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Abstract

The minimum vertex cover problem (MinVertexCover) is an important optimization problem in graph
theory, with applications in numerous fields outside of mathematics. As MinVertexCover is an NP-hard
problem, there currently exists no efficient algorithm to find an optimal solution on arbitrary graphs.
We consider quantum optimization algorithms, such as the Quantum Alternating Operator Ansatz
(QAOA+), to find good minimum vertex covers.

This thesis presents new ‘second degree’ mixing Hamiltonians for MinVertexCover in the QAOA+
framework, which allow mixing between solutions Hamming distance 2 apart. The performance of
these new Hamiltonians is evaluated on a small graph. Methods to extend this idea by constructing
Hamiltonians which allow mixing between solutions at Hamming distance 𝑛 are also presented, along
with a generalization of second degree mixing Hamiltonians to other optimization problems.
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1
Introduction

The minimum vertex cover problem (MinVertexCover) is a fundamental optimization problem in graph
theory. A vertex cover is a subset of vertices in an undirected graph such that every edge of the graph
is incident to at least one of the vertices in the subset. The minimum vertex cover problem is the
problem of finding such a vertex cover of smallest size. MinVertexCover has applications in many
other fields outside of mathematics and computer science, such as biotechnology, network design, and
transportation. In biotechnology, for example, MinVertexCover can be used to optimize engineered
genetic systems by eliminating repetitive genetic parts [1]. Vertex cover optimization is used to model
a wide number of real-world problems, and finding minimum vertex covers efficiently is thus an
important aspect to solving these problems.

MinVertexCover can be solved by iterating over all possible vertex covers to find the smallest one.
However, this approach is not very efficient, as the number of possible covers (2𝑛) scales exponentially
with 𝑛. Many different algorithms for finding and approximating minimum vertex covers have been
developed, but none are able to solve the problem in polynomial time. This is due to the fact that
MinVertexCover is an NP-hard problem, and thus it is unlikely that there exists an efficient algorithm
to find a minimum vertex cover in an arbitrary graph. Approximations of MinVertexCover have not
improved past an approximation factor of 2. Should the stronger unique games conjecture be true, then
this approximation factor 2 is also the smallest possible approximation constant [2]. Thus, we look at
techniques that are not bounded by the rules of classical computing to achieve better approximations.

Quantum algorithms are computational methods that use quantum mechanical phenomena to paral-
lelize arithmetic and to solve problems more efficiently. Examples of famous quantum algorithms are
Shor’s algorithm to factor large integers [3], Grover’s algorithm to search databases [4], and the HHL
algorithm to solve systems of linear equations [5]. Along with these practical applications, the study
of quantum algorithms also helps us to better understand quantum mechanics itself. In general, the
field of quantum computing and quantum algorithms is a rapidly developing area of research with the
potential to solve a variety of problems that classical computers are currently unable to handle.

A quantum algorithm designed to approximate unconstrained combinatorial optimization algorithms is
the Quantum Approximate Optimization Algorithm (QAOA) [6]. QAOA operates by representing the
possible solutions of the problem as quantum states. Two unitaries are then iteratively applied to a
starting state in order to transform the probability distribution of the state to favour solutions with better
objective value. Finally, the state is measured to find a solution to the original optimization problem.
QAOA is not able to handle constrained optimization problems, and therefore an extension to QAOA
known as the Quantum Alternating Operator Ansatz (QAOA+) was introduced [7]. QAOA+ focuses on
general families of unitaries and can handle optimization problems with a desired feasible subspace
defined by the constraints of the problem.
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The main contribution of this thesis is two new mixing Hamiltonians for MinVertexCover in the QAOA+
setting. These new mixing Hamiltonians are able to swap between multiple vertices at the same time,
while still preserving the feasible subspace. The performance of these Hamiltonians is compared to the
original mixing Hamiltonian suggested in [7], using different classical optimization methods to find
the optimal parameters for QAOA+. Extensions to these Hamiltonians are also proposed along with
alternatives to the implementation used in this thesis.

My thesis is structured as follows. First, we start with an overview of MinVertexCover in Chap-
ter 2, covering the definition of MinVertexCover as well as different ways of solving the problem
exactly and approximating its solutions. Chapter 3 then discusses quantum systems and Hamiltonian
evolution, topics important to understand how QAOA operates. Next, Chapter 4 covers the algorithms
QAOA and QAOA+ in detail, along with a more comprehensive discussion on mixing Hamiltonians. In
Chapter 5 two new mixing Hamiltonians are presented for MinVertexCover. This chapter discusses
both their explicit formulas as well as how they operate to preserve and reach the feasible subspace.
The implementation of the new Hamiltonians and the type of classical optimization methods used for
QAOA+ are then discussed in Chapter 6. The new mixing Hamiltonians are subsequently compared
to their original counterpart to produce the results presented in Chapter 7. Finally, conclusions are
presented in Chapter 8, along with extensions and alternatives to the new Hamiltonians and their
implementation in Chapter 9.



2
Minimum Vertex Cover Problem

In this chapter, we will delve into MinVertexCover and various classical approaches for solving it. We
will begin by defining the problem and examining its complexity. Next, we will examine exact solutions
for specific types of graphs, including tree graphs, complete graphs, cycle graphs, and bipartite graphs.
Finally, we will discuss the approximability of MinVertexCover, focusing on algorithms that can find
solutions that are close to optimal, but may not be the optimal solution itself.

2.1. Problem definition and complexity
A vertex cover 𝐶 of an undirected graph 𝐺 = (𝑉, 𝐸) is a subset of 𝑉 such that for every edge 𝑢𝑣 ∈ 𝐸
we have 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶, so every edge in 𝐺 has one (or both) of its endpoints in 𝐶. A minimum
vertex cover is a vertex cover of smallest size. A minimum vertex cover is different from a minimal
vertex cover, which is a vertex cover 𝐶 where none of the vertices in 𝐶 can be removed from 𝐶 while
preserving the property that 𝐶 is a vertex cover. Note that a minimum vertex cover is by definition
minimal, but a minimal vertex cover is not necessarily a minimum vertex cover, as can be seen in Figure 2.1.
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Figure 2.1: Examples of vertex covers with the vertices in the vertex cover shown in cyan. Note that both of these
covers are minimal vertex covers, but only the left cover is a minimum vertex cover.

The minimum vertex cover problem (MinVertexCover) is the optimization problem of finding a smallest
size vertex cover in a graph. Note that there is not necessarily exactly one smallest size vertex cover, as
for many graphs multiple smallest size vertex covers are possible. Finding any (not all) of these smallest
size covers solves the problem. The corresponding decision problem is called the vertex cover problem,
and answers the question whether, given a positive integer 𝑘, there exists a vertex cover of size 𝑘. The
vertex cover number 𝜏(𝐺) of a graph 𝐺 is defined as the size of a smallest vertex cover. MinVertexCover
can be formulated as the integer linear program (ILP) given by:

min
∑
𝑣∈𝑉

𝑥𝑣 (2.1)

s.t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢, 𝑣} ∈ 𝐸, (2.2)
𝑥𝑣 ∈ {0, 1} for all 𝑣 ∈ 𝑉, (2.3)

3
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where a solution to the ILP 𝑥 corresponds to the vertex cover 𝐶 through the relations 𝑥𝑣 = 1 ⇐⇒ 𝑣 ∈ 𝐶
and 𝑥𝑣 = 0 ⇐⇒ 𝑣 ∉ 𝐶. The objective function (2.1) is exactly the size of the vertex cover 𝐶, and
constraint (2.2) implements the constraint that at least one of the endpoints of every edge 𝑢𝑣 ∈ 𝐸 has to
be in 𝐶. Lastly, constraint (2.3) formulates that every vertex is either in C or not in C.

A decision problem is said to be in NP if a ‘yes’ instance of the problem can be verified in poly-
nomial time. In the case of the vertex cover problem this translates to, given a certain vertex cover 𝐶,
verify that it is indeed a vertex cover. This is done by checking all the possible constraints (2.2), of which
there are at most |𝑉 |(|𝑉 |−1)

2 , as a graph with |𝑉 | vertices has at most |𝑉 |(|𝑉 |−1)
2 edges, which is verifiable

in polynomial time. A problem is said to be NP-hard if any other problem in NP is polynomial-time
reducible to said problem. The decision variant of MinVertexCover is an NP-complete problem as
was shown by Karp as part of Karps 21 NP-complete problems [8], meaning it is both in NP as well
as NP-hard. Karp proved the NP-completeness of MinVertexCover by reducing another NP-complete
problem to MinVertexCover, namely by first reducing the Boolean satisfiability problem to the Clique
problem, and then reducing the Clique problem to MinVertexCover. The Boolean satisfiability problem
is NP-complete as stated by the Cook-Levin theorem [9], making the Clique problem NP-complete as
well, and thus MinVertexCover is also an NP-complete problem.

As the decision variant of MinVertexCover is NP-complete, it is unlikely that there exists an efficient
algorithm to find a minimum vertex cover for arbitrary graphs. In fact, the decision variant of
MinVertexCover remains NP-complete even in graphs where all vertices have degree 3 (so-called cubic
graphs) [10]. Even if all vertices have degree 3 and the graph is planar, meaning it can be drawn on a
plane without its edges crossing at points other than the vertices, the problem still remains NP-complete
[11]. However, for some specific types of graphs solutions can be found in polynomial time, as will be
discussed in Section 2.2.

2.2. Exact solutions to MinVertexCover for different types of graphs
While the general version of MinVertexCover is NP-complete, some types of graphs are structured in
such a way that for these graphs MinVertexCover can be solved in polynomial time. Here some of these
graph types are discussed, namely tree graphs, complete graphs, cycle graphs, and bipartite graphs. For
these graphs we look at the method of finding a minimum vertex cover and show the size 𝜏(𝐺) of this
minimum cover (if this number is possible to formulate as a function of |𝑉 |) [12].

2.2.1. Tree graphs
A tree graph 𝑇 = (𝑉, 𝐸) is a connected graph without a cycle, an example of which can be seen in Figure
2.2.
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Figure 2.2: Example of a tree graph with a minimum vertex cover shown in cyan.

To find a minimum vertex cover in a tree graph, first note that any tree graph always has a leaf (a vertex
of degree 1). Starting at this leaf, add the vertex adjacent to this leaf (of which there is by definition
only 1) to 𝐶 and remove both the leaf and the vertex adjacent to it from the graph, which should create
another leaf. Repeating this process until no edges are left results in 𝐶 being a minimum vertex cover.
This process is a variant of the algorithm to find a maximum independent set on trees discussed in [13].

2.2.2. Complete graphs
A complete graph 𝐾𝑛 = (𝑉, 𝐸) is a graph of 𝑛 vertices where every pair of vertices is connected by an
edge, an example of which can be seen in Figure 2.3.
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1 2

3 4

Figure 2.3: Example of a complete graph with a minimum vertex cover shown in cyan.

To find a minimum vertex cover in a complete graph, we first show that such a vertex cover can never be
of smaller size than |𝑉 | − 2. Assume a cover 𝐶 with a size smaller than |𝑉 | − 2 exists. This would mean
that there exist two vertices 𝑢 and 𝑣 which are not in 𝐶. As the graph is complete, the edge (𝑢, 𝑣) exists,
which is not covered by 𝐶 as both 𝑢 and 𝑣 are not in 𝐶. Thus, 𝐶 is not a vertex cover and any vertex
cover has to be of size at least |𝑉 | − 1. It is clear that any set of vertices of this size is indeed a vertex
cover, as for any edge not to be covered there need to be at least 2 vertices not in the cover. Therefore,
any set of vertices of size |𝑉 | − 1 is a minimum vertex cover for a complete graph, and 𝜏(𝐾𝑛) = |𝑉 | − 1.

2.2.3. Cycle graphs
A cycle graph 𝐶𝑛 = (𝑉, 𝐸) is a graph consisting of a single cycle of 𝑛 vertices, two examples of which
can be seen in Figure 2.4.

1

2 3

5 4

1

2 3

4

56

Figure 2.4: Cycle graphs 𝐶5 and 𝐶6 with possible minimum vertex covers shown in cyan.

To find a minimum vertex cover of a cycle graph, first note that for a cycle graph we have |𝐸 | = |𝑉 |. All
vertices have degree 2 and can therefore cover at most two edges, thus the size of any vertex cover has to
be at least ⌈ |𝑉 |

2 ⌉. If we pick a starting vertex to add to a set 𝐶 and go around the cycle adding every other
vertex to 𝐶, then 𝐶 will be a vertex cover, as no edge is left uncovered. This vertex cover 𝐶 is of size |𝑉 |

2
in the case of an even cycle and |𝑉 |+1

2 in the case of an odd cycle. In both cases this size is equal to the
minimum size of ⌈ |𝑉 |

2 ⌉, which means 𝐶 is indeed a minimum vertex cover, and thus 𝜏(𝐶𝑛) = ⌈ |𝑉 |
2 ⌉.

2.2.4. Bipartite graphs
A bipartite graph 𝐺 = (𝑉, 𝐸) is a graph whose vertices can be divided into two disjoint sets 𝐴 and 𝐵 such
that no edge of the graph connects two vertices in 𝐴 or two vertices in 𝐵, that is every edge connects a
vertex in 𝐴 to a vertex in 𝐵. An example can be seen in Figure 2.5.

1 2 3 4

5 6 7

Figure 2.5: Example of a bipartite graph with a minimum vertex cover shown in cyan.
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Note that any tree graph is also bipartite, and so is any cycle graph with an even number of nodes. In
fact, the bipartite graphs are exactly all graphs that do not contain a cycle of odd length [14]. Both 𝐴
and 𝐵 are vertex covers of 𝐺, but not necessarily minimum vertex covers. To find a minimum vertex
cover of a bipartite graph, we first define the concept of a matching. A matching is a set of edges 𝑀
such that each vertex is connected to at most one edge in 𝑀. In other words, no edges in 𝑀 have
common endpoints. A maximum matching is a matching of largest size. Note that there can be multiple
maximum matchings for a given graph. An example of a matching can be seen in Figure 2.6.

1 2 3 4

5 6 7

Figure 2.6: Example of a bipartite graph with a matching shown in red.

König linked the size of maximum matchings and minimum vertex covers in the following theorem.

Theorem 2.1 (König [15]). In any bipartite graph, the number of edges in a maximum matching equals the
number of vertices in a minimum vertex cover.

The Hopcroft-Karp algorithm can be used to find a maximum matching in a bipartite graph in poly-
nomial time [16]. Combining this algorithm with the theorem by König shows that, if there is an
algorithm to produce a minimum vertex cover given a maximum matching, then the problem is solvable
in polynomial time. One such algorithm can be found in [17], showing that in any bipartite graph a
minimum vertex cover can be found in polynomial time.

A special case of a bipartite graph is a complete bipartite graph. In a complete bipartite graph
with disjoint vertex sets 𝐴 and 𝐵, every vertex in 𝐴 is connected to every vertex in 𝐵. Without loss of
generality, let |𝐴| ≤ |𝐵|. In this case, there are at least |𝐴| different edges with all different endpoints as
the graph is complete. Therefore, any vertex cover needs to have at least size |𝐴|. Thus in general, we
have 𝜏(𝐺) = min(|𝐴|, |𝐵|) and the smaller of the two sets 𝐴 and 𝐵 is a minimum vertex cover.

2.3. Approximations of MinVertexCover
Currently there is no known algorithm to solve MinVertexCover on arbitrary graphs in polynomial time.
However, we do know that if MinVertexCover (or any other NP-complete problem for that matter) is
solvable in polynomial time, then all other problems in NP are also solvable in polynomial time [18]. As
such an algorithm has not been found for any NP-complete problem so far, we look for other algorithms
to obtain not necessarily optimal, but approximate solutions to MinVertexCover.

2.3.1. Factor 2-approximation
To find a factor 2-approximation (or simply 2-approximation) we use the algorithm by Gavril and
Yannakakis [19], which first greedily constructs a maximal matching 𝑀. Next a set 𝐶 is constructed
based on this matching 𝑀 by taking 𝐶 as set of all the endpoints of the edges in 𝑀. Note that this set 𝐶
is a vertex cover. Suppose an edge 𝑒 is not covered by 𝐶, then neither of its endpoints are in 𝐶. This
means none of the edges in 𝑀 are adjacent to 𝑒 and therefore 𝑀 + {𝑒} would also be a matching, which
is a contradiction as 𝑀 was assumed to be maximal.

To show this vertex cover 𝐶 is a 2-approximation, first note that |𝐶 | = 2|𝑀 |. See that for any
edge 𝑒 ∈ 𝑀, at least one of its endpoints has to be in any vertex cover. This means the size of the optimal
cover has to be at least the size of our maximal matching, as every edge in 𝑀 corresponds to at least
one point in 𝐶. In other words, |𝑀 | ≤ |𝐶𝑜𝑝𝑡 |. Combining this with the fact that |𝐶 | = 2|𝑀 | we see that
|𝐶 | = 2|𝑀 | ≤ 2|𝐶𝑜𝑝𝑡 |, in other words, our constructed vertex cover 𝐶 is at most twice the size of any
other cover, including the optimal one.
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Another way to find a 2-approximation is by using the ILP formulation of MinVertexCover given by
(2.1), (2.2), and (2.3), where we follow the structure of [20]. To find this 2-approximation we look at the
linear programming (LP) relaxation of the ILP, given by:

min
∑
𝑣∈𝑉

𝑥𝑣 (2.4)

s.t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢, 𝑣} ∈ 𝐸, (2.5)
𝑥𝑣 ≥ 0, 𝑥𝑣 ≤ 1 for all 𝑣 ∈ 𝑉. (2.6)

Let us solve this LP relaxation in polynomial time and call the optimal solution 𝑥. If this solution is
integral, then the problem is solved exactly, so assume it is not integral and thus fractional. Take this
optimal fractional solution 𝑥 and define our approximation 𝑥∗ as follows. If 𝑥𝑣 < 1

2 , let 𝑥∗𝑣 = 0 and if
𝑥𝑣 ≥ 1

2 let 𝑥∗𝑣 = 1. Next define the set 𝐶 := {𝑣 | 𝑥∗𝑣 = 1}. The following two statements now hold for 𝐶:

1. 𝐶 is a vertex cover. Suppose 𝐶 is not a vertex cover, then 𝑥∗𝑢 + 𝑥∗𝑣 = 0 for some edge {𝑢, 𝑣}.
Therefore, 𝑥∗𝑢 = 𝑥∗𝑣 = 0 and thus 𝑥𝑢 < 1

2 and 𝑥𝑣 < 1
2 . It follows that 𝑥𝑢 + 𝑥𝑣 < 1

2 + 1
2 = 1. But this

contradicts the fact that for the LP relaxation we have 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢, 𝑣} ∈ 𝐸. Thus, 𝐶 has to
be a vertex cover.

