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Abstract
Tactile Internet (TI) is a pioneering network
paradigm that aims to communicate haptic feed-
back with ultra-low latency. It will enable new
ways for us to interact with remote environments,
such as transferring skills over the network and
controlling remote objects. One crucial component
of this framework is the ability to track the posi-
tion and movement of remote objects. While there
are many tracking algorithms, evaluating them in
TI applications can be time-consuming, expensive,
and sometimes impractical. Hence, we present
a virtual platform for developing, evaluating, and
comparing tracking solutions. We demonstrate how
our platform can be used to tune tracking algo-
rithms and determine trade-offs between different
types of hardware. In turn, this provides insights
that were previously difficult to obtain using real
physical platforms, as real world coordinates may
not align with virtual coordinates and experiments
are not easily repeatable.

1 Introduction
Modern communication systems for remote interaction be-
tween human users or entities primarily rely on visual and
auditory feedback. However, the full realization of haptic
feedback, enabling direct manipulation and interaction with
dynamic objects in remote environments, remains an ongo-
ing challenge [5]. Haptic feedback would allow for teleoper-
ation, where human operators can exert real-time control over
remote objects. This would require ultra-low latency (ULL)
communication with an end-to-end delay of approximately
1ms [5]. Tactile Internet (TI) is a network paradigm aimed at
realizing these requirements [14], ensuring ULL transmission
capabilities and high availability, thereby unlocking many
more ways to interact with remote environments.

Potential use cases include robot-assisted surgery, where
skilled surgeons can guide robots to perform procedures
on individuals in remote regions, or technicians conducting
clean-ups and repairs in hazardous environments such as nu-
clear plants or satellites [5; 18]. TI systems also hold promise
for education and training, where exoskeletons are used for
physical movement training or rehabilitation. All these ap-
plications require a round trip delay of approximately 1ms
[5]. However, achieving round trip delays within 1ms is sim-
ply impractical. Given the physical distance that may exist
between the master and controlled domain, the delay would
exceed 1ms even if data signals traveled at the speed of light
[23].

To address this challenge, model-mediated teleoperation
(MMT) was introduced as a solution [15]. In MMT, a local
model of the remote environment resides in the master do-
main. The operator will receive instant haptic feedback from
the local model instead of the controlled domain which effec-
tively satisfies the 1ms delay [21] requirement.

Instead of employing MMT and a predefined local model
directly, we build upon this framework by using a physics en-

Figure 1: The master domain demonstrates the actions to be
performed, which are then transmitted over to the controlled
domain. The physics engine models the controlled domains as
accurately as possible, with the aid of the convergence handler.

gine to simulate the controlled domain. In this way, the rep-
resentation of the controlled domain is dynamic and flexible.
We envision that tracking objects in the controlled domain
will be one of the critical tasks of this new method. This not
only calls for a tracking solution now but also a platform that
accommodates testing and developing future solutions. As
shown by Van Berlo [2], verifying the performance of real-
life tracking solutions is a challenge. In addition to requiring
a physical setup with a depth camera, there may not be a well-
defined ground truth for verification. Repeatability is also not
easily achievable with real-life tracking experiments, making
it difficult to compare and evaluate solutions

In this work, we set the stage for developing tracking solu-
tions that will drive the Tactile Internet applications of the fu-
ture. Our proposed platform will allow one to develop, com-
pare and evaluate tracking solutions, as well as accommodate
both real and virtual sensor devices. Furthermore, using our
platform, we take the first step to draw inferences on how par-
ticle filters can be tuned for tracking and how our solution can
be used to choose appropriate sensor hardware. As of writing,
two additional bachelor projects (by Koen Snijder and Sven
Pegels) and two master students (Rodrigo Álvarez Lucendo
and Pavlos Makridis) already used this platform for research
and experimentation.
Contributions Our contributions are enumerated below:

1. We provide a virtual depth camera in Unity, capturing
arbitrary dynamic scenes and producing corresponding
point clouds. As it is possible to encode the movement
of objects, the ground truth is always known.

