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Elliptic blending model: A new near-wall Reynolds-stress turbulence
closure

Rémi Manceaua) and Kemal Hanjalić
Department of Applied Physics, Thermofluids Section, Delft University of Technology, Lorentzweg 1,
P.O. Box 5046, 2600 GA Delft, The Netherlands

~Received 19 December 2000; accepted 14 November 2001!

A new approach to modeling the effects of a solid wall in one-point second-moment
~Reynolds-stress! turbulence closures is presented. The model is based on the relaxation of an
inhomogeneous~near-wall! formulation of the pressure–strain tensor towards the chosen
conventional homogeneous~far-from-a-wall! form using the blending functiona, for which an
elliptic equation is solved. The approach preserves the main features of Durbin’s Reynolds-stress
model, but instead of six elliptic equations~for each stress component!, it involves only one, scalar
elliptic equation. The model, called ‘‘the elliptic blending model,’’ offers significant simplification,
while still complying with the basic physical rationale for the elliptic relaxation concept. In addition
to model validation against direct numerical simulation in a plane channel for Ret5590, the model
was applied in the computation of the channel flow at a ‘‘real-life’’ Reynolds number of 106,
showing a good prediction of the logarithmic profile of the mean velocity. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1432693#
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I. INTRODUCTION

Modeling the effects of solid walls on adjacent turbule
flows has long been—and still is—a major challenge. T
problem is equally acute in one-point and two-point stati
cal closures, as it is in spectral modeling or large-eddy sim
lations ~LES!. Indeed, the hypotheses underlying existi
one-point turbulence closure models, e.g., high Reyno
number, local isotropy, quasihomogeneity, are not valid
the presence of a wall. Hence, near-wall modifications
necessary in order to make them comply with the near-w
behavior of turbulence.

Research on this topic is driven by two opposing mo
vations: a need for simple and convenient models for ind
trial applications, and the requirement for consistency w
the physics of the near-wall turbulence. The wall-functi
technique1 is widely used among the industry because it e
ables a drastic reduction in the number of grid points, bu
still deficient in nonequilibrium flows, primarily in strong
pressure gradients, impinging flows, separation, reatta
ment, natural convection, three-dimensional flows, etc. M
els based on damping functions, which allow the integrat
of equations up to the wall, are much less popular among
industry since they require a very fine mesh in the vicinity
the wall and introduce nonlinear~typically exponential!
functions in the equations, which make their solution mo
difficult. Moreover, most of these functions are purely e
pirical and lack theoretical justification. More elaborate mo
els ~e.g., Lumley,2 Shih and Lumley,3 Craft and Launder4!,
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Laboratoire d’Études Aérodynamiques, Universite´ de Poitiers, SP2MI,
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based on constitutive relations and physical constraints s
as realizability or two-component limit of turbulence, ha
better theoretical bases but are very seldom—if at all—u
for industrial applications because of their complexity.

The elliptic relaxation method of Durbin5 offers good
prospects of reconciling the two above-mentioned requ
ments: it enables the integration down to the wall, with a
ceptable grid density. The method, applied to Reynol
stress models, has a solid theoretical basis, but implies
additional equations, which impedes its spreading into
industry. The main problem is not the increased cost due
the number of equations, but rather the complexity of
implementation and the stability problems: the bound
conditions for the additional equations are a major source
numerical instability. For industrial applications, Durbin pr
posed a version of the model reduced to four equations,
v22 f model,6 which has become popular and has begun
be implemented in commercial software. However, t
model is not fully satisfactory because it still uses the ed
viscosity hypothesis.

A. The physics of wall effects on turbulence

A solid wall exerts multiple effects on fluid flow an
turbulence. The no-slip constraint imposes the dominat
role of fluid viscosity in the close vicinity of a wall regard
less of the bulk-flow Reynolds number. Viscous effects are
scalar character and dampen the velocity fluctuations equ
in all directions. In contrast, the blocking effect originatin
from the impermeability constraint suppresses the velo
fluctuations primarily in the wall-normal direction, makin
the turbulence highly anisotropic and, in the limit, forces t
turbulence to approach the two-component state at the e
of the viscous sublayer. In addition, the wall reflects the pr

ess:

s-
v-
© 2002 American Institute of Physics
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sure fluctuations and enhances their scrambling effect,
redistributing the kinetic energy among the componen
which, in turn, leads to the reduction of the turbulence
isotropy. The latter two~opposing! effects, which have a di-
rectional orientation and depend on the wall topography,
of a kinematic character and are present also in the vici
of an interface~free surface! between a liquid and gaseou
fluid. A physically consistent model ought to account se
rately for each of the effects mentioned, something tha
difficult to achieve with a limited number of flow and turbu
lence parameters that are at one’s disposal in one-point
bulence models, regardless of their level.

Most models of near-wall turbulence do not distingui
the viscous from nonviscous effects and usually apply e
pirical damping functions in terms of local turbulence Re
nolds numbers and often of wall distance by which to
count for the total wall effect. Needless to say, such mod
cannot perform well in situations where one or the oth
effect is absent or is of less importance~e.g., viscous and
transitional regions in flows away from a solid wall una
fected by blocking, or flows with liquid–gas interface whe
the kinematic blocking is the sole cause of turbulence mo
fication!.

