Technische Universiteit Delft

oynthetic Data for Smarter
~RUL Prediction

Deep Generative Models in Turbofan
Analysis

: vl.”-TI‘#‘g-:’_..-__ -

e T TN

" s 1 48]

D.C. Saadeldin

. ‘.
e %

synthetic Data for smarter RUL Prediction

Deep Generative Models in Turbofan Analysis

by

D.C. Saadeldin

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday June 6th, 2025 at 9:00 AM.

Student number: 4163672

Project duration: January 1, 2023 — June 1, 2025

Thesis committee: Dr. ir. I. I. De Pater, TU Delft, supervisor
Dr. ir. J. Ellerbroek, TU Delft, chair
Dr. ir. O. A. Sharpans’kykh, TU Delft, examiner

This thesis is confidential and cannot be made public until June 6, 2025.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

This thesis marks the final step of my Master’s degree, which has been a challenging but rewarding ex-
perience. My initial exploration of generative models in predictive maintenance evolved into a compre-
hensive research project, testing my resolve, intellectual curiosity, and dedication. Beyond the specific
technical knowledge gained in machine learning, this process underscored the importance of perse-
verance and independent problem-solving, from initial data immersion with the CMAPSS dataset to
debugging complex GAN architectures.

This work critically compares CTGAN and TVAE models for synthetic data generation within the do-
main of Remaining Useful Life (RUL) prediction. The core objective was a dual evaluation using both
statistical and predictive methodologies. This resulted in deep dives into technical issues requiring the
development of skills and insights extending beyond classroom academic curricula.

| extend my profound gratitude to my supervisor, Ingeborg de Pater, whose expert guidance, patience,
and incisive critical feedback were vital in shaping the clarity and quality of this research. Her input
consistently directed the project toward completion.

My sincere thanks also go to my friends and family for their unwavering support and understanding,
and for their extraordinary patience in listening to detailed explanations of Wasserstein Distance and
Residual Box Plots.

Finally, | am indebted to the Delft University of Technology for providing essential resources and support.
| also acknowledge the critical role of open-source communities and their contributors, whose tools like
SDV, scikit-learn, CMAPSS, and PyTorch were fundamental to the successful execution of this project.
| hope that this thesis contributes meaningfully to the advancement of prognostic health management
systems and encourages further investigation into the transformative potential of synthetic data in real-
world engineering applications.

D.C. Saadeldin
Delft, May 2025

Preface

List of acronyms
List of Figures
List of Tables

Introduction
| Scientific Paper

Il Literature Study

1 Introduction

2 Prognostics & health management
2.1 Maintenance in aviation
2.2 Predictive maintenance
2.3 Health monitoring trajectories

2.3.1 Monotonicity
2.3.2 Trendability
2.3.3 Prognosability

2.4 Data quality

2.4.1 Insufficient sensor data
2.4.2 Missing data
2.4.3 Obsolete data

3 Data augmentation
3.1 Data augmentation techniques
3.1.1 Statistical augmentation
3.1.2 Experimental data
3.1.3 Adaptive augmentation
3.1.4 Simulation training data
3.1.5 Data generation
3.2 Generative models
3.2.1 Gaussian mixture model
3.2.2 Hidden Markov model
3.2.3 Bayesian network
3.2.4 Latent Dirichlet allocation
3.2.5 Boltzmann machine
3.2.6 Diffusion model
3.2.7 Flow-based generative model
3.3 Deep generative models
3.3.1 Generative pre-trained transformers
3.3.2 Autoencoders
3.3.3 Variational autoencoders
3.3.4 Generative adversarial networks

Contents

iii
Vii

viii

Xi

Contents

3.4 Overview of different generative adversarialnetworks 50
Usage of generative models 53
4.1 Brief history of generativemodels o o 53
4.2 Generative modelsinPHM 54
4.3 Comparison of treated generative methods. 55
Approach 57
5.1 Methodology e 57
52 Planning. e 57

521 Calendar e 58
Problem statement 61
6.1 Researchgap. e 61
6.2 Researchobjective. e 61
6.3 Researchquestion e 62

6.3.1 Sub-questions L 62

Conclusion 63

List of acronyms

Symbols
2D two-dimensional. 44

3D three-dimensional. ix, 44

A

AAE adversarial autoencoder. 51

AE autoencoder. ix, 35, 43, 49, 51, 53-55, 62
AT Anscombe transform. 44

AtthGAN attention GAN. 51

B

BiGAN bidirectional generative adversarial network. 51
BM Boltzmann machine. 47, 53, 55

BN Bayesian network. 47, 53, 55, 56, 62

BPN backpropagation network. 62

Cc
CBC coating breakdown and corrosion. 55

CGAN conditional GAN. 50, 54, 55

D

DA data augmentation. 41, 45

DCGAN deep convolutional GAN. 51, 54, 55

DDIM denoising diffusion implicit model. 54

DDPM denoising diffusion probabilistic model. 54
DGM deep generative model. 48, 49, 53-56, 61, 62
DM diffusion model. 48, 53-55

E
EM expectation-maximisation. 46

EoL end-of-life. 35, 40, 44, 54

F
FM flow-based generative model. 48, 53, 55

Vii

viii List of acronyms

G

GAN generative adversarial network. ix, xi, 35, 43, 49-51, 54, 55, 62, 63
GMM Gaussian mixture model. 46, 53-55

GPT generative pre-trained transformer. 35, 48, 49, 54

GRAN generative recurrent adversarial network. 51

H
HMM hidden Markov model. 46, 53, 55

|
img2img image to image generation. 54

InfoGAN information maximising generative adversarial network. 51

K

KNN k-nearest neighbour predictive model. 62

L

LAPGAN Laplacian pyramid of adversarial network. 50
LDA latent Dirichlet allocation. 47, 53, 55

LDM latent diffusion model. 54

LSTM long short-term memory. 54, 55

M
MCMC Markov chain Monte Carlo. 47

N

NICE non-linear independent components estimation. 53

P
PCA principal components analysis. 53
PHM prognostics and health management. 35, 37, 38, 43, 45, 53-55, 61, 62

R
RTF run-to-failure. 37, 39
RUL remaining useful life. 38, 39, 54

S
ST-GAN spatial transformer GAN. 54

T
T5 text-to-text transfer transformer. 54
TGAN temporal GAN. 55, 62

txt2img image to image generation. 54

\'}
VAE variational autoencoder. 35, 49, 54, 55, 62

VT vision transformer. 54

2.1
2.2

23

3.1
3.2
3.3
3.4

3.5

4.1

5.1

5.2

List of Figures

Maintenance strategies in aviation L L L. 37
Four basic (polynomial) functions 39
Data quality compass 42
Data Augmentation relatedto GANand AE L. 43
Data Augmentation for 3D structures Shietal., 2020 44
Visualisation of an autoencoder 49
Visualisation of a variational autoencoder oL 49
Visualisationof a GAN e 50
Timeline of last decade concerning GANs L. 54
Calendar for the upcoming 6-7 months 58
Gantt Chart: all tasksunfolded 59

List of Tables

2.1 Advantages and disadvantages of maintenance 38

3.1 Data augmentationmethods 45

3.2 Different GANS e 51

4.1 Comparison of generativemodels, 55
Introduction

This document serves as the full technical report for this research project, covering its methodology,
results, and conclusions in detail. For this, a scientific article has been developed. Additionally, the an-
tecedent literature study on generative models in prognostics is appended, providing theoretical back-
ground and research questions used in this thesis. Therefore, while the literature study establishes the
conceptual basis and the article conveys key findings, this report offers the complete context, imple-
mentation intricacies, and comprehensive analysis. Please note that the literature study is already
graded and just serves as a stepping stone to the scientific article.

Xi

Scientific Paper

Highlights

Synthetic Data for Smarter RUL Prediction: Deep Generative Models in Turbofan Analysis
D.C. Saadeldin

e Enhanced RUL Predictions: Evaluates the impact of deep generative models (DGMs) on Remaining Useful Life (RUL)
prediction for turbofan engines.

e Synthetic Data Generation: Compares Conditional Tabular GANs (CTGAN) and Tabular Variational Autoencoders
(TVAE) for generating realistic sensor data.

e Data Quality Assessment: Assesses the validity of synthetic datasets using statistical tests (Wasserstein distance, KS
test), and visual distribution (t-SNE, KDE).

o Integration with Regression Models: Investigates the effect of synthetic data on RUL regression using Random Forest
Regressors (RFR) and Convolutional Neural Networks (CNN).

e Scalability for Data-Limited Scenarios: Demonstrates the effectiveness of synthetic data augmentation when only
limited training data is available.

Synthetic Data for Smarter RUL Prediction: Deep Generative Models

in Turbofan Analysis

D.C. Saadeldin“

“Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands

ARTICLE INFO

Keywords:
CTGAN

TVAE

RUL predictions
CMAPSS

Data augmentation
PHM

ABSTRACT

Scarce failure data often causes unreliable results when making predictions concerning Remaining
Useful Life (RUL). This study explores the use of deep generative models (DGMs) for augmenting tur-
bofan engine datasets by CMAPSS to improve these RUL predictions. By implementing Conditional
Tabular GANs (CTGAN) and Tabular Variational Autoencoders (TVAE), synthetic data is generated
and validated using statistical metrics such as Wasserstein distance and Kolmogorov-Smirnov tests.
Then, these new datasets are used in several compositions of both real and synthetic data to train
regressors and subsequently let them make RUL predictions. The regressors, such as Random Forest
Regressors (RFR) and Convolutional Neural Networks (CNN), evaluate performance improvements
through RMSE and MAE metrics. Results indicate that adding synthetic data improves prediction
robustness, particularly when data is limited. This highlights the potential of DGMs for Prognostics
and Health Management (PHM) applications.

1. Introduction

Maintenance is a crucial element in Prognostics Health
Management [12]. As in other industries, specific parts are
rigorously tested and checked for safety and endurance in
aerospace engineering. This is mainly executed by the use
of sensors, brake testing and other traditional maintenance
techniques. However, data might not be available for excep-
tional situations due to the lack of real-time and real-size
testing possibilities, which is often the case when testing
aeroplanes towards the end of their service. This might be
mitigated by extensive simulations and other novel tech-
niques to establish the right time for repair and replacement,
improving overall maintenance performance.

A major component of an aeroplane is its engines. They
are measured by sensors that indicate pressure, temperature
and other relevant variables to monitor. The data acquired
can then be used for simulating the End of Life (EoL),
Remaining Useful Life (RUL) and others. Here, the EoL
states the moment an engine is no longer useful, and the RUL
defines the time or cycles estimated until that particular EoL.
However, specific data on engine properties during specific
situations are sparse and often classified and unavailable to
the public. Any insufficient data is a significant limitation
in Prognostics and Health Management (PHM) for aviation
[22]. This is especially applicable to the prediction of RUL
for turbofan engines. It is costly and time-consuming to
harvest extensive datasets from turbofan engines that require
either high-computational simulation or elaborate testing of
operational cycles until failure.

In real-world scenarios, most engines are repaired or
retired well before complete failure. As a result, the degrada-
tion process of these engines in their last phase is often not
documented comprehensively. Therefore, RUL prediction
models can only rely on sparse failure data or on synthetic

datasets, such as the CMAPSS dataset generated by sim-
ulations [7]. While these simulations can mimic degrada-
tion under specific conditions, they cannot capture the full
complexity and variability of real-world scenarios. The lack
of sufficient failure data impacts model generalizability and
accuracy.

Instead of focusing on the quality of the simulation
software in case of small available datasets, generative mod-
elling can be a solution to enlarge insufficient or incomplete
datasets. Especially deep generative modelling has evolved
since the 2010s to create credible synthetic data [6] [13] [5].
There are multiple promising types of data augmentation
[27] available, and the combination of unsupervised learning
with expanding aeroplane engine datasets has undiscovered
opportunities. Deep generative models (DGMs) could help
enhance the sparse data into a dataset that will give easier
prognoses for maintenance.

Therefore, the core aim of this study is to evaluate the
utility of synthetic datasets generated by DGMs for turbo-
fan engine degradation monitoring. Specifically, the study
hypothesises that data generated by DGMs, such as gener-
ative adversarial networks (GANs) [6] [8] and variational
autoencoders (VAESs) [2], can serve as credible substitutes
or complements to original datasets, maintaining similar
statistical and dynamic properties.

To address this, the research explores two primary ques-
tions: (1) Can synthetic datasets improve the robustness and
accuracy of RUL predictions when integrated into tradi-
tional modelling pipelines? (2) How closely do the synthetic
datasets mimic real-world degradation data in terms of vari-
ability and structure? These questions guide the overarch-
ing hypothesis that leveraging DGMs can enhance predic-
tion performance while mitigating the challenges of limited
datasets in PHM applications.

Many generative models can be studied, and today, a
couple of deep generative models, as well. Two DGMs are
considered specifically: the conditional tabular generative

Corshir Saadeldin

Page 1 of 26

Generative modelling for RULs

adversarial network (CTGAN) [30] & the tabular variational
autoencoder (TVAE) [29]. The former uses a generator and
discriminator to create synthetic data and is promising when
trained on large datasets with complex patterns, such as rare
categories or unstable data infractions. However, training a
GAN is a tedious process and requires both a large dataset
as well as properly set parameters.

The latter uses encoding and decoding for synthetic gen-
eration and performs quite reasonably with smaller datasets,
and thus does not need as much training data as a GAN. With
increased complexity and enlargement of the input data, a
VAE becomes less flexible, though.

This study aims to enhance Remaining Useful Life
(RUL) predictions by addressing insufficient data challenges
through synthetic data generation. The approach begins with
the generation of synthetic data by deep generative models
(DGMs), using commonly used datasets for turbofan engine
diagnostics. Subsequently, the generated data is validated
through statistical and performance metrics, ensuring its
similarity to the original datasets.

This synthetic data is then incorporated into regression
models to improve RUL forecasting accuracy [3], using a
Random Forest Regressor (RFR) [11] and a convolutional
neural network (CNN) [20]. The performance of the models
is then evaluated using standard performance metrics such
as RMSE and MAE to quantify improvements introduced
by synthetic data augmentation [25].

The case study treats different setups of DGMs and
regressors fed several dataset compositions. The CTGAN-
RFR combination showed the most promising results in the
scenario of only 10% of the training data available, making
the predictions more robust and improving on overall perfor-
mance in terms of RMSE by 8%.

In Section 2, the methodology consists of an overview
of the full process followed by an extensive description
of set-up, choices/assumptions and calculations. Then, in
Section 3, the consequent results are published and critiqued
on after which conclusions are drawn in Section 4.

2. Methodology

During the research, several considerations were taken
into account, from the choice of datasets to the comparison
of RUL predictions. In the order of the process, the test
setups and associated methodology will be elaborated on,
together with all choices we made and their explanations.

2.1. Overview

The proposed approach will use the NASA Commercial
Modular Aero-Propulsion System Simulation (CMAPSS)
[7], a commonly used degradation dataset source. For RUL
prediction of turbofan engines, the CMAPSS FDO0O1 dataset
[24] consists of training data with extensive sensor readings,
test data and corresponding RUL values. Therefore, this
dataset can lay a foundation for evaluating the impact of
synthetic data on RUL prediction in comparison to the
original RUL.

Thesis process

Synthetic Data

Input Dat; .
hput Lata Generation

——>» Pre-processing —>

!

Synthetic Data

etic Regression Modelling
Validation

for RUL Evaluation

—

Figure 1: Steps total process

In Subsection 2.3, two deep generative models will be
applied to generate synthetic data, a Conditional Tabular
GAN (CTGAN) [30] and a Tabular Variational Autoencoder
(TVAE) [29]. Their synthetic datasets will be validated using
the statistical measures as the KS-test [14] and Wasserstein
distance [28], as well as visual inspection by t-SNE distribu-
tion [19] and KDE plots [23].

Then, in Subsection 2.4, the Random Forest Regressor
(RFR) [11] and Convolutional Neural Network (CNN) [20]
will be trained on different subset combinations of synthetic
and training data to predict RUL values. Their output will
then be evaluated by comparing the predictions with the
original RUL and describing its performance in terms of
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE), showing whether synthetic data generated by deep
generative models contributes to prediction accuracy, in
Subsection 3.4.

2.2. Data pre-processing

In CMAPSS [7], four Fault Datasets concerning turbofan
engines are explicitly available. The first one, FDOOI, has a
single operating condition and one fault mode [7]. Therefore,
this relatively simple dataset is usable as a baseline for
testing generational modelling and subsequently predicting
RUL values. FD002 and FD004 both have multiple operating
conditions embedded [7] and are thus equipped to investigate
more intricate fault progressions. The extra complexity can
affect the similarity of synthetic data generation and obscure
the impact of accurate RUL prediction. For clarity, Figure 2
shows a standard turbofan overview and its standard sensors
that are available in CMAPSS, elaborated on in Table 1.

FDO0O03 is set in a single operating condition and has the
same dimensions and sensor readings as FDOO1 [7]. It can
therefore be substituted conveniently to validate the model.
However, FD003 has two fault modes, whereas FD0OO1 only
has one [7]. Although it can serve as a logical extension,
it introduces more complex failure scenarios. We chose to
ensure an analysis focused solely on the impact of synthetic
data and model performance, and hence the FD0OO1 dataset
is best suited [7].

The FDOO1 data consists of 100 engines, with each
engine described as multiple cycles until End-of-Life (EoL).

Corshir Saadeldin

Page 2 of 26

Generative modelling for RULs

Table 1
Operational settings and sensor measurements in the CMAPSS FDO0O01 dataset [7]
Type Abbreviation Description
Op1 Altitude Operational Setting 1
Op2 Mach number Operational Setting 2
Op3 Throttle resolver angle (TRA) | Operational Setting 3
Sensor 1 T2 Total temperature at fan inlet
Sensor 2 T24 Total temperature at LPC outlet
Sensor 3 T30 Total temperature at HPC outlet
Sensor 4 T50 Total temperature at LPT outlet
Sensor 5 P2 Pressure at fan inlet
Sensor 6 P15 Total pressure in bypass-duct
Sensor 7 P30 Total pressure at HPC outlet
Sensor 8 Nf Physical fan speed
Sensor 9 Nc Physical core speed
Sensor 10 | epr Engine pressure ratio (P50/P2)
Sensor 11 | Ps30 Static pressure at HPC outlet
Sensor 12 | phi Ratio of fuel flow to Ps30
Sensor 13 | NRf Corrected fan speed
Sensor 14 | NRc Corrected core speed
Sensor 15 | BPR Bypass ratio
Sensor 16 | farB Burner fuel-air ratio
Sensor 17 | htBleed Bleed enthalpy
Sensor 18 | Nf dmd Demanded fan speed
Sensor 19 | PCNfR_dmd Demanded corrected fan speed
Sensor 20 | W31 HPT coolant bleed
Sensor 21 | W32 LPT coolant bleed
Fap Combustor N1 LPT
\ \ _,| Bypass | | Bypass
\ E E Path Nozzle
8 =
! L Lol]
“ o
- * E k= E Caore
‘ — a L - Nozzle
| Nozzle g
HP1 *
LPC HPC
(A) (B)

Figure 2: Overview turbofan engine [7] [16]

The number of cycles per engine differs, as would be ex-
pected in real life. A small representation of the training
dataset is shown in Table 3.

Apart from the engine IDs and their respective cycles
(a cycle per row), three operational settings (altitude, Mach
number, throttle resolver angle) are available. They represent
the operating conditions of the engine and are continuous
variables.

Next, 21 columns represent sensors in and on the engine.
They measure, for example, internal temperature, vibrations,
flow rates, torque, etc. The dimensions of the FD0OO1 dataset
are listed in Table 2.

Normalisation of datasets before using them as training
for DGMs can be advantageous, but the TVAE and CTGAN

do not require this [29, 30]. Also, the elimination of constant
columns is not needed for the selected DGMs, and therefore
both types of pre-processing are omitted [29, 30].

The simulated dataset provided by NASA consists of
smooth sensor data and does not have any missing values.
Noisy data is also not assumed, which makes the handling of
the data more convenient. Therefore, the raw data is assumed
to be clean.

Corshir Saadeldin

Page 3 of 26

Generative modelling for RULs

Table 2
Dataset dimensions
CMAPSS ‘ Datasets | rows columns
FDO001 Training | 20631 26
Test 13096 26
RUL test | 100 1
Table 3
Layout of FD0O1: Cycle data x? = [a?, b, ..., 2] for engine p.
Engine (p)) | Opl (a}) Sensor2 (e) RUL (z7)
1 -0.0007 641.82 .. 191
1 0.0019 642.15 ... 190
1 0.0000 643.34 .1
1 0.0009 643.54 .0
2 -0.0018 641.89 .. 301
100 -0.0032 643.85 . 0
Where:

e x”: Data for a sample from engine p.

e a’ bl ..., zl" Features representing operational
settings and sensor measurements.

e p: Engine index (p € {1,2,...,100}).

2.2.1. Set-up RUL as target variable

While the test dataset has a given RUL per engine, the
training dataset does not [7]. However, it is assumed that
after the last cycle of each engine, that particular engine
reaches EoL [7]. Therefore, one cycle before the last cycle,
the RUL of this engine is one. Thus, at the first cycle, the
RUL is as high as the maximum (and last) cycle of that
specific engine [7]. This RUL per cycle row is as such:

RUL; = max(Cycle) — Cycle;, (1)
Where:

e RUL; denotes the remaining useful life for the engine
at time step i,

e Cycle; is the current cycle number at time step i,

e max(Cycle) represents the maximum cycle number
for the specific engine instance, corresponding to its
end of life (EoL).