2. We offer a tracking program that can track point clouds
using the particle filter and produce predictive feedback.

3. Our virtual system allows for the modeling of arbitrary
sensor devices, with varying precision or quality. This
ensures that it is easy to evaluate how different devices
may affect the performance of the MMT system.

4. We implemented a generic communication interface for
the tracking program, allowing real physical sensor de-
vices to easily interface with it.



Figure 2: A schematic diagram of the communication frame-
work which features two UDP communication channels. The
first channel is used by Unity’s virtual camera to transmit point
cloud data. The PCL tracking program offers predicted posi-
tions (X,Y, Z,R, P, Y ) used in the second communication chan-
nel.

5. We also conduct an extensive investigation on how pa-
rameters in the particle filter can affect tracking accuracy
and identify relevant trade-offs that may exist.

The rest of the paper is organized as follows. Section 2 an-
alyzes similar works in the field of TI and MMT. Section 3
explains the implementation of each component in the vir-
tual testbed. Section 4 describes the experiment set-up and
is followed by an evaluation of relevant results. The ethical
implications and reproducibility of our work are discussed in
Section 5. Finally, Section 6 suggests possible extensions to
our work and concludes the paper.

2 Related Work
In this section, we analyze some existing work in the field of
point cloud tracking and TI applications. Section 2.1 provides
an overview of common point cloud tracking solutions, and
Section 2.2 describes recent works in the field of TI applica-
tions and corresponding testbeds.

2.1 Point Cloud Tracking
Point cloud tracking is a common challenge tackled in the
field of robotics, computer vision, and autonomous driving
[1; 3; 13]. Current approaches can be categorized either
as adapting traditional control theory algorithms or applying
state-of-the-art machine learning techniques.

Works that employ traditional tracking algorithms gener-
ally exploit additional information sources available in the
target environment. Hossein et al. [9] introduces an iner-
tial measurement unit (IMU) and global positioning system
(GPS) to optimize point cloud tracking. The authors show
that by incorporating these additional sources of information
into the Kalman filter, tracking accuracy is improved albeit
with lower quality or occluded point clouds. Similarly, Held
et al. [8] proposes a technique to combine RGB information
and object velocities to improve the predictions of the Kalman
filter. Their method improves the efficiency of real-time state
exploration during tracking.

Figure 3: The rays cast by the virtual depth camera are visual-
ized. Points of intersection with the actual mesh are used in the
final point cloud.

Deep learning is also a prevalent solution for point cloud
tracking. In Zhou et al. [25], a transformer-based network is
used to predict the location and orientation of the target ob-
ject. Their work shows improved tracking accuracy for sparse
point clouds, as a result of subsampling the input cloud so
that critical features of the target environment are well pre-
served. Qi et al. [19] presents a neural network that jointly
executes 3D target proposal and verification during tracking,
which in turn optimizes target search. Furthermore, Vaquero
et al. [24] applies a deconvolutional network to point clouds
to map learned features into 2D, which are then used as input
to a Kalman filter. This approach reduces the data require-
ment for training the network that performs pose estimation
and tracking.

2.2 Tactile Internet Applications and Testbeds
Recent works in MMT and TI applications typically focus
on improving specific components within applications, while
testbeds often assess only specific aspects of the overall sys-
tem. There is a limited number of works that address generic
testbeds or applications.

For example, Song et al. [21] proposed a parameter update
method to mitigate abrupt or unstable force feedback from
the local model, allowing for more stable interactions. In Liu
et al. [12], the parameters of the local model are estimated
using the recursive least squares technique, which aims to
improve system transparency between the master and con-
trolled domain. Alternative architectures for MMT have also
been proposed to target system instability and enhance trans-
parency by Leonam et al. [16]. However, their experiments
were limited to 1 Degree of Freedom (DoF) interactions. En-
gelhardt et al. [4] presented a novel communication pro-
tocol aimed at haptic communications and a corresponding
testbed to evaluate the protocol using small wireless devices
over long distances. Examples of more generic testbeds for
TI applications can be found in [17] and [7]. Polachan et al.
[17] presents a testbed for TI-based cyber-physical systems
that facilitates experimentation with alternative communica-
tion protocols and hardware devices. Gokhale et al. [7] offers
a generic categorization of TI applications and implementa-



tion details for a versatile testbed.