2. The size of 𝐶 is at most twice the size of a minimum vertex cover 𝐶opt, as
∑
𝑣∈𝑉 𝑥

∗
𝑣 ≤ 2 ·∑𝑣∈𝑉 𝑥𝑣 =

2 · opt(𝐿𝑃) ≤ 2 · |𝐶opt |, where opt(𝐿𝑃) is the minimum value of the LP.

𝐶 is thus a vertex cover with a size at most two times the size of a minimum vertex cover, meaning this
algorithm gives another factor 2-approximation for vertex cover.

2.3.2. Other approximations
The algorithm with the best approximation-factor found so far was found by Karakostas in 2009 [21],
with a factor of 2 − Θ(1/

√
log|𝑉 |), but no further improvements have been made. In 2005 it was already

shown by Dinur and Safra that MinVertexCover cannot be approximated for any sufficiently large
vertex degree within a factor of 1.3606 [22] under the assumption that 𝑃 ≠ 𝑁𝑃 (as if 𝑃 = 𝑁𝑃 then
MinVertexCover can be solved exactly in polynomial time). This makes MinVertexCover part of the APX
class, the class of NP optimization problems with polynomial-time algorithms with an approximation
ratio bounded by a constant (again assuming 𝑃 ≠ 𝑁𝑃). Similar to how MinVertexCover is NP-complete,
MinVertexCover is also APX-complete, meaning it is in APX and every other problem in APX can be
PTAS-reduced to MinVertexCover [22]. A PTAS-reduction is a reduction that preserves the property of
the optimization problem having a polynomial time approximation scheme (PTAS). In other words, any
problem that has a polynomial-time approximation algorithm with the approximation ratio bound by a
constant can be transformed into MinVertexCover. In 2017 the approximation bound was improved to√

2 − 𝜖 for all 𝜖 > 0 in [23] using the 2-to-2 games conjecture [24] (assuming 𝑃 ≠ 𝑁𝑃). Furthermore, if
the stronger unique games conjecture [25] is true, this bound would be even higher at 2 − 𝜖 for all 𝜖 > 0
[2]. This would mean the 2-approximation algorithms discussed before would be the best possible
approximation algorithms for MinVertexCover.

All relevant knowledge necessary to understand MinVertexCover and its solutions and approxi-
mations has now been discussed. Next Chapter 3 will cover quantum systems and Hamiltonian
evolution, which will build the way to understanding how QAOA and its successors work.



3
Quantum Systems and Time evolution

Before introducing the quantum algorithm used in this thesis to approximate solutions to MinVertexCover
(which will be covered in Chapter 4), first the setting and background of quantum systems will be
discussed to better understand what the Quantum Approximate Optimization Algorithm is based on
and how it operates. Here we describe the setup of quantum systems as based on the postulates of
quantum mechanics [26].

3.1. Schrödinger Equation
The state of a quantum system is defined as a vector |𝜓⟩ which belongs to a Hilbert space ℋ . State
vectors are normalized vectors under the inner product of ℋ , ⟨|𝜓⟩ , |𝜓⟩⟩ = 1. The total energy of a
quantum system is given by a Hamiltonian 𝐻, which is a Hermitian linear operator acting on the Hilbert
space. This Hamiltonian 𝐻 has eigenvalues 𝜆𝑖 and eigenvectors 𝑣𝑖 (as quantum mechanical calculations
are performed on finite-dimensional Hilbert spaces), which correspond to the potential energy levels of
a system and the states which attain this energy level when the system is measured. Any quantum
state will be a linear combination of the eigenstates of the system, known as a superposition. When
the energy of a system, which is then in a certain state |𝜓⟩, is measured, this state will collapse to an
eigenstate 𝑣 with probability |⟨𝑣, |𝜓⟩⟩|2. Note that when measured the states |𝜓⟩ and 𝑒−𝑖𝛾 |𝜓⟩ can not be
distinguished. This means in a physical sense quantum states are well defined up to a global phase, a
property which will be important later when discussing QAOA.

The evolution of a quantum state through time is described by the Schrödinger equation [27], given by

𝑖
𝑑

𝑑𝑡
|𝜓⟩ (𝑡) = 𝐻(𝑡) |𝜓⟩ (𝑡), (3.1)

where the reduced Planck constant ℏ is included in the Hamiltonian. If the Hamiltonian H is time-
independent, then the solution of this differential equation is given by

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡 |𝜓(0)⟩ = 𝑈(𝑡) |𝜓(0)⟩ , (3.2)

where the exponential of the Hamiltonian is defined through its power series. Thus,𝑈(𝑡) = 𝑒−𝑖𝐻𝑡 gives
the quantum state of the system at any time 𝑡 when applied to the initial state of the system. This
operator𝑈 has to be unitary, as it describes time evolution of a closed quantum system. This means no
energy is added to the system or can leave the system, and as𝑈 is indeed unitary as it preserves the
inner product of ℋ .

8
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3.2. Adiabatic Evolution
Now that we understand how a quantum state evolves over time, we can start using this to our advantage.
The Hamiltonians belonging to systems we describe from this chapter forward will not be independent
of time, and thus we can not use the solution of the Schrödinger equation as described by (3.2). Although
an exact general solution to the Schrödinger equation is not known, we can make make statements
about eigenstates of the Hamiltonian under certain conditions. Here we look at the adiabatic theorem,
which was first stated by Born and Fock as:

Theorem 3.1 (Born, Fock [28]). A physical system remains in its instantaneous eigenstate if a given perturbation
is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.

In other words, if the systems Hamiltonian changes slowly enough, then it will not leave the eigenstate
it was in. Remember that this only holds if there is a non-zero gap between the eigenvalues of the
Hamiltonian at all times. We can use this property to our advantage by considering an eigenstate of
a constant original Hamiltonian and defining a new Hamiltonian that evolves the system from this
original Hamiltonian to a new constant target Hamiltonian. By the adiabatic theorem, if the system
evolves slow enough, we will end up in the same eigenstate of the target Hamiltonian. This is exactly
what the Quantum Adiabatic Algorithm does.

The Quantum Adiabatic Algorithm (QAA, also known as Quantum Annealing) [29] considers an
initial Hamiltonian 𝐻𝑀 and a target Hamiltonian 𝐻𝑃 . It then uses adiabatic evolution to evolve from the
known ground state (lowest energy eigenstate) of 𝐻𝑀 to the unknown ground state of 𝐻𝑃 by evolving
under a new Hamiltonian defined by

𝐻(𝑡) = (1 − 𝑡/𝑇)𝐻𝑀 + (𝑡/𝑇)𝐻𝑃 , (3.3)

where 𝑇 controls the speed which the system evolves with. Note that 𝐻(0) = 𝐻𝑀 and 𝐻(𝑇) = 𝐻𝑃 . There
are also newer methods that change the path from the 𝐻𝑀 to 𝐻𝑃 by including a term known as a catalyst
Hamiltonian [30, 31]. An example of Hamiltonian evolution using a catalyst would be

𝐻(𝑡) = (1 − 𝑡/𝑇)𝐻𝑀 + (𝑡/𝑇)(1 − 𝑡/𝑇)𝐻𝐶 + (𝑡/𝑇)𝐻𝑃 , (3.4)

where 𝐻𝐶 is the catalyst Hamiltonian. Again note that still 𝐻(0) = 𝐻𝑀 and 𝐻(𝑇) = 𝐻𝑃 .

To ensure the gap between eigenvalues it is adequate for most problems to take

𝑇 ≫ 1
𝑔2

min
, (3.5)

as suggested in [29]. Here the minimum gap 𝑔min is defined by

𝑔min = min
0≤𝑡≤𝑇

(𝜆1(𝑡) − 𝜆0(𝑡)) , (3.6)

where 𝜆0 and 𝜆1 are the first two eigenvalues of 𝐻. By the adiabatic theorem as 𝑇 tends to ∞ the chance
that we end up in the ground state of 𝐻𝑃 tends to 1, as by increasing 𝑇 the evolution speed of the system
is slowed down. The general goal of catalyst Hamiltonians is to increase the size of this minimum gap 𝑔min.

The idea behind QAA is to pick a Hamiltonian 𝐻𝑀 whose eigenstates are easy to construct, and
to pick another Hamiltonian 𝐻𝑃 whose eigenstates are solutions to an optimization problem. These
constructions will be discussed in Section 4.1 when discussing QAOA. The system is then evolved
according to the Schrödinger equation from (3.1) for time 𝑇 as in (3.5), and the final state |𝜓(𝑇)⟩ will be
arbitrarily close to the ground state of 𝐻𝑃 . This state is then measured to find the optimal solution of
the optimization problem 𝐻𝑃 was based on.
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One of the weaknesses of the Quantum Adiabatic Algorithm is that as 𝑇 increases, the probability
of finding an optimal solution does not necessarily increase. As can be seen in Figure 3.1, there are
examples where the probability of success drops suddenly, even though for very large𝑇 it will eventually
go to 1. Therefore, it can be hard to determine a running time required to exactly solve the problem [32].

Figure 3.1: The success probability of QAA as a function of total evolution time 𝑇 for an instance of MAX 2-SAT
with n = 20 from [32].

While the Quantum Adiabatic Algorithm is designed to find the optimal solution of an optimization
problem if the runtime 𝑇 is long enough, we are focused on finding an approximate solution to instances
of MinVertexCover. Thus, we want to find an approximation to the adiabatic evolution as described in
this section, which will be obtained through the process of Trotterization.

3.3. Trotterization
Let us look again at the Schrödinger evolution (3.1) of the system under the Hamiltonian of (3.3). To find
an approximation to the solution we can split the time interval (0, 𝑇) into 𝑁 intervals of length Δ𝑇. 𝐻(𝑇)
will be approximately constant over the interval (𝑡 , 𝑡 +Δ𝑡) if Δ𝑇 ≪ 𝑇. This way, we can approximate the
time evolution in this system by 𝑁 total timesteps of size Δ𝑇, each having the solution given by (3.2) for
their interval. Following the steps in [33], this gives the approximation

𝑈(𝑡) ≈
𝑁∏
𝑘=1

𝑒−𝑖Δ𝑡𝐻(𝑘Δ𝑡) , (3.7)

where 𝐻(𝑡) is still given by (3.3). Substituting this into (3.7) results in

𝑈(𝑡) ≈
𝑁∏
𝑘=1

𝑒−𝑖Δ𝑡((1−𝑘Δ𝑡)𝐻𝑀+𝑘Δ𝑡𝐻𝑃 ). (3.8)

This Hamiltonian is a sum of two other Hamiltonians, so we can use the Suzuki-Trotter expansion [34]
given by

𝑒𝐴+𝐵 = lim
𝑛→∞

(𝑒𝐴/𝑛𝑒𝐵/𝑛)𝑛 , (3.9)

or alternatively

𝑒𝛿(𝐴+𝐵) = 𝑒𝛿𝐴𝑒𝛿𝐵 + 𝒪(𝛿2). (3.10)
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Note that

𝑒𝐴+𝐵 =

∞∑
𝑘=0

(𝐴 + 𝐵)𝑘
𝑘!

=

∞∑
𝑘=0

𝑘∑
𝑙=0

(
𝑘

𝑙

)
𝐴𝑙𝐵𝑘−𝑙

𝑘!

=

∞∑
𝑘=0

𝑘∑
𝑙=0

𝐴𝑙𝐵𝑘−𝑙

𝑙!(𝑘 − 𝑙)! , (3.11)

using the binomial theorem and the fact that
(𝑘
𝑙

)
= 𝑘!

𝑙!(𝑘−𝑙)! . If 𝐴 and 𝐵 commute we can reorder all of the
𝐴 and 𝐵 terms and use the Cauchy product formula [35] to find

𝑒𝐴+𝐵 =

∞∑
𝑘=0

𝑘∑
𝑙=0

𝐴𝑙𝐵𝑘−𝑙

𝑙!(𝑘 − 𝑙)!

=

∞∑
𝑙=0

𝐴𝑙

𝑙

∞∑
𝑚=0

𝐵𝑚

𝑚!

= 𝑒𝐴𝑒𝐵 . (3.12)

Note that this is generally not true in the case that 𝐴 and 𝐵 do not commute. Using this Suzuki-Trotter
expansion from (3.10), we find our approximation from (3.8) to be

𝑈(𝑡) ≈
𝑁∏
𝑘=1

𝑒−𝑖Δ𝑡(1−𝑘Δ𝑡)𝐻𝑀 𝑒−𝑖Δ𝑡𝑘Δ𝑡𝐻𝑃 , (3.13)

where the 𝒪(Δ𝑡) term vanishes as we assume Δ𝑡 ≪ 𝑇 with this approximation.

This process is known as Trotterization. As the two terms of the Hamiltonian given by (3.3) may not
commute, we use this Trotterization to evolve the Hamiltonian by repeatedly switching between the
two Hamiltonian terms and evolving each of them for a short amount of time. This way, each of the
Hamiltonians can be implemented individually, instead of their sum.

Now that the basics of quantum systems are covered, we can use equation (3.13) to introduce a
full approximation algorithm based on the Quantum Adiabatic Algorithm. This approximation
algorithm will be discussed next in Chapter 4.



4
Quantum Approximate Optimization

Algorithms

In this chapter, we will bring together the topics of MinVertexCover and quantum systems to examine
how quantum computing can be used to solve optimization problems. We will focus on the Quantum
Approximate Optimization Algorithm (QAOA) and its extension, the Quantum Alternating Operator
Ansatz (QAOA+), and how they can be used to approximate solutions to the MinVertexCover problem.
We will also delve into the concept of mixing Hamiltonians and how they can be utilized in this context.

4.1. The Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm as introduced in [6] attempts to optimize a function
𝑓 on the 𝑛-bit strings. The unconstrained problem is given by

max 𝑓 (𝑥) (4.1)
s.t. 𝑥 ∈ {0, 1}𝑛 . (4.2)

A problem Hamiltonian 𝐻𝑃 which operates on the 𝑛-qubit space is then defined through the equation

𝐻𝑃 |𝑥⟩ = 𝑓 (𝑥) |𝑥⟩ , (4.3)

which scales each of the 𝑛-qubit strings by their objective value 𝑓 (𝑥). Note that throughout this thesis
𝑓 (𝑥) and 𝑓 (|𝑥⟩) are used interchangeably. The matrix representation of the operator𝐻𝑝 onto the standard
computational basis is a diagonal matrix of size 2𝑛 × 2𝑛 with the diagonal elements being the objective
value of each of the 𝑛-bit strings in binary order. This matrix representation is given by

𝐻𝑃 |𝑥⟩ =

©­­­­­­«

𝑓 (|0⟩⊗𝑛) 0 · · · 0 0
0 𝑓 (|0⟩⊗𝑛−1 |1⟩) · · · 0 0
...

...
. . .

...
...

0 0 · · · 𝑓 (|1⟩⊗𝑛−1 |0⟩) 0
0 0 · · · 0 𝑓 (|1⟩⊗𝑛)

ª®®®®®®¬
. (4.4)

Note that by definition the largest eigenvalue of 𝐻𝑃 is 𝑓 (𝑥opt) with corresponding eigenstate |𝑥opt⟩, with
𝑥opt being the optimal solution to the unconstrained optimization problem. Similarly if the problem
was a minimization problem the smallest eigenvalue of 𝐻𝑃 would be 𝑓 (𝑥opt). Highlighting these eigen-
values is important, as the optimization problem is solved by finding one of the corresponding eigenstates.

Next a mixing Hamiltonian 𝐻𝑀 is defined by

𝐻𝑀 =

𝑛∑
𝑗=1

𝑋𝑗 , (4.5)
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where 𝑋𝑗 is the Pauli 𝑋 operator acting on the 𝑗th qubit. This Hamiltonian (also known as the transverse
field Hamiltonian) is not dependent on the optimization problem, and thus its eigenstates with largest
eigenvalues are the same for every instance of the problem.

Lemma 4.1. The eigenstate with largest eigenvalue of the transverse field Hamiltonian is given by

|𝑠⟩ = 1√
2𝑛

∑
𝑥

|𝑥⟩ , (4.6)

where the sum is over all computational basis states, which correspond exactly to all 2𝑛 possible 𝑛-bit strings.

Proof. First define 𝐻𝑛
𝑀

as the mixing Hamiltonian acting on the 𝑛-qubit space. Note that the mixing
Hamiltonian in the single qubit space is just the Pauli-X gate given by

𝐻1
𝑀 = 𝑋 =

(
0 1
1 0

)
, (4.7)

and the transverse field Hamiltonian in a (𝑛 + 1)-qubit space can be written as

𝐻𝑛+1
𝑀 =

(
𝐻𝑛
𝑀

𝐼𝑛
𝐼𝑛 𝐻𝑛

𝑀

)
. (4.8)

Let 𝑣 be an eigenvector of a square matrix A with eigenvalue 𝜆𝑣 and define 𝐴′ =

(
𝐴 𝐼
𝐼 𝐴

)
and 𝑤 =

(
𝑣
𝑣

)
,

then

𝐴′𝑤 =

(
𝐴 𝐼
𝐼 𝐴

) (
𝑣
𝑣

)
=

(
𝐴𝑣 + 𝐼𝑣
𝐼𝑣 + 𝐴𝑣

)
=

(
(𝜆 + 1)𝑣
(1 + 𝜆)𝑣

)
= (𝜆 + 1)𝑤, (4.9)

which shows that 𝑤 =

(
𝑣
𝑣

)
is an eigenstate of 𝐴′. Similarly we see that

(
𝑣
−𝑣

)
is an eigenstate of 𝐴′

with eigenvalue 𝜆 − 1. The two eigenstates of 𝐻1
𝑀

are 1√
2

(
1
1

)
and 1√

2

(
1
−1

)
with eigenvalues 1 and -1

respectively. Thus, |𝑠⟩ is the eigenstate of 𝐻𝑀 with largest eigenvalue (equal to 𝑛). □

The state |𝑠⟩ as defined in (4.6) is known as the initial state or starting state. While the problem
Hamiltonian 𝐻𝑃 is dependent on the problem structure as it depends on the to be optimized function 𝑓 ,
it is still constructed the same for each type of optimization problem. The contrary is true for the mixing
Hamiltonian 𝐻𝑀 , which is independent of the type of optimization problem, although many different
mixing Hamiltonians are possible for the same problem. The motivation behind mixing Hamiltonians
will be covered more in depth in Section 4.4.1.