The calculated RULs are then appended to the training
dataset as the 27" column and will serve as target variables
in a later stage, as seen in Table 3.

2.3. Type of DGMs

The two chosen deep generative models have their spe-
cific characteristics in how they work, handle datasets and
put out synthetic data. Both their differences as well as their
similarities will be discussed. Also, distinct features that
affect the process are treated.

2.3.1. CTGAN

The first deep generative model that will be used to
generate synthetic data in this research is a generative adver-
sarial network. More specifically, a GAN that is specialised
in tabular data such as the CMAPSS datasets, a so-called
Conditional Tabular Adversarial Network (CTGAN).

A GAN [8] is built of two neural networks that compete
as adversaries to one another in a zero-sum game. The first
neural network is a generator, whereas the second neural
network functions as a discriminator. The generator creates
synthetic data to be as indistinguishable from real data as
possible. The discriminator will try to differentiate real and
generated samples. Through training, the generator improves
its abilities to imitate the real data distribution. Meanwhile,
the discriminator becomes more proficient in spotting fake
from real. This game continues throughout training and
afterwards enables a GAN to generate a realistic dataset that
is purely synthetic. A schematic overview of the CTGAN
infrastructure is shown in Figure 3.

Training data —»Sampling

=
£ S
5 Z
=} Discs N 5
g9
g g
Q =]
o v
8 |83 L 1| g
‘g —> %ﬁ —>» Generator —»Sampling —:
)
E | |=ZE g
g]
=z A 5
=]
)
[}

Figure 3: CTGAN layout

The generator takes a noise vector z from a latent space
and puts it into the data space. This noise vector is normally
randomly sampled from a simple distribution such as a
Gaussian distribution (N(@, 1)). This will be the input for the
generator. The architecture of the generator starts with fully
connected layers. Here, the input z is multiplied by learned
weights and biases. These layers expand its dimensionality
and enable it to capture intricate patterns in the real data
distribution. After each layer non-linear ReLU activations
(ReLU(x) = max(0, x)) are implemented. These activations
introduce non-linearity, an elementary part of learning from
complex data. ReLU allows the model to learn hierarchical
features and prevents gradient vanishing, effective charac-
teristics for a GAN generator. Then, normalisation is applied
per batch to stabilise the training between the fully connected
layers. Next, to portray an output in the data space, the so-
called output layer uses linear activation or Tanh for continu-
ous data such as dataset FD0O1, and a sof tmax layer for other
discrete data. To learn, the generator utilises the feedback

Corshir Saadeldin

Page 4 of 26

Generative modelling for RULs

from the discriminator to update its weighting to improve its
output samples.

The discriminator acts as a binary classifier. As input, it
is fed real samples from training data and synthetic samples
by the generator during the training process and has to decide
whether the sample is labelled as real or fake. The output is
thus a single binary value of 0 or 1, where 0 means "fake"
and 1 means "real". Normally, a Sigmoid activation function
represents the produced binary probabilities in the output
layer, and is defined as follows:

1
14+e>

@

o(x) =

Where:

e o(x) is the output of the sigmoid function, repre-
senting a probability value between 0 and 1.

e x is the input to the sigmoid function, often the
discriminator’s raw output (logit).

e The exponential term e~ ensures the output smoothly

maps any real-valued input to the range (0, 1).

The sigmoid function’s S-shape flattens the discrimina-
tor output into a valid probability score. This allows the
discriminator to learn from the feedback of having classified
a sample correctly, and it updates its weighting to improve
the classification accuracy accordingly.

A generator and discriminator neural network work with
loss functions to describe the adversarial training process
and update iteratively. The generator tries to maximise the
probability of the discriminator labelling synthetic samples
as real. A high D(G(z)) in a negative logarithm function
gives the ultimate goal of minimising the generator loss. The
generator loss function is given by Equation 3:

Lg = —E,., [log(D(G@)) 3)
Where:

e L is the generator loss.

e 7z refers to a noise vector sampled from the latent
space distribution p, (e.g., Gaussian or uniform).

e G(z) indicates the synthetic data generated by the
generator from the noise vector z.

e D(G(z)) is the discriminator’s prediction for the
synthetic data, representing the probability that it
classifies the synthetic data as real.

The discriminator is trained to correctly classify real data
as real and synthetic data as fake. Its loss function, therefore,
consists of two terms. The first term represents the discrim-
inator’s goal of maximising the probability of real samples
as real. The second term consists of the probability of fake
samples labelled as real, where the goal is to minimise, being
subtracted from 1. The discriminator loss function is given
by Equation 4:

Lp=—Ey.,,. [log(DX)]| -E,.,_ [log(l - D(G(2)))]
C))
Where:

e [refers to the discriminator loss.

e x represents real data samples drawn from the true
data distribution pg,.

e D(x) indicates the discriminator’s prediction for
the real data, representing the probability that it
classifies the real data as real.

e 1 — D(G(2)) is the discriminator’s prediction for the
synthetic data, representing the probability that it
classifies the synthetic data as fake.

A CTGAN excels over a standard GAN when tabular
data such as CMAPSS is involved. It distinguishes itself
through several key techniques [30]. For one, it samples con-
ditionally to guarantee boundaries of the distributions of cat-
egorical features. It uses conditional vectors and constraints
to impose this and prevents mode collapse by targeting
specific categories during generation, shown in Figure 3 by
the highlighted box Conditional Vector. It also applies these
vectors to the discriminator to impose the same conditions
on both real and generated samples.

G(z,c) > X &)
D(x’ C) = Dreal (6)
Where:

e zis a latent noise vector sampled from N(0, I).

e ¢ is a one-hot encoded vector representing a ran-
domly chosen categorical feature.

e ((z,c) is the generator function that outputs a syn-
thetic sample X.

e D(x,c) is the discriminator function that predicts
whether x is real, conditioned on c.

® p,..: 1s the probability assigned by the discriminator
that x is real.

However, in the case of continuous-only data such as
FDO0O01, the conditional mechanism becomes redundant.
CTGAN then defaults to mode-specific normalisation, still
shown in Figure 3, where input is normalised per GMM
mode to align with underlying data distributions. A mode
in this context refers to a peak or dense region in the
feature distribution, captured by a Gaussian component
in the mixture. Each input is standardised relative to the
parameters of its most likely mode, which helps enhance
feature representation even without discrete variables.

K
pex) =) mN (x| gy, 00))
k=1

Corshir Saadeldin

Page 5 of 26

Generative modelling for RULs

”kJ\f(x | Mk,ffi)
1) = =g - ®)
ijl ”j-/v(x | Mj?aj)

o X7 Hpx #
X=———, wherek” =arg m/flx 7 (%) ©)]
Uk*

Where:

e p(x) represents the probability density function of
the feature x under a Gaussian Mixture Model
(GMM) with K components.

e 1, denotes the mixture weight for Gaussian k.

o N(x | Hic» az) represents a Gaussian distribution
with mean y; and variance O'I%.

e y.(x) is the posterior probability that x belongs to
mode k.

e X is the normalised feature value, standardised

based on its most probable mode k*.

While these enhancements remain useful, the absence
of discrete columns limits the CTGAN to its continuous
processing capabilities as a tabular DGM. In such cases,
a TVAE might offer more stable results, as it is natively
optimised for continuous data.

2.3.2. TVAE

The second deep generative model that is used for data
generation is the variational autoencoder. It also incorporates
a latent space to learn and uses probabilistic mapping to gen-
erate synthetic samples. The tabular variational autoencoder
distinguishes itself for being optimised for tabular datasets
that may consist of both continuous and categorical data, and
its layout is displayed in Figure 4.

KL Divergence
loss

Reconstruction
loss

]

Encoder Decoder

E —>Sampling—>

Input (x)
v

E(a) D(b)

Mode-specific
Normalisation
latent
distribution (b)
latent space (b)

Output (x*)

Figure 4: TVAE Layout

A VAE [13] has an encoder and decoder to perform this.
The encoder maps high-dimensional input data through fully
connected layers and makes use of ReL.U activations, just as
the GAN architecture. The main difference here is the type
of input. Where a GAN starts with a random noise vector
z, the VAE takes a real data sample x. The output into the
latent space differs, as well. Now two outputs are created, the
mean p(x) and the log-variance. The log-variance is shown
in Equation 10, of which the standard deviation o(x) can be
derived for later use.

o2 (x) = exp(log_var(x)) (10)
Where:

e o2(x)is the variance of the latent distribution output
by the encoder.

e log_var(x) indicates the log-variance output by the
encoder.

e The exponential function, exp(-), is used to convert
the log-variance to the variance.

In the latent space, sampling is introduced where a
reparametrisation trick is used to enable backpropagation.
A latent variable z is expressed in Equation 11 by stochastic
nodes using the output of the encoder.

Zz=ux)+o(X)0Q¢ (11)

Where:

z is a latent variable sample for the decoder input.

e 4(x) represents the mean vector output by the en-
coder for input x.

e o(x) is the standard deviation vector output by the
encoder.

e © denotes the element-wise (Hadamard) product,
where corresponding elements in the vectors are
multiplied.

e ¢ refers to random noise sampled from a standard

Gaussian distribution.

The decoder then reconstructs the input data by trans-
forming the latent variables back. The latent variable z thus
serves as input, is mapped by applying fully connected
layers while using the aforementioned often used Tanh or
linear activation for continuous features and the softmax
function for categorical outputs. Then, the reconstructed
data is applied to find the probability distribution of the data.
Mathematically, this is represented by Equation 12 with X as
reconstructed output.

P(X12) = N (%3 Hyecoder@)s 0o ger @) (12)
Where:

e p(x|z) is the probability distribution of the data
point x given the latent variable z.

e X refers to a reconstructed data point sampled from
the predicted Gaussian distribution.

® Uycoqer(Z) represents the mean vector of the Gaus-
sian distribution, produced by the decoder, given
the latent variable z.

° oﬁew 4 (2) is the variance vector output by the de-

coder network, controlling the spread of the distri-
bution for each dimension of x.

Corshir Saadeldin

Page 6 of 26

Generative modelling for RULs

o I indicates the identity matrix, which represents
independent dimensions of x.

Next to the VAE’s architecture, the learning process is
addressed. Similar to GANS, a loss function guides learning
by iteratively minimising a combination of reconstruction
loss and a regularisation term, as shown in Equation 13:

Ly se = Lreconstruction + LKL, (13)

Where:

e Ly 4 is the total loss function for the VAE.

o L . construction Measures the negative log-likelihood,
evaluating how well the decoder reconstructs input
data from latent variable z.

o Ly refers to the Kullback-Leibler divergence reg-
ulariser, aligning the learned posterior distribution
with a standard normal prior N'(0, I).

For continuous data, the reconstruction loss typically
takes the form of the negative log-likelihood of the data con-
ditioned on the latent variable z, as shown in Equation 14:

L econstruction = _[Eq(z|x) [lng(X|Z)] (14)

The KL divergence component for a Gaussian posterior
q(z|x) = N(u,0?) and a standard normal prior p(z) =
N(0, T) is given by Equation 15:

Ly = % Y (yj + 07— log(e?) - 1) (15)
J

Where:

e —[E,x represents the expectation taken over the
learned posterior distribution g(z|x).

e p(x|z) is the likelihood of reconstructing the input
data x given the latent variable z.

e ¢(z|x) denotes the learned posterior distribution
over latent variable z, conditioned on input x.

e 7z refers to a latent variable sampled from the
learned posterior distribution.

® 4, 6]2 represent the mean and variance for dimen-
sion j of the latent variable distribution.

e lo g(aj?) indicates the log-variance of the latent vari-
able distribution.

The reconstruction loss solely measures the performance
of the encoder-decoder combination, comparing the X to its
original x while the KL divergence measures the latent space
to smooth the process. The total loss is then implemented
by the aforementioned optimisers to update the weighted
parameters of the VAE, equal to a GAN, to improve the
model each iteration. For a VAE, most common issues
coincide with those of a GAN, such as mode collapse and
overfitting.

The specific properties that set a TVAE apart from a
traditional VAE are similar to those of a CTGAN versus
a GAN. It involves the ability to handle mixed data types,
the highlighted KL divergence loss, and the same mode-
specific normalisation technique as previously described.
This optimises the VAE for tabular datasets.

Another difference in TVAE versus VAE is the way it
models categorical data. Instead of directly using a Gaussian
output for categorical features, TVAE models them using
a log-softmax transformation, which represents categorical
variables through a probability distribution over possible
categories. However, since during this research only contin-
uous data is handled, this TVAE feature will not be utilised.

For continuous data, TVAE uses a Gaussian likelihood
assumption similar to standard VAEs, and incorporates the
same mode-specific normalisation to improve feature repre-
sentation:

X — U

O-k*

X =

, with k* = arg max 7,(%) (16)

where y;(x) represents the posterior probability of x
belonging to mode k, defined as:

ﬂ'kN(x | ﬂk,o',%)
7e(x) = X > (17)
ijl ”jN(x | ”j’o-j)

The updated continuous loss for the TVAE is now:

Lcontinuous = —Eq(z|X) [10g peon (X|2)] (18)
Where:

e the equation is essentially the same as the gen-
eral VAE Equation 14 apart from the specification

log pCOH[(Xlz)

The reconstruction loss would now theoretically consist
of both the continuous and categorical components, but the
categorical part is in this case zero:

L = Lcontinuous (1 9)

And the total TVAE loss thus extends the VAE loss by
incorporating these different reconstruction objectives:

reconstruction

ETVAE = £reconstructi0n + £KL (20)

With these adaptations, TVAE ensures that any categori-
cal variables can be properly modelled, continuous variables
respect their underlying distributions, and the latent space
remains regularised, making it more suitable for tabular data
than a standard VAE.

Even though CMAPSS is fully continuous, TVAE can
still outperform a standard VAE because of its mode-specific

Corshir Saadeldin

Page 7 of 26

Generative modelling for RULs

normalisation, better feature handling, and improved train-
ing dynamics. Advantages may lie in capturing different
operational conditions of the engines more effectively in the
latent space.

2.4. Type of Regressors

The regression predicts a target output (RUL) based on
feature input, using test data to generate RUL predictions.
Comparing these predictions to the actual RULs of the
test data helps evaluate the efficiency of the regressors. By
comparing different combinations of DGM types, subset
compositions, and regressors on specific datasets, the mod-
els’ efficiency in capturing patterns and accurately predicting
RUL can be assessed.

After the subsets are generated and analysed, regressors
will be implemented for prediction modelling. The subsets
are divided into feature and target data (all columns apart
from RUL, and the RUL column, respectively) to be used as
training datasets for the regressors to learn their correlations
and subsequently set their internal parameters. Then, after
training, a regressor will generate a target RUL prediction
when it has been given a feature input of test data. Its
predictions are meant to be as minimally different to the
target data before the regressor is trained sufficiently.

Two types of regressors are chosen for this research.
Firstly, the Random Forest Regressor (RFR) [11] [4], which
is an ensemble learning method. It uses multiple decision
trees for predictions, which helps robustness and decreases
the risk of overfitting. The RFR is a common and versatile
regressor used throughout maintenance projects and can
handle non-linear data such as turbofan engine datasets.

Secondly, a convolutional neural network (CNN) [20] is
selected. A CNN performs well with time series and can
process large datasets. It uses convolutional layers to detect
trends in the feature input and find patterns.

Together, they complement one another. The RFR is re-
liable for tabular non-temporal data analysis, while a CNN is
better equipped to detect temporal and spatial patterns. They
are both adaptable to different data distributions, such as the
subsets partly generated by the chosen DGMs. Also, both
regression methods are widely used throughout PHM pre-
diction and CMAPSS research in particular, making cross-
referencing easier.

2.4.1. RFR

The Random Forest Regressor utilises multiple decision
trees to make predictions. It builds this collection of decision
trees during the training phase. Every decision tree is built
using a random sample of the training data (bootstrap data)
and, after selecting a random set of feature data at each
branch, determines the best split. The randomiser guaran-
tees uncorrelated multiple trees and mitigates overfitting. A
simple diagram of a decision tree including splits is shown
in Figure 5.

In the RFR, each individual decision tree makes its
prediction and subsequently all predicted target values are
averaged in Equation 21.

| Dataset

_— ~

\ \
OO0

Decision Tree-2 Decision Tree-N

Resuit-1 Resuit-2 Result-N

Final Result

Figure 5: Decision tree diagram [9]

M
R 1 N
$i=ar 290 Q1)
m=1
Where:

e M: The number of trees in the Random Forest.

) j)(’”)(xi): The prediction of the m-th tree for the input
vector Xx;.

o x;: The feature vector for the i-th engine-cycle pair,
ie., x; =[a;b;, ..., z;], where:

— i: The index of the sample (a specific engine
and cycle).

- a;, b, ..., z;: Features representing operational
settings and sensor measurements for that
sample.

e J;: The final predicted output, i.e., the estimated
Remaining Useful Life (RUL) for the i-th sample.

The Mean Squared Error (MSE) is then commonly used
as a split criterion. It inserts the earlier calculated means,
and its goal is to minimise the variance of the target variable
after splitting:

N
1 A
MSE = = > (v = 9" 22)
i=1
Where:

e N is the number of samples in the node.
e y, represents the true target values.
e j indicates the mean prediction for the node.

For a node ¢ being split into left #; and right t; child
nodes, the loss is calculated as follows using the MSE:

7,1 7Rl
Loss = W -MSE(t;) + W - MSE(tg) (23)

Where:

Corshir Saadeldin

Page 8 of 26

Generative modelling for RULs

e N is the number of samples in the node.
e y; represents the true target values.
e jindicates the mean prediction for the node.

Each decision tree is set to minimise this loss by updating
its parameters, improving its performance and therefore the
overall performance of the RFR.

2.4.2. CNN

Convolutional Neural Networks (CNNs) [17] are deep
learning models designed to capture spatial patterns in data.
They are particularly well-suited for feature extraction in
temporal sequences, such as time-series data. CNNs use
convolutional layers to apply filters (kernels) that slide over
the input data, identifying local patterns and creating feature
maps. This enables CNNs to automatically learn hierarchical
features, from low-level patterns to high-level abstractions,
without requiring manual feature engineering. The input to
output layer architecture is visualised in Figure 6.

Fully connected layer

Convolution layer

"F'lr,i:rr.i

Pooling layer

Classification

Feature Extraction

Figure 6: CNN layer architecture [15]

CNNs are well-suited for RUL prediction because they
can effectively analyse sensor data over several cycles to
extract complex patterns. Instead of requiring hand-designed
features, the CNN model learns to recognise the most rele-
vant trends and relationships between operational conditions
and sensor measurements for RUL prediction.

Before feeding data into the CNN, the input is pre-
processed. Each engine’s time-series data is normalised to
ensure uniform scaling across features, and sequences of
cycles are reshaped into fixed-length input windows. For
instance, data from the last # cycles of an engine can be used
to predict the RUL at the current cycle, capturing temporal
dependencies.

The prediction of the CNN is expressed as follows in
Equation 24:

y=rf(x;0) (24)
Where:

e j: The predicted Remaining Useful Life (RUL).
e f(x;0): The CNN function mapping input x to
output y, parameterised by 6.

e x: The input data representing sensor measure-
ments and operational settings for a given engine
and cycle, Xy = [aip, b,-p, e, zip], with:

— p: The engine index.

— i: The cycle index.

= Gy, bjp, ..., 2;,: Features representing opera-
tional settings and sensor measurements for
engine p at cycle i.

e 0: The learnable parameters of the CNN, including
filter weights and biases.

The CNN was trained using the Mean Squared Error
(MSE) loss function, just as the RFR. The training pro-
cess again involves minimising this loss by updating the
parameters 6 using backpropagation. This allows the CNN
to iteratively improve its ability to predict RUL based on the
patterns learned from the training data.

The architecture of the CNN implemented in this thesis
consists of two convolutional layers, each followed by ReLU
activation and max-pooling. The kernel size was set to 3,
with a stride of 1, ensuring fine-grained pattern detection.
The first layer uses 32 filters, and the second layer increases
to 64 filters, allowing for the extraction of increasingly
complex features. Dropout is applied after the convolutional
layers to prevent overfitting, and batch normalisation ensures
stable training. The final feature maps are flattened and
passed through fully connected layers to predict the RUL.

3. Results

The generational data created by the DGMs from the
Synthetic Data Vault (SDV) [26] will be analysed, including
the setup used from the Methodology Section 2. Then, the
next step of data regression is addressed, and ultimately, the
final results will be disclosed and discussed.

3.1. Hyperparameter optimisation DGMs

Hyperparameters help counteract generating issues by
providing fitting properties for a GAN to learn. Often used
hyperparameters are batch sizes, number of epochs, learning
rates, choice of optimiser, among others. The batch size
is an adjustable hyperparameter and represents the number
of samples, real or fake, to be fed to the model before
an iterative feedback update is performed. A small batch
size counters overfitting but can make the model unstable,
whereas a larger size causes the opposite. Another hyper-
parameter is the set number of epochs a GAN will have. It
signifies how many times the total training dataset is used as
input for training. If the number of epochs is low, the model
might not have had enough time to learn the data correlations
enough to generate realistic data. However, if the number of
epochs is very high, overfitting is an often-seen issue.

