important to position the foil
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Figure A.3: Side-scatter arrangement for the receiving optics.

very accurately. To achieve this the foil may be viewed with a telescope. If the foil is not
properly positioned, six beam crossings can be seen on the foil. In that case the location
of the foil, should be fine adjusted until the different beam crossing converge into a single
spot.
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Appendix B

Generation of Simulated Data

B.1 Introduction

The numerical generation of simulated turbulence data on a computer is an important
step in the development of new spectral estimators. The desired property of the simulated
data is the fact that their spectral density function (sdf) is known exactly, which is not the
case for measured LDA data. This property enables the evaluation of different spectral
estimators through a simple comparison between the computed spectral estimates and
the exact sdf, as in Section 4.3.

In this appendix two methods are presented for the generation of simulated data. The
first method can be found in, for example, Priestley [1981] and it can be used to generate
second-order autoregressive (AR(2)) data. This method is computationally inexpensive,
but only little variation of the shape of the sdf is possible, because its characteristics are
largely fixed by the AR(2) model. In this method a primary signal is created at closely
spaced, equidistant time instants. Then a set of Poisson-distributed sampling times ¢;
is generated. The simulated velocity at time ¢; then follows from linear interpolation
in the primary signal. The second method is given by Shinozuka [1974] and it can be
used to generate simulated velocity data with an arbitrary sdf that is sampled at Poisson
distributed sampling times. This method is very time consuming, because it requires a
large amount of computation.

B.2 Poisson Distributed Sampling Times

Consider the random variable z which is uniformly distributed on the interval 0 < z < 1.
By definition, this means that the probability density function of z is given by [Papoulis
1991

1 if0<z<1
p(z) = N

0 otherwise. (B.1)

The random variable z is the starting point for the generation of Poisson-distributed
sampling times. Press et al. [1989] give a good overview of practical methods to generate
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uniformly-distributed numbers on a computer. A new random variable, At, can be
computed from the random variable & using the following transformation:
1
At = - In(z), (B.2)

where v is a positive constant. The probability density functions of At and z are related
as [Papoulis 1991):

dz
9(At) = p(2) |57 | - (B.3)
Combining Eq (B.2) and Eq (B.3) yields the probability density function of At
q(At) = ve™At 0 < At < o0, (B.4)

indicating that the values of At are Poisson distributed. This means that Poisson-
distributed arrival times At can be computed form Eq (B.2) once the value of the constant
v is prescribed. Clearly, v is the mean data rate which is related to the measuring time
T and the total number of samples N as v = N/T.

B.3 Generation of AR(2) Data

The discrete parameter process U; is called second-order autoregressive, AR(2), if it
satisfies the following difference equation [Priestley 1981]

Ut +aiUi_1 + axUs_2 = €, (B.5)

where ¢; is a Gaussian random process with zero mean. The coefficients a; and as are
yet to be determined. U; is the discrete parameter form of the continuous parameter
process U(t) that satisfies the second-order differential equation

d*U(t) dU(t)
@ Ty
The coefficients a1 and ay are related to a1, as and the equi-spaced time step At as (see
Priestley [1981] for details)
—(a1 +202) (1+a1 +02)
o —— d [ S —— A
wht | e @ PND

The time step At of the process U, is chosen such that there is negligible power at frequen-
cies higher then 1/At. The autocorrelation function p(7) of the continuous parameter
process U(t) is given by [Priestley 1981]

ecalrl (B.8)

+ a2U(t) = €(t). (B.6)

g (B.7)

ecrlrl _ 4

Cy — Cy Co —C

p(t) =

where the coefficients ¢; and ¢, are the roots of the polynomial g(z) = z? + a;z + as.
The spectral density function of U(t) is simply the Fourier transform of p(7)

1 (635X

1 oo
S(w) = ;/0 p(t) coswrdr = T+ (ay TR

(B.9)
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Beyond its first edge frequency, this sdf behaves as w™? until the second edge frequency
is reached, after which the spectral density falls-off as w™*, as shown in Fig. B.1

The specification of the coefficients ¢; and ¢, fixes the AR(2) autocorrelation function.
As a result, the specification of ¢; and ¢ also fixes the value of several time scales
that characterise U(t), such as the Taylor time scale A; and the integral time scale Ty,
which are defined by Eq (2.38) and Eq (2.37), respectively. It is easy to show that the
relationship between A;, T\, and the coeflicients ¢; and c; is given by

MNP= 2 and T,=fe) (B.10)
C1C2 C1C2

Furthermore, the relationship between the variance of the simulated velocities w2 and
the variance of the Gaussian random process €? is given by

2 — (1 +a2)¥
ut= (1 —az)(l - +a2)(1 + a; +a2) ) (B.ll)

The procedure to generate the simulated velocity data is as follows. First, the Taylor time
scale \; and the integral time scale T, are specified. This yields the coefficients ¢; and
c2, which in turn yield the values of a; and as from the polynomial g. For a chosen time
step, At, the values of a; and a, follow from Eq (B.7). A closely spaced primary time
series is subsequently generated from the difference equation Eq (B.5) after specification
of the initial conditions, e.g. Uy = U; = 0. Then a set of Poisson distributed sampling
times, ¢;, is created using Eq (4.1) and the simulated velocities U(t;) follow from linear
interpolation in the primary time series.

B.4 The Shinozuka Method

Shinozuka [1974] describes a method that generates velocity samples from

kmaz

Ut) = > V4S(kAw)Awcos(kAwt + ;) , (B.12)
k=1

where S(w) is an arbitrary spectral density function and Aw is the frequency spacing.
The values of 6 are uniformly distributed on the interval [0,27]. The summation in
Eq (B.12) can be evaluated for any value of the time ¢. Therefore, simulated velocity
data can be created at Poisson-distributed sampling times. The advantage of this method
is that it can be used for arbitrary sdfs, but, as mentioned in the introduction, it is much
slower than the previous method, because the value of k. is usually very large, for
example 10°,

Shinozuka’s method can be used to generate velocity data with a more realistic be-
haviour at high frequencies than the AR(2) data. As an example, one may use the
“Pao-like” spectral density function given by [Hinze 1975)

aT, e~ 3olw/wa)*’?