3 Methodology
This section outlines how each component of the virtual
testbed was designed and its corresponding functionality.

3.1 Virtual Depth Camera
Experimental set-up for model-mediated teleoperation or TI
applications generally requires a Kinect sensor, which gathers
depth or motion information about objects in an environment,
and an external program to track the dynamic objects. Such
experiments can be costly to set up, as hardware devices may
not be readily available, and physical test beds can be time-
consuming to build. Moreover, investigating the effects of
higher quality Kinects on the overall system performance is
expensive, as it necessitates purchasing additional hardware.
To address these issues, we have implemented a virtual depth
camera that mirrors the capabilities of a real Kinect, along
with multiple configurations that can be modified with ease.

The implementation of our virtual depth camera uses
Unity, more specifically using the Physics Raycasting library.
Given a virtual scene, a ray is cast through each pixel cen-
ter of the image plane. For each collision of an object with
a ray, the corresponding coordinates of the intersection and
the RGB information of the object are stored in PCD format.
Fig. 3 shows how the rays are cast to collect depth informa-
tion. Note that only the rays that collide with an object are
drawn. The number of rays used for collecting the final point
cloud can easily be adjusted. For dynamic scenes, the frame
rate can also be adjusted accordingly to model different de-
vices.

3.2 Point Cloud Tracking
In this section, we present the particle filter algorithm and
how it was used to develop our point cloud tracking program.
We used a variation of the particle filter implemented in the
Point Cloud Library [20]. A comparison of the filters avail-
able in PCL [20] can be found in Appendix A.

Background
Particle filters are a family of sequential Monte Carlo meth-
ods which are employed in statistical estimation and infer-
ence problems. It offers a flexible approach for estimating the
state of a dynamic system given a set of potentially noisy or
incomplete observations. Particle filtering leverages a collec-
tion of weighted particles to represent the potential states of
the system. These particles undergo iterative updates through
a two-step process comprising prediction and update. In the
prediction step, particles are propagated forward in time using
a dynamic model. In the update step, particles are reweighted
based on the likelihood of the observations and resampled to
concentrate on regions of heightened probability [10]. By
employing particles to represent the state space, particle fil-
tering can handle nonlinear and non-Gaussian scenarios [10].
This was used as opposed to the Kalman filter, which is based
on unimodal Gaussian densities and therefore cannot be em-
ployed to predict the movement of a point cloud. Moreover,
the particle filter offers the ability to model the true point
cloud using the particle cloud, whereas the Kalman filter only

provides a single estimation of the position and orientation of
the tracking target.

The KLD-adaptive filter builds upon the original particle
filter by varying the number of particles used per iteration.
This is achieved by bounding the approximation error ϵ, cal-
culated using the Kullback-Leibler distance, with a certain
probability δ. The approximation error ϵ is defined as the
distance between the maximum likelihood estimate and the
true posterior [6]. The motivation for this approach is that if
the approximations are spread over a small part of the state
space, fewer particles are used. However, if there is more
uncertainty and particles are spread over a larger area of the
state space, more particles are introduced.

As we aimed to investigate how the KLD adaptive filter can
be tuned to track different types of motion, we also performed
experiments (see Section 4.3) which varied the following pa-
rameters:

• Sampling Covariance: The sampling covariance refers
to the variance of the Gaussian distributions used to
model the true posterior distribution. Each degree of
freedom has an associated Gaussian, hence the sam-
pling covariance is represented by a 6-dimensional vec-
tor. Variance indicates how much a particle or point may
change between two consecutive frames in each of the
6 degrees of freedom. A large variance means that the
particle is believed to move more in a specific direction,
and vice-versa for a smaller variance.

