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ABSTRACT
The rapid increase in automated data collection in the public transport industry facilitates the ad-
justment of operational planning and real-time operations based on the prevailing traffic and de-
mand conditions. In contrast to automated passenger counts systems, automated vehicle location
(AVL) data is often available for the entire public transport fleet for monitoring purposes. However,
the potential value of AVL in estimating passenger volumes has been overlooked. In this study, we
examine whether AVL data can be used as a standalone source for estimating on-board bus loads.
The modeling approach is to infer maximum passenger load stop from the timetable and then con-
struct the load profile by reverse engineering through a local constrained regression of dwell times
as function of passengers flows. In order to test and demonstrate the potential value of the pro-
posed method, a proof of concept was performed by conducting unsupervised experiments on one
month AVL data collected from two bus lines in Dublin. The results suggest that this method can
potentially estimate passenger loads in real-time in the absence of their direct measurement and
can easily be introduced by public transport operators.
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INTRODUCTION1
Understanding passenger demand is key for the effective planning and provision of public transport2
services. Over the last decades, mass transit operators worldwide relied on passenger surveys to3
understand their mobility needs and adjust their planning and operations accordingly (1, 2, 3). The4
rapid increase in automated data collection in the public transport industry facilitates the adjust-5
ment of operational planning and real-time operations based on the prevailing traffic and demand6
conditions. By observing current service attributes, service management could adapt the service to7
better respond to passenger travel needs. The implementation of such measures require information8
on passenger flows in order to assess the expected effects of such measures. For example, when9
deciding whether to allocate an additional vehicle to reduce on-board congestion, information on10
the number of passengers on-board is essential to assess the impacts of this decision.11

Even though public transport systems are increasingly equipped with automated passenger12
counts (APC) and automated fare collection (AFC), the data collected by those systems is often13
incomplete and hinders the estimation of the overall demand profile. This shortcoming stems from14
the fact that these systems and their deployments were designed to support tactical planning and15
managing concessions rather than support real-time information on passenger flows. In particular,16
in order to save costs, the common practice is to install APC systems only on a small subset of17
the fleet. While this is sufficient for obtaining a robust estimation of overall demand patterns, it18
prohibits the real-time estimation of passenger loads for individual trips. Furthermore, APC is19
only seldom transmitted in real-time. Instead, data collected by the APC equipment is downloaded20
on a daily or weekly basis at the depot. Similarly, while AFC constitutes a promising source of21
information on travel patterns (4), it is typically owned by a public agency that is responsible for22
the offline distribution of ticket revenues. In addition to the data availability, privacy concerns and23
ownership issues, most systems do not require passengers checking in and out when boarding and24
alighting each vehicle, requiring excessive big data analytics and a large number of behavioral25
assumptions in order to infer route choice at the individual traveler level to estimate passenger26
flows.27

Passenger demand estimation may refer to passenger flows at the vehicle run level (board-28
ing, alighting, on-board) (5) or passengers travel demand at the network level (origin-destination29
matrix) (6, 7, 8). The latter can potentially support demand estimation for strategic planning pur-30
poses. Studies that try to infer the details of the travel itinerary undertaken by each individual based31
on smartcard transactions, often use Automatic Vehicle Location (AVL) data as a complementary32
source of information for attaining the respective time stamps (4). Other data collection technolo-33
gies that have been deployed to estimate passenger counts include vehicle weight sensors (9) and34
video surveillance (10). Researchers pointed out technical deficiencies that reduce the accuracy35
and reliability of such systems and restrict their widespread deployment.36

The real-time estimation of passenger loads requires a scalable approach that could be37
applied in real-time for the entire public transport fleet. In contrast to APC systems, AVL data38
is often available for the entire public transport fleet for monitoring purposes. AVL technologies39
are more well-established and their installation cost has reduced significantly over the years when40
compared with APC (9). AVL data has been extensively used for studying the determinants of41
running times, dwell times and headways. In particular, a large number of studies estimated the42
determinants of dwell time and in particular the relation between boarding and alighting passenger43
flows on dwell time based on a combination of AVL and APC data (e.g. (11, 12). The results44
reported in these studies provide insights on the formulation of the dwell time function and its45
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underlying assumptions. Some researchers explored the fusion of AVL and APC by using the APC1
data as a complement to the AVL one to estimate and/or predict the travel time variability (13, 14).2
However, the potential value of AVL in estimating passenger volumes has been overlooked and3
to the best of our knowledge, none of the previous studies suggested using AVL for estimating4
passenger flows.5