Next we define the unitaries𝑈(𝐻𝑃 , 𝛾) and𝑈(𝐻𝑀 , 𝛽) as

𝑈(𝐻𝑃 , 𝛾) = 𝑒−𝑖𝛾𝐻𝑃 , (4.10)
𝑈(𝐻𝑀 , 𝛽) = 𝑒−𝑖𝛽𝐻𝑀 , (4.11)
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where 𝛾 ∈ [0, 2𝜋) and 𝛽 ∈ [0,𝜋) are a pair of real-valued angles. As seen earlier in Section 3.1, these are
the solutions to the time-dependent Schrödinger equation with a constant Hamiltonian. Next we use a
total of 2𝑝 of these angle parameters to create the parameterized quantum state |𝜸, 𝜷⟩ by alternately
applying the unitaries of both 𝐻𝑃 and 𝐻𝑀 𝑝 times to the initial state, resulting in

|𝜸, 𝜷⟩ = 𝑈(𝐻𝑀 , 𝛽𝑝)𝑈(𝐻𝑃 , 𝛾𝑝) · · ·𝑈(𝐻𝑀 , 𝛽1)𝑈(𝐻𝑃 , 𝛾1) |𝑠⟩
= 𝑒−𝑖𝛽𝑝𝐻𝑀 𝑒−𝑖𝛾𝑝𝐻𝑃 · · · 𝑒−𝑖𝛽1𝐻𝑀 𝑒−𝑖𝛾1𝐻𝑃 |𝑠⟩ , (4.12)

with |𝑠⟩ again defined as in (4.6).

This state is referred to as |𝜸, 𝜷⟩, as the state only depends on the choice of these sets of angles.
Remember that this state is still a superposition of all possible 𝑛-qubit strings, and we can calculate the
expectation of 𝐻𝑃 in this state by measuring in the computational basis and evaluating

𝐹𝑝(𝜸, 𝜷) = ⟨𝜸, 𝜷 |𝐻𝑃 |𝜸, 𝜷⟩ . (4.13)

This expectation value is different for each set of angles 𝜸, 𝜷. We are looking for the state that produces
the highest possible expectation value, which in turn means the goal is to find the set of angles that
produces this state. We define this maximum expectation value dependent on 𝑝 as

𝑀𝑝 = max
𝜸,𝜷

𝐹𝑝(𝜸, 𝜷). (4.14)

The algorithm uses a classical optimization routine to find the optimal set of angles 𝜸, 𝜷 and then runs
the algorithm with these angles to find the solution with the best expectation of 𝐻𝑃 . As 𝐻𝑃 encodes the
objective value of the optimization problem, the quantum state that maximizes the expectation of 𝐻𝑃

will be the desired approximation.

It turns out if this process is repeated indefinitely (in terms of 𝑝), we do indeed end up with the
optimal solution, the eigenstate of 𝐻𝑃 with highest eigenvalue (which is then also the optimal value of
the optimization problem). This is because 𝐻𝑀 only has non-negative off diagonal elements. Therefore,
by the Perron-Frobenius theorem its largest eigenvalue is unique, and the same will be true for the
Hamiltonian used in the evolution of (3.3). Thus, the adiabatic theorem applies and the resulting state is
the eigenstate corresponding to the largest eigenvalue of 𝐻𝑃 . Furthermore, in contrast to the Quantum
Adiabatic algorithm, the probability of success monotonically increases with 𝑝. This is because the
optimization process at 𝑝 − 1 is also a solution at 𝑝 through (𝛾𝑝−1 , 0, 𝛽𝑝−1 , 0).

Finding these angles 𝜸, 𝜷 is not trivial at all, and many classical algorithms can be used to try to
find these angles, which will be discussed in 6.2. This concludes the original Quantum Approximate
Optimization Algorithm, but this algorithm was quickly expanded on in [7], as will be discussed in
Section 4.2.

4.2. Quantum Alternating Operator Ansatz
Although we discussed the setup of the original Quantum Approximate Optimization Algorithm, we
can not apply this algorithm to MinVertexCover. MinVertexCover is a constrained optimization problem,
while QAOA is designed to handle unconstrained optimization problems. This is why we look to the
extension of QAOA, known as the Quantum Alternating Operator Ansatz as introduced in [7]. This
section is largely based on this work. The setup of QAOA+ is similar to that of QAOA. We again consider
an optimization problem to approximate a function 𝑓 , however, we now also consider a domain of
feasible points 𝐹, which is not necessarily all 𝑛-bit strings. Let ℱ be the Hilbert space of dimension 𝑛,
then QAOA+ considers two families of operators on ℱ :

• A family of problem operators 𝑈𝑃(𝛾) analogous to the original problem operator as defined in
(4.10)

• A family of mixing operators𝑈𝑀(𝛽) analogous to the original mixing operator as defined in (4.11)
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where 𝛽 and 𝛾 are again real-valued parameters. Just as in Section 4.1, we then produce the parameterized
quantum state |𝜸, 𝜷⟩ through the application of these operators to a starting state |𝑠⟩, resulting in

|𝜸, 𝜷⟩ = 𝑈𝑀(𝛽𝑝)𝑈𝑃(𝛾𝑝) · · ·𝑈𝑀(𝛽1)𝑈𝑃(𝛾1) |𝑠⟩ . (4.15)

So far QAOA+ is similar to QAOA, except with the addition of a feasible subspace 𝐹 which is not
necessarily equal to the entire space of 𝑛-bit strings. This feasible subspace makes QAOA+ applicable to
more different kinds of optimization problems than QAOA, as QAOA only considers unconstrained
problems. That is to say, QAOA only considers problems with the property that any 𝑛-bit string is a
feasible solution, which is not the case for many optimization problems. The unitary problem operator is
constructed the same as before through a combination of (4.3) and (4.10). However, with this possibility
of considering constrained problems some restrictions have to be applied to the mixing unitaries.

Firstly, the mixing unitary must preserve the feasible subspace. For any value 𝛽 the resulting family of
mixing unitaries𝑈𝑀(𝛽) must map feasible states to other feasible states. This achieves that the resulting
state is a superposition of only feasible states, i.e. states |𝑥⟩ where 𝑥 ∈ 𝐹. This requirement is easy to
fulfill by looking at the matrix representation of a mixing Hamiltonian when designing such an operator
and making sure no mixing is happening between feasible and infeasible states.

Secondly, the family of mixing operators must be able to reach the entire feasible subspace. For
any combination of feasible basis states 𝑥, 𝑦 ∈ 𝐹 there is some angle 𝛽′ and some positive integer 𝑟 such
that

|⟨𝑥 |𝑈 𝑟
𝑀(𝛽′) |𝑦⟩| > 0. (4.16)

In other words, all states in the feasible subspace are connected by the mixer, even if it takes multiple
applications (𝑟 > 1) of the mixer to reach said state. The combination of these two requirements ensures
that we check all feasible solutions to the optimization problem without infeasible solutions being part
of the state. It should be said that with these restrictions to the unitary, there are still many different
possibilities for mixing Hamiltonians and unitaries.

Lastly, we consider the initial state |𝑠⟩, the state which the operators 𝑈𝑝(𝛾) and 𝑈𝑀(𝛽) are applied to
produce the state |𝜸, 𝜷⟩. For QAOA the initial state was the state |𝑠⟩ as defined in (4.6), however, it is
now possible that this state is not completely feasible (this would be the case if a single basis state of the
superposition is not feasible). In fact, if the problem has any non-trivial constraints at all this initial
state is no longer feasible. By definition |𝑠⟩ is the superposition of all possible 𝑛-bit strings, and if any
constraints are placed on the problem it means one of these strings is no longer feasible, thus neither
is the initial state. Therefore, for QAOA+ a specific suitable initial state is chosen for each problem,
depending on the domain and the structure of the problem. Usually this is a state that is a feasible
solution for every instance of the optimization problem. For example, in the independent set problem
(the problem of finding a maximum size set of non-adjacent vertices), one would use the initial state

|𝑠⟩ = |0⟩⊗𝑛 , (4.17)

as the empty set is always a feasible solution to the independent set problem.

Similar to the original QAOA, the algorithm then uses a classical optimizing routine to find the
optimal set of angles 𝜸, 𝜷 that find the highest expectation of 𝐻𝑃 in the resulting state. As before, the
quantum state that maximizes this expectation will be the desired approximation. In the next section
the Quantum Alternating Operator Ansatz will be applied to the minimum vertex cover problem as it
was discussed in Chapter 2.
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4.3. Quantum Alternating Operator Ansatz Applied To MinVertex-
Cover

We now apply the Quantum Alternating Operator Ansatz as described in Section 4.2 to MinVertexCover
as described in Chapter 2. Remember that given 𝐺 = (𝑉, 𝐸) with |𝑉 | = 𝑛, the goal is to minimize the
size of a subset 𝐶 ⊆ 𝑉 that covers 𝑉 (so for every (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶). In this section we look at
the problem Hamiltonian, mixing Hamiltonian and starting state.

4.3.1. Problem Hamiltonian
In QAOA+ the problem Hamiltonian is defined by (4.3). The objective value of a cover 𝐶 is exactly the
Hamming weight of the n-bit string representation of 𝐶. In other words, the problem Hamiltonian
needs to scale a state by how many vertices have value 1 in the corresponding solution. This is achieved
by defining the problem Hamiltonian as

𝐻𝑃 =
∑
𝑢∈𝑉

𝑊𝑢 , (4.18)

where we define𝑊𝑢 = |1⟩ ⟨1|𝑢 = 𝐼⊗𝑢−1 ⊗ |1⟩ ⟨1| ⊗ 𝐼⊗𝑛−𝑢 . To understand why this is the case we apply
|1⟩ ⟨1| to the two-dimensional computational basis vectors to get

𝑊 |0⟩ = |1⟩ ⟨1| |0⟩ =
(
0 0
0 1

) (
1
0

)
=

(
0
0

)
= 0

(
1
0

)
= 0 |0⟩ , (4.19)

𝑊 |1⟩ = |1⟩ ⟨1| |1⟩ =
(
0 0
0 1

) (
0
1

)
=

(
0
1

)
= 1

(
0
1

)
= 1 |1⟩ . (4.20)

Here we see that applying𝑊 to a vertex will scale that vertex’s computational basis vector by 0 if the
vertex is not in the cover and by 1 if it is in the cover. Applying this to all the vertices of the graph and
adding the results therefore counts exactly how many vertices are in the cover. Thus, the expectation
value of 𝐻𝑃 is exactly Ham(𝑥), where Ham(𝑥) is the Hamming weight of 𝑥, defined as the amount of 1’s
in the bitstring 𝑥. This is shown in the following Lemma.

Lemma 4.2. The expectation value of 𝐻𝑃 as given by (4.18) in the quantum state |𝑥⟩, where 𝑥 is a bitstring, is
the Hamming weight of 𝑥.

Proof. The expectation value of an observable 𝒜 in the state 𝜓 is given by

⟨𝐴⟩𝜓 = ⟨𝜓 | 𝐴 |𝜓⟩ . (4.21)

Thus, the expectation of 𝐻𝑃 as given by (4.18) in the state |𝑥⟩ will be

⟨𝐻𝑃⟩𝑥 = ⟨𝑥 |𝐻𝑃 |𝑥⟩
= ⟨𝑥 |

∑
𝑢∈𝑉

𝑊𝑢 |𝑥⟩

=
∑
𝑢∈𝑉

⟨𝑥 |𝑊𝑢 |𝑥⟩ . (4.22)

For every 𝑢 we get that if bit 𝑢 is set to 0 in bitstring 𝑥, then𝑊𝑢 |𝑥⟩ = 0 |𝑥⟩ = 0 by (4.19), and if bit 𝑢 is
set to 1 in bitstring 𝑥, then𝑊𝑢 |𝑥⟩ = 1 |𝑥⟩ = |𝑥⟩ by (4.20). Therefore, we find

⟨𝐻𝑃⟩𝑥 =
∑
𝑢∈𝑉

⟨𝑥 |𝑊𝑢 |𝑥⟩

=
∑

𝑢∈𝑉 s.t. 𝑥𝑢=1
⟨𝑥 |𝑥⟩

= Ham(𝑥), (4.23)

as the inner product ⟨𝑥 |𝑥⟩ is always 1 for every bitstring 𝑥 and the number of ones in a bitstring is exactly
the Hamming weight of 𝑥. Thus, we see the expectation value of 𝐻𝑃 is the Hamming weight of 𝑥. □
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We want the problem Hamiltonian to encode the objective value 𝑓 (𝑥) given a solution 𝑥 through (4.3).
In the case of MinVertexCover the objective value is the number of vertices in the cover, so the Hamming
weight of a solution 𝑥, so the problem Hamiltonian 𝐻𝑃 as given by (4.18) encodes this well.

4.3.2. Mixing Hamiltonian
For the mixing Hamiltonian we first note that mixing between states corresponds to adding or removing
vertices from a cover in between solutions. For example, mixing between the states |0101⟩ and |0100⟩ is
the same as removing the fourth vertex from the cover. Remember that the mixing rules of QAOA+ state
that a mixing Hamiltonian must preserve the feasible subspace. This means we need to make sure a
solution is still feasible when removing a vertex from the cover (obviously it will also still be feasible if a
vertex is added to the cover because it was originally feasible as well). Therefore, a vertex 𝑢 can only be
swapped in or out of the current vertex cover 𝐶 if all edges incident to 𝑢 will still be covered if 𝑢 leaves
𝐶, in which case we end up with another possible solution. In other words, we can only swap 𝑢 in or out
of the cover if all vertices adjacent to 𝑢 are currently in the cover (and thus set to 1), this way all edges
incident to 𝑢 still have an endpoint in the cover. To see this idea more clearly we refer to Figure 4.1.

1

2 3

45

(a)

1

2 3

45

(b)

Figure 4.1: Example graph with the to be swapped vertex in orange and the rest of the current cover in cyan. In
4.1a all neighbours of the orange vertex are in the cover, while this is not the case in 4.1b.

In Figure 4.1a we see that the orange vertex can be removed from the cover as all its neighbours are in
the cover as well. In Figure 4.1b the orange vertex can not be removed from the cover as vertex 3 is
not in the cover, so by removing the orange vertex the edge {1, 3} will not be covered anymore and we
will have left the feasible subspace. Formulating these requirements in the general case as a mixing
Hamiltonian gives

𝐻𝑀 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 s.t. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬ , (4.24)

where again𝑊𝑢 = 𝐼⊗𝑢−1 ⊗ |1⟩ ⟨1| ⊗ 𝐼⊗𝑛−𝑢 and similarly we now define 𝑋𝑢 = 𝐼⊗𝑢−1 ⊗ 𝑋 ⊗ 𝐼⊗𝑛−𝑢 . Here
the product of𝑊𝑣 checks if all the neighbouring vertices of 𝑢 are in the cover, and if this is the case, the
𝑋𝑢 gate is applied to vertex 𝑢. We again sum over all vertices to be able to reach the entire subspace by
swapping each of the vertices in or out of the cover where the vertex cover property allows it.

4.3.3. Starting State
For QAOA one would always use the initial state to be the equal superposition state of all possible
solutions, given by (4.6). However, now not all 𝑛-bit strings are possible solutions, so instead an initial
state is used that is a feasible state for every instance of MinVertexCover as discussed in Section 4.2. For
MinVertexCover one solution that is feasible for any instance of the problem is

|𝑠⟩ = |1⟩⊗𝑛 , (4.25)

which is the trivial vertex cover 𝐶 = 𝑉 . The only other starting states feasible for any instance of
MinVertexCover are the 𝑛 states of the form

|𝑠 𝑖⟩ = |1⟩⊗𝑖−1 |0⟩ |1⟩⊗𝑛−𝑖 . (4.26)
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Note that these 𝑛 + 1 different initial states are indeed feasible for every MinVertexCover instance, as for
any edge not to be covered both its endpoints need to not be in a cover. For the starting state defined in
(4.25) all vertices are in the cover, and for the starting states defined in (4.26) exactly one vertex is not in
the cover. To show that no other starting state is feasible for every MinVertexCover instance, consider
any other initial solution 𝑠′. As 𝑠′ is not any of the states given by (4.25) and (4.26), there is are at least 2
indices 𝑖 , 𝑗 ∈ {1, ..., 𝑛} such that 𝑠′

𝑖
= 0. Now construct any graph 𝐺 = (𝑉, 𝐸) with {𝑣𝑖 , 𝑣 𝑗} ∈ 𝐸, and see

that 𝑠′ is not a feasible solution to MinVertexCover for this instance, as 𝑠′ will not cover the edge {𝑣𝑖 , 𝑣 𝑗}.

Any of the starting states from (4.25) and (4.26) is indeed a valid starting state, but usually only
the starting state from (4.25) is used, as applying the mixing Hamiltonian as little as possible is preferred
for computational purposes. The initial state from (4.25) will be used to produce the results in thesis. As
the optimal solution is unknown and depends on the problem instance, it is not possible to know which
of the starting states |𝑠 𝑖⟩ is closest to the optimal solution, and picking one at random might result in
picking a solution that is farther from the optimal than starting state |𝑠⟩ from (4.25). It is also more
reasonable to use the starting state from (4.25) from a testing perspective, as using a different starting
state could be an advantage in some instances, but a disadvantage in others.

Now that the explicit forms of the problem Hamiltonian, mixing Hamiltonian and initial state for Min-
VertexCover have all been discussed, we move on to an example to show what the matrix representations
of the problem Hamiltonian en the mixing Hamiltonian look like in a specific problem instance.

Example
Let us construct the problem Hamiltonian from (4.18) and the mixing Hamiltonian from (4.24) for the
triangle graph seen in Figure 4.2.

1

2

3

Figure 4.2: Triangle graph

Calculating the problem Hamiltonian 𝐻𝑃 from (4.18) gives the following matrix representation of 𝐻𝑃 :

𝐻𝑃 =
∑
𝑢∈𝑉

𝑊𝑢 = |1⟩ ⟨1| ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ |1⟩ ⟨1| ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ |1⟩ ⟨1|

=

©­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3

ª®®®®®®®®®®¬
, (4.27)

as expected. The value of each diagonal element is equal to the number of ones in the binary number
that belongs to that row (starting with 0 at row 1). For example, the fifth diagonal element is 1 as the
fifth row corresponds to the state |100⟩, which has exactly one 1 in it.
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For the mixing Hamiltonian we note that the only feasible covers are 𝐶 = {1, 2}, 𝐶 = {1, 3}, 𝐶 = {2, 3},
and 𝐶 = {1, 2, 3} as can be seen in Figure 4.3.