• Downsampling Level: Downsampling refers to taking a
subset of representative points of the actual point cloud.
A smaller point cloud can increase the efficiency of the
particle filter and maintain accuracy if representative
points are preserved. However, a high level of downsam-
pling can also result in a loss of accuracy as the structure
of the object may be lost.

• Number of Particles: The number of particles is the
number of samples used for state estimation. The greater
the number of samples, the more accurately the true pos-
terior distribution can be modeled, but at the loss of com-
putational efficiency. Since the number of particles used
per iteration are not deterministic, we verify the impact
of the particle count by manually setting a particle count
when initializing the particle filter.

Implementation
During implementation, there were several obstacles in ap-
plying the PCL particle filter to the generated point clouds.
Due to the lack of documentation, debugging was very time-
consuming. Previous examples and projects used a real
Kinect device to provide input to the particle filter, while our
implementation provided a sequence of virtually generated
point clouds. This posed challenges in referencing previous
solutions as we could not easily derive appropriate filter pa-
rameters from them. Thus, alternative libraries to PCL were
briefly considered. However, after comparing available func-
tionalities in other libraries, it was decided that PCL remains
the most suitable and that further troubleshooting the reason
for poor tracking accuracy was necessary. Eventually, the so-
lution was found by manually adjusting each of the parame-
ters of the particle filter.

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://pointclouds.org/documentation/tutorials/pcd_file_format.html


Figure 4: The average processing time of each frame increases
as the number of particles increases. A similar relation holds for
all three types of motion.

Figure 5: The frame rate of the virtual depth camera is approx-
imately 30 FPS, similar to that of a real Kinect. We compare
the frame rate of the depth camera to the processing rate of the
tracking program, when different numbers of particles are used.

Parameter Default Value
Downsampling Level 0.02
Number of Particles 2000

Variance 0.08
Delta δ 0.99

Epsilon ϵ 0.02
Sample Bin Size 0.1

Table 1: Default parameters for the KLD filter during experi-
ments for tracking accuracy and computational time

3.3 Network Interface Module
To ensure that virtual and real devices can easily interface
with our tracking program, we implemented a correspond-
ing communication interface for the PCL tracking program.
In the current implementation, the interface is tailored toward
virtual devices in the physics engine, but it can easily be mod-
ified to accommodate real devices.

The interface features two communication channels based
on UDP, as shown in Fig. 2. The first channel is used by the
physics engine to send point clouds to the tracking program.

Note that this can easily be exchanged with a real device
which may produce other data formats. The physical device
only needs the capability to engage in UDP message transfer.
The second channel enables the tracking program to transmit
predicted positional data, such as (x, y, z, roll, pitch, yaw),
or the full particle cloud. In the current implementation, this
information is sent back to the physics engine. The physics
engine does not use this predictive feedback, as the ground
truth is known. However, in real applications, the predictive
feedback from the tracking program can be transmitted to the
master domain to guide the operator.

Furthermore, the choice of UDP as the communication pro-
tocol ensures independent speed and efficiency between the
programs. TCP would guarantee no loss of data and synchro-
nization between the programs, but it would create interde-
pendency in terms of processing rate, which does not reflect
real physical TI applications. Real TI applications involve
the Kinect sensor tracking moving objects while the tracker
program may provide delayed information. TCP cannot ac-
curately simulate this behavior.

Additionally, packet loss was observed on the PCL side due
to asynchrony between tracking and Unity’s frame rate. The
current implementation does not mitigate this. Nonetheless,
a possible solution would be for the tracking program incor-
porates a queue to store incoming cloud data, preventing data
loss.

4 Results
4.1 Experiment Set-Up
Computing Platform
For the following experiments, we used a computer with
Intel(R) Core (TML) i7-10510U CPU, 16GB RAM, and
NVIDIA Quadro P520 GPU. The operating system used is
Windows 11 and we implemented the virtual camera in Unity
version 2021.3.23. To build the particle filter for tracking, we
used the Point Cloud Library version 1.10.

