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ABSTRACT

The pervasiveness of the Internet and smartphones enables individuals to participate in online social net-
works such Twitter and Facebook, besides the classic physical contact network. Such multi-layer network
allows for feedback between networks / layers. For instance, the spread of a biological disease such as Ebola
in a physical contact network may trigger the spreading of the information related to this disease in online
social networks. The information propagated online may increase the alertness of some individuals resulting
in avoidance of the physical contact with infected members in the physical contact network, which possibly
protects the population from the infection [1, 2].

In this thesis, we propose two models for studying not only epidemic spreading and information propaga-
tion, but also the interactions between the epidemic and information. We explore two key factors that may
influence the performance of such epidemic mitigation via awareness propagation: (i) the time scale of the
epidemic information propagation in online social networks relative to that of the epidemic spreading in the
physical contact network, or equivalently, the information update frequency in the social network, and (ii)
the structure of the multi-layer networks. Contrary to our intuition, we find that very frequent information
updates in an online social network sometimes reduce the mitigation effect when using awareness infor-
mation. Such mitigation tends to perform better when the physical contact network and the online social
network overlap more. We explain these findings analytically, with the help of our original Individual-Based
Mean Field Approximation IBMFA. Moreover, we derive the analytical approach Microscopic Markov Chain
Approach MMCA [1, 2] according to our models. We show that IBMFA is a better approximation than the
MMCA in some scenarios, especially around the epidemic threshold. Our results indicate that the optimum
effect of epidemic mitigation does not require very frequent information updates in an online social network
which dilute the alertness information and therefore reduce the effect of mitigation, whereas encouraging
individuals to keep in touch with their physical contacts as well online is beneficial for the mitigation.

Key words: Epidemic mitigation, Awareness propagation, Interactions, Multi-layer networks,
Time scale, Overlap, Individual-Based Mean-Field Approximation (IBMFA),
Microscopic Markov Chain Approach (MMCA)
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1
INTRODUCTION

1.1. MOTIVATION

Epidemic spreading in complex networks has been extensively studied in recent years. While a large number
of researches aimed at epidemic processes on a single network, in reality, networks are interdependent on
each other [3–11]. Function and behavior of nodes not only depend on the network they locate in, but also
rely on other networks. For example, computer networks rely on power networks for electricity supply, while
power stations are controlled by computer networks [3]. When nodes of all the networks that depend on
each other represent the same set of entities, such an interdependent network is also called a multi-layer
network, representing different types of relations among the same set of nodes [12–14]. An example of multi-
layer network is that individuals could participate in a physical contact network with friends, families and
coworkers, while they may also join an online social network such as Facebook or Twitter [15]. The multi-
layer network allows interactions or feedbacks between the processes in different network layers. Study of
multi-layer networks could provide us a strong tool to characterize processes and properties in real world.

Besides epidemic spreading, information diffusion is also an important dynamic process in complex net-
works [16–20]. The outbreak of a disease in a population would also lead to the spread of information about
this disease. Information could get individuals aware of the disease, which allows people to take protective ac-
tions against the disease, e.g. wearing face masks and decreasing physical contact with others [21]. Therefore,
the awareness about epidemics propagated in the online social network could possibly mitigate epidemics
spreading in the physical contact network. An example is the severe acute respiratory syndrome (SARS) that
widely spread in China in 2003, where people’s behavior responded to received information contributed to
the control of the SARS[20, 22]. The possible mitigation effect the awareness could have on the outbreak of
epidemics was recently noticed by Granell et al. in 2013 [2].

In the interesting novel discovery which is of great practical significance, one key question is how to achieve
the optimum mitigation performance by using the awareness information. We find out two essential factors
that could affect the epidemics spreading when using awareness information propagated in an online social
network in this thesis. One is the relative time scale of awareness propagation, or equivalently, the relative
frequency of information updates in online social networks compared to the time scale of epidemic spreading
in the physical contact network. If a person checks his social network account more frequently, he could
likely share the awareness information more timely, possibly influencing the epidemic spreading. Besides
the time scale of awareness information propagation relative to that of the epidemic spreading, the multi-
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2 1. INTRODUCTION

layer network structure affects the spread of an epidemic as well.

Our thesis aims to understand the effect of the relative time scale of the awareness propagation, as well as
the structure of multi-layer networks, on preventing the spread of epidemics. We consider two-layer net-
works, which are consisted of a virtual social network (e.g. Facebook or Twitter) in which the awareness of an
epidemic propagates, and a physical contact network in which the epidemic spreads. We propose two mod-
els that describe two scenarios of the interaction between epidemic spreading and awareness propagation.
These two models allow us to unveil the role of the relative time scale of the awareness propagation and the
multi-layer network topology in epidemic spreading. We carry out both simulations and theoretical analysis
to answer crucial questions such as: Is fast information propagation always beneficial for the mitigation of
an epidemic? Which multi-layer topology best facilitates the epidemic mitigation?

1.2. RELATED RESEARCHES

Graph theory, which was born in 1736, has been used to simplify real-world complex systems into a network
or graph that describes the relations or interactions between entities. Entities are mapped as nodes in a
network, and relations between entities are shown by links in the network.

The Susceptible-Infected-Susceptible (SIS) model [23–26] is one of the simplest and widely used epidemic
spreading model. In the SIS model, each node in the network has only two possible states: either healthy but
susceptible, or infected by the disease. Susceptible nodes does not have the disease, but they could catch the
disease from its infected neighbors. Infected nodes are disease disseminators because of the infectivity of the
disease, meanwhile they coud recover from the disease and become healthy but susceptible. The infection
process only happens from an infected node to a susceptible node, where the time for the susceptible node
to infect is determined by an infection rate β. A large infection rate β leads to a short time to infect. Similarly,
the time for an infected node to recover from the disease is determined by a recovery rate δ. Another popular
model for diseases spreading is the Susceptible-Infected-Recovered (SIR) model[27, 28]. In the SIR model,
besides the healthy but susceptible state and the infected state, there is a recovered state. A node reaches the
recovered state instead of the susceptible state after it is recovered from the infected state, and it could not
get infected again by the same epidemic.

In epidemiology, we are interested in exploring the fraction of individuals that get infected by an epidemic in
the network. In a single network, the fraction of infected individuals (which we denote as ρ) highly depends
on the network topology[24]. In a complete graph where each node is connected to all the other nodes in
the graph, an epidemic could spread out easily due to the large number of links for epidemic spreading.
However, a very sparse network leads to the difficult epidemic spreading. Researches showed that the degree
distribution of a network significantly influences epidemic spreading[28] where the degree of a node is the
number of neighbors it has. A network with a broad degree distribution, such as scale-free networks where
most of nodes have a small degree while few "hub" nodes possess a large degree, requires a smaller infection
rate for an epidemic to outbreak in the network [29]. The smallest effective infection rate τ = β/δ for an
epidemic to outbreak in a network is also called as "epidemic threshold", below which the epidemic would
die out exponentially fast in the network[28, 30–33]. A classic mathematical analysis, N-Intertwined Mean-
Field Approximation (NIMFA) was proposed by Van Mieghem et al. [23, 24] for theoretically studying the
transition between the infected state and the susceptible state, and calculating the fraction of infection as
well as the epidemic threshold in a single network. Since an exact mathematical solution for the fraction of
infection and the epidemic threshold in any network has not been found yet, the NIMFA is currently the most
accurate approximation for a single network.

The two-layer network with an online social network where the awareness about an epidemic propagates,
and a physical contact network where the epidemic itself spreads, was noticed [2]. When a node gets in-
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fected by the epidemic, it immediately gets aware of the epidemic. We define this mechanism as "injection
of information" from the physical network to the social network. Awareness gives a node protection from
the epidemic. Information injection and the protection from awareness shows the interaction between two
network layers. The fraction of infection in this two-layer network indicates the fraction of infected nodes in
the physical network, while the fraction of awareness is the fraction of aware nodes in the online social net-
work. The mitigation possibility via awareness propagation was firstly studied by Granell et al. They proposed
microscopic Markov chain approach (MMCA) as an mathematical approximation to calculate the fraction of
infection and the epidemic threshold in two-layer networks [2]. They showed that the rate of information
dissemination has to be large enough to influence the epidemic propagation processes. The impact of the
mass media on the epidemic propagation, and the minimum information spreading rate where the onset of
an epidemic starts depending on the awareness propagation, were also studied in [1] under a special two-
layer network where the physical contact layer is a scale-free network, and the information layer is the same
scale-free network with some extra randomly connected links.

A similar two-layer network, where injection of information happens with a probability, was studied in [20]
with the H7N9 outbreak data. Discussions about H7N9 in Weibo (an online social network that is similar to
Twitter) was regarded as the awareness in the online social network. They found that because of the fast loss
of alertness about H7N9 after the epidemic was under controlled, the H7N9 virus had a second outbreak.
The influence of degree correlation between the physical contact network and the online social network was
explored in [16] with the SIR (Susceptible-Infected-Recovered) model. A special case of two-layer interacting
network, where aware individuals are temporary immunized of the epidemic, was investigated in [34].

On top of these existing researches, this thesis concentrates on the two-layer network with a social network
layer and a physical network layer that interacts with each other. We propose two models to approximate
the real-life interaction between epidemic spreading and information propagation. In one model the imme-
diately information injection is considered in accordance with [2], while in the other model we propose an
"delayed information injection" mechanism. Our aim is to achieve the optimum epidemic mitigation effect
by using awareness propagated in the social network. We find that the fast time scale of information prop-
agation, which has not been studied in two-layer networks, could sometimes be harmful for the epidemic
mitigation. We also investigate the robust network structure against viruses, which could provide us a guid-
ance in the network design. For both models, we not only develop Monte Carol simulations, but also develop
our original mathematical analysis method, Individual-Based Mean-Field Approximation (IBMFA), as well as
the MMCA to discover the average fraction of infected nodes in relation to the time scale and the two-layered
network topology.

1.3. THESIS OUTLINE

Chapter 1 addresses real-life problems that motivate us to study how the time scale in the social network and
the two-layered network topology influence epidemic spreading in two-layer interacting networks, as well as
state-of-the-art researches in the complex network field.

Basic concepts such as network properties, network models, and multi-layer networks are introduced in
Chapter 2.

Chapter 3 introduces the classic epidemics spreading model on a single network, the SIS model. The basis of
our mathematical analysis method, the mean-field approximation which has been extensively used to sim-
plify theoretical analysis of epidemics spreading in single networks, is presented. The N-Intertwined Mean-
Field Approximation that could be applied to calculate the fraction of infection and the epidemic threshold
in a single network is discusses.
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The first two-layer network process model we propose is explained in Chapter 4. In this model, when an
individual is infected by an epidemic, he or she immediately gets aware of the epidemic. Aware individu-
als are less likely to get infected by the epidemic. Our aim is to explore the epidemic spreading, specifically,
the average fraction of infection in the meta-stable state in the physical network layer under different time
scales in the social network and different two-layer network structures. Since epidemic mitigation aims at
a low fraction of infected individuals, we would like to find out a scheme that leads to the lowest fraction of
infected individuals. We tackle the problem by three methods: (i) We develop Monte-Carol simulations to
simulate dynamic stochastic processes of information and epidemic propagation in two-layer networks. (ii)
We develop our original theoretical analysis method: Individual-Based Mean Field Approximation (IBMFA)
for analyzing the fraction of infected individuals and the fraction of aware individuals in two-layer networks.
(iii) According to Microscopic Markov Chain Approach (MMCA) which was proposed by Granell et al., we
develop MMCA equations according to our model as a second theoretical analysis method for the awareness
propagation and epidemics spreading. We demonstrate that our original IBMFA is a more accurate approxi-
mation compared to the MMCA, especially at small epidemic spreading rates where the epidemic only infects
a small fraction of people. We find that awareness propagation indeed reduces the fraction of infection. But
surprisingly, very frequent update of information in the online social network is unfavorable for the epidemic
mitigation effect. In addition, a large extent of overlap between the two network layers tends to facilitate the
mitigation.