S(w) = (B.13)

am + (wjwy)3
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Figure B.1: The sdf of the AR(2) process for
a1 = 10* rad/s and @2 = 2/9 x 10° rad?/s?,
corresponding to A = 3.0 ms and T, =

Figure B.2: The Pao-like sdf for a = 0.02
and wg = 112 rad/s and the Heisenberg sdf
for 1 = 20.7 rad/s and B, = 1500.0 rad/s.

45.0 ms. In both cases: A\ = 6.0 ms and T, = 40.0 ms.

The constant m has been introduced in the denominator so that S(0) = T,/ in accor-
dance with Eq (4.25). For large frequencies S(w) behaves as w =3/ and then decreases
exponentially as suggested by Pao [1965]. An alternative is formed by the Heisenberg
spectral density function [Hinze 1975]

S(w) = T
T+ W/B) DA+ (w/B)F)

For high frequencies this sdf behaves as w™>/% and then falls off as w7 as suggested by
Heisenberg, see Hinze [1975]. Both the Pao-like sdf and the Heisenberg sdf are shown in
Fig. B.2.

(B.14)

B.5 Simulated Data and Velocity Bias

Section B.2 described how to generate a set of Poisson distributed sampling times. If the
simulated velocities U are computed at these Poisson distributed sampling times, then
there is no correlation between the instantaneous velocity and the sampling process.
This means that the simulated data are free of velocity bias, or, in other words: the
simulated data are “unbiased.” These unbiased data are a good approximation for flows
with low turbulence intensity. However, if the turbulence intensity is high, the effects
of the velocity bias are likely to be significant, so that the unbiased data should not be
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used. Section B.5.1 discusses how the velocity bias can be introduced in the simulated
data. Section B.5.2 describes the simulation of the transit times of the particles. The
transit times can be used as a weighting factor in bias correction methods.

B.5.1 Generation of Biased Velocity Data

To introduce the velocity bias in the simulated data, the distance between the particles,
rather than the time between successive particle arrivals is assumed to be Poisson dis-
tributed. In the so called conveyer-belt method [Tropea 1987] the arrival times ¢; follow
from

t;
Aa:,- = /
tia

where I7(t) is the instantaneous velocity vector, which can be replaced by the velocity
component U(t) when a one-dimensional flow is considered. Clearly, U(t) can be obtained
from either the Priestley method or from Shinozuka’s method. The distances Az between
consecutive particles can be generated from

Wﬂm, (B.15)

p(Az) =ye 787, (B.16)

using the procedure given in Section B.2. To assure the correct mean datarate v(= N/T),
the above Poisson process should have rate parameter v = v/V;, where V; is the time
average of the absolute velocity:

w:%%ﬂﬁﬂm. (B.17)

The simulated velocities U determined at the times ¢; now form a biased time series. Note
that V; reduces to the time average of V' (¢) if there are no instantaneous flow reversals.

B.5.2 Generation of Particle Transit Times

To generate the transit times of the particles, it is necessary to make an assumption about
the shape of the measuring volume. Here, it is assumed that the measuring volume is an
ellipsoid with diameter d and length [:

2z\? 2y ? 22\? .
— —_ — =1. B.
(%) (@) (%) ®19
In a one-dimensional flow with the velocity in the z-direction, a particle travels over a
distance

b ( () (_)) (5.19)
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inside the measuring volume, when y, and z, are the y- and z-coordinates of the location

where the particle enters the measuring volume. For simplicity it is assumed that the

values of y, and z, are uniformly distributed on the intervals
d d

ey <l
2_?:/11_2:

1/2 o\ 1/2
! 2y, ! 2yp
-——|(1-(=F <-|1-(=F 21

2(1 (d) S5\t ! (B.21)
respectively. Note that the boundaries for the random variable z, are dependent on the
value of y,. Once the values of y, and z, are generated, the distance D can be computed
from Eq (B.19) and the transit time ¢r of the i-th particle follows simply from

D

t7',‘ = m . (B22)

(B.20)

and

IA
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Appendix C

Measurement of Spatial
Correlation Functions using

LDA

C.1 Introduction

Apart from accurate values of relatively simple statistics, such as the mean velocity,
Reynolds stresses and triple velocity products, the development of turbulence models
also requires knowledge of more complex quantities, for example, the dissipation of the
turbulence kinetic energy. Since information on the dissipation is contained in the spa-
tial correlation function (see Section 2.1.5), this quantity has been the subject of many
investigations.

Most research on spatial correlation functions is based on hot-wire anemometry. How-
ever, this technique suffers from the drawback that a physical probe has to be inserted
into the flow, thereby disturbing the flow field. In case of simultaneous measurements
at two nearby locations, the interference between the probes further complicates the
problem. Also, the results of hot-wire anemometry are reliable only for relatively low
turbulence levels (< 20 %). LDA solves these problems because of its non-intrusive char-
acter and the possibility to measure flow reversal. However, length-scale measurements
based on LDA are still rare, because of the complexity of such experiments. Reliable
measurements of spatial correlation functions often require small measurement volume
dimensions and a high signal-to-noise ratio of the Doppler signals. The first requirement
often necessitates that the receiving optics are oriented nearly perpendicular to the trans-
mitting optical axes (side scatter). However, in that case the intensity of the received
light is low compared to the intensity of the light that is scattered in forward or backward
direction. It is possible to obtain Doppler signals with high signal-to-noise ratios when
side scatter is used, but it makes high demands upon the quality of the alignment of both
the transmitting and the receiving optics.

