

Delft University of Technology

Executing convex polytope queries on nD point clouds

Liu, Haicheng; Thompson, Rodney; van Oosterom, Peter; Meijers, Martijn

DOI
10.1016/j.jag.2021.102625
Publication date
2021
Document Version
Final published version
Published in
International Journal of Applied Earth Observation and Geoinformation

Citation (APA)
Liu, H., Thompson, R., van Oosterom, P., & Meijers, M. (2021). Executing convex polytope queries on nD
point clouds. International Journal of Applied Earth Observation and Geoinformation, 105, Article 102625.
https://doi.org/10.1016/j.jag.2021.102625

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jag.2021.102625
https://doi.org/10.1016/j.jag.2021.102625

International Journal of Applied Earth Observations and Geoinformation 105 (2021) 102625

Available online 8 December 2021
0303-2434/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Executing convex polytope queries on nD point clouds

Haicheng Liu *, Rodney Thompson, Peter van Oosterom, Martijn Meijers
Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands

A R T I C L E I N F O

Keywords:
nD point clouds
Polytope query
Spatial data structures
CPLEX
Perspective view selection

A B S T R A C T

Efficient spatial queries are frequently needed to extract useful information from massive nD point clouds. Most
previous studies focus on developing solutions for orthogonal window queries, while rarely considering the
polytope query. The latter query, which includes the widely adopted polygonal query in 2D, also plays a critical
role in many nD spatial applications such as the perspective view selection. Aiming for an nD solution, this paper
first formulates a convex nD-polytope for querying. Then, the paper integrates three approximate geometric
algorithms – SWEEP, SPHERE, VERTEX, and a linear programming method CPLEX, developing a solution based
on an Index-Organized Table (IOT) approach. IOT is applied with space filling curve based clustering and
advanced querying mechanism which recursively refines hypercubic nD spaces to approach the query geometry
for primary filtering. Results from experiments based on both synthetic and real data have confirmed the superior
performance of SWEEP. However, the algorithm may lag behind CPLEX due to pessimistic intersection
computation in high dimensional spaces. In a real application, by properly transforming a perspective view
selection into a polytope query, the solution achieves a sub-second querying performance using SWEEP. In
another flood risk query, SWEEP also leads the others. In general, the robust and efficient solution can be
immediately used to address different polytope queries, including those abstract ones whose constraints on
combinations of different dimensions are formed into a polytope model. Besides, the knowledge of high-
dimensional computations acquired also provides significant guidance for handling more nD GIS issues.

1. Introduction

nD point clouds and nD queries become increasingly used nowadays.
To smoothly and efficiently visualize large volumes of LiDAR point data,
a continuous Level of Importance (cLoI) dimension is suggested to be
added for points clustering and indexing (van Oosterom, 2019; Schütz
et al., 2019). Thus, when doing an nD query such as the perspective view
selection, nearby points will all be selected, while fewer faraway points
with restricted cLoI values are selected. Point data and queries can be
more generic. For example, in flood modelling, results are normally
computed and stored in a 2D computational grid. When the grid cell is
not a square, such as a triangle (Fig. 1), data storage and querying in the
form of rasters would be cumbersome and inefficient. A possible solution
is to extract the centriods of all cells and store the information including
flow velocity, direction and inundation depth in these centriods. Flood
risk analysis can then be performed by querying this nD point cloud
using all relevant dimensions besides XYZ (Liu et al., 2021a).

Prevalent software for point processing such as Oracle spatial,
PostGIS and PDAL (PDAL-Contributors, 2018) are initially developed to

resolve 2D or 3D issues, they lack nD indexing support and do not
provide nD operators. To provide an efficient nD solution, van Oosterom
et al. (2015) developed an Index-Organized Table (IOT) approach to
address nD window queries on massive point clouds (Section 3). The IOT
approach on the one hand achieves high efficiency to cluster and index
all related dimensions in the query, while on the other hand avoids the
time-consuming block unpacking and filtering process of block-based
approaches. However, the IOT approach does not address irregular
query geometries which are also commonly used. The aforementioned
perspective view selection is a typical example: instead of a constant
range, the cLoI constraint changes according to the distance to the view
point. Existing solutions encounter significant bottlenecks solving such
queries, including poor practical performance, inaccurate results and
insufficient verification with nD data (Section 2).

In this paper, we extend the IOT approach for more query geometries
beyond orthogonal windows. The paper describes a search strategy
which has been shown to provide good response for a particular class of
search regions – convex polytopes – which while not universal, is
common enough to be useful. The polytope studied here is a convex

* Corresponding author.
E-mail address: h.liu-6@tudelft.nl (H. Liu).

Contents lists available at ScienceDirect

International Journal of Applied Earth
Observations and Geoinformation

journal homepage: www.elsevier.com/locate/jag

https://doi.org/10.1016/j.jag.2021.102625
Received 1 August 2021; Received in revised form 20 October 2021; Accepted 11 November 2021

mailto:h.liu-6@tudelft.nl
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2021.102625
https://doi.org/10.1016/j.jag.2021.102625
https://doi.org/10.1016/j.jag.2021.102625
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2021.102625&domain=pdf
http://creativecommons.org/licenses/by/4.0/

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

2

geometry delimited by a set of half-spaces (Section 4.1). In summary, we
made the following contributions:

1. Based on the IOT approach, we developed 3 geometric algorithms
including SWEEP, SPHERE and VERTEX to detect intersection be-
tween a convex polytope and a hypercubic nD space. This forms the
core to execute convex polytope queries on nD points.