Chapter 5 present the second two-layer network process model where an infected individual does not get
aware immediately in the social network but with a certain rate depending on the time scale of the social
network, i.e. the frequency of information update in the social network. If people are not enthusiastic about
online social networks, they tend not to immediately start propagating awareness in social networks about
the epidemic once they get infected. We would like to find an optimum time scale in the social network
and an optimum two-layer network topology for epidemic mitigation under this circumstance. We solve this
problem by developing Monte-Carol simulations as well as IBMFA and MMCA approximations. We find that
by controlling the frequency of information updates in the online social network to a certain extent, the best
mitigation effect could be achieved. Meanwhile, a large extent of overlap between two network layers is still
beneficial for restricting the spread of the epidemic.

Chapter 6 summarizes our conclusions and possible future work.



2
BASIC CONCEPTS AND METHODS

In this chapter, we review some basic concepts and methods related to network properties and network mod-
els. Based on network models for a single network, we propose a method to construct two-layer networks,
where both layers follow a same network model, with a controllable overlap extent between two layers.

2.1. NETWORK PROPERTIES

A graph G = (N,L), where N stands for the number of nodes, and L represents the number of links in this graph,
specifies how nodes in a network are interconnected or related to other nodes by links. Each node indicates
an individual in the network, and each link connects two nodes to represent a particular relationship between
these two nodes. A network is as usual distinguished from other networks by its network properties. In order
to understand characterizations of different graphs, we would like to firstly introduce fundamental properties
in a graph G = (N,L).

2.1.1. RELATIONS BETWEEN NODES

Given the number of nodes N in a network, the adjacency matrix A is a N ∗N binary matrix that indicates all
links in this network. For example, the structure of an adjacency matrix for a network with six nodes is:

A =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

 (2.1)

Element ai j represents the existence of a link between node i and node j. ai j = 1 if a link exists between node
i and node j, otherwise ai j = 0. In this thesis, ai i in adjacency matrices is always 0 because we don’t consider
self-links. If a network is undirected, the adjacency matrix is symmetric, i.e. ai j = a j i .

5
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2.1.2. DEGREE

The degree di shows the number of neighbors node i possesses. Given the adjacency matrix A of a network,
we could calculate the degree of node i in this network by

di =
N∑

k=1
ai k (2.2)

The average degree E [D] shows the density of links in a network. In a graph G = (N,L), the average degree is
calculated from

E [D] = 2∗L

N
(2.3)

In addition, the degree distribution Pr [D = k] provides information about the fraction of nodes with degree
k in a network. We could derive the average degree of a network from the degree distribution by

E [D] =
Kmax∑

k=Kmi n

kPr [D = k] (2.4)

2.2. NETWORK MODELS

In order to study single layer networks, a number of random graph models have been proposed to model
the complex real-world networks with particular properties. We would briefly introduce two representative
random graph models, Erdős-Rényi random networks, and scale-free networks.

(a) Erdős-Rényi random network (b) scale-free network

Figure 2.1: An example of (a) an Erdős-Rényi random network, and (b) a scale-free network [35].

2.2.1. ERDŐS-RÉNYI RANDOM NETWORK

The Erdős-Rényi (ER) random network is one of the most studied random network models that allows many
problems analytically traceable [36, 37]. Assume an Erdős-Rényi random network is composed of N nodes
and L links, which we denote as G(N,L). The characteristic of Erdős-Rényi random networks is that all links
are placed uniformly at random. The probability that any two nodes in the network are connected is p. On
average there are E [L] = N (N−1)

2 p links connected in an Erdős-Rényi random network G(N,L), while at most
N (N−1)

2 links could exist in a network with N nodes. The degree distribution in Erdős-Rényi random networks
follows a binomial distribution,

Pr [D = k] = (N−1
k

)
pk (

1−p
)N−1−k (2.5)
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When the number of nodes N is large, the degree distribution of Erdős-Rényi random networks approaches a
Poisson distribution,

Pr [D = k] = (pN )k

k !
e−N p (2.6)

Erdős-Rényi random networks have the advantage of easy construction and analysis without losing general-
ity.

2.2.2. SCALE-FREE NETWORK

We introduce in this section scale-free networks whose power-law degree distribution Pr [D = k] ∼ k−λ has
been observed in many real-world networks [38–41]. A positive number λ means that the degree distribu-
tion in scale-free networks has a heavy tail. Most of nodes in a scale-free network have a small degree, while
a small portion of nodes possess many more connections than other nodes. These high-degree nodes are
called "hubs" in networks. In real life, Internet has been observed to possess a power-law degree distribu-
tion. Most of websites have few number of links that point at them, while a small fraction of websites are so
popular that many links point at them [41]. Social networks like facebook and twitter also follow power-law
degree distributions, where most people have a small number of friends in online social networks, while a
few popular stars have a dominantly large number of followers.

With a determined exponent λ, the power-law degree distribution in a scale-free network could be expressed
as

Pr [D = k] = ck−λ,D ∈ [Kmi n ,Kmax ] (2.7)

Given the minimal degree Kmi n and the maximum degree Kmax in a scale-free network, and the normaliza-
tion condition for the degree distribution of a network(

Kmax∑
k=Kmi n

Pr [D = k]

)
= 1 (2.8)

We could calculate the parameter c in Equ.2.7 by

c = 1(∑Kmax
k=Kmi n

k−λ
) (2.9)

To generate a scale-free network, we could use the configuration model. The configuration model is a model
to generate a random graph with a given degree sequence. Steps of implementing the configuration model to
generate a scale-free network are as followed:

1. Calculate the cumulative distribution function (cdf) F (x) = Pr [D ≤ x] =
(∑x

k=Kmi n
Pr [D = k]

)
according

to the power-law degree distribution.

2. Generate the degree sequence for N nodes according to the cumulative distribution function. For each
node, we generate a uniformly distributed random number nr ad in the range nr ad ∈ [0,1). The degree
k of a node is determined by

k =
{

Kmi n , 0 ≤ nr ad < F (Kmi n)

x, x > Kmi n ∩ F (x −1) ≤ nr ad < F (x)
(2.10)

3. Assign each node as many "stubs" as its degree.

4. Each time we randomly choose two spare stubs from two different nodes which are not already con-
nected, and connect these two spare stubs with a link. We continue connecting spare stubs by links
until all stubs are connected. Then the scale-free network is constructed.
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2.3. MULTI-LAYER NETWORKS

Multi-layer networks, also called as multiplex networks, are composite of several interdependent network
layers. The same set of nodes with different types of relations between nodes exist in different network layers
[12–14]. In other words, links in one layer might be different from other layers. In this thesis, we consider two-
layer networks that are consist of a bottom network layer of physical contact where an epidemic spreads, and
a top network layer of an online social network like Facebook or Twitter where information (or awareness)
propagates. Intuitively, an individual could have some friends that they meet face to face everyday, such as
classmates, coworkers and families, while he or she could also possesses an social account in Facebook. When
an individual meets face to face with a friend, there is a chance that an infectious virus spreads from one to the
other. In the meantime, interesting news are shared between friends in Facebook. Epidemic spreading and
information propagation interacts with each other. For example, an epidemic outbreak could stimulate the
propagation of awareness about this epidemic, while the awareness urges people to take precautions against
the epidemic.

The two network layers (or component networks) are assumed to have the same degree distribution in this
thesis, but the overlap extent between two network layers can be tuned. Two layers in a two-layer network
could be both Erdős-Rényi random networks (ER-ER), or both scale-free networks (SF-SF).

We propose here the method we use to generate a two-layer network with a certain overlap extent φ. We
define the overlap extent φ between layers in a two-layer network as the fraction of links that exist in both
layers. φ= 1 indicates that friends of an individual on Facebook are completely the same as his or her friends
in real life. On the other hand,φ= 0 means that people do not socialize with their real life friends on Facebook.

In order to further understand how the overlap extent φ between the two layers of a two-layer network affects
the epidemic spreading, we control the overlap extent when generating two-layer networks. Controlling the
overlap extent φ in a two layer Erdős-Rényi random network ER-ER is feasible. To generate a two-layer ER-ER
network G = (N,L) with a fraction φ of overlapped links, we firstly generate φ∗L random links that exist on
both network layers, then randomly generate the rest of

(
1−φ)∗L links in the two layers separately under the

constraint that links exist in one layer do not show up in the other layer.

Controlling the overlap extent φ in two-layer scale-free networks SF-SF is more difficult than in two-layer
Erdős-Rényi random networks ER-ER. A two-layer scale-free network SF-SF with an overlap φ = 1 can be
constructed by generating a single scale-free network with the configuration model as one layer in the two-
layer network, and copying all links to the other layer. Moreover, a SF-SF network with an overlap φ = 0 can
be obtained by generating degree sequences for the two network layers independently, and constructing the
two layers independently with the configuration model according to their particular degree sequences. In
our setting, parameters λ= 2.5 and N = 1000 in a single scale-free network bring about 2000 links, while the
maximal possible number of links in a network with N = 1000 nodes is around 500000. Hence, these two
independently generated network layers hardly overlap, which leads to a SF-SF network withφ= 0. For SF-SF
networks, we only consider overlap extents φ= 1 and φ= 0.



3
SIS MODEL ON A SINGLE NETWORK

In this chapter we introduce dynamic processes of epidemic spreading and information propagation. Clas-
sical Susceptible-Infected-Susceptible (SIS) model, which has been widely used to model the virus spreading
in networks, is explained. Since the way information propagates is similar to the way the epidemic spreads,
information propagation is also modeled by the SIS model in this thesis. The mean field approximation,
which is used to simplify theoretical analysis of epidemic spreading in the SIS model, is introduced. The cur-
rently most advanced mathematical analysis method NIMFA that has been used for calculating the fraction
of infection and the epidemic threshold in a single network is presented in differential equations form.

3.1. SIS MODEL DESCRIPTION

The Susceptible-Infected-Susceptible (SIS) model [23–26] is a simple continuous-time model that has been
extensively used to describe a broad range of processes, such as epidemic/virus spreading, information prop-
agation, and power supply [3]. Epidemics spreading is a representative spreading process in complex net-
works, therefore we use epidemics as an example to illustrate the famous SIS model in a single network.