Experiment Design
To evaluate our system, we initially defined three distinct
types of motion that our target model, the Suzanne Blender
monkey, should perform. These motions are as follows:

1. Translation: The model translates at a fixed speed along
a predefined axis.

2. Acceleration: The model moves along a predefined axis
at an increasing speed.

3. Periodic Movement: The model moves along a fixed
path defined by the sin function.

The sequences of point clouds generated by the model when
performing these motions were recorded. Thereafter, each
frame or point cloud was sequentially processed by the PCL
tracking program. For evaluation, we used the ground truth
(x, y, z, roll, pitch, yaw) coordinates of the object and com-
pared it directly to the predicted (x, y, z, roll, pitch, yaw)
values. We focused our analysis on the axes exhibiting move-
ment, as the object’s motion was constrained to specific direc-
tions. Subsequent plots compare the predicted centroid coor-
dinate x and the true centroid coordinate x, further analyzed
in Section 4.3.



(a) Translation (b) Acceleration (c) Periodic Movement

Figure 6: Each track represent the predicted x-position of the object over 900ms. Multiple tracks are plotted, each with a higher
level of variance for the KLD particle filter.

Furthermore, we examined how the parameters outlined
in Section 3.2 influenced tracking accuracy. The set of de-
fault parameters used during these experiments is detailed in
Tab. 1. For the experiment involving translation, the default
value of the variance parameter was adjusted from 0.08 to
0.005. This modification was necessary as the initial variance
value introduced unnecessary noise.

We also analyze the trade-offs which exist between using
varying resolutions of depth cameras. The difference in track-
ing accuracy and processing time is compared across five
cameras with different resolutions. This gives insight into the
type of depth camera required or available options to consider
when designing the real physical TI application.

Finally, we set the frame rate of the virtual depth camera
in Unity to be approximately 30 - 60 FPS, similar to that of a
real Kinect [22]. The tracking program cannot process frames
at a similar rate, as described in Section 4.2. Thus, to evaluate
the tracking program in isolation, it was necessary to provide
the program with a recorded sequence of point clouds and not
execute both programs simultaneously. For future work, it is
worthwhile to adjust the tracking program to buffer a large
number of incoming frames from the virtual depth camera,
so that point clouds do not need to be saved before running
the program.

4.2 Computational Efficiency
In this subsection, we evaluate the runtime of the tracking
program and verify the impact of several parameters on the
total efficiency. Thereafter, we compare the processing rate
of the physics engine and tracking program.

Fig. 4 shows an approximately linear relationship between
the number of particles and the runtime of the tracking pro-
gram. Note that the average processing time is the average
time in ms to process each incoming frame and produce a
predicted position. The same relation holds for all three types
of motion and the average processing time is also similar.
This means that for the particle filter, tracking objects with
variable velocity is not more computationally expensive than
tracking objects with constant velocity. Moreover, this lin-
early increasing trend is expected as with a greater number
of particles, more calculations need to be performed per iter-
ation. Fig. 5 further corroborates this result. The processing

rate increases dramatically when the number of particles is
decreased from N = 300 to N = 100. In addition, Fig. 5
also shows that the frame rate of the depth camera greatly
exceeds the processing rate of the particle filter. In fact, the
frame rate of the depth camera is at least twice the process-
ing rate of the tracking program. This suggests that when
running the full system, the tracking program cannot produce
predictive feedback in time. Ideally, the processing rate of the
tracking program must be greater than the frame rate.

To mitigate the low processing rate, reducing the number of
particles is a potential solution. However, this compromises
tracking accuracy (see Section 4.3), which may be unaccept-
able when high precision is required. Another option is to de-
crease the number of points in the initial point cloud model by
downsampling, simplifying the tracked object’s overall repre-
sentation. In this way, fewer particles are needed to match the
target object. Nonetheless, this may introduce errors in sub-
sequent position or centroid calculations if the representative
initial points are not selected carefully.