2. We built two generic convex polytope geometries – the nD-simplex
and nD-prism – to investigate and compare the performance of the
algorithms and another linear programming method CPLEX. The
querying tests from 2D to 10D have verified the theoretical
complexity of these algorithms evidently.

3. We solved real world problems including perspective view selection
and flood risk analysis by transforming the queries into nD polytope
queries. They can then be accomplished efficiently using our
solution.

The rest of the paper is organized as follows: Section 2 reviews and
analyzes previous studies on polytope querying algorithms. Section 3
revisits the IOT approach briefly. Then, by first formulating an easy-to-
use nD polytope for querying, Section 4 develops three generic algo-
rithms to efficiently search point clouds with a polytope. Based on this,
Section 5 evaluates all the algorithms by ideal experiments and real use
cases. Section 6 concludes the paper.

2. Related work

Polytope querying originates from studies on geometric algorithms,
where researchers mainly propose and analyze different algorithms
theoretically (Chazelle, 1989; Matoušek, 1992, 1994) based on in-
memory data structures. Agarwal et al. (2000) proposed a solution
based on a partition tree structure managing data on disks. They spe-
cifically focused on analyzing the worst-case querying performance, but
no practical experiments were conducted. These theoretical approaches
are difficult to implement and may not be applicable to address big point
data (Khan et al., 2014).

The development of spatial indexing has facilitated the design and
implementation of polytope querying. Based on the R-tree, Goldstein
et al. (1997) developed two algorithms: one is the “simple” method
which computes a scalar product indicating the minimum distance be-
tween a block and a half-space to examine whether an intersection
happens; while the other method iteratively uses half-spaces to clip the
R-tree block to detect intersection (Fig. 2). However, they discussed little
about the performance in nD space, beyond testing a uniformly
distributed 5D data set from the business domain. None of the

algorithms proposed distinguishes the type of intersection (inside or
touching), leading to redundant intersection computation for a branch
block totally inside the polytope. Kollios et al. (1999) developed an
approximation algorithm to resolve trajectory searching problems. They
also adapted and implemented algorithms of Goldstein et al. (1997)
using the hBΠ-tree (Evangelidis et al., 1997) as a comparison. The result
is that for 2D and 3D issues, their approximation algorithm works more
efficiently.

More recently, Wang and Ravishankar (2013) developed an
encrypted R-tree structure for polytope querying on the cloud
computing platform. However, the solution determines whether a tree
node intersects the polytope only based on the lower-left corner or the
upper-right of the node, which is not rigours and may omit possible
intersections. Besides, they only tested queries on 2D point data. Khan
et al. (2014) developed a novel Planar index composed by multiple set of
hyperplanes to solve scalar product queries which covers the polytope
query. However, given non-parallel half-spaces, the method needs
several Planar indices to function, which is extremely expensive when
the number of half-spaces for querying is large.

Compared with those approaches, our IOT approach provides a true
nD operator for executing convex polytope queries on nD points. It can
be directly implemented and used in any database management systems
that support the B+-tree structure. Besides, the solution always returns
the correct result. It is also very efficient thanks to the Space Filling
Curve (SFC) clustered data organization and the B+-tree indexing.
Moreover, with optimizations such as the nD-histogram (Liu et al.,
2020), the performance of querying on inhomogeneously distributed
point data can also be improved significantly.

3. IOT approach

This section presents the overall architecture of the IOT approach. A
detailed description can be found in (Liu et al., 2020). This forms the
basis to realize the polytope querying algorithms described in Section 4.

3.1. Nomenclature

The key terminology used to illustrate the approach is introduced in
the following sub-sections. Besides, the notations used in the paper is
listed in Table 1.

3.1.1. Dimension
The dimensions discussed here possess either physical or semantic

meanings that humans can perceive and interact with. In terms of data
management, we identify two types of dimensions: organizing dimensions
are used to cluster and index the data such as spatio-temporal di-
mensions; the other property dimensions that are not frequently used in
the SQL WHERE clause are affiliated, such as color and intensity. These
two types of dimensions are not fixed, and may be varied depending on
applications.

3.1.2. Hypercube, node and range
In general, a cube refers to a 3D box with equal edge length. This

Fig. 1. A typical flood modelling grid. Image source: Gharbi et al. (2016).

Fig. 2. One clipping operation where P refers to the polytope and B is an R-tree
block, from Goldstein et al. (1997).

Table 1
Notations.

