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Deep Learning Obstacle Detection on a Planetary
Rover: Design, Integration, and Validation

Tanya Spee, David Rijlaarsdam, Alessandra Menicucci, Javier Alonso-Mora, Lennart Puck, Martin Azkarate

Abstract—Autonomous planetary rovers require obstacle de-
tection capabilities to navigate hazardous terrain without Earth-
based intervention, yet currently deployed methods are limited.
This research develops and validates a complete deep learning
system for autonomous rock detection on a resource-constrained
planetary rover. We present a lightweight MobileNetV2-based
U-Net architecture with dual attention mechanisms, optimized
for edge deployment with only 0.31 million parameters. A new
dataset MarsTanYard was created via a semi-automated dataset
creation pipeline, enabling efficient annotation of Mars-analogue
terrain imagery. Our deep learning network was trained on this
dataset and integrated with a ROS2 navigation stack through a
modular architecture that transforms segmentation masks into
2D occupancy grids that can be used for rover path planning.
Our network achieves a 77% intersection-over-union accuracy
for rock segmentation, and physical validation on a testing
rover in a Mars analogue environment demonstrates a 94%
detection rate for large rocks at close-range. An inference time
of 4.49ms was achieved on the target rover hardware using
model optimization techniques. The system maintains reliable
operation across varying lighting conditions with less than
15% performance degradation. Results show theoretical collision
probability of 7.8×10−7 per rock encounter, enabling months of
autonomous operation for typical planetary missions. This work
provides an end-to-end validation of the deep learning obstacle
detection system, establishing a foundation for enhanced rover
autonomy in future Mars exploration missions.

I. INTRODUCTION

PLANETARY rovers serve as our robotic explorers on
distant worlds, expanding our understanding of the solar

system, and scouting regions where humans may set foot in
the future. As missions become more ambitious, the need
for greater autonomy in these rovers has become significant.
This research focuses on a critical aspect of rover autonomy:
obstacle detection, using deep learning as the core method,
with an emphasis on end-to-end system integration and real-
world testing.

Autonomous navigation is essential for maximising the
scientific return of planetary rover missions, as continuous
human intervention is impractical for exploring celestial bodies
like Mars and the Moon [1]. Several factors drive this need
for autonomy:

• Time delays in communication (10-45 minutes round trip
for Mars) and limited windows of opportunity due to
planetary rotations and relay orbiter availability cause
slow operations and significant rover idle time [2].

• Scientific objectives can be achieved faster and more
efficiently using autonomous navigation, as the rover’s
limited bandwidth can be spared for science-related data
rather than image data needed for manual navigation [3].

• Autonomous hazard detection enhances rover safety,
as it enables rovers to react in real-time to dangerous
terrain or obstacles encountered along pre-defined paths
that may not have been visible to human operators in
earlier imagery [4].

Fig. 1: Rover platform ”MaRTA” in the European Space
Agency’s Planetary Robotics Laboratory’s Mars Yard.

Currently deployed rover navigation systems like NASA’s
(National Aeronautics and Space Administration) Enhanced
Navigation (ENav) on the Perseverance rover have already
improved autonomous capabilities compared to previous mis-
sions. However, these systems still rely on geometric ap-
proaches for obstacle detection that have critical limitations
[5] [6], as outlined in Section II.

Deep learning (DL) approaches offer promising solutions to
these challenges. Recent advances in semantic segmentation
and terrain classification using convolutional neural networks
(CNNs) have demonstrated superior performance in identify-
ing various terrain types and obstacles [7]. These approaches
can improve hazard detection accuracy, distinguishing between
visually similar but mechanically different textures [8] [9],
reduce computation time through optimised architectures [10],
and enhance robustness and adaptability to unseen terrain [11].

Despite the potential of deep learning for planetary obstacle
detection, research gaps remain in adapting these systems
for actual rover deployment with computational limitations,
system integration, and real-world validation. This research
therefore aims to answer the following main question: ”How
can deep learning models for obstacle detection be optimised,
deployed, and integrated on a planetary rover to enable low-
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Fig. 2: Simplified ExoMars Rover Mobility Functional Architecture, as shown in [12].

latency, on-board inference?” This research question is sup-
ported by three sub-questions:

1) What DL architectures and optimisations enable accu-
rate and low-latency obstacle detection on a resource-
constrained planetary rover?

2) How can the deep learning obstacle detection system
best be integrated with other rover software subsystems
and be deployed on the rover hardware?

3) How does the end-to-end system using the integrated
DL obstacle detection method perform on a planetary
rover test platform in a realistic environment?

Answering these questions, the contributions of this study
are: (1) design and optimization of a lightweight deep
learning model for obstacle detection, (2) creation of a
Mars analogue dataset for model training and evaluation,
(3) integration of the DL system within a rover navigation
stack, (4) hardware deployment and hardware-in-the-loop
evaluation, (5) validation on a rover test platform in a Mars
analogue environment (Figure 1), and (6) recommendations
for future work.

II. RELATED WORK

This section summarizes key developments in autonomous
planetary rover navigation systems, obstacle detection algo-
rithms, deep learning approaches, and deployed deep learning
systems in space.

A. Current Rover Obstacle Avoidance Systems

Recent planetary rovers employ Guidance, Navigation, and
Control (GNC) systems to autonomously navigate planetary
surfaces between the waypoints set by human operators.
Such GNC systems typically consist of four interconnected
subsystems: navigation, path planning, localisation, and trajec-
tory control [13] [14]. The European Space Agency’s (ESA)
ExoMars rover (to be launched in 2028) GNC functional ar-
chitecture represents the current state-of-the-art in autonomous
rover system design [12], shown in Figure 2. The navigation
subsystem detects obstacles and assesses terrain traversability.

Path planning then uses this assessment to generate safe
routes, while localisation tracks the rover’s position using
techniques such as Visual Odometry (VO), and trajectory con-
trol translates the planned paths into motor commands. This
review focuses on subsystem perception within the navigation
pipeline, and how it interfaces with the other subsystems to
enable autonomous navigation [15].

The rover’s subsystems are managed by the ’Mobility
Manager’, which enables the structuring and hierarchizing of
the different subsystems, and decides on the transitioning be-
tween modes when its requirements are satisfied. For example,
traverse mode can only begin when actuators are warmed up
and a safe path is available [14]. Currently deployed rovers
operate primarily in supervised autonomy mode, where human
operators make decisions about functional mode transitions
and route selection. [13].

Within the navigation pipeline, nearly all recent planetary
rovers perform terrain geometry analysis to determine if areas
are safe to drive through. This approach is used by NASA’s
rovers (Spirit, Opportunity, Curiosity, and Perseverance), as
well as other missions such as China’s Zhurong rover. This
geometric method follows a clear pipeline: Stereo cameras
capture pairs of images from slightly different positions.
Stereo matching algorithms then calculate the disparity be-
tween corresponding pixels in each image pair by matching
corresponding features between the left and right images. This
disparity data is then converted into a 3D point cloud via
triangulation mathematics and processed into Digital Elevation
Models (DEMs). These DEMs are height maps that show
the 2.5D shape of the terrain in front of the rover [16].
The rover then applies straightforward geometric thresholds
to these DEMs as a rule-based safety analysis. Areas with
slopes steeper than 30° are typically marked as unsafe, as are
regions with height differences larger than the rover’s ground
clearance [17]. This approach is often able to detect obvious
hazards like large rocks, steep slopes, or deep holes.

NASA’s ”GESTALT” algorithm, used on Spirit, Opportu-
nity, and Curiosity, is an example of this geometric approach
[17]. For each stereo image pair, GESTALT processes an
individual DEM and creates a local map marking areas as
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safe or unsafe. The algorithm treats the rover as a simple
disk shape and expands all detected hazards by the rover’s
radius. This ensures safety but means the rover cannot drive
over or between obstacles, even when it might physically
be able to do so. This conservative design was necessary
due to hardware limitations. Early rovers used slow proces-
sors (20MHz RAD6000 for Spirit and Opportunity, 133MHz
RAD750 for Curiosity), making it impossible to combine the
computationally expensive DEMs from multiple images [17]
while performing accurate localisation using Visual Odome-
try. Instead, GESTALT only tracked the simple safe/unsafe
decisions, which required less computation but lost detailed
information about the terrain.

Perseverance’s Enhanced Navigation (ENav) system rep-
resents a computational upgrade while keeping the same
geometric principles [18]. The key hardware improvement
is the Vision Compute Element (VCE), a dedicated image
processing computer that includes a RAD750 processor paired
with Field Programmable Gate Array (FPGA) acceleration.
This hardware partly enables ’thinking while driving’, unlike
previous rovers that had to stop moving while processing im-
ages [16]. Furthermore, unlike GESTALT’s simple disk model,
ENav’s Approximate Clearance Evaluation (ACE) algorithm
analyzes where each individual wheel would be positioned
and calculates safety margins for the rover’s belly clearance.
This allows the rover to safely drive over small rocks or
through narrow passages that GESTALT would avoid, enabling
navigation through more complex terrain.

However, these geometric methods have fundamental limi-
tations beyond computational constraints. Stereo vision fails in
poor lighting conditions or regions with poor feature density,
resulting in elevation maps with gaps or inaccurate data [5].
Furthermore, geometric analysis cannot distinguish between
terrain types that appear geometrically similar but behave very
differently. For example, a sand slope and a rock slope of a
similar angle may pose entirely different risks, as sand can trap
the rover [19]. Geometric methods miss the semantic under-
standing of the environment to understand material properties,
while human operators naturally consider terrain properties
when planning routes. Even with faster processors and better
cameras, the current terrain analysis approach will still rely on
human operators to identify non-geometric hazards and specify
areas to avoid [13].

Beyond NASA’s missions, other space agencies have de-
ployed rovers with similar autonomous navigation capabil-
ities. Within ESA’s ExoMars perception subsystem, a two-
level approach is used with both ”efficient navigation” for
simple terrain and ”full navigation” with SLAM (Simulta-
neous Localisation and Mapping) capabilities for complex
environments. The efficient navigation acts like an ”electronic
bumper” analyzing only the region directly in front of the
rover. It avoids performing computationally expensive terrain
reconstructions, but relies directly on disparity values and pre-
computed lookup tables to determine if the terrain is safe [14].
Although much faster, it uses the same geometric approach as
the earlier discussed systems and faces the same limitations.
China’s Zhurong rover (Mars, Tianwen-1 mission, 2021), Yutu
rovers (Moon, Chang’e 3 and 4 missions, 2013 and 2019),

and India’s Pragyan rover (Moon, Chandrayaan-3 mission,
2023) all employ similar geometric approaches [20] [21] [22]
[23]. They also perform disparity calculations using stereo
vision, and either DEM generation or rule-based obstacle
filtering, though detailed algorithmic specifications remain
limited in publicly available literature. The convergence on
stereo vision-based geometric analysis across different space
agencies demonstrates both the maturity of this approach and
the lack of viable alternatives for current planetary rover
operations.