To establish the best batch size and epoch combination,
a generic dataset of 80% training data with 100% synthetic
data is chosen to be evaluated in different epoch-to-batch
size combinations. The training data is fed to the TVAE

Corshir Saadeldin

Page 9 of 26

Generative modelling for RULs

Batch Size
°
<

KS Statistic

0.0428

300 400
Epochs

(a) CTGAN Grid search (KS test)

13.0544

19.0211 13.5968

Batch Size
®
Wasserstein Distance

22.0800 12.8346 22.2933

1000

200 300 400
Epochs

(b) TVAE Grid search (Wasserstein)

Figure 7: Grid search results for CTGAN by KS-test and TVAE by Wasserstein hyperparameter tuning.

and CTGAN with these hyperparameter settings, after which
they will produce a dataset with a 100% volume of the orig-
inal training dataset. Since the ultimate target variable is the
RUL, that column will be optimised using the Wasserstein
and KS metric.

The Wasserstein distance calculates the cost required to
transform one distribution into another. This provides insight
into the global differences, such as mean and variance shifts,
and largely ignores small fluctuations in density.

The KS test measures the maximum difference between
the cumulative distribution functions (CDFs) of training
and synthetic data, making it sensitive to early and local
differences. Combined with other metrics, it provides a more
complete view of how well the synthetic data replicates the
training data’s properties, capturing both local and global
deviations.

The Wasserstein distance W (p, q) and KS-test D,, ,,, are
calculated using the following equations to determine their
values between a given train dataset compared to the syn-
thetic dataset created by either the CTGAN or the TVAE,
with the Wasserstein distance denoted in Equation 25 and
the KS test in Equation 26.

W(p,q) = inf / |x — y|dy(x,y) (25)
v€ll(p.9)

Where:

e W (p, q): The Wasserstein distance between the two
probability distributions p(x) and q(y).

e inf: The infimum (greatest lower bound) over all
valid transport plans.

e y: A joint distribution (also called a transport plan)
over (x, y) that defines how much "mass" is trans-
ported from x (in p) to y (in g).

e TI(p, q): The set of all joint distributions with marginals
p(x) and q().

e |x — y|: The ground cost, i.e., the "effort" or "dis-
tance" to move a unit of mass from x to y.

° / |x — yldy(x,y): The total transport cost under
plan y.

D, ,, =sup |Fn(x) - Gm(x)| (26)

Where:

e D,,: The Kolmogorov—Smirnov (KS) statistic,
which measures the maximum absolute difference
between the two empirical cumulative distribution
functions (CDFs).

e F,(x): The empirical CDF of the first sample, based
on n observations (e.g., training data).

e G, (x): The empirical CDF of the second sample,
based on m observations (e.g., synthetic or test
data).

e sup,: The supremum (least upper bound), which in
this context is equivalent to the maximum value of
the absolute difference over all values of x.

Both metrics will be utilised again for confidence inter-
vals in Subsubsection 3.2.3.

In search of the lowest possible output, a grid search
of batch size [250, 500, 1000, 2000] with a range of [10,
100, 200, 300, 400, 500] epochs is conducted. The CTGAN
outcome by KS test is shown in7a. For the TVAE, the same
grid search is executed, and the Wasserstein test results are
shown in Figure 7b.

For both the TVAE and the CTGAN, the increase of
batch size improved the score in the grid search marginally.
A lower number of epochs shows a small improvement in
score, but not enough to allow for a much higher computa-
tional time. Therefore, the combination of 300 epochs with
a batch size of 500 was set to be the default for both the
CTGAN as well as the TVAE. During the remainder of the
research, these two key hyperparameters were kept at this
value. Comparing the two DGMs to one another, their KS-
test grid search produces comparable scores. When applying
Wasserstein, the CTGAN can score lower. This is important
to keep in mind during the data validation and subsequently
the regression.

Another important hyperparameter feature is the choice
of optimiser. An optimiser controls learning rates, gradient

Corshir Saadeldin

Page 10 of 26

Generative modelling for RULs

Table 4

Hyperparameter settings for CTGAN and TVAE models.
Hyperparameter CTGAN TVAE
Epochs 300 300
Batch size 500 500
Embedding dim 128 128
Generator dim (256, 256) (256, 256)
Discriminator dim (256, 256) -
Discriminator step 1 -
Pac 10 -
L2 scale - le-5
Learning rate 2e-4 2e-4
Loss function cross entropy MSE
Optimizer Adam Adam
log frequency True -

clipping, weight decay, and momentum from previous gra-
dients. Two common optimisers are the Stochastic Gradient
Descent (SGD) and the Adam (Adaptive Moment Estima-
tion). The Adam optimiser is the most widely used one in
GAN:Ss for both the generator as well as the discriminator and
will be utilised in both the TVAE and CTGAN during the
research. Other optional hyperparameters, such as activation
functions and dropout rates, are deduced by the used DGMs
from the SDV [26] when it is calculating its metadata or kept
as default, as the most important key hyperparameters did
not significantly change the scores in Figure 7. They can be
found in Table 4.

Both the TVAE and the CTGAN can be subjected to
imposing constraints on the output. The target feature RUL
cannot be negative, and thus a constraint of a minimal output
of 0 seems logical, as might be a maximal output constraint
when inspecting the maximum RULSs in the training dataset.
However, the constraints interfere with the fully connected
layers of both DGMs and increase the computational time
drastically. Also, a well-configured DGM should generate
credible outputs in the first place. Therefore, a Min-Max
RUL constraint was abandoned.

3.2. Analysis of generated synthetic data

When a new set of synthetic data is generated, it will
be compared to the original available data that was used
by the DGMs. The composition of the subset (part training
data + part synthetic data) is noted, together with its main
characteristics such as the mean, standard deviation, min,
max, and quartiles per column.

Also, the Kolmogorov-Smirnov test (KS-test) and the
Wasserstein distance are performed to provide statistical
comparisons between the training and synthetic datasets’
distributions.

The newly generated synthetic data are analysed and
compared to one another using several metrics. The mean,
standard deviation, minima, maxima and quartiles of the
target RUL column per subset will visually give more insight
into whether its properties are realistic.

3.2.1. Descriptive validation

The newly generated data can now be compared on
multiple bases. Where a visual and statistical validation will
be discussed in Subsubsection 3.2.2 and 3.2.3 respectively,
first, a table with the most important measures per variable is
created. This includes a direct comparison between the mean
and standard deviation from the real training dataset, the
synthetic dataset generated by the CTGAN and finally the
synthetic data from the TVAE, displayed in Table 5. The full
table, including the variance, can be found in Appendix A.

Three variables are singled out and printed in bold. First
Operational setting 1, the best performing variable in terms
of standard deviation. Secondly, Sensor 14, a variable that
seemingly changes in value randomly or at least, without
a discernible pattern by the DGMs. Therefore, Sensor 14
performs the least when comparing the standard deviation
among all variables. Lastly, RUL is chosen to take a closer
look at because this variable will become key during the
regression and the following results.

It appears the DGMs can quite clearly mimic the real
data, with not only the mean close to the original but also
a comparable standard deviation. However, the following
subsections give more insight into whether the underlying
data is distributed as precisely as the data the DGMs were
trained on. RUL is more complicated to imitate because the
sequential decrease of RUL in the real data is not apparent in
the synthetic data. This means that a RUL value is connected
to the specific values on that same row from other values and
is not vertically dependent. Therefore, when one RUL col-
umn is directly compared against the original, the standard
deviation might be off.

3.2.2. Visual validation

The synthetic data can be compared visually by plot-
ting the generative data versus the original training data.
However, because the datasets consist of many variables
with separate columns, a distinction is created between first
comparing one variable at a time per KDE plot and subse-
quently combining the separate variables into a multivariate
distribution for broader analysis.

KDE plots

For specific visual validation, a couple of variables are
selected to compare the original training data to the synthetic
data. Both the worst as well as the best-performing variables
in terms of standard deviation were chosen. Apart from the
constant columns, the best is Operational setting 1, and the
least performing is found to be Sensor 14. These variables
represent the altitude and N R, respectively (see Table 1).
Together with the target variable RUL, the synthetic data of
the CTGAN is shown with the training data in Figure 8a,
Figure 8b and Figure 8c. These plots show the similarity of
the data in density to their value.

The second series of plots follows the same chosen
variables but now for the TVAE in Figure 8d, Figure 8e and
Figure 8f. Although the synthetic data is covering a similar
range of values, it does not replicate the full distribution of

Corshir Saadeldin

Page 11 of 26

Generative modelling for RULs

Table 5
Descriptive Validation of TVAE and CTGAN

Variable Real Data TVAE (Synthetic Data) | CTGAN (Synthetic Data)
Mean Std Mean Std Mean Std

Cycle 108.81 68.88 55.72 43.44 100.30 62.52

Opl 9.0e-6 3.37e-3 | -3.0e-6 2.07e-3 -4.8e-5 1.48e-3

Op2 2.0e-6 2.59e-4 | -2.2e-5 2.87e-4 2.3e-4 3.50e-4

Op3 100.00 0.00 100.00 0.00 100.00 0.00

Sensorl4 | 8143.75 19.08 8137.18 7.95 8145.38 16.95

RUL 107.81 68.88 84.73 44.45 102.25 65.78

250 . Real

100

ol
00100 —-0.0075 -0.0050 —-0.0025 00000 0.0025 0.0050
op1

00075 0.0100 8100 8150

(a) Opl (CTGAN)

. Real 0.006
@ synthetic
0.005
0.004
£ 0,003
8

0,002

0,001

Sensorl4

(b) Sensor 14 (CTGAN)

0,000

8200 8250 8300

(c) RUL (CTGAN)

3 Real
175 [synthetic 0040

003
0%
0o2s

£ oo
oo
oo

0.005

0.000

ol
~0.0100 -0.0075 -0.0050 -0.0025 00000 00025 00050 00075 0.0100 8100 8150

(d) Opl (TVAE)

(e) Sensor 14 (TVAE)

= real
B Synthetic

8200 8250 8300
sensorla

() RUL (TVAE)

Figure 8: KDE distributions for CTGAN (top) and TVAE (bottom) across different features.

the original training data at all times. Especially Figure 8a,
8b, and both KDE plots for RUL show a coarse distribution
of synthetic data versus their real data counterparts. In the
regression phase, this discrepancy will be addressed on how
it affects the ability to predict the final target variable RUL,
as these KDE plots only show one column’s variable at
once, whereas during regression whole of the data serves
as input simultaneously. Nonetheless, the KDE plots give
an intuitive means of preliminary comparison to estimate
whether a synthetic dataset has similar characteristics.

t-SNE distribution

To visualise multivariate data, t-Distributed Stochastic
Neighbour Embedding is chosen. t-SNE preserves similar-
ities between data points and is used as a two-dimensional
representation of the high-dimensional feature space of both
the real as well as synthetic datasets. The axes (Dim1 and

Dim2) have no physical meaning, but the points placed close
together mean that they are likely similar in the feature space.
Therefore, a t-SNE plot illustrates how well the approxi-
mation of the synthetic data distribution compares to the
training data. Ideally, all points would overlap, which indi-
cates alignment and successful capture of dataset patterns.
Perplexity of the t-SNE distribution adjusts the method to
focus on local or global tendencies.

A low perplexity of 5 was chosen to better highlight the
local structure of the data, revealing close alignment between
the real and synthetic distributions, as shown in Figure 9a
and 9b. These figures show emphasis on the generative
model’s ability to replicate small-scale patterns observed in
the original data.

Also, a higher perplexity value of 30 is shown in Fig-
ure 9c and 9d to provide a broader overview. These figures
show a less distinct overlap, indicating that focusing on

Corshir Saadeldin

Page 12 of 26

Generative modelling for RULs

® Real
100 5 ‘apzen! ® Synthetic |

Dim2
o

-100

-100 -50 0 50 100
Dim1

(a) t-SNE distribution CTGAN with perplexity 5

L] ® Real
§ & Synthetic

100

Dim2

-100 i

|
-100 -50 0 50 100

(c) t-SNE distribution CTGAN with perplexity 30

e Real

® Synthetic |

Dim2

-100 -50 0 50 100
Dim1

(b) t-SNE distribution TVAE with perplexity 5

. ® Real
[& Synthetic

100

Dim2

oty

|
-100 -50 0 50 100
Dim1

-100
|

(d) t-SNE distribution TVAE with perplexity 30

Figure 9: Overview of T-SNE distributions

T
Real Data
Synthetic Data |

Dim2

DIm1

(a) t-SNE distribution 10% CTGAN with perplexity 5

T
Real Data
Synthetic Data

Dim2

DIm1

(b) t-SNE distribution 10% TVAE with perplexity 5

Figure 10: t-SNE visualizations comparing CTGAN and TVAE distributions with 10% data and perplexity 5.

local structures offers a clearer assessment of the model’s
performance compared to a global approach.

To illustrate the deterioration of the dataset’s properties,
a t-SNE distribution is also conducted on a 10 % fraction
of the training data and its subsequent synthetic data to
simulate a scenario with scarce training data available. In
Figure 10a and Figure 10b, the t-SNE distribution plots of
CTGAN and TVAE generation are shown, respectively. The
synthetic data points do not overlap the real data points and
do not show an expected circle through Dim1 over Dim2.
This indicates that with such a low input of real data to train

a CTGAN or TVAE, the models are not able to grasp the
correlations of said training data to implement during their
data generation.

3.2.3. Statistical validation

When statistically validating synthetic data against the
training data, the Kolmogorov-Smirnov (KS) test and the
Wasserstein distance serve as complementary metrics to find
similarities in distribution per variable chosen in Subsubsec-
tion 3.2.2.

Apart from the grid searches, both metrics are useful for
investigating confidence intervals. The metrics are specified

Corshir Saadeldin

Page 13 of 26

Generative modelling for RULs

160 -=- Mean
™ 95% Cl

120 il 100 ™

100 g 80 ’—

“ i

Frequency
@
8
S|

Frequency

5% CI 95% Cl
] 120 ’7]
N AL

=== Mean 140 === Mean

|
60 _1

#

Frequency

r
40
40
[~ q [
20 r 1 20
_1 I
P | B — = |
0.00051 0.00052 0.00053 0.00054 1.90 195
Wasserstein Distance

(a) Opl (altitude) Wasserstein CTGAN

(b) Sensor 14 (NR,) Wasserstein CTGAN

—‘ 40 r 1
’»—l 20 "“ "j gl
j|—| -] oL '_H ’> |_|—|_!

2.00 2.05 2.10 215 0.068 0.070 0.072 0.074 0.076 0.078 0.080
Wasserstein Distance

KS Statistic

(c) RUL KS CTGAN

-- Mean 160
140 | 95% Cl

140

T 120
100 _T

9

1
8

Frequency
@
8
—
Frequency
@
8

l 60
#

w© . _‘ 7
20 y ’ﬁhﬁﬁ 20

r

-- Mean
95% Cl -

-=-- Mean
95% CI

100 7
—‘ 80 r —I

Al T

|
Frequency

a
g

s

o

0100 0102 0104 0106 0108 0110 0112
KS Statistic

14

(d) Op1 (altitude) KS CTGAN

Wasserstein Distance

(e) Sensor 14 (NR,) Wasserstein TVAE

)l
h :] “ﬂf;:f

0072 0074 0076 0078 0080 0.082
KS Statistic

15

(f) RUL KS TVAE

Figure 11: Confidence interval plots for CTGAN and TVAE using Wasserstein and KS metrics for Opl (altitude), Sensor 14

(NR,), and RUL

on validating one target variable at a time, and therefore,
just as with the KDE plots, the Wasserstein distance and
KS test show one specific variable per plot. For consistency,
again, the best and worst performing variable according to its
standard deviation, together with the ultimate target variable
to depict, respectively, Operational Setting 1, Sensor 14
(N R,) and RUL. To visualise the results of the Wasserstein
distance and KS test calculation, confidence intervals are
implemented. Both metrics are run a 1000 times and their
values are grouped and shown in a histogram of 30 bins,
shown in Figure 11a up until Figure 11f.

All plots show a desirable pyramid of bins where most
of the 1000 values are situated in the middle bins and only a
small portion on the outer edges. The values of KS are low
across all shown variables, expressing a well-performing
local distribution. For example, the bins in Figure 11a follow
the same compartmentalisation as the bins in Figure 11d,
derived from the same synthetic CTGAN dataset. Compar-
ing the Sensor 14 results in Figure 11b and Figure 1le,
the TVAE seems to have created data more resembling the
train data, compliant with the results from the KDE plots
in Subsubsection 3.2.2. However, when performing the KS
test for RUL in Figure 11c and Figure 11f, the values are
similarly low.

In Table 6 and Table 7, a selection of the most important
and plotted CI values can be found in values of Wasserstein
and KS, respectively. The values of the Wasserstein distance
for RUL differ compared to the other variables. This is to
be expected, as RUL ranges between 0 to 4004, and is
shuffled during the generational process. This gives a much
greater offset than a sensor with only a small range between

minimum and maximum. Full tables for all variables after
1000 runs are included in the appendix A, one table per
metric as well (Table 13 & Table 12).

With the generated synthetic data evaluated, we move
on to utilise it to predict and analyse RUL. First, the re-
gressors will have to be optimised, trained, and tested in
Subsection 3.3. The input datasets will also be adjusted by
establishing subsets and trimming.

Corshir Saadeldin

Page 14 of 26

Generative modelling for RULs

Table 6
Wasserstein Distance for CTGAN and TVAE
Variable CTGAN TVAE
Mean Cl Lower Cl Upper | Mean Cl Lower Cl Upper
Cycle 6.99 6.97 7.00 6.93 6.90 6.96
Opl 7.8e-4 7.8e-4 7.8e-4 1.2e-4 1.2e-4 1.2e-4
Op2 3.7e-5 3.7e-5 3.7e-5 42e-5 4.2e5 4.2e-5
Sensorl4 | 2.07 2.06 2.07 2.42 2.42 243
RUL 10.61 10.59 10.62 17.00 16.97 17.03
Table 7
KS Test for CTGAN and TVAE
Variable CTGAN TVAE
Mean CI Lower Cl Upper | Mean Cl Lower Cl Upper
Cycle 0.055 0.055 0.055 0.039 0.039 0.039
Op1l 0.190 0.190 0.190 0.025 0.025 0.025
Op2 0.049 0.049 0.049 0.075 0.075 0.075
Sensorl4 | 0.044 0.044 0.044 0.068 0.067 0.068
RUL 0.066 0.066 0.066 0.089 0.088 0.089

3.3. Hyperparameter optimisation Regressors

Most hyperparameters are set to default, as this research
is focused on the analysis of RUL results after incorporating
synthetic data. While adjusting the regressor to optimal
settings, consistency in the results is most important. The
random state of the used RFR is explicitly set to 42 (an
arbitrary number, commonly used), and only the following
hyperparameters were selected for a grid search due to their
significant impact on model behaviour.

The first key hyperparameter is min samples split, which
sets the minimum number of samples required to split an
internal node. Lower values allow for deeper trees with
smaller nodes, potentially capturing complex patterns but
increasing the risk of overfitting. Higher values result in
larger node sizes, improving generalisation but preventing
overly complex splits. The grid search explores a range
of values to balance model complexity and performance.
The Number of Estimators hyperparameter determines the
number of decision trees in the forest. Generally, increasing
the number of trees improves model performance, but also
increases computational cost. A range of values is tested to
find an optimal trade-off between accuracy and efficiency.
Finally, Max Depth controls the maximum depth of individual
trees. Deeper trees can model more intricate patterns but are
more prone to overfitting. Shallower trees may fail to capture
essential relationships in the data. The grid search evaluates
different depths to identify the ideal model capacity by fitting
the regressor on the same training data. The regressor’s pre-
dicted RUL output is then compared to the actual RUL data
using RMSE. The results of this grid search are visualised

in Figure 12a and Figure 12b, corresponding to min samples
split values of 2 and 5, respectively.

The CNN’s architecture also requires careful tuning of
hyperparameters that control its ability to extract meaningful
features from data. For this grid search, the following hyper-
parameters were chosen:

The Kernel Size determines the size of the convolutional
filter. Smaller kernels (e.g., 3) capture finer details, while
larger kernels (e.g., 5) provide a broader view, which is
useful for detecting larger patterns. Both options were ex-
plored to assess their impact on feature extraction. Also, the
Batch Size is investigated. It controls the number of training
samples processed before updating the model’s weights.
Smaller batch sizes provide more frequent updates, poten-
tially improving convergence but increasing variance. Larger
batch sizes offer more stable updates but may require longer
training times. Lastly, the Number of Filters defines the
number of filters in the convolutional layers. More filters
increase the model’s capacity to extract complex features but
add to computational cost. The grid search again explores
a range of values to find the optimal balance. Just as with
the RFR grid search, the RMSE metric is chosen as the
output value. The resulting heatmaps, shown in Figure 12¢
and Figure 12d, illustrate the model performance for Kernel
Size values of 3 and 5, respectively.