Notation Description

n Number of dimensions
m Number of half-spaces in the polytope
N Input size in the number of points
k′ Output size from the first filter

k Size of the accurate answer
r Number of ranges generated

rmax Maximum number of ranges (threshold)
B Page capacity of storage

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

3

geometric concept extended into nD space becomes the hypercube.
Fig. 3 illustrates the node and the range in 2D. All points have integer

coordinates. By truncating the last n bits (n = 2) of the points’ Morton
codes recursively, we derive Morton codes at upper levels. That is to say,
the Morton codes of points implicitly contain a hierarchy which is
equivalently a Quadtree structure. We can easily extend this scheme to
higher dimensional spaces so that a Morton node refers to the corre-
sponding node of a 2n-tree. A branch node covers the nodes on the level
below, and represents the extent of a hypercubic region (e.g., a block in
the Quadtree). Thus, the branch node also indicates a range of Morton
codes starting from the lower-left corner to the upper-right. A leaf node
is not further subdivided.

3.2. Overview

Fig. 4 presents the workflow of our IOT approach. It applies two
filters for querying, where the first filter computes the ranges for
selecting keys while the second filter decodes the keys and conducts
point-wise filtering to derive the final answer. Fig. 5 illustrates a 2D
example of range computation in the first filter. In Section 4.2, we
extended the range computing module to allow the transformation from
an nD polytope query to 1D ranges.

4. Polytope querying

A convex polytope is defined as an nD geometry for which, given any
2 points within the region, every point along a straight line joining the
points is also within the region. To use the polytope practically, this
section first provides the mathematical formulation in Section 4.1. Then,
novel intersection algorithms for polytope querying are developed in
Section 4.2.

4.1. Mathematical formulation

A half-space is a division of space along a hyperplane (Fig. 6). Here it
is defined as the set of points x such that ω⋅x + β⩽0, where ω is a unit
vector (ω⋅ω = 1) and β is a scalar. Note that the inequality is used here
for compatibility with the conventions of computer representation
software (3D) that the normal vector ω is oriented so that it points to the
outside of the solid object. A half-space can be denoted by the tuple (ω,

β).
In 2D the term half-plane is sometimes used, defined by an infinite

straight line – its only boundary. In 3D space, the half-space is defined
and bounded by an infinite plane, while in higher dimensions the half-
space represents all points on a particular side of an (n − 1) D hyper-
plane. In all cases, the dividing (n − 1)D hyperplane has the definition
ω⋅x + β = 0. A convex polytope is defined as the intersection of a finite
set of half-spaces, where the boundaries may not be complete (Fig. 7):

C = ∩m
i=1Hi

where Hi is a set of m half-spaces.
Based on this formulation, we can test whether a point is within a

half-space by evaluating ω⋅p + β: if the value is non-positive, the point p

is within the half space. Since ω and p are vectors of length n, the
operation per point costs O (n) time. Then, computing the relationship
between the point and the convex polytope, can cost O (mn) time per
point. However, globally traversing all the points for selection is too
costly and scales badly with the size of input. Consequently, we adopt
the IOT approach to speed up the search.

4.2. Intersection algorithms

Given a set of ω and β, we can then use the IOT approach to retrieve
the result. The core of querying lies in the intersection computation
between nodes and the convex polytope to generate ranges in the first
filter. This section develops 3 geometric algorithms, and an additional
linear programming solution provided by CPLEX. These algorithms re-
turn ranges which are then joined with the IOT, with a final filter per-
forming the aforementioned point-in-polytope test.

4.2.1. SWEEP
SWEEP first identifies the “entry” and “exit” of a node with respect to

a half-space (Fig. 8): imagine if the half-space were to be moved from a
great distance away, towards and across the node so that ultimately the
node is within the half-space; the entry and exit are the first and last
vertices to cross the boundary. The categorization as entry/ exit is only
true in relation to a single half-space, and must be re-appraised for
others. Then, based on the distance between the half-space’s boundary
and the entry or the exit, SWEEP determines if an intersection happens.
Fig. 9 presents the whole workflow of SWEEP for one half-space.

Fig. 10 shows how SWEEP works with different nodes after several
iterations of decomposition. Node N1 is not within the half-space H2,
therefore it is external to polytope C, and can be dropped. N2 is within all
of H1 to H4, and its range can be exported. In the case of N3, since it
fulfils neither of these cases, it must be placed in a refinement pool
before being accepted or rejected. The case of N4 is significant, because
it partially overlaps or falls within each half-space, but in fact it does not
intersect C. We refer to this case as a False Positive Node (FPN) to be
discussed later. In the process of searching the nodes from the refine-
ment pool, sub-nodes at the next lower levels are processed (2n of them).
These are then applied to the same tests against C. Some sub-nodes are
found to be internal, some to be on the boundary, and the rest external.

FPNs exist at crossings of half-spaces (e.g., N4 in Fig. 10a and N42 in
Fig. 10b). It is a practical proposition to ignore the problem, and allow
FPNs to be processed as if they are true positive nodes. In Fig. 10, N4,
after first refinement, has three of its sub-nodes eliminated, leaving only
N42 whose sub-nodes are eliminated at the next level. This appears to be
a common event – that as a FPN is decomposed into sub-nodes at one
level below, those sub-nodes are largely eliminated. With the second
filter, points in any remaining FPNs will all be eliminated.

4.2.2. SPHERE and VERTEX
SPHERE and VERTEX are alternatives. They also detect intersection

by examining the relationship between a node and all half-spaces.
The SPHERE algorithm first computes the centre of a node. If the

centre is in the half-space, or the Euclidean distance between the centre
and the half-space is within half of the diagonal length of the node, the
node will be selected. “inside” or “partial overlap” can be decided
depending on the distance. SPHERE only needs a central point for
intersection detection, which is favorable. However, as the distance
computed is an upper bound, FPNs will be selected (N4 in Fig. 11).