B. Alternative Approaches for Obstacle Detection

The limitations of geometric methods have motivated re-
search into alternative approaches for planetary obstacle detec-
tion. Classical machine learning methods extract handcrafted
features such as slope, roughness, texture, and color from
terrain data, then train classifiers like Support Vector Machines
or Random Forests to distinguish safe from hazardous areas.
While more capable than pure geometric thresholds, these ap-
proaches rely on human experts to extensively define relevant
features and struggle with novel terrain types.

Sensor fusion approaches combine geometric analysis with
limited semantic understanding, using visual texture analysis
to distinguish rock types or incorporating extra sensors to
assess surface properties. Thermal imaging, Light Detection
and Ranging (LiDAR) and spectrometers can be integrated
to build richer terrain representations. These approaches face
challenges in sensor synchronization and calibration, while
many sensors are currently unsuitable for the space environ-
ment.

Deep learning (DL) represents a fundamentally different
paradigm that addresses the core limitations of previous
methods. Rather than applying predetermined rules to geo-
metric features, deep neural networks learn complex map-
pings between raw sensor data and terrain properties directly
from training examples. This data-driven approach can enable
the rover to understand material properties from visual ap-
pearance, adapt to previously unseen environments through
learned representations, and reduce computation time [19].
Where geometric methods use explicit mathematical models
with deterministic outputs, deep learning uses implicit feature
representations learned through gradient-based optimization of
millions of parameters, trading interpretability for adaptability.
While geometric approaches have predictable computational
requirements and bounded behavior, deep learning offers
greater flexibility to capture complex terrain relationships, but
at a cost of transparency in the decision-making processes.

C. DL architectures and Datasets for Planetary Obstacle
Detection

Semantic segmentation has become the predominant deep
learning approach for planetary obstacle detection, with re-
cent architectures making different design choices to balance
accuracy, computational efficiency, and deployment constraints
(shown in Table I). Since these methods are evaluated on
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Architecture Key Features Main Strength Primary Limitation
MobileNetV2 U-Net [10] MobileNetV2-based encoder Massive parameter reduction Reduced accuracy and precision
RSU-Net [24] SENet channel attention on U-Net backbone High benchmark performance Large parameter count
DAM-U-Net [25] Channel and spatial attention mechanisms Comprehensive attention coverage Implementation complexity
Y-shaped Network [26] One encoder, segmentation and depth decoders Multi-task scene understanding Task interference and loss balancing
RockFormer [27] Full transformer U-shaped architecture Global context through self-attention Transformer computational overhead
RockSeg [28] ResNet blocks combined with transformers Local and global feature fusion Hybrid architecture complexity
YOLOv5 (modified) [9] YOLO detection with attention mechanisms Fast inference for detection Bounding boxes, no pixel-level masks

TABLE I: Summary of recent proposed deep learning architectures for planetary obstacle detection

different datasets with varying annotation quality, image com-
plexity, and planetary environments, direct quantitative com-
parisons are challenging, and this analysis therefore focuses
on the qualitative trade-offs that distinguish these approaches.

Standard U-Net architectures achieve excellent segmenta-
tion through their encoder-decoder structure with skip connec-
tions but require too many parameters for rover deployment.
MobileNetV2 U-Net [10] tackles this problem by replacing
the standard encoder with MobileNetV2’s depthwise separa-
ble convolutions, significantly reducing the parameter count.
This enables deployment on systems like Raspberry Pi while
maintaining acceptable segmentation quality.

Attention mechanisms in recent works follow two distinct
strategies. RSU-Net [24] uses channel attention to emphasize
informative feature channels, which works well for distin-
guishing rocks from similar-colored terrain. DAM-U-Net [25]
instead combines both channel and spatial attention for more
comprehensive feature enhancement.

Multi-task networks attempt to extract additional scene
information beyond segmentation. The Y-shaped Network [26]
combines rock segmentation with depth estimation using a
depth-aware spatial attention module. The mode contains one
shared encoder, and two distinct decoders for the two tasks.
The depth decoder branch provides 3D spatial information that
improves boundary detection and small rock identification.
However, training multiple tasks simultaneously introduces
complexity in loss balancing and potential task interference.

Hybrid CNN-transformer architectures address the limited
receptive fields of pure CNN approaches. RockSeg [28] com-
bines ResNet blocks with transformer modules to capture
both local features and global context while maintaining
efficiency. RockFormer [27] uses a full transformer-based U-
shaped architecture that prioritizes global context through self-
attention. RockSeg suits real-time applications better with its
lighter network, while RockFormer excels at detecting small,
scattered rocks across complex terrain but is heavier.

YOLOv5 with attention mechanisms [9] provides fast ob-
stacle detection suitable for immediate navigation decisions,
only outputting bounding boxes around rocks and craters.
Segmentation methods like the U-Net variants provide pixel-
level rock boundaries essential for detailed path planning
around irregular obstacles. The choice between segmentation
and detection using bounding boxes depends on whether rapid
detection or precise spatial understanding is more critical for
the navigation system.

All DL planetary obstacle detection methods described
conduct performance evaluation exclusively on pre-collected

datasets and in simulations without addressing software and
hardware integration challenges or system-level validation.

Deep learning models for planetary terrain segmentation
rely on three types of datasets: real (e.g., AI4MARS [19],
MarsRock [24]), synthetic (e.g., SimMars6K [29], SynMars
[30]), and analogue (e.g., MADMAX [31], Katwijk Beach
[32]). Real datasets provide authentic planetary imagery but
may be limited in diversity or annotation quality, and lack pre-
cise ground truth information. Synthetic datasets are computer-
generated datasets that offer perfect ground truth information,
but do not fully capture the real-world complexity and textures,
introducing a domain gap. Analogue datasets consist of images
taken on Earth that look like planetary surfaces. They provide a
balance of real-world complexity and controlled environments
with ground-truth information, but do not capture both as
perfectly.

D. DL Deployment in Space

Deploying deep learning models on planetary rovers re-
quires hardware that balances computational capabilities with
the constraints of space environments. Traditional space-grade
processors like the RAD750 used in Curiosity and Perse-
verance offer limited performance for AI workloads due to
minimal parallel processing capabilities [16]. Specialized AI
accelerators, such as radiation-tolerant FPGAs and Vision
Processing Units (VPUs), provide more promising alternatives
for neural network inference while meeting space-grade re-
quirements [33] [34]. Key constraints for space hardware are:

• Radiation tolerance of the electronics
• Operation across extreme temperature ranges
• Strict power constraints
• Minimal mass and volume
Deep learning deployment in space remains limited, with

only a handful of systems operating on small satellites and
space station robots in low-earth orbit. ESA’s PhiSat-1 mission
(2020) pioneered onboard deep learning by using CNNs
on the Intel Myriad 2 for cloud filtering, reducing data
transmission [35]. Its follow-on PhiSat-2 extends this to a
library of in-orbit ”apps” for cloud-masking, vessel detection,
and image processing tasks [36]. Multiple CubeSat missions
have demonstrated lightweight CNNs on platforms like Intel
Myriad-2 and NVIDIA Jetson for image classification [37]
[38]. These recent examples show that deep learning systems,
specifically with image data, can be successfully deployed in
space environments.

Concerning planetary applications, the company Mission
Control developed MoonNet, a deep learning model intended
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for lunar surface segmentation on the ispace M1 mission
in collaboration with the Emirates Lunar Mission Rashid
rover [39]. Although the spacecraft did not successfully land,
MoonNet was confirmed to be operating nominally in lunar
orbit, making it the world’s first and only deployed deep
learning system outside Earth orbit. It has not been specified
what hardware the deep learning system was deployed on.
Recent research has been done on the validation of Ubotica
Technologies’ CogniSat XE2 board using the Myriad X for
deep learning planetary obstacle detection. It was demon-
strated to be successful in segmenting obstacles in a pre-
collected and annotated dataset [40].

E. Research Gaps

Despite advances in both geometric obstacle detection for
rovers and in deep learning approaches, three key research
gaps were identified: (1) computational optimization of deep
learning planetary obstacle detection models for resource-
constrained rover hardware, (2) end-to-end system integration
with existing rover navigation stacks, and (3) real-world val-
idation on physical platforms in realistic environments rather
than simulation-only testing. This research addresses these
gaps through the research questions and contributions outlined
in the introduction.

III. SYSTEM ENGINEERING & ARCHITECTURE DESIGN

This chapter presents the system engineering approach and
architectural design for developing a deep learning-based
obstacle detection system for planetary rovers.

A. V-Model Development Framework

For the design of the deep learning-based obstacle de-
tection system, the V-model systems engineering approach
was deployed as shown in Figure 3, based on literature
[41]. This framework provides an iterative and systematic
method for decomposing high-level mission requirements into
detailed subsystem specifications, while verifying the designed
subsystems and integrated systems. The left side of the V
represents the decomposition path from mission needs to sub-
system requirements, while the right side focuses on subsystem
design and integration into bigger systems. Verification is done
to check whether the (sub)systems meet their specifications,
and validation is done to check whether the system meets
the mission needs. The V-model aligns with the Autonomy
Requirements Engineering (ARE) methodology, a framework
developed by ESA for space missions to address the challenges
of autonomous systems [42]. ARE emphasizes the importance
of defining verifiable autonomy properties at different system
levels, supporting the choice of the V-model approach. In
this research, the focus is on ensuring that the perception-
to-navigation chain can be verified at each subsystem level
and that the system is validated in real-world conditions, as
simulations alone cannot fully mimic the interactions between
hardware, perception systems, and interfaces with the other
software components [43].

Fig. 3: V-model development framework, based on [41]

B. Concept of Operations and System Requirements Deriva-
tion

For the design of the deep learning obstacle detection
system and its subsystems, requirements are derived following
a systematic approach shown in Figure 4, based on space
mission design methodologies [42]. The mission statement and
stakeholder analysis are taken as starting point. The mission
statement is to develop a low-latency, on-board obstacle detec-
tion system for planetary rovers that enables safe, autonomous
navigation over planetary surfaces. Three stakeholders are
identified:

1) Ubotica Technologies: A company specializing in com-
mercial off-the-shelf (COTS) AI accelerators for space
applications. Their interest lies in advancing the un-
derstanding and feasibility of running deep learning
inference directly on planetary rovers.

2) European Space Agency (ESA): ESA aims to enhance
rover autonomy to reduce dependence on Earth-based
control, particularly for Mars missions where commu-
nication delays are critical. They support this research
by sharing expertise and providing access to the Mars
Yard, an analogue Martian environment.

3) Lunar Zebro (TU Delft): This TU Delft initiative is
developing sub-1.5 kg micro-rovers designed to oper-
ate autonomously in swarms. The research specifically
targets lightweight obstacle detection models that can
run on such ultra-constrained platforms, supporting the
scalability and autonomy of the Zebro swarm concept.

