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Executing convex polytope queries on nD point clouds 
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Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands   
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A B S T R A C T   

Efficient spatial queries are frequently needed to extract useful information from massive nD point clouds. Most 
previous studies focus on developing solutions for orthogonal window queries, while rarely considering the 
polytope query. The latter query, which includes the widely adopted polygonal query in 2D, also plays a critical 
role in many nD spatial applications such as the perspective view selection. Aiming for an nD solution, this paper 
first formulates a convex nD-polytope for querying. Then, the paper integrates three approximate geometric 
algorithms – SWEEP, SPHERE, VERTEX, and a linear programming method CPLEX, developing a solution based 
on an Index-Organized Table (IOT) approach. IOT is applied with space filling curve based clustering and 
advanced querying mechanism which recursively refines hypercubic nD spaces to approach the query geometry 
for primary filtering. Results from experiments based on both synthetic and real data have confirmed the superior 
performance of SWEEP. However, the algorithm may lag behind CPLEX due to pessimistic intersection 
computation in high dimensional spaces. In a real application, by properly transforming a perspective view 
selection into a polytope query, the solution achieves a sub-second querying performance using SWEEP. In 
another flood risk query, SWEEP also leads the others. In general, the robust and efficient solution can be 
immediately used to address different polytope queries, including those abstract ones whose constraints on 
combinations of different dimensions are formed into a polytope model. Besides, the knowledge of high- 
dimensional computations acquired also provides significant guidance for handling more nD GIS issues.   

1. Introduction 

nD point clouds and nD queries become increasingly used nowadays. 
To smoothly and efficiently visualize large volumes of LiDAR point data, 
a continuous Level of Importance (cLoI) dimension is suggested to be 
added for points clustering and indexing (van Oosterom, 2019; Schütz 
et al., 2019). Thus, when doing an nD query such as the perspective view 
selection, nearby points will all be selected, while fewer faraway points 
with restricted cLoI values are selected. Point data and queries can be 
more generic. For example, in flood modelling, results are normally 
computed and stored in a 2D computational grid. When the grid cell is 
not a square, such as a triangle (Fig. 1), data storage and querying in the 
form of rasters would be cumbersome and inefficient. A possible solution 
is to extract the centriods of all cells and store the information including 
flow velocity, direction and inundation depth in these centriods. Flood 
risk analysis can then be performed by querying this nD point cloud 
using all relevant dimensions besides XYZ (Liu et al., 2021a). 

Prevalent software for point processing such as Oracle spatial, 
PostGIS and PDAL (PDAL-Contributors, 2018) are initially developed to 

resolve 2D or 3D issues, they lack nD indexing support and do not 
provide nD operators. To provide an efficient nD solution, van Oosterom 
et al. (2015) developed an Index-Organized Table (IOT) approach to 
address nD window queries on massive point clouds (Section 3). The IOT 
approach on the one hand achieves high efficiency to cluster and index 
all related dimensions in the query, while on the other hand avoids the 
time-consuming block unpacking and filtering process of block-based 
approaches. However, the IOT approach does not address irregular 
query geometries which are also commonly used. The aforementioned 
perspective view selection is a typical example: instead of a constant 
range, the cLoI constraint changes according to the distance to the view 
point. Existing solutions encounter significant bottlenecks solving such 
queries, including poor practical performance, inaccurate results and 
insufficient verification with nD data (Section 2). 

In this paper, we extend the IOT approach for more query geometries 
beyond orthogonal windows. The paper describes a search strategy 
which has been shown to provide good response for a particular class of 
search regions – convex polytopes – which while not universal, is 
common enough to be useful. The polytope studied here is a convex 
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geometry delimited by a set of half-spaces (Section 4.1). In summary, we 
made the following contributions:  

1. Based on the IOT approach, we developed 3 geometric algorithms 
including SWEEP, SPHERE and VERTEX to detect intersection be-
tween a convex polytope and a hypercubic nD space. This forms the 
core to execute convex polytope queries on nD points.  

2. We built two generic convex polytope geometries – the nD-simplex 
and nD-prism – to investigate and compare the performance of the 
algorithms and another linear programming method CPLEX. The 
querying tests from 2D to 10D have verified the theoretical 
complexity of these algorithms evidently.  

3. We solved real world problems including perspective view selection 
and flood risk analysis by transforming the queries into nD polytope 
queries. They can then be accomplished efficiently using our 
solution. 

The rest of the paper is organized as follows: Section 2 reviews and 
analyzes previous studies on polytope querying algorithms. Section 3 
revisits the IOT approach briefly. Then, by first formulating an easy-to- 
use nD polytope for querying, Section 4 develops three generic algo-
rithms to efficiently search point clouds with a polytope. Based on this, 
Section 5 evaluates all the algorithms by ideal experiments and real use 
cases. Section 6 concludes the paper. 

2. Related work 

Polytope querying originates from studies on geometric algorithms, 
where researchers mainly propose and analyze different algorithms 
theoretically (Chazelle, 1989; Matoušek, 1992, 1994) based on in- 
memory data structures. Agarwal et al. (2000) proposed a solution 
based on a partition tree structure managing data on disks. They spe-
cifically focused on analyzing the worst-case querying performance, but 
no practical experiments were conducted. These theoretical approaches 
are difficult to implement and may not be applicable to address big point 
data (Khan et al., 2014). 