4.3 Tracking Accuracy
In this subsection, we discuss how each of the aforementioned
parameters in Section 3.2 can affect how accurately motions
can be tracked. The influence of the parameters variance, par-
ticle count, and downsampling level are analyzed in respec-
tive order.
Variance: To examine the impact of variance on tracking
accuracy, we conducted experiments using four distinct mag-
nitudes of variance, as illustrated in Fig. 6. In Fig. 6a, the
target object moves along the x-axis with constant velocity.
A relatively low variance of 0.005 is acceptable, as demon-
strated by how the track with variance 0.005 follows the true
movement closely. While a variance of 0.001 significantly
underestimates the magnitude by which the object moves per
frame, higher levels of variance (> 0.005) introduce an un-
necessary amount of noise. Hence, for objects with constant
velocity, it is crucial that the magnitude of the variance suits
the distance by which the object moves per frame. The ex-
act numerical relation between variance and velocity is not
known, as this is not documented in PCL [20] and requires
numerous empirical experiments. The impact of variance is



(a) Translation (b) Acceleration (c) Periodic Movement

Figure 7: The same motions are tracked but with varying number of particles. Each track demonstrates how the predictions of the
KLD filter evolve with a different number of particles used.

most notable when the velocity of the target object is not con-
stant. When the object accelerates as in Fig. 6b, the track with
the highest variance follows the true movement closely, while
tracks with lower levels of variance deviate greatly from true
movement. The same trend is observed in Fig. 6c. Lower
levels of variance simply fail to capture the true movement of
the target, whereas the track with variance 0.08 detects direc-
tional changes with minimal delay.

The trade-off, therefore, is that tracks with higher variance
may result in higher errors at particular frames, so-called lo-
cal errors, but are less likely to completely deviate from the
true movement, while smaller variance results in smaller local
errors but may fail to track the target. This can be attributed
to how the particle filter is unable to generate samples that
match closely with the true point cloud when the variance is
not sufficiently large. Smaller variance corresponds to a nar-
rower Gaussian distribution for each DoF, meaning that the
particle filter may incorrectly predict that the next position
deviates very little from the current position. A larger vari-
ance corresponds to a wider Gaussian, but it can also create
samples that overestimate the amount of movement. This is a
limitation inherent to the particle filter algorithm itself. If the
particle filter does not generate samples that match the true
point cloud, tracking will simply be unsuccessful. It is also
impractical to determine the level of variance beforehand as
the movement of the target object is unknown. Hence, the
trade-off between local errors and the ability to track the gen-
eral trend needs to be considered.
Particle Count: The number of particles refers to the num-
ber of samples taken per iteration of the algorithm. From
Fig. 7, the tracks generated with N = 500 to N = 3000
have comparable accuracy. The track with N = 3000 parti-
cles follows the true movement most closely, but the gain in
accuracy is negligible compared to N = 2000 or N = 1500.
Furthermore, the number of particles also does not affect the
noise of the predictions, meaning that local errors are gener-
ally of similar magnitude. Significant differences only occur
when N = 100 particles are used. This likely results from
a lack of indicative samples being generated, hence causing
the predicted position of the object to be erroneous. It is also
reasonable that N = 500 particles prove to be sufficient for

capturing the point cloud, as the input point cloud is approxi-
mately the same size.
Downsampling Level: Downsampling is the process where
some original points in the point cloud are removed prior to
using the particle filter and re-estimating the weights for the
particles. This ensures that there are fewer computations per
iteration and improves the efficiency of the algorithm. Higher
downsampling levels indicate that more points are removed.