In the SIS model, a node only has two possible states, healthy but susceptible to the disease state (S), or
infected state (I). The viral state of a node i at any time t is specified by a Bernoulli random variable Xi (t ) ∈
{0,1}. Xi (t ) = 0 represents that node i is healthy at time t, and Xi (t ) = 1 means node i is infected at time
t. Infected individuals could recover from the epidemic and become healthy and susceptible. The recovery
(curing) process of each infected node is assumed to be an independent Poisson process with a recover rate
δ. Infected individuals are epidemic disseminators that could infect their healthy neighbors. Each infected
agent could spread the epidemic via links that are connected to susceptible neighbors with an infection rate
β in each link. Each infection spreading over a link is an independent Poisson process[29]. The interarrival
times of a Poisson process are independent and identically distributed exponential random variables. Due to
the memoryless property of exponential random variables Pr (T > s + t |T > t ) = Pr (T > s), the SIS model has
in nature Markov property. In other words, the conditional probability distribution of future states of a node
depends upon the present states, not on the past states.

The ratio τ,β/δ is defined as the effective infection rate. A phase transition phenomenon has been observed
around a critical point τc in single networks. When the effective infection rate τ > τc , a non-zero fraction of
agents will be infected in the steady state, whereas if τ < τc , infection rapidly kidnappers [30, 32]. The SIS

9
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process possesses an absorbing state that all nodes are healthy, and no epidemic would spread in the network
anymore. When τ≤ τc , the absorbing state is reached at least exponentially fast [20]. For τ> τc , the epidemic
processes require extremely long time to reach the absorbing state [29]. For a large τ, the network is observed
to reside in a state with many infected nodes for a long time. This regime is called the metastable state to
which the epidemic rapidly converges, but very slowly leaves [29]. In this thesis, we are only interested in the
meta-stable state in networks. In the following thesis, the steady state denotes the metastable state without
further announcement.

3.2. MEAN-FIELD APPROXIMATION FOR THE SIS MODEL

In the SIS model, since the curing and infected processes are Poisson processes, the whole epidemic pro-
cesses are Markov processes. A figure that shows the state transition of a node i, which could be regarded as a
two state Markov chain, is plotted in Fig.3.1.

Figure 3.1: The state transition for a node i in the SIS model. Xi (t ) = 0 is the healthy but susceptible state, and Xi (t ) = 1 is the infected
state.

According to the Markov theory, this two state continuous-time Markov chain is characterized by its infinites-
imal generator Qi (t ) as

Qi (t ) =
[−qi (t ) qi (t )

δ −δ
]

(3.1)

Given the adjacency matrix A for a network with N nodes, as well as the infection rate on each link β and the
recover rate for each node δ, the total infection rate of a susceptible node i at time t is [23]:

qi (t ) =β
N∑

j=1
a j i 1{X j (t )=1} (3.2)

which is the summation of infection rates β on each link of node i that connects to an infected neighbor
X j (t ) = 1. Networks we consider in this thesis are undirected, therefore a j i = ai j . Equ.3.2 shows the cou-
pling of node i to the rest of the network by the infection rate qi [24]. The rate qi is a random variable due
to the randomness of states in neighbors of node i X j (t ). Markov theory requires that all elements in the
infinitesimal generator Qi (t ) are not random variables. In order to apply Markov theory, the randomness in
the rate qi (t ) needs to be removed. One way of removing the randomness in qi (t ) is to consider all possible
state combinations of N nodes in a network, which leads to the exact Markov chain with 2N possible states in
the network. Obviously, this exact 2N states Markov chain is difficult to compute since the number of states
increases exponentially with the number of nodes N.

To theoretically analyze the evolution of epidemic spreading in a network, we apply the mean-field approx-
imation [23, 24, 29, 42, 43]. Instead of considering all possible combinations of states in the infection rate
qi (t ), the mean-field approximation replaces qi (t ) by the average infection rate

E
[
qi (t )

]= E

[
β

N∑
j=1

a j i 1{X j (t )=1}

]
(3.3)
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We denote vi (t ) = Pr [Xi (t ) = 1] as the probability that node i is infected at time t, and Pr [Xi (t ) = 0] = 1−vi (t )
as the probability that node i is healthy at time t. Replacing the term E [1x ] = Pr [x] in Equ.3.3, we get

E
[
qi (t )

]=β
N∑

j=1
a j i v j (t ) (3.4)

The random nature of the infection rate qi (t ) is removed in Equ.3.4. Now the infinitesimal generator in
Equ.3.1 becomes

Qi (t ) =
[−E

[
qi (t )

]
E

[
qi (t )

]
δ −δ

]
(3.5)

By applying the mean-field approximation, instead of computing the exact 2N states Markov process, only N
random variables vi (t ) need to be considered in the Markov process.

The limitation of the mean-field approximation is, we lose some accuracy by ignoring the dependency of
states between nodes in Equ.3.4. The mean field approximation simply uses the average probability of node
i being infected at time t vi (t ) to replace the summation of dependent indicators

∑N
j=1 1{X j (t )}. Even so, the

mean field approximation has been proved accurate in a lot of situations, and has been widely used as an
effective tool to theoretically analyze the epidemic spread in the SIS model.

3.3. N-INTERTWINED MEAN FIELD APPROXIMATION (NIMFA)

By applying the mean field approximation in the infinitesimal generator Qi (t ), each node obeys a differential
equation [44, pp. 182] 

d v1 (t )

d t
= (1− v1 (t ))β

N∑
j=1

a1 j v j (t )− v1 (t )δ

d v2 (t )

d t
= (1− v2 (t ))β

N∑
j=1

a2 j v j (t )− v2 (t )δ

...

d vN (t )

d t
= (1− vN (t ))β

N∑
j=1

aN j v j (t )− vN (t )δ

(3.6)

Written in the matrix form [24],

dV (t )

d t
=βAV (t )−di ag (vi (t ))

(
βAV (t )+δu

)
(3.7)

where the vector V (t ) = [v1(t ) v2(t ) · · · vN (t )]T , and u is the all-one vector[24]. The NIMFA Equ.3.6 for node i
has the following physical interpretation: when node i is healthy with the probability 1− vi (t ), each infected
neighbor of node i tries to infect node i with a rate β. The total infection rate for node i is β

∑N
j=1 ai j v j (t ).

When a node is infected with the probability vi (t ), the node is recovered with a rate δ.

By solving differential equations 3.6 for all nodes in a single network, we could calculate the steady state
fraction of infection ρ with

ρ =
∑N

i=1 vi

N
(3.8)

where vi is the steady state infection probability of node i. In the mean time, for the N-intertwined approx-
imation, the largest eigenvalue λ1 of the graph’s adjacency matrix rigorously defines the epidemic threshold
τc = 1

λ1
[24, 45].
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According to the differential equations Equ.3.6, the N-intertwined approximation gives the upper bound of
the SIS epidemics [23].

In this section we laid the foundation of interacting processes between two network layers. Specific inter-
actions between network layers will be introduced in each of our two-layer network models in the following
parts of the thesis.



4
EPIDEMIC AND AWARENESS INTERACTION

PROCESSES MODEL I

In this chapter, we introduce the first epidemic and awareness interaction processes (EAIP) model that de-
scribes the scenario where individuals get immediately aware when they get infected by an epidemic. We
develop Monte-Carol(MC) simulations in C++ to obtain the meta-stable state fraction of infected nodes and
the fraction of nodes that are aware of the epidemic. As for the theoretical analysis of this model I, we develop
our original individual-based mean field approximation(IBMFA) for two-layer networks. In addition, we fur-
ther develop microscopic Markov chain approach (MMCA) that was proposed by Granell et al. [2] according
to our model I.

With a variety of tools we propose for studying the EAIP model I in two-layer networks, we focus on dis-
covering the influence of two factors that influences the effectiveness of epidemic mitigation via awareness
propagation. The two factors are the relatively time scale of the awareness propagation compared to the
epidemic spreading, and the extent of overlap between two network layers.

4.1. DEFINITION OF PROCESSES IN THE EAIP MODEL I

In order to study the dynamic interactions between epidemic spreading and awareness propagation, we pro-
pose this epidemic and awareness interaction processes (EAIP) model I in two-layer networks. A two-layer
network in this thesis consists of a physical contact network where an epidemic spreads, and an online so-
cial network where awareness about the epidemic propagates. We use the SIS model to specify the epidemic
spreading process in the physical contact network. There are two possible states for a node in the physical
contact network, healthy but susceptible (S) and infected (I). The infection rate on each link and the recover
rate for each node are represented by β2 and δ2, respectively. Meanwhile, the upper layer is the online social
network, in which the awareness propagates in the same way as the SIS model. There are two possible states
for a node in the online social network, aware (A) and unaware (U). An aware node informs each of its un-
aware neighbors with an awareness spreading rate β1, whereas an aware node recovers from the awareness
to become unaware with an awareness recovering rate δ1. We call this model for awareness propagation the
Unaware-Aware-Unaware (UAU) model, although it is the same model as the SIS model in nature. We use
a parameter γ to specify the relative time scale of awareness propagation compared to epidemic spreading.
Taking the time scale γ into consideration, the awareness spreading rate and the awareness recovering rate

13



14 4. EPIDEMIC AND AWARENESS INTERACTION PROCESSES MODEL I

in the social network becomes γβ1 and γδ1, respectively.

In our EAIP model I, the epidemic spreading and awareness propagation interacts with each other. In reality,
if an individual is infected by e.g. flu, he or she would immediately know the existence of this flu, in other
words, become aware. Consequently, in this EAIP model I, we define that when an individual gets infected,
he or she gets immediately aware of the epidemic in the social network. This mechanism that individuals get
aware of an epidemic due to being infected by the epidemic is regarded as the "injection of information" from
the physical network layer to the social network layer. The injection happens only at the moment when an
individual gets newly infected in this EAIP model. After the injection, the aware node could lose awareness
and become unaware even if this node still remains infected in the physical layer, since an individual may lose
(or forget about) the alertness about the epidemic and stop informing others in the social network after some
time. In other words, the recovery of awareness in the social network layer is independent with epidemic
spreading.

The injection of information represents how epidemic spreading influences awareness propagation. The
other way around, people who see the information about the flu in the social network might pay attention to
this information and start using protection safeguards, such as wearing masks and staying at home to reduce
contact with other people, to reduce the probability that they get infected by the flu. This is how awareness
propagation impacts epidemic spreading. Taking precautions because of getting aware of an epidemic pos-
sibly mitigates the epidemic spreading. We model the effect of safeguard methods with a parameter α. When
a node is aware, the rate that this node gets infected in the physical contact network is reduced by a factor of
α. The recovery of infection in the physical network layer is independent with awareness propagation.

On top of the interactions between epidemic spreading and awareness propagation, here we define some
symbols for further analysis of the EAIP model I. The viral state of a node i at any time t is specified by a
Bernoulli random variable Xi (t ) ∈ {0,1}. Xi (t ) = 0 represents that node i is healthy at time t in the physical
network, and Xi (t ) = 1 means node i is infected at time t in the physical network. Similarly, a Bernoulli
random variable Yi (t ) ∈ {0,1} specifies the state of node i at any time t in the social network. Yi (t ) = 0 means
that node i is unaware of the epidemic at time t in the social network, and Yi (t ) = 1 indicates node i is aware
of the epidemic at time t. Furthermore, we denote the probability that a node i is aware in the online social
network at time t by ui (t ) = Pr [Yi (t ) = 1], therefore Pr [Yi (t ) = 0] = 1−ui (t ) is the probability that node i is
unaware. Similarly, we denote the probability that a node i is infected in the physical contact network at time
t by vi (t ) = Pr [Xi (t ) = 1], and the probability that node i is susceptible at time t by Pr [Xi (t ) = 0] = 1− vi (t ).