The development of spatial indexing has facilitated the design and 
implementation of polytope querying. Based on the R-tree, Goldstein 
et al. (1997) developed two algorithms: one is the “simple” method 
which computes a scalar product indicating the minimum distance be-
tween a block and a half-space to examine whether an intersection 
happens; while the other method iteratively uses half-spaces to clip the 
R-tree block to detect intersection (Fig. 2). However, they discussed little 
about the performance in nD space, beyond testing a uniformly 
distributed 5D data set from the business domain. None of the 

algorithms proposed distinguishes the type of intersection (inside or 
touching), leading to redundant intersection computation for a branch 
block totally inside the polytope. Kollios et al. (1999) developed an 
approximation algorithm to resolve trajectory searching problems. They 
also adapted and implemented algorithms of Goldstein et al. (1997) 
using the hBΠ-tree (Evangelidis et al., 1997) as a comparison. The result 
is that for 2D and 3D issues, their approximation algorithm works more 
efficiently. 

More recently, Wang and Ravishankar (2013) developed an 
encrypted R-tree structure for polytope querying on the cloud 
computing platform. However, the solution determines whether a tree 
node intersects the polytope only based on the lower-left corner or the 
upper-right of the node, which is not rigours and may omit possible 
intersections. Besides, they only tested queries on 2D point data. Khan 
et al. (2014) developed a novel Planar index composed by multiple set of 
hyperplanes to solve scalar product queries which covers the polytope 
query. However, given non-parallel half-spaces, the method needs 
several Planar indices to function, which is extremely expensive when 
the number of half-spaces for querying is large. 

Compared with those approaches, our IOT approach provides a true 
nD operator for executing convex polytope queries on nD points. It can 
be directly implemented and used in any database management systems 
that support the B+-tree structure. Besides, the solution always returns 
the correct result. It is also very efficient thanks to the Space Filling 
Curve (SFC) clustered data organization and the B+-tree indexing. 
Moreover, with optimizations such as the nD-histogram (Liu et al., 
2020), the performance of querying on inhomogeneously distributed 
point data can also be improved significantly. 

3. IOT approach 

This section presents the overall architecture of the IOT approach. A 
detailed description can be found in (Liu et al., 2020). This forms the 
basis to realize the polytope querying algorithms described in Section 4. 

3.1. Nomenclature 

The key terminology used to illustrate the approach is introduced in 
the following sub-sections. Besides, the notations used in the paper is 
listed in Table 1. 

3.1.1. Dimension 
The dimensions discussed here possess either physical or semantic 

meanings that humans can perceive and interact with. In terms of data 
management, we identify two types of dimensions: organizing dimensions 
are used to cluster and index the data such as spatio-temporal di-
mensions; the other property dimensions that are not frequently used in 
the SQL WHERE clause are affiliated, such as color and intensity. These 
two types of dimensions are not fixed, and may be varied depending on 
applications. 

3.1.2. Hypercube, node and range 
In general, a cube refers to a 3D box with equal edge length. This 

Fig. 1. A typical flood modelling grid. Image source: Gharbi et al. (2016).  

Fig. 2. One clipping operation where P refers to the polytope and B is an R-tree 
block, from Goldstein et al. (1997). 

Table 1 
Notations.  

Notation Description 

n Number of dimensions 
m Number of half-spaces in the polytope 
N Input size in the number of points 
k′ Output size from the first filter 

k Size of the accurate answer 
r Number of ranges generated 

rmax  Maximum number of ranges (threshold) 
B Page capacity of storage  
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geometric concept extended into nD space becomes the hypercube. 
Fig. 3 illustrates the node and the range in 2D. All points have integer 

coordinates. By truncating the last n bits (n = 2) of the points’ Morton 
codes recursively, we derive Morton codes at upper levels. That is to say, 
the Morton codes of points implicitly contain a hierarchy which is 
equivalently a Quadtree structure. We can easily extend this scheme to 
higher dimensional spaces so that a Morton node refers to the corre-
sponding node of a 2n-tree. A branch node covers the nodes on the level 
below, and represents the extent of a hypercubic region (e.g., a block in 
the Quadtree). Thus, the branch node also indicates a range of Morton 
codes starting from the lower-left corner to the upper-right. A leaf node 
is not further subdivided. 

3.2. Overview 

Fig. 4 presents the workflow of our IOT approach. It applies two 
filters for querying, where the first filter computes the ranges for 
selecting keys while the second filter decodes the keys and conducts 
point-wise filtering to derive the final answer. Fig. 5 illustrates a 2D 
example of range computation in the first filter. In Section 4.2, we 
extended the range computing module to allow the transformation from 
an nD polytope query to 1D ranges. 

4. Polytope querying 

A convex polytope is defined as an nD geometry for which, given any 
2 points within the region, every point along a straight line joining the 
points is also within the region. To use the polytope practically, this 
section first provides the mathematical formulation in Section 4.1. Then, 
novel intersection algorithms for polytope querying are developed in 
Section 4.2. 