Despite the experimental difficulties, spatial correlations were measured by a number
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of researchers. In as early as 1971 Morton and Clark measured longitudinal and lateral
scfs in a turbulent pipe flow using two single component LDAs, while Schifer [1982] has
reported on the measurement of longitudinal scfs in a turbulent axisymmetric jet. These
early correlation studies primarily presented correlation coefficients that were measured
at rather course spacings, i.e. the measurements only revealed the large scale structure
of the turbulence. Absil et al. [1990] were the first to report on detailed measurements of
spatial correlation functions that yielded information on the small scale behaviour of the
turbulence. Their study also revealed a number of previously unidentified bias sources
that hamper the measurement of the small scale part of scfs.

Section C.2 aims to introduce these bias phenomena by means of a brief discussion of
the research of Absil et al. [1990], Tummers et al. [1995], both from Delft University of
Technology, and Benedict [1995] from North Carolina State University. Section C.2 is not
meant to present a complete review of spatial correlation measurements that are based on
LDA. The conclusions regarding the measurement of spatial correlation functions using
LDA are given in Section C.3.

C.2 Problems Related to the Measurement of Spatial
Correlation Functions

C.2.1 The cylinder wake

Experimental set-up

Absil et al. [1990] and Absil [1995] have reported on the measurement of scfs in the
turbulent wake of a circular cylinder (D = 2 mm) in air at a free stream velocity of 10 m/s.
The scfs were measured using a technique in which light was collected from two distinct
regions in a single elongated measuring volume formed by the green line (514.5 nm) of an
Argon laser. The measuring volume had a length of 31 mm and a diameter of 0.6 mm.
Scattered light was collected 90° off-axis, i.e. a side-scatter arrangement was used. The
side-scattered light was then led through a semi-reflecting mirror, which was positioned
such that the reflected light and the transmitted light had equal intensity. Each halve of
the scattered light was subsequently focused on a separate photomultiplier. The pinholes
placed in front of the photomultipliers had a diameter of 0.3 mm resulting of a pinhole
image of about 0.2 mm (the magnification factor of the receiving optics was calibrated
and found to be 1.54). In this way measurements could be obtained from two different
locations in the measuring volume. The distance between the two measurement locations
could be varied by traversing one of the pinhole images along the axis of the measuring
volume.

The photomultiplier output signals were processed by two TSI counter processors
(model 1990) operated in the N-cycle mode with 8 required fringe crossings and a 1 %
comparison setting. The master time-interface was operated in the non-priority coinci-
dence mode and the time-coincidence window was set at 50 us. The orientation of the
fringe pattern was such that the streamwise velocity component, u, was measured with
the spatial separation vector in the spanwise direction, (z). Of course, this technique can
only be used to measure lateral scfs; longitudinal or crosswise scfs cannot be measured.
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Figure C.1: The spatial correlation function p1;(Az) at station z/D = 125 and y/D = —2
as measured by Absil et al. [1990]. The parabola is least squares fitted to (a subset of) the
measured coefficients. The symbol ¢ is the dimensionless mean data rate.

Effects of uncorrelated noise and overlapping pinhole images
The spatial correlation coefficient at separation Az was computed from

S wi(2)ui(z + Az)
1/2
(Zi\il uf(z)? Efil ui(z + Az)z)

where the subscript 7 denotes the i-th velocity pair and N is the total number of velocity
pairs. At each separation about 5 x 10® time-coincident velocity pairs were acquired.
Figure C.1 shows the small scale part of a scf measured by Absil in the cylinder wake at
station /D = 125 and y/D = —2, which is the location of the maximum of the Reynolds
normal stress u/2. The results in Fig. C.1 show that the measured scf is less than 1 at
zero spatial separation. Absil et al. [1990] argued that the uncorrelated noise is largely
responsible for this phenomenon. They assumed that the fluctuating velocity measured
on each channel was the sum of the true velocity fluctuation «’ and an uncorrelated noise
contribution n, i.e. u,, = u’' +n, where the subscript m denotes a measured value. Based
on the experimental observation that the mean-square value of the uncorrelated noise
n? is independent of the local flow conditions, they suggested the following (empirical)
expression for the measured correlation coefficient at zero separation py1(Az = 0)p,:

p11(Az) = ) (C.1)

TAETIE) TAETHE)
Az =0)y, = = —— — , C.2
P ) e - (€

s

where the subscript t (s) refers to the traversable (stationary) measurement location.
Eq (C.2) gave excellent predictions of the measured values of p;;(Az = 0) in Absil’s
experiment.
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Figure C.2: The two pinhole images for a separation without overlap (left) and with overlap
(right).

Furthermore, Fig. C.1 indicates that the measured correlation coefficients exhibit a
bump for very small separations. This region with the relatively high correlation coeffi-
cients roughly coincides with the overlap region of the two 0.2 mm pinhole images (see
Absil et al. [1990] for details). The overlapping of the pinhole images apparently obscures
the shape of the scf for very small separations, which may hamper the determination of
the Taylor length scale. Absil gave two possible explanations for the presence of the
bump:

e Velocity errors that affect both channels, like phase fluctuations due to multiple
particle signals or distortions of the fringe pattern. These errors, which are known
as “correlated noise,” will artificially increase the correlation coefficients;

o Particles that transit the overlap region of the two pinhole images are observed
on both channels. Velocity pairs that originate from these particles will be highly
correlated in time as well as in space.