We denote the adjacency matrix of the social network as A, where the element ai j = 1 means there is a link
that connects node i and node j, and ai j = 0 otherwise. Similarly, the adjacency matrix of the physical contact
network is B, where the element bi j = 1 represents there is a link between node i and node j, and bi j = 0
otherwise. Links in our networks are undirected, hence ai j = a j i , and bi j = b j i . ai i and bi i are always 0,
since there is no self-loop in our networks.

Since there are 2 possible states for each node in the social network layer (unaware and aware), and 2 possible
states for each node in the physical network layer (susceptible and infected), we combine them and get 4
possible states for each node in our two-layer networks. These 4 possible states are:

* US: Unaware and Susceptible

* UI: Unaware and Infected

* AS: Aware and Susceptible

* AI: Aware and Infected
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Since we model the dynamic processes in this EAIP model I with the continuous-time Markov process, the
chance that two events occur in one node at the same time is infinitesimal. We define that only one of two
states in two network layers could change for a node at a time (unless an US node is infected and the injection
happens at the moment). The state transition processes are illustrated in detail as followed:

Unaware and Susceptible (US) state. A node i could leave the U Si state with 2 possibilities. One possibility
is that node i gets informed by its aware neighbors to become aware and susceptible (AS). The other
possibility is node i gets infected by its infected neighbors in the physical network, and at the same
time the injection of information happens. Thus node i becomes aware and infected (AI).

Unaware and Infected (UI) state. A node i in the UI state could be informed in the social network and be-
come aware and infected (AI). In the meantime, the infection of node i in the physical layer could be
recovered to the unaware and susceptible (US) state.

Aware and Susceptible (AS) state. An AS node i who is aware of the epidemic could lose alertness about the
epidemic to become US. Furthermore, even if an individual is aware of the epidemic, and protective
methods are taken like wearing masks, he or she could still get infected anyway. As a consequent, a
node i in the AS state could be infected and become Aware and Infected (AI).

Aware and Infected (AI) state. An AI node could either lose the alertness and become Unaware and Infected
(UI), or recover from the epidemic in the physical layer and become Aware and Susceptible (AS).

The idea of injection comes from [2], but our dynamic processes is different from processes used in [2] in the
recovery of awareness. In their work, when an individual is infected in the physical layer, he or she stays aware
until the recovery of the disease for this individual in the physical layer. However, we consider that when
people get sick, they may inform their friends about this virus in the online social network, but they would
not keep bothering friends with their illness status everyday. Hence, in our processes, after the injection,
the recovery of awareness is independent with the recovery of the infection. Furthermore, in our work, in
each time step processes on both layers are performed simultaneously, while in [1, 2] inside each time step
awareness propagation is performed before epidemic spreading.

4.2. MONTE-CAROL SIMULATION

To simulate dynamic processes in our model, we developed Monte-Carol (MC) simulations in the C++ lan-
guage. Here we would introduce how we implemented simulations.

Node is a class that we define with several variables indicating different states of a node. An object of Node
class locates in either the physical network layer or the social network layer, and is connected to a node object
in the other layer with an inter-layer link. Each node in our two-layer networks owns one and only one inter-
layer link. Two nodes linked by an inter-layer link are actually the same node. Each node would be in either
the healthy state or the infected state at any time t, which signifies unaware and aware states respectively
if this node is in the social network layer, and susceptible and infected states respectively if this node is in
the physical network layer. Furthermore, each node possesses a vector of neighbors which specifies intra-
layer links that are connected to this node. We define a graph class that integrates a vector of node objects to
represent a network layer.

We use the sample time ∆t = 0.01 to sample continuous-time Markov processes in our model. As proofed
in [29], when the sample rate (∆t )−1 is larger than the fastest possible transition rate maxi qi in the Markov

process
(
∆t ≤ 1

maxi qi

)
, the steady state (or the long-run behavior) of the sampled-time Markov chain exactly

equals to the steady state of the continuous-time Markov chain [29, Chapter 10.4].
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In our MC simulations, each time we generate two graph objects as the two layers in a two-layer network.
Each network owns N = 1000 nodes, and all nodes have one-one inter-layer links representing the same
set of nodes in different network layers. Both layers are the same type of networks, either Erdős-Rényi (ER)
random networks with the Poisson degree distributions ER-ER, or scale-free (SF) networks with the power-
law degree distributions SF-SF. For an ER random network, we set the average degree E [D] = 4, which leads
to in total L = E [D]∗N

2 = 2000 links in an ER random network. To generate such an ER random network, we
randomly connect two nodes that are not already connected each time until 2000 links are established. For
a SF network, the degree sequence follows a power law degree distribution Pr [D = k] = ck−λ with exponent
λ= 2.5 for N = 1000 nodes. We set the minimum degree Kmi n = 2, and the maximum degree Kmax = 100 for
scale-free networks. The exponent λ= 2.5 results in E [D] ≈ 4 in scale-free networks. Scale-free networks are
constructed by the configuration model which has been introduced in Chapter.2.2.2.

We would like to further understand how the overlap extent between the two network layers of a two-layer
network affects the spread of an epidemic. Hence, we control the overlap extent when generating two-layer
networks. In order to generate a two-layer ER-ER network with a fraction φ of overlapping links, we first
generate φ∗ L random links that exist on both layers, then randomly generate the rest of links in the two
layers separately under the constraint that links exist in one layer do not show up in the other layer. A two-
layer SF-SF network with the overlapφ= 1 can be constructed by generating one layer scale-free network with
the configuration model, and copying all the links to the other layer. A two-layer SF-SF network with overlap
φ= 0 can be obtained by generating the degree sequences for the two layers independently and constructing
the two layers independently. In our setting, λ = 2.5 and N = 1000 in scale-free networks bring about 2000
links, while the maximal possible number of links in a network with N = 1000 nodes is about 500000. Hence,
these two independently generated layers hardly overlap, leading to φ= 0.

Since we sample the continuous-time Markov processes, we need to run enough time steps for processes in
the two-layer network to reach the steady state in simulations. Some constant parameters that we chose for
all simulations are: the basic awareness spreading rate on each link (without considering the time scale γ)
β1 = 0.3, the basic awareness recovery rate on each node δ1 = 0.6, the epidemic recovery rate on each node
δ2 = 1.0. When a susceptible node is aware of the epidemic, the infection rate for this node is reduced by
a factor of α = 0.5. The epidemic spreading rate on each link β2, the time scale γ and the overlap extent
between two layers φ are controllable parameters, and manipulated in our simulations to understand the
influence of these parameters. At the beginning of a simulation, 10% of randomly chosen nodes are set to be
aware and infected (AI). The rest of nodes in the network are unaware and susceptible (US). For each set of
parameters β1, δ1, β2, δ2, γ, φ and the degree distribution etc, 200 realizations are implemented. The results
of the simulation are the average steady state fraction of awareness and the average steady state fraction of
infection over 200 realizations.

In the discrete-time simulations in [1, 2], sub sequential processes are performed in each time step. In their
simulations, the infection processes were always performed after the awareness processes in each time step.
In our simulations, we improve the simulation method by performing the processes in both layers simul-
taneously, which better approximates the continuous-time situation. We simulate processes in both layers
simultaneously by recording states of all nodes at the end of each time step. In the time step t+1, all pro-
cesses are run according to states of nodes at the end of time step t. In the social network layer, at each time
step aware nodes would inform each of its unaware neighbors with the probability ∆t ∗γ∗β1, and disregard
awareness to become unaware with a probability ∆t ∗γ∗δ1. In the physical network layer, at each time step
susceptible nodes could be infected by each of its infected neighbors with a probability ∆t ∗β2 or ∆t ∗α∗β2,
according to the state of its counterpart in the social network layer at the end of last time step. For a newly
infected node in this time step, if its counterpart in the social network was unaware at the end of last time
step, the injection of information would occur and make its counterpart in the social network aware at the
end of this time step. Infected nodes could recover from the epidemic with a probability ∆t ∗δ2 in one time
step.

We find the steady state for each two-layer network, and sum up steady states from 200 realizations to get
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average to reduce the influence of the strong randomness in Monte-Carol simulations. Besides the random
numbers generated for each infection process and each recovery process, networks are also generated ran-
domly, therefore the fluctuation of results happens between realizations. 200 times realizations with a certain
set of parameters provide us a more stable result. Both the steady state fraction of awareness in the social net-
work layer and the fraction of infection in the physical network layer are recorded as the primary outcome of
simulations. In addition, the time evolution of the spread of an epidemic and the propagation of awareness
are recorded for us to check whether the steady state in this simulation is actually reached.

4.3. INDIVIDUAL-BASED MEAN FIELD APPROXIMATION

The Individual-Based Mean Field Approximation, abbreviated as IBMFA, is a theoretical tool that we propose
to analyze the dynamic processes in our EAIP model I. The IBMFA is our original method to tackle the steady
state probability that each node is infected and the probability that each node is aware in the this model I
with two-layer networks. This IBMFA is inspired by NIMFA (N-Intertwined Mean Field Approximation) for
single networks [23, 24, 29].

4.3.1. INDIVIDUAL-BASED MEAN FIELD APPROXIMATION EQUATIONS

First of all, we would like to present the IBMFA equations we derive for each node in our EAIP model I:

dui (t )

d t
=−γδ1ui (t )+ (1−ui (t ))

(
N∑

j=1
a j iγβ1u j (t )+ (1− vi (t ))

N∑
j=1

bi jβ2v j (t )

)
(4.1a)

d vi (t )

d t
=−δ2vi (t )+ (1− vi (t ))

(
N∑

j=1
b j i (ui (t )α+ (1−ui (t )))β2v j (t )

)
(4.1b)

To clearly display the transition rates between the four states of a node, we plot Fig.4.1.

The IBMFA equations Equ.4.1 for node i has the following physical interpretation. In the differential equation
Equ.4.1a for the aware probability ui (t ) of node i, we explain the three terms one by one:

1. The −γδ1ui (t ) term. When the node i is aware with the probability ui (t ), node i could recover from aware-
ness with the awareness recovering rate γδ1.

2. The (1−ui (t ))
(∑N

j=1 a j iγβ1u j (t )
)

term. When the node i is unaware with the probability (1−ui (t )), it

could get alertness of the epidemic from its aware neighbors in the social network layer. a j i = 1 means
node j is a neighbor of node i in the social network. If node j is aware with the probability u j (t ), node j
would contribute to the total infection rate of node i in the social network by γβ1u j (t ). These explain

the term (1−ui (t ))
(∑N

j=1 a j iγβ1u j (t )
)
.