After evaluating the values in the RFR grid search, it
can be concluded that adjusting these particular key hyper-
parameters did not change the RMSE output significantly.
When utilising the Random Forest Regressor, all values are
around 15.50. For the Convolutional Neural Network, the
largest offset between values was less than 0.55, also not

Corshir Saadeldin

Page 15 of 26

Generative modelling for RULs

-15.58

-15.56

= 15.58

-15.54

15.52

15.50
15.57

Max Depth
20
\

15.48

Mean Test Score

15.46

15.44
- 15.56

None

15.42

50 100
Number of Estimators

(a) RFR Grid Search with sample split 2

-19.00

18.95

18.90

Number of Filters

18.85

18.80

18.75

Batch Size

(c) CNN Grid Search with kernel size 3

-15.56
= 15.58
-15.54

15.52

15.57 15.50

Max Depth
20
\
Mean Test Score

15.48

15.46

. 15.56 15.44

None

15.42

50 100
Number of Estimators

(b) RFR Grid Search with sample split 5

-19.2

-19.1

- 19.0

Number of Filters

- 18.9

- 18.8

Batch Size

(d) CNN Grid Search with kernel size 5

Figure 12: Grid Search RMSE results for RFR and CNN hyperparameters.

a significant indicator to choose a specific regressor setup.
Therefore, whilst trading off computational time, as well, we
chose the hyperparameter values split=2, estimators=100
and depth=20 for RFR. For the CNN, hyperparameter values
were set at kernel=3, batch=32 and filter=32 for CNN.
A more substantial overview of the key hyperparameters
for both the RFR as well as the CNN can be found in
Table 8, where the most important default hyperparameters
are included, too. While not extensively tuned, these defaults
have demonstrated good performance across various RUL
and time series prediction studies (e.g. [31] [1]).

3.3.1. K-fold validation

To ensure the robustness and reliability of the regression
models, a 5-fold cross-validation procedure was applied.
This method divides the training data into five equally sized
folds, which are each used once as a validation set, while
the remaining four folds are used for training. Therefore,
this process repeats five times. The primary objective of this
validation was to assess the regressors’ performance on their
training data before evaluating them on synthetic data. By

using cross-validation, the model’s stability across different
data splits can be confirmed.

The 5-fold cross-validation process was performed for
both the Random Forest Regressor (RFR) and the Convolu-
tional Neural Network (CNN). For each model, the average
RMSE and MAE scores were recorded across all five folds
to provide a comprehensive performance assessment.

The results of the RFR model evaluated on synthetic data
generated by CTGAN are shown in Figure 13, while the
corresponding 5-fold validation for TVAE-generated data
presented comparable results. These results illustrate that
the RFR model achieved consistent performance across all
folds, indicating stable and reliable behaviour. A similar
trend was observed for the CNN model, further supporting
the effectiveness of the trained regressors.

Corshir Saadeldin

Page 16 of 26

Generative modelling for RULs

Table 8
Hyperparameter settings for RFR and CNN models.

Hyperparameter RFR CNN
Min samples split 2 -
No of estimators 100 -
Max depth 20 -
Criterion squared error -
Min samples leaf 1 -
Max features 1.0 (all features) -
Bootstrap True -
Random state 42 -
Kernel size - (3.3)
Batch size - 32
No of filters - 32
Activation - RelLU
Pooling - MaxPooling2D (2, 2)
Dropout - 0.5
Dense layer units - 64
Optimizer - Adam
Learning rate - 0.001
Epochs - 300

RMSE Across Folds MAE Across Folds

—-- Avg RMSE: 32.33 —=- Avg MAE: 24.42
Fold RMSE Fold MAE

1 2 H 4 H 1 2 3 1] 5
Fold Fold

Figure 13: RFR 5-fold validation CTGAN

3.3.2. Subsets

After the synthetic data generation, different composi-
tions of training data and synthetic data are fed to the re-
gressors. To measure improvements on results, the following
compositions are taken into account, shown in Table 9. The
first and smallest subset depicts a scenario where training
data is scarce, consisting of only 10% of the original training
dataset. Other subsets contain 25%, 50%, 75%, and ulti-
mately 100% of only training data to establish the baseline
of the DGMs and investigate the effect of scarce data. When
sorting the subsets, the percentages concern the number of
engines. So 75% means 75 out of the 100 available engines
in the CMAPSS training dataset. The engines are chosen
randomly to counter model dependency on properties of a
specific engine.

Next, synthetic data is added to the training data. Apart
from just training data with 0%, the sizes of 50%, 100%,
and 200% synthetic data addition were chosen to inspect
the consequences, up until a dominant display of synthetic
data in the subset. The added synthetic data is generated by
DGMs trained with the same percentage of training data
as it is combined with. For instance, for all 10% training

Table 9
Various compositions of subsets

Training data percentage
10 25 50 75 100

. 0 X X X X X
Synthetic
data 50 X X X X X
ercentage 100 | x X X X X
P g 200 | x X X X X

subset combinations, all added synthetic data is generated
by DGMs fitted on just 10% of the training data. All in all,
20 different subsets are set up for regression to have their
results compared.

3.3.3. Other

After the synthetic data is generated, it is common prac-
tice to cap RUL outliers. Firstly, the final cycles of an
engine are more informative than the initial ones in terms
of degradation behaviour. Moreover, extremely high RUL
values can mislead regressors by encouraging them to treat
these anomalies as meaningful training signals. Therefore,
a standardised cap is applied, setting all RUL values above
125 to a maximum of 125. This approach was first applied
by Babu et al. (2016) [1] and later adopted in the 2017 IEEE
Conference on Prognostics and Health Management [31],
which has since become common practice in the literature.
This transformation is mathematically expressed in Equa-
tion 27:

RUL,
125,

if RUL < 125

. @7
if RUL > 125

cap(RUL) = {

This way, all RUL values greater than 125 are capped at
125 and will not exceed this threshold.

3.4. Analysis of RUL predictions

Now, the RUL predictions by these regressors are com-
pared, predicted RUL values (ypred) against actual RUL
(ytest), and the performances of the DGM-regressor com-
binations are analysed.

3.4.1. RMSE

The Root Mean Squared Error (RMSE) is a widely used
metric for evaluating the performance of regression models,
particularly in predicting the Remaining Useful Life (RUL).

RMSE = (28)

Where:

e N is the number of instances in the test set.
e y, represents the actual RUL values.
e jis the predicted RUL value.

Corshir Saadeldin

Page 17 of 26

Generative modelling for RULs

25 $ Synthetic Fraction: 0.0 r % Synthetic Fraction: 0.0
Synthetic Fraction: 0.5 28 - Synthetic Fraction: 0.5
¥ Synthetic Fraction: 1.0 L ¥ Synthetic Fraction: 1.0
241 ¥ Synthetic Fraction: 2.0 § Synthetic Fraction: 2.0
261 ¥
234 T
I m 24
2 :
224 L
21 1 % I }
201 L l 1 201] {
t ! s : .
19 { . 18+
02 04 0.6 08 10 02 0.4 06 038 10
Training Fraction Training Fraction
(a) CTGAN RMSE using RFR (b) CTGAN RMSE using CNN
5 | % Synthetic Fraction: 0.0 T % Synthetic Fraction: 0.0
Synthetic Fraction: 0.5 25 Synthetic Fraction: 0.5
¥ Synthetic Fraction: 1.0 ¥ Synthetic Fraction: 1.0
241 ¥ Synthetic Fraction: 2.0 241 ¥ Synthetic Fraction: 2.0
23] 23{ %
7
E 22

I~
[
——otm——o——

204

RMSE
N &
= [~}
- &—tt+ —e—+—

19 4

18 1

02 04 06 0.8 10
Training Fraction

(c) TVAE RMSE using RFR

02 0.4 06 08 1.0
Training Fraction

(d) TVAE RMSE using CNN

Figure 14: RMSE results for CTGAN and TVAE using RFR and CNN

The RMSE is particularly sensitive to large errors due
to its squaring and therefore gives an accurate display of a
surplus of outliers in the prediction versus the original data.

The RMSE results from all available combinations of
DGM and regressor are plotted in Figure 14. All subsets
are represented per plot, where a different symbol represents
the synthetic fraction, the x-axis shows the percentage of
training fraction, and the y-axis shows the ultimate values
in terms of RMSE. All calculations have been performed 10
times to find an overall mean and insight into any anomalies.
This is displayed by the corresponding bars, which indicate
the 95% confidence interval of the 10 trials per subset
combination.

The RMSE values after CNN regression are lower than
those by RFR. During the grid search and K-fold vali-
dation, the preliminary RMSE scores were higher when
utilising CNN, but in combination with the subset design, the
CTGAN-CNN and TVAE-CNN performances change this
around. Overall, all plots show similar trends throughout.
The model performs better with increasing training data,
which follows intuitive thinking. The appending of synthetic
data does change all RMSE outputs, but seems to do so

favourably when data is scarce and negatively if the training
data is sufficiently available. The TVAE is less prone to the
addition of synthetic data than the CTGAN: the means of
all subsets with the same training fraction are much closer
to one another in Figure 14c and 14d than Figure 14a and
14b, as well as the spread of the 10 trials resulting in lower
standard deviations. As different properties of a CTGAN are
not fully used, explained in Subsubsection 2.3.1, the TVAE
performance was expected to be better.

The CNN regressor has the overall best RMSE perfor-
mance, but the addition of synthetic data seems to worsen
its performance significantly for any training fraction. How-
ever, the use of RFR has more volatile results and larger
confidence intervals: with the CTGAN-RFR combination
specifically, a decrease of RMSE can be seen when the
synthetic fraction is increased at the small training fractions
(0.1 or 0.25). Thus, synthetic data seems to help improve
RUL prediction performance, but the results have to be
analysed thoroughly. More experiments are to be conducted
to deem these results significant, though, as well as more
specific trials and subset combinations.

Corshir Saadeldin

Page 18 of 26

Generative modelling for RULs

191 T $ Synthetic Fraction: 0.0
Synthetic Fraction: 0.5

F ¥ Synthetic Fraction: 1.0

18 ¥ Synthetic Fraction: 2.0

1]

MAE

MAE

24T % Synthetic Fraction: 0.0
Synthetic Fraction: 0.5

L ¥ Synthetic Fraction: 1.0

201 & § Synthetic Fraction: 2.0

161 T
£ % 161 L T
! { }) ; t
151 T ' : t
I f 14 4 i s i
]
Py !
02 04 0.6 0.8 10 02 0.4 06 08 1.0
Training Fraction Training Fraction
(a) CTGAN MAE using RFR (b) CTGAN MAE using CNN
194 X . 194 . .
% Synthetic Fraction: 0.0 T % Synthetic Fraction: 0.0
T Synthetic Fraction: 0.5 Synthetic Fraction: 0.5
¥ Synthetic Fraction: 1.0 181 ¥ Synthetic Fraction: 1.0
181 I ¥ Synthetic Fraction: 2.0 ¥ Synthetic Fraction: 2.0
174+ %
17 A
g g 164
16 % 154 T
| o ! i %
15 i I 1 1 1
L T 134 b
i T [))
02 04 06 0.8 10 02 0.4 06 08 1.0
Training Fraction Training Fraction
(c) TVAE MAE using RFR (d) TVAE MAE using CNN

Figure 15: MAE results for CTGAN and TVAE using RFR and CNN

3.4.2. MAE

The Mean Absolute Error (MAE) is another popular
metric for evaluating the accuracy of RUL predictions. Un-
like RMSE, MAE calculates the average of the absolute dif-
ferences between predicted and actual RUL values, provid-
ing a more straightforward measure of prediction accuracy
without heavily penalising larger errors.

N
1
MAE = — =¥ 29
N;w, i (29)

Where:

e N is the number of instances in the test set.
e y; represents the actual RUL values.
e Jis the predicted RUL value.

Therefore, MAE is more robust to outliers compared
to RMSE and gives a more balanced view of the model’s
performance.

The plots in Figure 15 are generated by the same outputs
as in Figure 14, and therefore can be compared to one

another. Firstly, the MAE results are consistently lower than
the RMSE results. This indicates that outliers in either the
real RUL data or the predicted RUL are present. Neverthe-
less, the trend in decreasing MAE as the training fraction
increases is again apparent. Also, the influence of synthetic
data addition is similar to the RMSE results, a positive
effect when training data is scarce and a negative impact
when training data is sufficiently available. Again, the TVAE
and CTGAN both perform roughly the same, but the CNN
has better results than the RFR as a regressor overall. To
give the plots more meaning, both performance metrics will
be compared to a standard data augmentation technique in
Subsubsection 3.4.3. Also, to take a deeper look into the
RMSE and MAE results, the underlying will be discussed
more in Subsubsection 3.4.4.

3.4.3. Noise

A widely used method of data augmentation, the addition
of noise, was implemented to give a more sophisticated
understanding of the behavioural changes of altered datasets.
A noise created by a Gaussian distribution as large as its
standard deviation was added to the training dataset in the

Corshir Saadeldin

Page 19 of 26

Generative modelling for RULs

26 1
¢ Noise Frac: 0.0

251 Noise Frac: 0.5
Noise Frac: 1.0
Noise Frac: 2.0

tef b

244

RMSE
N
— e -

bet—

204 I
194 . -
- + %
18 -
0.2 04 06 08 10
Training Fraction
(a) Noise RMSE using RFR
¢ Noise Frac: 0.0
19 Noise Frac: 0.5
¥ Noise Frac: 1.0
% Noise Frac: 2.0
18
171 f
1
3 e
16 l

02 04 0.6 08 10
Training Fraction

Feffpetet]
¢ be

(c) Noise MAE using RFR

¢ Noise Frac: 0.0
301 I Noise Frac: 0.5
¥ Noise Frac: 1.0
28] E % Noise Frac: 2.0
26
o)
2]
22 E
22 K}
3
204 1 ol i = 2
3 £
181 * x
02 04 06 08 10
Training Fraction
(b) Noise RMSE using CNN
28
¢ Noise Frac: 0.0
Noise Frac: 0.5
26 1 !
¥ Noise Frac: 1.0
ul ¥ % Noise Frac: 2.0
22
J]
E 201 I
18 I
16 i ; ¥
141 I
- - -
12 T r r T T
0.2 0.4 0.6 0.8 1.0

Training Fraction

(d) Noise MAE using CNN

Figure 16: RMSE and MAE results for Noise Regression using RFR and CNN

same combination setup as the earlier used subsets. Again,
10 trials were carried out to find a stable mean and stan-
dard deviation, expressed similarly to the RMSE plots in
Figure 14.

The model works as validation for the subset regression,
too. The blue round subsets with no added noise should be
similar to or equal to their blue round subsets without any
added synthetic data. The RMSE values for the CTGAN-
RFR and CTGAN-CNN are showcased in Figure 16, where
the matching trend of decreasing RMSE when increasing
the amount of training data is repeated. Also, the range
of RMSE for both the RFR and CNN outputs is the same
as for the DGMs. However, the addition of noise has not
helped lower RMSE for any subset combination. Therefore,
in terms of the RMSE metric, data augmentation by either
a CTGAN or TVAE gives better results than noise addition.
For TVAE, the same trend is visible: starting RMSE values
on par with the plots in Figure 14c and 14d, with increasing
noise fractions causing higher outcomes.

The noise regression was not only specified for RMSE,
but also gives insights into MAE as well. In Figure 16c and
16d, the noise regression with metric MAE shows the same

general trend of decreasing values when increasing the train-
ing fraction, and the increase of noise fraction causes higher
MAE values. Thus, the same conclusion can be drawn for
MAE as it is for RMSE: the use of DGMs can be helpful in
RUL prediction in comparison to simply data augmentation
methods such as noise addition. Also, the CNN shows even
more distinct results than the RFR, where the addition of
noise causes significantly worse results.

3.4.4. Residuals / Deeper insight in RMSE & MAE

To gain a deeper understanding of the regression models’
performance and the distribution of errors, the residuals are
analysed. The bar plot in Figure 18 shows the distribution
of the average residuals per training fraction. It reveals that
models trained with a low training fraction tend to system-
atically underestimate RUL, leading to more negative resid-
uals and greater spread. As the training fraction increases,
the residuals stabilise and move closer to zero, indicating
improved prediction quality.

The scatter plot confirms this pattern by displaying resid-
uals against predicted RUL, seen in Figure 17. It shows that
at higher RUL values, the spread increases, particularly for

Corshir Saadeldin

Page 20 of 26

Generative modelling for RULs

lower training fractions, suggesting heteroscedasticity. The
addition of synthetic data introduces extra variability but
does not change this fundamental pattern. The red dashed
line at zero serves as a reference, highlighting potential
systematic biases in the predictions.

Residuals vs Predicted RUL

60

%% ‘e
] °
40 4 ®
T M -
0 o \(‘.d) o Yo
201 ® Train0.1/Synth0.0 2 A e

']
Train 0.1/ Synth 0.5 L % De2)
T ol ® Tainolssynthz0 % _“_!;:_ _%__:: b f)__
2 @ Train 0.25/Synth 0.0 i’,h. 8 .)
g e Train 0.25/Synth 0.5 - iz* ‘Q.. ‘.. Coayat o
—204 @ Train0.25/Synth 2.0 x.'o -) M‘L‘ ‘}, %()
Train 0.5 / Synth 0.0 ® L, ga 5
a0 @ Train 0.5/ Synth 0.5 o) b 5{;‘)’*, q‘ J}é))
Train 0.5 / Synth 2.0 [o, ®a o0
@ Train 1.0/ Synth 0.0 ° g © u‘. -
601 ® Train1.0/syntho.5 ° L U r
Train 1.0 / Synth 2.0 %

T T T T T T T
] 20 40 60 80 100 120
Predicted RUL

Figure 17: Residual Scatter plot

Residuals by Training Fraction

==

0.1 0.25 0.5 10
Training Fraction

—25

304

—3.54

—4.04

Mean Residual

Figure 18: Residual bar plot

4. Conclusion

The conducted research aimed to evaluate the effective-
ness of synthetic data generation using CTGAN and TVAE
in combination with two distinct regression models, RFR
and CNN, for predicting Remaining Useful Life (RUL) in
the CMAPSS FDO001 dataset. By examining synthetic data
quality, assessing regression performance, and introducing
noise as a comparison method, several key findings emerged.

The generated synthetic data was evaluated using de-
scriptive statistics, visual validation, and statistical met-
rics. Across all these methods, the synthetic data generally
demonstrated characteristics closely resembling the original
training data. While both CTGAN and TVAE produced data
that aligned well with the real dataset’s mean and stan-
dard deviation, the TVAE tended to provide a more stable
distribution when combining synthetic and real data. The
CTGAN, however, performed better in terms of Wasserstein

distance, suggesting superior handling of global distribution
properties. Despite their comparable KS-test results, the CT-
GAN’s advantage in Wasserstein distance may provide more
robust data for regression tasks, especially when smaller
subsets of training data are used.

Noise-based data augmentation served as a baseline
comparison to synthetic data generation. Results indicated
that noise addition generally worsened RMSE and MAE
scores across all subsets. This outcome emphasises that data
generated via CTGAN or TVAE provides a more effec-
tive augmentation strategy than noise alone. Both the noise
regression plots and the performance of DGMs in data-
scarce scenarios further show the value of synthetic data for
improving predictive accuracy when limited training data is
available.

After a robust regression across multiple subsets while
maintaining reasonable computational costs, the analysis
of RMSE and MAE revealed consistent trends across both
metrics:

e Increasing the training fraction consistently improved
model performance (lower RMSE and MAE).

e Synthetic data marginally enhanced performance when
real data was limited (e.g., 10% or 25% training data).

e When combined with larger training fractions (e.g.,
75% or 100%), synthetic data hindered performance.

o TVAE’s performance was less sensitive to the addition
of synthetic data compared to CTGAN.

e Inall cases, CNN outperformed RFR, achieving lower
RMSE and MAE scores.

e Opverall, synthetic data is most beneficial when data
scarcity is a concern. When sufficient real data is avail-
able, the addition of synthetic data offers diminishing
or even adverse effects.

The research demonstrates that combining synthetic data
generation with regression models can offer meaningful
improvements when training data is limited. The CTGAN’s
superior Wasserstein distance results suggest stronger global
alignment with the training data, making it preferable for
scenarios where broader distribution accuracy is essential.
Meanwhile, the TVAE’s stability across data compositions
makes it a robust option when a balanced approach is re-
quired.

Future work could be to further delve into better ac-
commodating and training GANs and VAEs for a specific
dataset, such as FDOO1. Also, more exploration of other
generative models (e.g., Diffusion Models [10], specialised
time-series models [18], Normalising Flows [21]) and as-
sessment of their potential value for prognostics tasks could
prove interesting. Also, better integration of domain knowl-
edge during the pre-processing of the data to guide the gen-
eration process may enhance realistic properties and utility
purposes of the synthetic data further.

Corshir Saadeldin

Page 21 of 26

Generative modelling for RULs

References

[1]

[2]

[3]

[4]
[5]

[7]

[8]

[10]

[11]

[12]
[13]
[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

Babu, G.S., Zhao, P., Li, X., 2016. Deep convolutional neural network
based regression approach for estimation of remaining useful life,
in: Annual Conference of the Prognostics and Health Management
Society 2016.

Bank, D., Koenigstein, N., Giryes, R., 2020. Autoencoders. URL:
https://arxiv.org/abs/2003.05991, d0i:10.48550/ARXIV.2003.05991.
Baptista, M., Goebel, K., Henriques, E., 2022. Relation between
prognostics predictor evaluation metrics and local interpretability
shap values. Artificial Intelligence 306, 103667. doi:10.1016/j.
artint.2022.103667.

Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P.A., Li, S.Z., 2022. A
survey on generative diffusion model. arXiv e-prints URL: https:
//arxiv.org/abs/2209.02646, d0i:10.48550/ARXIV.2209.02646.
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta,
B., Bharath, A.A., 2018. Generative adversarial networks: An
overview. IEEE Signal Processing Magazine 35, 53—65. doi:10.1109/
MSP.2017.2765202.