These stakeholders share a common goal of achieving
reliable autonomous obstacle detection in planetary
environments with minimal computational resources,
specifically using deep learning. This convergence of interests
shaped the requirements for a deep learning perception
system that is robust, lightweight, and modular to adapt
across different rover platforms.

The Concept of Operations (CONOPS) defines how the deep
learning obstacle detection system integrates operationally
with rover missions to enable safe, autonomous navigation
across planetary surfaces. The CONOPS for this research can
be summarised as follows:

1) Ground operators define science objectives and general
waypoints based on orbital imagery

2) The rover executes the planned traverses while contin-
uously monitoring terrain ahead and detecting potential



6

Fig. 4: Requirements derivation methodology, based on space
mission design literature [42]

hazards.
3) When obstacles are detected that interfere with the

planned path, the system triggers local replanning and
continues operations without requiring ground interven-
tion. Only rock obstacles are considered within the scope
of this research.

4) During communication windows, the rover transmits
relevant data to ground operators such as obstacle maps,
performance telemetry, and important imagery for mis-
sion assessment

5) If critical obstacles block all viable paths or system
anomalies occur, the rover safely halts and flags the
situation for manual control by ground operators.

The operational concept defines clear roles for both au-
tonomous rover operation and human control. Human op-
erators provide high-level mission objectives, review system
performance, and can override rover decisions, while the rover
autonomously makes real-time local navigation decisions and
traverses the surface while maintaining safety.

The complete list of mission objectives and subsequent
system requirements is provided in Appendix A. The re-
quirements were formulated according to SMART principles
(Specific, Measurable, Achievable, Relevant, Time-bound) as
far as possible and relevant, and categorised as functional,
performance, design, interface, and validation requirements.
The requirements were established within the constraints of
the available testing platform and environment, as detailed
in Subsection D. Each requirement was assigned a priority
level and a verification method following ECSS standards
(test, analysis, inspection, or review) [44]. The functional
requirements define what the system must do, the performance
requirements specify how well it must perform, the interface
requirements describe how it connects with other systems, the
design requirements establish the architectural and implemen-
tation constraints, and the validation requirements define how
the system’s performance will be evaluated.

These mission objectives and system requirements are
validated and verified throughout this research paper. The
complete verification overview is summarized in Appendix
refapp:verification and will be referred to during the respective
verification activities.

C. Testing Platform

The system is designed primarily for lightweight rover
platforms and was validated on ESA’s MaRTA (Martian

Rover Testbed for Autonomy) rover in the Mars Yard at
ESA’s Planetary Robotics Laboratory (PRL) [45], both shown
in Figure 5. MaRTA provides an ideal testing platform, larger
and with more computational power than nano-rovers, but still
representative of the target application with its modular design.

Fig. 5: Test rover ”MaRTA” in the Mars Yard test
environment at ESA’s Planetary Robotics Laboratory.

Fig. 6: Conceptual illustration of the Lunar Zebro swarm [46]

MaRTA is a 32 kg testing rover platform, developed
as a scaled-down version of the ExoMars rover (Rosalind
Franklin). It features a Teledyne Bumblebee X stereo camera
mounted on a pan-tilt unit, providing a 60° horizontal field of
view. The rover uses EtherCAT (100 Mbit/s) ?? for internal
communication between all motors and houses an NVIDIA
Orin AGX for onboard computing, making it well-suited for
deep learning inference. Its triple-bogie suspension with 6-
wheel steering enables navigation over Mars-like terrain at
speeds up to 10 cm/s and can traverse rocks up to its wheel
diameter of 15 cm, even with vertical surfaces.

The Mars Yard provides a realistic analogue environment
with varying terrain types, including sandy areas and rocky
sections with obstacles of different sizes. The controlled
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Fig. 7: ROS2 functional node graph showing the perception pipeline components and their interactions within the overall
rover system architecture.

environment allows for repeatable experiments, while variable
lighting conditions enable testing the robustness of the per-
ception system under different illumination scenarios.

For future lightweight applications, the Lunar Zebro plat-
form (Figure 6) represents the type of resource-constrained
rover that could benefit from this technology. While current
versions of these small rovers have limited onboard computing
capabilities, future iterations with more efficient hardware
could leverage DL algorithms similar to the one developed
in this work, as was already tested in earlier research [40].

D. System Architecture Design

The obstacle detection system encompasses both hardware
and software components, designed to integrate with existing
rover platforms while meeting the performance requirements
specified in Appendix A. The system boundaries are the
stereo camera sensors, onboard computing hardware, and the
complete software stack for perception and obstacle mapping.

The primary constraint is that the system must operate
within MaRTA’s existing hardware configuration, meeting
requirement IR-04, while ensuring software portability to
other rover platforms. MaRTA’s Teledyne Bumblebee X stereo
camera and NVIDIA Orin AGX computing platform provide
the sensor input and processing capabilities required, with
EtherCAT communication enabling the data flow necessary
for low-latency operation.

The software architecture is built on Robot Operating Sys-
tem 2 (ROS2), a middleware framework providing standard-
ized communication infrastructure for robotic applications,
thereby satisfying requirement FR-03. The modular design en-
ables component-wise development and facilitates transfer to
different rover platforms without major architectural changes.
The high-level ROS2 functional node graph for this research is

shown in Figure 7, highlighting the interactions between per-
ception, navigation, and locomotion control pipelines. Within
the perception subsystem, the rock segmentation and rock
mapper nodes represent the core contributions of this research.

The system architecture directly supports the CONOPS
through its sense-plan-act implementation. The stereo camera
system continuously captures imagery at 1Hz to meet require-
ment PR-02, providing terrain coverage ahead of the rover.
Raw stereo imagery undergoes the preprocessing, obstacle
segmentation, and obstacle mapping to generate the local
occupancy grids that integrate with global path planning algo-
rithms as shown in Figure 7. The modular architecture ensures
that individual components can be validated independently
while supporting end-to-end system validation on the MaRTA
platform. More details on the software implementation and
integration testing will be provided in Section V.

IV. DEEP LEARNING MODEL DESIGN

This section details the development of a lightweight deep
learning model for planetary rock segmentation, covering
dataset selection and creation, neural network architecture
design, training methodology, and performance evaluation.

A. Dataset Selection and Creation

Obstacle segmentation on planetary surfaces presents unique
challenges due to monochromatic environments and similar
textures. The dataset selection to train the deep learning model
on, requires consideration of environmental representation,
annotation quality, size and diversity and accessibility. Since
the scope of this research is to perform rock segmentation,
only this annotation is needed. No information is needed for
other terrain properties such as bedrock, sand, and craters.
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Fig. 8: Example images during MarsTanYard dataset creation, showing the integration of CLIPSeg and SAM models for
semi-automated segmentation mask generation.

TABLE II: Comparison of shortlisted datasets for planetary
rock segmentation

Dataset Type Size Colour

AI4MARS [19] Real 326,000 Grayscale
MarsData-V2 [47] Real 8,000 RGB
MarsRock [24] Real 1,194 Grayscale
SimMars6K [29] Synthetic 6,000 RGB
SynMars [30] Synthetic 60,000 RGB
Artificial Lunar [48] Synthetic 9,766 RGB

The available real, analogue, and synthetic Mars datasets
were researched and evaluated. The comparison table of short-
listed datasets can be found in Table II. The real-world dataset,
MarsData-V2, was chosen due to its real RGB image content,
its annotation quality, binary class structure, and dataset size.

While the MarsData-V2 dataset provided valuable re-
sources, an additional mission-specific dataset was highly de-
sirable as there was still a significant domain gap between the
existing datasets and the deployment conditions. The mission-
specific dataset, named ”MarsTanYard”, contains images from
MaRTA’s left camera in the analogue Mars environment that
would eventually be used for testing. This approach ensures
that the model is optimised for its deployment. Traditional
dataset creation for rock segmentation typically requires ex-
tensive manual labour, drawing all rock contours by hand.
Because of time and resource constraints, as only one human
was performing this task, an efficient semi-automated ap-
proach was developed using two state-of-the-art deep-learning

foundation models:

• CLIPSeg [49]: A language-vision model that identifies
regions matching text descriptions. It was trained on
image-text pairs and it provides zero-shot capabilities for
recognising concepts without specific training on them.

• Segment Anything Model 2 (SAM2) [50]: This instance
segmentation model provides precise object boundaries,
though it lacks semantic understanding of what the ob-
jects are.

Images were collected using MaRTA’s left camera as it was
driven over the Mars Yard with a gamepad controller, with the
setup shown in Figure 9. The Mars Yard is illuminated by a
single light source referred to as the ‘sun’ as seen in the top
right of the figure, positioned at a 15-degree angle relative to
the horizontal surface, measured from the Mars Yard centre
point. To capture a wide range of shadow directions, MaRTA
was positioned in various orientations and locations across the
Mars Yard, resulting in shadows being cast in different direc-
tions. Terrain variability was further enhanced by combining
different terrain types and rock formations within individual
scenes, partially occluding each other. The different terrain
types included in the dataset are: flat rocks (seen on the left
part of the image), pebbles (seen on the bottom part), small
and big rock boulders, and sand (throughout the image).

Two examples during the rock labelling workflow can be
seen in Figure 10, and the system diagram of the labelling
pipeline is shown in Figure 10. On the input image, the
CLIPSeg identified rock regions using the prompt ’rock
taller than 15cm’, after experimenting with various prompts
like ”hazard,” ”boulder,” and ”stone”. CLIPSeg provides a
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Fig. 9: Setup used for the MarsTanYard dataset generation,
including a single light source as the ’sun’, and different

terrain types: flat rocks, pebbles, small and big rock
boulders, and sand.

heatmap-like output with confidence scores. The bottom-row
example in Figure 10 demonstrates CLIPSeg’s ability to
distinguish the single upright rock from the flat rocks beneath
it in shadowy conditions, while the top example shows it
distinguishes rocks from sand. SAM provided precise rock
boundaries on the same input image. The results of the models
were then combined, keeping SAM objects that overlapped
with CLIPSeg rock predictions above a certain threshold. For
each image, masks were generated at four different CLIPSeg
threshold values (0.2, 0.3, 0.4, 0.5), and the resulting masks
were analysed, with the best mask selected manually by expert
opinion and discarding the others. This automated approach
worked satisfactorily, as measured by the same expert opinion,
for 78% of the images. For the remaining 22% of the images,
a custom tool was built that did not use CLIPSeg and allowed
manual selection of SAM segments with simple clicks,
saving the combined clicked segments as a binary mask.
The resulting dataset, ”MarsTanYard,” contains 364 images
captured during the test and their corresponding binary masks.

Fig. 10: System diagram of labelling pipeline for
MarsTanYard’s binary rock masks. Threshold manually set

by expert opinion to 0.2, 0.3, 0.4 or 0.5.

