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Abstract

This research presents a data-driven model for the magnetic signature of an object, consisting of linearly
reacting isotropic material. From magnetostatics a mathematical-physical model is derived for the linear be-
haviour of the induced magnetization. Data-driven updates for the permanent magnetization are computed
from comparisons of the computed magnetic field with measurements from onboard sensors, in order to
describe magnetic hysteresis. In order to improve the solutions for ill-posed inverse problems, the Tikhonov
regularization method is studied. Furthermore, the performance of the model is examined by a number of
twin experiments.

Index terms - magnetic signature, permanent magnetization, induced magnetization, inverse problem,
data-driven,regularization.



Acknowledgements

I want to give special thanks to my supervisor Aad Vijn for his help and enthusiasm during the complete
process of this research and the lively discussions in case I ran into difficulties or unexpected results. The
meetings we had were very pleasant and inspiring.

Furthermore I would like to thank my second supervisor Arnold Heemink for his input, ideas and feedback
during the research.

Lastly I want to thank Eugene Lepelaars (TNO) for making it possible to visit the experimental setup at TNO
and for his help with producing experimental data, even though time-wise I wasn’t able to use it.

ii



Preface

This report is written as part of completing the bachelor ’Applied Mathematics’ at Delft University of Tech-
nology, Netherlands. From April 23rd until July 12th I have been working on this project and in this report an
outline is given of the work that I have done and the accomplished results.

For 12 weeks I have been working on the construction of a so called magnetic signature monitoring system for
naval vessels. This research is part of a much larger research conducted by TNO for DMO (Defence Material
Organisation). The main goal of the broad research for DMO is to design a closed loop degaussing system
for naval vessels. The focus of my research within this overall research was on the usage of data-assimilation
in order to estimate the permanent magnetization. It was nice to be able to visit TNO and the experimental
setup in order to gain more feeling with the project. Due to these visits, the lively talks with my supervisors
and the project itself, I became very enthusiastic to work on this project. During the past 12 weeks I have
worked with much pleasure on this project and I have gained a lot of knowledge and experience.

Unfortunately, due to time reasons, it has not been possible to add an analysis on the performance of the
model on experimental data from the setup at TNO. In the near future, the model will be tested using these
measurements from the experimental set-up. From these tests it can be concluded how well the model per-
forms on data from the real-life setup.

iii





List of symbols

Symbol Meaning Unit
χ Magnetic susceptibility
Ha Applied field Am−1

Hr ed Reduced magnetic induction field Am−1

M Total magnetization object Am−1

Mi nd Induced magnetization object Am−1

Mper Permanent magnetization object Am−1

B ar r
m Measured magnetic field at array Tesla

B ar r
c Computed magnetic field at array T

B b
m Measured magnetic field in the box T

B b
c Computed magnetic field in the box T

µ0 Magnetic permeability 4π ·10−7 H/m
φi Linear basis function -
Φr ed Potential function for Hr ed -
ek Triangular element k -
vi Vertex i of triangular element -
Ω Object geometry -
Ne Number of elements -
λ Regularization parameter -
R Regularization operator -
γi Filter factors GSVD -
εs

abs Absolute field error per sensor T
εs

r el Relative field error per sensor -
εd

abs Absolute error per direction T
εd

r el Relative error per direction -

Table 1: List of symbols
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1
Introduction

First the background information and the motivation for the research are provided. Then an insight into the
broad research done by The Netherlands Organization for Applied Scientific Research (TNO) is given, after
which it is narrowed down to the introduction of the subject of our research.

1.1. Motivation research
The Royal Netherlands Navy is active in many international waters. Their operations take place in waters
with a high threat of naval mines, this can differ from areas with leftover mines from previous wars to areas
where mines are used as an active defense mechanism. Detonation of a mine can severely damage a naval
ship, endangering the success of the mission. Therefore it is of utmost importance to decrease any risk on
the detonation of a mine. Sweeping the waters for mines in advance is a difficult, time inefficient and costly
operation. This is undesirable since the Navy often has to act fast and every slight delay can endanger the
success of the mission. For a long time contact mines have been popular, these mines float on or just beneath
the surface. As contact mines are close to the surface, they can be detected quite easily with the modern tech-
nology. Nowadays, so called influence mines are more frequently used, this type of mines can be positioned
far below the surface and they can detonate on basis of the vessels signature. As one can imagine naval ves-
sels emit many signals by which it can be identified, e.g. electric, acoustic, pressure and magnetic, see figure
1.1 for an overview. A naval vessels signature is defined by the complete picture of the propagation of these
signals in the environment. The influence mines can detonate on ground of the magnetic signature, they
measure the disturbance of the Earths magnetic field by the magnetic field of the vessel. The magnetic field
of the vessel is created by the magnetization of the steel hull due to the Earths magnetic field. To decrease
the chance of detonating an influence mine, it is essential to minimize the signature of the vessels, [10], [11],
[12]. TNO conducts research in describing and decreasing the signatures of the vessels, focusing mainly on
the underwater signatures. In this research the focus is only on the magnetic signatures of the vessels and
when speaking of signatures we will always refer to the magnetic signature.

Figure 1.1: Overview signatures naval vessel [23]
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2 Introduction

Figure 1.2: Closed Loop Degaussing Concept [23]

1.2. Introduction research
The ultimate goal in the research on magnetic signatures is to equip the naval vessels with a closed-loop de-
gaussing system, which will reduce the magnetic signature in real-time. For an overview of this system, see
figure 1.2. In [1] such a system is defined and a proof of concept is given. In order to reduce the signature
in real-time, the naval vessels must be equipped with both a signature monitoring system and a signature
management system. The monitoring system should be able to track and visualize the signature at a cer-
tain distance around the vessel. Based on the predictions of the monitoring system the management system
should reduce the computed signatures by controlling the currents in the coils and thereby the generated
fields. The desired fields can be generated by large coils, which will be placed in the hull of the vessel in all
three directions. If the signatures are known, opposite field can be generated to reduce the magnetic signa-
ture and thereby decrease the chance of detonating a mine. In this research we set a step into the direction
of developing a magnetic signature monitoring system. From the CLDG concept in figure 1.2 we work on the
Initial Magnetic State Model and the Magnetic signature Prediction Model. The model update loop based on
measurements from onboard sensors is included in the model, but effects of changes in degaussing currents
and influences of eddy currents and the Villari effect are left for future research. The developed system should
be able to effectively compute the magnetic state of our Steel Vessel Prototype 01 (SVP01) and to predict the
signature at a certain depth beneath this vessel.

In general the identification of the magnetic state of steel and other ferromagnetic materials is difficult due
to its hysteretic behaviour [3]. To be able to describe the magnetization of the objects, the total magnetiza-
tion is split into two parts: the induced magnetization and the permanent magnetization [20]. The induced
magnetization is a linear reaction of the material to the applied background field and is dependent on the
magnetic susceptibility. Although the magnetic susceptibility is not as straightforward for alloys as for pure
materials, there are methods available to approximate this property [22]. The permanent magnetization is
the more challenging part of the description as it is caused by the magnetic history of the object. The perma-
nent magnetization has both a direct influence on the magnetization of the object and an indirect influence
on the induced magnetization. To achieve accurate predictions it is important to be able to describe this
phenomenon. There are already several approaches to the subject of hysteresis, for example by Jiles and
Atherthon models [14],[24], Harrisons models[9],[8], Rayleigh model [15] and Preisach Models [21]. For the
monitoring system we do not make use of one of these models. Instead data-assimilation from the onboard
sensors is used to track the permanent magnetization.
In this research the focus is on predicting the magnetic state and magnetic signature of an object, consisting
of linear reacting isotropic material. The monitoring system is based on the description of the magnetiza-
tion by considering permanent magnetization as well as induced magnetization. From the onboard sensors
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data is collected of the magnetic induction field inside the object. This data is used to update the perma-
nent magnetization of the material. Using this data-based correction we hope to capture the evolution of the
permanent magnetization of the vessel. Firstly a mathematical model, able to describe and compute both
induced and permanent magnetization is developed. For this development the approach in [22] is followed
and extended. A numerical model for the reduced magnetic field at an array below the the object is con-
structed and implemented in Matlab. For validation the model is tested with a number of twin experiments
on a 3-dimensional object.

1.3. Chapter outline
The structure of the report is given by an outline of each chapter:

Chapter 2 states the research objectives and gives an approach to the development of the desired model.

Chapter 3 introduces the concept of magnetic hysteresis and magnetostatics. From the basic magnetostatic
field equations an integral expression for the reduced magnetic field and an integral equation for the magne-
tization are derived. When the material properties, like magnetic susceptibility, and the permanent magneti-
zation are known, this integral equation determines the induced magnetization of the object.

Chapter 4 presents a discretization of this integral equation based on a finite element method with triangular
elements and linear basis functions. From this discretization the numerical model is developed. Further the
forward model, necessary to compute induced magnetic fields from the magnetization of an object, is pre-
sented.

Chapter 5 introduces inverse problem formulations and difficulties accompanied with solving inverse prob-
lems. Moreover it discusses methods to improve solutions from inverse problems, like regularization. In
order to gain insight into the effects of regularization, the generalized eigenvalue decomposition is explained.

Chapter 6 combines the previous chapters to arrive at the final model for the magnetic signature. First meth-
ods for the computation of the initial permanent magnetization are provided. Further the model for the data-
driven corrections is presented. The necessary inverse problems are derived from the connected forward
problems and are correctly reformulated with use of regularization. At last this chapter presents pseudo-
codes for the complete model.

Chapter 7 describes the laboratory set up and the steel vessel prototype, which is used for the validation of
the model. Furthermore the model defines the method of meshing the object.

Chapter 8 presents and discusses the results of the twin experiments conducted to validate the model. For
the validation of the model a number of data sets with different permanent magnetizations are generated.
Furthermore two improvements are posed and analyzed.

Chapter 9 contains the conclusions drawn from the results in the previous chapter.

Chapter 10 at last gives recommendations for future research.





2
Research objective and approach

In this chapter the research objective is be posed and explained. Moreover sub-objectives are formulated
combined with their contribution to the main objective. At last the approach for the development of the
model is discussed.

2.1. Research objective
The main objective of the research is defined as follows:

Design, implement and test a data-driven model for the magnetic signature of an object, made
of linearly reacting isotropic material, considering both induced and permanent

magnetization.

The model should be able to predict the magnetic induction field at a sensor array beneath the object. This
prediction is based on data from measurements of the onboard magnetic induction field, knowledge of the
applied field and the susceptibility distribution of the material. After the initial computation of the perma-
nent magnetization, the permanent magnetization should be updated each step according to measurements
from the onboard sensors. We hope to gain knowledge on how well the evolution of the permanent magneti-
zation of the object in time can be approximated. Further it is also of interest to know to which extend errors
in the approximation of the magnetization translate into errors in the prediction of the magnetic signature.
In order to do this the mathematical-physical model is designed, which consists of both forward and inverse
problems. Since difficulties often arise with inverse problems, a literature study on inverse problems is per-
formed and methods like regularization are explored to be able to cope with these difficulties. If the model
is designed and implemented, its performance is tested. This validation is done by conducting various twin
experiments, using a 3-dimensional steel vessel prototype. For each of the experiments test data is generated
and the results of the experiments are analyzed in order to give well argued conclusions on the accuracy of
the model. At the end we hope to give some remarks on how the hysteresis behaviour of isotropic material
is of influence on a first order approximation of the magnetic behaviour of isotropic material. To sum up the
sub-objectives are described as follows:

• Design a mathematical-physical model, create the numerical model and implement the model;

• Perform a study on inverse problems, difficulties associated with inverse problems and methods, like
regularization, to cope with these difficulties;

• Design and perform twin experiments to test the performance of the model;

• Research the accuracy of the predictions of the magnetic signature;

• Gain insight in the translation of errors in the approximation of the magnetization to errors in the sig-
nature prediction;

• Gain knowledge of the influence of inaccuracies in the estimation of the susceptibility on the accuracy
of the prediction of the induced magnetic field.

5



6 2. Research objective and approach

2.2. Approach
In the introduction the concept of the closed loop degaussing system was illustrated in figure 1.2. In this sec-
tion we look more closely at the concept of the signature monitoring model and the approach used to develop
this model. In the research the focus is on three different parts of the CLDG concept: the initial magnetic state
model, the magnetic signature prediction model and the (small) update loop using the onboard sensor data.
See also figure 2.1.

Computation
initial estimates

Computation
magnetization

Data-driven correction
permanent magnetization

Computation
magnetic signature

Compute field
at onboard sensors

Compare computed and
measured field

Figure 2.1: Basic Structure magnetic signature monitoring system

Here we look at a more detailed approach of the steps that need to be taken in the two main parts of the
model, the computation of the magnetic state and the computation of the magnetic signature. At the start
the initial magnetization and magnetic susceptibility distribution need to be computed. The magnetic state
of the model is defined as the total magnetization M, which consist of the induced magnetization Mi nd and
the permanent magnetization Mper :

M = Mi nd +Mper .

This is explained in more detail in the next chapter.

The magnetic susceptibility, denoted by χ, is a material parameter which has to be estimated for the specified
object. For the estimation of this parameter the Magnetic Susceptibility Estimator Method from [22] can be
used. We assume χ to be constant in time but not in space, such that the susceptibility distribution is non-
uniform over the object. The first main part of the model is the computation of the magnetic state, in which
both the induced and permanent magnetization are estimated. The mathematical model for the induced
magnetization is derived from basic magnetostatics. This model is used and adapted to include the perma-
nent magnetization. Therefore an integral equation is derived from basic magnetostatics and discretized.
From the integral equation the numerical forward model can be constructed.

The forward model is able to compute the induced magnetic field at certain locations. In order to do so, we
consider the necessary linear basis function and expand the magnetization using these basis functions. The
integral equation is rewritten to a matrix equation which can be solved more efficiently. Using the induced
magnetization from the current iteration and the permanent magnetization from the previous iteration a
forward problem is solved to find the computed induced magnetic field at the onboard sensors. From the
numerical forward model the inverse problem is formulated. This inverse problem has to be solved to find
the induced magnetization from the applied field and the permanent magnetization.

After these models have been constructed we move to the construction of the data-driven update of the per-
manent magnetization. This correction is based on the difference between the computed and the measured
magnetic induction field at the onboard sensors. The computation of the correction is based on an inverse
problem. In order to improve the solutions from the inverse problems a study on regularization methods
is performed. From the computed induced magnetization and updated permanent magnetization the total
magnetization can be computed. The updated permanent magnetization is then saved for the next iteration.
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If the magnetic state of the object is computed, the model moves to the next step: the computation of the
magnetic signature. Another forward problem has to be solved to find the computed magnetic induction
field at the sensor array below the vessel. The computed values of the field at the sensor array can be com-
pared to the measured values to find the performance of the model. Note that this last step is part of the
validation and not of the prediction. The following part gives an overview of the model:

Prediction model:
Input: applied field, onboard sensor data
Output: induced magnetic field

1. Determine initial state Mper (0) and susceptibility distribution, χ.

2. For each iteration k:

(a) Solve inverse problem to determine induced magnetization Mi nd by the applied field and previ-
ous permanent magnetization.

(b) Update permanent magnetization Mper (k):

i. Compute magnetic field at onboard sensors from previous permanent magnetization, ap-
plied field and induced magnetization.

ii. Calculate difference between computed and measured field at onboard sensors.

iii. Solve inverse problem to find Mper -correction.

iv. Update the permanent magnetization.

(c) Determine complete magnetization M from induced and permanent magnetization.

(d) Solve forward problem to find magnetic field below the object.

After the mathematical-physical model is developed, the model is implemented in Matlab. Firstly a 3-dimensional
CAD model of the object is designed in the program Blender to be able to discretize it, this CAD model is used
to generate meshes in Matlab. Then the mathematical-physical model is implemented with and without the
regularization methods. Using the MSEM from [22] the magnetic susceptibility distribution of the object is
computed. The implemented model is then validated using twin experiments.





3
Magnetism

The following chapter discusses magnetic hysteresis and the derivation of the theoretical model from magne-
tostatics. From basic magnetostatics equations an integral expression for the reduced field is derived and an
integral equation for the induced magnetization is constructed. By solving the integral equation, the induced
magnetization from the applied field and permanent magnetization can be computed. First lets introduce
two notations, which are used throughout the research: The total magnetization is denoted by M and the
background or applied magnetic field is denoted by Ha .