Frederick, D., de Castro, J., Litt, J., 2007. User’s Guide for the Com-
mercial Modular Aero-Propulsion System Simulation (CMAPSS).
Technical Report. NASA. Available online: https://ntrs.nasa.gov/
citations/20070034949 (accessed on 30 September 2021).
Goodfellow, 1.]., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial
nets. stat 1050, 10.

Ha, V., 2023. Experimental study on remaining useful life prediction
of lithium-ion batteries based on three regressions models for electric
vehicle applications. Preprints doi:10.20944/preprints202306.0999.
vl.

Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33,
6840-6851. URL: https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584afod96effd7fcla54b38-Paper. pdf.

Ho, T.K., 1995. Random decision forests, in: Proceedings of the
3rd International Conference on Document Analysis and Recognition,
IEEE. pp. 278-282.

Kim, N.H., An, D., Choi, J.H., 2017. Prognostics and health manage-
ment of engineering systems. Springer.

Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 .

Kolmogorov, A.N., 1933. Sulla determinazione empirica di una legge
di distribuzione. Giornale dell’Istituto Italiano degli Attuari 4, 83-91.
Kumar, P., Pooja, Chauhan, N., Chaurasia, N., 2023. A vision-
based pothole detection using cnn model. SN Computer Science 4.
doi:10.1007/542979-023-02153-w.

Lazarova-Molnar, S., Niloofar, P., Barta, G., 2020. Data-driven fault
tree modeling for reliability assessment of cyber-physical systems, in:
Proceedings of the 2020 Winter Simulation Conference (WSC), pp.
2719-2730. doi:10.1109/WSC48552.2020.9383882.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE
86, 2278-2324.

Lim, B., Zohren, S., 2021. Deep learning for time series forecast-
ing: A survey. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 379, 20200207.
doi:10.1098/rsta.2020.0207.

Van der Maaten, L.J.P., Hinton, G.E., 2008. Visualizing high-
dimensional data using t-sne. Journal of machine learning research
9, 2579-2605.

O’shea, K., Nash, R., 2015. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458 .

Rezende, D.J., Mohamed, S., 2015. Variational inference with nor-
malizing flows. International Conference on Machine Learning 37,
1530-1538. URL: http://proceedings.mlr.press/v37/rezendel5.pdf.
Rodrigues, L.R., Yoneyama, T., Nascimento, C.L., 2012. How aircraft
operators can benefit from phm techniques, in: 2012 IEEE Aerospace
Conference, pp. 1-8. doi:10.1109/AER0.2012.6187376.

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

Rosenblatt, M., 1956. Remarks on some nonparametric estimates of
a density function. Annals of Mathematical Statistics 27, 832—-837.
Saxena, A., Goebel, K., 2008. Turbofan engine degradation
simulation data set. NASA Ames Prognostics Data
Repository URL: https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/.

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on image data
augmentation for deep learning. Journal of big data 6, 1-48.
Synthetic Data Vault (SDV) Project, 2024. Sdv: Synthetic data
generation for machine learning. URL: https://sdv.dev/. accessed:
2025-02-17.

Van Dyk, D.A., Meng, X.L., 2001. The art of data augmentation.
Journal of Computational and Graphical Statistics 10, 1-50.

Villani, C., 2008. Optimal transport: old and new. Springer Science
& Business Media.

Xu, L., Lei, S., Vzaimosvyaz, K., 2019a. Modeling tabular data using
conditional variational autoencoder. arXiv preprint arXiv:1907.00503

Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.,
2019b. Modeling tabular data using conditional gan, in: Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett,
R. (Eds.), Advances in Neural Information Processing Systems, pp.
7339-7349.

Zheng, S., Ristovski, K., Farahat, A., Gupta, C., 2017. Long short-
term memory network for remaining useful life estimation, in: 2017
IEEE International Conference on Prognostics and Health Manage-
ment (ICPHM), IEEE. pp. 1-7.

Corshir Saadeldin

Page 22 of 26

Generative modelling for RULs

A. Appendix
A.1. Descriptive validation tables

Corshir Saadeldin Page 23 of 26

Generative modelling for RULs

Table 10
Full descriptive validation CTGAN
Variable | mean Real std Real var Real mean Synthetic std Synthetic var Synthetic
Cycle 108.807862 6.888099e+01 4.744591e+03 100.299792 6.251703e+01 3.908379e+03
Opl -0.000009 2.187313e-03 4.784340e-06 -0.000048 1.475783e-03 2.177936e-06
Op2 0.000002 2.930621e-04 8.588541e-08 0.000231 3.496139e-04 1.222299e-07
Op3 100.000000 0.000000e+00 0.000000e+00 100.000000 0.000000e+00 0.000000e+00
Sensorl 518.670000 6.537152e-11 4.273435e-21 518.670000 6.537152e-11 4.273435e-21
Sensor2 642.680934 5.000533e-01 2.500533e-01 642.722626 4.265636e-01 1.819565e-01
Sensor3 1590.523119 6.131150e+00 3.759099e+01 1590.927466 6.810537e+00 4.638342e+01
Sensor4 1408.933782 9.000605e+00 8.101089e+01 1408.054137 8.647853e+00 7.478536e+01
Sensor5 14.620000 3.394700e-12 1.152399e-23 14.620000 3.394700e-12 1.152399e-23
Sensor6 21.609803 1.388985e-03 1.929279e-06 21.609928 8.430523e-04 7.122554e-07
Sensor7 553.367711 8.850923e-01 7.833883e-01 553.515977 8.073305e-01 6.517825e-01
Sensor8 2388.096652 7.098548e-02 5.038938e-03 2388.087815 6.673351e-02 4.453361e-03
Sensor9 9065.242941 2.208288e+01 4.876536e+02 9064.615385 1.984636e+01 3.938778e+02
Sensorl0 | 1.300000 4.660829e-13 2.172333e-25 1.300000 4.660829e-13 2.172333e-25
Sensorll | 47.541168 2.670874e-01 7.133568e-02 47.521325 2.553851e-01 6.522153e-02
Sensorl2 | 521.413470 7.375534e-01 5.439850e-01 521.506963 8.370096e-01 7.005850e-01
Sensorl3 | 2388.096152 7.191892e-02 5.172330e-03 2388.075943 7.364034e-02 5.422899e-03
Sensorl4 | 8143.752722 1.907618e+01 3.639005e+02 8145.383295 1.694860e+01 2.872550e+02
Sensorl5 | 8.442146 3.750504e-02 1.406628e-03 8.445521 4.939359e-02 2.439727e-03
Sensorl6 | 0.030000 1.556432e-14 2.422479e-28 0.030000 1.556432e-14 2.422479e-28
Sensorl7 | 393.210654 1.548763e+00 2.398667e+00 393.007222 1.534131e4+00 2.353559e+00
Sensorl8 | 2388.000000 0.000000e+00 0.000000e+00 2388.000000 0.000000e+-00 0.000000e+00
Sensorl9 | 100.000000 0.000000e+00 0.000000e+00 100.000000 0.000000e+-00 0.000000e+00
Sensor20 | 38.816271 1.807464e-01 3.266927e-02 38.834747 1.677327e-01 2.813425e-02
Sensor21 | 23.289705 1.082509e-01 1.171825e-02 23.291030 1.080587e-01 1.167668e-02
RUL 107.807862 6.888099e+01 4.744591e+03 102.253550 6.578449e+01 4.327599e+03
Table 11
Full descriptive validation TVAE
Variable mean Real std Real var Real mean Synthetic std Synthetic var Synthetic
Equipment | 51.506568 1.922703e+01 8.542545e+02 78.201541 1.962570e+01 3.851676e+02
Cycle 108.807962 6.888099e+01 4.744591e+03 55.716440 4.343902e+01 2.414661e+03
Opl 0.000009 3.373713e-03 4.748340e-06 -0.000003 2.068468e-03 4.278550e-06
Op2 0.000002 2.593062e-04 8.588541e-08 -0.000022 2.872634e-04 8.252028e-08
Op3 100.000000 0.000000e+00 0.000000e+-00 100.000000 0.000000e+-00 0.000000e+00
Sensorl 518.670000 6.537152e+11 4.273435e-21 518.670000 6.537152e-11 4.273435e-21
Sensor2 642.680934 5.000533e+01 2.500533e+01 642.621655 3.049414e-01 9.298924e-02
Sensor3 1590.523119 6.131150e4+00 3.759099e+01 1590.144743 3.544630e+00 1.256404e+01
Sensor4 1408.933782 9.000605e+00 8.101068e+01 1408.334849 5.429744e4+00 2.948212e+01
Sensor5 14.620000 3.394700e-12 1.152398e-23 14.620000 3.394700e-12 1.152398e-23
Sensor6 21.609803 1.388985e-03 1.929279e-06 21.610000 9.702696e-12 9.414231e-23
Sensor7 553.367711 8.850923e-01 7.833883e-01 553.415078 5.799003e-01 3.362844e-01
Sensor8 2388.096652 7.098548e-02 5.038938e-03 2388.096823 4.960659e-02 2.460814e-03
Sensor9 9065.242941 2.208288e+01 4.876536e+02 9056.169373 7.730767e+00 5.976477e+01
Sensor10 1.300000 4.660829e-13 2.172333e-25 1.300000 4.660829e-13 2.172333e-25
Sensorll 47.541168 2.670874e-01 7.133568e-02 47.525806 1.657651e-01 2.747808e-02
Sensor12 521.471470 7.375534e-01 5.439850e-01 521.470767 4.473883e-01 2.001563e-01
Sensorl3 2388.096652 7.098548e-02 5.038938e-03 2388.096823 4.960659e-02 2.460814e-03
Sensorl4 8143.752722 1.907618e+01 3.639005e+02 8137.178497 7.947285e+00 6.315933e+01
Sensor15 8.442146 3.750504e-02 1.406628e-03 8.436551 2.293593e-02 5.260567e-04
Sensorl6 0.030000 1.556432e-14 2.422479e-28 0.030000 1.556432e-14 2.422479e-28
Sensorl7 393.210654 1.548763e+00 2.398667e+00 393.091464 6.626379e-01 4.390890e-01
Sensor18 2388.000000 0.000000e+00 0.000000e+00 2388.000000 0.000000e+-00 0.000000e+00
Sensor19 100.000000 0.000000e+00 0.000000e+00 100.000000 0.000000e+00 0.000000e+00
Sensor20 38.816271 1.807464e-01 3.266927e-02 38.814986 1.321085e-01 1.745266e-02
Sensor21 23.289765 1.082059e-01 1.171825e-02 23.293768 6.633278e-01 4.400038e-03
RUL 107.807862 6.888099e+01 4.744591e4+03 84.729049 4.445125e+01 1.975913e+03

Corshir Saadeldin

Page 24 of 26

Generative modelling for RULs

A.2. Statistical validation tables

Corshir Saadeldin Page 25 of 26

Table 12

Full Wasserstein Distance Results for CTGAN and TVAE

Generative modelling for RULs

Variable CTGAN TVAE
Mean Cl Lower Cl Upper | Mean Cl Lower Cl Upper

Cycle 6.986 6.966 7.005 6.928 6.895 6.961
Opl 0.001 0.001 0.001 0.000 0.000 0.000
Op2 0.000 0.000 0.000 0.000 0.000 0.000
Op3 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl 0.000 0.000 0.000 0.000 0.000 0.000
Sensor2 0.043 0.043 0.043 0.023 0.023 0.023
Sensor3 0.961 0.959 0.963 0.276 0.274 0.277
Sensor4 1.219 1.217 1.220 0.379 0.378 0.381
Sensor5 0.000 0.000 0.000 0.000 0.000 0.000
Sensor6 0.002 0.002 0.002 0.002 0.002 0.002
Sensor7 0.321 0.321 0.322 0.286 0.286 0.287
Sensor8 0.014 0.014 0.014 0.012 0.012 0.012
Sensor9 4.538 4.533 4.543 2.264 2.257 2.270
Sensorl0 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensorll | 0.044 0.044 0.044 0.010 0.010 0.010
Sensorl2 | 0.258 0.257 0.258 0.132 0.131 0.132
Sensorl3 | 0.014 0.014 0.014 0.008 0.008 0.008
Sensorl4 | 2.065 2.061 2.069 2.424 2.418 2.431
Sensorl5 | 0.009 0.009 0.009 0.003 0.003 0.003
Sensorl6 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl7 | 0.199 0.199 0.199 0.167 0.167 0.167
Sensorl8 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl9 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensor20 | 0.034 0.034 0.034 0.009 0.009 0.009
Sensor21 | 0.008 0.008 0.008 0.007 0.007 0.007
RUL 10.606 10.590 10.623 16.999 16.965 17.033

Corshir Saadeldin

Page 26 of 26

Table 13

Full KS Test Results for CTGAN and TVAE

Generative modelling for RULs

Variable CTGAN TVAE
Mean Cl Lower Cl Upper | Mean Cl Lower Cl Upper

Cycle 0.055 0.055 0.055 0.039 0.039 0.039
Op1 0.190 0.190 0.190 0.025 0.025 0.025
Op2 0.049 0.049 0.049 0.075 0.075 0.075
Op3 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl 0.000 0.000 0.000 0.000 0.000 0.000
Sensor2 0.048 0.048 0.048 0.023 0.023 0.023
Sensor3 0.085 0.085 0.085 0.022 0.022 0.022
Sensor4 0.065 0.065 0.065 0.019 0.019 0.019
Sensorb 0.000 0.000 0.000 0.000 0.000 0.000
Sensor6 0.065 0.065 0.065 0.060 0.060 0.061
Sensor7 0.062 0.062 0.062 0.059 0.059 0.059
Sensor8 0.044 0.044 0.044 0.040 0.040 0.040
Sensor9 0.152 0.152 0.152 0.045 0.044 0.045
Sensorl0 | 0.007 0.007 0.007 0.004 0.004 0.004
Sensorll | 0.095 0.095 0.095 0.017 0.017 0.017
Sensor12 | 0.052 0.052 0.052 0.018 0.018 0.018
Sensorl3 | 0.052 0.052 0.052 0.033 0.033 0.033
Sensorl4 | 0.044 0.044 0.044 0.068 0.067 0.068
Sensorl5 | 0.050 0.050 0.050 0.023 0.023 0.023
Sensorl6 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl7 | 0.064 0.064 0.064 0.036 0.036 0.036
Sensorl8 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensorl9 | 0.000 0.000 0.000 0.000 0.000 0.000
Sensor20 | 0.086 0.086 0.086 0.023 0.023 0.023
Sensor21 | 0.037 0.037 0.038 0.023 0.023 0.023
RUL 0.066 0.066 0.066 0.089 0.088 0.089

Corshir Saadeldin

Page 27 of 26

31

This Literature Study has been
completed and graded as part of the
Master’s Program requirements.

33

Literature Study

Introduction

The opportunities for data augmentation in the field of prognostics and health management (PHM)
are studied in this thesis Kim et al., 2017, especially the use of deep learning methods Deng, Yu, et
al., 2014 for data generation. In this project, generative data techniques are investigated on how they
augment data sets for predictive models and on how the different generative techniques compare to
each other. In preparation for this thesis, a preliminary literary review was conducted in the field of PHM
and generative modelling. The literature study ensures that the work will be novel and not performed
before.

PHM in aviation is covered in chapter 2. The document describes different sorts of applicable mainte-
nance and how they relate and differ from one another. The isolation of the end-of-life (EoL) points and
the health of systems are discussed in chapter 2 as well. In section 2.3 health monitoring trajectories
and their characteristics (monotonicity vs non-monotonicity, trendability, prognosability) are addressed
Baraldi et al., 2018. Furthermore, the major causes of the lack of data quality are also addressed
in chapter 2, followed by an explanation of the importance of data quality in PHM. Consequently, the
importance of quality in data generation is addressed as well Jain et al., 2020.

Next, data augmentation will be explored in chapter 3 Van Dyk and Meng, 2001 Shorten and Khosh-
goftaar, 2019. Several techniques are considered, each with its specificities, disadvantages, and ad-
vantages. Furthermore, chapter 3 will focus on the field of data generation and the existing generative
modelling techniques. Different generative models are mentioned, including Hidden Markov models,
Bayesian networks, and Latent Dirichlet Allocation. Also, four deep generative techniques are discussed
in depth in section 3.2: namely, the generative pre-trained transformer (GPT), autoencoder (AE),
variational autoencoder (VAE), and generative adversarial network (GAN) Q. Zhu and Luo, 2022
Bank et al., 2020 Creswell et al., 2018.

In chapter 6, the problem statement and research for this thesis are presented. First, the research gap
in this field of research is discussed as well as the objective of this thesis. The research question and
its sub-questions can also be found in chapter 6 as well as the underlined objective.

Next, the approach is described in chapter 5. Here the methodology on how to achieve the goals set in
the problem statement can be found. The planning on when these goals should be achieved is presented
in section 5.2. The goals include the mid-term meeting, the "Research Methodology” course deadline,
and the Green Light. This is visualised in a calendar and a Gantt chart.

Finally, in chapter 7 there is the conclusion on the literature study. This includes future recommendations
and a final reflection.

35

Prognostics & health management

In the field of machinery, maintenance is essential to provide safe conditions while disrupting produc-
tivity as little as possible Saltoglu et al., 2016. In aviation, maintenance can be implemented using the
technology of PHM, a discipline that strives to schedule repairs or preventive measures by the means
of prediction.

2.1. Maintenance in aviation

Most components in aviation are subject to maintenance, whether it is an aircraft valve, a fuselage part,
or cylinders in an engine. In Figure 2.1, a common differentiation of maintenance is shown in a diagram
ToolSense, 2023 Rodrigues et al., 2012.

Maintenance Strategies

Corrective Preventive Predictive

Maintenance Maintenance

Maintenance

Figure 2.1: Maintenance strategies in aviation

The majority of maintenance activity can be described by the following strategies:

» Corrective maintenance
* Preventive maintenance
* Predictive maintenance

Corrective maintenance entails the repair of damaged systems. It only happens after a problem has
been found. Even though inspections are scheduled and the run-to-failure (RTF) can be anticipated, the
repair itself is not. Therefore, corrective maintenance has a reactive approach. The corrective repair
can be from just restoring the system to operation to disassembling and rebuilding the system in total.

37

38 2. Prognostics & health management

A benefit of reactive maintenance is the reduction of planning due to its unscheduled nature, and the
simplification of the process by only intervening after the failure. A disadvantage is the difficulty to predict
and prepare for failures as well as the lack of safety when a component or system fails during operation.

Another alternative strategy to corrective maintenance is preventive measures to keep systems in ser-
vice. While reactive maintenance lets the failures occur first preventive maintenance action is taken to
prevent failures. Preventive maintenance can be achieved by time-based or usage-based routine, by
scheduled examination of a specific system’s condition IBM, 2023.

Repair based on time, usage, or another fixed quantity of time can be seen as predetermined mainte-
nance. Instead of focusing on the performance of a system, scheduled repairs are programmed. These
schedules are mostly based on thresholds based on statistical knowledge, assuming that the system
will perform satisfactorily until the predetermined repair event. This type of maintenance reduces plan-
ning since there are predetermined repair dates and minimises time and resources during the predictive
maintenance stage.

Another type is predictive maintenance. This focuses more on finding the moment of failure of a sys-
tem and how to solve the extension of its life cycle. In this field of maintenance, new methods are
developed to better anticipate the behaviour of the maintained system with increasing precision. The
following section 2.2 is dedicated to this type of maintenance. The noted types of maintenance and their
(dis)advantages are listed in Table 2.1.

Table 2.1: Advantages and disadvantages of maintenance

\ Example Advantages Disadvantages
Reactive Replacement of broken parts Reduced planning Difficult to predict
Simple process Safety issues

Helpful for non-critical parts

Predetermined Repair scheduled on time or usage ~ Reduced Planning Not tailored
Easy to implement on larger scale Rigid

Predictive Smoke detection Decrease of downtime Real-time monitoring
Tailored Uncharted technology
Accurate prognostics

2.2. Predictive maintenance

Another type of maintenance utilises the state of a system as an indication for repair. When the condition
of an observed system is taken into account coupled with predictive algorithms, it is called predictive
maintenance. Through observation, data analysis, and other types of inspection an assessment is
made. Either the system must be repaired or scheduled for a new moment of inspection. Sensors
help find system conditions that are out of the ordinary and require maintenance. A small example is
smoke detectors: the detection of smoke is a change of conditions causing an alarm and subsequent
maintenance procedures such as turning on sprinklers.

This type of maintenance is beneficial to systems that can be observed full-time. With integrated sen-
sors that check the status of such a system at all times, the overall downtime is generally lower. This
consequently results in higher productivity. However, predictive maintenance involves more cost than
the aforementioned types. The system has to be observed all the time instead of at predetermined mo-
ments or just when it is not working anymore and the fix must be available as well to enjoy the noted
advantages of this type.

Predictive maintenance can also be more data-driven. By analysing data from the observed system as
well as model-based data from comparable situations a prediction on when to intervene can be produced.

Predicting the moment of failure is the maintenance discipline that contains the discipline of PHM. The
time predicted until failure is described as remaining useful life (RUL). To predict the RUL and thus the
time frame for intervening, PHM uses modelling to represent and find useful information in the available
data. Prognostics can be categorised as physics-based prognostics, data-based prognostics, or a hybrid

2.3. Health monitoring trajectories 39

combination of the two. Here physics-based prognostics use data from physical hand-built models and
data-based prognostics stem directly from the data Schwabacher, 2005.