3. The (1−ui (t ))
(
(1− vi (t ))

∑N
j=1 bi jβ2v j (t )

)
term. For an unaware node i (1−ui (t )), if it is susceptible at

time t with the probability (1− vi (t )), each infected neighbor of node i in the physical layer tries to
infect node i with a rate β2. In total the infection rate for node i in the physical network at time t is
β2

∑N
j=1 b j i v j (t ). As we introduced above, in our EAIP model I, when a node is in the US state, and

it gets infected in the physical network layer, the injection of information would happen immediately.
As a consequence, an unaware node i could get aware from the injection of information with the rate(
(1− vi (t ))

∑N
j=1 bi jβ2v j (t )

)
.
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Figure 4.1: State transition processes between 4 possible states: Unaware and Susceptible (US), Unaware and Infected (UI), Aware and
Susceptible (AS), and Aware and Infected (AI) in model 1. The infect and recover rates in the social network are β1 and δ1 respectively,
and the infect and recover rates in the physical network are β2 and δ2 respectively. ai j = 1 if node i and j are connected in the upper
social network layer, otherwise ai j = 0. In the physical contact layer, bi j = 1 if there is a link between node i and j, otherwise bi j = 0. At
time t, node i has a probability ui (t ) to be aware in the online social network, and a probability vi to be infected in the physical contact
network.

As for the differential equation Equ.4.1b for the infection probability vi (t ), three terms are explained as fol-
lowed:

1. The term −δ2vi (t ). When a node i is infected in the physical network with the probability vi (t ), it could
recover from the epidemic with the recovery rate δ2.

2. The term (1− vi (t )) (1−ui (t ))
(
β2

∑N
j=1 b j i v j (t )

)
. The rate that a susceptible node i (1− vi (t )) in the physi-

cal layer gets infected by its infected neighbors depends on the state of node i in the social network layer.
If node i is unaware in the social network (1−ui (t )), each infected neighbor of node i v j (t ) contributes
to the total infection rate of node i by β2. Summing up the infection rate from all infected neighbors of

node i, we get β2
∑N

j=1 b j i v j (t ). This explains the term (1− vi (t )) (1−ui (t ))
(
β2

∑N
j=1 b j i v j (t )

)
.

3. The term (1− vi (t ))ui (t )
(
αβ2

∑N
j=1 b j i v j (t )

)
. When a susceptible node i (1− vi (t )) is aware in the social

network with the probability ui (t ), the rate that node i is infected by each infected neighbor in the
physical network is reduced from β2 to αβ2. Summing up the reduced infection rate from all infected
neighbors of node i at time t, we get αβ2

∑N
j=1 b j i v j (t ).

Note that in our IBMFA, we assume the independency between the infection states (infected or suscepti-
ble) of two neighboring nodes in the physical contact network as in NIMFA, the independency between the
awareness states (aware or unaware) of two neighboring nodes in the social network, and the independency
between the infection state and the awareness state of the same node though the injection has been taken
into account.

In our EAIP model I, each node obeys two differential equations in Equ.4.1. By solving differential equations
Equ.4.1 for each node in a two-layer network, we could get solutions representing the probabilities that each
node stays in the aware state in the social network layer ui , and the probabilities that each node stays in the
infected state in the physical network layer vi in the steady state. Denoting U (t ) as a column vector with
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N = 1000 elements U (t ) = [u1 (t ) u2 (t ) · · · u1000 (t )]T , and V (t ) as a column vector with N = 1000 elements
V (t ) = [v1 (t ) v2 (t ) · · · v1000 (t )]T , IBMFA equations for a two-layer network with N = 1000 nodes could be
expressed in the matrix form as

dU (t )

d t
=−γδ1U (t )+di ag (u −U (t ))

(
γβ1 AU (t )+di ag (u −V (t ))β2BV (t )

)
(4.2a)

dV (t )

d t
=−δ2V (t )+di ag (u −V (t ))

(
di ag (αU (t )+ (u −U (t )))β2BV (t )

)
(4.2b)

where u is an all 1 column vector with N = 1000 elements. In the steady state, dui
d t = 0 and d vi

d t = 0 hold for all
nodes in the network, so we have

0 =−γδ1U (t )+di ag (u −U (t ))
(
γβ1 AU (t )+di ag (u −V (t ))β2BV (t )

)
(4.3a)

0 =−δ2V (t )+di ag (u −V (t ))
(
di ag (αU (t )+ (u −U (t )))β2BV (t )

)
(4.3b)

The exact steady state is the susceptible and unaware state for all the nodes, which is the only absorbing
state of the exact Markovian process. However, this absorbing state will be reached within an unrealistically
long time for realistic sizes of networks when the effective infection rate is higher than the epidemic threshold
τ > τc [46]. We are interested in the meta-stable state in which the system stays for long and is reached fast.

The meta-stable state better characterizes real epidemics. With dui
d t = 0 and d vi

d t = 0, we could obtain a trivial
solution ui∞ = 0, ui∞ = 0 indicating the only absorbing state, and a possibly positive solution representing
the meta-stable stable, which is called the steady state in this thesis since now on and will be explored further.

4.3.2. METHOD OF SOLVING IBMFA EQUATIONS

In a two-layer network with N = 1000 nodes, we need to solve 2000 differential equations to get the steady
state for this network. Due to the complexity of Equ.4.1, we are unable to achieve analytical solutions. Nonethe-
less, numerical solutions could be obtained. The computational method that we use to get numerical solu-
tions of differential equations in IBMFA is the ode45 function in matlab 2014b [47]. ode45 [48] is used to solve
nonstiff ordinary differential equations. It is the preferred method to get numerical solutions in differential
equations that has been widely applied in the complex network field.

In order to compare IBMFA solutions and Monte-Carol simulation results to verify the accuracy of the IBMFA,
we use the same sets of parameters in the IBMFA and simulations. Monte-Carol simulations contain so many
random events that for a certain two-layer network with a certain set of parameters, results of the steady state
of the whole network in several realizations could fluctuate. However, for a settled two-layer network with a
specific set of parameters, the solution of IBMFA equations is fixed. Due to the stability of solutions in the
IBMFA equations, the only uncertainty in solutions of IBMFA equations comes from structures of randomly
generated two-layer networks. 10 times realizations are implemented in IBMFA equations for each set of
parameters, each realization with an independently generated two-layer network.

To solve differential equations Equ.4.2 in IBMFA with the ode45 function, we set the initial values ui (0) =
1, vi (0) = 1 for all nodes. The steady state of a Markov chain does not depend on the initial condition[29,
pp. 191]. Initial values ui (0) = 1, vi (0) = 1 has been widely applied to solve mean field differential equations,
which could result in correct and stable numerical solutions. Given a two-layer network with N = 1000 nodes,
we would get the steady state column vector U(t) with 1000 elements, and the steady state column vector V(t)
with 1000 elements. The fraction of awareness ρ1 in the steady state in the entire network is the average of
U (t ), and the fraction of infection ρ2 in the steady state is the average of V (t ).

ρ1 =
∑N

i=1 ui

N

ρ2 =
∑N

i=1 vi

N

(4.4)
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Comparison between IBMFA solutions and Monte-Carol simulation results is carried out in the following
sections.

4.4. MICROSCOPIC MARKOV CHAIN APPROACH

The Microscopic Markov Chain Approach (MMCA) is the dynamical equations governing a two-layer net-
work with the epidemic and awareness interacting processes. The Microscopic Markov Chain Approach was
proposed in [49, 50] and has been shown to be an accurate approximation for the epidemic and awareness
interacting processes in two-layer networks [2]. This is the second theoretical analysis tool in our EAIP model
I. Based on our EAIP model I, we develop in this chapter the MMCA equations for our interacting processes.
Later, we will compare the MMCA with the IBMFA, the two seemingly most advanced analytical approaches
so far.

4.4.1. DERIVATION OF MMCA EQUATIONS

The Microscopic Markov Chain Approach examines the discrete time evolution of the probability that each
node i is in each of the 4 possible states. In the MMCA, the dependency between states of nodes in the
network is neglected.

Firstly we could establish a state transition tree of a standard SIS process in the discrete-time Markov chain,
as shown in Fig.4.2:

Figure 4.2: A standard SIS process state transition. qi stands for the probability that node i does not get infected in this time step. δ is the
probability that node i recovers from epidemic in this time step.

The root of a state transition tree is the state of node i at time t, and the two leafs of a state transition tree are
two possible states of node i at time (t+1). From state transition trees in Fig.4.2, we could derive equations for
this discrete-time Markov process as:

pS
i (t +1) =pS

i (t )qi +p I
i (t )δ

p I
i (t +1) =pS

i (t )
(
1−qi

)+p I
i (t ) (1−δ)

(4.5)

With the normalization condition
pS

i (t )+P I
i (t ) = 1 (4.6)

where pS
i (t ) is the probability that node i is susceptible at time t, and p I

i (t ) is the probability that node i is
infected at time t.

In our two-layer network with four possible states: Unaware and Susceptible (US), Unaware and Infected
(UI), Aware and Susceptible (AS), Aware and Infected (AI), we denote ri (t ) as the probability that a node i is
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not informed by neighbors at time t, qU
i (t ) as the probability that unaware node i is not infected by neighbors

at time t, and q A
i (t ) as the probability that aware node i is not infected by neighbors at time t. ri (t ), qU

i (t ) and

q A
i (t ) could be written as

ri (t ) =
∏

j

(
1−a j i p A

j (t )β∗
1

)
(4.7a)

qU
i (t ) =

∏
j

(
1−b j i p I

j (t )β∗
2

)
(4.7b)

q A
i (t ) =

∏
j

(
1−b j i p I

j (t )αβ∗
2

)
(4.7c)

where the probability that a node gets informed by an aware neighbor within a time step of interval∆t follows
β∗

1 = γβ1 ·∆t . Similarly, β∗
2 = β2 ·∆t ,δ∗1 = γδ1 ·∆t and δ∗2 = δ2 ·∆t . The time interval ∆t should be small so

that this discrete time approach well approximates the continuous time processes. In consistent with Monte-
Carol simulations, we use the sample time ∆t = 0.01.

Equivalent to Equ.4.5, the MMCA equations describe the one time evolution of the probability that each node
is in each of the 4 possible states:

pU S
i (t +1) =pU I

i (t )ri (t )δ∗2 +p AI
i (t )δ∗1δ

∗
2 +pU S

i (t )ri (t ) qU
i (t )+p AS

i (t )δ∗1 q A
i (t ) (4.8a)

pU I
i (t +1) =pU I

i (t )ri (t )
(
1−δ∗2

)+p AI
i (t )δ∗1

(
1−δ∗2

)
(4.8b)

p AS
i (t +1) =pU I

i (t ) (1− ri (t ))δ∗2 +p AI
i (t )

(
1−δ∗1

)
δ∗2+ (4.8c)

pU S
i (t ) (1− ri (t )) qU

i (t )+p AS
i (t )

(
1−δ∗1

)
q A

i (t )

p AI
i (t +1) =pU I

i (t ) (1− ri (t ))
(
1−δ∗2

)+p AI
i (t )

(
1−δ∗1

)(
1−δ∗2

)+ (4.8d)

pU S
i (t )

[
(1− ri (t ))

(
1−qU

i (t )
)+ ri (t )

(
1−qU

i (t )
)]+

p AS
i (t )

[
δ∗1

(
1−q A

i (t )
)+ (

1−δ∗1
)(

1−q A
i (t )

)]
subject to the normalization condition

pU S
i (t )+pU I

i (t )+p AS
i (t )+p AI

i (t ) = 1 (4.9)

The steady state of the MMCA is reached when pi (t +1) = pi (t ) is satisfied for all states and nodes. We could
then get the fraction of awareness in the steady state ρ1 and the fraction of infection in the steady state ρ2 in
the entire two-layer network from

ρ1 =
∑N

i=1

(
p AS

i (∞)+p AI
i (∞)

)
N

ρ2 =
∑N

i=1

(
pU I

i (∞)+p AI
i (∞)

)
N

(4.10)

In the MMCA, we could derive the epidemic threshold τc for the epidemic spreading. However, we are inter-
ested to discover the steady state fraction of infection ρ2 and the steady state fraction of awareness ρ1 in this
thesis. The derivation of the epidemic threshold in the MMCA is shown in Appendix.A.2.