In this study, we examine whether AVL data can be used as a standalone source for esti-6
mating real-world passenger loads. The modeling approach is to infer maximum passenger load7
stop from the timetable and then construct the load profile by reverse engineering through a lo-8
cal constrained regression of dwell times as function of passengers flows. A series of machine9
learning methods and principles are applied in order to estimated boarding and alighting flows10
based on actual dwell times and the planned schedule. The resulting framework is denominated as11
DemandLOCkeR - Demand Estimation through LOcal Constrained Regression.12

The remainder of the paper is structured as follows: Section 2 presents the method proposed13
in this study and the related estimation procedure. Section 3 describes the case study and data14
which were selected for testing the feasibility and performance of the proposed method. Section 415
presents the experimental setup along with the results of the application. In Section 5 we conclude16
with a discussion on the implications and limitations of this study and outline potential directions17
for future work.18

METHODOLOGY19
Analysis Approach20
The approach adopted in this study (DemandLOCkeR) for passenger demand estimation relies21
solely on AVL data involves reverse engineering where the relation between dwell times and pas-22
senger flows is exploited to construct an estimated load profile. By deploying a local constrained23
regression technique and supervised machine learning techniques, bus loads are visualized for a24
given time period. Given the high uncertainty that is inherent to the bus operation environment and25
the respective passenger demand fluctuations, the output of our analysis are an estimated load pro-26
file that aims to illustrate a likely load profile that can be assumed to prevail without any claim for27
exact estimates or measurements. The authors are not aware of any previous attempt to construct28
load profiles based solely on AVL data.29

The analysis framework deployed in this paper is illustrated in Fig. 1. The methodology30
for estimating bus load profiles using AVL data consists of five steps: (A) extracting high-level31
demand information from the planned timetable, assuming that they were designed based on a32
max load point method; (B) decomposing real-time dwell times and regressing them based on33
load profile and dwell time function assumptions; (C) estimating the shape of the load profile by34
using a local regression technique (the local regression is a method which divides the solution35
space into different folds where, within each one of them, the load function is approximated by36
a linear function - as described in Section 3.4); (D) constraining and fitting the results obtained37
in the previous step based on the actual dwell times and an incremental bandwidth (defined by38
domain constrains which force a fitting of the regression outputs within the range of admissible39
loads, given/known each vehicle’s capacity) that uses only the most recent dwell time records to40
obtain realistic load profiles, and; (E) the output of this process is the typical load profile for each41
short-term period by minimizing the Euclidean distance and using the law of large numbers (it ends42
up on making a reasonable use of the dwell times to set maximum/minimum admissible values for43
the loads on every stop given the load prediction for the immediate previous one - as adequately44
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FIGURE 1 : Analysis framework – from data to load profile estimations.

described in Section 3.5). The following sections detail the implementation of each of these steps.1

Computing The High Level Demand Profiles2
The purpose of this initial step is to deduce information on the demand profile from the provi-3
sioned service frequency. By leveraging on the observed frequency, we can then explore headway4
variations (obtained from the AVL data) to infer the shape of the demand profile, as explained in5
the description of subsequent steps of this framework.6

Service frequencies are determined by operators based on passenger surveys and direct7
observations (1, 2, 3). There are two different ways of determining such frequencies: (i) stop-8
based and (ii) route-based. The latter one requires information on the demand for each stop along9
the route. Conversely, the stop-based approach is based on the ratio between the passenger load10
at the maximum-load point and the desired occupancy specified for a given period of time (which11
should ideally be characterized by a uniform bus frequency). Formally, it is possible to determine12
the desired frequency for a given period j of length τ (e.g. τ = 60 minutes), i.e. fj as follows13

fj = max

(
omax
s,j

odj
, fmin
j

)
,∀j (1)

where omax
s,j = max os,j,∀s ∈ S stands for the average/measured on-board occupancy when de-14

parting from stop s during time period j for a certain line and S is the set of all stops except for the15
last stop on the respective line. odj is the desired occupancy for the same time period and fmin

j is16
the minimum frequency defined by policy makers. In order to extract information on the demand17
pattern, the following set of assumptions is made:18
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Assumption 1 The entire fleet has an equal capacity of ς passengers;1