2.3. Health monitoring trajectories

When performing predictive maintenance, monitoring the health of the operated systems is important.
To predict when failure will occur and consequently plan maintenance before the occurrence, health
monitoring trajectories are obtained. These trajectories help visualise the degradation of systems and
help establish the RTF and RUL. Several characteristics of the trajectory can describe how the respective
system behaves. Features such as monotonicity, trendability, and prognosability are defined to give
more insight into what their properties tell about the investigated system Baptista et al., 2022.

2.3.1. Monotonicity

Monotonicity is a property or a function that describes how strictly a system behaves as its input values
increase or decrease. A trajectory is considered monotonic when it is always increasing, or always
decreasing whilst variable input is changed (in one direction). So if a strictly monotonic function is
visualised by a graph, its output will always move only up or only down as its input values change to the
right or just to the left.

A function is said to be monotonically increasing if, for all values of the input variable, as the input
increases, the output either stays the same or increases. More formally, a function f(x) is monotonically
increasing if for all x1 and x2 such that x2 > x1, we have f(x2) = f(x1). Similarly, a function is said
to be monotonically decreasing if, for all values of the input variable, as the input increases, the output
either stays the same or decreases. More formally, a function f(x) is monotonically decreasing if for all
x1 and x2 such that x1 < x2, we have f(x1) = f(x2).

sng(xj(k+1) — xj(k))
N;—1

2.1)

14
monotonicity = MZ Z
=1 k=1

The monotonicity equation is displayed in Equation 2.1. The mean of M trajectories is multiplied by the
absolute differences between these trajectories divided by the number of observations Coble and Hines,
2009. Examples to illustrate monotonicity are: the function f(x) = x? is a monotonic function because
it consistently increases as its input values (x) increase. The function g(x) = 1/x is also monotonic,
but it consistently decreases as its input values increase. However, when taking positive values in the
range [0 : 1], this is reversed.

On the other hand, non-monotonicity refers to a function that does not have a consistent pattern of
increase or decrease while changing its variable in one direction. For example, oscillations such as
sinuses are non-monotonic functions as they have turning points where the function changes direction
as are f(x) = x3 and f(x) = x5, etc.

A value of 1 for monotonicity is called strictly monotonic whereas a value of 0 is defined as non-
monotonic. This is an important property in mathematics and science. This also holds for optimisation
and statistics, as it helps us understand the behaviour of functions to better predict their values. In
Figure 2.2 the aforementioned equations are shown to give a visualisation.

| & & sng(x (k+1)—x,(k))
HZ,Z N —]

J

monotonicity =

Figure 2.2: Four basic (polynomial) functions

40 2. Prognostics & health management

2.3.2. Trendability

This feature is used to measure how much a predictor of a system’s degradation shows the same trend
throughout multiple trajectories for that system. This way the similarity between all the health monitoring
trajectories is quantified. Therefore, trendability is very useful for explaining this kind of trajectory data
Rigamonti et al., 2016.

trendability = m}cn |corr(xj,xk)|j, ke{1,.., M} (2.2)
J,

The trendability equation also ranges between 0 and 1, with 1 setting the predictor as absolutely right
and 0 making the predictor unreliable for discovering resemblances. The absolute value of correlation
(corr(xj, xi)) between trajectories is computed between them all and ultimately the minimum value of
all those is chosen, as shown in Equation 2.2. Naturally, trendability shows how similar the featured
trajectories are compared to each other and then the least comparable values are chosen. For example,
if in Figure 2.2 all functions would be seen as trajectories the largest difference between output is at
x = —2 between x? and x3. This would then be the least similar data point between trajectories.

2.3.3. Prognosability

Lastly, prognosability is useful for measuring the anticipated moment of failure. It utilises the standard
deviation (std, dev(xj(Nj))) and subsequently the variation of a health monitoring trajectory to find a value
to quantify the degree of prognosability Rigamonti et al., 2016. This is described in Equation 2.3.

std, dev(xj(Nj))
mean |xj(1) — x]-(Nj)|

prognosability = exp (—),j €{0,1,.., M} (2.3)

Again, the equation of prognosability ranges between 0 and 1, with 1 setting the prognoses of failure
for all tested systems at the same time, namely, their EoL is similar. The value of 0, however, means
that the moments of failure are very different for all tested and compared systems thus complicating
prognostics.

2.4. Data quality

Model-based prognostics, data-based prognostics, and hybrid forms are all dependent on collected input
data. To ensure results that are verified and validated, this input data must be of satisfactory quality.
Also, there must be enough data to train a model to avoid problems such as overfitting. Several problems
encountered in guaranteeing the quality of data can be insufficient sensor data, missing data, economic
restrictions, lack of quality, and others Duffuaa and Ben1Daya, 1995 Lesage and Dehombreux, 2012.

2.4.1. Insufficient sensor data

As the main source of data, sensors are important for data quality. However, when using sensors differ-
ent challenges can arise. Instalment of the sensors is performed in logical places to optimise the amount
of data input, its produced data is still a simplified metric of reality. A common source of insufficient sen-
sor data is just the lack of sensors installed or operating at the same time. This naturally causes a lack
of sensor data, or at least insufficiently.

Where sensors are operated to monitor and maintain a process or system, they are also subjected to
wear and tear, deficiencies, and other causes that require maintenance. During the downtime of sensors
during maintenance no reliable data can be expected. Perhaps the acquired data before discovering
malfunctioning sensors must also be discarded. Another cause of insufficient data by sensors can be
the difficulties encountered when collecting, merging, and preparing the data from different sensors and
their different outputs. This would not be likely in custom systems or products by a sole manufacturer.
However, end products that combine different types of sensors could produce outputs that are not directly
compatible or easy to interpret.

2.4. Data quality 41

2.4.2. Missing data

Closely related to insufficient data by sensors is missing data. While technically lack of data by sensors
can be seen as missing as well, this may also occur in other situations. Requested data might not be
available as input for systems that are not used professionally yet. Also testing data for extremely rare
situations might be difficult to come by.

Another reason for missing data could be cost-driven. Testing thoroughly is expensive both in time as
well as in financial measures. This applies throughout all industries but aviation might stand out even
more. First, the consequences of failure are likely to be very harmful. So, to ensure safety as much
as possible elaborate testing is compulsory. Secondly, creating a test space that replicates the real
circumstances can also be a tedious and costly process. Both make testing in the field of aeronau-
tics much more expensive, resulting in only testing what is relevant for the modelling at hand. Further
investigations or follow-up tests are therefore not handed abundant test data to choose from.

2.4.3. Obsolete data

The next cause for data not being reliable is the sheer lack of quality not by circumstances as described
in the aforementioned paragraphs but by becoming obsolete to new methods and techniques used in
maintenance. Data that was harvested and used for models a decade ago might not be compatible or
useful to newly developed models nowadays, e.g. through the other use of variables or differently set
parameters.

In aviation, many aspects are monitored and maintained by one of the types of maintenance mentioned
just as in other industries. But aviation has several difficulties that others might not encounter. E.g.
testing the end product in a true-to-life environment is difficult and very costly. Furthermore, safety is
critical whereas a failure of a system in an aircraft might prove to be directly catastrophic. The latter
difficulty makes scrutinous testing obligatory while the former suggests that generating an abundance
of real test data is next to impossible.

To be able to test as much and as well as possible other ways of generating reliable data are researched.
One of the methods to procure more useful data is an analysis technique called data augmentation (DA)
which will be further elaborated on in chapter 3. During this thesis, that area of data prognostics will be
researched more in-depth.

In Figure 2.3 a simple compass is shown. On the x-axis, data quality is described from range [—1 : 1],
—1 being very poor and 1 sublime. On the y-axis, a sufficient amount of data is shown, again from range
[-1 : 1], —1 being non-sufficient and 1 perfect. If your data set would be located in the lower left plane
of the diagram, this means that the data set scores low in both sufficiency as well as quality. Upper left
and lower right planes only are satisfactory in one of the characteristics. So, ultimately a proper data
set to train a model with should be ranked in the upper right plane, preferably as close to the corner as
possible. In this case, the blue dot represents such an outcome.

42 2. Prognostics & health management

°
Sufficinet data ~

(o]

1 Data Quality 1

Figure 2.3: Data quality compass

Data augmentation

For the modelling in PHM, valid data are essential. As mentioned in chapter 2, some end products in
aviation cannot always be tested until failure due to cost and safety conditions while actual failures during
operation are disastrous. Therefore other approaches should be investigated. In data analysis, different
techniques under the name of data augmentation can help provide data that is not easily retrievable
by physical testing. The task of data augmentation is to take translational invariances in data sets and
overcome issues such that the resulting models will have reliable outputs despite any challenges Van
Dyk and Meng, 2001 Shorten and Khoshgoftaar, 2019 Xie et al., 2020.

Apart from providing larger datasets, data augmentation is also helpful in the prevention of overfitting,
improving the accuracy of results, and operating a raw dataset.

Data augmentation normally uses existing data to augment at such a level that it can be fed into a
prognostic model and produce effective results. It is used in several processes today already. For
instance in signal processing and imaging but also in speech recognition.

3.1. Data augmentation techniques

To visualise the different data augmentation techniques and their subsequent methods to produce ef-
fective prognostic models, the diagram in Figure 3.1 is created.

Data Augmentation

Stafistical data Experimental data Data generation tali training dat
Generative -)
‘ Adversarial Auto-Encoders | Digital twins
Metworks

Figure 3.1: Data Augmentation related to GAN and AE

The field of data augmentation can roughly be divided into the following categories:

43

44 3. Data augmentation

Statistical augmentation of training data

Training data with experimental data augmentation

» Generation of new training data from generative models
» Adaptive augmentation of training data

High-fidelity simulation training data

The content of each of these categories and their differences are explained below.

3.1.1. Statistical augmentation

An often-used type of data augmentation is statistically augmenting training data. For example, extra
data is added to the initial dataset by injection of Gaussian noise or a novel approach called double-noise
injection C. Zhang and Baan, 2021. Another statistical technique to use is the Anscombe transform (AT)
to transform noise to relevant data Eckert et al., 2020. Also randomly rotating images to enlarge a
dataset of those images falls under this type of data augmentation.

This method is also applied in datasets that describe 3D graphics, but instead of input data in pixels now
voxel data is augmented by a chosen statistical transformation. Voxel stands for volume-element (3D)
as opposed to pixel, a picture element (2D). An example of 3D graphic augmentation can be found in
Figure 3.2.

(A).. (B) (C)

90 ®099

z

(D)

P YYD
o 1 2 3 4 5
P E Y
[7 8 9 10 1
PP TS
12 13 14 15 16 17
B I B B B
18 19 20 21 22 23

Figure 3.2: Data Augmentation for 3D structures Shi et al., 2020

3.1.2. Experimental data

Another type is the use of experimental methods to accumulate more data for the training dataset. Take
image data augmentation as an example: whereas the aforementioned type uses statistical methods to
manipulate, odd methods such as randomly zooming in or changing the lighting or dihedral angle of an
image are also researched as possibilities for data augmentation. Also, data warping is investigated, for
instance Wong et al., 2016.

The setup to develop a virtual counterpart to the real situation can be investigated. The scarce data
harvested in reality combined with the data produced with the aforementioned techniques will test the
virtual counterpart. Its purpose is to digitally create validated and verified results from prognostic models
concerning safety indications, planned checkups, and EoL predictions. If the data, the modelling, and
the subsequent interpretation are correct, the results gathered from the so-called digital twin should also
apply to the real twin.

3.2. Generative models 45

3.1.3. Adaptive augmentation

A relatively new type is adaptive data augmentation. While running the existing training data, the data
augmentation’s parameters are updated with information on the model’s results. Therefore, the param-
eters adapting during the process aim to minimise training data loss and maximise the accuracy of the
model Xu et al., 2022.

In visual tasks with images as data set adaptive augmentation can be very useful, particularly when
these images differ extensively. This method is easily automated and can handle large data sets but
needs human analysis to set relevant parameters during manual selection.

3.1.4. Simulation training data

Simulations with high fidelity can produce training data that is imbalanced: data describing failure is
clouded by the abundance of regular test data. To counter this data augmentation can be utilised to
deter the imbalance and improve the accuracy and robustness of the simulated predictions Lim et al.,
2022.

Simulation training data augmentation is particularly applicable in specific scenarios that cannot be anal-
ysed easily during a simulation. For example, if a computer visualisation of an object is created out of
several images, other camera angles that have not been shot can be generated by this type of data
augmentation.

3.1.5. Data generation

The last technique described in Figure 3.1 is data generation produced through generative models.
Where the abovementioned types of data augmentation also generate new data, this method specifically
uses self-learning models. In Table 3.1 the aforementioned data augmentation techniques are listed
including some of their respective benefits and disadvantages.

Table 3.1: Data augmentation methods

Advantages Disadvantages

Statistical augmentation Fast iterations Rigid
Developed DA method

Experimental augmentation Creative Trivial

Generative augmentation Cost-effective Underdeveloped DA method
State-of-the-art techniques

Promising results

Rapid academic developments

Adaptive augmentation Instantaneous updating Underdeveloped DA method
Lack of academic knowledge

Simulation augmentation Fully digital High cost
Emphasising on robustness

During this thesis, this type of artificial intelligence will be explored further, especially in investigating
generative models. In the following section 3.2 several sorts of generative models, their peculiarities,
and their abilities to generate useful training data will be elaborated on.

3.2. Generative models

Generating new data is important for PHM processes where real (test) data is scarce. Sampling will
help self-learning models see patterns and make more qualitative predictions. However, since the new
data are not real, validation and verification of the newly generated data are even more essential. A
predictive model will not be useful if its input data is unreliable. Therefore any generative used in data
augmentation must be reliable and ideally be able to generate new data unrecognisable from the real

46 3. Data augmentation

data in terms of authenticity. Several methods used in data generation will be discussed in chapter 5
concerning their pros and cons and how to implement them apart from each other as well as hybrid
combinations.

To generate new data that is reliable and close to authentic data, different methods are available. Several
of those techniques are fairly novel in the engineering world or were used for different purposes in the
past. The following list names a couple:

» Gaussian mixture model
* Hidden Markov model
» Bayesian network
 Latent Dirichlet allocation
* Boltzmann machine
« Diffusion model
» Flow-based generative model
* Deep generative models:
— Generative pre-trained transformer
— Variational autoencoder
— Autoencoder
— Generative adversarial network

Below all listed types of generative models are briefly discussed, apart from the four deep generative
models. They will be elaborated on in section 3.3.

3.2.1. Gaussian mixture model

The Gaussian mixture model (GMM) is used as a probability density function, a mixture of different
Gaussian normal distributions and their characteristics. The Gaussian mixture model is the weighted
combination to include these distributions into one result. For instance, a data set contains different
distributions that are to be combined such as the weight of people categorised in different age groups.
A GMM will use the mean, median, standard deviation, (co)variance, and other properties of each dis-
tribution to model an overall fit by iteration Reynolds et al., 2009.

Normally the estimation of a GMM is performed by an expectation-maximisation (EM) that uses an
expectation step and a maximisation step to iterate. During the expectation step, the probability for each
data point belonging to any of the treated Gaussian distributions is estimated, so-called responsibilities.
The maximisation step will update the estimations by maximising the likelihood of the data concerning
the model parameters Han et al., 2021. This two-step algorithm will iterate between one another until
the result has converged into a stable solution.

The GMM is used in many fields of engineering as well as in finance or anywhere where statistics
including Gaussian distributions are relevant.

3.2.2. Hidden Markov model

The hidden Markov model (HMM) represents a Markov process in which the states are not detailed
beforehand. A data set or a sequence of events in time can be described without the information of
how it was created, thus the generation process is not observable. Instead, it is assumed that a hidden
process is responsible for the data. This hidden process can be provided by using the technique of an
HMM.

There are two elements that act together as HMM. First is the hidden state process, a Markov process
in which the state of t + 1 is only dependent on the state of t. Secondly, there is an observable out-
put process that visualises the hidden states from the hidden state process. An HMM can be used to
generate new data by transforming input data from a training data set. After the HMM is trained and
the right parameters are set for both the hidden state process as well as the observable output process,
new data can be simulated. This new data is then combined with the original data set, hence performing
data augmentation Eddy, 2004.

3.2. Generative models 47

3.2.3. Bayesian network

A Bayesian network (BN) is a probabilistic graphical model that represents probabilities between vari-
ables graphically. A BN consists of a set of nodes, each representing one of the considered variables.
Also, edges are in place that represent the probabilistic dependency between these variables.

In this model, a set of variables have a joint probability distribution and also conditional probabilities
can be displayed, giving an insightful visualisation of dependencies and reason in complex systems
with various variables. Also, new scenarios or updated probabilities are easily incorporated into an
existing Bayesian network. They are therefore especially useful when dealing with uncertainty issues
by representing possibilities of events in clear visuals.

In data augmentation, BNs are also applied to generate new training data when sampling the input
data and desired output data. A BN provides the conditional dependencies between the input and
output and ensures that newly generated data fit these properties when fed to a distribution model. The
parameters of the Bayesian network are thus important to indicate the extent of dissimilarity for the new
data Stephenson, 2000.

3.2.4. Latent Dirichlet allocation

The latent Dirichlet allocation (LDA) acts as a generative statistical model using topics and a Dirichlet
distribution. It can be used to discover hidden patterns in large data collections, particularly text. An
LDA assumes a model that is represented as documents generated from a set of topics, with each topic
a vocabulary distribution of a word set.

The LDA method can be applied in multiple tasks such as detecting keywords, arranging documentation
as well as text generation. In data augmentation, existing training data is again used to increase the
data set in size. An LDA is first trained by treating real data, gathering information on the set of topics,
and how these topics are distributed over the considered documents. Subsequently, this is sampled to
generate new data that is similar to the original data set. For example, the way how consumers write a
product review on a specific product is to be investigated. If there is an abundance of product reviews
to be found and the investigation demands a larger data collection, LDA can generate that. First, the
existing reviews are fed to the LDA, forming a set of topics and a distribution of these topics in each
considered review. Then there will be sampled to generate new reviews that are essentially expressing
the same conclusions, treating the same topics but in different text D. Blei et al., 2001.

3.2.5. Boltzmann machine

A Boltzmann machine (BM) is a neural network using stochastics as an approach using a random pro-
cess to decide how to adjust its parameters. A BM consists of a set of connected nodes that can be
turned on or off. These so-called neurons are arranged per layer and subsequently, each layer is con-
nected to the following layer by weighted links. The weighting ensures the specific strength of a neuron
connection and can be modified for optimal performance.

A Boltzmann machine is an energy-based model. Each possibility of connections throughout the model is
given an energy value based on the weights between those connections and the states of the connected
neurons. When the energy value is lower, the likelihood of occurrence is higher and vice versa. This
resembles physical systems where lower energy indicates stability.

For the learning process of a BM, a Markov chain Monte Carlo (MCMC) is used. This MCMC flips the
states of the neurons and calculates the resulting energy changes. Whenever a new configuration has
a lower energy than previously, the new state is chosen. Higher energy configuration might also be still
applicable but with a lower probability that is lowered as the energy differences become larger. This way
the BM learns to adjust the weights of the connections to optimise the best low-energy configuration
possible in the considered network. BMs are useful throughout data augmentation and can be applied
to complex and high-dimensional data. However, this comes at the expense of cost and time and the
model can be, unlike for example the Bayesian network, difficult to understand without proper insight
J. Zhang et al., 2019.

48 3. Data augmentation

3.2.6. Diffusion model

The diffusion model (DM) describes the spread of a distribution through a sampled population. Trans-
formations sequences applied to an initial noise distribution are added to ultimately generate new data.
The transformations gradually increasing the noise input to the data is called the diffusion process.

First, the diffusion model is trained using an original data set. The maximum likelihood estimation is
applied to find the optimal parameters of the diffusion process. After the DM is accustomed to the training
data set, random noise is slowly added. This results in newly generated data that is almost similar
but slightly different from the original data points. By repeating this process the data set is ultimately
enlarged.

To determine the proportion of added noise in a DM a diffusion coefficient is introduced. This key param-
eter scales the uncertainty in each step. The higher the coefficient, the higher variability and diverseness
and vice versa. The diffusion coefficient can be controlled manually but generally, self-learning is pre-
ferred in generative modelling Cao et al., 2022.

3.2.7. Flow-based generative model

flow-based generative model (FM) generates new data using invertible transformation sequences or
flows to characterise fed training data. These transformations take relatively simple probability dis-
tributions and alter them into complex ones that capture the characteristics of the simple probability
distribution’s data set.

After the FM is trained in using the applicable invertible transformation sequences, it is then able to
generate new data similar to the original data set. This process is repeated until enough new data is
generated. Because of the invertibility, an FM is able to deliver exact samples rather than approxima-
tions generated by other generative models. Flow-based generative models can produce high-quality
samples and can cover the total variation in an original data set into newly generated data points B.
Zhang et al., 2022.

3.3. Deep generative models

Generative models that have many complexities, hidden layers, and/or high dimensional inputs for in-
stance, can be referred to as deep generative model (DGM)s. Autoencoders, GANs but also generative
pre-trained transformer (GPT)s are examples of this.