The VERTEX algorithm is more straightforward, as it examines every
vertex of a node to determine whether the node intersects a half-space. If
all vertices are outside, then no intersection happens. If all the vertices
are in the half-space, the node is inside. For all other cases, a partial
overlap is returned. The implementation is simple, but the algorithm
degrades in high dimensional spaces because the number of vertices of a
node grows exponentially with dimensionality. False detection will also
arise at crossings of half-spaces (e.g., Fig. 10a), as with SWEEP.

Fig. 3. Implicit Morton hierarchy: black dots are real points to be managed,
while colored dots are Morton branch nodes at different levels.

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

4

4.2.3. CPLEX
The rigorous linear programming method detects intersection by

finding solutions for a set of equations defined by the (n − 1)D hyper-
planes of the polytope and a node. We realize this by using CPLEX which
is a tool developed by IBM to solve linear optimization problems (Lima,
2010). It provides optimal solutions to an objective function confined by

a set of constraints. Using CPLEX, we can create a variable array x (x1,x2,

x3,... xn), and set their range according to the bounds of a node (i.e., L1⩽
x1⩽U1, L2⩽x2⩽U2,... Ln⩽xn⩽Un). Then, we convert all half-spaces to
constraints in the form of ω⋅x + β⩽0. We set the objective function of the
linear model to 0, meaning that once a solution found, the program will
stop. In this way, CPLEX detects whether an intersection happens.

Fig. 12 presents the results of a 2D triangle query on a uniformly
distributed point set, with a proper IOT setting. SPHERE contains all
points selected by SWEEP which again contains points selected by
CPLEX. VERTEX returns the same result as SWEEP. The result indicates a
general pattern of k′ , which is SPHERE ⩾ SWEEP (VERTEX) ⩾ CPLEX.
The false positive points are distributed along the boundaries and
around the acute corners. Several factors influence the occurrence of
these points, including the dimensionality, relative positions of the half-
spaces to nodes, and rmax for querying. The actual performance of these
algorithms depends on the specific settings and implementation, which
is evaluated by experimenting in Section 5.

Fig. 4. The loading and querying procedure of the IOT approach.

Fig. 5. Range generation of a window query using the principle of the Morton hierarchy. The data extent derived from Morton nodes is recursively decomposed to
match the query window. This process continues until the number of ranges generated reaches the threshold rmax.

Fig. 6. The definition of a 2D half-space which can be generalised to nD.

Fig. 7. Convex polytopes in 2D and 3D spaces. (See above-mentioned references for further information.)

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

5

4.3. Theoretical complexity

The total querying time based on the IOT approach is as follows:

T = Tpre +Tio +Tpost (1)

where Tpre is the time cost of the first filter, and mainly comprises range
generation and B+-tree traversal; Tio indicates the main I/O cost to
retrieve points inside the ranges; Tpost refers to the final decoding and
filtering.

In SWEEP and SPHERE, Tpre is bounded by O (mnrlogBN). In VERTEX,
every vertex of a node has to be examined. Thus, its Tpre is bounded by

O (2nmnrlogBN). Tio maximally covers O (k′
B +r) I/Os, while Tpost is

bounded by O (mnk
′

). Once parallelism is applied, Tpost becomes O (mnk
′

p),
given p processors. Besides, all intersection algorithms introduce FPNs
except CPLEX. So, k′ can be varied. An optimal solution should balance
the three cost terms. An accurate first filter with large r may cost more
time, but it returns a small k′ which alleviates I/O and post-processing in
the second filter. For this purpose, we introduce False Positive Rate
(FPR) to indicate I/O and the performance of second filter (Eq. 2):

FPR =

⃒
⃒
⃒
⃒
k′

− k
k

⃒
⃒
⃒
⃒ (2) Fig. 8. The “sweeping” process: in (1), a half-space starts sweeping with the

node outside; (2), (3), (4), the half-space sweeps over the node, where inter-
section happens; (5), the sweeping ends with the node inside the half-space.

Fig. 9. The workflow of SWEEP.

Fig. 10. SWEEP selection based on the IOT approach, with white nodes outside, green nodes inside and red nodes on the boundary.

Fig. 11. Intersection detection using SPHERE: N1 is inside; N2 partially over-
laps the half-space; N3 and N4 are falsely detected as partial overlap.

Fig. 12. Querying results from different algorithms: (a) querying geometry, (b)
accurate result, (c) Overlapping results of CPLEX (orange), SWEEP (green) and
SPHERE (blue), without a second filter.

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

6

Sometimes, FPR can be very large, e.g., in high dimensional spaces.
Then, the portion of data selected by the first filter is also indicative (Eq.
3):

selectivity =
k′

N
(3)

The memory cost is mainly determined by r and k′ .