3.1. Magnetic hysteresis
When ferromagnetic materials are placed in a magnetic field they experience ferromagnetism. Ferromag-
netism is nonlinear and shows magnetic hysteresis, a complex phenomenon[3]. Already much research has
been done on hysteresis and there are multiple models that can be used to describe this phenomenon. Well
known models are the Jiles and Atherton models [14] and the Preisach models [21]. However these models
also have their downsides, as for Jiles Atherton models it has been shown that they incorporate some non-
physical properties [24]. It is known that hysteresis can be depicted by the well known hysteresis curve. In
figure 3.1b a single loop of the hysteresis curve is shown. Here, the start point of the curve is the unmag-
netized state, where both Ha and M are zero. If the applied field is increased, the magnetization increases
until the saturation point is reached (Ms ), if the applied field is then brought back to zero, there is residual
magnetization (Mr ) left, called the permanent magnetization. If in turn a negative field is applied the perma-
nent magnetization decreases again and passes zero at a certain point. In figure 3.1a one can find multiple
hysteresis curves, showing how the permanent magnetization can vary due to the applied fields. Note that
the hysteresis curves all seem approximately linear close to Ha = 0, which might tell us something about the
induced magnetization. As mentioned before the residual magnetization at Ha = 0 is called the permanent
magnetization, such that the distance of the curve to the Ha says something about the permanent magneti-
zation. From these two observations an assumption can be made on how to approximate M close to Ha = 0.
This assumption is further explained in the next section.

3.2. Assumption on M
From the observations in the previous section it seems that magnetization M can be described by a sum
of the induced magnetization and the permanent magnetization. We have seen that the hysteresis curve
has a certain linear behaviour around Ha = 0, this can be seen as the approximately linear response of the
magnetization to the applied field, describing the induced magnetization. This observation is supported by
the Taylor expansion of M around Ha = 0:

M ∼= M(0)+ ∂M

∂H
H+h.o.t. (3.1)

When higher order terms are ignored it can be seen that indeed M(Ha) is linear around Ha = 0. The term
∂M
∂H describes the magnetic susceptibility χ. The magnetic susceptibility is a dimensionless material prop-
erty that indicates the degree of magnetization in response to the applied field and its form is different for
anisotropic and isotropic materials. Anisotropic materials do not magnetize in a preferred direction and their

9
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(a) Theoretical hysteresis curves Jiles-Atherton [14] (b) Single Hysteresis curve [18]

Figure 3.1: Hystersis curves

susceptibility is dependent on the orientation dependencies in the material. For these materials the magnetic
incremental susceptibility χan is described by the tensor χan ≡ ( ∂M

∂H ). Isotropic materials on the other hand
magnetize in a preferred direction and their susceptibility can be described by a scalar quantity χ. In this
research it is assumed that the material is isotropic and therefore χ is a scalar quantity. In ferromagnetic
materials the susceptibility can vary over time due to external influences, like stress. Since these variations
are very small if no large external forces are exerted on the material, we can assume that the susceptibility
χ is constant. Note that χ is spatially dependent. Now consider the second observation from the previous
section: The distance of the hysteresis curve to the Ha-axis at Ha = 0 can be seen as the contribution of the
permanent magnetization. We assume that the permanent magnetization varies slowly linear over time. The
distances between the ’linear’ parts of the hysteresis curves support this idea.

These observations and results from [20] support the assumption that the induced and the permanent mag-
netization can be considered separately if Ha stays relatively close to zero. We have already defined a model
to approximate the linear induced magnetization, but we also need a method to approximate the permanent
magnetization. In our model we do not work with the named models for the permanent magnetization, but
we try a new approach based completely on data-assimilation. With data-assimilation we try to track the
changes in the permanent magnetization by considering differences in computed and measured induced
magnetic field at onboard sensor locations. From these differences an update on the permanent magnetiza-
tion is computed each time step.

3.3. Magnetostatics
Now we start with the derivation of the model for the computation of the magnetization M. For this derivation
theory on magnetism and magnetostatics from [13] is used. The following assumptions are made: the object
of concern is made of isotropic and linearly reacting material and the geometry of the object and the applied
field Ha are known. We also assume that the applied field Ha is uniform in a certain volume of interest
around the object. Following we derive an integral expression for the reduced field and an integral equation
for the induced magnetization of an object. The integral equation is expanded to include the separation of
the induced and permanent magnetization. The magnetization of the object induces a magnetic field around
the object, disturbing the total field H. This influence is called the reduced (or induced) magnetic field Hr ed

and is obviously dependent on M. Due to the linearity in Maxwell’s equations (3.4) the following holds for the
total field:

H = Ha +Hr ed [M]. (3.2)
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The linear reaction of our material to an applied field is described by the magnetic susceptibility χ. We as-
sume, as described in the previous section, that the susceptibility is fully known, constant over time, spatially
non-uniform and can be described by a scalar quantity. The relation between the induced magnetization and
the applied field for isotropic linearly reacting material is given by:

Mi nd =χHa . (3.3)

For the computation of Hr ed due to the magnetization of the object the magnetostatic field equations of
Maxwell are needed: 

∇ × H = 0

∇·B = 0

B =µ0(H+M)

(3.4)

Here µ0 is the magnetic permeability coefficient with a value of 4π ·10−7H/m. Substitution of equation 3.2 in
the first equation of Maxwell (3.4) and linearity of fields results in the following equation:

∇× (Ha +Hr ed ) =∇×Ha +∇×Hr ed = 0. (3.5)

Due to the assumption that Ha is uniform in a volume around the object, it holds that ∇×Ha = 0 reducing
equation 3.5 to ∇×Hr ed = 0. From this we can conclude that Hr ed is a rotation-free field. It is known that for
each scalar function Φ it holds that ∇× (−∇Φ) = 0. From this relation and the discovery that Hr ed is rotation
free, it follows that Hr ed can be described by a potential function:

Hr ed =∇Φr ed . (3.6)

Now combine the second and third equation from 3.4 and substitute equation 3.6:

∇·Br ed =∇·µ(Hr ed +M) (3.7)

0 =µ0(∇·Hr ed +∇·M) (3.8)

0 =µ0(∇· (−∇Φr ed )+∇·M) (3.9)

∆Φr ed =∇·M (3.10)

Following [[13],page 194-197], equations 3.6 and 3.10 can be solved resulting in the following solution for the
reduced magnetic field at point r inside the object:

Hr ed (r) =− 1

4π
∇

Ñ
Ω

M(r′) · |r− r′|
|r− r′|3 dr′ (3.11)

With use of general properties for vector inproducts, the Leibniz integration rule and the divergence theorem
of Gauss this integral can be rewritten in terms of (∇′ ·M) and (n′ ·M):

Hr ed (r) =− 1

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·M)(r′)dΩ′+ 1

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·M)(r′)dS′ (3.12)

Note that the magnetization is only present inside the object, outside the object the magnetization M is
zero. Further the normal vector n′ = n′(r′) points outwards and the differential operator is defined as ∇′ =
[∂′x ,∂′y ,∂′z ]T . If we assume the magnetization is only due to induced magnetization (M := Mi nd ), an integral
equation for Mi nd can be derived with use of 3.2, 3.3 and 3.12:

H = Ha +Hr ed [Mi nd ]

χH =χHa +χHr ed [Mi nd ].

Mi nd (r)+ χ(r)

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·Mi nd )(r′)dΩ′− χ(r)

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·Mi nd )(r′)dS =χ(r)Ha (3.13)

Now we want to consider permanent magnetization as well as induced magnetization:

M = Mper +Mi nd . (3.14)
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Note that integral 3.11 is a function of r and that the reduced magnetic field is linear in M. Due to this linearity
we can rewrite 3.2 to:

H = Ha +Hr ed [Mi nd ]+Hr ed [Mper ]. (3.15)

Remember the assumption that the permanent magnetization and the susceptibility are known before the
computation of Mi nd . Now equations 3.3, 3.12,3.14 and 3.15 can be used to derive a new integral equation
for Mi nd taking into account the permanent magnetization.

χH =χHa +χHr ed [Mi nd ]+χHr ed [Mper ]. (3.16)

Mi nd =χHa +χHr ed [Mi nd ]+χHr ed [Mper ] (3.17)

1

χ
Mi nd −Hr ed [Mi nd )] = Ha +Hr ed [Mper ]. (3.18)

The division by χ is allowed, since for ferromagnetic materials it holds that χ >> 0. The integral equation is
as follows:

1

χ
Mi nd (r)+ 1

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·Mi nd )(r′)dΩ′− 1

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·Mi nd )(r′)dS′

= Ha − 1

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·Mper )(r′)dΩ′+ 1

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·Mper )(r′)dS′.
(3.19)

Note that equation 3.19 contains singularities in point r′ = r and needs to be reformulated in the numerical
computation to avoid these singularities. We consider this in the next chapter.



4
Numerical Forward Model for

Magnetostatics

In the previous chapter an integral equation for the induced magnetization was derived from basic magne-
tostatics. By solving this equation we are able to compute the induced magnetization of an object. For the
computation of the induced magnetization, the permanent magnetization has to be known, making it possi-
ble to continue with the computation of the total magnetization of the object. In this chapter the numerical
forward model for solving integral equation (3.19) is developed. The integral equation is discretized using
a finite element method such that the singularities are avoided. We discuss triangular elements and linear
basis functions. By solving the forward problem the induced magnetic field can be determined at certain
predefined observation points from the magnetization and the applied field.

4.1. The discrete forward model
To define the discrete forward model, first the geometry of the object must be discretized. We introduce
a triangulation to discretize the geometry Ω. For the model derivation, we start with 3-dimensional trian-
gular elements and work towards a formulation where 2-dimensional elements can be considered. This is
possible if the order of one dimension is small compared to the other dimensions. Define the triangulation
Ω = ⋃Ne

k=1 ek with Ne the number of triangular elements. A generic 3-dimensional triangular element can be
seen in figure 4.1. As discussed before the susceptibility χ is constant in time but spatially dependent. The
spatial dependency is described by considering a constant χ on each individual element: χ= χp on ep . The
magnetization can be approximated on each element using an expansion of M in basis functions. We choose
to use linear basis functions defined by ϕi (v j ) = δi j , for i , j = 1,2,3, where v1, v2, v3 are the vertices of the
triangle. More on (linear) basis functions can be found in [17]. The approximation of the magnetization at
point r in element e, (Me ) is then given by:

(M)e (r) =
3∑

p=1
Mpφp (r), (4.1)

where Mp is magnetization at the vertices v1,v2,v3 of the triangular element.

•

L

r
t

S1

S2

S3

Stop

Sbot

Figure 4.1: A typical triangular element in a mesh of Ω
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4.1.1. Linear basis functions
We take a closer look at the basis functions φi , since only linear basis functions are taken they can be written
as

ϕi (x, y, z) = ai x +bi y + ci z +di , (i = 1,2,3). (4.2)

In an element each basis function is known in three different points, namely the three vertices of the trian-
gular elements. Each of the linear basis functions is equal to 1 on one of the vertices and is zero on the other
two. E.g. basis function ϕ1 is one on vertex v1 and zero on v2 and v3. Note that by definition on each vertex
only one basis function can be equal to one. Evaluation of basis function ϕ1, described by equation 4.2, in all
three vertices of the element results in three equations:

v1x v1y v1z 1
v2x v2y v2z 1
v3x v3y v3z 1




a1

b1

c1

d1

=
1

0
0

 , (4.3)

where vi x denotes the x-coordinate of the i th vertex. If this evaluation is repeated for the remaining two
basis functions of the element, we find the resulting system of equations. Note that the system contains three
equations for four unknowns and is therefore inconsistent.

v1 1
v2 1
v3 1




ai

bi

ci

di

=
1 0 0

0 1 0
0 0 1

 (4.4)

To achieve a consistent system, an additional equation is needed. This extra equation should give a certain
relationship between ai ,bi and ci . In order to find this condition consider an element in the xy-plane. Since
the element has a fixed z-coordinate, the linear basis functions are now of the form ϕi (x, y, z) = ai x +bi y +
di (i = 1,2,3). Comparison to 4.2 results in the condition ci = 0. We find the same condition for ai and bi if
the element is in the yz- or xz-plane respectively. This condition can be added to the system by considering
the equation:

∇ϕ ·n = 0,

where n is the normal to the element. If the element is in the xy-plane, the normal is [0,0,±1]T resulting in
the equation ai ·0+bi ·0+ ci · (±)1 = 0, which gives exactly the wanted condition ci = 0. It can be seen that
this equation also gives the proper conditions for ai and bi in the cases the element is located in the yz- or
xz-plane. Note that the equation ∇ϕ ·n = 0 gives a relationship between ai ,bi ,ci for arbitrary elements, not
located in the xy-,yz-,xz-plane, as well. Adding this equation to our systems always results in the following
consistent system: 

v1 1
v2 1
v3 1
n 0




a
b
c
d

=


1 0 0
0 1 0
0 0 1
0 0 0

 (4.5)

System 4.5 has full rank and is thus a consistent system which can always be solved uniquely.

4.1.2. Expansions of M
Using the expansion of M in the basis functions (eq. 4.1), the divergence of M and the flux can be approxi-
mated by the evaluation in the vertices of the element:

(∇′ ·M)e (r′) =
3∑

p=1
Mp ·∇′ϕp (r′) (4.6)

(n′ ·M)e (r′) =
3∑

p=1
(n′ ·Mp )ϕk (r′) (4.7)

Using the triangulation and the approximations of M, integral equation 3.19 is reduced to the following finite-
dimensional system of equations:
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1

χ(r)
Mi nd (r)+ 1

4π

∑
e

Ñ
e

r− r′

|r− r′|3 (∇′ ·Mi nd )e (r′)dr′− 1

4π

∑
be

Ï
be

r− r′

|r− r′|3 (n′ ·Mi nd )be (r′)dr′

= H0 − 1

4π

∑
e

Ñ
e

r− r′

|r− r′|3 (∇′ ·Mper )e (r′)dr′+ 1

4π

∑
be

Ï
be

r− r′

|r− r′|3 (n′ ·Mper )be (r′)dr′ (4.8)

When the expansion of M (eq. 4.1) is substituted and a point evaluation method is used it can be observed
that above equation is linear in Mi nd and can be written as the following matrix system:[

Ne∑
i=1

1

χi
Di + A+B

]
Mi nd = Ha − [A+B ]Mper . (4.9)

From this equation it can be seen directly that Mi nd can be directly computed from Ha and Mper if the ma-
trices A,B ,Di are known. In the next subsections all matrix entries are computed.

4.1.3. Computation of the matrix entries
We use a collocation method with three evaluation points inside each element to solve this integral equa-
tion in each element. To find the correct entries for the matrices we consider one fixed element e j and one
evaluation point w ∈ ei in which we evaluate the integral equation. Matrix equation 4.9 can be written as:

D(e j ,w)(M̂i nd )+∑
e j

A(e j ,w)(M̂i nd )e j +
∑
be j

B(be j ,w)(M̂i nd )be j

= H0 −
∑
e j

A(e j ,w)(Mper )e j +
∑
be j

B(be j ,w)(Mper )be j

(4.10)

Note that the estimate M̂i nd contains 9 unknowns in total, the magnetization in three directions for all three
vertices of the element. These are ordered according to the order of the vertices in the list of vertices P .
Considering the left hand side of this equation in three separate parts results in the following expressions for
the matrices:

D(e,r) = 1

χ(r)
ϕk (r).

A(e,r) = 1

4π

Ñ
e

r− r′

|r− r′|3 dr′(∇ϕk )t

B(be,r) =− 1

4π
(n′)

Ï
be

r− r′

|r− r′|3 ϕk (r)dr′

Bear in mind that D(e,r), A(e,r) and B(e,r) are 3× |P | matrices and that both D and A are evaluated for all
three vertices of the element and B is only evaluated for the two vertices of the boundary element .

Computation of D(e,r)
The computation of the entries of D(e,r) are rather straightforward. The value of χ(r) is known, so the only
difficulty is the evaluation of ϕ`(r) for ` = 1,2,3. The basis functions were defined as ϕ`(v j ) = δ` j for the
vertices v j of the element. The point r can be written as a linear combination of the vertices of the element:
r =αv1 +βv2 +γv3. Then it holds for the linear basis functions that:

ϕ`(r) =ϕ`(αv1)+ϕ`(βv2)+ϕ`(γv3)

In this way all entries for D(e,r) can be computed.

Computation of A(e,r)
The entries o f A(e,r) are expressed in terms derived from

1

4π

Ñ
e

r− r′

|r− r′|3 dr′∇ϕl . (4.11)

Next we give an outline of the method used to compute the entries of matrix A(e,r) analytically. We study
two different cases: one where r ∈ e j , which is the difficult case due to the singularity r = r′, and the case
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r ∉ e j , which does not contain a singularity. For the case with the singularity, a limit argument is used to find
a solution. We evaluate the integral on the element except a ball with small radius ε > 0 around r. Since the
singularity is not included, the integrand is smooth. Now a corollary of the divergence theorem is used:Ñ

V
∇ψdV =

Ó
ψndS, (4.12)

for any smooth ψ, where n is the outward normal. After using this corollary and taking the limit ε ↓ 0, we find
that: Ñ

e

r− r′

|r− r′|3 dS =
Ï

∂e

1

|r− r′|n′dS′. (4.13)

The boundary of our element consists of five faces, see figure 4.1. For the three side faces, S1,S2,S3 it can be
observed that: Ñ

S1+S2+S3

1

|r− r′|n′dS′ ≈ t
∫

L

1

|r− r′|n′dL′, (4.14)

since r′ 7→ 1
|r−r′| is approximately constant in the normal direction.