Several approaches to model viscous and nonvisc
wall effects separately have been reported in the literat
Craft and Launder4 apply nonlinear models for the pressure
strain term in which the coefficients are determined
imposing—among others—the two-component turbule
limit, which is the major consequence of wall blockag
while also introducing some functions to model the visco
effects. Hanjalic´ et al.7 model the viscous effects with func
tions of turbulence Reynolds number defined solely in ter
of turbulence kinetic energy and its dissipation rate~hence
invariant!. Recognizing the fact that the turbulence anis
ropy in the near-wall region is primarily caused by wa
blockage, the turbulent-stress and dissipation-rate anisot
invariants are used to model this nonviscous effect. Durb
concept of elliptic relaxation, both in the eddy-viscosity a
Reynolds-stress models, accounts in fact for the kinem
wall blocking, which adjusts the wall effect on pressur
redistribution, stress anisotropy, and stress dissipation ra
while the viscous effects are introduced by imposing
Kolmogorov scales as the lower bounds to the conventio
large-eddy time and length scales.

B. The present contribution

We propose to reduce the number of equations
Durbin’s Reynolds-stress model and thus to reduce the c
plexity of the model. Moreover, one of the main purposes
this modification is to suppress the previously mentioned
merical stiffness induced by the boundary conditions of
additional elliptic relaxation equations. It is aimed to me
industrial needs for a simple and robust model, while s
preserving the elliptic relaxation concept and satisfying
main theoretical constraints pertinent to near-wall turb
lence.

It is first noted that the six elliptic relaxation equatio
are somewhat redundant. Indeed, in this model, the redi
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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bution termf i j* is evaluated fromk f i j , wherek is the turbu-
lence kinetic energy, and the six independent component
f i j are obtained by solving the six elliptic differential equ
tions (12L2¹2) f i j 5 f i j

h , with boundary conditions enabling
the reproduction of the near-wall behavior of the redistrib
tion term. These equations have then the purely geomet
effect, with a unique length scale. Their role is to enforce
redistribution terms to comply with their near-wall limitin
behavior. It is, therefore, expected that the same effect co
be reproduced with only one elliptic equation. A straightfo
ward idea is to generalize the concept of scalar redistribu
function f used in thev22 f model. A scalar functionf can be
defined byf 5fkl* Mkl , choosing an appropriate tensorMkl

~e.g., the anisotropy tensorakl!, and the pressure–strain ter
can be reconstructed fromf i j* 5 f Ni j , whereNi j is another
well-chosen tensor. Unfortunately, no choice ofMkl andNi j

can rigorously ensure the exact reconstruction off i j* @in
other words, the equationf i j* 5(fkl* Mkl)Ni j cannot be satis-
fied by any tensorsMkl andNi j , except obviously whenNi j

is set toNi j 5f i j* /(fkl* Mkl), which is of no interest#, and this
type of model can hence be based only on an approxim
reconstruction. A survey of different possibilities, througha
priori tests and computations in a channel flow, have led
to the conclusion that this approach cannot give correct p
dictions of the stress anisotropy in the near-wall region wi
out using complex, nonlinear tensorial expressions forMkl

andNi j . Now, one of the major purposes of the elliptic r
laxation approach is to avoid the use of such nonlinear
mulations, and the appeal of such an approach, compare
nonlinear low-Reynolds-number models, diminishes if t
level of nonlinearity is not reduced.

Therefore, in the present article, another approach
used based on a blending of near-wall and far-from-the-w
forms of the redistribution tensor, the ellipticity being pr
served by solving an elliptic equation for the blending fun
tion a. The model, called the elliptic blending model~EBM!,
preserves the main features of Durbin’s Reynolds-str
model, but involves only one additional, scalar, elliptic equ
tion, rather than six. We believe that this approach offer
reasonable compromise between simplicity and consiste
with the physics.

The article is divided into five sections: after the Intr
duction, the constraints to be satisfied by a near-wall tur
lence model are described. In the next section we outline
derivation of the model. A model validation in the chann
flow at Ret5590, using direct numerical simulation~DNS!
data, is described. Finally, some comments on the grid s
sitivity issue are given.

II. REYNOLDS-STRESS BUDGETS IN THE VICINITY
OF THE WALL

In order for a model to be as universal as possible
must be based on true universal constraints~unlike the wall
laws!. In the near-wall region, the no-slip boundary conditi
and the incompressibility of the fluid impose the limitin
behavior of the fluctuating quantities, and consequently,
the Reynolds stresses and their budgets. Reproducing t
near-wall budgets is the only way to ensure a correct pre
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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TABLE I. Taylor-series expansions of the different terms of the budgets of the Reynolds stresses. The identities]p0 /]x52rna2 , ]p0 /]z52rnc2 , p1

52rnb2 , and p253rnb3 have been used, deriving from the fact that the fluctuating Navier–Stokes equations reduce in the near-wall region to]p/]xi

5rn]2ui /]y2.