5. Experiments and analysis

This section describes experiments to evaluate the performance of
different algorithms described above. Section 5.1 builds a regular nD-
simplex model and an nD-prism model for testing. The nD-simplex is
the simplest nD polytope, while the nD-prism is devised to investigate
how the number of half-spaces influences the querying efficiency. Sec-
tion 5.2 tests two real use cases and focuses on the time cost. One is the
perspective view query, which is a basic operation to realize point
clouds’ visualization; the other is a flood risk query, based on modelling
results.

The experimental platform is HP DL380p Gen8 server with 2 × 8-
core Intel Xeon processors, E5-2690 at 2.9 GHz, 128 GB RAM, and 41 TB
SATA 7200 rpm in RAID6 configuration. Solutions are implemented in
Oracle 12.2. All tests are “cold”, without caching.

5.1. nD-simplex and nD-prism tests

Both tests use a single thread, recording 3 indicators for evaluating
the performance:

1. Selectivity of the first filter (Eq. 3).
2. Number of iterating cycles (i.e. for-loops) to generate ranges. A cycle

of CPLEX means resolving the optimal problem once (Section 4.2.3).
A cycle of SWEEP, SPHERE and VERTEX means computing the dis-
tance from a half-space to a point in the node.

3. Time cost of the first filter and the second filter. The first filter time
corresponds to Tpre in Eq. 1, while the second filter takes Tio +Tpost to
accomplish.

Selectivity shows the accuracy of intersection computation. The
number of iterating cycles is used to explain the scalability and effi-
ciency of range computation of algorithms. Time cost indicates the
overall performance.

5.1.1. Synthetic data sets
For these tests, we apply an independent uniform distribution in all

dimensions. The coordinate value for each dimension uses 12 bits, so the
10D Morton key requires 120 bits which fits within Oracle NUMBER
type (128 bits). Thus, the value of each dimension is between 0 and
4095. This limits the unique points possible in 2D. So, we generate 104

2D points, and 106, 107, 108 and 1010 points for 4D, 6D, 8D and 10D
data sets respectively. With all these data sets, we are able to investigate
the querying scalability with respect to dimensionality.

5.1.2. nD-simplex query
As has been described in (Liu et al., 2021b), we mathematically

formulated a regular nD-simplex model which has edges of equal length
(Fig. 13) and comprises n+1 half-spaces. The model is totally inside the
data domain, with each face oriented in a different direction. By modi-
fying the parameters, we derive simplex models of the same volume at
different dimensionality. In other words, a constant selectivity is ach-
ieved among all data sets, which facilitates analyzing the behaviour of
querying algorithms. This experiment specifically builds simplexes for
querying with a selectivity of 0.1%.

The experiment sets rmax to 106. This guarantees a low FPR in high
dimensional spaces, without bloating the memory. CPLEX (two ver-
sions), SWEEP, SPHERE and VERTEX are tested. CPLEX#1 distinguishes

between two types of intersection: inside or partial overlap, while
CPLEX#2 does not, meaning nodes inside the simplex are refined un-
necessarily.

Tables 2–4 show the results. Over all, CPLEX#1 owns the lowest FPR,
while SWEEP responses the fastest below 10D with CPLEX#2 fastest in
10D. The low FPR of CPLEX#1 leads to the smallest k′ for post-
processing. However, as CPLEX#1 spends significantly more time for
each iteration for computing ranges, such advantage is insignificant
until 10D (Table 4). CPLEX#2 presents analogous selectivity as
CPLEX#1, but is faster. This is because CPLEX#1 decomposes the sim-
plex to individual half-spaces to further compute inside or partial
overlap, while ignoring this reduces about 50% computation (Table 3).
Besides, it becomes less necessary to distinguish these two intersection
types when n increases, as all nodes returned by the first filter tend to fall
on the boundary (Table 5). This is because the number of nodes at each
level of the Morton hierarchy increases exponentially with n, the final
nodes selected mainly reside in higher levels with larger sizes. So, these
nodes are more likely to partially intersect the simplex.

False positive points selected by CPLEX are caused by boundary
nodes. On the other hand, in addition, SWEEP, SPHERE and VERTEX
also select FPNs as they apply approximate intersection computation.
So, larger k′ are returned, which cause significant performance degra-
dation in higher dimensions. SPHERE processes similar number of iter-
ations as SWEEP, and is even faster in generating ranges. However, the
ranges contain more false positive points, which undermines SPHERE’s
overall performance. Especially in 10D, SPHERE selects nearly the
whole data set. VERTEX returns the same ranges as SWEEP, but takes
much more iterations due to the multiple vertex-based distance
computation. An odd pattern occurs that the iterations of SWEEP and
SPHERE decline from 8D to 10D. This is because the simplex’s boundary
is very close to the boundaries of the data region in 10D (Liu et al.,
2021b). So, the false detection related to this half-space is constrained by
the data region.

In general, the FPRs of all approaches increase drastically with
increasing dimensionality. For one thing, this is because to keep the
0.1% selectivity, the simplex increasingly covers the data region as n
grows, so that it intersects an increasing portion of nodes at each level.
For another, rmax is set to a constant for all data sets, while each node is
decomposed into 2n children, thus limiting selected nodes to the larger
ranges, and introducing more false positive points.

5.1.3. nD-prism query
In theory, the number of half-spaces constituting the nD-polytope

affects the time cost of range generation linearly (Section 4.3). This

Fig. 13. Orthogonal projections of a 2D-simplex, 4D-simplex and 8D-simplex
built, with the number of vertices (v) and edges (e). Image source: Wikipedia.