For the top and bottom plate we find that these cancel out due to the small t . Application of a suitable
transformation on the three edges of L transforms the integral into an integral over the interval [-1,1] and we
find that: Ñ

e

r− r′

|r− r′|3 dS = t
∫

L

1

|r− r′|n′dL′

= t
3∑

p=1

|Lp |
2

n′
p

∫ 1

−1

1

|r− r′p (u)|du

This integral can be computed analytically, since it is of the form:∫ 1

−1

1√
(a +bx)2 + (c +d x)2 + (e + f x)2

dx. (4.15)

The parameters a,b,c,d ,e, f depend on one of the line faces Lp . This analytical solution for this integral is:∫
1√

(a +bx)2 + (c +d x)2 + (e + f x)2
dx = 1√

b2 +d 2 + f 2
× log

[√
b2 +d 2 + f 2

×
√

(a +bx)2 + (c +d x)2 + (e + f x)2 +b(a +bx)+d(c +d x)+ f (e + f x).
]

However care must be taken, since this solution is only valid if not more than two of the parameters a,b,c,d ,e, f
are zero. In case of more than two zeros we need the analytical solution to:∫ 1

−1

1

a2 + c2 +e2 d x or
∫ 1

−1

1

(bx)2 + (d x)2 + ( f x)2 d x or
∫ 1

−1

1

(a +bx)2 d x, (4.16)

dependent on the combination of zeros. Fortunately these are basic integrals with a simple analytical solu-
tion.
For the case where r ∉ e j the same approach can be used without the limit argument.

Computation of B(e,r)
Again we give an outline of the methodology used for the computation of the entries. For this computation
we need to consider integrals of the form:Ï

be

rx − r ′
x

|r− r′|3 ϕk (r′)dr′,
Ï

be

ry − r ′
y

|r− r′|3 ϕk (r′)dr′
Ï

be

rz − r ′
z

|r− r′|3 ϕk (r′)dr′ (4.17)

We only focus on the first integral as the other two can be done analogously. Fortunately, there are no singu-
larities in the integral, simplifying the computation. Again we can approximate the integral, due to the small
thickness t : Ï

be

rx − r ′
x

|r− r′|3 ϕ(r′)dr′ = t
∫

Lbe

rx − r ′
x

|r− r′|3 ϕ(r′)k dr′. (4.18)
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We parametrize the line element Lbe with vertices v1 and v2 over the interval [-1,1] via

r′(s) = 1

2
(v1 +v2)+ 1

2
s(v2 −v1), s ∈ [−1,1] (4.19)

Now the integral can be transformed, using this parametrization:

t
∫

Lbe

rx − r ′
x

|r− r′|3 ϕk (r′)dr′ = t |Lbe |
2

∫ 1

−1

rx − r ′
x (s)

|r− r′(s)|3 ϕk (r′(s))ds (4.20)

Note that the linear basis functionφk (r′(t )) is now a basis function u(t ) on [-1,1] and can be written as: uk (s) =
1
2 + 1

2 (−1)k s (k = 1,2). Using this expression for uk we can split the integral into two separate integrals.

t |Lbe |
2

∫ 1

−1

rx − r ′
x (s)

|r− r′(s)|3 ϕk (r′(s))ds = t |Lbe |
4

∫ 1

−1

rx − r ′
x (s)

|r− r′(s)|3 ds + (−1)k t |Lbe |
4

∫ 1

−1

(rx − r ′
x (s))s

|r− r′(s)|3 ds

= t |Lbe |
4

× A+ (−1)k t |Lbe |
4

×B

These two integrals are both of a form that can be computed analytically. For integral A we have∫
(a +bs)√

(a +bs)2 + (c +d s)2 + (e + f s)
3 ds = d1(s)

e1(s)
+constant (4.21)

and for integral B ∫
(a +bs)s√

(a +bs)2 + (c +d s)2 + (e + f s)23 ds = d2(s)

e2(s)
+ d3(s)

e3(s)
+constant. (4.22)

with:

d1(s) = a
(
cd +e f + (d 2 + f 2)s

)−b
(
c(c +d s)+e(e + f s)

)
e1(s) =

(
b2(c2 +e2)+ (de − c f )2 −2ab(cd +e f )+a2(d 2 + f 2)

)
×

√
(a +bs)2 + (c +d s)2 + (e + f s)2

d2(s) =−
(
a2 + c2 +e2

)(
−b(cd +e f )+a(d 2 + f 2)

)
−

[
b3(c2 +e2)−3ab2(cd +e f )

+a(cd +e f )(d 2 + f 2)+b
[

2a2(d 2 + f 2)

−
(
e(−d + f )+ c(d + f )

)(
c(d − f )+e(d + f )

)]]
s

e2(s) =
(
b2 +d 2 + f 2

)(
b2(c2 +e2)+ (de − c f )2 −2ab(cd +e f )+a2(d 2 + f 2)

)
×

√
(a +bs)2 + (c +d s)2 + (e + f s)2

d3(s) = b log
(
ab + cd +e f + (b2 +d 2 + f 2)s +

√
b2 +d 2 + f 2

×
√

(a +bs)2 + (c +d s)2 + (e + f s)2
)

e3(s) = (b2 +d 2 + f 2)3/2

Again care must be taken since these exact solutions are not valid for certain combinations of zeros for
a,b,c,d ,e, f . For the geometry used in our research the analytical solutions are valid.
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4.1.4. Computation of the normal vectors
In the computation of A(e,r) and B(e,r) the normal vectors are important. For each element the normal vec-
tors must be defined in the outward direction. Here we describe the method used to achieve that in each case
the outward normal is used. In figure 4.2 an element is shown with its center and the normal vector on one
boundary element. The center c is computed as 1

3 (v1+v2+v3) and the point cm is computed by 1
2 (v1+v2). The

vector between c and cm is named cc = c−cm . Since n′ is in the same 2-dimensional plane as the independent
vectors v1 −v2 and v3 −v1, we write n′ as a linear combination of those two: n′ = c1(v2 −v1)+ c2(v3 −v1). For
convenience we write n′ = c1a+ c2b.

v1 v2

v3

• c
cc

cm

n′

Figure 4.2: Element with center c and normal vector n′

The outward normal vector must satisfy two conditions. Firstly it must be perpendicular to the vector v1 −v2

and secondly it must be in the opposite direction of cc . These can be written as the following two inproducts:

n′ · (v2 −v1) =0 (4.23)

n′ · cc =−1 (4.24)

From the first condition it follows that:

n′ · (v2 −v1) = (c1a+ c2b) ·a = c1 ∥ a ∥2 +c2(a+b) = 0. (4.25)

The second condition results in
[
a ·c b ·c

]=−1. Combining the two conditions results in the following sys-
tem that needs to be solved: [∥ a ∥2 a ·b

a · cc b · cc

][
c1

c2

]
=

[
0
−1

]
(4.26)

When c1 and c2 are computed the normal vector is known and only needs to be normalized to find the unitary
outward normal vector: n′ = n′

∥n′∥ .

Remark: For three dimensional objects care must be taken in the implementation of the normal vectors,
since one boundary element can have different orientations of the outward normal. This is the case if the
boundary element is contained in two elements which make an angle.
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4.2. Forward computation to the sensor positions
All of the sensor positions, inside the box and on the array, are known. Note that if the expansions of the basis
functions are used, equation 3.12 is linear in M and the integrals only depend on the sensor position rc . The
position is known for each sensor and is naturally equal in each iteration. Therefore the forward computation
of Hr ed by solving the integral equation 3.12 can be simplified to the matrix equation

Hr ed (rc ) =C (rc )M (4.27)

where rc is the position of a sensor, Hr ed (rc ) is the magnetic field at the sensor due to the magnetization and
C (rc ) is the field matrix. The field matrix C (rc ) can be obtained by using the discretization from the previous
chapter and the evaluation at an arbitrary observation point in integral equation 3.12.The reduced magnetic
field needs to be computed during each iteration of the prediction model. Being able to use the same matrix
every time drastically decreases the computational time. Therefore we compute the field matrices C1 and C2.
The matrix C1 is constructed such that it is able to compute the induced magnetic field Bar r

c at all sensors
locations on the sensor array. Matrix C2 is constructed such that it computes the magnetic induced magnetic
field at the onboard sensor positions. The total magnetic induction field is given by:

Bar r
c = Bar r

0 +Bar r
r ed

with Bar r
r ed = µ0C1M. Note that in our data the contribution of Bar r

0 is directly filtered leaving us with Bar r
c =

Bar r
r ed =µ0C1M. For simplicity in the notation we use Bar r

c in the research to denote Bar r
r ed . For the construction

of C1 the integral equation 3.12 is evaluated for all sensors at the array and is multiplied with µ0 to compute
Bar r instead of Har r . This matrix is saved and can be used for each forward computation from M to the sensor
array. The same can be done for matrix C2, which is used for the forward computation to the onboard sensors.

Remark: In the following chapters we denote by M the numerical vector used in the designed matrix
formed model.





5
Inverse problems

The purpose of this chapter is to explain the basic theory behind inverse problems. First general definitions of
inverse problems and properties like ill-conditioned are explained. We review some of the difficulties related
to solving inverse problems and a few solutions on how to cope with these difficulties. Methods like the
(generalized) singular value decomposition and Tikhonov regularization are discussed.

5.1. Inverse problem formulation
Lets start with a basic linear system:

Ax = b with A ∈Rm×n ,x ∈Rn ,b ∈Rm . (5.1)

We assume that the model matrix A is completely known. Now if the input x is known the computation of the
output b can be done by simply multiplying A and x. The formulation of computing the output from the input
is called the forward problem. If on the other hand the output b is known and the input x is unknown, we are
speaking of an inverse problem. Note that we also speak of an inverse problem in the case where both the in-
put and the output are known, but the system is unknown. For now we only focus on inverse problems where
the system and the output are known. In practice we often come across problems where external information
or measurements are available and the internal structure is unknown. From basic linear algebra it is known
that if A is an invertible square matrix, the inverse problem can be solved by computation of x = A−1b. Unfor-
tunately in nearly all practical problems the matrix A is not square nor invertible. From the desire to be able to
solve these problems many studies have been conducted on the properties of inverse problems and methods
to achieve accurate approximations of the solution. First we look at a few properties and definitions related
to inverse problems. The class of inverse problems belongs to the larger class of ill-posed problems. Logically,
ill-posed problems are problems which do not satisfy the conditions of a well-posed problem. According to
Hadamard a mathematical problem is well-posed if it satisfies each of the following three requirements [6]:

• Existence: The problem must have a solution.

• Uniqueness: There must be only one solution to the problem.

• Stability: The solution must depend continuously on the data.

The first two requirements speak for themselves as to why they are important for well-posed problems. The
third condition is less intuitive, but certainly not less important. This condition prevents that small pertur-
bations in the data b result in large perturbations in the solution x. Assume that matrix A is not invertible,
then the system can be either underdetermined or overdetermined. If the system is overdetermined there
are more equations than unknowns after linear dependencies between equations have been removed. An
overdetermined system often has no solutions since there are more restrictive equations than unknowns.
Overdetermined systems are ill-posed since they do not satisfy the first condition. If a system has less equa-
tions than unknowns, it is called underdetermined. There are now unknowns left in x which are not deter-
mined by the equations. Underdetermined systems often have an infinite number of solutions and therefore
do not satisfy the second condition. Problems which do not satisfy the third requirement often have so called

21



22 5. Inverse problems

ill-conditioned matrices. Violations of the first requirement can often be fixed by a slight reformulation of
the problem. A well-known method to reformulate the problem is by considering the least squares problem
instead:

min
x

∥ Ax− b ∥2
2

With addition of extra requirements violations of the second requirement can often be solved. If the addi-
tional requirements are chosen carefully, the solution becomes unique. Violations of the third requirement
are harder to deal with, since the problem must be reformulated in such a way that the solution to the new
problem is less sensitive to perturbations. A well-known method to solve the violation of the stability criterion
is regularization. The sensitivity of solutions to perturbations are often caused by ill-conditioned matrices.
Matrices are considered to be ill-conditioned if they have a high condition number (> 103). The condition
number of a matrix is defined by its smallest and largest singular value:

cond(A) = σl

σs
, (5.2)

where σl is the largest singular value and σs is the smallest singular value. To see that high condition numbers
lead to high sensitivity consider the exact and perturbed solutions, xexact and x, these solutions satisfy:

Axexact = bexact , Ax = bexact +e, (5.3)

with e the perturbation of the right-hand side. From the classical perturbation theory the following bound is
found for the error between the solution and the exact solution [6]:

∥ xexact −x ∥2

∥ xexact ∥2
≤ cond(A)

∥ e ∥2

∥ bexact ∥2
, (5.4)

with cond(A) the condition number of A. From this bound it can easily be seen that a large condition number
implies that the found solution can be far from the exact solution, which is highly undesirable. It can also
be observed that for ill-conditioned problem a small residual does not necessarily imply that the perturbed
solution is close to the exact solution. The problem behaves like an undetermined problem and as noted
before these solutions can be improved by supplying additional information. To improve both unwanted ob-
servations we look at regularization, a common method to improve solutions of ill-conditioned problems.
With regularization we impose an extra condition or regularity on the solution of the inversion in order to re-
duce the solution space and suppress unwanted noise components. Although there are many regularization
methods, we focus on one of the most successful methods, the Tikhonov regularization, see also [2], [6].

5.2. Singular value decomposition
First a recap of the standard singular value decomposition (SVD) is given from which the reason for regular-
ization is shown. Then we turn to the generalized singular value decomposition, since this decomposition
can give more insight in the Tikhonov regularization. Remember that the SVD computes the following factor-
ization of matrix A ∈Rm×n with m ≤ n:

A =UΣV T =
n∑

i=1
uiσi vT

i , (5.5)

where
Σ ∈Rn×n = diag(σ1, ...,σn), σ1 ≤σ2 ≥ ... ≥ 0.

The matrices U and V are orthonormal matrices consisting of the left and right singular vectors respectively.
It holds that

A−1 =V Σ−1U T .

Using this inverse of A an expression for the naive solution an be determined:

x = A−1b =
n∑

i=1

uT
i b

σi
vi . (5.6)

From this equation it is evident that if b contains noise these noise factors are largely amplified by small
singular values. Notice that the condition number of A is large if it smallest singular values are very small
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compared to the highest singular value. This observation supports the observation that a high condition
number implies a higher sensitivity to perturbation.

The generalized singular value decomposition is a matrix decomposition more general than the singular
value decomposition (SVD) since it can give a decomposition of two matrices with the same number of
columns. The need for this extra property is given in the next section. First we give a short introduction
on this decomposition. For more detailed descriptions and derivations, see [19],[6],[16]. Name Y T = [AT ,RT ]
and rank(Y) = r. The GSVD of the matrix A(m×n) and matrix R (p×n) with m > n is given by the factorizations:

A =UΣ1[W T X ,0]QT and R =V Σ2[W T X ,0]QT . (5.7)

The following statements hold for the matrices in the factorizations:

1. U [m ×m], V [p ×p], W [r × r ], Q [n ×n] are orthogonal matrices. U and V hold the orthonormal left
singular vectors for both matrices and Q holds the right singular vectors. The right singular vectors are
linearly independent but not normalized or orthogonal.

2. X [r× r] is nonsingular with singular values equal to the nonsingular values of Y.

3. Σ1 [m × r] and Σ2 [p × r] are of the form:

Σ1 =
I1

S1

O1

 , Σ2 =
O2

S2

I1

 , (5.8)

with S1 = diag(σk+1, ...,σk+s and S2 = diag(µk+1, ...,µk+s ) are real s × s matrices. Further I1, I2 are unit
matrices and O1 and O2 are zero matrices, possibly with no rows or no columns. Further it holds that
1 ≥σk+1 ≥ ... ≥σk+s ≥ 0, 0 ≤µk+1 ≤ ... ≤µk+s ≤ 1 and σ2

i +µ2
i = 1 for i = k +1, ...,k + s.