2]uiuj /]t 2Ci j Di j
n Di j

T f i j* Pi j 2« i j

2na1
2 22na1

2

u2 O(y2) O(y3) 112na1a2y O(y3) 24na1a2y O(y3) 28na1a2y
1O(y2) 1O(y2) 1O(y2)

12nb2
2y2 24nb2

2y2 28nb2
2y2

v2 O(y4) O(y5) 140nb2b3y3 O(y5) 216nb2b3y3 O(y5) 224nb2b3y3

1O(y4) 1O(y4) 1O(y4)

2nc1
2 22nc1

2

w2 O(y2) O(y3) 112nc1c2y O(y3) 24nc1c2y O(y3) 28nc1c2y
1O(y2) 1O(y2) 1O(y2)
6na1b2y 22na1b2y 24na1b2y

uv O(y3) O(y4) 1(12na1b3112na2b2)y2 O(y4) 2(6na1b314na2b2)y2 O(y4) 2(6na1b318na2b2)y2

1O(y3) 1O(y3) 1O(y3)
2na1c1 22na1c1

uw O(y2) O(y3) 1(6na1c216na2c1)y O(y3) (22na1c222na2c1)y O(y3) (24na1c224na2c1)y
1O(y2) 1O(y2) 1O(y2)
6nb2c1y 22nb2c1y 24nb2c1y

vw O(y3) O(y4) 1(12nb3c1112nb2c2)y2 O(y4) 2(6nb3c114nb2c2)y2 O(y4) 2(6nb3c118nb2c2)y2

1O(y3) 1O(y3) 1O(y3)
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tion of the wall-induced anisotropies in general configu
tions. Therefore, this is the main line followed in the deriv
tion of the elliptic blending model. Note that free surfac
are not considered here and, consequently, modification
the model are necessary to account for this type of bound
conditions.

We consider the general case of a wall in a turbul
incompressible flow: contrary to usual descriptions of
near-wall limiting behavior, the wall here is not necessar
plane and the flow may not be parallel to it. Let us focus
a certain point on the wall: the reference frame can, with
any loss of generality, be chosen such that they direction be
normal to the wall at this particular point, itself located
y50. The mean velocitiesU, V, W and the fluctuating ve-
locities u, v, w and pressurep can be expressed as Taylo
series expansions in terms ofy. The no-slip boundary condi
tion leads to the canceling of the zeroth-order terms for
velocities, and the continuity equation to the canceling of
first-order terms forV andv:

U5A1~x,z,t !y1A2~x,z,t !y21O~y3!,

V5B2~x,z,t !y21O~y3!,

W5C1~x,z,t !y1C2~x,z,t !y21O~y3!,

u5a1~x,z,t !y1a2~x,z,t !y21O~y3!, ~1!

v5b2~x,z,t !y21O~y3!,

w5c1~x,z,t !y1c2~x,z,t !y21O~y3!,

p5p0~x,z,t !1p1~x,z,t !y1p2~x,z,t !y21O~y3!.
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Note that the coefficientsAi , Bi , and Ci are deterministic
functions, whereas the coefficientsai , bi , ci , and pi are
stochastic variables.

The Taylor-series expansion of the Reynolds stresse
straightforward

u25a1
2y212a1a2y31O~y4!,

v25b2
2y412b2b3y51O~y6!,

w25c1
2y212c1c2y31O~y4!,

~2!
uv5a1b2y31~a2b21a1b3!y41O~y5!,

uw5a1c1y21~a1c21a2c1!y31O~y4!,

vw5b2c1y31~b2c21b3c1!y41O~y5!.

The damping of the components involvingv is one of the
major features a near-wall model must reproduce, in orde
predict the two-component limit of turbulence.

The Reynolds-stress transport equations can be wri
as

2
]uiuj

]t
2Ci j 1Di j

n 1Di j
T 1f i j* 1Pi j 2« i j 50, ~3!

whereCi j , Di j
n , Di j

T , f i j* , Pi j , and« i j denote convection,
viscous diffusion, turbulent diffusion, redistribution, produ
tion, and dissipation, respectively. Note that the termf i j* is
the pressure–velocity gradient correlation, which is p
posely not decomposed into traceless and diffusive pa
since this splitting introduces near-wall behaviors that
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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difficult to reproduce.8,9 For convenience,f i j* is called herein
redistribution, even though it also contains a diffusive par

The Taylor-series expansions of the terms in Eq.~3! are
given in Table I. It is emphasized again that the general c
is in focus here, i.e., all the derivatives with respect tox, z,
andt have been taken into account: they do not appear as
dominant orders~which are given explicitly in the table!, but
they are all contained in theO(yn)—for instance, the coef-
ficient of the y2 term in the expansion of«11 is 8na2

2

112na1a312n(]a1 /]x)212n(]a1 /]z)2.
It can be seen that, for all the components, convect

turbulent diffusion, production, as well as the time deriv
tive, are all negligible to the two first dominant orders in t
wall region. Shown in Table I is that the behavior ofuiuj in
the vicinity of the wall is related to its limiting budget, whic
can be written, whatever the component, as

n
]2uiuj

]y2 2n~n11!n
uiuj

y2 5O~yn!, ~4!

with n51 for u2, w2 anduw; n52 for uv andvw; andn
53 for v2. The solution of this second-order differenti
equation is

uiuj5Byn111
C

yn 1O~yn12!, ~5!