Before feeding images to the deep learning model, sev-
eral preprocessing steps were implemented to enhance model
performance, efficiency, and robustness, and to ensure consis-
tency between the different datasets. These steps are: centre
square cropping, resizing to 256x256 (meeting requirement
IR-02), colour conversion to RGB, normalization of pixel
values to [0,1] floating-point range by dividing by 255, and
data augmentation. The augmentation strategy was designed
to represent realistic scenarios. For instance, horizontal flips
were included as they represent plausible terrain orientations,
while vertical flips were excluded as they would create un-
realistic scenarios of rocks hanging from the sky. The data
augmentations shown in Table III were applied, each with a
20% probability of being applied per image, and with values
ranging between realistic boundaries.

TABLE III: Data Augmentation Parameters

Augmentation Type Value Range Rationale

Horizontal Flip – Different viewing angles
Brightness 0.8–1.2 Varying lighting conditions
Contrast 0.8–1.2 Enhanced feature visibility
Rotation ±15◦ Camera orientation variations
Noise Addition σ = 0–0.03 Sensor noise simulation
Random Crop 80–100 % Partial view learning
Gamma 0.8–1.2 Exposure variations

B. Neural Network Architecture

Selecting the appropriate neural network architecture for
planetary terrain rock segmentation required consideration of
both performance requirements and computational resource
constraints. The architecture development and training opti-
mization were conducted on a HP Victus laptop equipped with
an Intel i5-11400H processor, 16 GB random access memory,
and an ’NVIDIA GeForce RTX 3050’ praphics processing unit
(GPU).

Based on the literature review, several state-of-the-art ar-
chitectures for planetary rock segmentation mentioned in the
”Related Works” section were evaluated. As the goal of this re-
search is to develop a very lightweight resource-efficient rock
segmentation system that can be used on small rovers, a U-net
with pre-trained MobileNetV2 encoder (ImageNet weights)
and lightweight custom decoder was used as starting point,
as the usage of MobileNetV2’s depthwise separable convolu-
tions greatly reduces the parameter count without significantly
sacrificing performance. The classification is binary, ’hazard
rock’ or ’background’, to comply with requirement FR-04.
Skip connections were implemented by extracting intermediate
feature maps from MobileNetV2 blocks at specified depths
(blocks 1, 3, 6, and 13) chosen to provide features at different
scales, preserving the pre-trained weights. From there, the
influence of different architectural modifications was analyzed
via an ablation study to optimize the model by balancing seg-
mentation performance with computational constraints. Four
targeted ablations were conducted on the training split of
the MarsData-V2 dataset [47], with each configuration tested
across 5 independent runs. The configurations are shown in
Table IV and are outlined below:
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Fig. 11: Simplified architecture of the proposed model

1) Depth Multiplier (α): tested 3 α values to determine
optimal encoder width, with the baseline being 0.50.
This hyperparameter controls the number of channels
(filters) in each layer of the network. α =0.5 was chosen
as it provides the best balance between model capacity
and parameter efficiency.

2) Attention Mechanisms: Custom spatial and channel at-
tention modules were integrated into each decoder block,
after the skip connection fusion, while keeping the pre-
trained MobileNetV2 encoder unchanged. Four configu-
rations were tested: no attention (baseline), spatial-only,
channel-only, and combined attention. Spatial attention
helps the model focus on rock boundaries by empha-
sizing important spatial regions, while channel attention
improves feature representation through adaptive chan-
nel weighting. The combined approach was selected for
its improved IoU with minimal parameter overhead (3K
parameters).

3) Decoder base filters: In the decoder, the number of filters
decreases progressively by a factor of 2 across four
stages. The starting number of base filters was tested: 16,
32 (baseline) and 64. 32 base filters were chosen as this
still showed a high IoU without unnecessary parameter
increase.

4) Encoder bottleneck layers: 13 (baseline) layers were
chosen after analyzing parameter growth patterns, as
increasing beyond block 13 resulted in a significant 50%
parameter increase with minimal IoU improvement.

TABLE IV: Ablation study results for architectural
components

Component Configuration Parameters Val IoU

Width multiplier α
0.35 144,115 0.532
0.50 300,203 0.614
0.75 454,101 0.628

Attention mechanisms

None 300,203 0.614
Spatial 301,859 0.651
Channel 301,427 0.643
Both 303,083 0.672

Decoder base filters
16 255,379 0.598
32 300,203 0.672
64 389,851 0.685

Encoder bottleneck layers

10 265,155 0.639
13 300,203 0.672
16 458,347 0.688
19 621,891 0.692

The final model architecture is shown on Figure 11. The
configuration features a MobileNetV2 encoder with α =0.5
and 13 bottleneck blocks, spatial and channel attention mech-
anisms, double convolution blocks in the decoder and a base
filter count of 32. A dropout rate of 0.1 was applied to prevent
overfitting. The resulting model has 303,083 parameters (1.16
MB model size, below 5 MB of requirement DR-02).

C. Training Methodology

To find the optimal training configuration of the model,
multiple options were systematically evaluated.

The following loss functions were implemented and evalu-
ated to determine which would be most effective:

• Dice loss: Directly optimises for region overlap, appro-
priate for imbalanced segmentation tasks
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• Focal loss: Addresses class imbalance by down-weighting
easy examples.

• Combined loss: Weighted combination of Dice and Focal
losses.

• Binary cross-entropy (BCE): Standard loss for binary
classification problems.

The results are shown in Table V. Dice loss was selected
as the primary training objective because it performed best on
all tested metrics, including mean IoU and F1 score.

TABLE V: Loss function comparison

Loss function Mean Val IoU Std-dev F1 score

Dice 0.665 0.169 0.735
Combined 0.600 0.094 0.667
BCE 0.472 0.084 0.641
Focal 0.458 0.157 0.628

For optimisation strategies, multiple algorithms were eval-
uated:

• Adam: Adaptive moment estimation with momentum and
bias correction

• RMSprop: Maintains per-parameter learning rates divided
by a moving average of squared gradients

• SGD: Standard stochastic gradient descent with momen-
tum (dropped after initial testing due to not converging)

RMSprop showed as the optimal optimiser, delivering the
highest mean IoU (0.720) and F1 score. Adam showed larger
variance and occasional divergence, as shown in Table VI.
For learning rate, values between 0.0005 and 0.01 were
tested, with 0.001 providing the best balance between stability
and convergence speed. A cosine learning rate decay was
compared to no decay, the latter showed better fine-tuning of
the model and increased final IoU. Memory constraints limited
the batch size to 4.

TABLE VI: Optimizer comparison

Optimizer Mean Val IoU Std-dev F1 score

RMSprop 0.720 0.131 0.781
Adam 0.458 0.243 0.543

Based on the ablation studies performed, the final training
configuration is summarised in Table Table VII.

TABLE VII: Final training configuration

Hyper-parameter Value

Loss function Dice
Optimizer RMSprop
Initial LR 10−3

LR schedule Cosine decay (end ratio = 0.01)
Batch size 4
Epochs / early-stop 100 / patience = 20
Dropout 0.10
Mixed precision Yes (float16)

After establishing the optimal architecture and training con-
figurations, transfer learning was explored to further improve
model performance, especially for adapting to the specific
target environment. While ideally ablation studies would be

repeated for each dataset, the architectural optimizations were
assumed to generalize across Mars datasets due to similar im-
age data, similar annotations, and the same preprocessing and
segmentation tasks. Transfer learning is particularly valuable
in planetary exploration contexts where labelled data is scarce.
A two-stage transfer learning strategy was developed:

1) Base Training: The model was first trained on the
MarsData-V2 training set due to its real Mars images,
dataset size and annotation quality.

2) Specialization: The base model was then fine-tuned on
the MarsTanYard training set, testing varying numbers
of frozen encoder layers. This allows the model to
specialize to the visual conditions encountered during
deployment. The best results were achieved with a
completely unfrozen encoder, allowing all weights to be
retrained.

Two model variants were compared: the transfer learning
model (trained on MarsData-V2 then fine-tuned on MarsTan-
Yard) versus a direct learning model (trained only on MarsTan-
Yard). Both approaches started with ImageNet-pretrained Mo-
bileNetV2 encoder weights, and both models were evaluated
on the validation sets of both MarsData-V2 and MarsTanYard
to assess cross-domain performance.

The results in Table VIII show that direct training on
MarsTanYard achieved better performance on the target do-
main, the validation set of MarsTanYard (0.815 vs 0.795
IoU). However, the transfer learning approach demonstrated
better generalization to MarsData-V2 (0.212 vs 0.063 IoU),
as expected since this dataset was seen during base training.
Additionally, the transfer learning approach made the model
converge significantly faster on the MarsTanYard dataset,
compared to training it on MarsTanYard directly. The approach
converged to a (dice) loss below 0.5 in 4 epochs on average
(over 5 runs), and below 0.2 in 27 epochs on average. During
training the model directly on MarsTanYard, achieving these
losses took on average 32 and 48 epochs respectively.

Despite the theoretical advantages of transfer learning,
empirical results showed that direct training on the mission-
specific MarsTanYard dataset yielded the best segmentation
accuracy for this particular application. This suggests that
the domain shift from real Mars imagery to MarsTanYard is
substantial enough that transfer learning can introduce harmful
priors, and that the MarsTanYard dataset contains sufficient
information to train a robust model. For the specific application
targeting MarsTanYard deployment, the direct approach was
selected based on its superior performance on the target
domain, while acknowledging that for missions with greater
uncertainty in deployment conditions, the transfer learning
approach would offer better generalization.

TABLE VIII: Cross-domain IoU performance on validation
sets

Training Strategy MarsTanYard IoU MarsData-V2 IoU

Transfer learning 0.795 0.212
(MarsData-V2 → MarsTanYard)
Direct learning 0.815 0.063
(MarsTanYard only)
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Fig. 12: Example input image, ground truth segmentation mask, and prediction of the final model on the MarsTanYard
dataset.

D. Model Performance Evaluation

An evaluation of the final model’s performance was con-
ducted. An experimental setup was defined to ensure reliable
performance assessment of the final trained model. The eval-
uation was performed using the MarsTanYard validation set,
which consists of 40 images that were set aside before training
to ensure the model had never seen these images during
training. The validation set was specifically chosen to represent
diverse environmental conditions including varying lighting
scenarios, terrain types (rocky, sandy, pebbles, mixed), rock
sizes, and camera angles to ensure comprehensive performance
assessment.

For evaluation, the trained model processed each valida-
tion image through the complete inference pipeline: image
preprocessing, neural network inference, and post-processing
to generate binary segmentation masks. The evaluation mea-
sures the following standard segmentation metrics: Dice score,
IoU (Intersection over Union) measuring overlap between
predicted and true rock regions, precision quantifying false
positive rates, recall measuring missed rock detection, and
rock-specific IoU focusing on foreground class performance.
These metrics are critical for planetary applications where
false positives could trigger unnecessary avoidance maneuvers
and false negatives could lead to collisions.