4.4.2. SOLVING MMCA EQUATIONS

We write MMCA equations Equ.4.8 for every nodes in matlab 2014b. The time steps should be large enough
that the steady state is reached, i.e. pi (t +1) = pi (t ) holds for all states and nodes. In order to compare the
accuracy of MMCA with the IBMFA, same sets of parameters are shared between Monte-Carol simulations,
IBMFA and MMCA. 10 times realizations are implemented in MMCA equations for each set of parameters,
each realization with an independently generated two-layer network. When steady states for all nodes are
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reached, the fraction of awareness ρ1 and the fraction of infection ρ2 are calculated by

ρ1 =
∑N

i=1

(
p AS

i (∞)+p AI
i (∞)

)
N

ρ2 =
∑N

i=1

(
pU I

i (∞)+p AI
i (∞)

)
N

(4.11)

Comparison between MMCA and IBMFA is shown in the following sections.

4.5. ACCURACY OF IBMFA AND MMCA

In this section we study the accuracy of our theoretical analysis methods, i.e. IBMFA and MMCA. In Monte-
Carol simulations, the accurate steady state fraction of infectionρ2 in our EAIP model I is achieved. Therefore,
we compare the numerical solutions of IBMFA and MMCA with the simulation results to estimate the preci-
sion of these two analytical approaches. The approximation that approaches better to MC simulation results
is the more accurate one. We use the time scale γ = 1 and the overlap extent φ = 1 situation as an example,
while the same phenomena are observed in other time scales and overlap extents.

(a) ER-ER φ= 1, γ= 1 (b) SF-SF φ= 1, , γ= 1

Figure 4.3: Compare the accuracy between Monte-Carol simulations, the IBMFA approximation and the MMCA approximation under
the same set of parameters. Two-layer Erdős-Rényi random networks with overlap φ= 1, and two-layer scale-free networks with overlap
φ= 1 are used. Parameters we choose here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5, γ = 1. The network size is N = 1000. For
Erdős-Rényi random networks, the average degree E [d ] = 4. For scale-free networks, the exponent in the power-law degree distribution
is λ= 2.5.

From Fig.4.3, we could see that IBMFA outperforms MMCA in both ER-ER networks and SF-SF networks,
especially around the epidemic threshold. The comparison between MC, IBMFA and MMCA in other sets of
parameters are shown in Appendix.A.3. IBMFA is shown in these figures a better approximation for our EAIP
model I.

4.6. THE INFLUENCE OF TIME SCALE γ ON EPIDEMIC MITIGATION

After introducing the three methods that we applied to tackle the steady state in our EAIP model I: Monte-
Carol simulations, our original IBMFA, and the MMCA, we would like to explore two key factors that may
influence the performance of such epidemic mitigation via awareness propagation: (i) the time scale of the
awareness propagation in the (online) social network relative to that of the epidemic spreading in the physical
contact network, or equivalently, the information update frequency in the online social network, and (ii) the
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structure of the two-layer networks. In this section, we investigate the effect of the relative time scale γ in the
social network layer on the epidemic mitigation.

Since Monte-Carol simulations simulate the actual stochastic processes in our EAIP model I with an adequate
small sample time ∆t = 0.01, the accurate steady state fraction of infection ρ2 is achieved in simulation re-
sults. We only use the simulation results to investigate the influence of the time scale γ as well as the influence
of the overlap extent φ in this chapter, while same phenomena are observed in the IBMFA solutions and the
MMCA solutions (shown in Appendix.A.4).

We consider the following parameters with respect to the interacting SIS and UAU processes: β1 = 0.3,δ1 =
0.6,δ2 = 1.0,α = 0.5 and β2 being the control parameter ranging over β2 ∈ [0,1] with the step size ∆t = 0.01.
The effective awareness spreading rate τ1 = β1/δ1 is chosen above the critical spreading threshold of the
social network layer such that epidemic spreading can be possibly reduced via awareness. Each of the Monte-
Carol simulation results, e.g. the fraction of infected nodes and the fraction of aware nodes, is averaged over
200 realizations.

First of all, we would show simulation results regarding different time scales γ in both two-layer ER-ER net-
works and two-layer SF-SF networks as followed:

Figure 4.4: Effect of the time scale γ on the epidemic propagation in two-layer networks ER-ER. The x axis is the infection rate on each link
in the physical networkβ2, and the y axis is the fraction of infection in the physical network in the steady state ρ2. Two-layer Erdős-Rényi
random networks with the overlap extent φ= 1 is used. Parameters we use here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α= 0.5. The
network size is N = 1000. For Erdős-Rényi random networks, the average degree E [d ] = 4. Initially, 10% of randomly chosen nodes are
aware and infected (AI). The rest of nodes in the network are unaware and susceptible (US). Results are averaged over 200 realizations.

As shown in Fig.4.4 and 4.5, the fraction of infection ρ2 in the steady state can be indeed significantly reduced
with the help of awareness information. We would discuss the effect of the time scale γ on the epidemic
mitigation in more details.

4.6.1. THE RELATIVE TIME SCALE γ VS EPIDEMIC SPREADING

The relative time scale of awareness propagation with respect to epidemic spreading can be controlled by
scaling both the spreading rate and the recovering rate of awareness as γβ1 and γδ1 respectively. The rela-
tive time scale of awareness propagation is, thus, characterized by the scaling parameter γ. The larger the
time scale γ is, the faster the awareness propagation is, which represents the case when information is more



24 4. EPIDEMIC AND AWARENESS INTERACTION PROCESSES MODEL I

Figure 4.5: Effect of the time scale γ on the epidemic propagation in two-layer networks SF-SF. The x axis is the infection rate on each link
in the physical network β2, and the y axis is the fraction of infection in the physical network in the steady state ρ2. Two-layer scale-free
networks with the overlap extent φ= 1 is used. Parameters we use here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α= 0.5. The network
size is N = 1000. For each scale-free network, the exponent in the power-law degree distribution is λ = 2.5. Initially, 10% of randomly
chosen nodes are aware and infected (AI). The rest of nodes in the network are unaware and susceptible (US). Results are averaged over
200 realizations.

frequently updated in online social networks than their interaction in the physical contact network. γ in-
fluences the awareness spreading rate on each link: γβ1, because when information in the social network is
more frequently updated, individuals are more likely to post information in the social network. Meanwhile,
γ also influences the awareness recovering rate on each node: γδ1. The frequent information updates in the
online social network could result in a large amount of information propagated in the social network, there-
fore the specific epidemic information is diluted by other important information that are also propagating in
the social network.

Intuitively, when people update informations in the online social network more often, e.g. the value of γ is
large, the awareness about the epidemic could spread out more easily and widely, therefore the epidemic
could be better controlled. Nonetheless, as we observe in Fig.4.4 and 4.5, counterintuitively, the fraction of
infection ρ2 increases as we increase the time scale γ of the social network. The epidemic threshold τc , above
which the epidemic breaks out, tends to decrease when the time scale is increased. These observations hold
for both ER-ER networks and SF-SF networks. In general, a faster time scale in the social network degrades
the mitigation effect, whereas a slower time scale better improves the robustness of the multi-layer network
against viruses.

We explain the observations as follows. As shown in Equ. 4.1, the awareness in a node comes from two
sources: (1) being informed by aware neighbors with a rate γβ1 from each neighbor in the social network,
and (2) the injection of information from the physical network layer, i.e. a node immediately gets aware once
it is infected in the physical contact network. One SIS process in a single network would result in the same

steady state fraction of infection when τ = β
δ remains the same. This holds for both UAU and SIS spreading

processes. As we tune the time scale γ, τ1 = β1
δ1

remains the same, which would lead to the same fraction
of awareness in the steady state if there were no injection. However, the amount of injection changes as we
change the time scale γ. Review that the injection happens when an unaware and susceptible node gets in-
fected in the physical network layer. As a consequence, the injection depends highly on the relative speed of
the epidemic spreading. Fast epidemic spreading leads to the more frequently change between the suscep-
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tible state and the infected state for nodes in the physical network layer, therefore more informations could
be injected. When the time scale γ is small, the awareness propagation in the social network layer is slow
compared to the spread of the epidemic in the physical network layer, thus is slow compared to injections.
In this case, each injection of awareness would keep the node aware for a long time since the recover rate
for awareness γδ1 is small. Conversely, when the γ is large, the injection is slow compared to the awareness
propagation. The injected awareness only last for a short time, being diluted by the fast dynamics in the social
network layer. In this case the injection is not as effective as the small γ situation, therefore a lower fraction
of awareness ρ1 is achieved leading to a larger fraction of infection ρ2.

We verify our explanations by further simulations. In Monte-Carol simulations, to determine the source of
awareness, we use two counters: an injection counter and an awareness spreading counter. The injection
counter pluses one when the injection from the physical network to the social network happens once. The
awareness spreading counter pluses one when an aware node informs an unaware neighbor in the social
network. Then we could calculate the fraction of awareness that comes from injection.

(a) ER-ER φ= 1 (b) SF-SF φ= 1

Figure 4.6: The amount of injection under different time scales γ. (a) shows the fraction of awareness that comes from injection in two
layer Erdős-Rényi random networks ER-ER with overlapφ= 1. (b) shows the fraction of awareness that comes from injection in two layer
scale-free networks SF-SF with overlap φ= 1.

As shown in figures Fig. 4.6(a) and Fig. 4.6(b), the percentage of nodes getting aware due to the injection in the
steady state increases as the time scale γ decreases in both two-layer ER networks and two-layer SF networks.
The overlap φ = 1 case is shown as an example. Furthermore, the following three steady state quantities:
the fraction of nodes getting aware due to injections, the faction of aware nodes and the fraction of infected
nodes, are averaged over all possibly values of β2 ∈ [0, 1]. We call these averaged quantities as the integral
fraction of injection, the integral fraction of awareness and the integral fraction of infection, respectively.
Fig. 4.7(a) and Fig. 4.7(b) illustrate that a higher fraction of nodes getting aware due to the injection implies a
higher fraction of awareness and a lower fraction of infection. Hence, a slow time scale in the social network
better mitigates an epidemic.