whereC50 sinceuiuj is zero at the wall. Thus, it appea
that the correct behavior ofuiuj in yn11 can only be repro-
duced in computations by respecting the limiting behavior
f i j* 2« i j in n(n11)nuiuj /y

2.
The way the elliptic relaxation model proposed

Durbin5 is expected to fulfill this requirement is~see, e.g.,
Durbin5 or Manceau9 for details!: first, by using the model

f i j* 2« i j 5k f i j 2
uiuj

k
«; ~6!

and, second, by solving differential equations forf i j

f i j 2L2¹2f i j 5
1

k S f i j
h 2

2

3
«d i j 1

uiuj

k
« D , ~7!

called ‘‘elliptic relaxation equations’’~other formulations of
the elliptic relaxation operator were proposed8,10,11!. The
wall boundary conditions forf i j are

f i j
w52

20n2

«

uiuj

y4 for f 22
w , f 12

w , and f 23
w ,

f i j
w52

1

2
f 22

w for f 11
w and f 33

w , ~8!

f 13
w 50,

and for«

«52n
k

y2 . ~9!

Thus, in the near-wall budget ofv2, using Eqs.~8! and
~9!, f i j* 2« i j becomes
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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f22* 2«225k f222
v2

k
« ~10!

5212n
n2

y2 . ~11!

This complies with Eq.~4!, and thus leads to the correc
prediction of the limiting behavior ofv2}y4. In the case of
u2, w2, and uw, k f i j is negligible as compared with« i j ,
and, thus, the differencef i j* 2« i j reduces to2«uiuj /k,
which ensures the correct limiting behavior 2nuiuj /y

2.
Hence, for these components Eq.~4! is satisfied, which en-
sures the correct prediction ofu2, w2, anduw}y2.

However, a problem arises withuv andvw. Indeed, for
these components,f i j* 2« i j has the same behavior as forv2,
and, accordingly, it leads to the predictions ofuv and vw
}y4 instead ofy3. Hence, one may wonder why such boun
ary conditions are used forf 12 and f 23: the reason8 is simply
that no boundary condition can ensure a behavior iny3 and
that y4 is preferable toy2, in order that the turbulent shea
stress remain negligible compared to the viscous shear s
in the near-wall budgets of the mean velocities.

To summarize, it is worth noting that the prediction
the two-component state of turbulence in the vicinity of t
wall by the elliptic relaxation model is a consequence of
correct reproduction off i j* 2« i j for the diagonal compo-
nents, which is obtained by imposing appropriate bound
conditions to the elliptic equations forf i j . This is obtained
without spoiling the predictions in regions far from the wa
since the model degenerates to a standard high-Reyn
number model:k f i j 2« i j →f i j

h 2 2
3«d i j , where f i j

h can be
any high-Reynolds number pressure–strain model, depe
ing on the user’s choice.

III. DERIVATION OF THE ELLIPTIC BLENDING MODEL

The main drawback of the Reynolds-stress ellipt
relaxation model is that it involves six additional equatio
for the independent components of the tensorf i j , with
boundary conditions~8!, involving 1/y4, which induce nu-
merical stiffness. The aim of this paper is to provide a si
pler model, while preserving the main qualities of the ellip
relaxation model, which are: the reproduction of the limitin
wall behavior off i j* 2« i j and, consequently, of the Reynold
stresses; the ellipticity of the model, which is necessary
account for the nonlocal blocking effect of the wall;9 the
linearity of the model, or, more precisely, the fact that the u
of the elliptic relaxation strategy does not increase the le
of nonlinearity of the model~mainly due to the modelf i j

h for
the redistribution term!. Our proposal is to model the redis
tribution term by

f i j* 5~12ka!f i j
w1kaf i j

h , ~12!

and the dissipation by

« i j 5~12Aka!
uiuj

k
«1Aka

2

3
«d i j , ~13!
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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whereA is Lumley’s flatness parameter~see the Appendix!.
The ellipticity of the model is preserved by solving an elli
tic differential equation fora, similar to Eq.~7! solved forf i j

in the elliptic relaxation model

a2L2¹2a5
1

k
, ~14!

with the boundary conditiona50 at the wall. The reason fo
using 1/k as the source term of Eq.~14! and multiplyinga by
k in Eqs. ~12! and ~13! is that it ensures a behavior ofka
}y3 in the vicinity of the wall, which makes the second ter
on the right-hand sides of Eqs.~12! and ~13! negligible in
this region. The factorA has been introduced in the blendin
function used for« i j in order to delay the transition from th
near-wall form of« i j to its far-from-the-wall form, as shown
in Fig. 1. Note also that the solution of Eq.~14! exhibits a
singularity aty50 due to the behavior ofk}y2: in order to
suppress this singularity,k is replaced in this equation by«T,
where, following Durbin,6 T is bounded by the Kolmogorov
time scale

T5maxS k

«
,CTS n

« D 1/2D . ~15!

The length scaleL is also bounded by the Kolmogoro
length scale

L5CL maxS k3/2

«
,Ch

n3/4

«3/4D . ~16!