Assumption 2 odj is defined by a pre-defined constant value 0 < δ < 1 (i.e. percentage-wise2
definition) for each route and period j, i.e. odj = δ · ς ;3

Assumption 3 The operator determined the frequency based on the maximum-load point method4
where the maximum expected load for a given trip is considered constant value for a certain time5
of the year scheduling (typically a season);6

Assumption 4 The first term in Eq. (1) is binding. In other words, the frequency needed in order7
to satisfy the load-desired occupancy ratio exceeds the minimum policy frequency.8

Note that assumption 3 does not require that the operator has information on passenger demand at9
each stop. Operators often know what is the busiest stop along each route and then manually collect10
data on this particular stop (3). Moreover, even if the operator does not consciously determine11
the frequency based on stop-based counts, the frequency is often the outcome of allocating just12
sufficient capacity to cater for the most heavily used line segment.13

Based on these assumptions, it is possible to re-write Eq. 1 as follows14

omax
s,j = ς · δ · fj = ς · δ · 3600

h̄pj
(2)

where h̄pj denotes the average planned headway during period j (in seconds). Let lm(j, t) be the15
maximum bus load of a given trip t during the period j. The planned headway is inferred from16
the data by calculating the average difference between the scheduled departure times within the17
period p. Based on the above relation between max load point and headway, the maximum load of18
a specific bus trip k ∈ Kj , omax

s,k , can be estimated based on observed headways derived from AVL:19
20

omax
s,k = ς · δ · fj = ς · δ · 3600

h̄k
(3)

where Kj is the set of bus trips that operate on a given line during period j and h̄k is the average21
observed headway calculated as22

h̄k =
∑
s∈S

hs,k−1 + hs,k
2|S|

(4)

where hs,k is the observed headway between trips k and k + 1. The maximum load point can now23
be determined by:24

smax
k = arg max

s∈S
os,k,∀k ∈ Kj (5)

25
However, the passenger loads upon departing from each stop along trip k, os,k, are un-26

known. In the following section, these values are estimated based on the dwell times available27
from AVL data.28
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Decomposing Dwell Times1
Assuming simultaneous boarding and alighting passenger flows, it is possible to express the dwell2
time of trip k at stop s, dk,s, using the following linear expression:3

dk,s = γ + max(α · ak,s, β · bk,s) + ck,s + ε (6)

where α and β are the average alighting and boarding time per passenger, respectively, and, ak,s4
and bk,s represent the number of alighting and boarding passengers. γ is the fixed delay due to5
door opening and closing times and ε is an error term caused by variations in driver and passenger6
behavior that is assumed to be distributed ε ∼ N(0, σ2) . ck,s is the additional dwell time due to7
on-board crowding and interactions between passengers in crowded situations. In line with the8
formulation of Weidmann (15), the delay due to on-board crowding can be expressed as a penalty9
that prolongs the constant dwell time delay:10

dk,s = max(α · ak,s, β · bk,s) + (γ · (1 + ek,s)
2) (7)

where ek,s is the friction element defined as11

ek,s =

{(
max(α · ak,s, β · bk,s)− ς · δ

)
· 1/100 if max(α · ak,s, β · bk,s) ≥ ς · δ,∀i ∈ j

0 otherwise.
(8)

12
The relation between on-board occupancy of trip k upon departure from stop s to past13

boarding and alighting flows is14
os,k =

∑s

y=1
(bk,y − ak,y) (9)

In order to reduce the degrees of freedom that characterize the load profile estimation problem, the15
following assumption is made based on empirical observations:16

Assumption 5 There are no alightings on the first stops of a route neither boardings on the last17
ones.18