The performance metrics on the MarsTanYard validation
set are shown in Table IX. The model achieves 77.0% IoU,
demonstrating effective rock segmentation capability and ver-
ifying requirement FR-02. The class-specific Rock-IoU of
73.7% confirms that the network can really identify rock
regions well and not only the background considering there is a
class imbalance, and recall (85.3%) indicate robust detection
without excessive false positives or missed rocks. For plan-
etary navigation, the 81.0% precision means approximately
19% of pixels classified as rocks are false positives, while
85.3% recall indicates about 15% of true rock pixels are
incorrectly classified as background. This balance favours
safety by slightly over-detecting potential rock pixels rather
than missing them. The performance in detecting complete
physical rocks will be tested and validated in Section VI.
The achieved IoU and dice scores meet requirement PR-

03. However, an important limitation of our model is that it
only detects rocks as obstacles, while planetary rovers face
diverse hazards including sand traps, steep terrain, bedrock
formations, and crater edges. Our model may miss important
terrain features that could impact rover mobility and safety.
Another limitation is that it classifies all rocks as a single
class rather than detecting individual rock instances. This can
result in rock clusters being treated as single large obstacles
and occluded rocks being poorly represented in the obstacle
map.

Qualitative assessment does confirm that our model ac-
curately detects rocks of varying sizes, shapes, and textures
across different lighting conditions, which is what it was
designed for and complies with our requirements. An example
is shown in Figure 12.

TABLE IX: Final model performance metrics

Metric Value

IoU 0.770
Rock-IoU 0.737
Dice 0.858
Precision 0.810
Recall 0.853

The benchmark comparison in Table X shows the only
meaningful quantitative comparison available, as RockFormer
is the only model evaluated on the identical MarsData-V2
dataset. Other proposed DL model approaches, as mentioned
in the related work section, cannot be directly compared due to
the usage of different datasets, validation splits, and evaluation
protocols.

TABLE X: Model segmentation benchmark comparison on
MarsData-V2 dataset

Model Params [M] Prec. % Recall % IoU %
Ours 0.31 94.6 90.7 89.9
RockFormer [27] 6.88 99.0 98.6 93.3

Our model achieves 89.9% IoU compared to RockFormer’s
93.3% IoU, this 3.4 percentage point difference represents the
cost of our 22-factor parameter reduction (0.31×106 vs 6.88×
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106 parameters). This demonstrates competitive segmentation
quality while achieving high computational efficiency. The
precision-recall trade-off shows our model at 94.6% precision
and 90.7% recall versus RockFormer’s 99.0% precision and
98.6% recall. Next to having expected lower values for both,
the difference between our false positive and false negative rate
(4.4 percentage points) shows more caution, as collision-safety
is most important to our rover according to our CONOPS and
objectives.

V. SOFTWARE AND HARDWARE INTEGRATION

This section details the integration of the deep learning-
based obstacle detection system with the MARTA rover’s
software and hardware components. The integration encom-
passes developing software interfaces between the segmen-
tation model and existing rover systems, and optimizing the
model for efficient edge inference on the target hardware.

A. Software Integration

The obstacle detection system must interface seamlessly
with other software components of the MARTA rover, particu-
larly the camera input system and path planner. The integration
required the development of a dedicated ROS2 node that serves
as a bridge between the deep learning segmentation model and
the navigation stack, to meet requirement IR-01.

A Python-based ROS2 node, named Rock2DMapper, was
implemented to transform segmentation masks from the deep
learning model into occupancy grid representations usable
by the navigation system. The node subscribes to both the
segmentation mask topic and the disparity image from the
stereo camera, and to the transformation of the camera to
the rover base, as can also be seen in the earlier shown
ROS2 node functional graph in Figure 15. It then processes
this information to generate an occupancy grid that represents
obstacles on the surface in front of the rover.

The conversion from 2D segmentation masks to 3D world
coordinates involves stereo vision calculations and coordinate
frame transformations. First, the stereo camera system pro-
vides disparity images where each pixel value represents the
horizontal displacement between corresponding points in the
left and right camera images. The depth Zcam in the camera
coordinate frame is calculated using the standard stereo vision
formula:

Zcam =
fx ·B
d · s

(1)

where fx is the focal length in pixels (1304 pixels for the
Bumblebee X camera, B is the stereo baseline (known to
be 0.240234375 m for the Bumblebee X camera), d is the
disparity value from the disparity image, and s is the disparity
scale factor (0.015625 for the Bumblebee X camera). Once the
depth is known, the 2D pixel coordinates (u, v) of detected
rock centers are converted to 3D coordinates in the camera
frame using the pinhole camera model [51]:

Xcam =
(u− cx) · Zcam

fx
(2)

Ycam =
(v − cy) · Zcam

fy
(3)

where (cx, cy) are the principal point coordinates and
(fx, fy) are the focal lengths in the x and y directions, all
adjusted for the image preprocessing pipeline that crops and
resizes the original camera images to 256x256 pixels.

The 3D coordinates in the camera frame are then trans-
formed to the robot’s base frame using the Transform Frame-
work 2 (TF2) system provided by ROS2. TF2 provides the
necessary rotation and translation to convert points from the
camera’s coordinate system to the robot’s base coordinate
system.

Finally, the system generates a 2D occupancy grid as seen
in Figure 13 rather than a full 3D representation for com-
putational efficiency. The 2D approach projects all detected
obstacles onto a flat ground plane, assuming relatively flat
terrain without hills or big elevation changes. The 3D obstacle
coordinates are mapped onto a flat 200x200 cell grid with 0.05
m resolution (complying with requirement FR-05), covering a
5m x 5m area with the robot positioned at the bottom center.
Each detected rock is represented by marking corresponding
grid cells as occupied, with the number of cells determined by
the rock’s apparent size in the segmentation mask. While this
flat ground assumption reduces mapping accuracy on uneven
terrain, it maintains the safety requirements of the system.
A nearby rock will be detected regardless of whether the
rock or rover is on a slope, ensuring that the rover stops
or deviates from its path when approaching obstacles. This
mapping accuracy trade-off is acceptable because the primary
goal is collision avoidance rather than precise 3D terrain
reconstruction.

Fig. 13: Example of a 5 x 5 meter occupancy grid in the
rover frame generated by the system, at a resolution of 5 cm.

The occupied pixels represent the obstacles.

To handle temporal inconsistencies in rock detection caused
by segmentation noise, occlusions, or varying lighting con-
ditions, a persistence mechanism was implemented in the
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occupancy grid. Each cell in the occupancy grid has an
associated persistence value that tracks how long an obstacle
should remain marked, complying with requirement FR-06 of
maintaining an internal map. When a rock is detected, the
persistence value is set to a threshold of 3 cycles (3 mapping
actions, so 3 seconds when running at 1Hz), and decreases
with each cycle if the same rock is not re-detected. Cells are
marked as free space when their persistence value reaches
zero. This mechanism accounts for the rover’s movement
speed but assumes no wheel slippage as a simplification.
The system ensures that temporarily missed detections do
not immediately clear recent obstacle information, while also
preventing outdated obstacle data from persisting indefinitely.

B. Target Hardware Integration
For the MaRTA rover, the NVIDIA Jetson AGX Orin was

selected as the target hardware platform due to its balance
of computational performance and power efficiency for edge
AI applications. The Jetson AGX Orin features an Advanced
RISC Machine’-based (ARM) central processing unit (CPU)
with 12 cores, an NVIDIA ’Ampere architecture GPU with
2048 ’Compute Unified Device Architecture’ (CUDA) cores
and 64 Tensor cores, 32GB of unified memory, and up to 275
Trillions of Operations Per Second (TOPS) of AI performance.

Docker containerization was employed to facilitate system
integration and deployment, meeting requirement DR-03. The
existing MaRTA ROS2 stack was already containerized for
x86 architecture, but deploying on the ARM64-based Jetson
platform required creating a new container based on NVIDIA’s
Linux for Tegra (L4T) images. The new custom-built con-
tainer incorporates ARM64 architecture support, the NVIDIA
JetPack Softare Development Kit (SDK), ROS2 Humble, and
the MaRTA ROS2 stack.

The system maximizes on-device GPU utilization. All nu-
merically intensive operations (CNN inference and pixel-level
preprocessing) execute on the GPU and Tensor Cores, while
the CPU handles ROS2 messaging, TF2 transforms, and the
lightweight occupancy grid updates. Unified memory on the
Jetson AGX Orin eliminates explicit data copies between CPU
and GPU domains. This computational split prioritizes GPU
resources for deep learning inference while keeping decision-
making tasks on the CPU, an approach that remains valid for
future hardware architectures.

For future planetary rovers that may adopt a CPU coupled
with an AI accelerator such as Lunar Zebro, the computational
distribution would remain conceptually similar. The DL model
would execute on the accelerator such as a vision processing
unit (VPU), while the CPU would continue managing inter-
facing between subsystems, coordinate transformations, and
occupancy grid operations. Similarly, path planning algorithms
would execute on the CPU because their graph search and
optimization operations are better suited to general-purpose
processors than specialized AI accelerators.

C. Model Optimization
The deep learning model was optimized for efficient in-

ference on the Orin AGX GPU through a multi-stage con-
version pipeline, following requirement FR-07. The model

was first converted from its original Keras format [52] (the
representation used for development with the Keras application
programming interface (API) and TensorFlow backend), to
Open Neural Network Exchange (ONNX), an intermediate
representation that standardizes the model and facilitates opti-
mization. The ONNX model was then converted to TensorRT,
NVIDIA’s runtime optimizer that significantly accelerates in-
ference on NVIDIA GPUs through optimizations such as layer
fusion, kernel auto-tuning, and precision calibration. During
the TensorRT conversion, the model was quantized to half-
precision floating point (FP16) to reduce memory usage and
increase inference speed, with minimal impact on segmen-
tation accuracy (0.1% decrease). The inference performance
results using the different model formats are discussed in the
next section.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental validation of the de-
veloped obstacle detection system, evaluating both the model
performance on the target hardware and the complete system
validation through real-world testing on the MaRTA rover
platform.

A. Integrated Model Performance

The performance of the optimised and integrated deep
learning obstacle detection system was evaluated using two
primary metrics: segmentation accuracy and computational
efficiency. Segmentation accuracy was assessed across the
three model deployment formats: the original Keras model,
the ONNX conversion, and the TensorRT engine. To evaluate
segmentation quality, the same metrics as earlier were cal-
culated on the validation set of 40 MarsTanYard images, as
described earlier.