The ratio’s σi /µi are called the generalized singular values. The generalized singular vectors also satisfy the
following relations:

p < n C2qi =σi ui , Rqi =µi vi , i = 1, ..., p,
C2qi = ui , Rqi = 0, i = p +1, ...,n,

p ≥ n : C2qi =σi ui , Rqi =µi vi , i = 1, ...,n.
(5.9)

5.3. Tikhonov regularization
Now lets focus on the well-known regularization method, Tikhonov regularization. Tikhonov regularization
has the advantage on other methods that it is better suited for large computational problems and that it
explicitly incorporates the regularity requirement in the formulation of the problem [6]. Tikhonov regulariza-
tion replaces the ill-conditioned problem

min
x

∥ Ax−b ∥2
2 (5.10)

with the nearby problem
min

x
{∥ Ax−b ∥2

2 +λ2 ∥ Rx ∥2
2}. (5.11)

Here λ is a positive regularization parameter which weights both parts of the criterion function and R is
the regularization operator which adds a certain requirement to the solution. The first part of the criterion,
∥ Ax−b ∥2

2 describes the fit of the solution on the data and therefore tells something on how well the solution
resembles the data. The second part is a penalty term that describes the required regularity. Naturally we
want a good combination between both parts, a completely smooth solution which does not fit the data is
not preferred, as is a solution which fits the data but does not satisfy the expected regularity at all. The balance
between both parts is defined by the parameter λ2. There are many methods to find an optimal λ, but the
most common is with use of the L-curve, [2], [6],[7]. The L-curve plots the solution norm versus the residual
norm for valid parameters λ. The name comes from the typical L-shaped form of the curve if plotted in log-
log axes, see figure 5.1. The optimal λ is found at the corner of the L-curve. At this corner both the solution
norm and the residual norm are smallest, resulting in the best solution of minimization problem.
The problem 6.16 has two important alternative formulations:

min

∥∥∥∥(
A
λR

)
x−

(
b
0

)∥∥∥∥
2

(5.12)
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Figure 5.1: Standard L-curve for parameter λ of Tikhonov regularization

and equivalently using the normal equations:

(AT A+λ2R)x = AT b (5.13)

From these formulations it can be observed that the Tikhonov problem can be rewritten to a least-squares
problem. Further it can be seen that the solution is unique if the intersection of the null spaces of A and R only
contains the zero vector. To construct the regularity condition properties of the problem must be inspected.
A basic regularity condition is to add a constraint to the norm of the solution. Then for the regularization
operator the identity matrix is used (R = I ), resulting in the problem:

min
x

{∥ Ax−b ∥2 +λ2 ∥ I x ∥2
2}. (5.14)

Now the norm is minimized as well resulting in a more regular solution. Any additional requirements can be
added to the problem throughout the regularization operator. With help of finite differences it is possible to
add smoothness to the solution. Through the operator R we can force the solution on one element to be close
to the solutions on the adjacent elements. The structure of R should be defined for each problem separately.

When the regularized problem is constructed, it naturally must be solved. The Tikhonov criterion can be
solved by using the Eldéns bidiagonalization algorithm or by using the singular value decomposition (SVD)
or generalized singular value decomposition (GSVD) [5]. Although the bidiagonalization algorithm is the
most efficient and numerically stable method to solve the Tikhonov problem, the SVD and GSVD method
give more insight into the regularization problem. Note that the SVD is used for problems with R = I and the
GSVD is used for problems with R 6= I . Since we have R 6= I we need a decomposition for both matrices A and
R and therefore the GSVD must be used instead of the SVD. For the implementation of the Tikhonov problem
we use methods from the regtools package implemented by Hansen [4]. The implemented method for solving
the Tikhonov problem makes use of the GSVD.
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5.4. Tikhonov error analysis
In coming section we show how Tikhonov regularization influences the error made by the noise components.
The right singular vectors provide the basis for the general-form Tikhonov solution xR,λ. From the above
relations it follows that:

p < n : xR,λ =
p∑

i=1
γ[R,λ]

i

uT
i b

σi
qi +

n∑
i=p+1

uT
i bqi (5.15)

p ≥ n : xR,λ =
p∑

i=1
γ[R,λ]

i

uT
i b

σi
qi , (5.16)

here filter factors γ[R,λ]
i have been introduced. The filter factors are defined by:

γ[R,λ]
i = σi

σ2
i +λ2µ2

i

, i = 1, ...,min(p,n) (5.17)

From the relation γ[R,λ]
i = (σi /µi )2/((σi /µi )2+λ2) and σ2

i +µ2
i = 1 the following approximation can be derived:

γ[R,λ]
i ≈

{
1, σi /µi Àλ,

σ2
i /µ2

i , σi /µi ¿λ
(5.18)

Now remember the measurements of b are contaminated with noise, see equation 5.3. The naive solution
without regularization in terms of the GSVD is as follows:

x =
n∑

i=1

uT
i (bexact +e)

σi
qi . (5.19)

From this equation it is evident that the noise terms are enlarged by small singular values, which is highly un-
wanted. Now if we look at the solution in equation 5.15, we find that each noise term is also multiplied with
the filter factor. Now consider the approximations of the filter factors in equation 5.18. For singular values
larger than the parameter λ, the filter factors are close to one and therefore the corresponding GSVD com-
ponent contribute to the solution with almost full strength. When the solutions are much smaller than the
parameter λ, the filter factors are small and these GSVD components are damped. From this it can be con-
cluded that the regularization dampens the contribution from the small singular values and thereby prevents
the contribution of increased noise components.





6
Magnetic state model

In the previous chapter we have discussed inverse problems, difficulties related to inverse problems and
methods to improve the solutions. Now we turn back to our model and define the models for the compu-
tation of the magnetic state and the data-driven updates. For these models the formulation of the inverse
problems is defined. In order to find a regularized solution that satisfies our expectations of the solution, a
regularization operator is constructed. At the end of this chapter the complete model is summarized in a
clear overview and pseudo-algorithms for the model are provided.

6.1. Computation permanent magnetization
6.1.1. Initial State
Before each simulation the initial permanent magnetization and susceptibility must be computed, since
these are unknown. The initial permanent magnetization can be computed in multiple ways using the Helmholtz
construction and measurements from the onboard sensors as well as the sensors on the array. Using the coils
the earth’s magnetic field can be disables in a volume around the object. The absence of an applied field
results in a zero induced magnetization due to the linear relationship, although there might be a small in-
duced magnetization present due to the permanent magnetization. The measured induced magnetic field
measured at the sensors is only caused by the permanent magnetization. The permanent magnetization can
then be computed from the inverse problems:

Bar r
m (0) =C1M1

per (0)

and
Bb

m(0) =C2M2
per (0).

To achieve the best from both inversions, the results are averaged:

Mper (0) = 1

2
(M1

per (0)+M2
per (0)).

If it is not possible to cancel the Earth’s magnetic field the permanent magnetization can also be computed
in a different way. First apply a field H1 = c and then apply a field H2 =−c. The total measured field is:

Br ed [M] = Br ed [Mi nd ]+Br ed [Mper ]. (6.1)

Remember that the induced magnetization is a linear reaction on the applied field and therefore is opposite
for H1 and H2. Adding equation 6.1 for both applied fields results in:

B1
r ed +B2

r ed = 2Br ed [Mper ].

Note that Mper could change slightly due to the first applied field but this is not enough to drastically change
the initial condition estimate. Solving this inverse problem results in an initial guess for Mper .

27
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The susceptibility distribution of the material can be computed using the Magnetic Susceptibility Estimation
Method (MSEM) from [22]. For the computation of the susceptibility the permanent magnetization must be
known. Fortunately the inversions for the computation of the permanent magnetization can be done without
knowledge of the susceptibility distribution. Therefore in the model first the initial permanent magnetization
is estimated after which the susceptibility can be estimated. The complete process can be done offline if there
is one set of data available. With offline we mean that this can be done before the actual monitoring system
is needed.

6.1.2. Data-driven update
After the initial permanent magnetization has been computed, we want the monitoring system to keep track
of changes in the permanent magnetization. These changes should be corrected in the estimation in order to
give accurate measurements of the induced magnetic field. For the corrections the system makes use of data
collected by the onboard sensors. The onboard sensor group contains in total 24 sensors, which measure the
magnetic field inside the object. Care needs to be taken since the sensors are not completely accurate and will
give noise in the data. So the true Bb is equal to the measured Bb

m minus some noise. Before each iteration
the data Bb

m(k) from the onboard sensors for iteration k is collected. The task is to update the permanent
magnetization such that Bb

c (k) =C2M(k) approximates the measured field Bb
c (k) inside the box the best. Here

M(k) = Mi nd (k) = Mper (k). Remember that B0 has been removed from the measurements Bb
m and it holds

that: Bb
m = Br es [M] This results in an minimization problem that needs to be solved. The update step can be

written as follows:
Mper (k) = Mper (k −1)+∆Mper (k) (6.2)

The magnetization M is a sum of the estimated M̂(k|k − 1) and a data based correction of the permanent
magnetization ∆Mper . In this prediction model the estimated magnetization is given by:

M̂(k|k −1) = Mi nd (k)+Mper (k −1), (6.3)

where Mi nd (k) is based on the applied field and Mper (k −1) and is computed by solving the inverse problem
4.9:

[D + A+B ]Mi nd (k) = Ha(k)− [A+B ]Mper (k −1) (6.4)

From the estimated magnetization the magnetic field Bb
c [M̂](k) inside the box can be computed using the for-

ward system Bb
m(k) =C2M(k). Comparison of the measured field and the estimated field results in a residual

field from which the data based correction of Mper (k) can be found.

Br es (k) = Bb
m(k)−Bc (M̂(k)). (6.5)

Br es (k) =C2∆Mper (k) (6.6)

The computation of ∆Mper again results in solving an inverse problem. These inverse problems are studied in
more detail in the next sections. After the correction has been computed both Mper (k) and M(k) are updated:

Mper (k) = Mper (k −1)+∆Mper (k) (6.7)

M(k) = Mi nd (k)+Mper (k) (6.8)

Remember from equation 3.19 that the induced magnetization is dependent on the applied field as well as
on the permanent magnetization. At this moment the induced magnetization at time step k is dependent on
the permanent magnetization from the previous time step k −1. It might be more realistic for the induced
magnetization at time step k to be dependent on the permanent magnetization of time step k. Since it is
not yet clear which resembles the induced magnetization the best we consider two models, one where the
induced magnetization is only based on the permanent magnetization of the previous time step and one
where an extra update on the induced magnetization is done. The additional update is done by solving:

[D + A+B ]Mi nd (k) = Ha − [A+B ]Mper (k) (6.9)
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6.2. The inverse problem
In the construction of the model multiple inverse problems were encountered. In the current section the
inverse problems are examined to find if they are well-posed. The first inverse problem encountered is the
computation of the induced magnetization from the permanent magnetization and the applied field:

[D + A+B ]Mi nd (k) = Ha − [A+B ]Mper (k) (6.10)

K1Mi nd (k) = h0−K2Mper (k) (6.11)

For simplicity matrix [D+A+B] are named matrix K1 and matrix [A+B] is denoted by K2. Note that the com-
putation of Mi nd is an inversion, based on matrix K1. The condition number of this matrix is approximately
71, from which it can be concluded that this inversion is well-posed and therefore can be solved without the
need for regularization. The other inverse problems occur when the magnetization has to be computed from
the induced magnetic field values at the sensor positions. These inverse problems are used for the computa-
tion of the initial permanent magnetization and the corrections. Remember from chapter 4 that the forward
problems are given by

Bar r
m =C1M, (6.12)

for the sensors on the array and by
Bb

m =C2M, (6.13)

Br es (k) =C2∆Mper (k) (6.14)

for the onboard sensors. Unfortunately these problems can not be solved directly for M, since we are working
with large discrete systems with ill-posed, ill-ranked matrices C1 and C2. Especially matrix C1 is ill-posed,
since it has a condition number of 1.446 ·106[6]. The matrix C2 is better posed than C1 but still not good with
a condition number of 3524. The high condition number of the matrices mean that small perturbations of
the right-hand side result in large errors in the naive solution Mexact

per , as explained in the previous chapter.
In order to improve the solutions from the ill-posed inverse problems we use the Tikhonov regularization
method. Further it also has to be taken into account that the measurements Bm contain measurement noise
and we do not want to fit the noise in the model.

6.2.1. Regularization for Mper
As noted in the previous part it is essential to improve the inversion in order to reduce inaccuracies in the
solutions. A common way for this is to use regularization [6], as discussed in the previous chapter. We only
consider the Tikhonov regularization for the ill-posed problem of the correction step. The redefinition of
the inverse problems for the initial permanent magnetization can be done likewise. Tikhonov regularization
replaces the ill-conditioned problem

min
x

∥C2∆Mper −Br es ∥2 (6.15)

with the nearby problem
min

x
{∥C2∆Mper −Br es ∥2

2 +λ2 ∥ RMper ∥2
2}. (6.16)

Here λ is a regularization parameter which weights both parts of the criterion function and R is the regu-
larization operator which adds a certain requirement to the solution. In order to add a correct and useful
requirement, the expected properties of the permanent magnetization need to be inspected. We expect the
permanent magnetization to be more or less equal throughout the material, since most of the material expe-
rienced the same magnetic history. Naturally differences may exist due to earlier stress or other deformations
of the material. However we assume there are no extremes in a short time span. Further we also assume
that the permanent magnetization changes gradually due to the magnetic field and does not make large in-
creases/decreases within one time step.

Therefore we can choose to pose a smoothness requirement on the permanent magnetization in each direc-
tion separately. This smoothness conditions ensures that the permanent magnetization in each direction at a
grid point does not differ much from the adjacent grid points. The separation of the directions is important,
since large differences can occur between directions of the permanent magnetization depending on the di-
rections of the applied fields in the history. Such as smoothing condition can be applied to the system in the
form of a smoothing operator R.
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6.2.2. Smoothing operator for Mper
The smoothing operator is designed in such a way that in the solution the value at one grid point does not
differ much from the adjacent grid points. We call two grid points adjacent when they share an element.
To find the adjacent grid points of point pk we need to add all grid points from the elements in which pk is
contained and then filter all double points and the point i . In figure 6.1 part of a triangulation is shown. We
consider point 5 colored in green, its adjacent grid points are colored in yellow. From the figure it can be seen
that each adjacent grid point is part of an element in which 5 is contained. Note also that for example grid
point 6 is contained in two of these elements and therefore doubles should be filtered.
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8

9

Figure 6.1: Example of a triangulation

In the mesh of the SVP01, each grid point pk has at least 3 and at most 8 adjacent grid points. Define the
function

ψ :
Np⋃

k=1
pk → {3,4,5,6,7,8}, pk 7→ψ(pk ) (6.17)

as the number of adjacent grid points. The smoothing operator originates from finite differences, which says
that the value at point i should be ’close’ to the average of the adjacent grid points. We quantify ’close’ by
adding an innovation term Ik ∼ N (0,σ2

k ) to the equation. The innovations term shows in what extend the

value of Mpk
per can differ from its neighbours. The smoothness condition can be formalized by the following

equation:

Mpk
per =

1

ψ(pk )

ψ(pk )∑
i=1

Mpki
per + Ik (6.18)

To illustrate this idea, apply 6.18 to the grid points in fig 6.1 to obtain e.g.

Mp5
per =

1

6
(Mp2

per +Mp3
per +Mp4

per +Mp6
per +Mp7

per +Mp8
per )+ I5, (6.19)

Mp4
per =

1

5
(Mp1

per +Mp2
per +Mp5

per +Mp7
per +Mp8

per )+ I4. (6.20)

The set of equations from 6.18 can be written as: RMper = E , where R = (IN pxN p −S), E ∼ N(0,ΣN pxN p ) and S
is originates from the right hand side in 6.20. Here the standard average is considered, since all triangles are
the same size and the distance between the grid points is approximately the same. In the general case where
the mesh is not uniform, the generalized form can be used, which gives more weight to grid points close by:

Mpk
per =

ψ(pk )∑
i=1

 1−δ(pk , pi )∑ψ(pk )
j=1 1−δ(pk , p j )

Mpki
per + Ik , (6.21)

here δ(pk , p j ) measures the distance between grid point pk and p j .

If this operator is used in the regularization the solution shows more uniformity dependent on the value of
λ. For small λ there is less weight on the term with R and therefore the solution will be less regular. If there
is a higher λ the operator term becomes more important and the solution will show more regularity. In the
experiments we use the λ found by the L-curve.
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6.3. Signature Monitoring Model
In the previous chapters the model has been build and all mathematical theory has been discussed. The basic
structure of the signature monitoring model is given in figure 6.2. In the blue rectangles the monitoring model
can be found, in the grey rectangle the method of validation can be seen. Naturally first the initial values for
the permanent magnetization and susceptibility need to be computed (not shown in the structure). After
the initial condition it follows the structure for each time step. In each iteration the magnetic state of the
object is computed. First the induced magnetization is found from the previous permanent magnetization
and the applied field. Then comparison with the onboard sensor data results in an update for the permanent
magnetization after which the total magnetization can be computed. From the total magnetization we move
towards the forward problem, where the magnetic signature at the array below the vessel is computed from
the magnetization. According to this structure and with use of all theory discussed in the previous chapters,

Computation
magnetic state

Ha(k)

Bb
m(k)

Store Mper (k)

Computation
magnetic signature

M

Compare+

Noise

Bar r

Bar r
c

Bar r
m

Mper (k)

Mper (k −1)

INVERSE PROBLEM

VALIDATION FORWARD PROBLEM

Figure 6.2: Structure magnetic signature monitoring system

we give two pseudo-codes for the prediction algorithms. First for the model without regularization on the
inversion and secondly with regularization on the inversions. For the model with regularization we can either
provide a fixed regularization parameter λ which is used in all inversions or we can provide λ= ’free’ and let
the L-curve determine an optimal parameter. In the pseudo-codes the computation of the necessary matrices
A,B ,D,C1,C2 are not shown for clarity, since these can be computed and saved in advance.
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Prediction model without regularization
Input: Ha ,Bb

m
Output: Bar r

c ,M

• Compute initial permanent magnetization from onboard and array sensors (inversions):

– Bb
m(0) =C2M1

per

– Bar r
m (0) =C1M2

per

– Mper (0) = 1
2 (M1

per +M2
per )

• Compute estimated susceptibility pattern χ̂ with Magnetic Susceptibility Estimation Method.