4.1. Mathematical formulation 

A half-space is a division of space along a hyperplane (Fig. 6). Here it 
is defined as the set of points x such that ω⋅x + β⩽0, where ω is a unit 
vector (ω⋅ω = 1) and β is a scalar. Note that the inequality is used here 
for compatibility with the conventions of computer representation 
software (3D) that the normal vector ω is oriented so that it points to the 
outside of the solid object. A half-space can be denoted by the tuple (ω,

β). 
In 2D the term half-plane is sometimes used, defined by an infinite 

straight line – its only boundary. In 3D space, the half-space is defined 
and bounded by an infinite plane, while in higher dimensions the half- 
space represents all points on a particular side of an (n − 1) D hyper-
plane. In all cases, the dividing (n − 1)D hyperplane has the definition 
ω⋅x + β = 0. A convex polytope is defined as the intersection of a finite 
set of half-spaces, where the boundaries may not be complete (Fig. 7): 

C = ∩m
i=1Hi  

where Hi is a set of m half-spaces. 
Based on this formulation, we can test whether a point is within a 

half-space by evaluating ω⋅p + β: if the value is non-positive, the point p 

is within the half space. Since ω and p are vectors of length n, the 
operation per point costs O (n) time. Then, computing the relationship 
between the point and the convex polytope, can cost O (mn) time per 
point. However, globally traversing all the points for selection is too 
costly and scales badly with the size of input. Consequently, we adopt 
the IOT approach to speed up the search. 

4.2. Intersection algorithms 

Given a set of ω and β, we can then use the IOT approach to retrieve 
the result. The core of querying lies in the intersection computation 
between nodes and the convex polytope to generate ranges in the first 
filter. This section develops 3 geometric algorithms, and an additional 
linear programming solution provided by CPLEX. These algorithms re-
turn ranges which are then joined with the IOT, with a final filter per-
forming the aforementioned point-in-polytope test. 

4.2.1. SWEEP 
SWEEP first identifies the “entry” and “exit” of a node with respect to 

a half-space (Fig. 8): imagine if the half-space were to be moved from a 
great distance away, towards and across the node so that ultimately the 
node is within the half-space; the entry and exit are the first and last 
vertices to cross the boundary. The categorization as entry/ exit is only 
true in relation to a single half-space, and must be re-appraised for 
others. Then, based on the distance between the half-space’s boundary 
and the entry or the exit, SWEEP determines if an intersection happens. 
Fig. 9 presents the whole workflow of SWEEP for one half-space. 

Fig. 10 shows how SWEEP works with different nodes after several 
iterations of decomposition. Node N1 is not within the half-space H2, 
therefore it is external to polytope C, and can be dropped. N2 is within all 
of H1 to H4, and its range can be exported. In the case of N3, since it 
fulfils neither of these cases, it must be placed in a refinement pool 
before being accepted or rejected. The case of N4 is significant, because 
it partially overlaps or falls within each half-space, but in fact it does not 
intersect C. We refer to this case as a False Positive Node (FPN) to be 
discussed later. In the process of searching the nodes from the refine-
ment pool, sub-nodes at the next lower levels are processed (2n of them). 
These are then applied to the same tests against C. Some sub-nodes are 
found to be internal, some to be on the boundary, and the rest external. 

FPNs exist at crossings of half-spaces (e.g., N4 in Fig. 10a and N42 in 
Fig. 10b). It is a practical proposition to ignore the problem, and allow 
FPNs to be processed as if they are true positive nodes. In Fig. 10, N4, 
after first refinement, has three of its sub-nodes eliminated, leaving only 
N42 whose sub-nodes are eliminated at the next level. This appears to be 
a common event – that as a FPN is decomposed into sub-nodes at one 
level below, those sub-nodes are largely eliminated. With the second 
filter, points in any remaining FPNs will all be eliminated. 

4.2.2. SPHERE and VERTEX 
SPHERE and VERTEX are alternatives. They also detect intersection 

by examining the relationship between a node and all half-spaces. 
The SPHERE algorithm first computes the centre of a node. If the 

centre is in the half-space, or the Euclidean distance between the centre 
and the half-space is within half of the diagonal length of the node, the 
node will be selected. “inside” or “partial overlap” can be decided 
depending on the distance. SPHERE only needs a central point for 
intersection detection, which is favorable. However, as the distance 
computed is an upper bound, FPNs will be selected (N4 in Fig. 11). 

The VERTEX algorithm is more straightforward, as it examines every 
vertex of a node to determine whether the node intersects a half-space. If 
all vertices are outside, then no intersection happens. If all the vertices 
are in the half-space, the node is inside. For all other cases, a partial 
overlap is returned. The implementation is simple, but the algorithm 
degrades in high dimensional spaces because the number of vertices of a 
node grows exponentially with dimensionality. False detection will also 
arise at crossings of half-spaces (e.g., Fig. 10a), as with SWEEP. 