Table 2
Selectivity of the first filters.

2D 4D 6D 8D 10D

CPLEX#1 0.1% 0.1345% 0.4805% 2.503% 40.01%
CPLEX#2 0.1% 0.1387% 0.4815% 2.503% 40.01%
SWEEP 0.1% 0.1364% 0.9244% 16.45% 60.50%
SPHERE 0.1% 0.1386% 1.193% 46.71% 92.95%
VERTEX 0.1% 0.1364% 0.9244% 16.45% 60.50%

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

7

section uses a simple nD-prism model to verify this. Inscribed regular
polygons of a circle are used as the base (Fig. 14). To create the prism
with 2f vertical faces, we apply a rotation formulation: suppose θ =

πj
f ,

where j = − f + 1,…, f . Then, we create each half-space with

ω = (cosθ, sinθ, 0, 0,…, 0)

β = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
selectivity

π

√

⋅scale −
scale

2
(cosθ + sinθ)

where scale determines the size of the prism - 4096 in this case. We do
not create half-spaces at the ends of the prism, as they are implicitly
defined by the data region. Based on this formulation, we generate
8i-gonal (i ∈ [1,8]) prisms from 2D to 10D. The hyper-volumes of these
8i-gonal prisms are close to each other, and they approximately equal

the product of selectivity 0.1% and the hyper-volume of the data region.
The test uses the same uniform data sets from 2D to 10D. As the main

patterns of performance are similar across different dimensionality, we
only present 6D here. rmax is still 106. The approaches are the same as
before. Figs. 15–17 show the results.

These figures indicate that for all solutions, the number of half-
spaces influences the time cost of range computation linearly.
CPLEX#2 holds the best scalability. It takes a constant number of iter-
ations to compute ranges, and the number of half-spaces influences
insignificantly on the time cost in each iteration. SWEEP and SPHERE
hold the superiority over others in time cost of range computation.
However, because of more FPNs, SPHERE takes more iterations than
SWEEP. This gap becomes larger with larger dimensionality, which has
been observed in 8D and 10D cases (Liu et al., 2021b). On the other
hand, SWEEP returns no FPNs in this test, most likely due to the wide
angle between two adjacent faces of the 8i-gonal prisms.

5.2. Perspective view selection

After the ideal tests, we explored the applicability of the algorithms
to real data, investigating perspective views on airborne laser scanning
(ALS) points. This section begins by restating the query region as a
convex polytope. Then, two kinds of perspective view are used to verify
the performance of different algorithms.

5.2.1. Modelling 4D perspective view
The data used is AHN2, an ALS point cloud recording elevation of the

whole Netherlands (AHN, 2014). The original data contains XYZ infor-
mation only. We additionally add the cLoI dimension to achieve a
smooth visualization, and avoid the “block” pattern with density shocks
(Liu et al., 2020; Schütz et al., 2019). The computed cLoI values follow
the exponential distribution (van Oosterom, 2019): the smaller the cLoI
value, the more important the point is. In the 4D perspective view se-
lection, all points should be within a 3D view frustum in XYZ. Also, to
imitate a realistic scene, a hyperplane in the cLoI dimension ensures
nearby points are all be rendered, while fewer faraway points are
selected. This corresponds to our cognition. So, we build the 4D view
model as follows:

aix+ biy+ ciz⩽di(i = 0, 1,…, 4) (4)

̅̅

(x − u)2
+ (y − v)2

+ (z − w)2
√

⩽D −
D⋅cLoI
cLoImax

(5)

Table 3
Number of iterating cycles for computing ranges.

2D 4D 6D 8D 10D

CPLEX#1 3,653 4,412,563 4,262,738 4,650,728 6,299,304
CPLEX#2 23,696 1,302,544 1,566,912 2,489,856 3,550,208
SWEEP 2,259 2,223,188 6,451,764 33,842,261 16,336,597
SPHERE 2,243 1,829,719 5,676,139 23,967,213 11,245,251
VERTEX 8,260 28,574,320 316,524,032 1,711,305,472 3,732,959,232

Table 4
Time cost (seconds) (first filter/second filter).

2D 4D 6D 8D 10D

CPLEX#1 0.52/
0.001

633.7/
0.001

616.8/
0.041

660/5.51 845.7/
5,502

CPLEX#2 2.078/
0.001

120.4/
0.001

147.2/
0.041

250.2/
5.51

360.8/
5,502

SWEEP 0.001/
0.001

2.129/
0.001

3.078/
0.082

11.11/
31.69

3.388/
8,691

SPHERE 0.001/
0.001

2.35/
0.001

3.331/
0.103

9.518/
67.32

2.729/
11,213

VERTEX 0.001/
0.001

2.685/
0.001

7.624/
0.082

133.8/
31.69

434.9/
8,691

Table 5
Number of nodes selected by the first filter (inside/boundary).