The notion of first and last stops of a given route can be defined percentage-wise by introducing19
the two following user-defined parameters: 0 < ϕf << 1 and 0 < ϕl << 1, respectively. This20
assumption implies that ek,s = 0 for the first and last stops. The dwell time for the first stops21
is then reduced to dk,s = β · bk,s + γ , whereas the dwell time for the last stops is simplified22
into dk,s = α · ak,s + γ. By applying linear regression models with a constrained solution space23
(i.e. 2 < β, β < 10) using the well-known least squares as objective function, α, β and γ can be24
estimated. The constant delay, γ , can be taken as the average value of the constants resulting of the25
two linear regression processes. The number of boarding and alighting passengers for the first/last26
stops can then be obtained. These estimations will be further used as support vectors to estimate27
the entire load profile for a given trip - together with the maximum load and the maximum load28
point of a given trip. This process is detailed in the subsequent section.29

Load Profile Estimation using Constrained Local Regression30
The load profile estimation is preformed using Local Regression, namely, Local Scatterplot Smooth-31
ing (LOESS) (16). In order to apply the LOESS estimation method, support samples should be32
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provided to the regression analysis. In our context, these samples are the values of os,k,∀s ∈ S.1
Following the discussion in the previous section, the values of os,k for the first and last stops are2
known. However, this is not sufficient for estimating the entire load profile. In addition to the3
support samples, the eqs. (3,4) provide a way to compute the maximum load. However, this is not4
sufficient to compute the maximum load point.5

The identification of the maximum load point smax
k for a particular k without any passenger-6

based data is a difficult task. Therefore we restrict our investigation to understanding the demand7
for each route for the typical load within a given time period rather than estimating the exact values8
for each individual trip. Let ŝk denote the first (furthermost upstream) bus stop which experienced9
the largest dwell time, dk,ŝ, on a given trip k. It can be computed as10

ŝk = arg max
s∈S

os,k (10)

Using these dwell times, we propose to compute the maximum load point of a given trip k, smax
k ,11

as follows12

smax
k =

{
min
s̀∈S̀

s̀ if os,k < χ

ŝk otherwise.
(11)

where s̀ ∈ S̀ :
∑s̀

y=1 os,k ≥
∑|S|

y=1
os,k/2, S̀ ⊆ S. This definition implies that the max load point13

is identified as the stop up to which the accumulated dwell time exceeds half of the dwell time14
for the entire trip or alternatively, the earliest stop at which the dwell time exceeds a user-defined15
threshold, χ.16

By following these computations, we obtain a set of loads which we denominate as support17
vector. This set contains the known load values which we can use while estimating the remaining18
loads. The definitions made by the Assumption 5 and eqs. (3,4) imply that the load profile follows19
a parabola-like function - where its maximum is located at smax

k . However, this pattern may not20
prevail for every single trip.21

LOESS is a regression method which combines linear/nonlinear regression methods in a22
simple fashion. Instead of trying to fit a function globally (i.e. for all bus stops), it does so23
locally by fitting models to localized subsets of data to build up a function which can describe the24
deterministic part of the variation in the data, point by point (i.e. stop by stop). In simple terms, it25
fits segments of the data (e.g. first/last stops using a simple linear function followed by a parabolic26
shape around the maximum load point). The partitioning of the data is determined by deploying a27
nearest neighbors algorithm, where the neighborhood concept is given by a bandwidth-type user-28
defined parameter denoted by λ. Usually, the LOESS requires a large amount of data to obtain29
accurate fits for the target function. LOESS is applied in this study for estimating the local shape30
parameters of each passenger load profile.31

The deterministic part of the function is fitted using the dwell times. The first step of the32
load profile estimation procedure is to fit a possible function to describe os,k, using the LOESS33
method based on the support vector. Our interest lies in the first-order derivatives (e.g. is the load34
going up or down in the next stop). The regression output is constrained to the possible range of35
load values (0 < os,k < ς, ∀s, k).36

Fitting the Dwell-Times to the Load Profile using Incremental Filters37
After estimating a constrained os,k using the abovementioned procedure, we need to keep adjusting38
their results using the dwell times available from AVL data records. To this end, we employ an39
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incremental filter. This filter is defined stop-by-stop by using the load prediction obtained for the1
last stop. It is composed of two components:2

(1) a bandwidth defining the maximum and minimum admissible load values denoted by3
o+
s,k and o−s,k, whose can be defined as:4

o−s,k = os−1,k − ds,k/α

o+
s,k = os−1,k + ds,k/β

(12)

5
(2) a progression rate function, ρs,k, to decompose the loading time into boarding and6

alighting times, defined as:7

ρs,k =


1 if s = dϕf · |S|e
0 if s = |S| − dϕl · |S|e
ρs−1,k − 1

ϕl−ϕf
otherwise.