In order to preserve the main feature of Durbin’s mod
which is the correct prediction off i j* 2« i j , the near-wall
redistribution termf i j

w must be chosen in such a way th
f i j* /k tend to the values off i j

w given in Eq. ~8!. This is
achieved by choosing

FIG. 1. A priori tests in a channel flow at Ret5590. DNS from Moser, Kim
and Mansour~Ref. 16!. Anisotropy of the dissipation tensordi j 5« i j /«

2
2
3d i j . Symbols:DNS ~s d11 ; h d22 ; n d33!. ––– di j obtained using

« i j 5«uiuj /k. --- di j obtained using « i j 5(12ka)«uiuj /k1ka
2
3«d i j .

——— di j obtained using« i j 5(12Aka)«uiuj /k1Aka
2
3«d i j .
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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f11
w 52

1

2
f22

w ; f22
w 525

«

k
v2; f33

w 52
1

2
f22

w ;

~17!

f12
w 525

«

k
uv; f13

w 50; f23
w 525

«

k
vw.

Several important remarks about Eq.~17! should be
made

~i! With the above wall values, the differencef i j* 2« i j

has strictly the same behavior as that given by
elliptic relaxation model. The near-wall budgets of th
Reynolds stresses are thus exactly the same as t
described in Sec. II and the Reynolds stresses h
the same limiting behavior.

~ii ! For v2, the differencef22* 2«22 is correctly repro-
duced near the wall but not eachf22* and «22 sepa-
rately: this will not cause any problem since only the
difference appears in the equations; however, this
be a source of discrepancies when comparing term
term predictions with theDNS data.

~iii ! As for the elliptic relaxation model, the near-wa
budgets ofuv andvw are not correct, leading to be
haviors }y4 instead of y3. This could have been
avoided by choosing f12

w 522
k̄

«
uv and f23

w

522
k̄

«
vw, allowing Eq. ~4! to be satisfied and thu

leading to the correct limiting behavior}y3. This
possibility has been investigated, but surprisingly
worsens the results in a channel flow. Therefore, E
~17! is preferred.

~iv! The values off11
w andf33

w have been chosen such th
f i j

w is traceless. This does not mean that what is m
eled is the deviatoric part of the velocity–pressu
gradient correlation~i.e., the pressure–strain term!: if
the velocity–pressure gradient correlation is split in
pressure–strain and pressure diffusion, the latter a
must be modeled in the near-wall region, since it b
comes dominant in the budget ofv2.9 Equation~4! is
then valid only if the pressure diffusion is taken in
account. Thus, what is modeled here, i.e., the te
balancing Di j

n 1« i j , is definitely the velocity–
pressure gradient correlation. The choice forf11

w and
f33

w is only made in order to ensure that the Reynold
stress transport equation contracts to the standak
equation~except for turbulent diffusion!. This avoids
the necessity of modifying the standard coefficients
the model too much, and in particular those of the«
equation. This implies thatf11

w and f33
w are not cor-

rectly modeled, but this is of minor importance, sin
they are small compared to«11 and«33, respectively.

Obviously, Eq.~17! needs to be written in a genera
frame-independent form. To achieve this, it is necessary
identify somehow the direction normal to the wall. Howeve
the use of a topological wall-normal vector must be avoid
since such a quantity is often not well defined in comp
geometries. We propose here to use the fact that the grad
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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of the blending functiona is normal to the wall in its vicin-
ity, since the wall corresponds to thea50 isovalue contour.
Thus, the vector

n5
“a

i“ai , ~18!

can be used as a unit vector representing the ‘‘wall-norm
direction everywhere inside the domain.n cannot be defined
only wherei“ai50, but this certainly happens only suffi
ciently far from the wall, where the factor (12ka) makes
the near-wall term negligible in Eq.~12!. Some virtues of the
use of this vector to identify the wall-normal direction can
noted: it avoids the discontinuity of the wall-normal vect
across the bisector of a corner angle that appears with
usual geometrical definitions; it suppresses the need for
termining the ambiguous ‘‘closest wall point,’’ which can b
multiply defined along a curved wall; it is sensitive to th
curvature of the wall; it accounts automatically for all th

FIG. 2. Channel flow at Ret5590. Mean velocity.s DNS. ––– Elliptic
relaxation model. ——— Elliptic blending model.

FIG. 3. Channel flow at Ret5590. Reynolds stresses. Symbols:DNS

(su2; hv2; nw2; * uv). ––– Elliptic relaxation model. ——— Elliptic
blending model.
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walls present in the domain, contrary to the usual definitio
which favor the closest wall. Equation~17! can then be gen-
eralized to

f i j
w525

«

k S uiuknjnk1ujuknink2
1

2
ukulnknl

3~ninj2d i j ! D . ~19!

Concerning the far-from-the-wall partf i j
h any high-

Reynolds-number model can be used. Two possibilities h
been investigated: the Rotta1IP model,12–14 and the Spe-
ziale, Sarkar, and Gatski model15 ~SSG!. The latter leads to
somewhat better predictions and has been here selecte
the preferred choice. Note that the coefficientg3* ~see the
Appendix! has been set to 1.9 instead of 1.3: this has
influence mainly in the near-wall region, since it is in front
the square root of the second anisotropy invariant, wh
exhibits a peak in this region. The nonlinear return term~g2

term! can cause numerical stiffness and is often suppres
from the SSG model. However, it is necessary to pred
correctly the return to isotropy problem~cf. Speziale
et al.15!: hence, it is kept in the present model. If this ter
causes numerical difficulties, it can be suppressed: in
case, the coefficientC«2 should be set toC«251.88.