1

2

3

(a) 𝐶 = {1, 2}

1

2

3

(b) 𝐶 = {1, 3}

1

2

3

(c) 𝐶 = {2, 3}

1

2

3

(d) 𝐶 = {1, 2, 3}

Figure 4.3: All feasible covers of the triangle graph

This means we want the mixing Hamiltonian to map the covers to each other as follows:

𝐻𝑀 |110⟩ = |111⟩ , (4.28)
𝐻𝑀 |101⟩ = |111⟩ , (4.29)
𝐻𝑀 |011⟩ = |111⟩ , (4.30)
𝐻𝑀 |111⟩ = |110⟩ + |101⟩ + |011⟩ , (4.31)

as that would show that the feasible subspace is preserved and that every feasible solution can be
reached from the initial state. To find the matrix representation of the mixing Hamiltonian we use (4.24)
to find

𝐻𝑀 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 𝑠.𝑡. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬
= 𝑋1𝑊2𝑊3 + 𝑋2𝑊1𝑊3 + 𝑋3𝑊1𝑊2

=

©­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0

ª®®®®®®®®®®¬
. (4.32)

Finally, for the initial state |𝑠⟩ we use (4.25) to get

|𝑠⟩ = |111⟩ . (4.33)

This concludes the example. Next the workings of mixing Hamiltonians will be explored more, so that
in Chapter 5 new mixing Hamiltonians can be introduced.
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4.4. Mixing Hamiltonians
In the previous sections the setup of both the Quantum Approximate Optimization algorithm and the
more recent Quantum Alternating Operator Ansatz were introduced and applied to MinVertexCover,
but the reasoning behind the construction of parts of the algorithms has not been discussed. In this
section, we look at the motivation behind mixing Hamiltonians, as well as how they can be intuitively
interpreted.

4.4.1. Motivation
The need for a mixing Hamiltonian in QAOA and QAOA+ is not inherently clear. One might wonder
if it possible to apply the problem unitary𝑈(𝐻𝑃 , 𝛾) from (4.10) directly to the starting state and then
measure in the computational basis. As discussed before, the mixing Hamiltonian in the original QAOA
framework is not problem dependent, thus one might question why it is required. Let us apply a
problem unitary to the starting state (4.6) of the original QAOA framework, resulting in

𝑈(𝐻𝑃 , 𝛾) |𝑠⟩ = 𝑒−𝑖𝛾𝐻𝑃 |𝑠⟩

= 𝑒−𝑖𝛾𝐻𝑃
1√
2𝑛

∑
𝑥

|𝑥⟩

=
∑
𝑥

𝑒−𝑖𝛾𝐻𝑃√
2𝑛

|𝑥⟩ , (4.34)

where we use (4.6) in the first step. Note that𝐻𝑃 is a diagonal matrix with 𝑓 (𝑥) on the diagonal, therefore
the application of 𝑒𝐻𝑃 to the quantum state |𝑥⟩ results in 𝑒 𝑓 (𝑥) |𝑥⟩. Continuing with the above equation
we get

𝑈(𝐻𝑃 , 𝛾) |𝑠⟩ =
∑
𝑥

𝑒−𝑖𝛾𝐻𝑃√
2𝑛

|𝑥⟩

=
∑
𝑥

𝑒−𝑖𝛾 𝑓 (𝑥)√
2𝑛

|𝑥⟩ . (4.35)

Let us measure the resulting state in the computational basis, then the probability for any computational
basis state |𝑦⟩ (which correspond exactly to the 2𝑛 𝑛-bit strings) to be the result of the measurement is
given by

𝑃(𝑦) = ∥⟨𝑦 |𝑈(𝐻𝑃 , 𝛾) |𝑠⟩∥2

=






⟨𝑦 |∑
𝑥

𝑒−𝑖𝛾 𝑓 (𝑥)√
2𝑛

|𝑥⟩





2

=






∑
𝑥

𝑒−𝑖𝛾 𝑓 (𝑥)√
2𝑛

⟨𝑦 |𝑥⟩





2

. (4.36)

Remember that 𝑥 and 𝑦 are both computational basis states. This means that ⟨𝑦 |𝑥⟩ results in 1 if and
only if 𝑦 = 𝑥 and results in 0 otherwise. Continuing with the above formulate we thus get

𝑃(𝑦) =





∑
𝑥

𝑒−𝑖𝛾 𝑓 (𝑥)√
2𝑛

⟨𝑦 |𝑥⟩





2

=





 𝑒−𝑖𝛾 𝑓 (𝑦)√
2𝑛





2

=



𝑒−𝑖𝛾 𝑓 (𝑦)

2

2𝑛

=
1
2𝑛 . (4.37)
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This result does not depend on which computational basis state |𝑦⟩ is chosen, and thus we see that even
after applying𝑈(𝐻𝑃 , 𝛾), we still get a uniform distribution across all computational basis states when
performing measurements. While applying the problem unitary, only a relative phase is added, which
does not affect measuring results. To fix this problem, the mixing Hamiltonian is introduced, which
transforms the quantum state so that a measurement no longer results in a uniform distribution.

4.4.2. Intuitive Interpretation of Mixing Hamiltonians
Now that we discussed why mixing Hamiltonians are needed, we will discuss what a Hamiltonian does
when applied to a certain state. Understanding this process will give a good basis to construct more
complex mixing Hamiltonians. Remember that in the original QAOA framework the domain 𝐹 was set
to all 𝑛-bit strings, so all these strings are feasible solutions. The mixing Hamiltonian applied to this
problem was the transverse field Hamiltonian, given by (4.5). Let us apply this mixing Hamiltonian
directly to a quantum state |𝑧⟩ of the form |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩ with 𝑧 ∈ {0, 1}𝑛 , corresponding to the
𝑛-bit string 𝑧. This results in

𝐻𝑀 |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩ = |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩
+ |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩
+ |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩
. . .

+ |𝑧1⟩ |𝑧2⟩ |𝑧3⟩ ... |𝑧𝑛⟩ , (4.38)

where we define |𝑥⟩ = |1 − 𝑥⟩. This mixing Hamiltonian maps the state |𝑥⟩ of an 𝑛-string 𝑥 to all other
states that differ in exactly one bit from 𝑥. In other words, the Hamiltonian maps |𝑥⟩ to the superposition
of all 𝑛 possible outcomes when flipping exactly one bit of 𝑥. We can summarize this property as

⟨𝑥 |𝐻𝑀 |𝑦⟩ =
{

1, 𝑥, 𝑦 ∈ 𝐹 and Ham(𝑥, 𝑦) = 1,
0, otherwise, (4.39)

where Ham(𝑥, 𝑦) is the Hamming distance between strings 𝑥 and 𝑦, defined as the number of positions
the strings 𝑥 and 𝑦 are different. The Hamming distance between a string 𝑥 and the string of zeroes (so
the number of ones in string 𝑥) is again the Hamming weight of 𝑥 (Ham(x)). Starting from the state of
any 𝑛-bit string, we could "reach" any other 𝑛-bit string by applying the Hamiltonian enough times
(although only a maximum of 𝑛 applications is needed, as this is the largest Hamming distance between
any two strings of length 𝑛).

This is shown by considering an arbitrary quantum state of the form

|𝜙⟩ =
∑
𝑥𝑘∈𝐾

𝑐𝑘 |𝑥𝑘⟩ , (4.40)

which is a non-empty superposition of 𝑛-bit strings, each of the form

|𝑥𝑘⟩ = |𝑥𝑘1⟩ |𝑥
𝑘
2⟩ |𝑥

𝑘
3⟩ ... |𝑥

𝑘
𝑛⟩ (4.41)

with 𝑥𝑘 ∈ {0, 1}𝑛 . Here 𝐾 is the set of 𝑛-bit strings which are part of the superposition, and have
thus been reached already. Consider a target string 𝑤 of the form |𝑤1⟩ |𝑤2⟩ |𝑤3⟩ ... |𝑤𝑛⟩, again with
𝑤𝑖 ∈ {0, 1}, which we are trying to reach. If 𝑤 ∈ 𝐾, then we are done. If not, there is some 𝑧 ∈ 𝐾 with
smallest Hamming distance to 𝑤. Let this Hamming distance be 𝑚 ≠ 0 (otherwise 𝑤 = 𝑧 ∈ 𝐾). As this
distance is non-zero, there must be an 𝑖 ∈ {1, .., 𝑛} such that 𝑧𝑖 ≠ 𝑤𝑖 . Applying the mixing Hamiltonian
to the superposition 𝜙 results in a superposition of many states, one of which is the state

𝑧∗ = |𝑧1⟩ ... |𝑧𝑖−1⟩ |𝑤𝑖⟩ |𝑧𝑖+1⟩ ... |𝑧𝑛⟩ . (4.42)

This means after applying 𝐻𝑀 we have 𝑧∗ ∈ 𝐾, and we have constructed a state in 𝐾 with Ham(𝑧∗ , 𝑤) =
𝑚 − 1. Repeating this process 𝑚 times results in 𝑤 ∈ 𝐾, meaning the target state is part of our
superposition 𝜙. Therefore, by applying the mixing Hamiltonian enough times to any state, it is possible
to create a superposition containing any other state.
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An example of a Hamiltonian that does not reach the entire subspace is the Hamiltonian defined
by

𝐻𝑀 |𝑧1⟩ |𝑧2⟩ ... |𝑧𝑛−1⟩ |𝑧𝑛⟩ = |𝑧1⟩ |𝑧2⟩ ... |𝑧𝑛−1⟩ |𝑧𝑛⟩
+ |𝑧1⟩ |𝑧2⟩ ... |𝑧𝑛−1⟩ |𝑧𝑛⟩
. . .

+ |𝑧1⟩ |𝑧2⟩ ... |𝑧𝑛−1⟩ |𝑧𝑛⟩ , (4.43)

as this Hamiltonian has no effect on the final qubit. Therefore, any state of the form |𝑧⟩ = |𝑧1⟩ ... |𝑧𝑛−1⟩ |0⟩
could never reach a state of the form 𝑤 = |𝑤1⟩ ... |𝑤𝑛−1⟩ |1⟩, and thus |⟨𝑧 |𝑈 𝑟

𝑀
(𝛽′) |𝑤⟩| = 0 for all 𝛽′ and 𝑟,

violating (4.16).

Now that the idea behind mixing Hamiltonians is more apparent, we can start to better under-
stand the choice of the initial state from the original QAOA framework in the context of mixing
Hamiltonians. As can be seen in (4.38), the mixing Hamiltonian maps a computational basis state to a
not necessarily normalized superposition of possibly many other computational basis states. When
applying the unitary𝑈(𝐻𝑀 , 𝛽) from (4.11) to a normalized quantum state, the resulting state will also
be normalized. Let us apply 𝑈(𝐻𝑀 , 𝛽) to quantum state 𝜙 to obtain state 𝜙′, then the probability
amplitude of a basis state in 𝜙 is likely lower than the probability amplitude of that same basis state
in 𝜙′. Theoretically, some basis states could have a higher amplitude in the newer state 𝜙′ due to the
addition of the amplitudes of multiple different states, but the total amplitude of combined states that
were already in the decomposition of the previous quantum state 𝜙 will decrease as long as the entire
feasible subspace is not reached and 𝐻𝑀 is well defined through (4.16). See the following example.

Example
Let a quantum state 𝜙 be

|𝜙⟩ =
√

3
2 |00⟩ +

√
2

4 |01⟩ +
√

2
4 |10⟩ . (4.44)

Note that this expression of 𝜙 is normalized as (
√

3
2 )2 + (

√
2

4 )2 + (
√

2
4 )2 = 3

4 + 1
8 + 1

8 = 1. Applying the
transverse field Hamiltonian as defined in (4.5) results in

𝐻𝑀 |𝜙⟩ = 𝐻𝑀(
√

3
2 |00⟩ +

√
2

4 |01⟩ +
√

2
4 |10⟩)

=

√
3

2 𝐻𝑀 |00⟩ +
√

2
4 𝐻𝑀 |01⟩ +

√
2

4 𝐻𝑀 |10⟩

=

√
3

2 (|01⟩ + |10⟩) +
√

2
4 (|00⟩ + |11⟩) +

√
2

4 (|00⟩ + |11⟩)

=

√
2

2 |00⟩ +
√

3
2 |01⟩ +

√
3

2 |10⟩ +
√

2
2 |11⟩ . (4.45)

This expression of the state is not normalized anymore as the squares of the probability amplitudes
add to (

√
2

2 )2 + (
√

3
2 )2 + (

√
3

2 )2 + (
√

2
2 )2 = 1

2 + 3
4 + 3

4 + 1
2 = 2 1

2 . Normalizing this expression by dividing the

amplitudes by
√

2 1
2 and comparing it to the original state results in

|𝜙⟩ =
√

3
2 |00⟩ +

√
2

4 |01⟩ +
√

2
4 |10⟩ , (4.46)

𝐻𝑀 |𝜙⟩ =
√

2√
(10)

|00⟩ +
√

3√
(10)

|01⟩ +
√

3√
(10)

|10⟩ +
√

2√
(10)

|11⟩

=

√
5

5 |00⟩ +
√

30
10 |01⟩ +

√
30

10 |10⟩ +
√

5
5 |11⟩ . (4.47)
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Comparing each of the states from (4.46) and (4.47), we can see that the probability amplitudes of both
the |01⟩ state and the |10⟩ state have increased, as

√
30

10 >
√

2
4 . However, the total probability amplitude

of the original states (|00⟩ , |01⟩ and |10⟩) has decreased from 1 to 1 − (
√

5
5 )2 = 4

5 . This shows that,
although some of the states could have a higher amplitude after applying the Hamiltonian, the combined
amplitudes of all the states that were in the superposition before applying the Hamiltonian decreases
unless the original state is a superposition of the entire domain. This concludes this example.

Because the probabilities will keep decreasing for most basis states as we keep applying the uni-
tary (until we reach the entire feasible subspace), we want to apply the mixing unitary as little as
possible. This intuitively makes sense as well, as it means we want to choose our initial state as close to
the desired solution state as possible. Of course the problem unitary is also applied to the state as well
in between mixing unitaries to up the probability of measuring this solution state, but having to apply
these operators as little as possible is always good for both runtime and noise purposes. One could argue
that choosing an initial state with a good objective value is superior. This way the algorithm has apply
the unitaries𝑈(𝐻𝑃 , 𝛾) and𝑈(𝐻𝑀 , 𝛽) less frequently to reach the optimal solution, but good solutions do
not necessarily have small Hamming distance to each other. This can be seen in the following example.

Example
Consider the minimum vertex cover problem on the graph of Figure 4.4a. A solution 𝑥 with a
good objective value can be seen in Figure 4.4b, as it has objective value 4. The optimal solution 𝑥∗ can
be seen in Figure 4.4c, with objective value 3.

1 2 3 4 5 6 7

(a) Example graph

1 2 3 4 5 6 7

(b) Initial state solution 𝑥 (|1010101⟩)

1 2 3 4 5 6 7

(c) Optimal state solution 𝑥∗(|0101010⟩)

Figure 4.4: An example graph (a) with a possible good initial state solution (b) and the optimal solution (c).

The quantum state corresponding to the solution 𝑥 in Figure 4.4b is |1010101⟩, while the quantum state
corresponding to the optimal solution 𝑥∗ in Figure 4.4c is |0101010⟩. Assume the optimal solution is not
known, but it is known that the optimal vertex cover has size 3. Solution 𝑥 could then be considered
a good initial solution, since it has an objective value very close to the value of the optimal solution.
However, the Hamming distance between 𝑥 and 𝑥∗ is Ham(1010101, 0101010) = 7. This means the
mixing Hamiltonian has to be applied at least 7 times before 𝑥∗ has any amplitude in the superposition.
This shows that the the mixer could have to be applied many times to mix between solutions that are
very close in objective value. This concludes this example.
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Because good solutions do not always have small Hamming distance to each other, it makes sense to
pick the initial state that equally distributes the probability of measurement among all states. Through
this reasoning we again arrive at the original state from (4.6). As discussed earlier, we can not use this
initial state for problems with a restricted domain like MinVertexCover, so this idea is not applicable
to those optimization problems. However, it is still valuable to understand mixing Hamiltonians and
their effects on different initial states when designing other mixing Hamiltonians for more complex
optimization problems.

In conclusion, the application of a mixing Hamiltonian is needed to shift the probability ampli-
tudes away from a uniform distribution across all computational basis states. Furthermore, it has been
discussed how a mixing Hamiltonian operates on a state and what the limitations of possible starting
states are. Now that the Quantum Alternating Operator Ansatz has been applied to MinVertexCover
and the ideas behind mixing Hamiltonians have been covered, we can start looking at different setups
for the same problem. It has been shown earlier this section that different starting states are possible
than the starting state from (4.25), however, using them does not seem to lead to a significant advantage,
be it a shorter quantum circuit or a faster algorithm. Although the problem Hamiltonian is mostly fixed,
many different mixing Hamiltonians are possible as long as they both preserve and reach the entire
feasible subspace. This thesis will now introduce new mixing Hamiltonians in Chapter 5.



5
Second Degree Mixing Hamiltonians

for MinVertexCover

Previously, in Section 4.3 we saw how the Quantum Alternating Operator Ansatz would apply to
MinVertexCover. The mixing Hamiltonian introduced in Section 4.3 (given by (4.24)) will from this
point forward be referred to as 𝐻𝑀𝑉1 , as in this chapter we will construct new mixing Hamiltonians.
When using 𝐻𝑀𝑉1 , the only mixing between solutions occurs if the target and original solutions are
exactly Hamming distance 1 away, while meeting the requirement that the resulting solution is a vertex
cover. This mixer therefore does not mix between all pairs of solutions, and we can extend this mixer by
including more terms which mix between solutions at Hamming distance 2.

5.1. Mixing Hamiltonian V2
We try to reach solutions that are either Hamming distance 1 or 2 away while still meeting the requirement
that the resulting solution is in the feasible subspace. To do this we have to include more terms in the
mixing Hamiltonian. Each of the terms in the Hamiltonian from (4.24) swaps a different vertex in or out
of the cover if all the neighbours of a vertex are set to 1. Next, we want to add more terms to swap two
vertices in or out of the cover at the same time. This is done by applying two 𝑋 gates simultaneously to
two different vertices. We look at applying the 𝑋 gates to vertices 𝑢 and 𝑣 and only consider the case
where {𝑢, 𝑣} ∉ 𝐸:
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v

2

22

2 2

2 2

2 2

Figure 5.1: Example graph where 𝑢 and 𝑣 are not connected. Every vertex adjacent to 𝑢 or 𝑣 is in the cover.