• for each Ha(k):

– Compute induced magnetization (inversion): [A+B +D]Mi nd (k) = Ha(k)− [A+B ]Mper (k −1).

– Set Mtemp (k) = Mi nd (k)+Mper (k −1).

– Compute field onboard sensors: Bb
c (k) =C2Mtemp (k).

– Compute residual field: Br es (k) = Bb
m(k)−Bb

c (k).

– Compute correction (inversion): Br es (k) =C2∆Mper (k)

– Update Mper and M: Mper (k) = Mper (k −1)+∆Mper and M(k) = Mi nd (k)+Mper (k).

• Compute magnetic field at array: Bar r
c =C1M.

In

the above model all inversions are done without use of regularization, meaning that each solution of an in-
verse problem is found by solving the least squares problem. Since we expect the solutions from the regular
inversion to be inaccurate due the high condition number of matrices C1 and C2, in the next overview the
model with regularization is shown. Both models are compared in the next chapter to find the influence of
regularization.

The prediction models are implemented in the Matlab. For the regularization we made use of the func-
tions cgsvd,tikhonov and lcurve from the regtools toolbox. The functions in this toolbox are designed and
implemented by P.C. Hansen [4]. The well-posed inversion for Mi nd is done using the backslash operator
from Matlab. For the remaining implementation only standard Matlab functions and own implementations
have been used. For computational convenience variables and matrices are computed and saved in advance.
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Prediction model with regularization
Input: Ha , Bb

m , λ
Output: Bar r

c ,M

• Compute regularization operator: R = RegularizationOperator(P,E)

• Compute Compact Singular Value Decomposition of C1 and C2:

– [U , sm, X ,V ] = cgsvd(C2,R)

– [U 1, sm1, X 1,V 1] = cgsvd(C1,R)

• Compute initial state from onboard and array sensors (inversions):

– If λ = ’free’: λ1 = lcurve(U , sm,B b
m , t i kh), λ2 = lcurve(U 1, sm1,B ar r

m , t i kh)

– M1
per = tikhonov(U , sm, X ,B b

m(0)′,λ1)

– M2
per = tikhonov(U 1, sm1, X 1,B ar r

m (0)′,λ2)

– Mper (0) = 1
2 (M1

per +M2
per )

• Compute estimated susceptibility pattern χ̂ with Magnetic Susceptibility Estimation Method.

• for each Ha(k):

– Compute induced magnetization (inversion): [A+B +D]Mi nd (k) = Ha(k)− [A+B ]Mper (k −1).

– Set Mtemp (k) = Mi nd (k)+Mper (k −1).

– Compute field onboard sensors: Bb
c (k) =C2Mtemp (k).

– Compute residual field: Br es (k) = Bb
m(k)−Bb

c (k).

– If λ = ’free’: λ3 = lcurve(U , sm,Br es (k), t i kh)

– Compute correction (inversion): ∆Mper (k) = tikhonov(U 1, sm1, X 1,Br es (k),λ3)

– Update Mper and M: Mper (k) = Mper (k −1)+∆Mper and M(k) = Mi nd (k)+Mper (k).

• Compute magnetic field at array: Bar r
c =C1M.





7
Steel Vessel Prototype 01 and setup

In this chapter we explain the object of concern, the SVP01, and the Helmholtz structure used to compute the
necessary data. This object is used in the twin experiments to validate the model. The SVP01 and Helmholtz
structure are designed by and located at TNO1.

The Steel Vessel Prototype 01 is a rectangular box, consisting of four attached open cubes of 12x12x12 cm,
without a top plate, see figure 7.1a. This results in a total length of 48 cm, a width of 12 cm and a height of
12 cm. The thickness of the used steel plates is 0.5 mm. In each of the cubes there are five sensors, placed
in the middle of the faces, which can measure the magnetic field in all three directions. Note these are not
visible in the figure, later we look more closely at the sensors. Each of the cubes contains coils in all direc-
tions, such that it is possible to construct a desired magnetic field inside the box. For this research only the
sensors inside the box are used, since these are important for the monitoring system. In the software pro-
gram Blender a 3D model of the box has been build, in this model all squares of 12x12 cm are divided into
two triangles to create a simple triangular mesh of 34 elements. The choice and method of meshing are dis-
cussed further on in this chapter. The Blender models can be found in figure 7.1. In the solid frame figure it
is clear that the 3D model is a good visualization of the SVP01, from the wireframe model the basic mesh of
34 elements can be observed.The SVP01 is placed inside ’Clavis’, a square Helmholtz coil structure, see figure

(a) Real SVP01 (b) Blender solid frame (c) Blender wireframe

Figure 7.1: SVP01 and 3D models in Blender

7.2b. The structure consists of a cage surrounded with multiple coils in each direction. This combination of
coils makes it possible to construct a locally uniform magnetic field in all three directions in a volume within
the cage. The magnitude of the field can be chosen between ± 100 microtesla, which is about two times the
Earths magnetic field. Note that with these numbers it is also possible to cancel the Earths magnetic field.
In the implementation we follow the local axes from Clavis. The vessel is placed with its middle point of the
bottom located at the origin of the local axes. The long side of the vessel is placed in the x-direction and the
short side in the y-direction. The z-field is defined positive in the downward direction, such that the z-axis is
positive below the origin. In figure 7.2a the positive direction of the x-,y- and z-direction are indicated by the
arrows. These orientations hold if one is looking from above into Clavis (Birds view). The vessel is placed on a

1The Netherlands Organization for Applied Scientific Research.
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(a)
Orientation of axis in Clavis (Birds view)

(b) Helmholtz structure

Figure 7.2: Helmholtz structure ’Clavis’ and axis orientation

plastic template with markers to ensure that it is in the same place with all experiments. Below the Helmholtz
structure is a sensor array of 75x30 cm located, which contains 112 sensors. These sensors are the same as
the onboard sensors and they can measure the magnetic induction field below the vessel in three directions.

The sensors used are Honeywell HMC883L sensors with a noise level of approximately 1 µT . The sensors are
divided into two groups, the onboard sensors and the array sensors. Inside the box there are 20 sensors lo-
cated, five inside each 12x12x12 cube, all close to the middle of one of the faces. The sensors are connected to
a flexible plastic model, which can be fitted inside the box. In figure 7.3a one sensor, connected to the flexible
model can be seen. One can also see a few of the onboard coils of the vessel. In this way the sensors can be
calibrated without the steel cover of the vessel and are always at approximately the same positions inside the
vessel. At the front and back there are two more sensors located outside the vessel. These 24 sensors are all
part of the onboard sensor group. The implemented onboard sensors can be found in black in figure 7.4a.
The magnetic field measured by the onboard sensors is denoted by Bb

m , where the m stands for measured
and the b for onboard. Beneath the box, at a height of 56 mm, there is a sensor array located with in total 112
sensors, these sensors are all part of the array sensor group. Both the real sensor array and the Matlab figure
of the array sensors can be found in figure 7.4. The magnetic field measured by the array sensors is denoted
by Bar r

m , where the m is for measured and the ar r is for array. The onboard sensors are used as input to the
prediction model, while the measurements from the sensor array are used for the validation. Note that the
measurements from the sensors, contain the true magnetic field as well as measurement noise. The order of
the noise of these Honeywell sensors is approximately 1 µT .

Further it has to be kept in mind that the measured magnetic field is a combination of the applied field and the
reduced magnetic field. The reduced magnetic field is of interest to us, since it is caused by the magnetization
of the object. Obviously the values of the applied fields are known and therefore the data from the sensors
can be corrected, such that the data only contains the reduced magnetic field. In the rest of this research the
measurement data from the sensors only includes the reduced field and not the applied field: Br es = Bm −Ba .
When speaking of Bb

m or Ba
m we always refer to the corrected values.

The earlier described CAD model is loaded into Matlab, where the mesh can be refined. In the mesh refine-
ment each triangle is divided into four equal triangles, resulting quickly in large numbers of elements. In each
step the mesh becomes four times as large. The loaded CAD model consists of a mesh with 34 elements, after
one division this has already increased to 136 elements and after two divisions the mesh consists of 544 ele-
ments. In general, the methods results in a mesh of the SVP01 with 34 ·4di v elements for number of divisions
di v = 1,2,3... 2. In this research we work with a mesh of 34 ·42 = 544 elements, see figure 7.5a. For more accu-
rate measurement a smaller mesh can be taken, however this also significantly increases the computational
time.

2The mesh refinement is done with code written by Bart-Jan Peet, employee of TNO
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(a) Board sensor (b) Board sensors Matlab

Figure 7.3: Board Sensors

(a) Sensor array (b) Array sensors Matlab

Figure 7.4: Array Sensors

In subsection 4.1.4 a remark was made on the computation of the outward normal vectors in 3-dimensions.
From the discretization of the box it can be observed that there are boundary elements present which have
two different orientations for their outward normals, since they are connected to two elements. In order to
check the method and its implementation, the normal vectors are plotted together with the box in figure 7.5b.
All the normal vectors are pointing outward and boundary elements at corners have two normal vectors as
expected.

(a) Discretization steel box (b) Normal vectors boundary elements

Figure 7.5: Mesh SVP01 and outward normals





8
Twin Experiments

To test the performance of the designed model, multiple twin experiment are conducted. In twin experiments
the designed model is used to create a set of observations, noise is added to this set of observations to create a
simulation data set. Then with help of the same model it is tried to estimate the true model parameters from
the noisy data. From twin experiments it can be concluded if the model is correctly implemented and it can
be observed how well the model is able to handle noise components. In the twin experiments the computed
observations consist of a varying applied field Ha and the magnetic induction field onboard as well as on the
array. The onboard data and the applied field are used as input for the model and the array data is used as the
validation data. No noise is added to the applied field, since we assume that the applied field is a known input.
For the first experiments we assume that the susceptibility is known in order to prevent inaccuracies from the
susceptibility estimation contaminating the performance of the model. In the next section we elaborate on
the used parameters and the simulation data. The monitoring model is used to predict the magnetization in
the box and the induced field on the sensor array on basis of the applied field and the data from the onboard
sensors. To test the performance of the prediction model, we run a number of twin experiments. The twin
experiments are divided into three phases.

In phase I the twin experiments are based on data generated with constant permanent magnetization Mper in
time and without noise. In this data set the permanent magnetization and the applied field are both defined
in the x−direction. The monitoring model is first tested on data without noise, such that we can observe
whether the model is correctly implemented and we can observe the behaviour of the inversions. In phase
I the influence of regularization is tested as well as the influence of the data-assimilation. In the last part of
phase I twin experiments are conducted to test the performance of the model in the y− and z− direction.
From phase I we hope to conclude that the model and the inversions work properly and that there are no
implementation mistakes.

In phase II we continue with data sets contaminated with noise, in order to test the behaviour of the inver-
sions on the noise components. In this phase we also propose and test two improvements of the models: one
improvement for the computation of Mi nd and one for the computation of the initial estimate of Mper .

In phase III more complex types of permanent magnetizations are used for the generation of the data to gain
more insight into the performance of the model in real-life situations. First a twin experiments with a linearly
varying permanent magnetization is conducted, since we expect the permanent magnetization to change
approximately linear in practice. Moreover an experiment is conducted using a non-uniform permanent
magnetization, to find the ability of the model to approximate non-uniform distributions. In the last exper-
iment that is conducted, we no longer assume that the susceptibility distribution is known. Noisy estimates
of the susceptibility distribution are used instead of the true values. Here we hope to draw some conclusions
on the influence of inaccuracies in the susceptibility estimation in the magnetic field predictions.
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8.1. General notions
The twin experiments are based on a few general assumptions. In most experiments we assume that the
susceptibility distribution is known and uniform: χ ≡ χtr ue . Only in the last experiment the susceptibility
distribution is estimated. For each separate experiment we look at two different type of figures, the first
figure shows contour plots of the measured and computed induced magnetic field at all sensors locations at
time step 48 (Ha ≈ 18.7A/m). In grey the projection of the SVP01 on the sensor array is drawn in the contour
plots. In these figures also the contour plots of the absolute and relative error are shown, we refer to these
two errors as the absolute/relative field errors. These errors are the vector norms of all three directions in one
sensor location for time step 48 and thereby show the error per sensor:

εs
abs =∥ Bar r

m −Bar r
c ∥2, εs

r el =
∥ Bar r

m −Bar r
c ∥2

∥ Bar r
m ∥2

(8.1)

The absolute error εs
abs is measured in Tesla’s [T] and the relative error εs

r el is logically dimensionless. The
second figures shows the evolution of the (permanent) magnetization and the correction over time for grid
point 25. This figure also shows the evolution of the absolute and relative errors over time for array sensor 25.
In these figures the absolute and relative errors are defined pointwise per sensor and per direction separately.
We refer to these errors as the absolute/relative point errors:

ε
p
abs = |Bar r

m −Bar r
c |, ε

p
r el =

|Bar r
m −Bar r

c |
|Bar r

m | . (8.2)

Again the unit of εp
abs is T and ε

p
r el is dimensionless. From animations and data analysis it is clear that the

other grid points and sensor locations show the same behaviour. Therefore it suffices to consider only these
two figures. Next to each case one can also find a QR code, which can be scanned with a smartphone appli-
cation. The QR codes are connected to the animation of the model. These animations show the measured
field and the computed prediction changing over time. The animations are added as an extra feature and in
general the analysis of the twin experiments will be based on the figures in this report. In the models with
regularization we use the notation ’free’ for λ to denote that this parameter is optimized by the L-curve in
each iteration and is variable. In some cases the λ is assigned a specific value, which is used in all inver-
sions. As a last general note, remember that the purpose of the model is to predict the reduced magnetic field
at the sensor array. In the results we also discuss how well the model is able to reconstruct the permanent
magnetization, since we assume a better reconstruction of the permanent magnetization results in a better
prediction. Further the accuracy of this reconstruction also gives information on the accuracy of the inver-
sions. However the correct reconstruction of the magnetization is the second measure for the performance
of the model.

8.2. Data generation
We start by computing the set of data using a constant permanent magnetization of 500 Am−1 in the x−direction
and zero in both y− and z−direction and an uniform susceptibility distribution of 100. For the applied field
Ha a sinusoidal field with an amplitude of 100 A/m is taken. The applied field can be seen in figure 8.1. We
discretized the field in 101 steps to be able to compute the prediction at each field strength. The induced
magnetization is computed according to the computed model, based on the applied field and the permanent
magnetization: [

Ne∑
i=1

1

χ
Di + A+B

]
Mi nd = Ha − [A+B ]Mper

The total magnetization is given by M = Mi nd + Mper . Now matrices C1 and C2 from 4.2 can be used to
compute the induced magnetic fields at all the sensor locations:

Bar r =C1M

Bb =C2M

The values of the induced magnetic fields Bb
m and Bar r

m are saved together with the applied field. Bb has 3
times N = 24 measurements per time step and 101× 72 measurements in total. Bar r has 3 times N = 112
measurements per time step and 101×336 measurements in total.
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Figure 8.1: Applied field Ha for one direction, other directions zero.

To be able to test how well the model performs with noisy data, we also create data sets contaminated with
Gaussian white noise:

Bb
m = Bb

c +e,e ∼N (0,σ2I3N x3N ). (8.3)

We choose σ= 2 ·10−7 as the standard deviation of the noise, which results approximately in an variation of
1 µT in each sensor. As mentioned in chapter 7 the noise level in the sensors is approximately 1 µT . In each
individual direction the noise is contained within 3σ= 6 ·10−7. The other data sets are generated likewise but
with a different predefined permanent magnetization. The following data sets are constructed:

• Data set 1: Constant Mper 500 A/m in x-direction without noise, Ha in x-direction.

• Data set 2: Constant Mper 500 A/m in y-direction without noise, Ha in y-direction.

• Data set 3: Constant Mper 500 A/m in z-direction without noise, Ha in z-direction.

• Data set 4: Constant Mper 500 A/m in x-direction with noise σ= 2 ·10−7, Ha in x-direction.

• Data set 5: Linear varying Mper in x-direction with noise σ= 2 ·10−7, Ha in x-direction.