The latter explanation refers to a bias mechanism that is related to the particle arrival
statistics. Figure C.2 illustrates this bias mechanism for the measurement of p1;(Az). In
Absil’s experiment the separation Az is normal to the mean flow direction (z) and the
local turbulence intensity is low (=~ 3%). The measurement system acquires a velocity
pair v/ (2)u'(z + Az) only when both counter processors validate the Doppler signals and
the time-coincidence criterion is satisfied. It is important to realize that for the situation
depicted in Fig. C.2 (left) the velocity pair will be the result of a “two particle event,”
because the velocity fluctuations u'(z) and u'(z + Az) are produced by two different
particles. In case of a two particle event it is theoretically impossible to acquire truly
simultaneous velocity pairs due to the random nature of the particle arrivals. The time-
coincidence window is used to acquire nearly simultaneous velocity pairs. By doing so,
the measured scf actually resembles a space-time correlation function that is averaged
over the duration of the coincidence window . Clearly, the value of 7, should be
sufficiently small so that the measured space-time correlation function is close to the
spatial correlation function.
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By definition, the velocity pair «'(z)u'(z+ Az) is the result of a “single particle event”
when the velocity fluctuations u'(z) and v'(z + Az) are produced by one particle that
is sampled on both LDA channels. Figure C.2 (right) depicts the situation in which the
pinhole images partly overlap. In that case the vast majority of the velocity pairs acquired
by the measurement system originate from “single particles” that transit the overlap
region, because the single-particle events are much more likely to occur than two-particle
events®. The single-particle velocity pairs are perfectly correlated in space and naturally
satisfy the time-coincidence criterion, thereby causing relatively high correlation values.

C.2.2 The flat plate wake

Experimental set-up

Tummers et al. [1995] have reported on the measurement of scfs in the wake of a flat
plate subjected to an adverse pressure gradient. Full details on the experimental set-up
are given in Section 5.1, but some relevant data on the instrumentation will be given
here also to achieve a degree of self-containment of this appendix.

The violet (476.5 nm) line of an Argon laser was used to create a measuring volume
with a length of 1.7 mm and a diameter of 0.12 mm. The fringe pattern was oriented
to measure the velocity component in either the z-direction (u) or the y-direction (v).
Light was collected using a side-scatter configuration and a pinhole mounted in front of
the photomultiplier reduced the effective length of the measuring volume to 0.2 mm. The
green (514.5 nm) and the blue (488.0 nm) lines were used to create two fully overlapping
measuring volumes each 1.3 mm in length and 0.11 mm in diameter. The fringe patterns
were oriented to measure two velocity components in the z,y-plane, at +45° and —45°
with respect to the x-axis. This enabled the simultaneous measurement of both » and v,
but only v was used during the spatial correlation measurements. The 2D LDA formed
the traversable probe during the measurements, whereas the 1D LDA served as the
stationary probe. The photomultiplier output signal of the blue channel was processed
using a (Dantec) BSA processor which acted as the time master. The green and violet
channels were processed by two time-slave BSA processors. The BSA processors were
operated in the “hardware-coincident mode,” also known as the “channel blanking mode.”

Effect of overlapping measuring volumes

The longitudinal scf of the streamwise velocity fluctuations py;(Az) was measured at
several locations in the wake. Attention was focused on the correlation values at small
spatial separation to obtain information on the Taylor length scales. Starting at zero
separation the 2D LDA was traversed in the streamwise direction in steps of 25 um. For
each separation 3 x 10% velocity pairs were acquired at an average rate of 25 Hz. The

LThis can also be observed from Fig. C.1. The squares represent the dimensionless mean data rate
which is defined as the ratio of the coincident mean data rate and the mean data rate of the individual
channels.
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the measured coefficients.

spatial correlation coefficient was then computed from
S, wi(@)ui(e + Az)
(T wie)? T, uie + A)?)

Figure C.3 shows a typical result of a measurement. At zero separation the measured
correlation value is high; approximately 0.998. This indicates that both LDA channels
measured almost identical instantaneous velocities, i.e. the errors in the instantaneous
velocities due to uncorrelated noise were very small (see Eq (C.2)). This is illustrated in
Fig. C.4 which shows a number of instantaneous velocities as measured by the two LDA
channels.

Another interesting detail in Fig. C.3 is the presence of a small bump for separations
less than about 0.1 mm, similar to that observed by Absil et al. [1990]. Tummers et al.
[1995] explained the bump as follows.

p11(Az) = (C3)

1/2 "

e For separations Az < 0.1 mm the measured correlation coefficients are too high as a
result of the partial overlap of the effective measuring volumes. The BSA processors
are operated in the hardware coincident mode so that data is acquired only during
the time span that Doppler signals are present on all channels simultaneously.
This requirement is most likely met when particles transit the overlap region of the
measuring volumes. In that case, however, the effective spatial separation remains
zero, even when the centres of the measuring volumes are a distance Az apart.
Therefore, the measured spatial correlation coeflicients are incorrect as long as the
measuring volumes (partly) overlap.
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Figure C.5: The explanation of the bump in the measured scf as given by Tummers et al. [1995)
(left) and the improved explanation (right) that takes the lag time into account.

The above explanation for the relatively high correlation coefficients is based on the
phenomenon that the single particles that transit the overlap region have an effectively
zero spatial separation although the physical centre of the measuring volumes do not
coincide. Because of its influence on the effective spatial separation this phenomenon will
be termed “separation bias.” Although Benedict [1995] accepted that this phenomenon
was real, he noted that it did not fully explain all the characteristics of the bump as seen
in Figs. C.1 and C.3. This criticism is fair because according to the above explanation the
measured correlation value at zero separation p11(Az = 0) should equal the extrapolated
value of the parabola that is tangent to the true scf at Az = 0, as illustrated in Fig. C.5
(left). However, the results in Fig. C.3 show that p;;(Az = 0) is above the “least-
squares fitted” parabola at zero separation, so that the explanation given above needs to
be improved.