If {𝑢, 𝑣} ∉ 𝐸, we have the same requirement as in the original mixing Hamiltonian 𝐻𝑀𝑉1 . Vertices 𝑢 and
𝑣 are not connected, we only need to check for each of the vertices that all of their neighbours are set to
1, as there is no other way the resulting cover is not feasible, see Figure 5.1. This is similar to Figure 4.1
in the sense that we can consider each of the vertices separately as they are not connected, but now we
swap both vertices in or out of the cover with one application of the mixing Hamiltonian. This means

25
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that we only have to make sure all of the vertices of both 𝑢 and 𝑣 are already in the cover, which is
reflected in the Hamiltonian by multiplying by the product of𝑊 ’s. If this is the case, we can apply both
𝑋𝑢 and 𝑋𝑣 at the same time. This results in the term given by

𝑋𝑢𝑋𝑣

∏
𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸

or {𝑣,𝑤}∈𝐸

𝑊𝑤 . (5.1)

Finishing this case, we sum over all possible combinations of vertices which are non-adjacent to find

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ (5.2)

as the term of the mixer swapping two non-adjacent vertices at the same time. Combining this with the
terms of the original Hamiltonian of (4.24), we get the new Hamiltonian 𝐻𝑀𝑉2 given by

𝐻𝑀𝑉2 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 𝑠.𝑡. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (5.3)

This concludes the mixing Hamiltonian 𝐻𝑀𝑉2 .

5.2. Mixing Hamiltonian V3
The case where {𝑢, 𝑣} ∈ 𝐸 is more complicated, as we have to account for more scenarios where
swapping vertices out of the solution results in an infeasible solution. Like before, all of the neighbours
of both vertices have to be in our current solution to be able to swap either vertex out of the solution.
However, this time we could face the problem that by swapping both vertices out of the solution at the
same time we arrive outside the domain by not covering edge {𝑢, 𝑣}, see Figure 5.2.
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Figure 5.2: Example graph where 𝑢 and 𝑣 are connected. Every vertex adjacent to 𝑢 or 𝑣 is in the cover.
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As said before, if we try to swap both vertices 𝑢 and 𝑣 out of the cover at the same time, the edge {𝑢, 𝑣}
will not be covered, however, it is still possible to swap 𝑢 and 𝑣 at the same time without resulting in an
infeasible solution. If exactly one of the two vertices is already in the cover and the other is not, we can
still cover edge {𝑢, 𝑣}. For example, assume 𝑢 is in the cover but 𝑣 is not, then {𝑢, 𝑣} will be covered by
𝑢 before the swap. After 𝑢 leaves the cover and 𝑣 enters the cover, {𝑢, 𝑣} will still be covered, now by 𝑣
instead of 𝑢. This idea gives the following terms:

𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤 + 𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤 , (5.4)

where still𝑊𝑢 = |1⟩ ⟨1|𝑢 and similarly we now define𝑊𝑣 = |0⟩ ⟨0|𝑣 . Note that we do not include 𝑤 = 𝑢
and 𝑤 = 𝑣 in the product, as these cases of𝑊𝑤 are already accounted for outside of the product. 𝑋𝑢 and
𝑋𝑣 again handle the swapping of 𝑢 and 𝑣 into and out of the cover. The first of the two terms corresponds
to 𝑢 already being in the cover and 𝑣 not being in the cover, as𝑊𝑢𝑊𝑣 checks that 𝑢 has value 1 and 𝑣 has
value 0. Similarly the second term corresponds to 𝑢 not being in the cover and 𝑣 already being in the cover.

Originally, this term was constructed to not iterate over 𝑤 ∈ 𝑊 such that {𝑣, 𝑤} ∈ 𝐸 in the prod-
uct of the first term. This was thought to be possible as it is known that the initial state before applying
the Hamiltonian is already a vertex cover, otherwise we would not be in the feasible subspace. Outside
of the product, the factor𝑊𝑣 is applied already, so the Hamiltonian only affects solutions where 𝑣 is not
in the cover. In these solutions all edges incident to 𝑣 have to be covered by the neighbours of 𝑣, as 𝑣
itself is not in the cover. Therefore, it was assumed there was no need to check if all of 𝑣’s neighbours
are in the cover, as we know they have to be, otherwise the initial state would not be a feasible solution.
In contrast, we still need to check all of 𝑢’s neighbours are in the cover, as they do not necessarily have
to be before applying the Hamiltonian (𝑢 itself could cover these edges). The same applies in reverse to
the second term, where we would not iterate over 𝑤 ∈𝑊 such that {𝑢, 𝑤} ∈ 𝐸.

Although this reasoning is correct if the Hamiltonian would only be applied to states which are
indeed vertex covers, constructing the Hamiltonian this way results in a vital problem. If the Hamil-
tonian would not iterate over 𝑤 ∈ 𝑊 such that {𝑣, 𝑤} ∈ 𝐸 as well, then it would be possible to mix a
solution which is not a vertex cover to a solution that is a vertex cover. Since the Hamiltonian does not
mix solutions which are vertex covers to solutions which are not vertex covers by design, this makes
the designed Hamiltonian not Hermitian, which is a requirement for a Hamiltonian to represent the
energy of a quantum system as described in Section 3.1. Thus, we still iterate over all 𝑤 ∈𝑊 such that
{𝑢, 𝑤} ∈ 𝐸. We again sum over all possible combinations of vertices which are adjacent to find

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

(
𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

+ 𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

)
(5.5)

as the term of the mixer swapping two adjacent vertices at the same time. For reading purposes it will
be split into two different sums and written as

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (5.6)
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Combining these cases and adding the original mixer to swap only one vertex in or out at a time, we
find the mixing Hamiltonian 𝐻𝑀𝑉3 which swaps either one or two vertices in/out at the same time to be

𝐻𝑀𝑉3 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 s.t. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∈𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∈𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (5.7)

We will refer to 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 as ‘second degree’ mixing Hamiltonians due to their ability to switch 2
vertices in or out of a cover at the same time. Similarly, the specific terms of the Hamiltonians which
swap 2 specific vertices in or out at the same time will be called second degree terms. Continuing this
terminology, 𝐻𝑀𝑉1 is thus a first degree mixing Hamiltonian. The construction of third and higher
degree mixing Hamiltonians will be discussed in Section 9.1.

One could wonder how the new second degree terms of mixing Hamiltonian 𝐻𝑀𝑉3 compare to
the square of the first degree mixing Hamiltonian 𝐻𝑀𝑉1 . The mixing Hamiltonian 𝐻𝑀𝑉3 encodes all
possible swaps between two solutions when swapping two vertices at the same time, while (𝐻𝑀𝑉1)2
encodes all possible combinations of swapping one vertex in or out of the solution, and then another
afterwards. This means (𝐻𝑀𝑉1)2 takes the possibility into account that a vertex is swapped out and then
swapped back in again (or vice versa), which the second degree terms of 𝐻𝑀𝑉3 do not do. This results in
elements on the diagonal of (𝐻𝑀𝑉1)2 where after swapping twice one returns to the original solution.
Furthermore, in (𝐻𝑀𝑉1)2 scales some elements as these solutions can be reached via multiple ways. We
show these differences with an example.

Example

1 2 3

Figure 5.3: Example graph

Consider the graph given in Figure 5.3. The second degree terms of 𝐻𝑀𝑉3 (i.e. 𝐻𝑀𝑉3 − 𝐻𝑀𝑉1 ) in matrix
form as given by (5.2) and (5.6) are

𝐻𝑀𝑉3 − 𝐻𝑀𝑉1 = (5.2) + (5.6) =

©­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0

ª®®®®®®®®®®¬
. (5.8)
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These are all possible ways to mix between solutions of the graph of Figure 5.3 which are Hamming
distance 2 apart. For example, the value of the element at the third row and the final column is 1, as it is
possible to swap between solutions |010⟩ and |111⟩ by swapping the first and third vertex at the same
time. (𝐻𝑀𝑉1)2 in its matrix representation is given by

(𝐻𝑀𝑉1)2 =

©­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 2
0 0 0 2 0 1 2 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 2 0 1 2 0
0 0 2 0 0 0 0 3

ª®®®®®®®®®®¬
. (5.9)

As discussed earlier, there are now terms on the diagonal, since possible solutions can mix to themselves
by swapping the same vertex first in and then out, or first out and then in. For example, the value of the
element at the third row and third column is 2, as it both possible to mix |010⟩ back to itself in two ways
(mixing to |110⟩ and back or mixing to |011⟩ and back).

Furthermore, some of the terms that are non-zero in both Hamiltonians are scaled. The value of
the element at the third row and final column in (5.9) is 2 (compared to 1 in (5.8)), as one can swap
between |010⟩ and |111⟩ by either first swapping in the third vertex and then the first, or swapping in
the first vertex first and then the third. Thus, the second degree terms of 𝐻𝑀𝑉3 can be viewed as (𝐻𝑀𝑉1)2
with all diagonal elements set to 0 and all other nonzero elements set to 1.

Now that we constructed the new mixing Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 we will next try to implement
them to see how they compare against the original mixing Hamiltonian 𝐻𝑀𝑉1 . The implementation of
these Hamiltonians along with the choices of graph type and classical optimization methods will be
discussed next in Chapter 6.
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Implementation

In this chapter, we will discuss the graph used for benchmarking the new Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 ,
along with how both Hamiltonians were implemented. We also briefly discuss each of the classical
optimization methods used to optimize the parameters used in the unitaries of QAOA+. Optimizing
these parameters is crucial for finding good approximate solutions to MinVertexCover.

6.1. Graph choice and Hamiltonian construction
To test the performance of new mixing Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 , we run QAOA multiple times on
a single test graph. Because the quantum circuit will become deeper (i.e. have more layers of gates) due
to the difficulty of implementing the Hamiltonians through (5.3) and (5.7), we want to use a small graph
where these new mixing Hamiltonians still have a possible advantage. As 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 swap two
vertices in or out of the cover at the same time, we need our graph to still have two different solutions
after removing two vertices. This way 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 can swap between these solutions. For example,
for the triangle graph as seen in Figure 4.2 there is no difference between using 𝐻𝑀𝑉1 or 𝐻𝑀𝑉2 as mixing
Hamiltonian, as it is not possible to remove two vertices from the cover without leaving the feasible
subspace.

One of the smallest non-trivial graphs where it is possible to remove two vertices from the ini-
tial cover without leaving the feasible subspace would be four nodes in a connected line, known as
the path graph 𝑃4. However, since it is more clear to use a graph with a unique optimal solution for
benchmarking purposes, we will instead use the path graph 𝑃5.

1 2 3 4 5

(a) The path graph 𝑃5

1 2 3 4 5

(b) Optimal solution of MinVertexCover on 𝑃5

Figure 6.1: The path graph 𝑃5 (a) and its optimal solution for MinVertexCover (b).

This graph was implemented in Python using the networkx package [36]. Quantum circuits were
implemented in Python using qiskit [37] on the Aer simulator, while the implementation of the QAOA
algorithm itself is largely based on code found at [38]. To implement the problem unitary of (4.18) we
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note that𝑊 =
(𝐼−𝑍)

2 . Summing over all these operators we see that we can take our unitary as

𝑈𝑃 = 𝑒−𝑖𝛾
∑
𝑢∈𝑉 𝑍𝑢 , (6.1)

as the constant term caused by the 𝐼-terms will only affect the global phase as seen in [7]. Thus, we can
implement this unitary using an 𝑅𝑧(2𝛾)-gate for each vertex of the graph.

The mixing Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 were implemented differently. Although it is
likely possible to implement these Hamiltonians in a similar way to the problem Hamiltonian, these
Hamiltonians were all implemented directly through their matrix form. All matrices were computed di-
rectly from equations (4.24), (5.3), and (5.7), after which the matrices were multiplied by their respective
−𝑖𝛽-factor. The exponential of the resulting matrices was then computed, after which these exponentials
were converted to an operator to be appended to the quantum circuit.

6.2. Classical Optimization Algorithms
As seen earlier in Chapter 4, both QAOA and QAOA+ use a classical optimization method to find
parameters that produce a high expectation of 𝐻𝑃 . In this section the optimization methods used in
our implementation of QAOA will be discussed, although the use of other optimization methods is
possible as well. Each of the sections is largely based on the reference directly after the name of each of
the methods.

6.2.1. Powell
Powell’s method [39] is an optimization algorithm used for finding the minimum of an objective function.
The algorithm uses a bi-directional search along search vectors to find this minimum. Powell’s method
does not use derivatives, and thus the to be optimized function does not need to be differentiable. An
initial point 𝑥0 is given to the method, as well as 𝑁 initial search vectors ℎ1 through ℎ𝑁 . A single
iteration of the algorithm works as follows.

The algorithm first minimizes the function along each search vector (using for example Golden-
section search [40]) in order (so the optimum along this first search vector is the starting point for the
second search vector). The resulting point 𝑥1 can be expressed as a linear combination of each of the
search vectors in the form

𝑥1 = 𝑥0 +
𝑁∑
𝑖=1

𝑎𝑖ℎ𝑖 = 𝑥0 + ℎ𝑛+1 , (6.2)

where 𝑎𝑖 is the scalar that optimizes the search in direction ℎ𝑖 . The vector ℎ𝑛+1 becomes a new search
vector, and the search vector with the largest term in the linear combination (the term for which |𝑎𝑖 |∥ℎ𝑖 ∥
is largest) is removed from the search vectors. This process is then repeated until the difference between
𝑥𝑛 and 𝑥𝑛+1 is small enough. An example of Powell’s method with 𝑁 = 2 can be seen in Figure 6.2.

Figure 6.2: Powell’s method in two dimensions. Figure adjusted from [41].
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It can handle many different optimization problems and is relatively easy to implement, but turned out
to be quite slow in practice.

6.2.2. Nelder-Mead
The Nelder-Mead method [42] is an optimization algorithm to find the minimum of an objective function.
Similar to Powell’s method it does use the derivatives of the to be optimized function, making it a
direct search method. The algorithm works by creating a simplex, and then moving the vertices of
the simplex to find the minimum of the function. At each step, the algorithm compares the function
values at each vertex of the current simplex and uses this information to determine which of the vertices
should be moved and in which direction. The algorithm terminates when certain criteria are met,
which could be convergence, runtime, a maximum number of iterations, or a maximum number of
function evaluations. We look at a single iteration of a variant of the algorithm in a two-dimensional space.

We minimize a function 𝑓 (𝑥) with 𝑥 ∈ R2. This means our simplex is a triangle in R2 with ver-
tices 𝑥1 , 𝑥2 , 𝑥3 ∈ R2. Assume without loss of generality that 𝑓 (𝑥1) ≤ 𝑓 (𝑥2) ≤ 𝑓 (𝑥3). After checking if the
algorithm should terminate, we calculate the center of 𝑥1 and 𝑥2 given by 𝑥0 = 1

2 (𝑥1 + 𝑥2), and move to
step 1.

Step 1: Reflection
We reflect the worst point 𝑥3 through the edge (𝑥1 , 𝑥2) of the simplex to find a reflected point 𝑥𝑟
= 𝑥0 + (𝑥0 − 𝑥3). If 𝑥𝑟 has a higher objective value than 𝑥1 but a lower objective value than 𝑥2 (i.e.
𝑓 (𝑥1) ≤ 𝑓 (𝑥𝑟) ≤ 𝑓 (𝑥3)), then this direction is not very good, but at least its better than the worst vertex
𝑥3, so we replace 𝑥3 with 𝑥𝑟 to make a new simplex and end this iteration. If not, move to step 2.

Step 2: Expansion
If 𝑥𝑟 is the best point so far (i.e. 𝑓 (𝑥𝑟) < 𝑓 (𝑥1)), then we are searching in the right direction. Similar to
Powell’s method we expand the reflected point to find the expanded point 𝑥𝑒 = 𝑥𝑟 + (𝑥𝑟 − 𝑥0). If this
expanded point is better than the reflected point (i.e. 𝑓 (𝑥𝑒) < 𝑓 (𝑥𝑟)), then we replace 𝑥3 with 𝑥𝑒 to make
a new simplex and end this iteration. If this expanded point is not better than the reflected point (i.e.
𝑓 (𝑥𝑒) ≥ 𝑓 (𝑥𝑟)), then we replace 𝑥3 with 𝑥𝑟 to make a new simplex and end this iteration. If 𝑥𝑟 is not the
best point so far, move to step 3.

Step 3: Contraction
If 𝑥𝑟 is worse than 𝑥1 and 𝑥2, then it is not useful, as it would only become the new worst point if we
replace 𝑥3 with it. Instead, we contract the worst point 𝑥3 to a new point. We consider two cases:

• If 𝑓 (𝑥𝑟) < 𝑓 (𝑥3), we compute a new contracted point 𝑥𝑐 = 𝑥0 + 1
2 (𝑥𝑟 − 𝑥0). If this point is better

than 𝑥𝑟 , we replace 𝑥3 with 𝑥𝑐 to make a new simplex and end this iteration. If 𝑥𝑐 is not better
than 𝑥𝑟 , move to step 4.

• If 𝑓 (𝑥𝑟) ≥ 𝑓 (𝑥3), we compute a new contracted point 𝑥𝑐 = 𝑥0 + 1
2 (𝑥3 − 𝑥0). If this point is better

than 𝑥3, we replace 𝑥3 with 𝑥𝑐 to make a new simplex and end this iteration. If 𝑥𝑐 is not better
than 𝑥𝑟 , move to step 4.

Step 4: Shrinkage
If we end up at step 4, then none of the computed points 𝑥𝑟 , 𝑥𝑒 and 𝑥𝑐 are currently better than the worst
vertex 𝑥3. Therefore, we will shrink the simplex towards the best point 𝑥1 according to the formulas
𝑥2 = 𝑥1 + 1

2 (𝑥2 − 𝑥1) and 𝑥3 = 𝑥1 + 1
2 (𝑥3 − 𝑥1). This finishes the iteration.

In this variation the standard coefficients for reflecting (𝛼 = 1), expanding (𝛾 = 2), contracting
(𝜌 = 1

2 ), and shrinking (𝜎 = 1
2 ) were used, although different coefficients could improve the performance

of the algorithm [43]. A visual example of each of the possible new vertices of Nelder-Mead is shown in
Figure 6.3.
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Figure 6.3: An iteration of the Nelder-Mead method in two dimensions where 𝑝max is the worst point, 𝑝min is
the best point, 𝑝𝑟 is the reflected point, 𝑝𝑒 is the expanded point, and 𝑝𝑐 is the contracted point. If none of the
constructed points are better than 𝑝max, then the simplex shrinks towards 𝑝min. Figure adjusted from [44].

The Nelder-Mead algorithm is easy to implement, and very resistant to bad initial guesses, unlike
Powell’s method. Among the algorithms discussed in this thesis, it is one of the faster algorithms, with
only COBYLA being faster.

6.2.3. COBYLA
Constrained Optimization BY Linear Approximation (COBYLA) [45] is another optimization algorithm
to find the minimum of a function. COBYLA is also a derivative-free method, but unlike Powell and
Nelder-Mead, COBYLA can also handle constrained optimization problems. COBYLA uses an initial
guess 𝑥0 to make linear approximations to the objective function and the constraints. This linear
programming problem is then solved, resulting in another point 𝑥1. This point 𝑥1 is then evaluated in
the original objective function to determine the direction in which the objective function is decreasing
the most. Using this information a new linear approximation is made, and the process repeats until the
difference between candidate solutions is small enough. COBYLA is an easy to implement optimization
algorithm and is very efficient in most cases, although it may not perform well when the problem
contains complex constraints.