2D 4D 6D 8D 10D

CPLEX#1 323/
191

335,290/
664,711

78,778/
921,227

137/
999,941

1/
1,000,199

CPLEX#2 0/
4,357

0/1,000,003 0/1,000,020 0/
1,000,078

0/
1,000,200

SWEEP 323/
191

333,082/
666,930

75,139/
924,880

9/
1,000,003

1/
1,000,074

SPHERE 341/
209

367,127/
632,884

53,789/
946,230

0/
1,000,016

0/
1,000,210

VERTEX 323/
191

333,082/
666,930

75,139/
924,880

9/
1,000,003

1/
1,000,074

The final number of ranges generated may be slightly more than 106, due to
residual nodes exported after the decomposition stops.

Fig. 14. The nD 8-gonal and 16-gonal prisms projected to 2D and 3D spaces. Fig. 15. Results from the first and second filters in the 6D-prism query.

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

8

where Eq. 4 describes the 3D view frustum, while Eq. 5 defines the cLoI
range. ai, bi, ci and di are parameters based on the view point, direction
and maximum view distance D. (u, v,w) represents the coordinates of the
view point.

Based on this formulation, perspective views were selected using
GEOM, SWEEP and CPLEX. GEOM detects intersection based on rigorous
geometric computation. For example, Eq. 5 defines a 4D cone. To
determine whether a 4D node intersects it, GEOM first computes the
boundaries of the two geometries: the boundaries of the 4D cone are
actually 2 3D balls and 6 3D cones, while that of the 4D node are 8 3D
cubes. Then, GEOM detects intersection of these boundaries at the 3D
space. Using GEOM, no FPNs will be detected, but the computation is
non-trivial.

SWEEP uses a polytope for selection. So, Eq. 5 is approximated by
linear equations. The left term in Eq. 5 represents a sphere, and can be
approximated by 15 half-spaces surrounding the sphere (Fig. 18).
Practically, the horizontal and vertical span of the vision could exceed
120◦ but cannot reach 180◦. So, we rotate the central half-space by an
interval of 30◦ both horizontally and vertically, to build the discrete
approximation of the sphere.

CPLEX supports quadratic constraints and can be used without

linearization. However, in practice, CPLEX collapses due to the high
complexity of the quadratic problem (Eq. 5). Consequently, CPLEX uses
the 4D polytope model established in the SWEEP approach. Note that
the CPLEX approach implemented here distinguishes inside nodes as
does CPLEX#1 in Section 5.1.

5.2.2. Benchmark tests
The test sample contains 2 billion points. GEOM, SWEEP and CPLEX

all set rmax to 105 for querying. The tests include two view modes
(Fig. 19): the close-up view simulates the situation where a user is
standing looking around; the distant view imitates the bird-eye view
located 800 m to 1 km high, looking at the ground. Each view test
randomly generates 100 queries for benchmarking.

Fig. 20 shows the visuals of a typical close-up query. Fig. 21 presents
the perspective view from another distant query covering the same re-
gion as Fig. 20. Fig. 22 presents the output size and FPR of both types of
view selection based on all queries tested. Table 6 shows the average
time cost of different approaches.

As indicated in Fig. 22b, SWEEP returns the most false positive points

Fig. 16. Number of iterations of range computation in the 6D-prism query.

Fig. 17. Time cost of range computation in the 6D-prism query.

Fig. 18. Approximating cLoI range by half-spaces: all points on the contour
surface have the same maximum cLoI value. Fig. 19. Illustration of a distant view and two close-up views.

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

9

Fig. 20. Results from a close-up query.

Fig. 21. Result from a distant query.

Fig. 22. Statistics of executing the 100 close-up and the other 100 distant queries.

H. Liu et al.

�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

10

from the first filter. Although SWEEP selects FPNs, the second filter
times are not greatly affected - the FPNs’ negative effect is limited for
this application, which is consistent with the nD-simplex experiment
(Table 2). GEOM holds the lowest FPR thanks to the accurate intersec-
tion between the original geometry (Eq. 5) and nodes. However,
implementing is cumbersome, and can be impossible for other query
geometries in high dimensional spaces.

Table 6 shows the superior performance of SWEEP, where the total
time cost is below 1 s. In the first filter, range computation costs the
most, while the others take constant time (< 0.2 s). Although CPLEX
possesses a more accurate first filter than SWEEP, its range computation
is 200× slower than SWEEP. This also agrees with previous results.

5.3. Flood risk query

This section presents another use case from the hydrology domain.
The data set is generated by running flood models which is developed for
the Niansi Levee in China (Liu et al., 2021a). The 2D fluid computational
grid contains 59,680 triangular cells, which will be represented by their
centroids. We modelled 8 cases including 4 locations of breach, com-
bined with extreme rainfall with a return period of 20 and 50 years. Each
case simulates 720 steps (corresponding to a 30-min resolution). So in
total, we extract 59,680 × 720 × 8 = 343,756,800 points, in an 8D
space composed by case ID, X, Y, Z, time, depth, velocity and flow di-
rection. The query is to select dangerous locations evaluated by human
instability (, i.e., depth × velocity ⩾ 2) (Jonkman and Penning-Rowsell,
2008) in case 1.