(13)

where ϕf , ϕl denote the ratio of stops which are considered first/last stops on the route where8
it is assumed the absence of friction (i.e. ek,s = 0) for those stops, as well as the absence of9
alightings/boardings for this set of first/last stops, respectively. The progression rate is thus one10
for the first stops and zero for the last stops and diminishes in between. This function originates11
from empirical observations and the assumption that the ratio between the number of boarding12
and alighting passengers is negatively correlated with the distance from the origin stop on a given13
route. It is then used to update to the load estimation function. Consequently, the updated on-board14
load estimation is obtained as follows.15

õs,k =



o−s,k + (o+
s,k − o

−
s,k) · ρs,k +

[
1− os,k

os−1,k

]
·
o+
s,k − o

−
s,k

2
if

dϕf · |S|e < s < |S| − dϕl · |S|e ∧ s 6= smax
k ,

os,k otherwise.

(14)

By conducting this procedure, we guarantee that reasonable and consistent load values are16
obtained. Note that the information on the load trend is obtained through the local regression17
method, which results in a constrained local regression framework.18

As noted earlier, this calculation is completely unsupervised - as we do not know the real19
load values. This prohibits the computation of confidence intervals for our predictions which re-20
quires sample standard deviations. In order to address this limitation, we developed an online21
procedure to compute a dwell-based load bandwidth which aims to graphically illustrate the un-22
certainty around our load predictions. It uses a sliding window based on a number of upstream23
bus stops to assess the range of realistic minimum/maximum loads using their dwell times (e.g. if24
α = 2 and ds,k, then arguably ak,s ≤ 5).25

Finding a Typical Load Profile26
Instead of fitting each individual bus trip load, we propose estimating the typical passenger load27
within a short time window. We thus calculate the mean load value for each bus stop and compute28
the Euclidean Distance between the average load profile and each individual trip load. Finally, we29
select as typical trip from the sample which is most similar to the average load profile - the trip30
with the minimum Euclidean distance.31
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APPLICATION1
Case Study and data description2
The abovementioned methodology was evaluated using AVL data collected from a real-world case3
study in Dublin, Ireland. Dublin’s urban area has a Population of 1.3 million inhabitants. In4
addition to buses, the public transport network in Dublin includes also heavy and light rail services.5
The AVL dataset available for this study was collected on a continuous manner through one month6
period ( January 2013) for 120 bus routes. In addition, the dataset also includes the scheduled time7
points per route.8

AVL data is transmitted by each bus vehicle with 15-second intervals. It includes WGS849
coordinates, timestamp, trip ID (which identifies the particular trip assignment that the vehicle is10
performing, which is recurring), line ID and a binary value indicating whether the bus is halting11
at a bus stop or not. However, it contains neither information regarding the trip’s direction nor a12
unique ID to identify each individual trip. Moreover, the dataset contains a considerable amount13
of noise. To tackle such issues, the following data preparation activities were performed: 1) iden-14
tify the route’s direction of each trip through a binary clustering procedure; 2) exclude trips with15
incomplete or inconsistent data; 3) assign each trip a unique ID using the departure date, the origi-16
nal assignment ID, the trip’s line and direction; 3) match this data with the existing schedule time17
points; 4) exclude trips which were not possible to match with the existing schedule due to data18
inconsistencies (e.g. deviations from the planned mapped route due to data noise). This process19
results with a dataset which describes the trip trajectory of each route at a stop-level and includes20
the following variables: trip ID, stop ID, latitude and longitude, scheduled arrival and scheduled21
departure time at stop, actual arrival and departure time at stop and the observed dwell time. The22
latter ranges discretely between 0 and 600 with 15 seconds steps (since data is collected every 1523
seconds, we obtain a non-observed dwell time for some stops).24