The explanation may be improved by considering the issue of correlation loss due to
the (small) difference in particle arrival time in case of a two-particle event. The single
particles that move through the overlap region produce exactly time coincident velocity
pairs. However, the particles are lagging in time in case of a two-particle event, with the
maximum lag time determined by the time-coincidence window?. For separations without
overlap this results in a reduction of the measured correlation coefficients as compared to
the situation with overlapping measuring volumes. The reduction of the measured spatial
correlation values due to the lag times between the velocity samples can be estimated
as the mean value of 1 — p(7), where p is the (temporal) autocorrelation function of the
velocity fluctuations in z-direction, u'. The lag time 7 between the velocity samples will
vary between 0 and 7,. Recall that for small values of 7 the quantity 1 — p(7) can be

2The time-coincidence window 7, is relevant when the BSA processors are operated in the time-
coincidence mode, or when conventional TSI counter processors are used. When the BSA processors are
operated in the hardware-coincidence mode, the time-coincidence window 7, should be replaced by the
record interval nrec/ fsam, see Section 3.2.7.
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approximated as

2

r

-0 = (1) ()
¢

where, A; is the Taylor time scale of the velocity fluctuations u’. The mean value of

1 — p(7) will be

1
‘g('rw/’\t)2 s (05)

when it is assumed that the values of 7 are uniformly distributed on the interval 0 <
7T < 7. When the spatial correlation measurement is based on two-particle events only,
this reduction of the measured correlation coefficients will be constant for separations
without overlap (Axz > d). Consequently, the correlation coefficients for Az < d appear
too high as depicted in Fig. C.5 (right).

It is interesting to test this assertion by application to measured data. The scf in
Fig. C.3 pertains to a measurement station with a Taylor time scale of 1.1 ms. Further-
more, the BSA signal processors were operated in the hardware-coincident mode with
the record interval n,ec/ fsam St at 5.3 us. Substitution of these values in Eq (C.5) gives

1 nrec/fsam 2 _ 1 /53 x 10_6 2 _ —6
3 (—-—/\t ) =3 (——1'1 o) =X (C.6)

which is negligible compared to the value of 0.0021 that is observed in Fig. C.3. Now
consider the scf measured by Absil et al. [1990] in Fig. C.1. The observed correlation loss
due to the lag time is much larger here; about 0.0405. The time coincidence window 7,
for these measurements is 50 ys and the Taylor time scale is about 0.34 ms [Steenbergen
1988], which gives

1 /7> _ 1/ 50x10°6\* s
3 ()\_t) ~3 (0.34 x 10—3) =72x107, (C.7)

The computed values are very much smaller that the measured values in both cases.
Clearly, the correlation loss due to the non-zero lag times between velocity samples is a
real effect, but this effect alone cannot be responsible for the experimental observations.
Other effects must be considered to explain all details of the bump in the measured
spatial correlation function. One such effect is the correlated noise due to, for example,
multiple particle signals as suggested by Absil et al. [1990]. If more particles are inside
the overlap region of the measuring volumes, then both channels, say channel a and
channel b, may produce velocity errors that are correlated. This means that the mean
value of the cross-products of the velocity errors will no longer vanish, i.e. 7ngng # 0. In
that case artificially high correlation coefficients are produced in the overlap region.
Another effect is the variation with the separation Az of the mean-square value of
the uncorrelated noise n2 on both channels. This effect pertains to the measurement of
spatial correlation functions using BSA processors that are operated in the hardware-
coincident mode. It will therefore not provide an explanation for Absil’s measurements.
The effect will be discussed below and it is illustrated in Fig. C.6. Recall that when the
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Figure C.6: Doppler signals for different spatial separations.

signal processors are operated in the hardware-coincident mode the processors acquire
data only during the time span that Doppler signals are detected on all channels. For
separations with (partial) overlap, i.e. 0 < Az < d where d is the diameter of the
measuring volume, the system will acquire data mainly from single particles that move
through the overlap region. Assume that the signal processors are able to determine the
Doppler frequency with great accuracy when both measuring volumes perfectly overlap
at Az = 0. In that case n? will be small for both channels. For 0 < Az < d the measuring
volumes partially overlap and the hardware coincidence mode effectively forces the signal
processors to take measurements from the tails of the Doppler signals. The relatively low
signal-to-noise ratio in these tails will increase the noise contribution on both channels,
which results in a decrease of the measured correlation coefficients as compared to the
situation for Az = 0. The largest noise contributions are expected when both measuring
volumes are almost separated. For Az > d there is no overlap region and the hardware
coincidence mode ensures that data are acquired only from two-particle events. However,
the two particles will not enter the measuring volumes at exactly the same time and their
transit times will also be different, due to the random distribution of the particles in space.
It is therefore still possible that the signal processor will acquire data from the tails of
the (hardware-coincident) Doppler signals, but this will generally not be the case. As a
result, the mean-square value of the noise n? will on both channels be smaller than that
for Az < d, but larger than that for perfect overlap at Az = 0.

The correlation-geometry bias

From the previous discussion it has become clear that single particles that transit the
overlap region (in conjunction with the use of the hardware-coincidence mode) induce
erroneous correlation coefficients because of the “separation bias.” In addition to the
separation bias, the single particles give rise to another error source even if the measuring
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Figure C.7: The correlation-geometry bias for the measurement of p11(Az).