Among the 8 dimensions, the flow direction is seldomly used for ad-
hoc analysis. So, we set it as the property dimension when building the
IOT, while used the other 7 dimensions for Morton key encoding. To
employ SWEEP and CPLEX, we first converted the query into the poly-
tope representation. It consists of a half-space indicating the case ID, and
the other 7 half-spaces of which the points of tangency spread over the
query boundary in the 2D projection (Fig. 23). As a comparison, we also
built a customized GEOM approach. GEOM reports an intersection if the

upper-right corner of a node is in the original geometry. An inside is
returned if the lower-left corner is inside. rmax is set to 105, the same as
the AHN2 test. We also changed the case ID to 5, which leads to a
different result. The exact answer of case 1 contains 28,351 points, while
that of case 5 contains 175,758 points. Table 7 presents the accuracy of
different first filters, and Table 8 presents the time cost.

The large FPRs in both queries (Table 7) result from the data set’s
high dimensionality and the skewed distribution of the depth and ve-
locity dimension. Both dimensions contain large amount of zero values
which are selected by these algorithms. In case 5, SWEEP and CPLEX
select less points than GEOM, applying a different path for node
decomposition. So, using the polytope for approximation may not al-
ways lead to negative result. Thanks to similar k′ , SWEEP costs nearly
the same time as GEOM (Table 8), but CPLEX still takes more time by an
order of magnitude. Additionally, as GEOM needs hard-coded pro-
gramming, it is still less applicable than the generic SWEEP.

5.4. Discussion

The advantage of nD-simplex model for query tests lies in the pseudo-
randomness in terms of faces’ directions. This results in diverse inter-
section angles between axis-parallel nodes and the simplex, which
makes the result more generic and convincing. We achieved constant
selectivity for both nD-simplex and nD-prism test, facilitating analysis of
querying efficiency dependency on dimensionality and the number of
half-spaces.

As shown in Tables 2 and 4, SWEEP becomes less competitive after
8D. FPNs occur at the acute corners where boundaries meet, and this
occurs increasingly frequently in higher-dimensional simplexes. The nD-
simplex is effectively a worst-case for the generation of FPNs, as SWEEP
does not return any FPNs in the nD-prism test.

The clipping method developed by Goldstein et al. (1997) on the
other hand, clips the nodes intersecting each half-space. In this way, the
intersection detection becomes a joint determination from all half-
spaces, and FPNs are expected to be reduced. However, the clipping
position should be computed optimally in high dimensional spaces.
Otherwise, using the original method, several iterations of clipping has
to be performed to detect accurately whether a node intersects the
polytope, which costs significant amount of time.

The rigorous method CPLEX takes more time in each iteration, but it
holds a more constant performance over dimensionality thanks to ac-
curate intersection computation. So, CPLEX remains to be a competitive
solution when dimensionality is high.

In addition, our querying framework can solve more abstract queries
whose constraints on combinations of different dimensions are
expressible as a polytope model. The method for polytope modeling
adopted in applications above can be generalized: given an equation of a
convex curved face, f(x0, x1, …, xn− 1) = 0, a generic method is to
generate a set of tangent planes which together form a superset of the
geometry for approximation. More specifically, we first randomly
generate m points on f, from p0 to pm− 1. Then, we compute the gradients
at these points:

Table 6
Average time cost of the perspective view queries (seconds).

GEOM SWEEP CPLEX

Close-up view query
First filter 1.196 0.564 127.0
Second filter 0.239 0.275 0.259
Total 1.435 0.839 127.3

Distant view query
First filter 0.99 0.571 165.1
Second filter 0.211 0.298 0.294
Total 1.201 0.869 165.4

Fig. 23. Converting the constraint on human instability into a polytope model.

Table 7
Accuracy of the first filters in the flood query.

GEOM SWEEP, CPLEX

Case 1
k′ 11,734,557 12,031,206

FPR 412.9 423.4
selectivity 3.414% 3.5%

Case 5
k′ 10,182,544 10,171,486

FPR 56.9 56.9
selectivity 2.962% 2.959%

H. Liu et al.

https://github.com/rencailhc/HistSFC
https://github.com/rencailhc/HistSFC
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0005
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0005
https://www.ahn.nl/
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0015
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0015
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0020
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0020
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0025
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0025
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0025
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0030
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0030
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0030
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0035
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0035
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0040
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0040
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0040
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0045
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0045
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0045
http://egon.cheme.cmu.edu/ewo/docs/rlima_cplex_ewo_dec2010.pdf
http://egon.cheme.cmu.edu/ewo/docs/rlima_cplex_ewo_dec2010.pdf
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0055
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0055
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0055
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0055
http://www.gdmc.nl/publications/reports/GISt78.pdf
http://www.gdmc.nl/publications/reports/GISt78.pdf
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0065
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0065
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0065
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0070
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0075
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0075
http://nd-pc.org/documents/vario-nD-PC-v7.pdf
http://nd-pc.org/documents/vario-nD-PC-v7.pdf
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0085
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0085
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0085
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0085
https://doi.org/10.5281/zenodo.2556738
https://doi.org/10.5281/zenodo.2556738
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0095
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0095
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0095
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0105
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0105
http://refhub.elsevier.com/S0303-2434(21)00332-9/h0105

	Executing convex polytope queries on nD point clouds
	1 Introduction
	2 Related work
	3 IOT approach
	3.1 Nomenclature
	3.2 Overview

	4 Polytope querying