From Fig. 8a and Fig. 8b, a downsampling level of 0.10 re-
sults in poorer tracking accuracy, while other levels of down-
sampling show comparable tracking accuracy. It is expected
that a higher level of downsampling results in lower tracking
accuracy. If a significant number of points are removed, the
particle cloud cannot capture the full shape of the target ob-
ject. In this way, the shape of the particle cloud might be in-
correctly biased, and the predicted centroid to have an offset.
The effect of downsampling is less pronounced with periodic
movement, as shown in Fig. 8c. This can be attributed to the
particle cloud’s ability to track the overall periodic motion
and detect directional changes of the target object. The effect
of downsampling is only noticeable at the peaks of the sinu-
soidal waves, where the track with the least downsampling
follows the true movement most closely.

Furthermore, the effects of downsampling may not be as
significant since the generated point clouds from the virtual
scenes are not sufficiently large. Real Kinects typically gen-
erate point clouds of approximately 300K points [22], as op-
posed to the 500 to 800 points used in these experiments. If
the number of point clouds increases, the effect on accuracy
and runtime is similar, but of a larger magnitude [2].

4.4 Configurable Depth Camera
To analyze how camera or sensor quality impacts tracking ac-
curacy and execution time, we recorded the same sequence of
translation motions using cameras with resolutions (width ×
height) : 30× 40, 40× 50, 50× 60, 60× 70, 70× 80. There-
after, we tracked the generated point clouds and compared the
resulting accuracy and execution time.

In Fig 9, the average L2-norm error between the predicted
x-position and true x-position is shown to decrease as the
resolution of the camera increases. Variance in the L2 er-
ror is also shown to decrease with higher-resolution cameras,



(a) Translation (b) Acceleration (c) Periodic Movement

Figure 8: For each track and type of motion, the input point cloud is downsampled at various levels. This investigates how downsam-
pling can compromise tracking accuracy.

Figure 9: Average tracking L2 error is compared to average pro-
cessing time for each frame, for cameras with different resolu-
tion levels.

meaning that the filter can produce more stable and accurate
predictions when the particle clouds are denser. With a denser
cloud, the particle filter captures the geometry of the tracking
target more accurately. Hence, the evaluation of the particles
during re-sampling will be biased towards particles that truly
match the true target. If the input point cloud does not fully
capture the true target, evaluations, and re-sampling may in-
correctly bias particles that do not closely match the target,
resulting in poorer predictions.

Furthermore, execution times are fairly similar for all five
cameras. This can be attributed to how the same number of
particles are used for all five cameras. Fig. 10 further corrob-
orates this claim. In Fig. 10, the L2-norm error and the frame
processing time are plotted for each camera resolution as the
number of particles increases. From left to right, the num-
ber of particles used is N = {100, 600, 1000, 1500, 2000}.
The average frame processing time for a given particle count
is approximately the same, irrespective of the camera resolu-
tion. This indicates that the runtime of the KLD filter is more
dependent on the number of particles used as opposed to the
dimensions of the input point cloud.

Furthermore, while the L2-norm error differs between the
cameras, the overall change in accuracy becomes less signifi-
cant from N = 600 onward. This experiment, therefore, sug-

Figure 10: For each of the five possible cameras, we increased
the particle count to observe how the L2-norm error and the
average frame processing time change. All cameras show the
same general trend: as the number of particles increases, the
error drops but the processing time increases. The number of
particles used (from left to right) is {100, 600, 1000, 1500, 2000}.

gests that an optimal trade-off between speed and accuracy
is achieved at N = 600 for this specific motion and model.
Using more particles than that will greatly increase execution
time while offering negligible improvements in accuracy.

The accuracy of higher-resolution cameras dominates that
of lower-resolution cameras. This is demonstrated by how
the L2-norm error of the 70×80 camera is consistently lower
than that of the 30 × 40 and 40 × 50 cameras. However, the
distinction between the 50×60 camera and the 70×80 camera
is much smaller. Thus, it can be argued that the 50 × 60
camera is already sufficient for tracking this particular type of
motion. There is no clear trend for the camera with resolution
60 × 70 as it is neither fully dominating the lower resolution
cameras nor comparable to the higher resolution cameras. We
hypothesize that this results from the randomness in the KLD
filter, as each data point is the average of only 6 independent
runs.