Fig. 3. Implicit Morton hierarchy: black dots are real points to be managed, 
while colored dots are Morton branch nodes at different levels. 
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4.2.3. CPLEX 
The rigorous linear programming method detects intersection by 

finding solutions for a set of equations defined by the (n − 1)D hyper-
planes of the polytope and a node. We realize this by using CPLEX which 
is a tool developed by IBM to solve linear optimization problems (Lima, 
2010). It provides optimal solutions to an objective function confined by 

a set of constraints. Using CPLEX, we can create a variable array x (x1,x2,

x3,... xn), and set their range according to the bounds of a node (i.e., L1⩽ 
x1⩽U1, L2⩽x2⩽U2,... Ln⩽xn⩽Un). Then, we convert all half-spaces to 
constraints in the form of ω⋅x + β⩽0. We set the objective function of the 
linear model to 0, meaning that once a solution found, the program will 
stop. In this way, CPLEX detects whether an intersection happens. 

Fig. 12 presents the results of a 2D triangle query on a uniformly 
distributed point set, with a proper IOT setting. SPHERE contains all 
points selected by SWEEP which again contains points selected by 
CPLEX. VERTEX returns the same result as SWEEP. The result indicates a 
general pattern of k′ , which is SPHERE  ⩾ SWEEP (VERTEX)  ⩾ CPLEX. 
The false positive points are distributed along the boundaries and 
around the acute corners. Several factors influence the occurrence of 
these points, including the dimensionality, relative positions of the half- 
spaces to nodes, and rmax for querying. The actual performance of these 
algorithms depends on the specific settings and implementation, which 
is evaluated by experimenting in Section 5. 

Fig. 4. The loading and querying procedure of the IOT approach.  

Fig. 5. Range generation of a window query using the principle of the Morton hierarchy. The data extent derived from Morton nodes is recursively decomposed to 
match the query window. This process continues until the number of ranges generated reaches the threshold rmax. 

Fig. 6. The definition of a 2D half-space which can be generalised to nD.  

Fig. 7. Convex polytopes in 2D and 3D spaces. (See above-mentioned references for further information.)  
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4.3. Theoretical complexity 

The total querying time based on the IOT approach is as follows: 

T = Tpre +Tio +Tpost (1)  

where Tpre is the time cost of the first filter, and mainly comprises range 
generation and B+-tree traversal; Tio indicates the main I/O cost to 
retrieve points inside the ranges; Tpost refers to the final decoding and 
filtering. 

In SWEEP and SPHERE, Tpre is bounded by O (mnrlogBN). In VERTEX, 
every vertex of a node has to be examined. Thus, its Tpre is bounded by 

O (2nmnrlogBN). Tio maximally covers O (k′
B +r) I/Os, while Tpost is 

bounded by O (mnk
′

). Once parallelism is applied, Tpost becomes O (mnk
′

p ), 
given p processors. Besides, all intersection algorithms introduce FPNs 
except CPLEX. So, k′ can be varied. An optimal solution should balance 
the three cost terms. An accurate first filter with large r may cost more 
time, but it returns a small k′ which alleviates I/O and post-processing in 
the second filter. For this purpose, we introduce False Positive Rate 
(FPR) to indicate I/O and the performance of second filter (Eq. 2): 

FPR =

⃒
⃒
⃒
⃒
k′

− k
k

⃒
⃒
⃒
⃒ (2)  Fig. 8. The “sweeping” process: in (1), a half-space starts sweeping with the 

node outside; (2), (3), (4), the half-space sweeps over the node, where inter-
section happens; (5), the sweeping ends with the node inside the half-space. 

Fig. 9. The workflow of SWEEP.  

Fig. 10. SWEEP selection based on the IOT approach, with white nodes outside, green nodes inside and red nodes on the boundary.  

Fig. 11. Intersection detection using SPHERE: N1 is inside; N2 partially over-
laps the half-space; N3 and N4 are falsely detected as partial overlap. 

Fig. 12. Querying results from different algorithms: (a) querying geometry, (b) 
accurate result, (c) Overlapping results of CPLEX (orange), SWEEP (green) and 
SPHERE (blue), without a second filter. 
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Sometimes, FPR can be very large, e.g., in high dimensional spaces. 
Then, the portion of data selected by the first filter is also indicative (Eq. 
3): 

selectivity =
k′

N
(3) 

The memory cost is mainly determined by r and k′ . 

5. Experiments and analysis 

This section describes experiments to evaluate the performance of 
different algorithms described above. Section 5.1 builds a regular nD- 
simplex model and an nD-prism model for testing. The nD-simplex is 
the simplest nD polytope, while the nD-prism is devised to investigate 
how the number of half-spaces influences the querying efficiency. Sec-
tion 5.2 tests two real use cases and focuses on the time cost. One is the 
perspective view query, which is a basic operation to realize point 
clouds’ visualization; the other is a flood risk query, based on modelling 
results. 

The experimental platform is HP DL380p Gen8 server with 2 × 8- 
core Intel Xeon processors, E5-2690 at 2.9 GHz, 128 GB RAM, and 41 TB 
SATA 7200 rpm in RAID6 configuration. Solutions are implemented in 
Oracle 12.2. All tests are “cold”, without caching. 