volumes do not overlap. This error will be called “correlation-geometry bias,” because of
its similarity to the conventional geometry bias in 3D LDA measurements as discussed
in Section 3.3.4. The correlation-geometry bias is illustrated in Fig. C.7, which shows a
top view of two measuring volumes each with diameter d. The centres of the measuring
volumes are separated by a distance Az. The separation is in the mean flow direction and
Az is larger than d so that there is no overlap. Consider a particle that moves through
the upstream measuring volume with velocity vector ¥ = (u,v,w). For simplicity, it
may be assumed that w = 0 so that the particle moves in the z, y-plane. If the velocity
vector of the particle is such that @ > tan~!(d/Axz) then the particle will not reach the
downstream measuring volume, irrespective of the velocity magnitude |7]. It is obvious
that this (single) particle cannot produce a velocity pair during a spatial correlation
measurement. However, if the direction of 7 is such that a < tan™'(d/Axz) than the
particle will reach the downstream measuring volume. The single particle will produce
a velocity pair only if it can bridge the distance Az within the duration of the time-
coincidence window, 7,,. Clearly this produces a bias towards high velocity components
in the z-direction and small velocity components in the y-direction. The severity of this
bias is a complicated function of the local flow conditions, like the mean flow direction
and the turbulence intensity, the size and relative orientation of the measuring volumes,
the duration of the coincidence window, and the value of the separation Az. For example,
when Az 3> d then it is unlikely that a particle that transits the upstream measuring
volume will also transit the downstream measuring volume because of the turbulent
velocity fluctuations. In that case nearly all the velocity pairs will be the result of two-
particle events and the geometry bias will not influence the results. Furthermore, for
the situation sketched in Fig. C.7 the geometry bias is not expected to have a significant
influence on the results if Az <« d and if the turbulence intensity is very low, because, in
that case, nearly all the single particles will transit both measuring volumes within the
time-coincidence window. However, bias problems are expected for the “intermediate”
separations, see Benedict and Gould [1999].

To eliminate the correlation-geometry bias for both intermediate and large sepa-
rations, Tummers et al. [1995] operated their BSA signal processors in the so-called
hardware-coincident mode. This means that the Doppler signals were processed only
when the signals were detected on all three channels simultaneously, otherwise the pro-
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cessors were inhibited. In other words: the processors were only able to acquire data
from Doppler bursts that overlapped in time, see Section 3.3.4. Clearly, the hardware-
coincidence mode eliminates the correlation-geometry bias completely for all separations
without overlap, because it is no longer possible to produce velocity pairs from single
particle events. Instead, all velocity pairs will be the result of two-particle events. How-
ever, Tummers et al. realized that the occurrence of single particles is unavoidable for
situations with (partial) overlap. So, even when the channel blanking method is imple-
mented the separation bias and the correlation-geometry bias will affect the results of
the measurement when there is (partial) overlap. Therefore, Tummers et al. base their
spatial correlation measurements exclusively on the collection of velocity pairs from two-
particle events for separations without overlap, thereby accepting that the resolution of
the spatial correlation measurement is effectively limited to the size of the overlap region
of the measuring volumes.

C.2.3 The backwards facing step flow

Experimental set-up

Benedict [1995] has reported on the measurement of scfs in the flow over a backwards
facing step in a channel with area expansion ratio 1.25 and a step height H = 25.4 mm
at a free stream velocity of about 18 m/s. The green line (514.5 nm) of an Argon laser
was used to measure the streamwise velocity component, u, directly. This LDA channel
formed the stationary probe during the measurements. A second Argon laser employed
either the green line (514.5 nm) or the blue line (488.0 nm) to measure the stream-
wise or lateral velocity component directly. This LDA could be accurately traversed in
z,y and z-direction. The measuring volumes had a length of 1.2 mm and a diameter
of 0.14 mm. Both channels collected side-scattered light and the effective size of the
measuring volumes was reduced to approximately 0.2 mm by means of small pinholes
placed in front of the photomultipliers. The output signals of the photomultipliers were
processed by two TSI counter processors (model 1990), operated in.the N-cycle mode
with 32 required fringe crossings and a 1% comparison. A time-coincidence window was
employed to acquire nearly simultaneous velocity data and the time interface was oper-
ated in the non-priority coincidence mode. In principle, this set-up was able to measure
all nine correlations puo(Az), paa(Ay) and pas(Az) with a = 1,2, 3, but results were
only presented for a = 1.

Increased spatial resolution
Tummers et al. [1995] eliminated the correlation-geometry bias through implementation
of the channel-blanking method. The price paid for the elimination of this bias error is a
reduction of the spatial resolution of the correlation measurements to the overlap region
of the measuring volumes. As a result, this technique cannot be used to measure Taylor
length scales when the turbulence scales are so small that the relevant part of the scf is
contained in the overlap region.

Benedict [1995] claims that it is possible to measure scfs with a much higher spatial
resolution. His approach is very different from that of Absil et al. or Tummers et al.
Benedict aims to increase the spatial resolution by capitalizing on certain properties of
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Figure C.8: Illustration of the “infinitely” high resolution for the measurement of p;; (Az) in
case of single particle events.

the velocity pairs that stem from single particles. To illustrate the approach, consider the
measurement of p;1(Az) in a flow with low turbulence intensity as depicted in Fig. C.8.
The distance between the centres of the measuring volumes is Az. For small separations,
nearly all the particles that transit the upstream measuring volume will eventually also
transit the downstream measuring volume, because the spatial separation is in the mean
flow direction and the turbulence intensity is low. The interesting property of the single
particle is that it moves over a distance nearly equal to Az in between the times that
the two Doppler bursts are processed and validated by the counter processors. For
this to be true, it is required that the counter processors are operated in the N-cycle
mode, the measuring volumes are identical in size and light intensity distribution and the
fringe distance of both measuring volumes are equal. If these requirements are met, the
spatial separation for the single particle events is (nearly) equal to the physical distance
between the probe centres for small separations with and without overlap. This implies
that the spatial resolution of the measurement is, in principle at least, infinitely high for
the measurement of p1;(Az) when Az is in the mean flow direction and the turbulence
intensity is low.

Several comments can be made at this stage. First, this technique will not work for
the measurement of lateral and spanwise scfs, because the effective spatial separation
will be zero due to the separation bias when there is partial overlap of the measuring
volumes (see Benedict [1995] for details). Secondly, the turbulence intensity has to be
low, otherwise a significant proportion of the velocity pairs will be the result of two-
particle events, thereby negating the advantage of the high resolution. Thirdly, the use
of a time-coincidence window in conjunction with the single particles will induce errors
due to the correlation-geometry bias. It is not clear at this stage whether these bias
errors can be made acceptably small.