For demonstration purposes, we choose to test our method on data from two high frequency25
routes (140 and 13), respectively. The selection criteria were the small amount of missing data (i.e.26
< 10%), the high share of trips during peak hours and its distinct function in the network. Route27
13 connects the airport (north of the city), located in the city’s northwest corner, to Adamstown, a28
large neighborhood in the westernmost part of the urban area through downtown, serving several29
transport hubs along its route. Route 140 is a commuter line which connects the northern neighbor-30
hood of Poppintree, which lies close to the city outskirts, to the southern neighborhood of Dartry.31
Fig. 2 illustrates the route maps and Table 1 summarizes information on the number of daily trips,32
the observed dwell times and the amount of missing data for these routes. The analysis focuses33
on the two peak periods, morning (8:00-12:00) and evening (16:00-20:00), which were defined34
by identifying the periods of the day during which the largest round trip delays were experienced.35
Large variations in dwell times are observed on route 13 (Table 1), presumably due to demand vari-36
ations caused by the irregular passenger flows in the airport which is highly influenced by flight37
departure and arrival times. The planned headway during the analysis periods ranges between 1038
and 30 minutes. Fig. 3 presents the headway distributions of these routes. It is evident that both39
lines exhibit large headway variations due to both planning and irregularity in their operations. The40
irregular demand pattern is arguably also the underlying reason for the highly irregular headways41
that characterize Route 13.42
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(a) Route 140. (b) Route 13.

FIGURE 2 : Route’s definition illustration using R package [RGoogleMaps].

FIGURE 3 : Headway distribution of route 140 (left-side) and 13 (on right-side). Planned headys
on peak hours range between 10-30 and and 10-20, respectively. Times in minutes.

TABLE 1 : Descriptive statistics for each route considered. Dwell Times (DwT) in seconds.

Route Nr. Stops Total Trips Daily Mean Daily Std. Dev. Route Length
140 45 1320 43 12 18km
13 87 926 30 7 32km

Route Max. DwT Mean DwT Std. Dev. DwT Missing Data
140 660 11.02 37.49 9.01%
13 1305 10.02 59.43 15.88%
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Implementation1
All the experiments were conducted using the R Software (17). The dwell times were computed by2
using the midpoint of the registered interval (e.g. if a dwell time of 30 seconds is recorded, it may3
in fact range between 30 and 45 seconds and thus a dwell time of 37.5 seconds is considered in the4
analysis). The analysis method involves the specification of six parameters: {δ, ς, ϕf , ϕl, χ, λ} .5
In the absence of information from the public transport planner on their design criterion, a desired6
occupancy level of 50% of vehicle capacity was assumed, δ = 0.5 where ς = 100. ϕf , ϕl are7
used to define the concept of first/last stops. Their value was set to ϕf = ϕl = 10% based on8
empirical observations. χ is the maximum dwell time threshold for identifying the maximum9
load point. The parameter was specified after testing the results {90, 120, 150}. As the output10
profiles on both routes did not vary significantly (i.e. < 1%), the lowest available value was chosen11
(90 seconds). λ is a user-defined bandwidth parameter and was tested with all the default values12
for the implementation provided by the built-in R package [stats]. The same procedure was13
followed when applying the least squares linear regression method and resulted with dwell time14
function coefficients estimates of α = 3, β = 4 and γ = 10, all in seconds. These values are15
consistent with dwell time estimates reported in the literature and recommended by the (18).16

Results17
Fig. 4 illustrates an example of how our framework performs over a single trip on route 140. Note18
that the maximum load point is expected at stop 26 while stop 8 experiences the longest dwell time19
and therefore introduces large variation into the estimation procedure20