3.3.1. Generative pre-trained transformers

One of the more popularised deep generative models at this moment is OpenAl chat interfaces. They
are categorised as GPTs and the most commonly used one is called ChatGPT OpenAl, n.d. It runs
from a freely accessible website where you can start chats with the chat bot that will react to you using
self-generated answers. It learns from the information on the internet combined with experiences on the
platform. Below is a transcript about what ChatGPT does, generated by ChatGPT itself:

As an Al language model, ChatGPT works by processing and analyzing large amounts of text data to
learn patterns and relationships between words and phrases. The model is based on a deep learning
architecture known as a transformer, which is trained using a process called unsupervised learning.

During the training process, ChatGPT is fed with massive amounts of text data and learns to predict the
probability distribution of the next word in a sentence given the preceding words. This process allows
the model to develop a deep understanding of the structure of natural language and the relationships
between words and phrases.

When you interact with ChatGPT, it uses its knowledge and understanding of language to generate a
response based on the input you provide. It does this by using algorithms to analyze the input text,
identifying the key concepts, and generating a response that is most likely to be relevant and coherent
based on its training data.

3.3. Deep generative models 49

ChatGPT is continually learning and improving, as it is trained on ever-growing amounts of text data
from the internet and other sources. This enables it to generate increasingly accurate and sophisticated
responses over time.

ChatGPT or any other kind of generative pre-trained transformer will not be included in the ultimate
assessment between generative models for this thesis, as GPTs specialise in text generation whereas
a new high-dimensional data generation is the aim.

3.3.2. Autoencoders

The autoencoder (AE)) is a prime example of a DGM. The model is fed in data to compress and encode
and subsequently decode it as output. The goal is to have the autoencoder learn from the results, trying
to make the difference between output and input as small as possible. Since the input data is without any
other information, the AE figures out any patterns or anomalies by itself. Because of this characteristic,
autoencoders are often used to ignore white noise and find interesting data in a vast data set. The other
way around, autoencoders are also useful for finding disrupting anomalies in a traditional data set.

In Figure 3.3 an autoencoder is visually displayed. An input (a) into the encoder results in a latent vector
(b). Itis then fed to the decoder, generating a reconstructed input (a).

/

i~ ~~
- 3 g
)
g Encoder g Decoder =
E — —> 2 —> > B
g E(a) 2 D(b) 2
Ll 5])
E Z

\

The autoencoder can be used in combination with GANs by producing the input. A GAN could however
also be implemented into an encoder by being the decoder part.

Figure 3.3: Visualisation of an autoencoder

3.3.3. Variational autoencoders

A specific type of AE is the variational autoencoder (VAE). Where the AE has latent vectors between
the encoder and decoder, the VAE has outputs in parameters that are predefined for every input. Con-
straining the output in latent space results in a normal distribution and also ensures regulation.

In Figure 3.4 the method of a VAE is visualised, again with an input, encoder, decoder, and reconstructed
input as in a normal AE. However, the latent space is now different. Instead, there is now a latent
distribution and sampling to construct a latent vector (b), which is then fed to the decoder.

Encoder Decoder

Sampling —>

Y

E(a) D(b)

Input (a)
l
l
latent

distribution (b)

l
latent space (b)
New input (a)

Figure 3.4: Visualisation of a variational autoencoder

50 3. Data augmentation

3.3.4. Generative adversarial networks

In machine learning, a generative adversarial network (GAN) is used to improve robustness in prognos-
tic modelling. It essentially learns itself to generate new data by the use of (initially) two neural networks.
The first is a generative network that produces whilst the second discriminative network judges its au-
thenticity. The generator normally is fed a random input (of Gaussian noise) and will generate a sample.
This is added to the training data set sampling and put into the discriminator which then has to value
the samples. Its output will then be fed back to both the discriminator as well as the generator to learn.
This feedback is respectively the discriminator loss and generator loss. This process is visualised in
Figure 3.5.

By iteration, the generative network will produce better data to fool the discriminative network. Reversely,
the discriminative network will tailor itself to not be fooled easily by the gained experience. This process
should result in new data sets that can be utilised in prognostic models given the right parameters and
conditions in which the GAN is executed. The ultimate goal of training the GAN is to make the generator
produce samples that are indistinguishable from the real data. Once the model is trained, the generator
can be used to generate new samples that can be added to enlarge the data collection.

+ | Discriminator
loss

Training data » Sampling —

Discriminator —>»

Output (a)

-
<

o Generator —» Sampling —

Input (a)

Generator
loss

Figure 3.5: Visualisation of a GAN

GANs are used in several applications, not only in engineering but also in finance, the medical world de
Farias et al., 2021, and others. They have promising results in generating new images, of non-existing
persons for instance, and can be applied in other industries such as video game development.

3.4. Overview of different generative adversarial networks

There are different GAN models with different architectures that serve distinctive purposes. Firstly, there
are fully connected GANs. The discriminator as well as the generator utilises neural networks that are
not constrained in connections. This is one of the least complex architectures and is applied to plain
data sets in particular. The Vanilla GAN is a well-known fully connected GAN Creswell et al., 2018.

There are also conditional GAN (CGAN)s. Extra information, descriptions, and labels are fed to a GAN
which makes it conditioned. These conditions can be forced upon the generator as an input together
with the noise input, upon the discriminator as extra help for identifying and classifying samples, or upon
both. A CGAN works relatively well with image-to-image translation, text-to-image generation, and video
synthesis. A well-known example of a CGAN specialising in image-to-image translation is the CycleGAN
Creswell et al., 2018. Generation of images can also be performed by Laplacian pyramid of adver-

3.4. Overview of different generative adversarial networks 51

sarial network (LAPGAN). It uses a Laplacian pyramid framework and builds a series of generative
models using upsampling. This is also a convolutional model Algahtani et al., 2021.

Furthermore, there is a type of convolution GANs. This works the same as fully connected GANs but
now by using convolutional neural networks in both the generator and discriminator to generate and rate
samples. Convolutional GANs are specialised in image data sets, training themselves by producing
a layer above another. A special type is the deep convolutional GAN (DCGAN), which uses down-
sampling and up-sampling spatially and uses deep learning. The DCGAN characteristics in Table 3.2
will represent the standard convolution GAN too Creswell et al., 2018.

Another type is the GAN with interference model. These are GANs with a built-in mechanism for inter-
ference to improve the data quality of the output. The interference lets the generator focus on specific
input data elements. A well-known interference GAN is the attention GAN (AttnGAN). The interference
comes in the form of an attention mechanism to generate images from descriptions in writing. The at-
tention mechanism is multi-level and focuses on different parts of the input text during the process of
image generation. The generator produces more realistic images that are consistent with the input de-
scription when being helped with focusing on relevant parts of the data. This GAN will not be compared
in Table 3.2 as the interference model is out of scope.

Next, there is the method of an adversarial autoencoder (AAE) that utilises GAN for variational interfer-
ence by finding similarities between hidden code vectors Algahtani et al., 2021. The AAE is normalised
and both the adversarial network as well as the autoencoder are trained together in two phases. First, a
reconstruction phase is followed by a regularisation phase. Another GAN is the generative recurrent
adversarial network (GRAN). Now the encoder is a convolutional network that extracts images of the
current computation, whereas the decoder will decide how to update it. At every step of time, a sample
from the prior distribution state is saved in a hidden state. With all samples, the final sample can be
composed of the hidden state that acts as a decoder Algahtani et al., 2021.

Also, the information maximising generative adversarial network (InfoGAN) can be used to learn
features unsupervised. The objective is to learn representations by maximising the information of a
noise subset and observations. A domain is semantically decomposed while considering the features of
the data. InfoGANs decompose the input by the same approach, resulting in a latent vector and a noise
vector. Then by regularisation, the information found is maximised. Lastly, the bidirectional generative
adversarial network (BiGAN) is a method that uses feature representation of projected data in latent
space by inverse mapping. Here, the objective is learning to invert the generator.

Table 3.2: Different GANs

GANs \ Learning Network Gradient ~ Objective Performance
Fully connected Supervised Multilayer Step Minimise Log-likelihood
Conditional Supervised Multilayer Step Minimise Log-likelihood
Laplacian Unsupervised Laplacian pyramid None Image generation Log-likelihood
Deep convolutional Unsupervised Convolutional networks Step Hierarchy learning Accuracy
Adversarial AE Mixed Autoencoders Step Matching hidden code Log-likelihood
Recurrent Supervised Recurrent convolutional networks ~ Step Image generation Adversarial metric
Info Unsupervised Multilayer Step Maximising Information metric
Bidirectional Mixed Deep multilayer neural networks None Feature learning Accuracy

Apart from the aforementioned types there are many more GANs widely available and developed con-
stantly during the last decade. However, for now, the most common and least complicated GAN will be
used in further investigating as it is appropriate for the research objective in chapter 5. This would be
the fully connected GAN and specifically the Vanilla GAN.

Usage of generative models

In this section, the general history of the generative models treated in section 3.2 and section 3.3 is
described. Furthermore, the usage of DGMs in PHM is described. Finally, a comparison between the
different methods is included in deciding which ones are most suitable to support the research objective.

4.1. Brief history of generative models

Though many of the considered generative models bear the names of mathematicians and statisticians
from the 1700s and 1800s, it is generally recognised that the first work of artificial intelligence was
accomplished in 1943 Russell, 2010. The article A logical calculus of the ideas immanent in nervous
activity by Warren S. McCulloch and Walter Pitts proposed a model of artificial neurons McCulloch and
Pitts, 1943. Then the term "machine learning” was first used in 1959 by Arthur Samuel in The IBM journal
of research and development Samuel, 1959. Since then new methods using theorems, laws, and rules
of Bayes, Dirichlet, Markov, and many others have emerged to help generate reliable augmented data.

In 1966 Baum and Petrie published Statistical inference for probabilistic functions of finite state Markov
chains, in which the hidden Markov model and associated algorithms such as the forward-backward
algorithm were developed Baum and Petrie, 1966. The next generative model discussed in section 3.2
is the Gaussian mixture model. That method was introduced by Duda and Hart in 1973, exploring the
possibilities of combining Gaussian distributions Duda, Hart, et al., 1973. Furthermore, diffusion models
were developed in the 1970s, as well. The article A theory of memory retrieval by Ratcliff discusses the
use of a diffusion process to accomplish the retrieval of memories Ratcliff, 1978.

In the 1980s Bayesian networks were explored, first named by Judea Pearl in his article Bayesian net-
works: A model of self-activated memory for evidential reasoning from 1985 Pearl, 1985. Also, the
Boltzmann machine as a generative model is developed in 1985. An article called A Learning Algorithm
for Boltzmann Machines researches a general parallel search method to apply a learning algorithm for
BMs Ackley et al., 1985. In 1991 a paper by Kramer was published in AIChE journal that proposed the
autoencoder as a nonlinear generalisation of principal components analysis (PCA) for the first time, that
would expand to be a deep learning generative model during the next decades Kramer, 1991.

The next considered generative model to be developed is latent Dirichlet allocation. In 2003, LDA was
proposed by Blei in the Journal of Machine Learning Research D. M. Blei et al., 2003. It describes LDA as
a three-level hierarchical Bayesian model and presents early results. Then, the flow-based generative
model was developed en published by Dinh et al. during the proposition of non-linear independent
components estimation (NICE) in 2014, a deep learning framework Dinh et al., 2014. The important
feature here is that individual invertible transformations were stacked to compose a flow model Ho et al.,
2019.

53

54 4. Usage of generative models

At this point, the VAE was just invented at the end of 2013 by Kingma and Welling Kingma and Welling,
2013. Together with the development and description of the first use of GAN six months later by Good-
fellow, the field of generative modelling became revolutionised Goodfellow et al., 2014. In the years
thereafter GAN models were introduced rapidly such as the deep convolutional GAN and the conditional
GAN for image-to-image translation CycleGAN, in 2015 and 2017 respectively Radford et al., 2015 J.-Y.
Zhu et al., 2017. In the following period, transformers became prominent enabling the building of larger
models. Notably, language models such as the generative pre-trained transformer, text-to-text transfer
transformer (T5), and the use of the spatial transformer GAN (ST-GAN) are developed in 2018 Radford
etal., 2018 Xue et al., 2020 Lin et al., 2018. In Figure 4.1 a timeline of proposed GAN methods is shown.

In recent years the field of deep generative modelling saw new approaches proposed, including merging
of different DGMs. For instance, the vision transformer (VT) utilises mostly language-used transformers
for image generation, a theory that was first published in 2020 Dosovitskiy et al., 2020. Also, the DM
method was incorporated by two large models for large image generation during the same year, namely
the denoising diffusion probabilistic model (DDPM) and the denoising diffusion implicit model (DDIM) Ho
et al., 2020 Song et al., 2020.

WGAN | |CycleGAN
— T
ProGAN FlowGAN
GAN Pix2Pix StarGAN | | | BigGAN
— — | : |
CGAN DCGAN | | |stackGAN| | [Deepakes| | |styleaan E-GAN FlowGAN AR MetroGAN
StyleGAN
— Lo :
Y ‘ YY ‘ ‘ ‘ Y 5
>
2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 4.1: Timeline of last decade concerning GANs

Today, improvements in large language models are released. In particular, GPT-4 by OpenAl, PaLM
by Google, and OPT and LLaMA by Meta are becoming popular among consumers at the beginning
of 2023 OpenAl, 2023 Chowdhery et al., 2022 S. Zhang et al., 2022 Touvron et al., 2023. Meanwhile,
latent diffusion was explored by combining the diffusion model method with the autoencoder’s latent
space. This resulted in a latent diffusion model (LDM), the Stable Diffusion by Stability Al Rombach
et al., 2022a. This model is deployable for both image to image generation (txt2img) as well as image
to image generation (img2img) Rombach et al., 2022b.

4.2. Generative models in PHM

Today, there are already several examples of generative modelling used in prognostics and health man-
agement (PHM). For instance, the deep convolutional GAN is applied in time-series regeneration to
estimate remaining useful life better X. Zhang et al., 2020. The degradation and thus RUL of batteries
can also be managed by using deep learning generative modelling such as GANs, suggested in the
article Prognostics and health management of Lithium-ion battery using deep learning methods: A re-
view by Zhang and Li Y. Zhang and Li, 2022. Also, a variational autoencoder could help find the RUL
and EoL, using a long short-term memory (LSTM) network and GMM to provide probabilistic predictions
Huang et al., 2021.

Another main purpose in PHM for which a deep generative model (DGM) can be implemented is the
generation of missing data. This is accurately described in the paper Reliable machine prognostic health
management in the presence of missing data, exploring the use of GANs in combination with VAEs to
model the irregularity of an incomplete time-series Huang et al., 2020. Furthermore, PHM also can

4.3. Comparison of treated generative methods 55

concern anomaly detection. This can be performed through several techniques that include generative
methods. For example, AEs with LSTM have been researched as well as VAEs and the use of GANs
Basora et al., 2019.

Air traffic trajectory prediction models are also developed by generative modelling. The wind and weather
predictions can be provided by approaches such as the CGAN, as suggested in Pang and Liu, 2020.
In this paper, multiple set-ups are proposed that produce better results than conventionally obtained.
Another example is the usage of DGMs in rolling element bearing PHM. In the article A comprehensive
review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep
learning multiple approaches are reviewed, including the benefits of using deep learning methods under
which a DCGAN, an AE, and other GANs Hamadache et al., 2019.

Lastly, the problem of detecting coating breakdown and corrosion (CBC) for aircraft is taken as an ex-
ample that can be treated by a deep generative model. Fink et al. describe several directions for deep
learning in an article from 2020 Fink et al., 2020, in which GMMs, GANs, VAEs, the use of LSTM and
much more are discussed to find an aircraft’s coating breakdown and corrosion.

4.3. Comparison of treated generative methods

All considered generative models are now compared to each other to inquire about which models are
best suited to help answer the questions stated in chapter 6. In Table 4.1 several common characteristics
are listed in the first column with all treated generative models next to one another in the first row. They
are named by their abbreviations mentioned in section 3.2 and section 3.3 that can also be found in
the List of acronyms. When an x is placed in the table, that means that that specific generative model
handles that characteristic relatively better than average.

First, the preferred type of data input is covered. Next, the easiness to train and quickly start using the
generative model is compared to extensive training but with more diverse results. Furthermore, specific
characteristics that can belong to one or almost all generative models are described such as being able
to handle high-dimensional data or computational cost.

Table 4.1: Comparison of generative models

Characteristics: ‘ GMM HMM BN LDA BM DM FM VAE AE GAN

Discrete data O O
Continuous data O O
Mixed data O

Easy to train O
Extensive training O O

Complex variable relationships O

Causality

High-dimensional data 0] 0 0 0 0
Clustering 0 0 0 0

Large data sets 0 O O
Visualisation 0 o 0 0 0 0

Computational cost O
Handling of missing data O
Handling of noise

During the analysis of the considered generative models, it became apparent that especially DGMs
are promising in data generation for complex conditioned systems and/or data sets. While the other
generative models have their benefits and might be preferred in a specific field of expertise, the VAE,
AE, and GAN can be especially helpful during this thesis.

The two most versatile DGMs will be compared to each other in the same test setup. Between the
(variational) autoencoder and generative adversarial network, the AE seems the least widely applicable
in advance. Therefore it was concluded that the VAE and GAN will be used for further research. As
described in subsection 3.3.4, there are many types of GANs to choose from. At first, the most standard
and commonly used GAN will be utilised, the Vanilla GAN. Also, the TGAN will initially be investigated

56 4. Usage of generative models

concerning time-series data sets. One of the aforementioned standard generative models is chosen
to be compared to the DGMs. Due to its ability to have both discrete and continuous data as input, to
handle missing data and noise, and its versatility overall, the Bayesian network (BN) is chosen at this
stage.

Approach

With the problem statement defined and the literature review as preparation, this section gives an out-
line of how to answer the raised research questions and in which time frame, respectively called the
Methodology and Planning.

5.1. Methodology

In conjunction with Research Methodologies

5.2. Planning

The calendar shows the important dates in the next 6 months to keep on track. Below the most crucial
ones are listed. Also, a Gantt Chart is provided to show the schedule of the thesis. It consists of multiple
tasks that have to be finished, both dependent on or apart from each other.

» January 2023 Start Thesis

March 2023 Kick-off

April 2023 Research Methodology
May 2023 Mid-term

July 2023 Green Light

57

5.2.1. Calendar

2023

JANUARI FEBRUARI MAART APRIL

ma di wo do vr za zo ma di wo do vr za zo ma di wo do vr za zo ma di wo do vr za zo

1 1 2 4 5 1 2 3 4 5 1 2

2 3 4 5 6 7 8 6789‘1112 67 8 9 10 11 12 3 5 6_7 8 9

9 10 11 12 13 14 15 13714 15 16 17 18 19 13 14 15 16 17 18 19 mi 12 13014 15 16

16 17 18 19 20 21 22 20 21 22 23 24 25 26 20 21 22 23 24 25 26 17 18 20 21 22 23

23 24 25 26 27 28 29 27 28 27 28 29 30 31 24 EBi 27 28 29 30

30 31

MEI JUNI JULl AUGUSTUS

ma di wo do vr za 10 ma di wo do vr za 10 ma di wo do vr za 10 ma di wo do vr za 1o

1 2 3 4 5 6 7 1 2 3 4 1 2 1 2 3 4 5 6

8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 45 6 7 8 9 7 8 9 10 11 12 13

15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 15 16 14 15 16 17 18 19 20

22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20i 22 23 21 26 27
29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 2“

31

SEPTEMBER OKTOBER NOVEMBER DECEMBER

ma di wo do vr za zo ma di wo do vr za zo ma di wo do vr za zo ma di wo do vr za zo

1 2 3 1 1 2 3 4 5 1 2 3

4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 910

11 12 13 14 15 16 17 9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17

18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 19 20 21 22 23 24

25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31

30 31

Figure 5.1: Calendar for the upcoming 6-7 months

Legend:

Biweekly meeting
Kick-off meeting
Mid-term meeting
Green light meeting
Graduation

Literature Study report hand-in
Mid-term report hand-in

Research Methodology hand-in

Final report hand-in

Last week academic year

8G

yoeouddy ‘g

5.2. Planning

59

TITLE DURATION START | END
Total time Thesis 175 Nov 21 - Jul 21
v = Meetings
B Starting meeting Nov 22 - Nov 22
B Two weekly meeting Dec 09 - Dec 09
B Two weekly meeting Dec 21 - Dec 21
B Two weekly meeting Jan 06 - Jan 06
B Kick-off meeting Jan 18 - Jan 18
B Mid-term meeting Apri2-Apri2
B Green light meeting Jul 05 - Jul 05
B Graduation Jul 2L - Jul 21

+

“ =1 Understanding of the topic

Data Augmentation 15 Nov 23 - Dec 13
GANs 21 Nov 23 - Dec 21
Auto-encoders 15 Nov 23 - Dec 13
Use in Aviation 13 Dec 04 - Dec 21
Python skills 23 Dec 12 - Jan 11
+

~ & Literature Study
Literature Study Report 23 Dec 12 - Jan 11
+

¥ & Research Methodology
Research Methodology 41 Dec 12 - Feb 06
+

¥ & Initial Phase

Research 21 Jan 18 - Feb 15
Model development 31 Feb 01 - Mar 15
Data Analysis 23 Mar 0L - Mar 31
Mid-term report 16 Mar 15 - Apr 05
Preparation Mid-term meeting) Apr05 - Apr 12
+

~ & Final Phase

Incorporation of mid-term m 7 Apr 13 - Apr 21
Case studies 21 Apr 17 - May 15
Validation & Verification 45 May 01 - Jun 30
Final Report 41 May 15 - Jul 10
+

Figure 5.2: Gantt Chart: all tasks unfolded

DEC 2022 JAN 2023 FEB 2023 MAR 2023 APR 2023 MAY 2023 JUN 2023 JuL 2023 AUG 2023

v

S —————————R

‘ | Mestings

[starting mesting

[Two weekiy meating
. Two weekly meeting
[] Two weekly mesting
. Kick-off meeting
[Midterm mesting
. Green light meeting

[Graduation

S SSSSSSSSSSS| Understanding of the topic

Data Augmentation
GANs
Auto-encoders

Use in Aviation

B Fyven s

PR L iterature Study

[0 Uierature Study Report

PSS Research Methodology

B pr—

P 4 Initial Phase

[Research
[Model development
[patasnalysis
[mister report

[Preparation Mid-term meeting

F | Final Phase

. Incorporation of mid-term meeting

e —
[vaiidation & Verification
. - oot

Problem statement

In this section, the problem is once more stated, including the motivation to research this specifically
in section 6.1. Furthermore, the objective of this research will be explained along with the respective
research questions to be answered during this thesis.