Effects of the time-coincidence window

Figure C.9 shows the small scale part of p;,(Az) as measured by Benedict at station
z/H = 3.0 and y/H = 0.85 for three values of the time-coincidence window. The graph
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Figure C.9: The spatial correlation function
p11(Az) for different coincidence windows as
measured by Benedict [1995].

Figure C.10: The influence of the coinci-
dence window on the mean velocity measured
by the stationary probe for different coinci-
dence windows.

shows that there is a clear dependence on the time-coincidence window. Benedict argues
that the 100us window is too large because the measured correlation coefficients are
significantly influenced by the lag times between the velocity samples. Furthermore,
it is argued that the 20us window is too small, because it has resulted in correlation
coefficients that do not exhibit a proper parabolic behaviour for small separations. The
50us window is considered a good compromise between the two effects.

Figure C.10 shows the mean velocity in streamwise direction as measured by the
stationary probe for the correlation measurements shown in Fig. C.9. Similar graphs
were presented for the variance of the velocity fluctuations at the stationary probe, but
these are not included here. The graph illustrates that the geometry bias has a large
effect on the measured velocity statistics for all three coincidence windows3. Benedict
assumes that the geometry bias has not much influence on the correlation coefficients
even though the mean velocity and the variance are strongly influenced by it. The
present author doubts this assumption. It is unlikely that the correlation coefficients are
unaltered by the geometry bias while all other statistics are. Awaiting further research
on this topic, it appears more appropriate at this stage to assume that the correlation
coefficients are also influenced by the geometry bias.

Effect of the lag times between the samples

Benedict’s method to measure the scf p1;(Az) with almost infinite spatial resolution is
based on the collection of velocity pairs u'(z)u'(z + Az) from the single-particle events.

31t would have been interesting to see what happens when the coincidence window is further decreased
below 20us, because when the duration is well below the transit time of the particles, the time-coincidence
window acts as a channel-blanking scheme.
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When certain conditions are met (discussed previously), the single particles have spatial
separation Az. Also, the single particles have a lag time 7 = Az /u, which increases with
increasing separation. This lag time will cause a small correlation loss similar to what
is discussed in Section C.2.2. In Benedict’s method to measure pq1(Ax), it is implicitly
assumed that it is possible to neglect the small correlation loss due to the non-zero lag
times. It will be shown below that this is not possible.

For very small separations the scf measured using Benedict’s method can be approx-
imated as

= (8- (2)

where ), is the Taylor length scale and ) is the Taylor time scale of the velocity fluctua-
tions in the z-direction. The first and the second term on the right-hand side of Eq (C.8)
are desired terms, because they are the first and the second term in a Taylor series expan-
sion of the scf p;; (Az) around Az = 0. The third term on the right-hand side of Eq (C.8)
is not desired, because it is the correlation loss due to the lag times. The influence of
the lag times on the measured scf can be safely neglected if the third term in Eq (C.8)
is much smaller than the second term, i.e. if 72/A? <« Az?/AZ. In Benedict’s method it
is assumed that the turbulence intensity is small and Az is in the mean-flow direction.
In that case it is reasonable to use Taylor’s hypothesis to convert time scales into length
scales, i.e. A, = A@. Furthermore, the lag time 7 equals 7 = Az/u = Az/(T + u'), so
that Eq (C.8) can be approximated as

This means that the third term in Eq (C.8) has almost the same magnitude as the second
term for all values of the separation Az. As a result the measured Taylor length scales are
approximately a factor v/2 too small. However, this is not a serious flaw of the method,
because the factor can be taken into account when deriving the Taylor length scale from
the measured spatial correlation values.

C.2.4 Influence of spatial averaging

The subject of the spatial resolution was already touched upon during the discussion of
Benedict’s method to measure the scf with nearly infinite resolution by capitalizing on
certain properties of the single particles. Consider Fig. C.11 for a more general treatment
of the spatial resolution during scf measurements. The graph shows two measuring
volumes each having length [ and diameter d. The centres of the measuring volumes are
a distance Az apart in order to measure p(Az). In case of a two particle event, one
particle will be measured in measuring volume 1 at time ¢; and location (z;,y1,2) and
the other will be measured in measuring volume 2 at time ¢5 and location (z2,ys, 22).
For simplicity, it will be assumed that the two particles are measured at the same time,
i.e. t; = t2 so that the correlation loss due to the lag time can be ignored. It is also
assumed that both LDAs take “point measurements,” which means that the individual
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Figure C.11: Illustration of the spatial resolution for the measurement of p(Az) in case of “two
particle events.”

velocities u1(x1,y1,21) and uz(23,y2,22) are unaffected by the size of the measuring
volumes as explained in Section 4.3.5. The velocity product u,u, is an estimate of the
spatial covariance function for separation ((z1 — z2)% + (11 — ¥2)? + (21 — 22)2)¥/2%. In
general this separation will not be equal to Az due to the finite size of the measuring
volumes. Clearly, if the value of Az is much larger than both the diameter and the length
of the measuring volumes, than the effect of the spatial averaging on the measured spatial
correlation coefficient can be neglected. However, it is not clear whether the effect of the
spatial averaging can be neglected when the value of Az is approximately equal to the
size of the measuring volume, i.e. Az ~ d or Az ~ [. The actual separation between
the two particles, ((z1 — 22)? + (y1 — y2)? + (21 — 22)?)1/2, will sometimes be larger than
Az and sometimes it will be smaller. Consequently, the effect of the error in the spatial
separation will partly cancel when the sum of many velocity products ujus is computed.
However, the effect of the error in the spatial separation will not completely cancel due
to the curvature of the true scf. The quadratic term in a Taylor series expansion of the
scf around Az = 0 can be used as an approximation of the maximum curvature of the
true scf. This term is directly related to the Taylor length scale, so that the effects of the
spatial averaging on the measured scf are expected to be negligible if the dimensions of
the measuring volume are small compared to the Taylor length scale. This is in analogy
with the effect of the spatial averaging on the autocorrelation function as discussed in
Section 4.3.5.