• Data set 6: Non-uniform Mper in x-direction with noise σ= 2 ·10−7, Ha in x-direction.

8.3. Phase I: Fixed permanent magnetization with noiseless data
The first experiments are conducted with data set 1: a constant permanent magnetization without noise. We
test the monitoring model without regularization on the model, after which the model with regularization
is used to find the influence of regularization. From these experiments it is concluded whether the regular-
ization is necessary. After the experiments on regularization we turn to the validation of the usage of data-
assimilation. In order to ensure that the data-assimilation is an useful and important part of the model, a twin
experiment using the model without data-assimilation is conducted. These results are compared to the result
of the model with data-assimilation. At last it is validated that the models work in both y− and z−direction
with the same accuracy. We expect the model to be able to correct the computed initial condition of Mper to
the true value of Mper , since there are no noise components in the data.

8.3.1. Regularization
First lets consider the results from the model without regularization on data set 1. The results can found in
figures 8.2 and 8.3.
From figure 8.2 it can be observed that the prediction of the field strength is not very accurate with a maximum
absolute error of 4.3142 µT . It is also visible that the form of the computed field does not resemble the mea-
sured field very well. From figure 8.3 we find that the model corrects the permanent magnetization in both x−
and z−direction, even though the true Mper is only present in the x−direction. The corrections do not con-
verge to zero which we would expect if the estimated permanent magnetization converges to the constant
permanent magnetization. Note that the absolute error in the x−direction at sensor 25 is increasing linearly
over time. From the data we find that the estimated Mper has large variations between grid points and be-
tween directions, these large variations can be seen in figure 8.5.
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Figure 8.2: Measurements, predictions and errors of the induced field strength without regularization and noise, Ha in x-direction,
Mtr ue

per 500 A/m in x-direction

Figure 8.3: Evolution of magnetization and prediction errors over time without regularization and noise, Ha in x-direction, Mtr ue
per 500

A/m in x-direction

Figure 8.4: Animation,
without regularization,

without noise

Here the initial estimated permanent magnetization is shown for each direction at
each grid point. It is evident that the initial estimate of the permanent magneti-
zation in no way resembles the true permanent magnetization. Inspection of the
data shows that the model only corrects the permanent magnetization at certain grid
points close to the sensor positions. We expect the estimated permanent magne-
tization to be smooth in each direction, such that the permanent magnetization in
one grid point does not differ too much from its neighbours. To force the model
to find this type of solution we use the Tikhonov regularization with the smoothing
operator, introduced in section 6.2.1. To give an impression of the influence of this
parameter, the initial permanent magnetization is estimated with different parame-
ters: λ= 10−9,10−7,10−5. Remember that for smaller λ the regularization term is less
important than for higher λ. The estimations are shown in figure 8.6, it is evident

from the figures that a higher λ results in a smoother solution. Note however that the initial estimate in the
x-direction is far from the true value 500 A/m.

Now the question is, which λ will give the best prediction? In order to find the optimal λ the L-curve is
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Figure 8.5: Initial estimate permanent magnetization without regularization for data set 1.

(a) λ= 10−9 (b) λ= 10−7 (c) λ= 10−5

Figure 8.6: Initial estimates permanent magnetization with different regularization parameters λ1

used. The L-curve associated with the inverse problem in the initial condition is shown in figure 8.7. The
L-curve gives as an optimal parameter in the initial computation λ = 4.80 · 10−6 for the inversion from the
array sensors and λ = 5.68 ·10−6 for the inversion from the onboard sensors. The values for the parameters
in the corrections vary each iteration but are in the same order of magnitude as for the initial computation.
From the L-curve it is evident that the computed λ results in the minimal norm.

Figure 8.7: L-curve inversion initial condition

In figures 8.9 and 8.10 one can find the results for the model with use of regularization on data set 1. In the
prediction of the field at the array, figure 8.9, we find that the prediction has improved significantly compared
to the prediction without regularization. The absolute field error decreased from 4.3142 µT to 0.13 nT and
the relative field error decreased from 63.8% to 1.72 ·10−3%. The shape of the computed field resembles the
true field with a very small error, which is very promising.

1Enlarged versions of these figures can be found in appendix A.
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Figure 8.8: Animation,
with regularization,

without noise

In figure 8.10 it can be seen that the model is able to correct the per-
manent magnetization to the true value Mper = 500 A/m. The abso-
lute and relative x/y/z point errors converge to zero, which is a very good
improvement. From this we can conclude that the regularization signifi-
cantly improves the solutions found by the model. We can also conclude
that the model is implemented properly and is able to give accurate solu-
tions. Since we have seen that regularization is necessary for the accuracy
of the predictions, in all following experiments the Tikhonov regularization is
used.

Figure 8.9: Measurements, predictions and errors of the induced field strength with regularization λ = ’free’, without noise, with Ha in
x-direction and Mtr ue

per 500 A/m in x-direction

Figure 8.10: Evolution of magnetization and prediction errors over time with regularization λ = ’free’ and without noise, Ha in
x-direction and Mtr ue

per 500 A/m in x-direction
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8.3.2. Data-assimilation

Figure 8.11: Animation
with regularization,
without noise and
data-assimilation

From the previous twin experiment it can be concluded that regularization improves
the predictions. These experiments were conducted with use of the model with
data-assimilation although it has not yet been proven that the data-assimilation
improves the predictions. In order to verify that the data-assimilation indeed
satisfies our expectations, the previous twin experiment is redone without cor-
recting the permanent magnetization with data-assimilation. The induced mag-
netization is still be updated according to the applied field. In figures 8.12
and 8.13 the results can be found for the model without data-assimilation. We
compare these figures to the figures 8.9 and 8.10 from the model with data-
assimilation.

Although the general shape of the prediction is correct, it can directly be observed
that the absolute and relative errors increase significantly when data-assimilation is
left out. The maximum absolute error εs

abs increased from 0.13 nT to 1.7354 µT and the maximum relative

errors εs
r el increased from 1.64 · 10−3% to 14.392%, which is a large difference. Note that in figure 8.13 the

permanent magnetization indeed is equal to the initial condition at all other time steps. Note that also the
pointwise absolute errors εd

abs are constant over time. This is mostly due to the fact that Mtr ue
per is constant and

therefore the error in the magnetization is constant. However it is very interesting to find that there is clearly
no varying error due to the computation of the induced magnetization. In the relative pointwise errors large
peaks occur at time steps where the applied field is almost zero. Because the measured fields are close to zero
around these points the fixed errors in the permanent magnetization are more clearly visible. From the results
it is safe to conclude that it is essential to use the data-assimilation in order to achieve accurate predictions
on the magnetic signature.

Figure 8.12: Measurements, predictions and errors of the induced field strength with regularization λ = ’free’, without noise, with Ha in
x-direction and Mtr ue

per 500 A/m in x-direction and without use of data-assimilation

8.3.3. Y- and z-direction
Until this moment all the twin experiments have been conducted with applied fields and magnetizations
in the x-direction. For completeness lets consider the y- and z-direction to assure that the model works
accurately in these directions as well. We use data sets generated with a constant permanent magnetization
of 500 A/m in y- and z-direction respectively. The applied field follows the same sinusoidal pattern as for
the x-direction (fig 8.1), but now applied in the y- or z-direction. We still consider data sets without noise to
validate that the models are correctly implemented and are able to reconstruct the true parameters accurately
in all directions. The results for the y-direction can be found in figures 8.14 and 8.15. The results for the z-
direction can be found in figures 8.16 and 8.17.
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Figure 8.13: Evolution of magnetization and prediction errors over time with regularization λ = ’free’ and without noise, Ha in
x-direction and Mtr ue

per 500 A/m in x-direction without use of data-assimilation

Figure 8.14: Measurements, predictions and errors of the induced field strength with regularization λ=’free’, without noise, with Ha in
y-direction andMtr ue

per 500 A/m in y-direction

For both the y− and z−direction it is found that the relative and absolute field errors are small and
the model is able to reconstruct Mtr ue

per accurately. Interestingly, the errors are slightly higher than for the
x−direction. An explanation for the slightly higher errors can be found in the computed permanent magne-
tizations. The initial estimates for Mper are lower for the y− and z−direction than for the x−direction and the
model needs more steps to be able to converge to the true values. This can also explain that the maximum
absolute field errors are still slightly higher than for the x−direction, since the estimates is still converging.
The relative and absolute point errors still almost converge to zero and the corrections on the permanent
magnetization truly converge to zero. Although it might be of interest to find out why the inversions are less
accurate in the y− and z−directions, it is not unexpected that the results are slightly different for each di-
rection, since the orientation between the field and the box is different. Note that the relative errors are still
below 0.15%, which can be considered very accurate. From these observations it can be concluded that the
model works properly in all three directions. Therefore it is acceptable to only focus on applied fields and
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Figure 8.15: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, without noise, Ha in y-direction
and Mtr ue

per 500 A/m in y-direction

magnetization in the x−direction in the next experiments.

Figure 8.16: Measurements, predictions and errors of the induced field strength with regularization λ = ’free’, without noise, with Ha in
z-direction and Mtr ue

per 500 A/m in z-direction
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Figure 8.17: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, without noise, Ha in z-direction
and Mtr ue

per 500 A/m in z-direction

8.4. Conclusion phase I
In this section a short summary and conclusion of the conducted twin experiments in phase 1 are given.
These first twin experiments are based on data set 1: a data set, constructed with fixed permanent magne-
tization and without added noise to the measurements. To gain insight into the influence of regularization
the model without and with regularization is used. For the model without regularization it was found that
the initial estimate of Mper contained large variations and that the estimate of Mper did not converge to the
true values with help of the data-driven updates. The inaccuracies in the estimates lead to large absolute field
errors εs

abs of 4.3142 µT at Ha = 18.7381 A/m.

Next the model with Tikhonov regularization is used on the same data set. It is observed that a higher param-
eter λ results in a more uniform estimate of Mper . In order to find an optimal parameter the L-curve is used.
The results of the model with regularization are far better than for the model without. The maximum absolute
field error εs

abs decreased to only 0.13 nT , which is a very good improvement. Further it is observed that the
estimate for the permanent magnetization converges to the true values, by data-driven corrections. From the
experiments it is concluded that it essential to use regularization in order to achieve accurate estimates.

To assure that the data-driven updates truly improve the estimate of the permanent magnetization, a model
without the updates is used. From this experiment it is directly concluded that the results are far less accurate
and that the data-driven updates are indeed necessary for accurate predictions.

At last two twin experiments were conducted to find if the model works properly in the y− and z−direction
as well. It is concluded that although in these directions the model needs a few more time-steps to be able
to correct Mper to the true values, the predictions are still very accurate. To sum up, from the experiments in
the first part it is concluded that the use of regularization and data-driven updates are essential for accurate
predictions and that the model seems to be working properly.
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8.5. Phase II.1: Fixed permanent magnetization with noisy data

Figure 8.18: Animation
with regularization, noise

2 ·10−7

In this phase we test the performance of the prediction model on noisy data
to find how well the model deals with perturbations in the received data. Es-
pecially with the large number of inversions in the model, it is important
to have knowledge on how well the model can handle perturbations in the
inversions. Therefore we use data sets contaminated with Gaussian white
noise. As mentioned in section 8.2 a standard deviation of 2 · 10−7µT is
chosen for the generation of noise in order to achieve a noise of 1 µT in
each sensor. In figures 8.19 and 8.20 the result of the prediction model are
shown.

Figure 8.19: Measurements, predictions and errors induced field strength with regularization λ = ’free’, noise = 2 ·10−7, Ha in x-direction
and Mtr ue

per 500 A/m in x-direction

Figure 8.20: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, noise = 2 ·10−7, Ha in x-direction
and Mtr ue

per 500 A/m in x-direction
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As expected the results are less accurate than for the data set without noise. The maximum absolute field
error has increased from 0.13 nT to 0.027 µT , which is a large increase. However this error is still acceptable
on a field strength of 2.49 to 12.12µT . Remember that the noise in each sensor is approximately 1 µT , results
with an absolute error of only 0.027 µT show that the model is able to handle noise in a correct, accurate way.
The perturbations in the measurement are clearly dampened by the model, note that this is due to the filter
factors in the regularization. From figure 8.20 it can be seen that the model is still able to approximate the true
value Mtr ue

per , although the noise is slightly translated into the estimate of Mper . In the figure with the absolute
x/y/z error an extra line is drawn at the height of 3σ, showing that the absolute errors in the magnetic fields
are significantly lower than the noise introduced in the measurements.

In the relative x/y/z error plot high peaks occur at certain time steps. To investigate the origin of these peaks
we plot the measured and computed field at sensor 25 over time together with both errors, see figure 8.21.
From this figure the following two observations are made: First the computed field at the sensor and the
absolute errors do not show strange behaviour or large errors and secondly the peaks occur at the moment
that the measured and computed fields are approximately zero ( 10−10 −10−9). Since the order of the noise
( 10−7−10−6) is larger than the order of the fields it is very likely that the peaks in the relative error arise due to
the level of the noise and not due to inaccuracies of the model. Therefore conclusions are drawn mainly from
the absolute errors and the relation of the absolute errors to the level of noise. From the twin experiment it
can be concluded that although the noise components are slightly visible in the estimates and the predictions,
the model is able to dampen their contributions are compute accurate predictions.

Figure 8.21: Measured and computed magnetic fields and relative/absolute errors at sensor 25, λ = ’free’, noise = 2 ·10−7, Ha in
x-direction and Mtr ue

per 500 A/m in x-direction
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8.6. Phase II.2: Model adaptions
In this section two improvements are proposed and tested. First an improvement for the computation of the
induced magnetization is discussed and secondly an improvement for the initial estimate of the permanent
magnetization is discussed.

8.6.1. Induced magnetization
Remember from section 6.1.2 that there are two different options for the induced magnetization at each time
step. Either the induced magnetization is computed from the applied field at time step k and the permanent
magnetization at time step k−1. Or we add an extra computation of the induced magnetization based on the
corrected permanent magnetization at time step k. The first option is denoted by Mk−1

i nd and the second by

Mk
i nd .

The two computations of the induced magnetization are compared using data sets 1 and 4 (fixed permanent
magnetization with and without noise). Both cases are compared on basis of two errors. First the maximum
absolute field errors (maxεs

abs ) are compared since these values show the order of the largest deviation in one
sensor at a certain time interval. Secondly they are compared on basis of the sum over all time steps and all
sensors:

εtot =
101∑
t=1

112∑
s=1

εs,t
abs ,

which gives insight into the total error. We refer to this error as the total error. Lets start for the case without
noise with the model with Mk−1

i nd .

The maximum absolute error field found is 0.13 nT and the total error is 193.322µT . When the second model
is used the maximum absolute field error increases to 0.27 nT and the total error increases to 309.4 µT , which
is a large increase. The model where the induced magnetization at time step k is based on the permanent
magnetization at time step k−1 seems better for this data set. Now lets consider the data set with noise. Here
the maximum absolute field error decreases from 0.073 µT to 0.013 µT , which is a large improvement. The
total error decreases from 481.3 µT to 418.66 µT . From these values it is difficult to draw concrete conclu-
sions on the influence of this model change, since it seems to improve for data with noise and get worse for
data without noise.

In order to find if there is a significant constant improvement, figure 8.22 shows the maximum absolute field
errors for both data sets at each time step for both Mk

i nd as Mk−1
i nd . In figures 8.22a and 8.22b the maximum

errors for the data set without noise can be seen. From these figures we observe that at one time step the
model with the additional update is better and at time steps the model without, but at the end they converge
to the approximately the same maximum absolute error. From these figures we can not draw any conclusions
that one model is significantly more accurate than the other. In figure 8.22c the maximum absolute field
errors are shown for the data set with noise. From this figure it is evident that the model with the additional
update of Mi nd has a lower maximum absolute field error at almost each time step. Due to the application of
this model in naval ships it is important to have knowledge on the maximum absolute field error. Moreover
in practice the data is always contaminated with noise, such that the results from the data set with noise are
more important. When the maximum absolute field error is as small as possible this decreased the risk of
detonation of a naval mine. Therefore we conclude that the model with the additional Mi nd update gives
more accurate predictions when the data set is contaminated with noise and that this update is added to the
model.

8.6.2. Initial condition
From the evolution of the permanent magnetization it is evident that the solution of the inversion in the ini-
tial estimate is very inaccurate. For the estimation of the initial condition two direct inversions are done, from
both the array sensors and the onboard sensors, see section 6.1.1. The performance of the model might be
increased by improving the initial estimate.

One way to try to improve the estimate is to compute corrections for the permanent magnetization on basis
of the same set of measurements from the onboard sensors at time step zero. Note that the measurements
from the array sensors could also be used, but for now we only use the onboard sensors. The update is com-
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(a) Set without noise (b) Set without noise, zoomed (c) Set with noise 2 ·10−7.