5.1. nD-simplex and nD-prism tests 

Both tests use a single thread, recording 3 indicators for evaluating 
the performance:  

1. Selectivity of the first filter (Eq. 3).  
2. Number of iterating cycles (i.e. for-loops) to generate ranges. A cycle 

of CPLEX means resolving the optimal problem once (Section 4.2.3). 
A cycle of SWEEP, SPHERE and VERTEX means computing the dis-
tance from a half-space to a point in the node.  

3. Time cost of the first filter and the second filter. The first filter time 
corresponds to Tpre in Eq. 1, while the second filter takes Tio +Tpost to 
accomplish. 

Selectivity shows the accuracy of intersection computation. The 
number of iterating cycles is used to explain the scalability and effi-
ciency of range computation of algorithms. Time cost indicates the 
overall performance. 

5.1.1. Synthetic data sets 
For these tests, we apply an independent uniform distribution in all 

dimensions. The coordinate value for each dimension uses 12 bits, so the 
10D Morton key requires 120 bits which fits within Oracle NUMBER 
type (128 bits). Thus, the value of each dimension is between 0 and 
4095. This limits the unique points possible in 2D. So, we generate 104 

2D points, and 106, 107, 108 and 1010 points for 4D, 6D, 8D and 10D 
data sets respectively. With all these data sets, we are able to investigate 
the querying scalability with respect to dimensionality. 

5.1.2. nD-simplex query 
As has been described in (Liu et al., 2021b), we mathematically 

formulated a regular nD-simplex model which has edges of equal length 
(Fig. 13) and comprises n+1 half-spaces. The model is totally inside the 
data domain, with each face oriented in a different direction. By modi-
fying the parameters, we derive simplex models of the same volume at 
different dimensionality. In other words, a constant selectivity is ach-
ieved among all data sets, which facilitates analyzing the behaviour of 
querying algorithms. This experiment specifically builds simplexes for 
querying with a selectivity of 0.1%. 

The experiment sets rmax to 106. This guarantees a low FPR in high 
dimensional spaces, without bloating the memory. CPLEX (two ver-
sions), SWEEP, SPHERE and VERTEX are tested. CPLEX#1 distinguishes 

between two types of intersection: inside or partial overlap, while 
CPLEX#2 does not, meaning nodes inside the simplex are refined un-
necessarily. 

Tables 2–4 show the results. Over all, CPLEX#1 owns the lowest FPR, 
while SWEEP responses the fastest below 10D with CPLEX#2 fastest in 
10D. The low FPR of CPLEX#1 leads to the smallest k′ for post- 
processing. However, as CPLEX#1 spends significantly more time for 
each iteration for computing ranges, such advantage is insignificant 
until 10D (Table 4). CPLEX#2 presents analogous selectivity as 
CPLEX#1, but is faster. This is because CPLEX#1 decomposes the sim-
plex to individual half-spaces to further compute inside or partial 
overlap, while ignoring this reduces about 50% computation (Table 3). 
Besides, it becomes less necessary to distinguish these two intersection 
types when n increases, as all nodes returned by the first filter tend to fall 
on the boundary (Table 5). This is because the number of nodes at each 
level of the Morton hierarchy increases exponentially with n, the final 
nodes selected mainly reside in higher levels with larger sizes. So, these 
nodes are more likely to partially intersect the simplex. 

False positive points selected by CPLEX are caused by boundary 
nodes. On the other hand, in addition, SWEEP, SPHERE and VERTEX 
also select FPNs as they apply approximate intersection computation. 
So, larger k′ are returned, which cause significant performance degra-
dation in higher dimensions. SPHERE processes similar number of iter-
ations as SWEEP, and is even faster in generating ranges. However, the 
ranges contain more false positive points, which undermines SPHERE’s 
overall performance. Especially in 10D, SPHERE selects nearly the 
whole data set. VERTEX returns the same ranges as SWEEP, but takes 
much more iterations due to the multiple vertex-based distance 
computation. An odd pattern occurs that the iterations of SWEEP and 
SPHERE decline from 8D to 10D. This is because the simplex’s boundary 
is very close to the boundaries of the data region in 10D (Liu et al., 
2021b). So, the false detection related to this half-space is constrained by 
the data region. 

In general, the FPRs of all approaches increase drastically with 
increasing dimensionality. For one thing, this is because to keep the 
0.1% selectivity, the simplex increasingly covers the data region as n 
grows, so that it intersects an increasing portion of nodes at each level. 
For another, rmax is set to a constant for all data sets, while each node is 
decomposed into 2n children, thus limiting selected nodes to the larger 
ranges, and introducing more false positive points. 

5.1.3. nD-prism query 
In theory, the number of half-spaces constituting the nD-polytope 

affects the time cost of range generation linearly (Section 4.3). This 

Fig. 13. Orthogonal projections of a 2D-simplex, 4D-simplex and 8D-simplex 
built, with the number of vertices (v) and edges (e). Image source: Wikipedia. 

Table 2 
Selectivity of the first filters.   