Load profiles were estimated for each bus trip and were then analyzed jointly for each route21
direction and time period. Figs. 5 and 6 present the load profile obtained for each one of the two22
routes during the morning and evening peak periods. The typical load profile is highlighted in23
each case. It is evident that the estimated load profiles for individual trips demonstrate consider-24
able variation. Such variations could be expected by service irregularity and demand variations.25
However, in the absence of ground-truth passenger demand data, it was not possible to verify the26
extent of these variations. However, the variations in load profile estimates mirror the extent of27
headway variations for both routes. A preliminary sensitivity analysis suggests that the estimation28
results are robust with respect to the dwell time threshold (χ) and the share of first and last stops29
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(ϕf , ϕl) which are used for estimating the dwell time coefficients. In contrast, the estimation re-1
sults are sensitive to the desired occupancy value (δ) since it determines the reference load value at2
the max load point which is then used when scaling the remaining load profile based on AVL data.3
We therefore focus in our interpretation on the first-order derivative of the load profile and how it4
evolves rather than the exact absolute values.5

The load profile estimates provide operators and schedule planners a direct visual insight6
into which stops are subject to large demand variations. Fig. 5 suggests that route 140 has a7
more uniform (over stops) and stable (over trips) passenger load when compared with route 13.8
The latter exhibits several load profile peaks which differ between the morning and evening peak9
periods. Furthermore, the estimated load profiles provide insights into how a bus route preforms10
in terms of the number of trips and trip segments that are expected to carry passenger volumes that11
exceed the desired on-board occupancy (e.g. 50 passengers in this experiment).12

Obviousily, the low granularity of the data in this case study (15 seconds) as well as the ab-13
sence of any information regarding the stops (e.g. nearby/faraway from a signalized intersection)14
or the special operations conducted during the dwells (e.g. wheelchair boardings) may appear to be15
major limitations of this framework - as the computed dwells may not always correspond to the real16
ones. However, this methodology attemp to model the typical demand behavior. Consequently,17
such rare events are naturally prunned throughout the last step of the framework - where the me-18
dian profile is considered as reference to select a trip representative of the entire input (statistical)19
Population. Even though, meta information about the vehicles and the stop’s location could indeed20
improve the framework robustness to such issues.21

Moreover, the assumption introduced in eq. 13 about the progression rate poses a big issue22
in case the route demand behavior follow a considerably different pattern. Yet, this specific issue23
may be countered by including any other type of high-level prior knowledge of the demand patterns24
along a specific route (e.g. maximum load points, big interface hubs, etc.).25

CONCLUSION26
This paper reports an explorative study into the feasibility of estimating passenger loads based27
solely on AVL data. The methodology proposed in this study consists of a sequence of steps which28
involve the identification of the max load point and the corresponding load by reserve engineering29
the frequency determination methods. Dwell time function coefficients are then estimated based on30
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FIGURE 6 : Load Profiles generated for route 13 (morning/evening peak on left/right-sides).

locally constrained linear regression models. Passenger loads are constructed by applying machine1
learning algorithms to smoothen the load profile based on actual dwell time records. The typical2
load profile is then obtained for each time period. The feasibility of the proposed methodology3
was tested for a case study in Dublin which demonstrates its potential value.4

The proposed method can be integrated into an operation planning software to support5
operators in designing timetables and allocating resources for improving service reliability. The6
deployment of such an estimation method can save operators the high costs associated with equip-7
ping the bus fleet with APC devices or be useful in case that the operator does not own the fleet8
or has no access to detailed APC/AFC data. To the best of the authors knowledge, this is the first9
attempt to uncover the potential of AVL data in providing information on passenger demand.10

Public transport service planning involves assessing the impacts of alternative service pro-11
visions on travelers. Information on travel demand is therefore essential in supporting authorities12
and operators in the service planning process. Estimates of on-board passenger loads based on the13
method proposed in this study could be used for determining whether service frequency or vehicle14
capacity are adequate and identifying potential for stop consolidation. Furthermore, key perfor-15
mance indicators such as vehicle utilization rate, empty-seat running distance and exceeded-load16
running distance can be approximated based on the estimated load profile (3). These indicators17
can support service providers in the assessment of service effectiveness across the network.18

Further research is needed to validate and improve the proposed method. In particular, the19
performance of the estimation method should be validated against passenger counts by examining20
the mean absolute error. The authors currently explore the possibility of testing the method for a21
system where such data is available. The consideration of different time windows for establishing22
the typical passenger load will allow examining the possible real-time deployment of the proposed23
method. Moreover, some of the assumptions made in this paper can be relaxed and based on the24
operational practice. For example, accounting for mixed fleet operations or introducing fuzzy logic25
in to the max load point selection.26