Figure 8.22: Maximum absolute field errors for model with and without extra Mi nd update for constant permanent magnetization with
λ = ’free’2

puted according to the method described in section 6.1.2. The number of iterations k, in which we update
the initial estimate, needs to be defined, which can be done in two different ways. Either k is a fixed number,
based on trial and error. Or it is defined variably, based on a certain tolerance level for the error in the field
estimate: if ∥ Br es (k) ∥2< εtol , stop. First take k a fixed number to examine if corrections on the permanent
magnetization are able to improve the initial condition.
In figure 8.23 the computed initial conditions are shown for different values of k with λ= ’free’. It is evident

from the figure that the use of corrections improves the estimate of the magnetization. With one correction
the estimate has already improved with almost 100A/m and with k = 20 the estimate shows a good approxi-
mate of the true Mper . Note that the regularization parameter is chosen optimally in each iteration, making
it possible to gain more information from the data each iteration step. This also explains the fact that the so-
lutions get less uniform with more iterations. In order to get a solution that better fits the data the influence
of the regularization term is decreased.

Mathematically speaking it is interesting to find out whether it is also possible to improve the solution by
iterations with a fixed lambda. Remember that we are solving the Tikhonov functional:

min
x

{∥ Ax−b ∥2
2 +λ2 ∥ Rx ∥2

2}, (8.4)

and this functional has an equivalent least squares formulation. The found solution is believed to be the best
possible solution, since it is the solution of a least-squares problem. The remaining residual is part of the
solution which can not be computed from the data. Therefore we would not expect multiple iterations, with
a fixed lambda, to improve the estimate.

However from figure 8.24 it is evident that the solution improves and becomes more uniform with more it-
erations. An explanation for this behaviour might be found in the formulation 8.4, in the first iteration the
contribution due to the term ∥ Ax−b ∥2

2 is most important. Such that the solution mainly minimizes the first
part, resulting in a less uniform solution. In the next iterations the values of b are replaced by br es decreasing
the values of the first term and thereby giving more room for the minimization of the second regularization
term. This could indeed result in more uniform solutions. However it is still very interesting that it is thereby
able to correct the initial estimate almost to the true value. For now we unfortunately can not look further
into this, but it is very interesting to conduct more research on this behaviour.

For this research the main question is if the improvement of the initial condition is present in the field predic-
tions. In order to conclude if the better initial estimate improves the predictions we consider the maximum
absolute field error at each time step and the total error defined in the previous section. The maximum
absolute field errors over time can be seen in figures 8.25 and 8.26. We look at four different values for k,
k = 0,1,5,10, where k = 0 is the standard model without updates in the initial condition. For both with and
without noise it can be observed that the absolute maximum field errors are significantly lower in the first
20 time steps if more updates are used in the initial estimate. For the data set without noise this difference
stays present, although the errors all seem to converge to the same error (∼ 10−5µT ). However for the data set
with noise after 20 time steps the data assimilation steps have been able to improve the less accurate initial
estimates and each model gives the same level of accuracy. Even in the zoomed figure, 8.26b it is evident that
there is no significant influence of the iterations in the initial condition. This behaviour is visible in the total

2Enlarged versions of these figures can be found in appendix A.
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Figure 8.23: Initial conditions for different values of k for simulation data with constant Mper 500 A/m in x−direction without noise
and with regularization with λ = ’free’.

Figure 8.24: Initial conditions for different values of k for simulation data with constant Mper 500 A/m in x−direction without noise

and with regularization with λ = 2 ·10−7.

(a) Complete figure (b) Zoomed figure

Figure 8.25: Maximum absolute field errors for model with and without extra iterations k in the initial estimate for constant permanent
magnetization with λ = ’free’ without noise

errors as well. For the data without noise the total error for k = 0 iterations is 310.8µT , while for k = 10 itera-
tions the total error has decreased to 6.1µT . Note that this large decrease in total error is mainly to the first 20
time steps. For the data with noise the error decreases from 422.0 µT to 128.6 µT . Here the error is decreased
less, which is due to the fact that after 20 iterations, the maximum absolute errors are approximately equal.

From these observations we can conclude two statements. First it is positive to find that the accuracy of the
initial condition has no influence on the predictions from a certain time step if there is noise present in the
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(a) Complete figure (b) Zoomed figure

Figure 8.26: Maximum absolute field errors for model with and without extra iterations k in the initial estimate for constant permanent
magnetization with λ = ’free’ with noise

data. In practice data is always contaminated with noise and therefore we find that it is not essential to be
able to compute very accurate initial estimates, which could save time and money. Further we can conclude
that addition of data-driven iterations in the computation of the initial permanent magnetization improves
the initial estimate. Logically the addition of data-driven iterations increases the computational time of the
initial estimate. For these reasons we will not use the additional iterations in the coming twin experiments.

8.7. Conclusion phase II
In the second part the generated data was contaminated with noise, to find the performance of the model
and especially the inversions when dealing with noise. It was found that although the predictions of the mag-
netic induced field are less accurate for the contaminated data, the errors are still far below the noise level. It
is observed that due to the noise components the estimate of Mper no longer converges to the true value but
keeps changing slightly. From the experiment it can be concluded that the model is able to handle the noise
in a correct and accurate way.

In the second half of part 2, two model adaptions are discussed. The adaptions are tested on both data sets
with and without noise. First it was proposed to add another computation of the induced magnetization af-
ter the permanent magnetization was updated instead of only using the permanent magnetization from the
previous time step. It is concluded that for the data set without noise the adaptions does not have much in-
fluence on the maximum absolute field error, whereas it results in a large decrease in the maximum absolute
field error for the data set with noise. Since the adaption gives better results for the data set with noise, it is
added to the model.

The second adaption is to improve the initial estimate of the permanent magnetization. In this adaption, a
number of corrections on Mper are done based on the measurements of the first time step. Interestingly, these
additional corrections result in a large improvement of the initial estimate. However it is also observed that
the improved initial condition does not have an influence on the prediction of the magnetic signature after
20 time steps. Since the additional updates largely increase the computational time, we have decided for now
not to include them in the model. However the results from this adaption must certainly not be forgotten.
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8.8. Phase III.1: Magnetic hysteresis

Figure 8.27: Animation
magnetic hysteresis

So far we have only used data sets generated with a constant permanent magneti-
zation. However it is known that the permanent magnetization changes depending
on the applied field according to the discussed hysteresis loop. In the next twin ex-
periments we test how well the prediction model is able to track a varying permanent
magnetization. This varying permanent magnetization is designed such that the total
magnetization simulates the hysteresis loop, discussed in section 3.1. In figure 8.28
the true magnetization is set against the applied field, showing a hysteresis like loop.
Note that at Ha = 0 all lines have the same linearity coefficient but are on a slightly
different height due to the permanent magnetization. Also it is not an exact loop as
in chapter 3, due to the definition of the permanent magnetization. However this
is not a problem since the loop shows the same behaviour as a true hysteresis loop
and therefore we can draw correct conclusions on the performance of the model. Al-
though we hope to find that the model is also able to track the permanent magnetization, it is most important
that the model is able to give accurate predictions of the induced field at the sensor array. In figures 8.29 and

(a) True permanent magnetization (b) True total magnetization

Figure 8.28: Hysteresis loop Mtr ue

8.30 the results of the prediction model can be found.

Figure 8.29: Measurements, predictions and errors induced field strength with regularization λ = ’free’, noise = 2 ·10−7, Ha in the
x-direction and Mtr ue

per in x-direction according to the hysteresis loop (fig 8.28)

From figure 8.29 it can be observed that the predicted fields are quite similar to the measured fields and
the maximum absolute field error is 0.106 µT . From this figure it can be noticed that the absolute errors
seem field strength dependent, if a larger field is present the errors are larger as well. However from a more
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Figure 8.30: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, noise = 2 ·10−7, Ha in x-direction
and Mtr ue

per in x-direction according to the hysteresis loop (fig 8.28)

Figure 8.31: Comparison estimated Mper with true Mper at grid point 25 for λ= ’free’ and noise = 2 ·10−7

detailed analysis over time (not shown here) these errors do not increase/decrease significantly if the applied
field and therefore the induced fields increase/decrease. The present error is probably caused by the noise
components in the measured fields. Compared to previous twin experiments the errors in the predictions are
larger. This is likely caused by the fact that the estimated permanent magnetization is not able to converge to
the true permanent magnetization, since the true values are varying as well. From the results in figure 8.30 it
can be seen that the absolute errors are still below the noise level of 6 ·10−7 per direction. Observe that the
estimate of the permanent magnetization is approximately linearly varying. To assure that this variation is
also approximating the true values of Mper , see figure 8.31. From this figure it is evident that the model is able
to predict the permanent magnetization very well, although it has a slight delay in the computation. From all
observations it can be concluded that the model is able to track a varying permanent magnetization and give
predictions with an accuracy of around 0.1 µT .
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8.9. Phase III.2: Non-uniform permanent magnetization
In the previous experiment the promising ability of the model to track a varying permanent magnetization
was found. So far we have assumed that the permanent magnetization is uniform over the object. However
in practice the permanent magnetization is non-uniform due to previous external influences like stress. To
test the ability of the model to work with non-uniform magnetization, the next twin experiment is conducted.

Figure 8.32: Animation
non-uniform permanent
magnetization, λ= ’free’

We still expect the permanent magnetization to have a certain smoothness over
the object and therefore we define the permanent magnetization of a grid point on
basis of the x−coordinate of that point. Grid points with the same x−coordinate
have the same permanent magnetization, close by grid points have a slightly dif-
ferent x−coordinate and thereby a slightly different permanent magnetization and
grid points further away have different permanent magnetization. The permanent
magnetization is constructed by the absolute value of a sine depending on the
x−coordinate, such that it varies between 0 and 750 A/m. In figure 8.35a the ar-
rows show the true permanent magnetization. The permanent magnetization is now
stronger at the beginning and the ends of the SVP01 than at the middle. The coloured
triangles show the divergence of the magnetization, which is at this moment less
interesting. Using the defined permanent magnetization, simulation data is con-
structed with standard deviation σ = 2 · 10−7 for the noise component. The results
for the model with regularization parameter λ= ’free’ can be found in figures 8.33 and 8.34.

Figure 8.33: Measurements, predictions and errors induced field strength with regularization λ = ’free’, noise = 2 ·10−7, Ha in the
x−direction and Mtr ue

per non-uniform in x-direction.

From the figures it is directly visible that the predictions are less accurate than in the experiments before, the
maximum absolute field error is 1.153 µT . This is about 10 times more than for the varying Mper . Especially
in the middle below the box the error is high, this rises the question as to whether the estimated magnetiza-
tion is indeed non-uniform. In figure 8.35b the estimated permanent magnetization is shown by the arrows.
When compared to figure 8.35a it can be observed that the estimated permanent magnetization is much
higher than the true value. This can be the cause of the high errors in the center. To gain more insight on the
estimated permanent magnetization, figure 8.41 shows the estimated and the true permanent magnetization
at time step 100 for all grid points. From this figure it is clear that there has been too much regularization in
the estimation, as it can not variate enough for the non-uniformity. Even though the L-curve should be able
to find the parameter λ that minimizes the Tikhonov criterion, we try to find a better prediction by giving the
model more freedom. The L-curve finds values for the parameter λ in the order 4−6·10−6, apparently this pa-
rameter requires too much regularity for the preferred solution. For the regularization parameter λ= 5 ·10−8

is used in order to give the model more freedom to fit the data instead of the regularity.
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Figure 8.34: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, noise = 2 ·10−7, Ha in x-direction
and Mtr ue

per non-uniform in x−direction.

(a) True non-uniform magnetization and divergence (b) Estimated non-uniform magnetization and prediction.

Figure 8.35: True and estimated non-uniform Mper and divergence with λ = ’free’ and noise = 2 ·10−7 3

Figure 8.37: Animation for
nun-uniform permanent

magnetization,λ= 5 ·10−8

The results can be found in figures 8.38- 8.41.Fortunately with the smaller regulariza-
tion parameter the maximum absolute field error is brought back to 0.074 µT , which
is of the same order as we have seen before. Also the absolute errors in the individ-
ual directions are again far below the noise level as desired. From figures 8.40b and
8.41 it is evident that the extra freedom in the regularization results in better approx-
imations of the permanent magnetization and also in better predictions. It must be
noted that this twin experiment shows that for non-uniform magnetization the L-
curve cannot be trusted to find the optimal parameter. For a fact there might be a
different value than λ= 5 ·10−8 which can result in even better predictions. Since the
magnetization is non-uniform in practice it is necessary to find a different method
for the computation of the regularization parameter if optimal predictions are de-
sired.

From the twin experiment it can be concluded that the model is able to give accurate predictions on a non-
uniform magnetization. However the regularization parameter must be small enough (∼ 10−8) in order to
give the model enough freedom to fit the uniformity. The L-curve, in this case, does not find the optimal
value for λ. Since non-uniform permanent magnetization are standard in practice, another method must be
found to compute an optimal regularization parameter.

3Enlarged versions of these figures can be found in appendix A.
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Figure 8.36: Comparison estimated Mper with true Mper at time step 100 for λ= ’free’ and noise = 2 ·10−7.

Figure 8.38: Measurements, predictions and errors induced field strength with regularization λ = 5 ·10−8, noise = 2 ·10−7, Ha in the
x−direction and Mtr ue

per non-uniform in x-direction.

8.10. Phase III.3: Unknown susceptibility distribution
Until now we have assumed that the distribution of the susceptibility is completely known and uniform 100.
In practice this is not the case, the susceptibility can only be estimated. With the assumption that the sus-
ceptibility is known, the true performance of the model could be tested. In the previous experiments we
showed that the model is able to cope with linear varying and non-uniform distributions of Mper . Now it is
time to push the boundaries of the model by removing the assumption that χ is known. It is of our interest
to research whether (small) errors in the susceptibility estimate influence the prediction of the magnetic sig-
nature. It might be possible that the data-assimilation is able to correct small errors in the susceptibility as
well. If this is true it will improve the applicability of the model. In [22] a magnetic susceptibility estimation
method is designed which is able to approximate the susceptibility distribution. Unfortunately due to time-
reasons it has not been possible to specify this method for the SVP01. To still be able to research the influence
of inaccurate susceptibility estimations, we specify different estimates for the susceptibility distribution and
compute the predictions.

Remember that the value of χ at each element is used in the computation of matrix D , see equation 4.9. In
the generation of the simulation data an uniform susceptibility distribution of 100 is used: χtr ue ≡ 100. In the
computation of the initial estimate we add an initial estimate forχof the following form: χest ≡ randnrm(µ,τ),
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Figure 8.39: Evolution of magnetization and prediction errors over time with regularization λ = 5 ·10−8, noise = 2 ·10−7, Ha in
x-direction and Mtr ue

per non-uniform in x−direction.

(a) True non-uniform magnetization and divergence (b) Estimated non-uniform magnetization and prediction.

Figure 8.40: True and estimated non-uniform Mper and divergence with lambda = 5 ·10−8 and noise = 2 ·10−7.

here µ is the mean and τ the standard deviation. Using this χest the new matrix D is generated, after which
the predictions are computed. First an estimate with µ = 100,τ = 5 is used, resulting in a distribution with
values between 85 and 115 (−3τ to 3τ). In [22] a true chi distribution of a steel plate ranging from 40 - 100
could be estimated with a range of ±3. Since it is yet unknown how well this method works on a 3D model, a
larger error is used. In order to find the influence of these inaccuracies data set 4 (constant permanent mag-
netization with noise) is used.

Figure 8.42: Animation,
with χest =

randnrm(100,5)

In figures 8.43 and 8.44 the results for this model can be seen. The estimates of the
induced magnetic field have a maximum absolute field error of 0.06944 µT , which is
higher than the maximum absolute field error of 0.013 µT from section 8.6.1, where
χest ≡ χtr ue . Since the relative field errors are still less than 1% we can conclude that
the predictions are still very good. In figure 8.44 it can be observed that the absolute
errors are far below the noise level for each component, which is positive as well.
Further it is interesting to find that the permanent magnetization is now corrected
differently than with χest = χtr ue , see figure 8.20. Where with exact χ the permanent
magnetization was corrected to the true values, now the estimates keep changing.
Note that for positive applied field the estimate of Mper is higher than the true value
500 and for negative applied field the estimate of Mper is below the true value. This

4Enlarged versions of these figures can be found in appendix A.
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Figure 8.41: Comparison estimated Mper with true Mper at time step 100 for λ= 5 ·10−8 and noise = 2 ·10−7 4

might imply that the data-based corrections on Mper are also able to correct some of
the influences of the errors in the susceptibility estimate.