2D 4D 6D 8D 10D 

CPLEX#1 0.1% 0.1345% 0.4805% 2.503% 40.01% 
CPLEX#2 0.1% 0.1387% 0.4815% 2.503% 40.01% 
SWEEP 0.1% 0.1364% 0.9244% 16.45% 60.50% 
SPHERE 0.1% 0.1386% 1.193% 46.71% 92.95% 
VERTEX 0.1% 0.1364% 0.9244% 16.45% 60.50%  

H. Liu et al.                                                                                                                                                                                                                                      



�,�Q�W�H�U�Q�D�W�L�R�Q�D�O �-�R�X�U�Q�D�O �R�I �$�S�S�O�L�H�G �(�D�U�W�K �2�E�V�H�U�Y�D�W�L�R�Q �D�Q�G �*�H�R�L�Q�I�R�U�P�D�W�L�R�Q ������ ������������ ������������

7

section uses a simple nD-prism model to verify this. Inscribed regular 
polygons of a circle are used as the base (Fig. 14). To create the prism 
with 2f vertical faces, we apply a rotation formulation: suppose θ =

πj
f , 

where j = − f + 1,…, f . Then, we create each half-space with 

ω = (cosθ, sinθ, 0, 0,…, 0)

β = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
selectivity

π

√

⋅scale −
scale

2
(cosθ + sinθ)

where scale determines the size of the prism - 4096 in this case. We do 
not create half-spaces at the ends of the prism, as they are implicitly 
defined by the data region. Based on this formulation, we generate 
8i-gonal (i ∈ [1,8]) prisms from 2D to 10D. The hyper-volumes of these 
8i-gonal prisms are close to each other, and they approximately equal 

the product of selectivity 0.1% and the hyper-volume of the data region. 
The test uses the same uniform data sets from 2D to 10D. As the main 

patterns of performance are similar across different dimensionality, we 
only present 6D here. rmax is still 106. The approaches are the same as 
before. Figs. 15–17 show the results. 

These figures indicate that for all solutions, the number of half- 
spaces influences the time cost of range computation linearly. 
CPLEX#2 holds the best scalability. It takes a constant number of iter-
ations to compute ranges, and the number of half-spaces influences 
insignificantly on the time cost in each iteration. SWEEP and SPHERE 
hold the superiority over others in time cost of range computation. 
However, because of more FPNs, SPHERE takes more iterations than 
SWEEP. This gap becomes larger with larger dimensionality, which has 
been observed in 8D and 10D cases (Liu et al., 2021b). On the other 
hand, SWEEP returns no FPNs in this test, most likely due to the wide 
angle between two adjacent faces of the 8i-gonal prisms. 

5.2. Perspective view selection 

After the ideal tests, we explored the applicability of the algorithms 
to real data, investigating perspective views on airborne laser scanning 
(ALS) points. This section begins by restating the query region as a 
convex polytope. Then, two kinds of perspective view are used to verify 
the performance of different algorithms. 

5.2.1. Modelling 4D perspective view 
The data used is AHN2, an ALS point cloud recording elevation of the 

whole Netherlands (AHN, 2014). The original data contains XYZ infor-
mation only. We additionally add the cLoI dimension to achieve a 
smooth visualization, and avoid the “block” pattern with density shocks 
(Liu et al., 2020; Schütz et al., 2019). The computed cLoI values follow 
the exponential distribution (van Oosterom, 2019): the smaller the cLoI 
value, the more important the point is. In the 4D perspective view se-
lection, all points should be within a 3D view frustum in XYZ. Also, to 
imitate a realistic scene, a hyperplane in the cLoI dimension ensures 
nearby points are all be rendered, while fewer faraway points are 
selected. This corresponds to our cognition. So, we build the 4D view 
model as follows: 

aix+ biy+ ciz⩽di(i = 0, 1,…, 4) (4)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − u)2
+ (y − v)2

+ (z − w)2
√

⩽D −
D⋅cLoI
cLoImax

(5) 

Table 3 
Number of iterating cycles for computing ranges.   

2D 4D 6D 8D 10D 

CPLEX#1 3,653 4,412,563 4,262,738 4,650,728 6,299,304 
CPLEX#2 23,696 1,302,544 1,566,912 2,489,856 3,550,208 
SWEEP 2,259 2,223,188 6,451,764 33,842,261 16,336,597 
SPHERE 2,243 1,829,719 5,676,139 23,967,213 11,245,251 
VERTEX 8,260 28,574,320 316,524,032 1,711,305,472 3,732,959,232  

Table 4 
Time cost (seconds) (first filter/second filter).   

2D 4D 6D 8D 10D 

CPLEX#1 0.52/ 
0.001 

633.7/ 
0.001 

616.8/ 
0.041 

660/5.51 845.7/ 
5,502 

CPLEX#2 2.078/ 
0.001 

120.4/ 
0.001 

147.2/ 
0.041 

250.2/ 
5.51 

360.8/ 
5,502 

SWEEP 0.001/ 
0.001 

2.129/ 
0.001 

3.078/ 
0.082 

11.11/ 
31.69 

3.388/ 
8,691 

SPHERE 0.001/ 
0.001 

2.35/ 
0.001 

3.331/ 
0.103 

9.518/ 
67.32 

2.729/ 
11,213 

VERTEX 0.001/ 
0.001 

2.685/ 
0.001 

7.624/ 
0.082 

133.8/ 
31.69 

434.9/ 
8,691  

Table 5 
Number of nodes selected by the first filter (inside/boundary).   