The model equations foruiuj are finally closed with the
low-Re-number version of the transport equation for«

]«

]t
1Uk

]«

]xk
5

C«1
P2C«2

«

T
1

]

]xl
S Cm

s«
ulumT

]«

]xm
D

1n
]2«

]xk]xk
1C«3

n
k

«
ujukS ]2Ui

]xj]xl
D

3S ]2Ui

]xk]xl
D , ~20!

with the boundary condition~9!. The term involving second-
order derivatives of the mean velocity is known to be n
merically stiff and can require a very fine mesh in the buf
zone close to a wall, but can play an important physical r

FIG. 4. Channel flow at Ret5590. Dissipation rate.s DNS. ––– Elliptic
relaxation model. ——— Elliptic blending model.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 5. Channel flow at Ret5590. Budgets of the Reynolds stresses.~a! u2; ~b! v2; ~c! w2; ~d! uv. Symbols:DNS ~n ProductionPi j ; * Redistributionf i j* ;
, Dissipation2« i j ; s Total diffusionDi j

v 1Di j
T !. ——— Elliptic blending model.
a
of
us

th

1D
or
n
s
io
f

d
ar

ssi-
ot-

e
re

els
the
p-

m-
Eq.
er,
th-

e-
el,
e

in some situations, since it is a model for a term that appe
in the exact« transport equation. An alternative version
the model is proposed in the Appendix, which does not
this term but a variableC«1

coefficient: the latter version
contains a bit less physics but is easier to compute.

The complete model equations are summarized in
Appendix.

IV. CHANNEL FLOW COMPUTATIONS

The fully developed plane channel flow at Ret5590, for
which a DNS database is available,16 is used to calibrate the
model. The computations were performed with a simple
finite difference code, which allows one to impose the c
rect value of Ret . It is worth noting that the implementatio
of the model is very easy and that the numerical stiffnes
considerably reduced compared to the elliptic relaxat
model, whose boundary conditions~8! are major sources o
numerical instability because of the denominator iny4.

A very fine grid with 300 points across the flow is use
in order to avoid any numerical inaccuracy. The first ne
wall point inside the domain is located aty1.0.1, and the
size of the largest cell in the center of the channel isDy1
oaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP licen
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e

e
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n

,
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.5. Note that such a small value ofy1 for the first calcula-
tion point is not necessary: a value up toy1.3 can be used
without spoiling the predictions too much.

Profiles of mean velocity, Reynolds stresses, and di
pation rate, obtained by the elliptic blending model, are pl
ted in Figs. 2, 3, and 4, compared with theDNS and Durbin’s
elliptic relaxation model.5 It can be seen in Fig. 2 that th
predictions of the mean velocity profile by both models a
similar and reasonably close to theDNS, even though it ap-
pears that the slope in the logarithmic layer with both mod
is slightly underestimated. This seems to be an effect of
low Reynolds number, which may not have been fully ca
tured with the model of the viscous effects—induced by i
posing the Kolmogorov length scale as the lower bound,
~16!. However, Fig. 8 shows that, at high Reynolds numb
the elliptic blending model reproduces correctly the logari
mic law.

Figure 3 shows that the anisotropy is globally well pr
dicted. When comparing with the elliptic relaxation mod
the peak ofu2 is not as well captured, but its profile in th
logarithmic layer is better reproduced.v2 is slightly under-
estimated too, but the profiles ofw2 anduv are almost per-
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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fect. It must be emphasized here that the elliptic blend
strategy is able to make a high-Reynolds number model
tegrable down to the wall with only one additional equatio
whereas the elliptic relaxation strategy uses six additio
equations. The price to pay for the reduction of the compl
ity of the model is a loss of accuracy in the prediction of t
anisotropies in the near-wall region. However, since
model is derived in such a way that the correct near-w
balances of the Reynolds-stress transport equations are
fied, the crucial wall-blocking effect is preserved, which
lows the prediction of the two-component limit of turbu
lence. It must also be noted that, in these computations,
SSG model has been used as the far-from-the-wall formf i j

h

of the redistribution term, when the somewhat less elabo
Rotta1IP model has been used for the elliptic relaxati
model.

In Fig. 4, it is observed that the dissipation rate« is well
reproduced betweeny1.30 and the center of the channe
but not below. Indeed, a peak aroundy1510 is predicted
instead of a plateau, and the limiting value at the wall

FIG. 6. Elliptic blending model: different contributions tof22* . 1¯1f22
h

~SSG model!; ¯kaf22
h ; 1–––1 f22

w ; ––– (12ka)f22
w ; ——— f22*

5(12ka)f22
w 1kaf22

h ; s f22* from theDNS.