6.2.4. BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [46, 47, 48, 49] is an algorithm used for finding
the minimum of an objective function. BFGS is a gradient-based method unlike Powell, Nelder-Mead,
and COBYLA, meaning it uses gradient evaluations to look for a search direction at each iteration. It is a
quasi-Newton method, meaning it is an alternative to Newton’s method [50]. Quasi-Newton methods
use an approximation to the Hessian matrix 𝐵 instead of the exact Hessian matrix. We again start with
an initial point 𝑥0 and an initial approximation of the Hessian matrix 𝐵0. We then iteratively find points
𝑥𝑘 used to construct new approximations 𝐵𝑘 . The sequence {𝑥𝑘} should then converge to the minimum
of 𝑓 . An iteration of Newton’s method starts by considering the second-order Taylor expansion of 𝑓
around 𝑥𝑘 given by

𝑓 (𝑥𝑘 + Δ𝑥) ≈ 𝑓 (𝑥𝑘) + ∇ 𝑓 (𝑥𝑘)⊤Δ𝑥 +
1
2Δ𝑥

⊤𝐵Δ𝑥, (6.3)

where ∇ 𝑓 is the gradient of 𝑓 and 𝐵 is the exact Hessian matrix. We want 𝑓 (𝑥𝑘 + Δ𝑥) to be a local
minimum, and thus we look at the gradient of this approximation with respect to Δ𝑥 to find

∇ 𝑓 (𝑥𝑘 + Δ𝑥) ≈ ∇ 𝑓 (𝑥𝑘) + 𝐵Δ𝑥. (6.4)
We want to be at the point where the gradient is equal to zero, as then we will be at the minimum when
constructing our next point. Thus, we want to choose our direction Δ𝑥 to be the solution of

𝐵Δ𝑥 = −∇ 𝑓 (𝑥𝑘). (6.5)



34

Solving for Δ𝑥 gives a search direction at step 𝑘. Similar to Powell’s method, a line search is then
performed to find a minimum along this line. In practice, an inexact line search is usually performed to
find an 𝛼𝑘 that satisfies the Wolfe conditions [51, 52]. These conditions make sure both the function 𝑓
and the gradient ∇ 𝑓 decrease sufficiently. A new point 𝑥𝑘+1 is then constructed through

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥 = 𝑥𝑘 − 𝛼𝑘𝐵∇ 𝑓 (𝑥𝑘). (6.6)

This process is repeated until certain termination conditions are met. Quasi-Newton methods do not
use the exact Hessian 𝐵, but an approximation of the Hessian 𝐵𝑘 that is updated each iteration. Starting
with an initial approximation 𝐵0 (usually of the form 𝐵0 = 𝛽𝐼), first a new point 𝑥𝑘+1 is constructed
as above with 𝐵𝑘 instead of 𝐵, and then 𝐵𝑘 is updated to 𝐵𝑘+1 using an update formula. Different
quasi-Newton methods use different update formulas. For BFGS this update formula is of the form

𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑘𝑦

⊤
𝑘

𝑦⊤
𝑘
Δ𝑥𝑘

− 𝐵𝑘Δ𝑥𝑘(𝐵𝑘Δ𝑥𝑘)⊤
Δ𝑥⊤

𝑘
𝐵𝑘Δ𝑥𝑘

, (6.7)

where 𝑦𝑘 = ∇ 𝑓 (𝑥𝑘+1 −∇ 𝑓 (𝑥𝑘) is the difference in gradients between 𝑥𝑘+1 and 𝑥𝑘 . Similarly the inverse of
𝐵−1 can be updated directly using

𝐵−1
𝑘+1 =

(
𝐼 −

Δ𝑥𝑘𝑦
⊤
𝑘

𝑦⊤
𝑘
Δ𝑥𝑘

)
𝐵−1
𝑘

(
𝐼 −

𝑦𝑘Δ𝑥
⊤
𝑘

𝑦⊤
𝑘
Δ𝑥𝑘

)
+

Δ𝑥𝑘Δ𝑥
⊤
𝑘

𝑦⊤
𝑘
Δ𝑥𝑘

. (6.8)

One of the main advantages of quasi-Newton methods like BFGS is that the approximate Hessian matrix
does not need to be inverted and can be updated directly. When using Newton’s method, the Hessian
matrix needs to be inverted. Computing the Hessian itself can also be computationally expensive,
especially for larger optimization problems. BFGS is easy to implement and known to be a very fast
method in comparison to some other methods like Powell. However, BFGS can be very sensitive to the
initial guess, which is why BFGS is often run with multiple initial guesses.

6.2.5. CG
The conjugate gradient method (CG) [53] is an optimization algorithm to find the minimum of an
objective function. Like BFGS it is a gradient-based method, meaning it uses the gradient of the objective
function to find an optimum. The CG method was originally designed to solve a system of linear
equations 𝐴𝑥 = 𝑏, where 𝐴 is a symmetric positive definite matrix. This is equivalent to minimizing the
function

𝑓 (𝑥) = 1
2𝑥

⊤𝐴𝑥 − 𝑏⊤𝑥. (6.9)

This method was later extended to non-linear functions in [54]. CG is an iterative method and starts
with an initial guess 𝑥0. To start the algorithm we calculate the gradient at 𝑥0 and define 𝑟0 = −∇ 𝑓 (𝑥0).
This 𝑟0 will also be our initial search direction 𝑝0. From here we perform a line search along 𝑝0 to find a
new point 𝑥1. A single iteration of the algorithm then works as follows.

At the start of an iteration we are at the point 𝑥𝑘 . We evaluate the gradient at 𝑥𝑘 , which will be
𝑟𝑘 = −∇ 𝑓 (𝑥𝑘). At this point the gradient descent method would perform a line search in direction
𝑟𝑘 , as this is the direction of steepest descent. Instead, we want to search in a direction conjugate to
all previous directions. CG has the special property that a new direction conjugate to all previous
directions can be constructed only using the information of the last used direction. We therefore adjust
our search direction to obtain the new search direction

𝑝𝑘 = 𝑟𝑘 + 𝛽𝑘𝑝𝑘−1 , (6.10)

where the factor 𝛽𝑘 will guarantee that 𝑝𝑘 and 𝑝𝑘−1 are conjugate with respect to the Hessian. Finally a
line search is performed in direction 𝑝𝑘 to find an 𝛼𝑘 such that 𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘) is minimal, thus the next
point 𝑥𝑘+1 is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 . (6.11)

This ends the iteration.
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Different 𝛽𝑘 result in different conjugate gradient methods in the case that 𝑓 is non-linear, in this
thesis the Polak-Ribière formula [55] for 𝛽𝑘 is used, given by

𝛽𝑘 =
𝑟⊤
𝑘
(𝑟𝑘 − 𝑟𝑘−1)
𝑟⊤
𝑘
𝑟𝑘

. (6.12)

An example of the conjugate gradient method compared to gradient descent in two dimensions can be
seen in Figure 6.4.

Figure 6.4: A comparison of gradient descent (in green) and conjugate gradient (in red) with initial point 𝑥0 and
optimal point 𝑥. Note that gradient descent follows a zigzag pattern, which conjugate gradient avoids by choosing
a direction conjugate to the previous direction instead of simply following the gradient. Figure adapted from [56].

CG is known as one of the more computationally efficient algorithms as it does not use the Hessian in
its iterations, although it may require a good initial guess to find an optimum.

All of these optimization methods were implemented to find the angles 𝜸, 𝜷 ∈ R𝑛 which have
the best expectation of 𝐻𝑃 as described in sections 4.1 and 4.2. As we will see next in Section 7.1, the
expectation landscapes suggest the optimal solution might not be found for an arbitrary initial guess
for most algorithms, therefore all of the algorithms were run with 103 initial points (similarly to [57],
but with 103 initial points instead of 104). The gradient of 𝑓 needed for BFGS and CG is numerically
approximated using finite differences, but parameter shift rules could also be used and are further
discussed in Section 9.2.1.
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Results

7.1. Expectation Landscape
To better understand the function we are optimizing over, we will look at some landscapes of 𝐹𝑝(𝜸, 𝜷)
as given in (4.13). For all these landscapes and results we will use the problem Hamiltonian 𝐻𝑃 as given
by (4.18), where 𝐺 is the path graph 𝑃5 described in Section 6.1. Note that when we apply unitary
𝑈(𝐻𝑃 , 𝛾) from (4.10) to the state |𝑠⟩ from (4.25) we get

𝑈(𝐻𝑃 , 𝛾) |𝑠⟩ = 𝑒−𝑖𝛾𝐻𝑃 |1⟩⊗𝑛 = 𝑒−𝑖𝛾(𝐻𝑃 )𝑛𝑛 |1⟩⊗𝑛 , (7.1)
where (𝐻𝑃)𝑛𝑛 is the element of 𝐻𝑃 in the 𝑛th column and 𝑛𝑡ℎ row. As



𝑒−𝑖𝛾(𝐻𝑃 )𝑛𝑛

 = 1, we see that the
probability of measuring the state |1⟩⊗𝑛 is still 1 just as before. Therefore, applying the first problem
unitary only affects the global phase of the state, so the expectation value 𝐹1(𝛾1 , 𝛽1) is only dependent
on 𝛽1. The expectation value 𝐹1(𝛽1) as a function of 𝛽1 in the interval (0, 2𝜋) is shown in Figure 7.1 for
each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 .

Figure 7.1: The expectation value 𝐹1(𝛽1) as a function of 𝛽1 for each of the mixing Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and
𝐻𝑀𝑉3 .
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We see that 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 have a much more fluctuating behaviour than 𝐻𝑀𝑉1 . In the case that 𝑝 = 1
we also see that 𝐻𝑀𝑉1 has by far the lowest expectation at the local optimum of 𝛽1, followed by 𝐻𝑀𝑉2
and only then 𝐻𝑀𝑉3 . For 𝑝 = 1 this suggests that using the first degree mixing Hamiltonian 𝐻𝑀𝑉1 is
much better, however, note that the minimum of 𝐹1(𝛽1) when using 𝐻𝑀𝑉1 is only slightly lower than 3.
When running QAOA using the optimal 𝛽, we want to find an expectation much lower than 3 to find the
optimal solution with objective value 2 much more often. Running QAOA with 𝑝 = 1 using the 𝛽1 in the
first local minimum of 𝐻𝑀𝑉1 in Figure 7.1 gives the distribution seen in Figure 7.2.

Figure 7.2: Sample distribution of the solutions when running QAOA using the 𝛽1 of the local minimum for 𝐻𝑀𝑉1
.

We see that the optimal solution |01010⟩ with objective value 2 is only measured about one third of the
time, with other solutions like |01101⟩, |10101⟩, |10110⟩ all still having a probability of measurement
of over 0.1. Therefore, we will need to look at higher values of 𝑝 to find lower expectation values 𝐹𝑝(𝜸, 𝜷).

Next, we will try to visualize the landscape of 𝐹𝑝(𝜸, 𝜷) in the case that 𝑝 = 2. Note that as seen
in the start of this section 𝐹𝑝 still does not depend on 𝛾1. We try to visualize the landscape by choosing
a predetermined value for 𝛾2, and then plotting 𝐹𝑝 only as a function of 𝛽1 and 𝛽2 to better compare
between Hamiltonian versions. As the unitary𝑈(𝐻𝑃 , 𝛾) has a periodicity of 𝜋 due to its implementation
using 𝑅𝑧-gates as described in Section 6, we will choose a random 𝛾2 ∈ (0,𝜋) to visualize the landscape
of 𝐹2, which can be seen in Figure 7.3.

(a) 3D Plot of 𝐹2 for 𝐻𝑀𝑉1 (b) Colorplot of 𝐹2 for 𝐻𝑀𝑉1

Figure 7.3: Landscapes of 𝐹2 = (𝛽2 , 𝛽1) for each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 with 𝛾2 set to 37
57𝜋. 𝛽1

and 𝛽2 range from 0 to 2𝜋 in all plots and are divided into 200 grid points. 𝐹2 is determined using 512 samples
from the resulting state, with the minimum indicated by a red dot in the colorplots.
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(c) 3D Plot of 𝐹2 for 𝐻𝑀𝑉2 (d) Colorplot of 𝐹2 for 𝐻𝑀𝑉2

(e) 3D Plot of 𝐹2 for 𝐻𝑀𝑉3 (f) Colorplot of 𝐹2 for 𝐻𝑀𝑉3

Figure 7.3: Landscapes of 𝐹2 = (𝛽2 , 𝛽1) for each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 with 𝛾2 set to 37
57𝜋. 𝛽1

and 𝛽2 range from 0 to 2𝜋 in all plots and are divided into 200 grid points. 𝐹2 is determined using 512 samples
from the resulting state, with the minimum indicated by a red dot in the colorplots.

As can be observed in the 3D surface plots of Figures 7.3a, 7.3c, and 7.3e, we again see that the
landscapes of 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 fluctuate much more than the landscape of 𝐻𝑀𝑉1 . The expectation values
of 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 also seem to have a much smaller range than those of 𝐻𝑀𝑉1 . Most of the expectation
values of 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 are within the range (3.0, 4.0), while most the expectation values of 𝐻𝑀𝑉1
are within the much broader range of (2.75, 4.75). However, in the heat maps of Figures 7.3b, 7.3d,
and 7.3f we see low local minima are still obtained for 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 . In fact, later we will see that
the minima of 7.3d and 7.3f are lower than the minimum found in 7.3b. Next, in Section 7.2.1 we
will look at the exact values of these minima and how they compare between Hamiltonians for different 𝑝.

One might wonder why figures 7.1 and 7.3 only use values of 𝛽1 and 𝛽2 between 0 and 2𝜋. As
the decomposition of the mixing Hamiltonians for MinVertexCover has not been explored, we do not
know if there is any periodicity of the unitary𝑈(𝐻𝑀 , 𝛽) in the parameter 𝛽. As mentioned before, we
can find a periodicity of 𝜋 in the 𝛾 parameter for the unitary𝑈(𝐻𝑃 , 𝛾), as the unitary is implemented
using 𝑅𝑧-gates. As𝑈(𝐻𝑀 , 𝛽) is directly implemented through its matrix form, we can not be sure that
the optimal 𝛽 is indeed in the interval (0, 2𝜋). Nevertheless, there is no uniform distribution over R𝑝
with integral 1, so for the results of this thesis we will restrict the region of initial points to (0, 2𝜋)𝑝 ,
although it is possible that other minima outside this region that result in a better expectation exist.
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7.2. Performance Comparison of Hamiltonians
7.2.1. Comparison for set 𝑝
As mentioned in the previous sections, we evaluate each of the mixing Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 and
𝐻𝑀𝑉3 by the expectation 𝐹𝑝(𝜸, 𝜷) given in (4.13). We now show the resulting expectations when running
QAOA using each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 and each of the classical optimization
methods described in Section 6.2. We show results for 𝑝 = 1 through 𝑝 = 4. Each time the algorithm is
performed 10 times on the path graph 𝑃5 with 103 initial points.

Figure 7.4: Expectation 𝐹1 reached by each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 for different classical
optimization methods. Expectations given are averages of 10 runs on 𝑃5 with 103 initial points each.

For 𝑝 = 1 we see in Figure 7.4 that each of the optimization methods was able to find the minimum
of 𝐹1(𝛽1) that was observed earlier in Figure 7.1. The only 𝑝 for which all the optimization methods
coincide is 𝑝 = 1, as we will see when discussing 𝑝 = 2 and beyond. 𝐻𝑀𝑉1 performs best with an
expectation of 2.732 for all optimization methods, followed by 𝐻𝑀𝑉2 with an expectation of 2.946 and
𝐻𝑀𝑉3 with an expectation of 3.149. As discussed earlier, even though 𝐻𝑀𝑉1 outperforms both 𝐻𝑀𝑉2 and
𝐻𝑀𝑉3 , the expectation of 2.732 of 𝐻𝑀𝑉1 is still not low enough for practical use.

Figure 7.5: Expectation 𝐹2 reached by each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 for different classical
optimization methods. Expectations given are averages of 10 runs on 𝑃5 with 103 initial points each.
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We see in Figure 7.5 that 𝑝 = 2 is the lowest value of 𝑝 where each optimization method finds a different
expectation value for all three Hamiltonians. 𝐻𝑀𝑉1 performs by far the worst of the three Hamiltonians,
not improving much compared to 𝑝 = 1 with an average expectation across all optimization methods of
2.69. 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 improve much more with average expectation values of 2.253 and 2.193 for 𝐻𝑀𝑉2
and 𝐻𝑀𝑉3 respectively. 𝐻𝑀𝑉3 performs best, achieving the lowest expectation value yet of 2.188 when
ran using the COBYLA method. Interesting to note is that the optimization methods are slightly more
consistent in finding a similar minimum value for 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 than for they are for 𝐻𝑀𝑉1 .

Figure 7.6: Expectation 𝐹3 reached by each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 for different classical
optimization methods. Expectations given are averages of 10 runs on 𝑃5 with 103 initial points each.

For 𝑝 = 3 we see in Figure 7.6 that the expectation values of 𝐻𝑀𝑉1 have improved with expectation
values ranging between 2.186 and 2.220. Nevertheless, 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 still both outclass 𝐻𝑀𝑉1 , both
still reaching a lower expectation value regardless of what optimization method was used. 𝐻𝑀𝑉3 again
slightly outperforms 𝐻𝑀𝑉2 on average, with the gap between the two largest when using BFGS. COBYLA
again performs best on average for the optimization methods, although the lowest expectation is found
by CG when using 𝐻𝑀𝑉3 .

Figure 7.7: Expectation 𝐹4 reached by each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 for different classical
optimization methods. Expectations given are averages of 10 runs on 𝑃5 with 103 initial points each.
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At 𝑝 = 4 we finally see 𝐻𝑀𝑉1 catch up with 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 . All three Hamiltonians reach expectation
values below 2.1 on average, with the best expectation value being reached by 𝐻𝑀𝑉3 when using the
Nelder-Mead method. 𝐻𝑀𝑉2 now performs the worst for almost all of the optimization methods, with
the exception of Powell’s method.