2D 4D 6D 8D 10D 

CPLEX#1 323/ 
191 

335,290/ 
664,711 

78,778/ 
921,227 

137/ 
999,941 

1/ 
1,000,199 

CPLEX#2 0/ 
4,357 

0/1,000,003 0/1,000,020 0/ 
1,000,078 

0/ 
1,000,200 

SWEEP 323/ 
191 

333,082/ 
666,930 

75,139/ 
924,880 

9/ 
1,000,003 

1/ 
1,000,074 

SPHERE 341/ 
209 

367,127/ 
632,884 

53,789/ 
946,230 

0/ 
1,000,016 

0/ 
1,000,210 

VERTEX 323/ 
191 

333,082/ 
666,930 

75,139/ 
924,880 

9/ 
1,000,003 

1/ 
1,000,074 

The final number of ranges generated may be slightly more than 106, due to 
residual nodes exported after the decomposition stops. 

Fig. 14. The nD 8-gonal and 16-gonal prisms projected to 2D and 3D spaces.  Fig. 15. Results from the first and second filters in the 6D-prism query.  
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where Eq. 4 describes the 3D view frustum, while Eq. 5 defines the cLoI 
range. ai, bi, ci and di are parameters based on the view point, direction 
and maximum view distance D. (u, v,w) represents the coordinates of the 
view point. 

Based on this formulation, perspective views were selected using 
GEOM, SWEEP and CPLEX. GEOM detects intersection based on rigorous 
geometric computation. For example, Eq. 5 defines a 4D cone. To 
determine whether a 4D node intersects it, GEOM first computes the 
boundaries of the two geometries: the boundaries of the 4D cone are 
actually 2 3D balls and 6 3D cones, while that of the 4D node are 8 3D 
cubes. Then, GEOM detects intersection of these boundaries at the 3D 
space. Using GEOM, no FPNs will be detected, but the computation is 
non-trivial. 

SWEEP uses a polytope for selection. So, Eq. 5 is approximated by 
linear equations. The left term in Eq. 5 represents a sphere, and can be 
approximated by 15 half-spaces surrounding the sphere (Fig. 18). 
Practically, the horizontal and vertical span of the vision could exceed 
120◦ but cannot reach 180◦. So, we rotate the central half-space by an 
interval of 30◦ both horizontally and vertically, to build the discrete 
approximation of the sphere. 

CPLEX supports quadratic constraints and can be used without 

linearization. However, in practice, CPLEX collapses due to the high 
complexity of the quadratic problem (Eq. 5). Consequently, CPLEX uses 
the 4D polytope model established in the SWEEP approach. Note that 
the CPLEX approach implemented here distinguishes inside nodes as 
does CPLEX#1 in Section 5.1. 

5.2.2. Benchmark tests 
The test sample contains 2 billion points. GEOM, SWEEP and CPLEX 

all set rmax to 105 for querying. The tests include two view modes 
(Fig. 19): the close-up view simulates the situation where a user is 
standing looking around; the distant view imitates the bird-eye view 
located 800 m to 1 km high, looking at the ground. Each view test 
randomly generates 100 queries for benchmarking. 

Fig. 20 shows the visuals of a typical close-up query. Fig. 21 presents 
the perspective view from another distant query covering the same re-
gion as Fig. 20. Fig. 22 presents the output size and FPR of both types of 
view selection based on all queries tested. Table 6 shows the average 
time cost of different approaches. 

As indicated in Fig. 22b, SWEEP returns the most false positive points 

Fig. 16. Number of iterations of range computation in the 6D-prism query.  

Fig. 17. Time cost of range computation in the 6D-prism query.  

Fig. 18. Approximating cLoI range by half-spaces: all points on the contour 
surface have the same maximum cLoI value. Fig. 19. Illustration of a distant view and two close-up views.  
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Fig. 20. Results from a close-up query.  

Fig. 21. Result from a distant query.  

Fig. 22. Statistics of executing the 100 close-up and the other 100 distant queries.  
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from the first filter. Although SWEEP selects FPNs, the second filter 
times are not greatly affected - the FPNs’ negative effect is limited for 
this application, which is consistent with the nD-simplex experiment 
(Table 2). GEOM holds the lowest FPR thanks to the accurate intersec-
tion between the original geometry (Eq. 5) and nodes. However, 
implementing is cumbersome, and can be impossible for other query 
geometries in high dimensional spaces. 

Table 6 shows the superior performance of SWEEP, where the total 
time cost is below 1 s. In the first filter, range computation costs the 
most, while the others take constant time (< 0.2 s). Although CPLEX 
possesses a more accurate first filter than SWEEP, its range computation 
is 200× slower than SWEEP. This also agrees with previous results. 