TABLE XI: Segmentation performance across model formats

Model IoU Dice Precision Recall Accuracy
Keras 0.793 0.878 0.877 0.889 0.993
ONNX 0.793 0.878 0.877 0.889 0.993
TensorRT 0.792 0.877 0.876 0.889 0.993

As shown in Table XI, the segmentation performance re-
mained consistent across all three model formats with neg-
ligible variation (less than 0.1% difference), confirming that
the optimization process preserved prediction quality despite
format conversions. The high precision and recall values
indicate effective rock detection with minimal false positives
and false negatives.

Secondly, the computational efficiency of the model formats
was analysed in terms of inference time, throughput, memory
usage, and thermal characteristics during execution. Inference
time was measured using system timers that capture the
complete model execution cycle. The measurement boundaries
were defined from immediately before transferring the prepro-
cessed input image to the model’s execution environment until
the final prediction is available for post-processing. A warm-up
period of 10 inferences was performed before measurements
to ensure a consistent GPU state. All inference times were col-
lected over 100 runs to obtain statistically significant results.
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TABLE XII: Computational performance metrics across
model formats run on CPU and GPU

model mean time std dev P95 time throughput
Keras (CPU) 505.57 ms 20.32 ms 548.89 ms 2.0 fps
Keras (GPU) 150.72 ms 6.03 ms 160.56 ms 6.6 fps
ONNX (CPU) 101.88 ms 19.64 ms 128.66 ms 9.8 fps
ONNX (GPU) 48.56 ms 8.14 ms 62.64 ms 20.6 fps
TensorRT (GPU) 4.49 ms 0.91 ms 6.36 ms 222.5 fps

The results in Table XII demonstrate significant perfor-
mance gains through model optimisations and through running
on GPU. The ONNX model on GPU improved inference time
by 3.1 times compared to the Keras model on GPU, because
of its graph optimisations like operator fusion. TensorRT
provided the most dramatic improvement, reducing inference
time 33.5 times when compared to Keras on GPU and 10.8
times when compared to ONNX on GPU. The improvement
between running the TensorRT model on GPU and the Keras
model on CPU is over two orders of magnitude. The TensorRT
implementation also showed superior stability and consistency
with the lowest standard deviation and P95 time (meaning 95%
of inferences complete within this time). This shows that the
TensorRT model would leave ample resources for other rover
subsystems, making it very suitable for integration with other
processes.

The TensorRT implementation achieved a peak runtime
memory footprint of only 76 MB (meeting the PR-06 re-
quirement of max 100MB), compared to 148 MB for ONNX
and 215 MB for the Keras FP32 model, a 2.8-fold reduction
from Keras to TensorRT. This improvement comes from both
halving precision (FP32 to FP16) and the elimination of
redundant intermediate tensors through operator fusion.

Thermal monitoring showed all implementations maintained
safe temperatures on the Jetson platform. The TensorRT imple-
mentation recorded peak temperatures of 49.2°C in processing
zones and 45.8°C in memory zones, nearly identical to Keras
(49.3°C/45.3°C) and ONNX (49.4°C/45.8°C). These minimal
differences of less than 0.2°C suggest that the brief inference
operations have limited thermal impact on the Nvidia Orin
AGX. Requirement PR-07 is met as the GPU temperature stays
below 50°C.

With TensorRT processing frames in 4.49 ms on average,
the obstacle detection operates well faster than the inference
time requirement of 0.05 seconds (PR-01), consuming minimal
computational resources and allowing other rover systems to
run simultaneously on the same hardware.

B. Real-World Testing on Rover Platform

To verify and validate the system, the obstacle detection
system was evaluated in real-world conditions: running on the
MaRTA rover while encountering varying terrains on the Mars
Yard. The approach is shown in Figure 14, with the activities
explained in the next subsections.

1) Test Setup and Validation Methodology: Since the
MaRTA rover does not yet have autonomous navigation nodes
integrated, motor and joint commands were provided manually
using a gamepad to control the rover’s movement over terrain
and adjust the pan-tilt camera directions. This setup preserved

Fig. 14: Systematic framework used to verify the system
requirements

the complete perception stack intact, enabling end-to-end
testing with the same input and output interfaces that would
be used in autonomous operation, as was shown in the earlier
functional diagram in Figure 15.

The experimental setup consisted of the MaRTA rover
positioned in the Mars Yard facility to have a semi-realistic
Mars setup, partially meeting requirement VR-01, with two
distinct lighting configurations: directional ”sun light” using
a single bright lamp to create shadows at a 15% inclination
as measured from the center of the Mars Yard, and even
”laboratory lighting” using distributed overhead illumination.
Ground truth measurements of rock depths were collected
using a laser rangefinder, measured from the left camera to
the rock’s front surface.

Data collection followed a systematic approach with 82
static images captured across controlled conditions, with
MaRTA following the route outlined Figure 16. The lighting
conditions within the dataset were distributed to be 50% sun
light (sun being a bright lamp as single light source) and
50% laboratory lighting, containing each exact environmental
configuration in both lighting conditions. The terrain type
distribution present in the dataset is as follows: 15% pebbles,
20% flat rocks, 50% regular sandy ground, 15% mixed terrain.
These environments were selected to represent the diverse
conditions the rover might encounter during deployment and
fulfill requirement VR-03.

Rocks were distributed throughout test environments follow-
ing a semi-structured approach, ensuring a representative range
of scenarios relevant to the rover’s operational environment.

1) Each test image contained on average 4 (between 2 and
8) rocks of various sizes, distributed as:

• Small rocks (< 10 cm height): 30% of rocks
• Edge-case rocks (10-12 cm height): 20% of rocks
• Large rocks (> 12 cm height): 50% of rocks

2) Rocks were positioned at distances ranging from 0.5 m
to 8 m from the rover, with higher concentration in the
1-4 m range.

3) Test configurations are:
• Rocks of different colors placed on various back-

ground textures
• Isolated rocks on uniform terrain
• Clustered rocks
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Fig. 15: ROS2 node graph used for this research, with manual rover control provided by gamepad, and showing the same
perception pipeline components.

Fig. 16: Schematic map of the Mars Yard and MaRTA’s
route for data collection outlined in red.

• Rocks in shadow regions and under varying illumi-
nation

To establish consistent ground truth, explicit classification
criteria were defined:

• Rocks with height > 12 cm: Classified as obstacles that
should be detected

• Rocks with height < 12 cm: Classified as traversable
(should not be detected)

The validation methodology systematically evaluated each
component through controlled ground truth collection. Each
processing stage was validated using the following method-
ologies:

1) Detection validation: Expert opinion of the test images
identifying rocks that constitute true obstacles according

to the classification criteria. This provided ground truth
for evaluating object-level detection (whether a rock is
detected at all).

2) Depth validation: Laser rangefinder measurements pro-
vided ground truth. The transformation from depth to
3D coordinates and subsequent mapping to the occu-
pancy grid was performed to demonstrate the complete
pipeline, but not explicitly validated with ground truth
positioning. This was because precise positional ground
truth would require specialized equipment not available
for this study, and would primarily validate the trans-
formation from camera to rover base link frame, which
was outside the scope of this research.

3) System-level validation: end-to-end performance
was evaluated from camera input to mapper output,
measuring the system’s ability to identify and locate
obstacles that should be avoided within safety
constraints. This did not include actual path planning
or avoidance manoeuvres.

This validation approach constitutes a systematic method-
ology to ensure reproducibility through several key character-
istics: explicit test factors (terrain types, lighting conditions,
rock sizes, distance ranges), controlled data captured under
both lighting conditions with laser rangefinder ground truth
and outlined procedures such as the route driven during data
collection.

2) Performance Results and Analysis: Figure 17 shows
examples of the complete processing pipeline, following re-
quirement VR-02, for the same environment under both lab
and sun light conditions. From left to right it shows the input
image, disparity image with segmentation contours, mask with
detected rocks and their depth values and coordinates, and the
final map with rock position and sizes in the rover frame.

Table XIII presents object-level detection rates across rock
categories and lighting conditions, focusing on whether rocks
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Fig. 17: Example results of the image pair of the same environment tested with lab lighting (above) and sun light (below).
For each row, the first image shows the input image. The second image shows the DL-generated rock segment contours

overlayed on the camera disparity image. The third image shows the DL rock segmentation with for each detected rock, the
disparity, depth, and position values. The last image is a visualisation of where the detected rocks are placed in the terrain in

front of the rover.

are detected rather than segmentation quality, as this directly
matters to the rover concept of operations. The detection rate
is averaged over all rocks in all images, and the min-max
single img provides the minimum and maximum detection
percentages within a single image.

TABLE XIII: Segmentation performance by rock
characteristics, both light conditions

Rock size avg detection std dev min-max img
sun light
Too small (<10 cm) 8% ±12.5% 0% - 50%
Edge cases (10-12 cm) 40% ±25% 0% - 100%
Large (>12 cm) 94% ±3.8% 85% - 100%
lab light
Too small (<10 cm) 30% ±18.8% 0% - 75%
Edge cases (10-12 cm) 74% ±12.5% 50% - 100%
Large (>12 cm) 82% ±8.5% 66% - 100%

Large rocks (>12 cm) exhibited high detection reliability in
sun light (94%) with minimal variability (±3.8%), but showed
a 12% performance degradation in laboratory lighting due to
the domain gap. Edge-case rocks (10-12 cm) demonstrate sig-
nificant differences between lighting conditions, with detection
rates increasing from 40% in sun light to 74% in laboratory
conditions. The high variability (±25% in sun light) indicates
detection instability for this size category, which is expected
behavior since these rocks represent edge cases for obstacle
avoidance. Small rocks (<10 cm) appropriately showed low
detection in sun light (8%) but higher false positive rates in
laboratory lighting (30%). This suggests the model perceives
these rocks as larger under even illumination.

Environmental sensitivity is a limitation. The pattern suggest
that the segmentation model relies on shadow cues for large
rock detection, which are more prominent in directional sun
light. Conversely, the even illumination of laboratory lighting
enhances the visibility of smaller rocks, making them look
more like big rocks. While large rocks maintain reasonable
consistency in sun light (±3.8%), their detection stability
decreases in laboratory light conditions (±8.5%). Edge cases
show extreme variability in both lighting conditions, with
standard deviations reaching ±25% in sun light, indicating
inconsistent detection. The high min-max ranges across all
categories show that there is a substantial variance between
the images due to environmental changes such as colors,
light incident angles and textures. Overall, rocks over 12 cm
in height are detected in sun light over 90% of the time,
verifying requirement FR-01 and partially requirement PR-04.
Also, rock detection degrades with less than 15% on average
between different lighting conditions, verifying PR-05.