Figure 8.43: Measurements, predictions and errors induced field strength with regularization λ = ’free’, noise = 2 ·10−7, Ha in x-direction
and Mtr ue

per 500 A/m in x−direction with χest = randnrm(100,5)

Figure 8.45: Animation,
with χest =

randnrm(90,10)

To push the boundaries of the model, a susceptibility distribution with mean µ= 90
with standard deviation τ = 10 is used. With values ranging from 60 to 120 this can
be seen as an inaccurate estimate of the susceptibility. We are interested if the model
is still able to generate reasonable predictions. In figure 8.46 the susceptibility distri-
bution can be found, from the figure it can be observed that indeed the distribution
is largely varying and in general not smooth, resulting in an inaccurate estimate. The
results of the model can be found in figures 8.47 and 8.48. It is evident from the fig-
ures that the estimates are far less accurate than in the previous case. The maximum
absolute field error has increased to 0.28µT and the relative field error has increased
to more than 2%. From figure 8.48 it is clear that the separate absolute errors have
increased, but they are still below the noise level, which is positive. Further it is now
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Figure 8.44: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, noise = 2 ·10−7, Ha in x−direction
and Mtr ue

per 500 A/m in x-direction with χest = randnrm(100,5).

Figure 8.46: Susceptibility distribution χest = normrnd(90,10).

evident that the estimate of the permanent magnetization truly tries to correct for the
inaccuracies in the susceptibility estimate. We observe that the relative error in the
y−direction is large. The two peaks occur due to the fact that the field is very close to zero as described earlier.
Here the y−field is in general over all time steps very small, which has the result that the noise-components
have large influence on the relative errors. This can also be seen in the fact that the absolute errors are small-
est for the y−direction. Therefore we can largely ignore the high relative errors in the y−directions. It can be
observed that the absolute errors in the x−direction are largest when the applied field is largest. Note that
when the applied field is largest, also the influence of χ is the largest. From this is can be seen that a large
part of the absolute errors are caused by the inaccurate χest . Although naturally more research will need to
be done, it is very promising to see that the model is able to handle inaccuracies in the susceptibility estimate
quite well.
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Figure 8.47: Measurements, predictions and errors induced field strength with regularization λ = ’free’, noise = 2 ·10−7, Ha in
x−direction and Mtr ue

per 500 A/m in x−direction with χest = randnrm(90,10)

Figure 8.48: Evolution of magnetization and prediction errors over time with regularization λ = ’free’, noise = 2 ·10−7, Ha in x−direction
and Mtr ue

per 500 A/m in x-direction with χest = randnrm(90,10).
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8.11. Conclusion phase III
Phase III consisted of three twin experiments to test the performance of the model on more complex situa-
tions. First a linear varying permanent magnetization was used in the generated data. It was concluded that
although the errors increased with respect to the constant permanent magnetization, the model is able to
compute accurate predictions on the magnetic signature. It was also observed that the model was able to
track, with a slight delay, the varying permanent magnetization with the data-driven updates. This is a very
positive and promising result.

In the second conducted twin experiment a non-uniform permanent magnetization is used, since in practice
these distributions are non-uniform. Unfortunately the errors of the predicted magnetic signatures increased
largely and the model was not able to estimate the non-uniformity in the initial condition. In order to give
the model more freedom to fit the data instead of the regularity term, the regularization term λ was chosen
smaller by hand. Fortunately the smaller λ improved the predictions to the accuracy from phase II. Further
it was observed that in this case the model is able to compute an accurate estimate for the permanent mag-
netization. From this twin experiment is is concluded that the model is able to give accurate predictions for
non-uniform permanent magnetizations. However the L-curve does not find an optimal λ for this case, such
that it is important to find another method for the computation of an optimal λ.

In the last twin experiments the susceptibility distribution was no longer assumed to be known. In order to
find how well the model is able to handle inaccuracies from the susceptibility estimate, two different suscep-
tibility estimates were used as input. From the experiments it was concluded that the model can handle these
inaccuracies quite well. The data-driven updates on the permanent magnetization capture a part of the er-
rors caused by the susceptibility estimate as well. It was also concluded that if the errors in the susceptibility
estimate become too large they are translated into the predictions. To sum up we can say that the model has
the promising property of being able to correct inaccuracies in the susceptibility estimate. However more
research will need to be done in order to understand how much of the errors in the susceptibility method are
truly translated to errors in the predictions.



9
Conclusion

In this chapter we wrap up our research, first the research objectives and the main results are posed. Secondly
a short summary on the model design is provided and at last more conclusions on the performance of the
model are given.

9.1. Research objectives and main results
The aim of this research was defined as follows:

"Design, implement and test a data-driven model for the induced magnetic field of an object, made of lin-
early reacting isotropic material, considering both induced and permanent magnetization."

In chapter 2 we defined the following six sub-objectives:

• Design a mathematical-physical model, create the numerical model and implement the model;

• Perform a study on inverse problems, difficulties associated with inverse problems and methods, like
regularization, to cope with these difficulties;

• Design and perform twin experiments to test the performance of the model;

• Research the accuracy of the predictions of the magnetic signature;

• Gain insight in the translation of errors in the estimate of the magnetization to errors in the signature
prediction;

• Gain knowledge of the influence of inaccuracies in the estimation of the susceptibility on the accuracy
of the prediction of the induced magnetic field.

In chapters 3-4 the first research objective is covered. The second objective is discussed in chapter 5 and 6.
The last four objectives are all covered by the twin experiments in chapter 8.

From the twin experiments we are confident that the designed model is correct and is able to compute accu-
rate predictions on the magnetic signature, considering both induced and permanent magnetization, even
when the onboard data is contaminated with noise. The study on inverse problems and the twin experiments
have shown that the use of regularization is essential to achieve accurate predictions. Further we can con-
clude that the use of data-assimilation is a good method to approximate the permanent magnetization in a
varying applied field and in fact is essential for achieving high accuracy in the predictions of the magnetic
signature. We found that the data-assimilation is also able to correct possible inaccuracies in the estimate
of the magnetic susceptibility distribution. At last it is shown that the model is able to approximate linearly
varying as well as non-uniform permanent magnetization
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9.2. Signature Monitoring Model
In this section we give a short summary on the assumptions for and the structure of the model. For the model
it has been assumed that the object is made of linearly reacting isotropic material, the geometry of the object
is known and the applied field is uniform in a certain volume of interest around the object. For the model it is
used that the total magnetization consists of two components, the induced magnetization, which reacts lin-
early with the applied field, and the permanent magnetization, which is based on the magnetic history of the
material. In the model the data assimilation is used to correct the permanent magnetization at each time step.

After the initial computation of the permanent magnetization and the magnetic susceptibility, the induced
magnetization is computed, based on the applied field and previous permanent magnetization. From the
computed magnetization the induced magnetic field at the onboard sensors can be computed. Comparison
of this computed field with the measured field at the onboard sensors is used to compute a correction on
the permanent magnetization. The induced magnetization is then computed again, now using the corrected
permanent magnetization. From the total magnetization the induced magnetic field at a certain distance
around the object can be computed for this time step. This process is repeated for every time step.

The model consists of ill-posed inverse problems. In chapter 5 a study is conducted on inverse problems and
regularization. In the model Tikhonov regularization is used to improve the solutions of these problems. The
regularization parameter is optimally chosen by the L-curve and the regularization operator is constructed
such that it adds smoothness to the solution. It is found that the use of regularization is essential to achieve
accurate solutions from the inverse problems.

9.3. Performance of the model
The performance of the model is tested with a number of twin experiments. For data sets without noise and
with constant permanent magnetization it is shown that the model is able to estimate the true value of the
permanent magnetization perfectly and is able to give predictions on the magnetic signature with high ac-
curacy. The maximum absolute field error εs

abs is in the order of 0.13 nT and the relative field error is in the
order of 0.001%, which is very accurate. To achieve these accuracies it has been shown that regularization
and data-assimilation are essential.

We have also investigated the performance of the model when the measurements of the onboard sensors are
contaminated with noise. Gaussian white noise with standard deviation 2 · 10−7 was used to achieve noise
of approximately 1 µT in each sensor. It is concluded from the experiments that the regularization is able to
dampen the noise components in the measurements, which is positive. The results get less accurate, but the
absolute errors are still far below the noise level, from which it can be concluded that the results are accurate.

Further we have considered more complex situations with linearly varying and non-uniform permanent mag-
netization. From the experiments we can conclude that the model is able to approximate a linearly varying
permanent magnetization and give accurate predictions on the magnetic signature. It is also concluded that
the model is able to approximate a non-uniform permanent magnetization. However it is shown that in this
case the L-curve does not provide an optimal, or even good, regularization parameter. The accurate predic-
tions are achieved by choosing a fixed smaller regularization parameter. This parameter is chosen by trial and
error and it is not known if this is in fact the optimal parameter for this twin experiment.

At last we have investigated the influence of an inaccurate susceptibility estimate on the accuracy of the
model. It is shown that the model is able to correct inaccuracies in this estimate by the data-driven updates
on the permanent magnetization. For small inaccuracies (5-15% deviation) in the susceptibility estimate the
model still performs with approximately the same accuracy as without errors in the susceptibility estimate.
For large errors in the susceptibility estimation (10-30% deviation) the model performs with less accuracy.
However the found errors are still acceptable, considering the large deviation in the susceptibility estimate

The named conclusions all support the main result that the model is correctly formulated and is able to
compute accurate predictions on the magnetic signature.



10
Future research

In our research we have set many steps towards the Magnetic Signature Monitoring System. However we have
also encountered some difficulties or inaccuracies which are good food for future research. In this chapter
we pose the ideas for the future.

10.1. Inverse problems
One of the critical points in the current model is the number of ill-posed inverse problems that need to be
solved. Ill-posed problems often lead to inaccurate solutions and therefore must be reformulated to receive
improved solutions. For inverse problems many methods have designed to improve these solutions. In order
to improve the accuracy of the model it is important to research the possibilities for other methods, related
to inverse problems.

10.1.1. Regularization methods
The current model uses Tikhonov regularization to improve the solutions from the ill-posed inverse prob-
lems. However much research has been done on inverse problems and regularization techniques. It might
be that Tikhonov regularization is not the best method for this problem. It can be investigated whether other
regularization methods can improve the solutions. It can be investigated whether using for example the Con-
jugate Gradient Least Squares (CGLS) method for solving the inverse probelm can improve the solutions.
Another approach is by considering the inverse problem in the Bayesian statistic framework and solving it in
a stochastic way. It might also be possible to alter the Tikhonov formulation to improve the solutions from
this regularization. The inversions might for example be improved when the 1-norm is used instead of the
2-norm in the Tikhonov regularization.

Instead of changing the regularization method, it is also possible to alter the regularization operator. In the
regularization operator R we have added the requirement that the solution must be smooth. This smoothness
condition is constructed such that the permanent magnetization at each grid point must be the (weighted)
average of its adjacent grid points, with a certain innovation factor. It might be possible that the smoothness
condition is too strict to be able to reach a better solution. Relaxing the smoothness requirement can im-
prove the solutions from the inverse problems. It is also possible to think of other properties that the inverse
solutions should satisfy. From these properties another regularization operator R could be defined.

10.1.2. Regularization parameter
In the current model the regularization parameter λ is computed optimally by the L-curve. For non-uniform
permanent magnetization we found that the L-curve is not able to estimate an optimal λ. Since in practice
the permanent magnetization is non-uniform, it is important that a better method is found to compute an
optimal regularization parameter λ. It might be considered to use the Bayesian statistical framework instead
of the deterministic framework. Using the Maximum A Posteriori estimate from Bayesian statistics it might
be possible to find a better prior estimate for λ.
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10.2. Data-assimilation
The data-assimilation is an important part of our model as it completely describes the permanent magneti-
zation. It is therefore very important that the data-assimilation is able to handle noise in the measurements
correctly. At this moment only basic data-assimilation is used. However more complex methods have been
designed, which might improve the results from data-assimilation. One method that can be considered is
Kalman filtering.

10.2.1. Permanent magnetization
The basis of the model consists of the state correction by data assimilation, for the current model the cor-
rection is completely based upon one data assimilation step. In this research it was observed that the initial
estimate for the permanent magnetization could be improved by performing multiple data-driven updates
based on the same data set. We wonder whether adding multiple updates to the correction step at each time
step can improve the accuracy of the permanent magnetization update.

At this moment only data-assimilation is used to estimate the permanent magnetization. It can be researched
if the predictions can be improved by designing a mathematical-physical model update on the permanent
magnetization. With this model for the update, the data-assimilation only needs to focus on correcting errors
made by the update model.

10.2.2. Susceptibility
Before the model can be used in practice, we must be able to compute estimates of the susceptibility. As
named before in [22] an estimation method for the magnetic susceptibility has been designed. Unfortunately
due to time reasons we did not have time to implement this method into our model. We did find that small
inaccuracies in this estimate can be corrected by the data-assimilation. It can be considered to update the
susceptibility estimate together with the permanent magnetization as well. It might be possible that the data-
assimilation is able to correct the susceptibility estimate to the true values.

10.2.3. Number of sensors
At this moment the model uses all available sensors for the data assimilation. For the future it is of great
importance to gain insight into the number of sensors necessary for an accurate approximation. The SVP01
contains 24 onboard sensors, when translated to a naval vessel the number of sensors increases drastically.
It will be necessary to research how the prediction changes if more or less sensors are used and also if more
accurate sensors can significantly improve the predictions.

10.3. Performance tests
Although the model has been tested on multiple cases, there are still more situations available to check the
performance of the current model. In this section we discuss multiple cases which can be used to test the
performance of the model and different parts of the model which still need to be tested.

10.3.1. Computational efficiency
Due to time reasons no analysis has yet been done on the computational efficiency of the model. The model
should be able to predict the magnetic signature in real-time. Large structures like naval vessels lead to very
large systems, for which computations are computationally intensive. In order to be able to predict in real-
time the formulation and implementation should be as efficient as possible.

For convenience we used implementation of Tikhonov by Hansen, which makes use of the generalized singu-
lar value decomposition for the computation. The use of the GSVD is computationally speaking not the most
efficient method, it can be considered to use the Eldén bidiagonalization algorithm instead, which might
improve the time consuming correction steps of the model.
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10.3.2. Internal structure
For the application is naval vessels it is also of great importance to acquire information on the importance of
modeling internal structures. With the SVP01 the influence of the removal of the subplates in the CAD-model
on the predictions can be tested. If there is only a very small negative influence of removing the internal
structures from the CAD-model, this could improve the efficiency of the prediction model. Note that for
complex geometries like naval vessel it will be far more efficient if not all internal structures like engines and
weaponry need to be modelled.

10.3.3. Influence of distance
In the current tests, the sensor array is always located at the same distance. However it is also of interest to
know how the inaccuracies evolve if the sensor array is moved further away or closer to the object. It might
occur that the estimate of the magnetization is less important if there is more distance between the object
and the sensor array. This might reduce the need for very accurate predictions on the magnetization.

10.3.4. Complex situations and prototypes
The model has been tested on a few different, simple, situations. Naturally, the model must be tested on more
complex and lifelike prototypes and in more complex situations. In this research for time reasons the mag-
netization and applied fields were only considered in one separate directions. Tests can be performed to find
if the model works accurately when the permanent magnetization is in a different direction than the applied
field.

Note that in the research it is assumed that the applied field is uniform. In practice the applied field is not
known exactly and measurements contain noise. It must be investigated how well the model performs with
noise in the applied field, one of the most important inputs of the model.

10.3.5. Experimental Data
Although we can gain knowledge on the performance of the model by numerical tests, like twin experiments,
it is also of great interest to test the performance of the model on real experimental data. In chapter 7 an
experimental setup was described. Unfortunately due to a lack of time it has not been possible to include
experimental tests with this setup in this report. It will be interesting to find how accurate the model performs
in real experiments.
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A
Enlarged figures

In this appendix enlarged versions of figures 8.6, 8.22,8.35 and 8.40 can be found.

Figure A.1: Initial estimate permanent magnetization with regularization parameter λ= 10−9 (8.6a)
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Figure A.2: Initial estimate permanent magnetization with regularization parameter λ= 10−7 (8.6b)

Figure A.3: Initial estimates permanent magnetization with regularization parameters λ= 10−5



74 A. Enlarged figures

Figure A.4: Maximum absolute field errors for model with and without extra Mi nd update for constant permanent magnetization with
λ = ’free’, without noise (8.22a)

Figure A.5: Maximum absolute field errors for model with and without extra Mi nd update for constant permanent magnetization with
λ = ’free’, without noise, zoomed (8.22b)
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Figure A.6: Maximum absolute field errors for model with and without extra Mi nd update for constant permanent magnetization with
λ = ’free’, with noise (8.22c)

Figure A.7: True non-uniform Mper and divergence with λ = ’free’ and noise = 2 ·10−7 (8.35a)
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Figure A.8: Estimated non-uniform Mper and divergence with λ = ’free’ and noise = 2 ·10−7(8.35b)

Figure A.9: True non-uniform Mper and divergence with lambda = 5 ·10−8 and noise = 2 ·10−7 (8.40a)
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Figure A.10: Estimated non-uniform Mper and divergence with lambda = 5 ·10−8 and noise = 2 ·10−7 (8.40b)
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