6.1. Research gap

In PHM, data augmentation can be crucial to elevate one of the most promising types of PHM. However,
data augmentation by unsupervised learning is sometimes not researched in-depth, also because of
new technologies and various novel methods emerging rapidly today.

There is not always consensus on what kind of data augmentation is most suitable for specific scenarios
in the aviation industry. In maintenance as a whole, there might be some insight on when to use what.
However, for specific situations, different techniques should be compared. Especially the use of deep
generative models is new territory but has promising preliminary results.

The lack of information on how to utilise DGMs and the comparison of their respective results in aviation
maintenance is a gap that needs more research to establish what type of model can accurately generate
augmented data for specific scenarios.

6.2. Research objective

One of the objectives of this thesis is to provide more insight into how to use data augmentation in such
a way as to better fulfil the prediction of failure in aviation.

To research this, different deep generative models must be explored on how to use them for generating
new degradation data. Two of these DGMs are considered: the generative adversarial network & the
variational autoencoder. Publicly available training data combined with newly generated input by the
said DGMs are compared to further investigate the benefits of maintaining PHM.

Publicly available training data input that can be used by these models. The following datasets can be
found free of charge:

* turbofan engine degradation Orzech, 2022

* bearings, roll or mill Lu et al., 2021

+ aviation maintenance data sets Yang and Desell, 2022

61

62 6. Problem statement

A road map must be established labelling the chosen different (deep) generative models (GAN, AE,
BN) on how to use them for specific prognostics problems, including pros and cons measured in the
modelling prediction results. This will include a thorough analysis and discussion. In order to compare
and rate the aforementioned generative models, their newly generated data will be fed to a standard
predictor (i.e. a KNN Imandoust, Bolandraftar, et al., 2013 or a BPN Erb, 1993).

Different types of GANs must also be reviewed and weighed. Also, their competitiveness with other
DGMs will have to be proved. In the wake of answering this question, the thesis paper will give more
insight into the use of DGMs in the field of aeronautics, hopefully narrowing the existing research gap in
this relatively new chapter of science.

Lastly, considerations for future work will be discussed as well as some recommendations for potential
following projects.

6.3. Research question

To be able to achieve the objectives stated in the aforementioned section, the following research question
is formulated:

* When using the data set in a turbofan case study, how could the data be improved using
generative techniques?

6.3.1. Sub-questions

A couple of sub-questions are formulated to support the research question, including auxiliary questions.
First altering the used models is addressed:

» What is the best method for data generation for turbofan prognostics (VAE, GAN, temporal GAN
(TGAN), BN) using the same test setup?
— To define best, do health monitoring trajectories need different weighting?
— When comparing different scenarios for the same training data set of a turbofan case study,
does the outcome of the best method change?
» How does the accuracy of the prognostics change with the hyperparameter changes of the gen-
erative network model?
— What hyperparameters are most impactful?
— Is the accuracy change different per investigated generative method when the hyperparam-
eters are changed identically?

Secondly, questions concerning the data input are as follows:

» How does input noise play a role in obtaining better quality data with generative models?
— Is the impact of Gaussian noise different per generative method?
— If noise would not be normally distributed, does that change the scoring of the investigated
methods?
* What is the minimum volume of input data needed to generate quality output data with generative
models?
— Is there a correlation or even causation between the volume of input data and the accuracy
of the prognostics?
— Is there a difference in the minimum volume of input data per treated generative method, and
if so, how does this difference occur?

Lastly, a question regarding the future of DGMs in PHM is considered:

 Are the chosen GAN and VAE applicable and reliable enough to be a promising approach for PHM
in a turbofan case study?
— Does this specific turbofan case study stand for general turbofan case studies?
— Is it observable at this moment already that testing with data from DGMs will outpace tradi-
tional testing by quantifiable measures?

Conclusion

Maintenance is a vital part of almost every product’s life. Products in the aviation industry are prone to
be maintained throughout their useful life to last them longer, be safer and cause no more downtime
than necessary. Maintenance can roughly be categorised into three types, being corrective, preventive,
and predictive maintenance. It is predictive maintenance that might be best suited to fulfil the goals
set in the aviation industry. A well-known method of predictive maintenance is prognostics and health
management. It monitors the health and tries to predict failure to plan maintenance beforehand. This is
managed by health monitoring trajectories. These trajectories are based on several features including
monotonicity, trendability, and prognosability.

However, prognostics and health management cannot deliver adequate results if the data it bases its
estimations on is biased or missing. Therefore data quality is crucial. Several obstacles might cause
quality loss, such as insufficient sensor data, missing data, economic restrictions, and lack of desired
quality. A method that can help fill in the gap for insufficient data in prognostics and health management
is called data augmentation. This method uses existing data and augments it at such a level that it can
be used as data for a prognostic model while producing effective results.

Data augmentation can be categorised into the following types. Statistical data augmentation, exper-
imental data augmentation, data generation, adaptive augmentation, and high-fidelity simulation data
training. All types have augmented data as output. However, the most forward type of producing actual
new realistic data that can be added to the already existing data collection is data generation.

Data generation is commonly performed by all kinds of generative models. Several of the most well-
known generative models were covered and accompanied by deep generative models. After consid-
eration and comparison, it was concluded that the deep generative models would be more suitable for
the research goal of this thesis. The variational autoencoder and generative adversarial network were
chosen to act as subjects for realistically generating data.

The objective of the thesis is to provide more insight into how data augmentation can be used better to
optimise the prediction of failure in prognostics and health management. The chosen deep generative
models will be installed in a test setup and during each test, a different variable will be changed. That
can be the noise input for the generators, the existing training data set, the change of GAN type, or the
change of predictor.

Also, as a goal for the coming thesis, obstacles of today for the use of this specific type of data aug-
mentation in prognostics and health management are reviewed to assess whether this new approach
is promising for aviation products in the nearby future. The thesis including the necessary conditions is
set to be finished during the summer of 2023.

63

Bibliography

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines.
Cognitive science, 9(1), 147-169.

Algahtani, H., Kavakli-Thorne, M., & Kumar, G. (2021). Applications of generative adversarial networks
(gans): An updated review. Archives of Computational Methods in Engineering, 28, 525-552.

Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. https://doi.org/10.48550/ARXIV.2003.
05991

Baptista, M., Goebel, K., & Henriques, E. (2022). Relation between prognostics predictor evaluation
metrics and local interpretability shap values. Artificial Intelligence, 306, 103667. https://doi.org/
10.1016/j.artint.2022.103667

Baraldi, P., Bonfanti, G., & Zio, E. (2018). Differential evolution-based multi-objective optimization for the
definition of a health indicator for fault diagnostics and prognostics. Mechanical Systems and
Signal Processing, 102, 382—400. https://doi.org/https://doi.org/10.1016/j.ymssp.2017.09.013

Basora, L., Olive, X., & Dubot, T. (2019). Recent advances in anomaly detection methods applied to
aviation. Aerospace, 6(11), 117.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state markov
chains. The annals of mathematical statistics, 37(6), 1554—1563.

Blei, D., Ng, A., & Jordan, M. (2001). Latent dirichlet allocation. In T. Dietterich, S. Becker, & Z. Ghahra-
mani (Eds.), Advances in neural information processing systems (Vol. 14). MIT Press. https:
/lproceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan), 993-1022.

Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P.-A., & Li, S. Z. (2022). A survey on generative diffusion
model. arXiv e-prints. https://doi.org/10.48550/ARXIV.2209.02646

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W.,
Sutton, C., Gehrmann, S., et al. (2022). Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311.

Coble, J., & Hines, J. W. (2009). Identifying optimal prognostic parameters from data: A genetic algo-
rithms approach. Annual Conference of the PHM Society, 1.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative
adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53—65. https://doi.
org/10.1109/MSP.2017.2765202

de Farias, E. C., di Noia, C., Han, C., Sala, E., Castelli, M., & Rundo, L. (2021). Impact of gan-based
lesion-focused medical image super-resolution on the robustness of radiomic features. Scientific
Reports, 11(1).

Deng, L., Yu, D., et al. (2014). Deep learning: Methods and applications. Foundations and trends® in
signal processing, 7(3—4), 197-387.

Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Min-
derer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929.

Duda, R. O., Hart, P. E., et al. (1973). Pattern classification and scene analysis (Vol. 3). Wiley New York.

65

https://doi.org/10.48550/ARXIV.2003.05991
https://doi.org/10.48550/ARXIV.2003.05991
https://doi.org/10.1016/j.artint.2022.103667
https://doi.org/10.1016/j.artint.2022.103667
https://doi.org/https://doi.org/10.1016/j.ymssp.2017.09.013
https://proceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf
https://doi.org/10.48550/ARXIV.2209.02646
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202

66 Bibliography

Duffuaa, S. O., & Ben[lDaya, M. (1995). Improving maintenance quality using spc tools. Journal of
Quality in Maintenance Engineering, 1(2), 25-33. https://doi.org/10.1108/13552519510089565

Eckert, D., Vesal, S., Ritschl, L., Kappler, S., & Maier, A. (2020). Deep learning-based denoising of
mammographic images using physics-driven data augmentation. Bildverarbeitung fiir die Medi-
zin 2020: Algorithmen—-Systeme—Anwendungen. Proceedings des Workshops vom 15. bis 17.
Mérz 2020 in Berlin, 94—100.

Eddy, S. R. (2004). What is a hidden markov model? Nature Biotechnology, 22(10), 1315-1316. https:
//doi.org/10.1038/nbt1004-1315

Erb, R. J. (1993). Introduction to backpropagation neural network computation. Pharmaceutical re-
search, 10, 165-170.

Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020). Potential, challenges
and future directions for deep learning in prognostics and health management applications.
Engineering Applications of Atrtificial Intelligence, 92, 103678.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial nets. stat, 1050, 10.

Hamadache, M., Jung, J. H., Park, J., & Youn, B. D. (2019). A comprehensive review of artificial intelligence-
based approaches for rolling element bearing phm: Shallow and deep learning. JMST Advances,
1, 125-151.

Han, M., Wang, Z., & Zhang, X. (2021). An approach to data acquisition for urban building energy mod-
eling using a gaussian mixture model and expectation-maximization algorithm. Buildings, 11(1).
https://doi.org/10.3390/buildings11010030

Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++: Improving flow-based generative
models with variational dequantization and architecture design. International Conference on
Machine Learning, 2722-2730.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information processing systems
(pp. 6840-6851, Vol. 33). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/
paper/2020/file/4c5bcfec8584af0d967f1ab10179cadb-Paper.pdf

Huang, Y., Tang, Y., & VanZwieten, J. (2021). Prognostics with variational autoencoder by generative
adversarial learning. IEEE Transactions on Industrial Electronics, 69(1), 856—-867.

Huang, Y., Tang, Y., VanZwieten, J., & Liu, J. (2020). Reliable machine prognostic health management in
the presence of missing data. Concurrency and Computation: Practice and Experience, 34(12),
e5762.

IBM. (2023). What is preventive maintenance. https://www .ibm.com/topics/what-is- preventive -
maintenance

Imandoust, S. B., Bolandraftar, M., et al. (2013). Application of k-nearest neighbor (knn) approach for pre-
dicting economic events: Theoretical background. International journal of engineering research
and applications, 3(5), 605-610.

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar, S., Afzal, S., Sharma
Mittal, R., & Munigala, V. (2020). Overview and importance of data quality for machine learning
tasks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 3561-3562.

Kim, N.-H., An, D., & Choi, J.-H. (2017). Prognostics and health management of engineering systems.
Springer.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2), 233—-243.

Lesage, A., & Dehombreux, P. (2012). Maintenance & quality control: A first methodological approach
for maintenance policy optimization. IFAC Proceedings Volumes, 45(6), 1041-1046.

Lim, D., Jung, W., Bae, J., & Park, Y. (2022). Utilization of high-fidelity simulation data for data aug-
mentation of artificial neural net-based rotor faults diagnosis. In J.-H. Han, S. Shahab, & J.

https://doi.org/10.1108/13552519510089565
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.3390/buildings11010030
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.ibm.com/topics/what-is-preventive-maintenance
https://www.ibm.com/topics/what-is-preventive-maintenance

Bibliography 67

Yang (Eds.), Active and passive smart structures and integrated systems xvi (120431A). SPIE.
https://doi.org/10.1117/12.2612314

Lin, C.-H., Yumer, E., Wang, O., Shechtman, E., & Lucey, S. (2018). St-gan: Spatial transformer gen-
erative adversarial networks for image compositing. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 9455-9464.

Lu, H., Barzegar, V., Nemani, V. P., Hu, C., Laflamme, S., & Zimmerman, A. T. (2021). Gan-Istm pre-
dictor for failure prognostics of rolling element bearings. 2021 IEEE International Conference
on Prognostics and Health Management (ICPHM), 1-8. https://doi.org/10.1109/ICPHM51084.
2021.9486650

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5, 115-133.

OpenAl. (n.d.). Introducing chatgpt. https://openai.com/blog/chatgpt

OpenAl. (2023). Gpt-4 technical report.

Orzech, G. (2022, July). Prognostics center of excellence data set repository. https://www.nasa.gov/
content/prognostics-center-of-excellence-data-set-repository

Pang, Y., & Liu, Y. (2020). Conditional generative adversarial networks (cgan) for aircraft trajectory pre-
diction considering weather effects. AIAA Scitech 2020 Forum, 1853.

Pearl, J. (1985). Bayesian netwcrks: A model of self-activated memory for evidential reasoning. Pro-
ceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine,
CA, USA, 15-17.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding
by generative pre-training.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological review, 85(2), 59.

Reynolds, D. A., et al. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741(659-663).

Rigamonti, M., Baraldi, P., Zio, E., Roychoudhury, I., Goebel, K., & Poll, S. (2016). Echo state network
for the remaining useful life prediction of a turbofan engine. PHM Society European Conference.
http://www.papers.phmsociety.org/index.php/phme/article/view/1623

Rodrigues, L. R., Yoneyama, T., & Nascimento, C. L. (2012). How aircraft operators can benefit from
phm techniques. 2012 IEEE Aerospace Conference, 1-8. https://doi.org/10.1109/AERO.2012.
6187376

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022a). High-resolution image synthe-
sis with latent diffusion models. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 10684—10695.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022b, November). Compvis/stable-
diffusion: A latent text-to-image diffusion model. https://github.com/CompVis/stable-diffusion

Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc.

Saltoglu, R., Humaira, N., & Inalhan, G. (2016). Scheduled maintenance and downtime cost in aircraft
maintenance management. International Journal of Aerospace and Mechanical Engineering,
10(3), 602—-607. https://publications.waset.org/vol/111

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3), 210-229.

Schwabacher, M. (2005). A survey of data-driven prognostics. Infotech Aerospace, 7002. https://doi.
org/10.2514/6.2005-7002

Shi, P, Qi, Q., Qin, Y., Scott, P., & Jiang, X. (2020). A novel learning-based feature recognition method
using multiple sectional view representation. Journal of Intelligent Manufacturing, 31, 1291—
1309. https://doi.org/10.1007/s10845-020-01533-w

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.
Journal of big data, 6(1), 1-48.

https://doi.org/10.1117/12.2612314
https://doi.org/10.1109/ICPHM51084.2021.9486650
https://doi.org/10.1109/ICPHM51084.2021.9486650
https://openai.com/blog/chatgpt
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
http://www.papers.phmsociety.org/index.php/phme/article/view/1623
https://doi.org/10.1109/AERO.2012.6187376
https://doi.org/10.1109/AERO.2012.6187376
https://github.com/CompVis/stable-diffusion
https://publications.waset.org/vol/111
https://doi.org/10.2514/6.2005-7002
https://doi.org/10.2514/6.2005-7002
https://doi.org/10.1007/s10845-020-01533-w

68 Bibliography

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. International Conference
on Learning Representations.

Stephenson, T. A. (2000). An introduction to bayesian network theory and usage (tech. rep.). ldiap.

ToolSense. (2023). The 6 types of maintenance. https://toolsense.io/maintenance/the-6-types- of-
maintenance-definitions-benefits-examples/

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Roziére, B., Goyal, N.,
Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Van Dyk, D. A., & Meng, X.-L. (2001). The art of data augmentation. Journal of Computational and
Graphical Statistics, 10(1), 1-50.

Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmentation
for classification: When to warp? 2016 International Conference on Digital Image Computing:
Techniques and Applications (DICTA), 1-6. https://doi.org/10.1109/DICTA.2016.7797091

Xie, Q., Dai, Z., Hovy, E., Luong, T., & Le, Q. (2020). Unsupervised data augmentation for consistency
training. Advances in neural information processing systems, 33, 6256—-6268.

Xu, X., Zhao, H., & Torr, P. (2022). Universal adaptive data augmentation. arXiv preprint arXiv:2207.06658.
https://doi.org/10.48550/ARXIV.2207.06658

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., & Raffel, C. (2020). Mt5:
A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934.

Yang, H., & Desell, T. (2022). A large-scale annotated multivariate time series aviation maintenance
dataset from the ngafid. arXiv e-prints. https://doi.org/10.48550/ARXIV.2210.07317

Zhang, B., Wang, T., Zhou, C., Conci, N., & Liu, H. (2022). Human trajectory forecasting using a flow-
based generative model. Engineering Applications of Artificial Intelligence, 115, 105236. https:
//doi.org/https://doi.org/10.1016/j.engappai.2022.105236

Zhang, C., & Baan, M. (2021). Complete and representative training of neural networks: A generalization
study using double noise injection and natural images. GEOPHYSICS, 86, 1-43. https://doi.
org/10.1190/ge02020-0193.1

Zhang, J., Wang, H., Chu, J., Huang, S., Li, T., & Zhao, Q. (2019). Improved gaussian—bernoulli re-
stricted boltzmann machine for learning discriminative representations. Knowledge-Based Sys-
tems, 185, 104911. hitps://doi.org/https://doi.org/10.1016/j.knosys.2019.104911

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X,, Lin, X. V., et
al. (2022). Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068.

Zhang, X., Qin, Y., Yuen, C., Jayasinghe, L., & Liu, X. (2020). Time-series regeneration with convolutional
recurrent generative adversarial network for remaining useful life estimation. IEEE Transactions
on Industrial Informatics, 17(10), 6820—6831.

Zhang, Y., & Li, Y.-F. (2022). Prognostics and health management of lithium-ion battery using deep
learning methods: A review. Renewable and Sustainable Energy Reviews, 161.

Zhu, J.-Y., Park, T, Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-
consistent adversarial networks. Proceedings of the IEEE international conference on computer
vision, 2223-2232.

Zhu, Q., & Luo, J. (2022). Generative pre-trained transformer for design concept generation: An explo-
ration. Proceedings of the Design Society, 2, 1825-1834. https://doi.org/10.1017/pds.2022.185

https://toolsense.io/maintenance/the-6-types-of-maintenance-definitions-benefits-examples/
https://toolsense.io/maintenance/the-6-types-of-maintenance-definitions-benefits-examples/
https://doi.org/10.1109/DICTA.2016.7797091
https://doi.org/10.48550/ARXIV.2207.06658
https://doi.org/10.48550/ARXIV.2210.07317
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105236
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105236
https://doi.org/10.1190/geo2020-0193.1
https://doi.org/10.1190/geo2020-0193.1
https://doi.org/https://doi.org/10.1016/j.knosys.2019.104911
https://doi.org/10.1017/pds.2022.185

	Preface
	Contents
	List of acronyms
	List of Figures
	List of Tables
	Introduction
	I Scientific Paper
	II Literature Study
	Introduction
	Prognostics & health management
	Maintenance in aviation
	Predictive maintenance
	Health monitoring trajectories
	Monotonicity
	Trendability
	Prognosability

	Data quality
	Insufficient sensor data
	Missing data
	Obsolete data

	Data augmentation
	Data augmentation techniques
	Statistical augmentation
	Experimental data
	Adaptive augmentation
	Simulation training data
	Data generation

	Generative models
	Gaussian mixture model
	Hidden Markov model
	Bayesian network
	Latent Dirichlet allocation
	Boltzmann machine
	Diffusion model
	Flow-based generative model

	Deep generative models
	Generative pre-trained transformers
	Autoencoders
	Variational autoencoders
	Generative adversarial networks

	Overview of different generative adversarial networks

	Usage of generative models
	Brief history of generative models
	Generative models in PHM
	Comparison of treated generative methods

	Approach
	Methodology
	Planning
	Calendar

	Problem statement
	Research gap
	Research objective
	Research question
	Sub-questions

	Conclusion