7.2.2. Comparison for set expectation
In the previous section the expectations of mixing Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and 𝐻𝑀𝑉3 were compared
for set 𝑝, where 𝑝 ∈ {1, 2, 3, 4}. In this section we will instead compare the depth 𝑝 needed to reach
a set expectation 𝐹 for each of the Hamiltonians. We do not want the expectation 𝐹𝑝 to be too high,
otherwise we will not measure the optimal solution often enough. When introducing noise into the
algorithm, this chance of finding the optimum will be reduced, so we want our expectation 𝐹𝑝 to be low.
We choose the set expectation to be reached to be 𝐹 = 2.2. In Figure 7.8 we plot the depth 𝑝 needed to
reach an expectation better than 𝐹 = 2.2 against each of the Hamiltonian versions for all of the different
optimization methods.

Figure 7.8: Depth 𝑝 needed to reach the set expectation 𝐹 = 2.2 for each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 , and
𝐻𝑀𝑉3 for different classical optimization methods. Depths 𝑝 given are averages of 10 runs on 𝑃5 with 103 initial
points each.

Here we see that the original mixing Hamiltonian 𝐻𝑀𝑉1 most often needs to use a depth of 𝑝 = 4 (when
using Powell, BFGS, or CG) and sometimes a depth of 𝑝 = 3 (when using Nelder-Mead or COBYLA) to
reach an expectation of less than 2.2. 𝐻𝑀𝑉2 improves on this by only needing a depth of 𝑝 = 3 for all
optimization methods used. 𝐻𝑀𝑉3 again achieves better results than both, only needing a depth of 𝑝 = 2
to reach an expectation less than 2.2 for all optimization methods.

Although 𝐻𝑀𝑉3 needs a lower depth 𝑝 to reach good expectation values, one could wonder if us-
ing 𝐻𝑀𝑉3 instead of 𝐻𝑀𝑉1 is accompanied by a longer runtime as these Hamiltonians are of higher
degree. Using higher degree Hamiltonians with a lower depth 𝑝 is not necessarily beneficial if the
runtime of the algorithm becomes much longer in doing so. We thus compare the runtime of the
algorithm for each of the Hamiltonians when the depth 𝑝 from Figure 7.8 is used to reach an expectation
of less than 2.2, the results of which are shown in Figure 7.9.
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Figure 7.9: Relative runtime needed to reach the set expectation 𝐹 = 2.2 for each of the Hamiltonians 𝐻𝑀𝑉1 , 𝐻𝑀𝑉2 ,
and 𝐻𝑀𝑉3 for different classical optimization methods. Relative runtimes given are averages of 10 runs on 𝑃5 with
103 initial points each. The baseline is set at 1 for each of the optimization methods, and optimization methods
themselves are not relative to each other.

We see that the improvement for 𝐻𝑀𝑉2 to only need depth 𝑝 = 3 is not enough to keep up with 𝐻𝑀𝑉1 in
terms of runtime. 𝐻𝑀𝑉2 was only faster when using the Nelder-Mead method, and in comparison to
𝐻𝑀𝑉1 was 8% slower on average. 𝐻𝑀𝑉3 outperforms both 𝐻𝑀𝑉1 and 𝐻𝑀𝑉2 for all optimization methods
used, decreasing runtime by 10% on average compared to 𝐻𝑀𝑉1 .
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Conclusions and Discussion

In this thesis we explored the use of the Quantum Approximate Optimization Algorithm (QAOA) and
the Quantum Alternating Operator Ansatz (QAOA+) for solving the minimum vertex cover problem
(MinVertexCover), which is a classic combinatorial optimization problem with applications in many
fields, such as biotechnology, network design and transportation. We discussed how MinVertexCover is
solved and approximated on classical computers, as well as the background of both the QAOA and
QAOA+ algorithms. Next, the application of QAOA+ to MinVertexCover was examined, which uses
a first degree mixing Hamiltonian 𝐻𝑀𝑉1 . This mixing Hamiltonian mixes between solution states of
MinVertexCover which are exactly Hamming distance 1 apart.

This thesis introduced two new second degree mixing Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 . These Hamil-
tonians are based on the premise to be able to mix between solutions of MinVertexCover which are
Hamming distance 1 or 2 apart. 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 were constructed by looking at all possibilities to
switch 2 vertices at the same time and then adding these terms to the original mixing Hamiltonian.
The new mixing Hamiltonians were subsequently implemented and benchmarked against the original
first degree mixing Hamiltonian for MinVertexCover using multiple different classical optimization
methods, testing for both depth 𝑝 needed to reach a set expectation as well as runtime.

While the second degree mixing Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 do not perform well at the low
depth 𝑝 = 1, for 𝑝 = 2 and 𝑝 = 3 they achieve a better expectation 𝐹𝑝 than 𝐻𝑀𝑉1 for all optimization
methods used. 𝐻𝑀𝑉3 performs by far the best of all mixing Hamiltonians. It achieves a significantly
better average expectation for 𝑝 = 2, keeps a slight advantage at 𝑝 = 3, and still attains equal results to
𝐻𝑀𝑉1 at 𝑝 = 4. 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 also reach the desired expectation 𝐹 = 2.2 at an earlier 𝑝 on average than
the first degree mixing Hamiltonian 𝐻𝑀𝑉1 . 𝐻𝑀𝑉3 only needs a depth of 𝑝 = 2 to reach this expectation
𝐹 in comparison to the depth 𝑝 = 4 (or sometimes 𝑝 = 3) for 𝐻𝑀𝑉1 . Even though 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 are
more computationally expensive to compute, the benefit of having a smaller depth 𝑝 compensates
for this fact in terms of runtime. Although on average 𝐻𝑀𝑉2 takes longer to reach 𝐹 = 2.2 than 𝐻𝑀𝑉1 ,
𝐻𝑀𝑉3 outperforms 𝐻𝑀𝑉1 regarding runtime for all optimization methods used with a relative runtime
improvement of 10% on average. 𝐻𝑀𝑉3 even reaches runtime improvements of as much as 20% when
using the very commonly utilized BFGS method.

When running the algorithm, the runtime of the optimization methods imposed significant limi-
tations on the amount of total runs. Even COBYLA, the fastest optimization method across the board,
had a runtime of at least 15 minutes when run with 103 initial points on a graph with only 5 vertices.
Presumably, this is due to hardware limitations of the computer used. It would be interesting for
future work to explore how the Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 perform on larger graphs. As these
Hamiltonians are currently implemented using their matrix, one could first look into their decomposi-
tion into elementary gates to calculate the gradient more easily to speed up the optimization process.
Using this improvement, one could test each of the Hamiltonians on substantially larger graphs using
gradient-based methods to see if 𝐻𝑀𝑉3 still reaches better expectation values sooner.
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Another reason to examine the decomposition of 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 would be to find periodicity in
these Hamiltonians. Using this periodicity, the search space for optimal parameters would be con-
siderably easier to explore and the optima found could possibly be determined to be global optima.
Currently, the initial points are chosen within the region of (0, 2𝜋)𝑝 , but different choices for the region
of initial points are possible. As discussed before, we can not take initial points from the full parameter
space, as there exists no uniform distribution over this subspace, however, different initial regions could
result in different Hamiltonian behaviour and thus different results.

Should the results for 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 recur in larger graphs, then the use of second and possi-
bly higher degree mixing Hamiltonians will become a tradeoff of the depth of the quantum circuit and
the size of the classical optimization space. Higher degree Hamiltonians will be more susceptible to
noise as implementing them requires more gates. On the contrary, as they need a smaller 𝑝 to reach a
certain expectation they do not need to search as large of a parameter space as compared to the first
degree Hamiltonian. Provided that quantum computers become robust enough in the future, these new
Hamiltonians could prove to be useful in significantly speeding up the classical optimization element of
QAOA and QAOA+. Keeping the depth 𝑝 low even for increasingly large optimization problems could
prove essential in the use of QAOA as a route to Quantum Supremacy.
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Extensions and Alternatives

In this chapter we will look at extensions of the Hamiltonians constructed in sections 5.1 and 5.2, along
with the same principles applied to mixing Hamiltonians of other optimization problems. We will also
look at the idea of penalty methods and how they can be used to manipulate Hamiltonians.

9.1. Extensions
First, we will look at two ways to extend the idea of second degree mixing Hamiltonians. We will start
by trying to construct third and higher degree mixing Hamiltonians for MinVertexCover, after which
we look at second degree mixing Hamiltonians for other optimization problems.

9.1.1. Third and Higher Degree Mixing Hamiltonians for MinVertexCover
In Section 5.1 and Section 5.2 we saw the introduction of new mixing Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 .
These Hamiltonians are based on the idea of also mixing vertex covers with Hamming distance 2
between them. We can continue this pattern to construct Hamiltonians which will mix vertex covers
with larger Hamming distance between them. This section will cover the complete construction of the
third degree Hamiltonian, along with a generalisation for higher degree Hamiltonians.

To design a Hamiltonian that mixes vertex covers with Hamming distance 3 between them, we
need to perform 𝑋-gates to three different vertices while making sure the resulting solution is still a
feasible cover. We look at all possible subgraphs of size 3, which can be seen in Figure 9.1.
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Figure 9.1: All possible subgraphs of size 3 with their case number.
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We consider each of the cases (a) through (d) and construct a Hamiltonian term for each, defining the
neighbourhood 𝑁(𝑉′) of a set of vertices 𝑉′ as the set of vertices in 𝐺 \𝑉′ which are adjacent to at least
one vertex in 𝑉′.

Case (a): None of the vertices are connected
In the case that none of the vertices are connected, we can repeat the process of Section 5.1 to find the
Hamiltonian term to be

𝑋𝑎𝑋𝑏𝑋𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣 , (9.1)

where again 𝑁({𝑎, 𝑏, 𝑐}) is the set of vertices adjacent to 𝑎, 𝑏 or 𝑐 which are not 𝑎, 𝑏, or 𝑐 themselves.
Finishing this case we sum over all possible combinations of triples of vertices which are non-adjacent
to find

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∉𝐸,

{𝑎,𝑐}∉𝐸, {𝑏,𝑐}∉𝐸

©­«𝑋𝑎𝑋𝑏𝑋𝑐
∏

𝑣∈𝑁({𝑎,𝑏,𝑐})
𝑊𝑣

ª®¬ (9.2)

as the term of the mixing Hamiltonian swapping three non-adjacent vertices at the same time.

Case (b): Two of the vertices are connected with a single edge
In the case that just two of the vertices are connected, we can use a combination of sections 5.1 and 5.2.
Assume without loss of generality that {𝑎, 𝑏} ∉ 𝐸, {𝑎, 𝑐} ∈ 𝐸, {𝑏, 𝑐} ∉ 𝐸. Here we are in the situation
seen in Figure 9.2.
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Figure 9.2: Example graph where 𝑎 and 𝑐 are connected.

This is again similar to the terms used in 𝐻𝑀𝑉3 in Section 5.2, as we see that 𝑎 and 𝑐 can not both be set
to 0 or 1 at the same time. This would result in either not a vertex cover if both were set to 0 (as {𝑎, 𝑐}
is then not covered) or if both were set to 1 we would mix out of the feasible subspace. All vertices
adjacent to 𝑎, 𝑏 and 𝑐 that are not 𝑎, 𝑏 or 𝑐 themselves must already be included in the cover, as was
previously stated. This can be confirmed by including the𝑊𝑣 terms. Thus, in the case that {𝑎, 𝑏} ∉ 𝐸,
{𝑎, 𝑐} ∈ 𝐸, {𝑏, 𝑐} ∉ 𝐸 this leads to the term

𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣 . (9.3)
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We sum over all possible subgraphs with a single edge between two vertices to find the Hamiltonian
term if two of the vertices are connected to be

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∈𝐸,

{𝑎,𝑐}∉𝐸, {𝑏,𝑐}∉𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
+

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∉𝐸,
{𝑎,𝑐}∈𝐸, {𝑏,𝑐}∉𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
+

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∉𝐸,
{𝑎,𝑐}∉𝐸, {𝑏,𝑐}∈𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
. (9.4)

Case (c): All of the vertices are connected through two edges
In the case that all of the vertices are connected through two edges, we need to construct an entirely
new term. Assume without loss of generality that {𝑎, 𝑏} ∈ 𝐸, {𝑎, 𝑐} ∉ 𝐸, {𝑏, 𝑐} ∈ 𝐸. Here we are in the
situation seen in Figure 9.3.
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Figure 9.3: Example graph where {𝑎, 𝑏} ∈ 𝐸 and {𝑏, 𝑐} ∈ 𝐸.

For our Hamiltonian we need to make sure both the original state as well as the state that will be mixed
to are vertex covers. If we swap 𝑎, 𝑏 and 𝑐 all at the same time this is only possible if |𝑎𝑏𝑐⟩ = |101⟩ or
|𝑎𝑏𝑐⟩ = |010⟩. We again check for these situations using𝑊𝑣 operators, in the case of the example this
leads to the term

𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣 . (9.5)
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We again sum over all possible subgraphs with all vertices connected through two edges to find the
term for the third degree Hamiltonian to be

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∈𝐸,

{𝑎,𝑐}∉𝐸, {𝑏,𝑐}∈𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
+

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∈𝐸,

{𝑎,𝑐}∈𝐸, {𝑏,𝑐}∉𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
+

∑
𝑎,𝑏,𝑐 ∈𝑉 s.t. {𝑎,𝑏}∉𝐸,
{𝑎,𝑐}∈𝐸, {𝑏,𝑐}∈𝐸

(
𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

+ 𝑋𝑎𝑋𝑏𝑋𝑐𝑊𝑎𝑊𝑏𝑊𝑐

∏
𝑣∈𝑁({𝑎,𝑏,𝑐})

𝑊𝑣

)
. (9.6)

Case (d): All of the vertices are connected through three edges
In the case that all vertices are connected, we are in the situation seen in Figure 9.4.

a

b

c

2
2

2

2
2 2

2
2

2

Figure 9.4: Graph where {𝑎, 𝑏} ∈ 𝐸, {𝑎, 𝑐} ∈ 𝐸, and {𝑏, 𝑐} ∈ 𝐸.

This is a special case, as no non-zero Hamiltonian term can be constructed for this case. Even if all the
neighbours of 𝑎, 𝑏 and 𝑐 (shown in the figure in blue) are in the vertex cover, there is still no possible
vertex cover which is still feasible after swapping all of 𝑎, 𝑏 and 𝑐 (unlike the cover |𝑎𝑏𝑐⟩ = |101⟩ from
case (c)). This concludes this case.

Combining all cases gives the following third degree term Hamiltonian given as a sum of equa-
tion numbers:

𝐻𝑀 = (9.2) + (9.4) + (9.6). (9.7)
Adding the terms from the first and second degree Hamiltonian, this would lead to the full third degree
Hamiltonian to be

𝐻𝑀 = (4.24) + (5.2) + (5.6) + (9.2) + (9.4) + (9.6), (9.8)
again written as a sum of equation numbers.
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Through analogous ways it is possible to construct even higher degree Hamiltonians for MinVer-
texCover as well. In fact, it is possible to create a Hamiltonian term for each possible subgraph 𝐺′ as
long as the subgraph has a vertex cover 𝐶 such that 𝐻 \ 𝐶 is also a vertex cover. This is exactly the case
when 𝐺′ is bipartite as is proven in the following theorem.

Theorem 9.1. The Hamiltonian term 𝐻𝐺′ corresponding to a subgraph 𝐺′ = (𝑉′, 𝐸′) of 𝐺 = (𝑉, 𝐸) is non-zero
if and only if 𝐺′ is bipartite.

Proof. ⇒:
If the Hamiltonian term 𝐻𝐺′ of degree 𝑘 corresponding to subgraph 𝐺′ is non-zero then it has at least
one non-zero element (𝐻𝐺′)𝑖 𝑗 which mixes bitstring 𝑖 to bitstring 𝑗. Remember that any Hamiltonian
must preserve the feasible subspace, so bitstrings 𝑖 and 𝑗 correspond to vertex covers 𝐶𝑖 and 𝐶 𝑗 . 𝐻𝐺′ is
the Hamiltonian term of degree 𝑘 corresponding to 𝐺′, so we know |𝑉′ | = 𝑘 and the term swaps all 𝑘
vertices of 𝐺′ at the same time. Thus, bitstring 𝑖 and 𝑗 are exactly the same for vertices in 𝐺 \ 𝐺′ but the
opposite for vertices in 𝐺′. Let 𝐴 ∈ 𝐺′ be all vertices in 𝐺′ set to 1 in solution 𝑖 and 𝐵 ∈ 𝐺′ be all vertices
in 𝐺′ set to 1 in solution 𝑗. Note that 𝐴 and 𝐵 are disjoint and 𝐴∪ 𝐵 = 𝑉′. Furthermore, as 𝐶𝑖 and 𝐶 𝑗 are
both vertex covers of 𝐺 we must have that 𝐴 and 𝐵 are both vertex covers of 𝐺′. If 𝐴 is a vertex cover of
𝐺′ then 𝐵 must be independent, because if two vertices of 𝐵 were adjacent in 𝐺′ then this edge would
not be covered by 𝐴 as 𝐴 and 𝐵 are disjoint. Similarly 𝐵 is a vertex cover of 𝐺′, thus 𝐴 is independent as
well. Thus, we have found two disjoint, independent sets 𝐴 and 𝐵 such that 𝐴∪ 𝐵 = 𝑉′. Therefore, 𝐺′ is
bipartite.

⇐:
If 𝐺′ is bipartite then we can divide its vertices in two disjoint, independent subsets 𝐴 and 𝐵. As we saw
in section 2.2, both 𝐴 and 𝐵 are vertex covers of 𝐺′. This means we can construct a Hamiltonian term
𝐻𝐺′ that swaps all vertices of 𝐺′. In other words, if we apply 𝐻𝐺′ to a cover 𝐶1 with 𝐴 ∈ 𝐶1, then 𝐻 will
mix this cover 𝐶1 to the cover with 𝐶2 with 𝐵 ∈ 𝐶2 and 𝐶2 \ 𝐵 = 𝐶1 \ 𝐴. To construct this term we again
note all vertices adjacent to vertices in 𝐺′ need to be set to 1. Furthermore, we need to have exactly all
vertices in 𝐴 or all vertices in 𝐵 set to 1, thus we get the following Hamiltonian 𝐻𝐺′ term corresponding
to 𝐺′:

𝐻𝐺′ =
∏
𝑢∈𝑉′

𝑋𝑢

∏
𝑎∈𝐴

𝑊𝑎

∏
𝑏∈𝐵

𝑊𝑏

∏
𝑣∈𝑁(𝑉′)

𝑊𝑣

+
∏
𝑢∈𝑉′

𝑋𝑢

∏
𝑎∈𝐴

𝑊𝑎

∏
𝑏∈𝐵

𝑊𝑏

∏
𝑣∈𝑁(𝑉′)

𝑊𝑣 , (9.9)

where 𝑁(𝑉′) is the set of vertices in 𝐺 \ 𝐺′ adjacent to at least one vertex in 𝐺′. □

Note that although a disconnected graph can have more than one bipartition [58], every bipartition
of the same subgraph leads to the same Hamiltonian term. This procedure for constructing mixing
Hamiltonians can be used to find Hamiltonian terms of any degree 𝑘 ≤ 𝐾 where 𝐾 is the size of the
largest bipartite subgraph of 𝐺. We can find the 𝑛th degree mixing Hamiltonian by summing over all
possible bipartite subgraphs of size ≤ 𝑛, resulting in

𝐻𝑀 =

𝑛∑
𝑖=1

∑
𝐺′∈𝐺𝑖 s.t.