TABLE XIV: Mapper performance by rock distance, both
light conditions

Real position avg err median err std dev min-max img
sun light
Close (<2 m) 32% 20% ±48.5% 6% - 200%
Medium (2-3.5 m) 41% 38% ±15% 13% - 73%
Far (>3.5 m) 86% 48% ±126.8% 31% - 543%
lab light
Close (<2 m) 18% 16% ±7.5% 4% - 34%
Medium (2-3.5 m) 34% 32% ±9% 15% - 51%
Far (>3.5 m) 82% 41% ±156.3% 35% - 670%
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Depth estimation accuracy was evaluated by comparing the
system’s calculated depths with the laser rangefinder ground
truth measurements, as summarized in Table XIV. Close-
range accuracy shows high variability in sun light (±48.5%)
with errors up to 200%, while laboratory conditions yield
significantly more consistent results (±7.5%). The reason for
this can be seen in Figure 17: in some sun light images, the
disparity values are missing because the camera failed to match
stereo features, especially in shadow regions. Although black
disparity pixels are not used, this still caused less reliable
depth estimation as fewer disparity pixels are available for
calculation, sometimes even none at all. Since outliers affect
the average error significantly, the median error shows that the
impact is less critical than the average suggests.

The erroneous obstacle depth estimation is a limitation of
the system. Far-range measurements (>3.5 m) show high
average error rates with high inconsistency in both light-
ing conditions, with maximum errors exceeding 500%. The
median error shows less serious errors. Laboratory lighting
generally produced more accurate and consistent depth esti-
mates, especially at close and medium ranges, likely due to
more reliable disparity values. Overall, position error increases
dramatically with distance, making far-field measurements
unreliable for efficient rover navigation. Requirement FR-03 is
verified because rocks within 4 meters are generally detected,
although their position errors beyond 3.5m are significant.

The mapping process combines segmentation and depth
estimation, inheriting limitations from both components. These
results show operational constraints for rover deployment:

• Operational range: Given the extremely high position
errors at distances beyond 3.5 m, the effective operational
range must be limited to close and medium distances.

• Safety margins: The detection variability for edge-case
rocks (10-12 cm), combined with high position error
variability, may require increasing safety margins by
classifying edge-case rocks as obstacles.

• Environmental adaptation: The significant performance
differences between lighting conditions demonstrate
that environmental adaptation will be necessary for
deployment in varying illumination scenarios.

3) System-Level Validation: The primary requirements
from the concept of operations were:

1) Safety: avoid collisions with obstacles that could damage
the rover

2) Efficiency: detect obstacles at sufficient range for effi-
cient path planning

For direct rover safety analysis addressing mission objec-
tives MO-01 and MO-02, Table XV presents a cross-validation
of detection and depth estimation performance for safety-
critical scenarios involving large rocks at close range (< 2
m).

For large rocks at close range in sun light, the system
demonstrated robust performance metrics with direct impli-
cations for operational safety:

• 94% detection rate (6% single-frame miss probability)

TABLE XV: Critical safety performance analysis at close
range

Rock Lighting Detection Depth Collision Prob.
type condition rate (%) error (%) (per rock)

Large sun light 94 32 6.0e-8
Large Lab 82 20 1.2e-3

• 32% average depth error, within acceptable limits for
emergency stopping or avoidance when the rock is within
2m

• Temporal processing: 1Hz frame rate, with rocks typi-
cally visible for approximately 20 frames before reaching
collision distance (0.0m)

The frame-to-frame independence is assumed to be 75%,
measured from the rock detection results by the segmentation
model. At a speed of 10 cm/s with processing at 1 Hz, the
subsequent scenes captured by the rover’s camera are similar,
and the segmentation results showed that a false negative rock
detection would persist for on average 75% of the time. This
yields an adjusted miss probability of approximately 7.8 ×
10−7 per rock encounter, using the following formula:

Pmiss = (Psingle frame miss)
nframes·findependence (4)

= (0.06)20·0.25 (5)

≈ 7.8× 10−7 per rock encounter (6)

With an average of 2 significant obstacles per meter, trans-
lating to 720 obstacles per hour at maximum speed (10 cm/s),
the theoretical collision probability is roughly one event every
149 days (≈ 5 months) during continuous operation of 12
hours per day. For typical planetary rover missions like Lunar
Zebro’s 14-day duration [46], this would mean there is a 9.0%
chance that the rover would collide with a rock during its
mission.

However, this analysis assumes frame dependence, to
which it is extremely sensitive, and assumes that 32% depth
errors are manageable for obstacle avoidance, which is
reasonable given the occupancy grid’s safety margins. The
significant environmental sensitivity, particularly to lighting
conditions, suggests that unexpected behavior may arise in
unseen environments.

The complete assessment of requirement compliance and
mission objective achievement is presented in section B,
which traces each requirement to its verification activity and
demonstrates that the developed system successfully achieves
all five core mission objectives while meeting the majority of
requirements.

VII. DISCUSSION AND CONCLUSION

This research addressed the development of a lightweight
deep learning obstacle detection system for planetary rovers,
following a systems engineering approach from requirements
specification to validation. This section discusses key findings,
limitations, and future directions.
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A. Research Questions and Contributions Revisited

The primary question examined how deep learning mod-
els for obstacle detection can be optimised, deployed, and
integrated on planetary rovers to enable low-latency, onboard
inference. The research demonstrated that:

1) A lightweight MobileNetV2-based U-Net with dual at-
tention mechanisms provides a balance between accu-
racy and parameter efficiency. Deployment in TensorRT
format facilitates low-latency inference at 4.49 ms.

2) The ROS2-based modular integration approach facili-
tated interfacing between the subsystems from camera
input to obstacle mapping. The TensorRT model was
optimised to run on the NVIDIA Jetson AGX Orin.

3) The integrated system validated on the MaRTA rover in
the ESA Mars Yard demonstrated a 94% detection rate
for large obstacles at close range under sunlight condi-
tions, translating to a theoretical collision probability of
approximately 7.8 × 10-7 per rock encounter.

The research contributed the following innovations to the
field of autonomous planetary DL obstacle detection:

• Dataset Creation: The semi-automated annotation
methodology combining CLIPSeg and SAM models
significantly reduced manual effort while maintaining
high annotation quality. This approach enabled the
creation of the mission-specific MarsTanYard dataset,
facilitating domain adaptation.

• Lightweight Architecture: The optimised model with
0.31 × 106 parameters achieved a 77.0% IoU a 85.8%
Dice score).

• Deployment Optimization: The comprehensive optimiza-
tion pipeline reduced not only inference time but also
memory footprint (2.8× reduction), demonstrating a
practical approach for edge deployment on resource-
constrained hardware.

• Validation Methodology: A systematic testing framework
was developed that evaluated performance across
diverse terrain types, lighting conditions, and obstacle
configurations. This methodology established quantifiable
metrics for both segmentation quality, rock detection,
and obstacle mapping, providing an evidence-based
approach to validate the mission objectives and verify
the system requirements.

B. Future Research Directions

Limitations of the current system and subsystems were
identified and mentioned throughout this research. Proposed
directions for future research are:

• Multi-Modal Sensing: Integration of thermal imaging or
LiDAR could enhance detection robustness in challenging
lighting conditions, providing complementary informa-
tion where visual features are difficult to distinguish.

• Advanced Architectures: Exploration of newer backbone
architectures like MobileNetV3 and different decoders
could further improve the efficiency-performance trade-
off.

• Space-Grade Hardware Deployment: Testing on
radiation-tolerant hardware (e.g., Intel Myriad X VPU
or radiation-hardened FPGAs) would provide critical
insights into deployment feasibility for actual planetary
missions.

• Uncertainty Estimation: Incorporating uncertainty quan-
tification for hazards would enable more informed
decision-making for path planning, allowing conservative
approaches when confidence is low in the obstacle detec-
tion.

• Multi-Class Terrain Segmentation: Future research should
expand beyond binary rock detection to include more
classes that could pose risks for the rover’s safety or mis-
sion efficiency. This would provide a better environmental
understanding for autonomous planning.

• Instance-Level Rock Detection: Transitioning from se-
mantic to instance segmentation would enable the detec-
tion of individual rocks and a more accurate occupancy
grid representation. This approach would better handle
rock clusters and occlusions, improving path planning
efficiency.

• Interpretable Decision-Making: The current system
makes black-box decisions about which rocks constitute
obstacles based on learned features, without explicit size
analysis. An alternative approach would be to detect all
rocks first and then apply explicit size-based filtering,
which would make the decision-making more transparent
and controllable.

C. Concluding Remarks

This research has shown that deep learning-based obstacle
detection can work effectively on a resource-limited planetary
test rover. The system meets the main safety requirements
with measurable performance results, achieving processing
speeds well above what is needed. The obstacle detection rates
and mapping precision ensure safe rover operation, but limit
efficient path planning due to high mapping errors at rock
distances beyond 3.5 m.

As planetary exploration continues to advance, the ap-
proaches developed here (model optimization, system inte-
gration, and testing methods) provide a basis for improved
rover autonomy. Future work on combining multiple sen-
sors, implementing on space-qualified hardware, and handling
uncertainty will be essential for bringing these methods to
real planetary missions. This will ultimately enable faster and
better scientific outcomes through more efficient navigation
and less dependence on Earth-based mission control.
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APPENDIX A
MISSION OBJECTIVES AND SYSTEM REQUIREMENTS TABLES

This appendix outlines the mission objectives and key requirements for the deep learning-based obstacle avoidance system for
planetary rovers, categorized in functional requirements, performance requirements, design requiremetns, interface requirements
and validation requirements. While many additional requirements would be necessary for an actual mission, these represent
the core requirements that guided the research and were directly addressed in this thesis. Each requirement contains a priority
level and a verification method following ECSS standards (T-test, A-analysis, I-inspection, or R-review) [44].

ID Mission Objective Verification Criticality Rationale

MO-01 The system shall enable autonomous obstacle detection
for rover navigation by identifying rocks that should be
avoided on the planned path.

R Critical Core mission objective ensuring
safe rover navigation through ob-
stacle detection.

MO-02 The system shall prevent rover damage from collisions
with non-traversable obstacles through a rock detection
of 90% in each analysed frame.

R Critical Prevents mission failure by protect-
ing rover hardware from collision
damage.

MO-03 The system shall employ deep learning techniques for
rock segmentation, achieving a minimum intersection
over union of 0.70.

R Critical Justifies the research approach and
addresses limitations of current ge-
ometric detection methods.

MO-04 The system shall operate within the computational
constraints of lightweight planetary rovers.

R Critical Ensures practical deployment feasi-
bility on resource-constrained rover
platforms.

MO-05 The system shall demonstrate end-to-end integration
and validation on a rover platform in Mars-analogue
conditions.

R Critical Validates real-world applicability
beyond simulation-only testing.

TABLE XVI: Mission Objectives for the Deep Learning Obstacle Detection System

ID Requirement Verification Criticality Rationale (Traceability)

Functional Requirements

FR-01 The system shall detect and segment rocks larger than
12 cm in height per frame as obstacles to avoid.

T Critical Rocks of this size cannot be safely
traversed by the target rover plat-
form (MO-01, MO-02).

FR-02 The system shall process stereo camera images to
generate pixel-wise rock segmentation masks.