FIG. 7. Elliptic blending model: different contributions to«22 . 1¯1
2
3«;

¯Aka
2
3«; 1–––1 «v2/k; ––– (12Aka)«v2/k; ——— «22

5(12Aka)«v2/k1Aka
2
3«; s «22 from the DNS.
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underestimated by the elliptic blending model, and overe
mated by the elliptic relaxation model. Note that, since t
boundary condition~9! for « depends directly onk, this
means that the second derivative ofk at the wall is slightly
underestimated by the elliptic blending model, and overe
mated by the elliptic relaxation model.

Figure 5 shows the budgets of the Reynolds stresses
dicted by the elliptic blending model compared with theDNS.
The budget ofu2 @Fig. 5~a!# is fairly well reproduced: the
dissipation is overestimated aroundy1510 and underesti-
mated in the region below, as a consequence of the pre
tion of « ~Fig. 4!. This flaw is compensated by correspondin
underestimation and overestimation, respectively, of the
fusion.

The budget ofv2 @Fig. 5~b!# is not as good as that ofu2.
In particular, it is observed that very close to the wall (y1

,2), f22* and «22 are not well predicted individually: as
emphasized in Sec. III, only their difference is correctly r

FIG. 8. Channel flow at Re5106. Mean velocity profiles obtained with three
different grids. ——— Fine grid~500 points!; ––– Medium grid ~100
points!; d Coarse grid~50 points, represented by the symbols!; --- Log law:
U15k21 ln y115.7, with k50.41.

FIG. 9. Channel flow at Re5106. Reynolds stress profiles obtained wit
three different grids. ——— Fine grid~500 points!; ––– Medium grid~100
points!; Symbols: Coarse grid~50 points, represented by the symbols, wit
d u2; j v2; m w2; * uv!.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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TABLE II. Characteristics of the grids used for the grid sensitivity analysis. The computation is performe
a channel flow at Re5106 (Ret.35,000).n denotes the number of points, andyi

1 the location of thei th point
of the grid.

n y1
1 y2

1 y3
1 y4

1
¯ yn

12yn21
1

Fine grid 500 0.10 0.21 0.31 0.42 ¯ 330
Medium grid 100 1.0 2.1 3.3 4.6 ¯ 1524
Coarse grid 50 2.5 5.5 9.0 13.2 ¯ 2991
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produced. In the region betweeny1.100 and the center o
the channel, all the contributions are well predicted. In
region belowy1.100,f22* is not very well reproduced, bu
at least has the correct order of magnitude, unlike the
obtained with the homogeneous, high-Reynolds-num
model alone~see Fig. 6!. In the budget, this is again com
pensated by the diffusion term.

The budget ofw2 @Fig. 5~c!# is well reproduced, excep
for the overestimation of the dissipation aroundy1510, al-
ready noted in the budget ofu2, and its underestimation in
the region below, compensated by the diffusion. The re
tribution does not have the correct order of magnitude be
y1.10, as a consequence of the modeling off33

w described
in Sec. III.

In Fig. 5~d!, it can be seen that the budget ofuv is quite
well reproduced: at least, the two dominant terms, prod
tion and redistribution, are very well predicted. Only the d
sipation, and, as a compensation, the diffusion, which ar
minor importance in this case, are not accurately predict

In summary, one can note that the budgets are in gen
satisfactory in the region very close to the wall (y1,10),
wheref i j* and« i j are dominated by their near-wall formsf i j

w

and «uiuj /k, and far from the wall (y1.100), where, in
turn, the far-from-the-wall formsf i j

h and 2
3«d i j are dominant.

In between, a buffer region exists, wheref i j* and« i j experi-
ence a transition between their two forms. This behavio
detailed in Figs. 6 and 7 forf22* and«22, respectively. It can
be seen in Fig. 6 that the SSG model gives a correct pre
tion sufficiently far from the wall, but does not reproduce t
damping of the redistribution very close to it. In the ellipt
blending model, this damping is partly due to the factorka,
and partly to the near-wall formf22

w , which is negative, as is
thef22* given by theDNS. Figure 7 shows, similarly, that th
isotropic model23«d i j cannot reproduce the near-wall beha
ior of the dissipation tensor, and that the correct prediction
«22 by the model is due to the blending of the near-wall fo
«uiuj /k and the isotropic form. Note also that the transiti
between the two forms occurs further from the wall for«22

than forf22* , as a consequence of the inclusion of the fac
A in the blending formula for the former. The location whe
the blending factor reaches the value 0.5 is indeedy1.30
for ka; y1.180 for Aka.

V. SOME COMMENTS ON GRID SENSITIVITY

One of the reasons why near-wall models are criticiz
and, eventually, not used at all, is the fact that they of
require a drastic refinement of the grid close to the wall wh
compared to models using wall functions. However,
 131.180.130.114. Redistribution subject to AIP licen
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found with our 1D code, using second-order finite diffe
ences, that the solution remains reasonably accurate w
coarsening the grid. Figures 8 and 9 show results resolve
a channel flow at Re5106. Three very different grids are
used: the characteristics of these grids are summarize
Table II.

It is not claimed here that this possibility of using
coarse grid can be generalized to other numerical meth
like finite volumes, and to other flows, but the present res
are, nevertheless, very encouraging since they contradic
usual belief that the wall region cannot be resolved with
using a first grid point belowy151. This behavior of the
model is probably due to the fact that the near-wall budg
~4! of the Reynolds stresses are satisfied, which indu
whatever the mesh, the correct behavior of the values at
first two points: for instance, foru2, the discretization of~4!
with a second-order accurate finite difference scheme le
at the dominant order, tou2

2 /u2
15y2

2/y1
2 ~where indices 1

and 2 denote the values at the first and second near-
points, respectively!.