Our findings and explanations point out an important fact that has been neglected: the frequent update of
information in an online social network allows the sharing of timely information such as the alertness of an
epidemic, however, may as well dilute a specific information due to the large amount of other information
shared online. We may lose the alertness to an epidemic, thus become unaware, faster because of the frequent
exposure to other information, which limits the mitigation effect of using the awareness information.
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(a) ER-ER φ= 1 effect of injection (b) SF-SF φ= 1 effect of injection

Figure 4.7: Effect of the injection on both ρ1 and ρ2 in different time scales. (a) shows the relationship between the injection, infection
and awareness in two layer Erdős-Rényi random networks ER-ER with overlap φ = 1. (b) shows the relationship between the injection,
infection and awareness in two layer scale-free networks SF-SF with overlap φ= 1.

4.6.2. ACCURACY OF SAMPLED-TIME MARKOV PROCESSES IN SIMULATIONS

In Section.4.6.1, we discussed the the relative time scale γ and its influence on the epidemic mitigation. How-
ever, information in Fig.4.4 and Fig.4.5 have not been thoroughly introduced. Before we go into more details
of phenomena in those figures, we discuss in this section the accuracy of our Monte-Carol simulations.

As we discussed in Section.4.2, in our simulations, we use the sample time∆t = 0.01 to sample the continuous-
time Markov processes. The sample frequency must be large enough so that the sample-time Markov pro-
cesses have exactly the same steady state as the continuous-time Markov process. In our simulations, the
parameter γ functions in both awareness spreading rate and awareness recovering rate. We use γ that are in
an exponent form of 2, i.e. γ = {0.25,0.5,1,2,4,8,16}, and γ = {32,64} if necessary. When the time scale γ is
increased to a large number, e.g. γ = 64, the sample time ∆t = 0.01 may not be large enough, which might
lead to inaccurate steady states in simulations.

To verify the effectiveness of ∆t = 0.01 in our simulations, we do some simple theoretical calculations here.
Review that the steady state, or the long-run behavior of the sampled-time Markov chain is exactly the same
as the steady-state of the continuous-time Markov chain for any sampling step ∆t ≤ 1

maxi qi
, as introduced in

Section.4.2. Given a time scale γ = 16, we have the awareness spreading rate and the awareness recovering
rate in the social network: γβ1 = 16∗0.3 = 4.8, γδ1 = 16∗0.6 = 9.6. For an aware node in the social network, the
rate that it becomes unaware is γδ1 = 9.6, which obviously satisfies the∆t ≤ 1

9.6 condition. On the other hand,
the rate that an unaware node i becoming aware depends on the number of aware neighbors of node i at the
moment. To satisfy the ∆t ≤ 1

maxi qi
condition, the maximum number of aware neighbors n of node i is n ·

γβ1 ≤ 1/100, therefore n ≤ 20.83. From simulation results, when γ= 16, the steady state fraction of awareness
in the entire network is less than 50%, which means the unaware node i could have in total 20.83/50% = 41.66
neighbors in the social network layer such that the sample time ∆t = 0.01 is still small enough.

In a scale-free network with a power law degree distribution Pr [d = k] ∼ k−2.5, and the minimum degree and
the maximum degree Kmi n = 2 and Kmax = 100, we could calculate the probability distribution function (pdf)
of this power-law degree distribution as

Pr [D = k] = k−2.5∑Kmax
n=Kmi n

n−2.5
(4.12)

With the cumulative distribution function (cdf) derived from the pdf, the probability that node i has a degree
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smaller than 41 in a scale-free network in our simulation is

41∑
k=Kmi n

Pr [D = k] ≈ 99.5%

In the mean time, for our Erdős-Rényi random networks with the average degree E [d ] = 4, the probability
that there is a link between two randomly chosen node is

p =
N∗E [d ]

2(
N
2

) = 0.004 (4.13)

In a binomial distribution, the pdf of this Erdős-Rényi random network is indicated in Equ.2.5:

Pr [D = k] = (N−1
k

)
pk (

1−p
)N−1−k

Also with the cdf, we could derive the probability that node i has a degree larger than 41

1−
(

41∑
k=Kmi n

Pr [D = k]

)
< 1×10−14

As a conclusion, theoretically we could say that the sample time ∆t = 0.01 is small enough for the γ= 16 case
to reach the same steady state as its corresponding continuous-time Markov process. We also examine the
accuracy of the sample time ∆t = 0.01 when γ= 16 by simulations.

Figure 4.8: The accuracy of simulations in two-layer scale-free networks SF-SF with γ = 16. Other parameter we used here are: β1 =
0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5. The network size is N = 1000. The overlap between two layers φ = 1. For each scale-free network, the
exponent in the power-law degree distribution is λ= 2.5. Initially, 10% of randomly chosen nodes are aware and infected (AI). The rest
of nodes in the network are unaware and susceptible (US). Results are averaged over 200 realizations.

If the sample frequency with ∆t = 0.01 is not large enough, when we reduce the sample time from ∆t = 0.01
to ∆t = 0.001 (∆t = 0.001 is definitely small enough for γ = 16 according to our simple calculations above),
the steady state fraction of infection ρ2 would change. Nevertheless, as shown in Fig.4.8, two curves with
∆t = 0.01 and ∆t = 0.001 almost overlap. Therefore, the sample time ∆t = 0.01 is small enough for reaching
the accurate steady state for the time scale γ= 16, and consequently small enough for γ≤ 16.

Normally, the time scale γ= 16 is large enough for observing changes in the mitigation effect along with time
scale γ. Therefore, generally we use∆t = 0.01. When γ> 16 is necessary, we increase the sample frequency so
that the sample step size is ∆t = 0.001 to ensure the accuracy of steady states.
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4.6.3. UPPER BOUND AND LOWER BOUND OF ρ2

As explained in Section.4.6.1, when the time scale γ is small, the information spreading in the social network
layer is slow compared to the epidemic spreading in the physical network layer, thus slow compared to the
injection of information from the physical network layer to the social network layer. As a consequence, the
fraction of infection ρ2 in the physical network in the steady state is small, i.e. the effect of epidemic miti-
gation is good. Contrary, a large value of the time scale γ indicates fast information spreading compared to
the injection of information, therefore the fraction of infection ρ2 in the steady state in the physical network
layer is large, i.e. the effect of epidemic mitigation is bad. We could inference from these findings that the best
possible mitigation, i.e. the lower bound of the fraction of infection ρ2, could be achieved by the slowest time
scale γ. The worst possible mitigation, i.e. the upper bound of the fraction of infection ρ2, could be obtained
by the fastest time scale γ.

When the time scale γ is infinitely slow, i.e. γβ1 ≈ 0 and γδ1 ≈ 0, the injection from the physical layer is
infinitely fast compared to the recover rate of the awareness. With fast injections of information from the
physical network layer to the social network layer, and awareness recovering rate γδ1 ≈ 0, all the nodes tend
to be aware in steady state. In this case, the interacting information propagation and epidemic spreading on
the two-layer network is equivalent to the SIS model in a single physical contact network with the infection
rate α∗β2 and the recovery rate δ2. This best possible mitigation of an epidemic (or the lower bound) can
be achieved both by simulations as shown in Fig. 4.4 and Fig. 4.5 with the solid black lines that are below the
γ= 0.25 curve, and by our IBMFA, which in this case is equivalent to the NIMFA in a single network.

When the time scale γ is infinitely large, the very slow epidemic spreading makes the effect of injection neg-
ligible, since awareness that comes from the injection would be recovered instantly by the infinitely large
awareness recovering rate γδ1. The steady state fraction of aware nodes ρ1, as well as the probability of each

node to be aware ui are solely determined by the effective spreading rate in the social network layer τ1 = β1
δ1

,
and the social network structure. Since γ is infinitely fast, the awareness propagation in the social network
would reach the steady state instantly. At any time t, the rate that a node i gets infected by an infected neigh-
bor is α∗β2 with probability ui (t ), and is β2 with probability 1−ui (t ). In this case, the upper bound, i.e.
the worst possible mitigation, can be obtained via simulations (results are shown in Fig. 4.4 and Fig. 4.5, the
dotted line that is just above γ= 16 curve) and via the following adapted IBMFA:

dui

d t
=−γδ1ui + (1−ui )

(
N∑

j=1
a j iγβ1u j

)
d vi

d t
=−δ2vi + (1− vi )

(
N∑

j=1
b j i (uiα+ (1−ui ))β2v j

) (4.14)

where the injection term (1−ui (t )) (1− vi (t ))
∑N

j=1 bi jβ2v j (t ) is neglected in dui
d t equation, since both−γδ1ui

and (1−ui )
(∑N

j=1 a j iγβ1u j

)
terms contain the infinitely large number γ, while the injection term only in-

cludes finite numbers. Therefore in the IBMFA equations Equ.4.14 for the upper bound, the epidemic spread-
ing is influenced by the awareness propagation but not the other way around.

APPROXIMATE SIMULATIONS OF THE UPPER BOUND

While the lower bound is easy to achieve in simulations (for an infinitely slow time scale γ in the social net-
work, we could use γ= 0 in simulations to get the lower bound), to achieve the upper bound in simulations,
we cannot use an infinitely large γ due to the fact that the sample frequency 1/∆t = 100 is not large enough
for very large γ to get the accurate steady state as in the corresponding continuous-time Markov processes.
Approximations need to be applied to achieve the upper bound in simulations.
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APPROXIMATION METHOD 1

Enlightened by the analysis that the upper bound is reached when γ is infinitely large so that the injection
from the physical network layer is negligible, we could simulate the upper bound approximately by canceling
the injection mechanism in two-layer networks. However, even without injection, we cannot simulate this
model with an arbitrary large γ in order to get the fraction of infection ρ2 of the upper bound in the physical
network layer.

The situation that injections are negligible when the relative time scale in the social networkγ→+∞ is indeed
equivalent to canceling the injection mechanism. However, when γ→ +∞, the other phenomenon is, the
infinitely large awareness spreading rate and awareness recovering rate γβ1 and γδ1 leads to the infinitely fast
changes between aware and unaware states for each node in the social network. When we need to determine
the infection rate on a node i in the physical network layer, we need to check the state of this node in the social
network layer. Infinitely fast awareness propagation in the social network layer results in almost irrelevant
observations between any two inspections of the state in the social network. If we approximate γ→+∞ by
using a small γwithout the injection mechanism, inspections of states in the social network could be strongly
correlated. For example, for a node i, several times of checking its state in the social network could happen
during a single aware period. A large γ is still required to get the accurate steady state fraction of infection ρ2

of the upper bound. We believe that when γ is large enough that the state changes in the social network is
sufficiently fast, the upper bound is reached such that further increases of γ could not improve the accuracy
of the upper bound. Nonetheless, the adequately large γ is difficult to determine theoretically.

APPROXIMATION METHOD 2

The second approximation method of the upper bound is, in a specific two-layer network, we firstly run
processes in a single social network with parameters γβ1 and γδ1 without being impacted by the physical
network layer. With the steady state probability of awareness for each node ui , we apply them to the physical
network layer. For a node i in the physical network, each time the infection rate need to be determined, the
infection rate would be β2 with probability 1−ui , and αβ2 with probability ui .