5.3. Flood risk query 

This section presents another use case from the hydrology domain. 
The data set is generated by running flood models which is developed for 
the Niansi Levee in China (Liu et al., 2021a). The 2D fluid computational 
grid contains 59,680 triangular cells, which will be represented by their 
centroids. We modelled 8 cases including 4 locations of breach, com-
bined with extreme rainfall with a return period of 20 and 50 years. Each 
case simulates 720 steps (corresponding to a 30-min resolution). So in 
total, we extract 59,680 × 720 × 8  = 343,756,800 points, in an 8D 
space composed by case ID, X, Y, Z, time, depth, velocity and flow di-
rection. The query is to select dangerous locations evaluated by human 
instability (, i.e., depth × velocity  ⩾ 2) (Jonkman and Penning-Rowsell, 
2008) in case 1. 

Among the 8 dimensions, the flow direction is seldomly used for ad- 
hoc analysis. So, we set it as the property dimension when building the 
IOT, while used the other 7 dimensions for Morton key encoding. To 
employ SWEEP and CPLEX, we first converted the query into the poly-
tope representation. It consists of a half-space indicating the case ID, and 
the other 7 half-spaces of which the points of tangency spread over the 
query boundary in the 2D projection (Fig. 23). As a comparison, we also 
built a customized GEOM approach. GEOM reports an intersection if the 

upper-right corner of a node is in the original geometry. An inside is 
returned if the lower-left corner is inside. rmax is set to 105, the same as 
the AHN2 test. We also changed the case ID to 5, which leads to a 
different result. The exact answer of case 1 contains 28,351 points, while 
that of case 5 contains 175,758 points. Table 7 presents the accuracy of 
different first filters, and Table 8 presents the time cost. 

The large FPRs in both queries (Table 7) result from the data set’s 
high dimensionality and the skewed distribution of the depth and ve-
locity dimension. Both dimensions contain large amount of zero values 
which are selected by these algorithms. In case 5, SWEEP and CPLEX 
select less points than GEOM, applying a different path for node 
decomposition. So, using the polytope for approximation may not al-
ways lead to negative result. Thanks to similar k′ , SWEEP costs nearly 
the same time as GEOM (Table 8), but CPLEX still takes more time by an 
order of magnitude. Additionally, as GEOM needs hard-coded pro-
gramming, it is still less applicable than the generic SWEEP. 

5.4. Discussion 

The advantage of nD-simplex model for query tests lies in the pseudo- 
randomness in terms of faces’ directions. This results in diverse inter-
section angles between axis-parallel nodes and the simplex, which 
makes the result more generic and convincing. We achieved constant 
selectivity for both nD-simplex and nD-prism test, facilitating analysis of 
querying efficiency dependency on dimensionality and the number of 
half-spaces. 

As shown in Tables 2 and 4, SWEEP becomes less competitive after 
8D. FPNs occur at the acute corners where boundaries meet, and this 
occurs increasingly frequently in higher-dimensional simplexes. The nD- 
simplex is effectively a worst-case for the generation of FPNs, as SWEEP 
does not return any FPNs in the nD-prism test. 

The clipping method developed by Goldstein et al. (1997) on the 
other hand, clips the nodes intersecting each half-space. In this way, the 
intersection detection becomes a joint determination from all half- 
spaces, and FPNs are expected to be reduced. However, the clipping 
position should be computed optimally in high dimensional spaces. 
Otherwise, using the original method, several iterations of clipping has 
to be performed to detect accurately whether a node intersects the 
polytope, which costs significant amount of time. 

The rigorous method CPLEX takes more time in each iteration, but it 
holds a more constant performance over dimensionality thanks to ac-
curate intersection computation. So, CPLEX remains to be a competitive 
solution when dimensionality is high. 

In addition, our querying framework can solve more abstract queries 
whose constraints on combinations of different dimensions are 
expressible as a polytope model. The method for polytope modeling 
adopted in applications above can be generalized: given an equation of a 
convex curved face, f(x0, x1, …, xn− 1) = 0, a generic method is to 
generate a set of tangent planes which together form a superset of the 
geometry for approximation. More specifically, we first randomly 
generate m points on f, from p0 to pm− 1. Then, we compute the gradients 
at these points: 

Table 6 
Average time cost of the perspective view queries (seconds).   

GEOM SWEEP CPLEX 

Close-up view query 
First filter 1.196 0.564 127.0 
Second filter 0.239 0.275 0.259 
Total 1.435 0.839 127.3 

Distant view query 
First filter 0.99 0.571 165.1 
Second filter 0.211 0.298 0.294 
Total 1.201 0.869 165.4  

Fig. 23. Converting the constraint on human instability into a polytope model.  

Table 7 
Accuracy of the first filters in the flood query.   

GEOM SWEEP, CPLEX 

Case 1 
k′ 11,734,557 12,031,206 

FPR 412.9 423.4 
selectivity 3.414% 3.5% 

Case 5 
k′ 10,182,544 10,171,486 

FPR 56.9 56.9 
selectivity 2.962% 2.959%  
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