REFERENCES27
[1] Richardson, A., E. Ampt, and A. Meyburg, Survey methods for transport planning. Eucalyp-28

tus Press Melbourne, 1995.29



Moreira-Matias and Cats 14

[2] Vuchic, V., Urban Transit: Operations, Planning, and Economics. Wiley, 2005.1

[3] Ceder, A., Public transit planning and operation: theory, modeling and practice. Elsevier,2
Butterworth-Heinemann, 2007.3

[4] Pelletier, M., M. Trepanier, and C. Morency, Smart card data use in public transit: A literature4
review. Transportation Research Part C: Emerging Technologies, Vol. 19, No. 4, 2011, pp.5
557 – 568.6

[5] Rahbee, A. and D. Czerwinski, Using entry-only automatic fare collection data to estimate7
rail transit passenger flows at CTA. In Proceedings of the 2002 Transport Chicago Confer-8
ence, 2002.9

[6] Trépanier, M., N. Tranchant, and R. Chapleau, Individual trip destination estimation in a10
transit smart card automated fare collection system. Journal of Intelligent Transportation11
Systems, Vol. 11, No. 1, 2007, pp. 1–14.12

[7] Lee, S. G. and M. D. Hickman, Travel pattern analysis using smart card data of regular users.13
In Proceedings of the 90th Annual Meeting of the Transportation Research Board, 2011.14

[8] Wang, W., J. Attanucci, and N. Wilson, Bus passenger origin-destination estimation and re-15
lated analyses using automated data collection systems. Journal of Public Transportation,16
Vol. 14, No. 4, 2011, p. 131.17

[9] Nielsen, B., L. Frolich, O. Nielsen, and D. Filges, Estimating passenger numbers in trains18
using existing weighing capabilities. Transportmetrica A: Transport Science, Vol. 10, No. 6,19
2014, pp. 502–517.20

[10] Chen, C., Y. Chang, T. Chen, and D. Wang, People Counting System for Getting In/Out of a21
Bus Based on Video Processing. In Intelligent Systems Design and Applications, 2008. ISDA22
’08. Eighth International Conference on, 2008, Vol. 3, pp. 565–569.23

[11] Dueker, K., T. Kimpel, J. Strathman, and S. Callas, Determinants of bus dwell time. Journal24
of Public Transportation, Vol. 7, No. 1, 2004, pp. 21–40.25

[12] Tirachini, A., Bus dwell time: the effect of different fare collection systems, bus floor level26
and age of passengers. Transportmetrica A: Transport Science, Vol. 9, No. 1, 2013, pp. 28–27
49.28

[13] Shalaby, A. and A. Farhan, Bus travel time prediction model for dynamic operations control29
and passenger information systems. The 82nd Annual Meeting of the Transportation Research30
Board, 2003.31

[14] Furth, P., B. Hemily, T. Muller, and J. Strathman, Uses of archived AVL-APC data to improve32
transit performance and management: Review and potential. Transportation Research Board,33
2003.34

[15] Weidmann, U., Der Fahrgastwechsel im öffentlichen Personenverkehr (In German). Ph.D.35
thesis, Diss. Techn. Wiss. ETH Zürich, Nr. 10630, 1994. Ref.: Heinrich Brändli; Korref.:36
Adolf Müller-Hellmann, 1994.37



Moreira-Matias and Cats 15

[16] Cleveland, W., Robust locally weighted regression and smoothing scatterplots. Journal of the1
American statistical association, Vol. 74, No. 368, 1979, pp. 829–836.2

[17] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for3
Statistical Computing, Vienna, Austria, 2012.4

[18] TCRP, Transit Capacity and Quality of Service Manual, Vol. 100. Transportation Research5
Board, 2003.6


	Abstract
	Introduction
	Methodology
	Analysis Approach
	Computing The High Level Demand Profiles
	Decomposing Dwell Times
	Load Profile Estimation using Constrained Local Regression
	Fitting the Dwell-Times to the Load Profile using Incremental Filters
	Finding a Typical Load Profile

	Application
	Case Study and data description
	Implementation
	Results

	Conclusion