C.3 Concluding Remarks

Several error sources (biases) were considered for the measurement of spatial correlation
functions using LDA. These error sources are related to the statistics of the particle
arrivals at the different measuring volumes and are particularly important when the
spatial separation between the measuring volumes is small. Some of these biases, like
the geometry-correlation bias, are closely related to biases that were identified for 3D




158 MEASUREMENT OF SCFS USING LDA

LDA measurements. Others, like the separation bias, are unique to spatial correlation
measurements.

Absil et al. [1990] used a single elongated measuring volume and ingenious receiving
optics to measure the small-scale part of scfs. This method is suited for the measurement
of lateral scfs. The experiments of Absil et al. also revealed the separation bias that
caused too high correlation coefficients when the pinhole images were overlapping. This
led to the concept of “single-particle events” and “multiple-particle events” in spatial
correlation measurements based on LDA.

Tummers et al. [1995] used two separate LDA channels to measure both lateral and
longitudinal scfs. The effects of the correlation-geometry bias, which has its origin in
the single-particle events, were eliminated by using the channel-blanking scheme. The
price paid for this advantage is that the spatial resolution is limited to the effective size
of the measuring volumes, because the measured correlation coeflicients are valid only
for spatial separations without overlapping measuring volumes. However, this posed no
problem for the measurements in the adverse-pressure-gradient wake of the flat plate,
because there the smallest length scales of the turbulence were relatively large.

Benedict [1995] also used two separate LDA channels, but his approach was very dif-
ferent to that of either Absil et al. or Tummers et al. Instead of eliminating the effects
of the correlation-geometry bias by the exclusion of the single-particles, Benedict did
exactly the opposite and decided to use the single-particle events as a basis for the corre-
lation measurements. The reason for doing so is the (theoretically) much higher spatial
resolution that can be achieved with single-particle events. However, the price paid for
this increased spatial resolution is the introduction of errors caused by the correlation-
geometry bias. Also, the method is limited to the measurement of longitudinal scfs with
the spatial separation vector in the mean-flow direction in flows with low turbulence
intensity.
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Samenvatting

Het hoofddoel van dit onderzoek is het verkrijgen van meer begrip van de complexe stro-
ming in het nabije zog van een vlakke plaat, dat onderworpen is aan een tegenwerkende
drukgradiént. Om dit doel te bereiken is een gecombineerd experimenteel en numeriek
onderzoek verricht. Een drie-componenten LDA (3D LDA) is gebruikt om gegevens te
verzamelen over gemiddelde snelheden, Reynolds spanningen en triple-producten. LDA
is ook gebruikt voor het meten van vermogensspectra en plaatscorrelatie functies. Deze
gegevens zijn gebruikt voor een gedetailleerde vergelijking tussen de experimenten en
berekeningen gebaseerd op de Reynolds-gemiddelde Navier Stokes vergelijkingen. Twee
turbulentie modellen zijn toegepast: een k — ¢ model en een Reynolds-stress transport
model. De vergelijking tussen de experimenten en de berekeningen droeg bij tot de in-
terpretatie van de experimentele resultaten en maakte het mogelijk om onjuistheden op
te sporen in de turbulentie modellen voor berekeningen van het zog in tegenwerkende
drukgradiént.

Het gebruik van een 3D LDA voor metingen in een turbulente stroming wordt gehin-
derd door een drietal foutenbronnen. Een algemene configuratie voor de 3D LDA is
voorgesteld waarmee de drie foutenbronnen geélimineerd worden. Verder geeft de ran-
dom bemonstering bij LDA aanleiding tot problemen zoals het snelheidsbias en een hoge
statistische scatter in de gemeten autocorrelatie functies en de vermogensspectra. Een
experimenteel onderzoek bevestigde het bestaan van het snelheidsbias en toonde aan
dat voor de invloed van het snelheidsbias gecorrigeerd kan worden door weegfactoren
te gebruiken die gebaseerd zijn op de inverse van de snelheid. Het probleem van de
hoge statistische scatter in de gemeten autocorrelatie functies en de vermogensspectra is
opgelost door de invoering van een lokaal geschaalde versie van de ’slotting’ methode en
een techniek waarbij gebruik wordt gemaakt van een variabel venster.

De experimenten in de achterrandstroming van de vlakke plaat in een tegenwerkende
drukgradiént wezen op een snelle groei van de dikte van de grenslaag en het zog, een sterke
toename in stromingsrichting van de turbulente kinetische energie en de aanwezigheid van
een gebied met terugstroming op enige afstand stroomafwaarts van de achterrand. De
balans van de vergelijking voor de turbulente kinetische energie liet zien dat de dissipatie
afneemt in stromingsrichting, terwijl de produktie van turbulente kinetische energie op
een hoog niveau blijft. De in het nabije zog gemeten vermogensspectra onthulden de
aanwezigheid van een significante hoeveelheid turbulente kinetische energie bij (zeer)
lage frequenties.

Noch het k — € model noch het Reynolds-stress transport model waren in staat om
de gemeten terugstroming en de sterke toename van de kinetische energie te reproduc-
eren. Beide turbulentie modellen berekenden een te grote dissipatie in het nabije zog.
Aangetoond is dat dit het gevolg is van onjuistheden in de transportvergelijkingen voor
de dissipatie, die in beide turbulentie modellen grote gelijkenis vertonen. Het blijkt dat
de transportvergelijking voor de dissipatie reageert op de grote produktie van kinetische
energie door een hoog niveau voor de dissipatie te handhaven. Dit is echter een onjuiste
respons, omdat een belangrijk deel van de geproduceerde kinetische energie in de lage
frequenties blijft en niet in het nabije zog gedissipeerd wordst.
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