Finally, this experiment serves as a proof of concept of
how our platform can be used to choose appropriate hardware
sensors. Real Kinect devices generate point clouds orders of
magnitudes larger than what has been used in our experiment.



Nonetheless, our experiment shows how one can easily eval-
uate the performance and cost trade-offs between available
devices, by tuning the quality of the virtual ones and without
purchasing real hardware.

5 Responsible Research
Our platform is one of the many tools used in the development
of general TI applications, which will enable human control
of robotic devices through teleoperation. Hence, it follows
that the ethical implications of the general TI systems are rel-
evant to our project. Moreover, we believe that it is important
to uphold the principles documented in [11] throughout the
entire project, thus clearly documenting our results, data, and
experimental process.

5.1 Ethical Implications of Tactile Internet
Applications

TI applications will enable human control of robotic de-
vices through teleoperation. Given that teleoperation encom-
passes tasks directly related to human lives and safety, such as
telesurgery, healthcare, education, and exploration in possibly
hazardous environments, the system must exhibit reliability.
To this end, we performed various experiments and tests to
ensure that our program works as intended, as demonstrated
in Section 4.3. Furthermore, in instances of errors, human op-
erators should be able to understand the causes behind mal-
functions or deviations from the intended operations. Thus,
we have designed our system to have a comprehensible inter-
face, thereby helping future engineers to understand or find
potential errors. Extensive documentation of our design and
implementation choices is also publicly available in our on-
line repository.

5.2 Reproducibility and Repeatability
To ensure the reproducibility of our results in Section 4, we
have made all our code and data publicly accessible. The
physics engine used to generate and transmit the sequence
of point clouds also includes the code necessary to recreate
our experimental data. The settings used for the experiments
are documented and published. Additionally, we also pub-
lished the code we used to generate the result plots shown in
Section 4. However, it is important to note, that while our ex-
perimental data and code is available, future researchers may
not achieve precisely identical results due to the randomness
inherent in the KLD filter algorithm.

6 Conclusions and Future Work
In this work, we proposed a virtual platform for developing
and evaluating 3D object tracking solutions for Tactile Inter-
net (TI) applications. We also developed our own particle
filter-based tracking solution and demonstrated how relevant
parameters can be tuned to improve tracking efficiency and
accuracy. Additionally, this platform proves to be a valuable
tool for determining appropriate sensor hardware, as it allows
one to analyze the performance trade-offs introduced by var-
ious configurations of virtual sensor devices. Therefore, our
work has enabled experiments and evaluation strategies that

were previously much more difficult with real-world set-ups
and devices.

While our platform allows for experimentation with virtual
devices and 3D object tracking, we acknowledge that the pro-
cessing rate of our tracking program is insufficient for effec-
tive real-time tracking. The frame rate of a Kinect is at least
double the processing rate of our tracking program, indicat-
ing that it will be a bottleneck for the full system if deployed
as is. Hence, for future work, we recommend optimizing the
particle filter implementation in the PCL library [20], so that
the processing time of a point cloud is significantly reduced.
Finally, we strongly encourage future researchers to incorpo-
rate other types of virtual sensors, such as an inertial measure-
ment unit (IMU), and experiment with relevant sensor fusion
algorithms. We hypothesize that this could lead to more ac-
curate tracking, as additional information is used to guide the
estimates of the particle filter algorithm.
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A Appendix A
There are two filters implemented in the PCL library. The
other filter is the regular particle filter which offers worse per-
formance. This is demonstrated by Fig. 11.

Figure 11: Comparison between available filters.

Full code can be found here. Note that the names of repos-
itories may change, but the projects will be on the same ac-
count.

• Tracking Program: https://github.com/victoriayuechen/
tracking-physics

• Virtual Depth Camera: https://github.com/
victoriayuechen/My-project

https://github.com/victoriayuechen/tracking-physics
https://github.com/victoriayuechen/tracking-physics
https://github.com/victoriayuechen/My-project
https://github.com/victoriayuechen/My-project
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