T Critical Core deep learning functionality for
obstacle identification (MO-03).

FR-03 The system shall detect obstacles within a forward
range of 4 meters and 60° horizontal field of view.

T High Provides validated operational
range for safe navigation and path
planning (MO-01, MO-02).

FR-04 The system shall segment 2 categories: ’rocks-to-avoid’
and ’other’.

T Medium Binary classification capturing the
essential information to avoid rocks
(MO-03).

FR-05 The system shall generate a local occupancy grid with
spatial resolution of 5 cm within the detection range.

T High Provides sufficient spatial detail for
path planning while being compu-
tationally efficient (MO-01).

FR-06 The system shall maintain an internal map of detected
obstacles within the required view ahead.

T Medium Allows for planning with recently
detected obstacles that may have
been missed in the new segmenta-
tion mask (MO-01).

FR-07 The system shall include procedures for converting
trained models to formats compatible with rover hard-
ware.

T, I High Ensures trained models can be ef-
fectively deployed on the target
rover hardware (MO-04).

Performance Requirements

PR-01 The system shall achieve maximum inference time of
0.05 seconds per image frame on target hardware.

T Critical Ensures real-time operation capa-
bility for responsive obstacle detec-
tion (MO-04).

PR-02 The system shall capture and process images at a
minimum rate of 1 Hz.

T Critical Minimum processing frequency to
ensure safe rock detection at the
rover’s operational speed (MO-01,
MO-02).

PR-03 The system shall achieve an Intersection over Union
(IoU) score of at least 0.70 and a Dice coefficient of at
least 0.80 for rock segmentation.

T Critical Quantitative accuracy thresholds
demonstrating superior
performance (MO-03).
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PR-04 The system shall maintain detection rate above 90%
for rocks larger than 12 cm at distances up to 4 meters
under sunlight conditions.

T Critical Operational safety requirement en-
suring reliable obstacle detection
within validated range (MO-01,
MO-02).

PR-05 The system shall maintain rock detection performance
with maximum 15% degradation across varying light-
ing conditions.

T High Robustness requirement for real-
world deployment in varying envi-
ronmental conditions (MO-05).

PR-06 The deep learning model shall achieve maximum mem-
ory footprint of 100 MB during inference operations.

T High Ensures compatibility with limited
memory resources on rover plat-
forms (MO-04).

PR-07 The system shall maintain thermal stability with peak
GPU temperatures below 50°C during continuous op-
eration.

T Medium Validates thermal management
compatibility for extended rover
operations (MO-05).

Design Requirements

DR-01 The compressed model shall not exceed 5 MB disk
storage for deployment compatibility.

I High Ensures compatibility with limited
onboard storage resources (MO-
04).

DR-02 The system shall employ containerized deployment
using Docker for reproducible integration.

I Medium Facilitates reliable deployment and
integration across different plat-
forms (MO-05).

Interface Requirements

IR-01 The system shall integrate with the ROS2 navigation
stack using standardised topic messages for data trans-
fer.

T, I High Ensures compatibility with stan-
dard robotics navigation middle-
ware (MO-05).

IR-02 The system shall accept rectified RGB images from the
camera as input at resolution not bigger than 1920 x
1080 and output pixel-wise classification maps at 256
x 256 resolution.

T Medium Defines input/output interface spec-
ifications for integration (MO-03).

IR-03 The system shall employ a modular design architecture
that allows component reuse and adaptation across
different rover platforms.

R, I Medium Enables reuse and adaptation for
different platforms with minimal
modification (MO-05).

IR-04 The system shall integrate with existing rover hardware
without requiring additional sensors or computers.

I High Ensures deployability on existing
platforms without hardware modi-
fications (MO-04, MO-05).

Validation Requirements

VR-01 The system shall be validated using realistic Mars
images.

T Critical Ensures performance validation in
representative deployment condi-
tions (MO-05).

VR-02 The system shall demonstrate end-to-end operation
from camera input to occupancy grid output on rover
platform.

T Critical Validates complete system integra-
tion rather than component-only
testing (MO-05).

VR-03 The system shall be tested across diverse terrain types
including rocky, sandy, and mixed surface conditions.

T High Ensures robustness across expected
operational environments (MO-05).

TABLE XVII: System requirements for the deep learning obstacle detection system
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APPENDIX B
MISSION OBJECTIVE VALIDATION AND REQUIREMENT VERIFICATION

This section provides a systematic validation of mission objectives and verification of the system requirements defined in section A, against
the experimental results and system performance demonstrated throughout this research. The process follows the V-model development
framework presented in Figure 3.

First, the high-level mission objectives are validated to demonstrate achievement of the research goals; second, the detailed system
requirements are verified to ensure technical compliance and traceability from objectives to implementation. The verification status is
categorized as follows: PASS indicates the requirement has been fully met with supporting evidence; PARTIAL indicates the requirement
has been partially satisfied but with identified limitations or gaps; and FAIL would indicate non-compliance (no requirements fell into this
category). Each verification entry includes evidence and references to the relevant sections, tables, or figures where detailed results can be
found.

ID Mission Objective Validation Evidence Status Reference

MO-01 The system shall enable autonomous obstacle
detection for rover navigation by identifying rocks
that should be avoided on the planned path.

System successfully detects and maps
rocks >12cm with 94% reliability, gen-
erates occupancy grids for navigation

PASS Table XIII,
section V

MO-02 The system shall prevent rover damage from
collisions with non-traversable obstacles while
driving.

Achieved a rock miss probability low
enough to continue operations for mul-
tiple years, depending on environment
characteristics

PASS section VI

MO-03 The system shall employ deep learning techniques
for rock segmentation, achieving a minimum in-
tersection over union of 0.70.

Deep learning model achieved 0.770
IoU and 0.858 Dice coefficient, exceed-
ing minimum threshold

PASS Table IX

MO-04 The system shall operate within the computational
constraints of lightweight planetary rovers.

Model uses only 0.31M parameters
(1.2MB), 4.49ms inference time, 76MB
memory footprint

PASS Table XII,
section VI

MO-05 The system shall demonstrate end-to-end integra-
tion and validation on a rover platform in Mars-
analogue conditions.

Complete system tested on MaRTA
rover in ESA Mars Yard with varying
terrains and lighting conditions

PASS section VI

TABLE XVIII: Mission objectives validation results showing achievement of high-level research goals

ID Requirement Verification Evidence Status Reference

Functional Requirements

FR-01 The system shall detect and segment rocks larger
than 12 cm in height per frame as obstacles to
avoid.

94% detection rate for rocks >12cm
under sunlight conditions

PASS Table XIII

FR-02 The system shall process stereo camera images to
generate pixel-wise rock segmentation masks.

Binary segmentation masks success-
fully generated with 77.0% IoU

PASS Table IX,
Figure 12

FR-03 The system shall detect obstacles within a forward
range of 4 meters and 60° horizontal field of view.

Effective range validated to 4m, but
beyond 3.5m: 86% position error

PARTIAL Table XIV

FR-04 The system shall segment 2 categories: ’rocks-to-
avoid’ and ’other’.

Binary classification model imple-
mented and tested

PASS Figure 11

FR-05 The system shall generate a local occupancy
grid with spatial resolution of 5 cm within the
detection range.

5cm resolution occupancy grid imple-
mented

PASS section V

FR-06 The system shall maintain an internal map of
detected obstacles within the required view ahead.

Persistence mechanism with 3-cycle
threshold implemented but not validated

PARTIAL section V

FR-07 The system shall include procedures for convert-
ing trained models to formats compatible with
rover hardware.

Keras→ONNX→TensorRT pipeline
verified with performance testing

PASS Table XI,
Table XII

Performance Requirements

PR-01 The system shall achieve maximum inference
time of 0.05 seconds per image frame on target
hardware.

4.49ms average inference time achieved
with TensorRT

PASS Table XII

PR-02 The system shall capture and process images at a
minimum rate of 1 Hz.

Camera captures at 1Hz and system
demonstrates 222.5 fps process capabil-
ity (far exceeds requirement)

PASS Table XII

PR-03 The system shall achieve an Intersection over
Union (IoU) score of at least 0.70 and a Dice
coefficient of at least 0.80 for rock segmentation.

IoU: 0.770, Dice: 0.858 achieved on
validation set

PASS Table IX

PR-04 The system shall maintain detection rate above
90% for rocks larger than 12 cm at distances up
to 4 meters under sunlight conditions.

94% detection rate achieved for large
rocks under sunlight, but fails in lab
lighting (82%)

PARTIAL Table XIII
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PR-05 The system shall maintain rock detection perfor-
mance with maximum 15% degradation across
varying lighting conditions.

Laboratory vs sunlight: 82% vs 94%
detection (12% degradation)

PASS Table XIII

PR-06 The system shall achieve maximum memory foot-
print of 100 MB during inference operations.

76MB peak memory usage with Ten-
sorRT FP16 optimization

PASS section VI

PR-07 The system shall maintain thermal stability with
peak GPU temperatures below 50°C during con-
tinuous operation.

Peak temperature: 49.2°C during con-
tinuous operation

PASS section VI

Design Requirements

DR-01 The compressed model shall not exceed 5 MB
disk storage for deployment compatibility.

1.2MB TensorRT model size PASS section V

DR-02 The system shall employ containerized deploy-
ment using Docker for reproducible integration.

Docker container with L4T, ROS2, and
MARTA stack implemented

PASS section V

Interface Requirements

IR-01 The system shall integrate with the ROS2 naviga-
tion stack using standardised topic messages for
data transfer.

Standard occupancy grid messages im-
plemented

PASS section V

IR-02 The system shall accept rectified RGB images
from the camera as input at resolution not bigger
than 1920 x 1080 and output pixel-wise classifi-
cation maps at 256 x 256 resolution.

Input preprocessing and 256x256 out-
put resolution verified

PASS section IV

IR-03 The system shall employ a modular design archi-
tecture that allows component reuse and adapta-
tion across different rover platforms.

ROS2 node-based architecture enables
cross-platform deployment

PASS Figure 7

IR-04 The system shall integrate with existing rover
hardware without requiring additional sensors or
computers.

Successfully deployed on existing
MaRTA Jetson AGX Orin platform
using the Bumblebee camera

PASS section V

Validation Requirements

VR-01 The system shall be validated using realistic
Mars-like images.

MarsTanYard dataset created in ESA
Mars Yard, but limited to analogue en-
vironment

PARTIAL section V,
section VI

VR-02 The system shall demonstrate end-to-end opera-
tion from camera input to occupancy grid output
on rover platform.

Complete pipeline from camera to oc-
cupancy grid tested

PASS section VI

VR-03 The system shall be tested across diverse terrain
types including rocky, sandy, and mixed surface
conditions.

Rocky, sandy, pebbles, and mixed ter-
rain tested in controlled lab environ-
ment.

PASS section VI

TABLE XIX: Requirements verification results showing evidence and status for each system requirement
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