VI. CONCLUSION

The issue of deriving near-wall models preserving a re
tive simplicity has been investigated. It has been shown
in order to predict the turbulence anisotropy in the vicinity
the wall ~two-component limit!, a model must reproduce th
limiting behavior of f i j* 2« i j , the difference between th
redistribution and the dissipation. This requirement is f
filled by the elliptic relaxation model of Durbin,5 but the
penalty is an increase in the number of closure equati
from seven to 13, and numerically stiff boundary conditio
for the six additional equations.

A new Reynolds-stress model, the elliptic blendin
model ~EBM!, has been proposed. This model has been
rived on the basis of the elliptic relaxation model, but aim
at using only one additional closure equation~thus reducing
the total number to eight!, without sacrificing the main quali-
ties of Durbin’s Reynolds-stress model. It is noted that
six elliptic relaxation equations are somewhat redunda
they all provide a smooth transition between the near-w
and the far-from-the-wall forms of the model depending on
on the geometry and the length scale, which is the same
all the components. Therefore, a similar effect can be
tained by using blending formulas for the redistributionf i j*
and the dissipation« i j , with blending factorska andAka,
respectively, going to zero at the wall and to 1 far from it.
order to preserve the nonlocal character of the model, wh
reflects the physical nonlocality of the blocking effect, t
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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functiona is defined as the solution of an elliptic differenti
equation, similar to the elliptic relaxation equations used
Durbin’s model. The boundary condition for this equation
the wall is simplya50, which avoids numerical stiffness.

Tests in a channel flow show that the predictions w
the new model are very similar to those of Durbin’s mod
The main difference is a less accurate prediction of the
plitude of the peak of the streamwise component of the R
nolds stressu2. The budgets of the Reynolds stresses are
general satisfactory.

These results are very encouraging, since they show
the elliptic blending model behavior in a channel flow is ve
similar to that of Durbin’s model. Moreover, the strate
used for the near-wall region leads to only a moderate
crease in complexity: it involves only one additional equ
tion of elliptic type compared to standard Reynolds-str
models; it does not increase the level of nonlinearity~if a
linear pressure–strain model is used as the far-from-the-
formulation, the model off i j* is fully linear!; it seems to
allow the use of a reasonable grid density in the near-w
region.

We believe that the approach has good prospects of
ing applicable to a wide range of situations, since it is ba
on true universal physical constraints: the limiting behav
of the different terms of the Reynolds-stress budgets in
vicinity of the wall, which have been derived in a gene
case, and are thus valid even at separation and impin
points, in the presence of wall curvature, etc.

The model presented in this paper is certainly not a
finitive, widely tested version, and an important effort is s
necessary for testing and calibrating different modeling
tions. In the near future, computations of other canon
tests cases~backstep flow, impinging jet, square cylinde
etc.!, as well as more complex flows will be performed f
this purpose.

APPENDIX: THE ELLIPTIC BLENDING MODEL

1. Equations

Duiuj

Dt
5Pi j 1Di j

n 1Di j
T 1f i j* 2« i j , ~A1!

D«

Dt
5

C«1
P2C«2

«

T
1

]

]xl
S Cm

s«
ulumT

]«

]xm
D1n

]2«

]xk]xk

1C«3
n

k

«
ujukS ]2Ui

]xj]xl
D S ]2Ui

]xk]xl
D , ~A2!

a2L2¹2a5
1

«T
, ~A3!

Di j
T 5

]

]xl
S Cm

sk
ulumT

]uiuj

]xm
D , ~A4!

f i j* 5~12ka!f i j
w1kaf i j

h , ~A5!

« i j 5~12Aka!
uiuj

k
«1Aka

2

3
«d i j , ~A6!
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d i j , ~A7!

f i j
h 52S g11g1*

P

« D «bi j 1g2«S bikbk j2
1

3
bklbkld i j D

1~g32g3* Abklbkl!kSi j 1g4kS bikSjk1bjkSik
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3
blmSlmd i j D1g5k~bikV jk1bjkV ik!, ~A8!

bi j 5
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w525
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ukulnknl~ninj2d i j ! D , ~A10!
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i“ai , ~A11!
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«
,CTS n

« D 1/2D ; L5CL maxS k3/2

«
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«1/4D .

~A12!

2. Coefficients

C«1
51.4; C«2

51.85; C«3
50.55; Cm50.22;

s«51.22;

sk51.0; CL50.45; Ch580.0; CT56.0;

g153.4; g1* 51.8; g254.2; g350.8; g3* 51.9;

g451.25; g550.4.

3. Boundary conditions at the wall

Ui50; uiuj50; «52n
k

y2 ; a50.

4. Alternative version of the model for « equation

For cases where the term involvingC«3
turns out to be

unstable,C«3
can be set to zero, andC«1

set to

C«1
51.4S 1.10.076~12ka!A k

uiujninj
D . ~A13!
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