𝐺′is bipartite

( ∏
𝑢∈𝑉′

𝑋𝑢

∏
𝑎∈𝐴

𝑊𝑎

∏
𝑏∈𝐵

𝑊𝑏

∏
𝑣∈𝑁(𝑉′)

𝑊𝑣

+
∏
𝑢∈𝑉′

𝑋𝑢

∏
𝑎∈𝐴

𝑊𝑎

∏
𝑏∈𝐵

𝑊𝑏

∏
𝑣∈𝑁(𝑉′)

𝑊𝑣

)
, (9.10)

where 𝐺𝑖 is the set of subgraphs of 𝐺 of size 𝑖 and (𝐴, 𝐵) is a bipartition of subgraph 𝐺′.
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9.1.2. Second Degree Mixing Hamiltonians for Other Optimization Problems
The mixing Hamiltonians𝐻𝑀𝑉2 and𝐻𝑀𝑉3 as introduced in sections 5.1 and 5.2 were designed specifically
for MinVertexCover, but second degree Hamiltonians can also be constructed for other optimization
problems. The simplest one is a second degree version of the transverse field Hamiltonian for
unconstrained optimization problems as seen in (4.5), where the second degree Hamiltonian is given by

𝐻𝑀 =
∑
𝑣∈𝑉

𝑋𝑣 +
∑

𝑣∈𝑉,𝑤∈𝑉
𝑋𝑣𝑋𝑤 . (9.11)

Second degree Hamiltonians are always of the form 𝐻𝑀 =
∑
𝑣∈𝑉 𝑋𝑣 · 𝑎 +

∑
𝑣∈𝑉,𝑤∈𝑉 𝑋𝑣𝑋𝑤 · 𝑏, where 𝑎

and 𝑏 are dependent on the problem structure, as these factors make sure the feasible subspace is not
left while mixing. In the case where there are no restrictions to the domain (such as with the maximum
cut problem), these terms are not needed and can be taken as 𝐼. As seen earlier, for MinVertexCover
these terms are usually of the form

∏
𝑣∈𝑉𝑊𝑣 to check that all neighbours of a flipped vertex are also

in the cover so that no edge is left uncovered. To give an example on how a second degree mixing
Hamiltonian can be constructed we look at the independent set problem.

Example
An independent set of a graph 𝐺 = (𝑉, 𝐸) is a subset of vertices 𝑆 ⊆ 𝑉 such that no pair of ver-
tices in 𝐶 is adjacent. The maximum independent set problem (MaxIndependentSet) is the problem of
finding an independent set of maximum size. To construct the first degree mixing Hamiltonian for the
independent set problem we have to look at the mixing rules. A vertex can only be swapped in or out of
the independent set 𝑆 if none of its neighbours are currently in 𝑆. Thus, we iterate over all vertices and
its neighbours to find the first degree mixing Hamiltonian to be

𝐻𝑀 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 𝑠.𝑡. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬ . (9.12)

To construct the second degree Hamiltonian for MaxIndependentSet we again consider two cases. Let
the to be swapped vertices be 𝑢 and 𝑣. If 𝑢 and 𝑣 are not adjacent then they can both be swapped as
long as all of their neighbours are not in 𝑆, resulting in the term

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (9.13)

Only including these terms leads to the MaxIndependentSet-version of the Hamiltonian from (5.3),
given by

𝐻𝑀 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 𝑠.𝑡. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (9.14)

If 𝑢 and 𝑣 are adjacent, then they can not be swapped in at the same time, as then the set 𝑆 would not be
independent anymore. As swapping in or out is a symmetric operation, they therefore can also not be
swapped out at the same time. Thus 𝑢 can only be swapped in if 𝑣 is being swapped out at the same
time and vice versa (similar to MinVertexCover). Adding these terms leads to the full second degree
mixing Hamiltonian
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𝐻𝑀 =
∑
𝑢∈𝑉

©­«𝑋𝑢
∏

𝑣∈𝑉 s.t. {𝑢,𝑣}∈𝐸
𝑊𝑣

ª®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∉𝐸

©­­­«𝑋𝑢𝑋𝑣
∏

𝑤∈𝑉 s.t. {𝑢,𝑤}∈𝐸
or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∈𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬
+

∑
𝑢∈𝑉,𝑣∈𝑉 s.t.{𝑢,𝑣}∈𝐸

©­­­«𝑋𝑢𝑋𝑣𝑊𝑢𝑊𝑣

∏
𝑤∈𝑉 s.t. 𝑤≠𝑢, 𝑤≠𝑣
{𝑢,𝑤}∈𝐸 or {𝑣,𝑤}∈𝐸

𝑊𝑤

ª®®®¬ . (9.15)

This concludes this example.

Second degree Hamiltonians can be constructed in a similar way for other optimization problems. In
the general sense one only needs to see what the restrictions of the feasible subspace are, and from there
it is possible to quantify what requirements need to be met in order to swap two vertices in or out at
the same time. How these second degree Hamiltonians perform for other problems could be problem
dependent and is an interesting question for future research.

9.2. Alternatives
Here we will look at two ways to implement second degree mixing Hamiltonians differently within the
QAOA+ framework. Firstly, we will look at how parameter-shift rules can greatly improve the runtime
of gradient methods. Secondly, we will explore how penalty methods can be used to move constraints
to the problem Hamiltonian. This opens up the possibility to use the general unconstrained second
degree mixing Hamiltonian discussed in 9.1.2, which could be easier to implement compared to second
degree mixing Hamiltonians specifically designed for each optimization problem.

9.2.1. Parameter-shift rules
Earlier in section 6.2 we saw that for both BFGS and CG the gradient of the to be optimized function
𝑓 is used in the algorithm. For the results from BFGS and CG in this thesis the gradient Δ 𝑓 was
approximated using finite differences, but other methods for approximating the gradient are also
possible, like automatic differentiation [59] and parameter-shift rules [60]. The problem with using
finite difference is that the high errors of near-term quantum devices might make them difficult to use.
Parameter-shift rules are a different option for estimating the derivative of quantum functions, having
several advantages compared to using finite differences. Parameter-shift rules can require fewer circuit
evaluations and are more robust to the errors caused by quantum hardware [61].

Parameter-shift rules allow the gradient of a quantum circuit to be calculated by evaluating the
quantum circuit at various shifted points. We follow the example from [62] and consider a quantum
circuit where the only unitary is the 𝑅𝑥 gate. The 𝑅𝑥 gate is of the form

𝑈(𝜃) = 𝑅𝑥(𝜃) = 𝑒−𝑖
𝜃
2 𝑋 . (9.16)

The gradient of the 𝑅𝑥 gate with respect to 𝜃 is given by

∇𝜃𝑈(𝜃) = ∇𝜃𝑅𝑥(𝜃) = − 𝑖2𝑋𝑒
−𝑖 𝜃2 𝑋 = − 𝑖2𝑋𝑈(𝜃) = − 𝑖2𝑈(𝜃)𝑋. (9.17)
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We want to know how our parameter 𝜃 influences the expectation of an observable 𝐻 in its final state.
We apply the 𝑅𝑥 gate to a starting state |𝜓⟩ and measuring the observable 𝐻 to get the function

𝑓 (𝜓, 𝜃) = ⟨𝜓 |𝑈†(𝜃)𝐻𝑈(𝜃) |𝜓⟩ . (9.18)

The gradient of this function 𝑓 (𝑥, 𝜃) with respect to 𝜃 is then given by

∇𝜃 𝑓 (𝑥, 𝜃) = ∇𝜃 ⟨𝜓 |𝑈†(𝜃)𝐻𝑈(𝜃) |𝜓⟩
= ⟨𝜓 | ∇𝜃(𝑈†(𝜃)𝐻𝑈(𝜃)) |𝜓⟩
= ⟨𝜓 | ∇𝜃𝑈

†(𝜃)𝐻𝑈(𝜃) +𝑈†(𝜃)𝐻∇𝜃𝑈(𝜃) |𝜓⟩ , (9.19)

where we use the product rule. Using (9.17) we can rewrite this as

∇𝜃 𝑓 (𝜓, 𝜃) = ⟨𝜓 | ∇𝜃𝑈
†(𝜃)𝐻𝑈(𝜃) +𝑈†(𝜃)𝐻∇𝜃𝑈(𝜃) |𝜓⟩

= ⟨𝜓 | (− 𝑖2𝑈
†(𝜃)𝑋†)𝐻𝑈(𝜃) +𝑈†(𝜃)𝐻(− 𝑖2𝑋𝑈(𝜃)) |𝜓⟩

= − 𝑖2 ⟨𝜓 |𝑈†(𝜃)(𝑋𝐻 + 𝐻𝑋)𝑈(𝜃) |𝜓⟩ , (9.20)

using the linearity of the inner product and the fact that 𝑋† = 𝑋. Next we make use of a commutator
identity from [60] to evaluate 𝑋𝐻 + 𝐻𝑋, this leads to

∇𝜃 𝑓 (𝜓, 𝜃) = − 𝑖2 ⟨𝜓 |𝑈†(𝜃)(𝑋𝐻 + 𝐻𝑋)𝑈(𝜃) |𝜓⟩

= − 𝑖2 ⟨𝜓 |𝑈†(𝜃)( −𝑖(𝑈†(𝜋2 )𝐻𝑈(𝜋2 ) −𝑈†(−𝜋
2 )𝐻𝑈(−𝜋

2 )) )𝑈(𝜃) |𝜓⟩ . (9.21)

Using the fact that 𝑈(𝜃)𝑈(𝜋2 ) = 𝑈(𝜋2 )𝑈(𝜃) = 𝑈(𝜃 + 𝜋
2 ) and 𝑈†(𝜃)𝑈†(𝜋2 ) = 𝑈†(𝜃 + 𝜋

2 ) together with
linearity, we can rewrite this as

∇𝜃 𝑓 (𝜓, 𝜃) =
1
2 ⟨𝜓 |𝑈†(𝜃)𝑈†(𝜋2 )𝐻𝑈(𝜋2 )𝑈(𝜃) |𝜓⟩

− 1
2 ⟨𝜓 |𝑈†(𝜃)𝑈†(−𝜋

2 )𝐻𝑈(−𝜋
2 )𝑈(𝜃) |𝜓⟩

=
1
2 ⟨𝜓 |𝑈†(𝜃 + 𝜋

2 )𝐻𝑈(𝜃 + 𝜋
2 ) |𝜓⟩

− 1
2 ⟨𝜓 |𝑈†(𝜃 − 𝜋

2 )𝐻𝑈(𝜃 − 𝜋
2 ) |𝜓⟩ . (9.22)

Note that we can rewrite the gradient as a sum of function evaluations through

∇𝜃 𝑓 (𝜓, 𝜃) =
1
2 ⟨𝜓 |𝑈†(𝜃 + 𝜋

2 )𝐻𝑈(𝜃 + 𝜋
2 ) |𝜓⟩

− 1
2 ⟨𝜓 |𝑈†(𝜃 − 𝜋

2 )𝐻𝑈(𝜃 − 𝜋
2 ) |𝜓⟩

=
1
2 ( 𝑓 (𝜓, 𝜃 + 𝜋

2 ) − 𝑓 (𝜓, 𝜃 − 𝜋
2 )). (9.23)

This idea can be generalised to find derivatives of the form 𝑈(𝜃) = 𝑒 𝑖𝜃𝐺) where 𝐺 is the Hermitian
generator 𝐺 which has exactly two eigenvalues [63]. We can shift these eigenvalues to be of the form
𝜆1,2 = ±𝑟, as the global phase has no influence on the expectation of 𝑈 . The gradient can then be
computed using the parameter-shift rule

∇ 𝑓 (𝜓, 𝜃) = 𝑟

2 sin(𝑟𝑠) ( 𝑓 (𝜓, 𝜃 + 𝑠) − 𝑓 (𝜓, 𝜃 − 𝑠)), (9.24)

where 𝑠 ∈ (0,𝜋) is a freely chosen shift parameter. Further generalizations to these formulas were also
constructed in [63].
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These parameter-shift rules can be very useful in determining the gradient of the expectation give in
(4.13). This gradient can be used to make the optimization more efficient in the BFGS and CG methods
described in sections 6.2.4 and 6.2.5. Instead, the gradient was approximated using finite differences in
this thesis. This method was used because the Hamiltonians 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 are implemented directly
via their matrix form, as described in section 6.1. As an alternative the circuit could be differentiated
with general parameter-rules if the spectral decomposition of 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 is examined [64]. Similar
if 𝐻𝑀𝑉2 and 𝐻𝑀𝑉3 were to be decomposed into standard gates one could differentiate each of them using
parameter-shift rules as in (9.24) as seen in [65]. Using these rules could prove useful in testing if second
and higher degree mixing Hamiltonians hold up when applied to larger graphs, as they could greatly
reduce the computational cost of gradient-based algorithms.

9.2.2. Penalty Methods
In Section 4.1 we saw that the original Quantum Approximate Optimization Algorithm considers an
unconstrained optimization problem as given by (4.1) and (4.2). The setup for QAOA implemented the
objective function in the problem Hamiltonian, while the transverse field Hamiltonian was the mixing
Hamiltonian for every problem. The Quantum Alternating Operator Ansatz expanded on this setup by
considering families of problem and mixing Hamiltonians, so that constrained optimization problems
could also be approximated using quantum algorithms. The constraints are implemented into mixing
Hamiltonians by making sure they preserve the feasible subspace, which is defined by the constraints.
The objective function is still implemented through the problem Hamiltonian. Up to this point the
objective function was associated with the problem Hamiltonian, while the constraints were associated
with the mixing Hamiltonian. However, we can remove constraints and integrate them within the
objective function by using penalty methods. The goal of this subsection is to show that constraints are
not necessarily limited to being implemented into the mixing Hamiltonian, and can be implemented
through the problem Hamiltonian as well.

Penalty methods are a class of optimization algorithms used to solve constrained problems. The
idea is to not completely disallow certain solutions to the problem, but instead penalize them so that
their objective value decreases. The constraints are removed and a new objective function is constructed
based on both the old objective function and the constraints. This is done through the addition of a
penalty function to the objective function, which is also multiplied by a penalty coefficient. The penalty
function penalizes any solution outside of the feasible subspace, and adds 0 penalty to any solution
within the feasible subspace. The original constrained optimization problem is then replaced by a series
of unconstrained optimization problems which then converge to the solution of the original problem.
To begin, the series of problems a starting penalty coefficient is chosen, and the new unconstrained
optimization problem is solved. For the next iteration the penalty coefficient is increased and this
new unconstrained optimization problem is solved again, using the solution of the previous iteration
as a starting solution. By increasing the penalty coefficient at each iteration the solution eventually
converges, as a very large penalty coefficient corresponds to solutions outside the feasible subspace
never being the optimum [66].

Many possible penalty functions and series of penalty coefficients are possible, here we look at a
distance-based penalty function as described in [67]. Consider the constrained optimization problem
given by

max 𝑓 (𝑥) (9.25)
s.t. 𝑐 𝑗(𝑥) ≤ 0 for all 𝑗 ∈ {1, .., 𝑚}. (9.26)

where 𝑓 is the objective function and each 𝑐 𝑗 is one of 𝑚 total constraints. As this is a maximization
problem, we want to penalize the solutions which do not follow all constraints by subtracting a penalty
function. Note that this penalty function is a function of the constraints, and not of the solution itself.
Define our example penalty function as

𝑝(𝑐 𝑗(𝑥)) = max(0, 𝑐 𝑗(𝑥)). (9.27)
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We want 𝑐 𝑗(𝑥) to be negative as defined by (9.26), but we do not want to make our solution greater by
subtracting a negative penalty function, so we take the maximum between the constraint result and 0. It
should be noted that this penalty is not severe and is only used for demonstrative purposes, usually at
least a quadratic loss penalty is chosen. As we want to penalize a solution for each of the constraints, it
violates we sum over all constraints and multiply by a penalty coefficient 𝜎 to get

𝜎
𝑚∑
𝑗=1

max(0, 𝑐 𝑗(𝑥)). (9.28)

Subtracting this from the original objective function and using a different penalty coefficient 𝜎𝑘 for the
problem with index 𝑘 (for instance using 𝜎𝑘+1 = 2𝜎𝑘) gives the following new objective functions 𝐹𝑘(𝑥):

𝐹𝑘(𝑥) = 𝑓 (𝑥) − 𝜎𝑘

𝑚∑
𝑗=1

max(0, 𝑐 𝑗(𝑥)). (9.29)

To solve the constrained problem one would then iteratively solve the unconstrained problems

max 𝐹𝑘(𝑥). (9.30)

Penalty methods can turn a constrained optimization problem into an unconstrained optimization
problem (or a series of unconstrained optimization problems). Penalty methods are not the only way of
accomplishing this, and a similar transformation can be achieved through the use of other methods,
such as interior point methods [68] or augmented Lagrangian methods [69, 70]. In the context of
Hamiltonians this means it is possible to use more simple mixing Hamiltonians by adding the penalty
functions to the construction of the problem Hamiltonian [71]. To illustrate this, instead of having to
implement the constraints of the example given in (9.26), one could use the new objective function from
(9.29) to directly construct a problem Hamiltonian of the form

𝐻𝑃 |𝑥⟩ = 𝐹𝑘(𝑥) |𝑥⟩

= ( 𝑓 (𝑥) − 𝜎𝑘

𝑚∑
𝑗=1

max(0, 𝑐 𝑗(𝑥))) |𝑥⟩ . (9.31)

and then use the transverse field Hamiltonian as the mixing Hamiltonian. However, implementing this
penalty function as a problem Hamiltonian could prove difficult, and does not guarantee an advantage
over using the more complicated mixing Hamiltonian instead. If the penalty function is too strong it
may make the optimization problem converge poorly and hard to solve, but if the penalty function is
too weak the provided solution might not be feasible. Designing a penalty function requires a balance
between satisfying the constraints and keeping the problem relatively simple. Using a penalty method
together with the second degree transverse field Hamiltonian of (9.11) could be a useful alternative to
using the second degree MinVertexCover mixing Hamiltonian 𝐻𝑀𝑉3 .
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