Our motivation of this approximation method is, when γ→+∞, awareness propagation in the social network
is so fast that steady state could be reached immediately after the simulation starts. After that, infinitely fast
changes between states for each node is performed according to the steady state probability of awareness ui .
In the physical layer, each time a node i checks its state in the social network, the state is likely random with
a probability ui to be aware, and 1−ui to be unaware. Note that in this method, processes in the social net-
work and the physical network are performed independently since injections are negligible. As we discussed
before, the spread of an epidemic in a single network has the same steady state fraction of infection as long

as the effective infection rate τ= β
δ remains the same. By the same token, awareness propagation in a single

social network have the same fraction of awareness ρ1 as long as τ1 = β1
δ1

remains the same. In this method,
arbitrary γ could lead to the same τ1. Therefore, large γ is not required for this method to approximate the
upper bound. The upper bounds in Fig.4.4 and Fig.4.5 are achieved by this second method.

In order to verify the effectiveness of the upper bound that we achieved in approximate simulations as we
introduced above, we plot the changing trend of the fraction of infection ρ2 along with the relatively time
scale in the social network γ in Fig.4.9.

We could observe clearly in Fig.4.9 that fast information updates in the social network could in fact reduce
the effectiveness of epidemic mitigation (the red curve is the fraction of infection in the physical network
layer ρ2). Meanwhile, the increase of ρ2, or the slope of the rising curve is getting smaller with increasing
γ. The ascension of ρ2 is almost negligible when γ increases from γ = 32 to γ = 64, where ρ2 is very close
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Figure 4.9: The rising trend of the fraction of infection ρ2 along with the relatively time scale γ in two-layer networks SF-SF. The x axis is
the time scale γ, and the y axis is the fraction of infection in the physical network in the steady state ρ2. Two-layer scale-free networks
with the overlap extent φ= 1 is used. Parameters we use here are as followed: β1 = 0.3,δ1 = 0.6,β2 = 1.0,δ2 = 1.0,α= 0.5. The network
size is N = 1000. For each scale-free network, the exponent in the power-law degree distribution is λ = 2.5. Initially, 10% of randomly
chosen nodes are aware and infected (AI). The rest of nodes in the network are unaware and susceptible (US). Results are averaged over
200 realizations.

to, while still lower than the upper bound we achieved from our approximation. The explanation for this
trend is, when the speed of awareness propagation in the social network layer is comparable with epidemic
spreading in the physical network layer, a small change of the time scale could lead to a significant rise in
ρ2. However, when γ reaches 16 or 32, the awareness propagation in the social network is much faster than
the epidemic spreading in the physical layer. Therefore, slow injections of information from the physical
network compared to the awareness propagation in the social network and the fast recovery of awareness
result in the not remarkable effect of injections (which is close to "no injection" phenomenon when γ→∞),
and consequently the change of ρ2 is insignificant when γ is very large. We could therefore verify that the
upper bound we achieved in approximate simulations is effective.

4.7. INFLUENCE OF OVERLAP φ

After exploring the effect of time scales γ, in this section we further investigate the influence of the structure
of two-layer networks on the epidemic mitigation in our EAIP model I. In reality, some people would prefer
to keep in touch with real life friends, like their families, classmates and coworkers, in online social networks,
while other people are keen to socialize with new friends in online social networks. Inspired by this phe-
nomenon, we investigate here how the link overlap extent between two layers of a multi-layer network affects
the spread of an epidemic.

In both two-layer ER-ER networks and two-layer SF-SF networks, we compare two extreme situations: the
overlap extent φ= 1, and the overlap extent φ= 0. In the overlap φ= 1 case, everyone in a two-layer network
have exactly the same sets of friends in the social network and in the physical network. Under such circum-
stance people only share information with their acquaintance in real life. When the overlap between layers
is φ= 0, people would completely separate their real life with their social intercourse online. They may find
it interesting to share their insights with strangers. We use Monte-Carol simulations to investigate these two
extreme cases.

As shown in Fig.4.10 and Fig.4.11, the effect of overlap is more evident around the epidemic threshold and
when the time scale γ is relatively large. These observations can be explained by the following physical in-
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(a) ER-ER γ= 0.25 (b) ER-ER γ= 1

(c) ER-ER γ= 4 (d) ER-ER γ= 16

Figure 4.10: The influence of overlap in two layer Erdős-Rényi random networks ER-ER. Time scales γ we used in figures are: (a)γ= 0.25.
(b)γ= 1. (c)γ= 4. (d)γ= 16. Parameters we choose here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α= 0.5. The network size is N = 1000.
For each Erdős-Rényi random network, the average degree E [d ] = 4. Initially, 10% of randomly chosen nodes are infected and aware.
Results are averaged over 200 realizations.
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terpretations. When the time scale γ is infinitely small, all nodes stay in the aware state. This is actually the
lower bound situation as we mentioned in Section.4.6.3 where the interacting awareness propagation and
epidemic spreading are equivalent to the SIS model for epidemic spreading in a single network with a infec-
tion rate αβ2 and a recovery rate δ2. The overlap extent φ, in this case, has no influence on the epidemic
spreading. Hence, the difference between fractions of infection ρ2 in different overlap extents is noticeable
only when the time scale is not small. When the time scale is large such that the injections from the physical
contact network to the social network is negligible, φ = 1 or equivalently, the same topology for both layers,
enables the more efficient usage of the awareness information than the case when φ= 0: a node with a high
(low) risk of infection tends to have as well a high (low) chance to get aware. When the time scale γ is neither
too large nor too small, the complete overlap φ= 1 also allows a newly infected node to inform its neighbors
before they get infected, effectively reducing the infection rate of the neighbors. However, the effect of overlap
extents would be diminished when β2 is large where most nodes are aware due to large amount of injections
from the large fraction of infection ρ2.

(a) SF-SF γ= 0.25 (b) SF-SF γ= 1

(c) SF-SF γ= 4 (d) SF-SF γ= 16

Figure 4.11: The influence of overlap in two layer scale-free networks SF-SF. Time scales γ we used in figures are: (a)γ = 0.25. (b)γ = 1.
(c)γ = 4. (d)γ = 16. Parameters we choose here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5. The network size is N = 1000. The
exponent for scale-free networks is λ = 2.5. Initially, 10% of randomly chosen nodes are infected and aware. Results are averaged over
200 realizations.

As a conclusion, in general a large extent of overlap between the two layers facilitates the mitigation. This
finding encourages individuals to keep in touch with their physical contacts as well online, since it is bene-
ficial for the epidemic mitigation. Interacting with strangers in the online social network is good, but it does
not help the epidemic mitigation as much as interacting with physical contacts.
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EPIDEMIC AND AWARENESS INTERACTION

PROCESSES MODEL II

In Chapter.4, our first epidemic and awareness interaction processes (EAIP) model is introduced and ana-
lyzed by Monte-Carol simulations, theoretical analysis and physical interpretations. The influence of relative
time scales γ and the overlap between layers φ are studied in detail. The processes in EAIP model I (as shown
in Fig.4.1) assume that when an individual is infected by the epidemic, he or she immediately gets aware of
the epidemic and starts sharing alertness to friends in the online social network. However, if the online social
network is not used very frequently, people may not update their information about the epidemic immedi-
ately when they get infected. According to this situation, we propose our epidemic and awareness Interaction
processes (EAIP) model II.

In this chapter, we study the EAIP model II that describes the scenario where infected individuals get aware
of the epidemic with a certain rate. Monte-Carol simulations, the IBMFA and the MMCA approximations are
also applied in this chapter, but in different forms compared to the EAIP model I. We still study the effect
of the time scales γ and the overlap extent between two layers φ on epidemic mitigation. Compared to our
model I, the steady state fraction of infection ρ2 does not increase monotonously with the relative time scale
γ of awareness propagation anymore. Instead, a clear lowest ρ2 is observed where the spread of an epidemic
is most efficiently hindered by using the information propagated in the social network.

5.1. DEFINITION OF PROCESSES IN THE EAIP MODEL II

The rapid development of online social networks helps the information propagation, which provides a pos-
sibility to mitigate the spread of an epidemic by using information propagated in the social networks. Our
EAIP model II is consisted of a bottom layer of physical contact network where an epidemic spreads, and a
top layer of online social network where information about the epidemic, or awareness about the epidemic,
propagates. The awareness of an epidemic could drive people taking precaution measures to protect them-
selves from getting infected by the epidemic.

In consistent with the EAIP model I, in the EAIP model II we model epidemic spreading in the physical con-
tact network with the Susceptible-Infected-Susceptible(SIS) model. The infection rate on each link and the
recover rate for each node in the physical network are represented by β2 and δ2, respectively. The awareness

33
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propagation in the social network layer is modeled by the Unaware-Aware-Unaware(UAU) model as defined
in Section.4.1. An aware node informs each of its unaware neighbors with an awareness spreading rate β1,
whereas an aware node recovers from the awareness to become unaware with an awareness recovering rate
δ1. Taking the time scale γ into consideration, the awareness spreading rate and the awareness recovering
rate in the social network becomes γβ1 and γδ1, respectively.

In this model, epidemic spreading and awareness propagation also interacts with each other. The mechanism
that awareness propagation impacts epidemic spreading in this model is the same as in EAIP model I. If
an individual gets aware in the social network layer, he or she would take precautions which reduces the
infection rate of this individual by a factor of α. Recovery of the epidemic is independent with awareness
propagation.

The main difference between our EAIP model II and the EAIP model I which has been introduced in Chapter
4 is the injection of information mechanism. In the EAIP model I, we assume that everyone is enthusiastic
to inform his neighbors in the online social network about the epidemic at the moment he gets infected. In
other words, the injection happens immediately when an unaware and susceptible (US) node gets infected.
However, in this model we consider the situation that people may not be so crazy about online socializing.
If an individual only logins to his or her social network account once a week, the update of awareness about
the epidemic in the social network could be delayed instead of immediately update. Therefore, the injection
of information is related to the frequency that people use the online social network. If everyone are keen on
online socializing, the injection might happen immediately. If people are indifferent about online socializing,
then injections take some time. Taking this into consideration, in this EAIP model II injections of information
happen with an injection rate that is related to the relative time scale γ.

Without losing generality, we assume the injection rate in the EAIP model II isγε. The polynomial relationship
is general and flexible mathematically. Here a new parameter ε, the exponent of injection rate, is introduced
in the EAIP model II. When the exponent of the injection rate is ε = 1, the injection rate is linearly related to
the time scale γ. Under this injection rate γε, frequent information updates in the online social network (γ is
large) leads to not only fast information updates in the social network, but also fast injections of information.
Contrary, rare information updates in the online social network (γ is small) results in slow injections.

After introducing the injection rate, we could see that when an unaware and susceptible (US) node i is in-
fected, it does not directly go to the aware and infected (AI) state. Instead, node i would become unaware and
infected (UI), and has a rate γε to inject the information and becomes AI. Meanwhile, we define that during
the period from a node i gets infected in the physical layer, until node i is recovered from the epidemic, injec-
tion of information could happen at most once. Our consideration here is, in real life after an individual gets
aware because he or she is infected by an epidemic, this individual might stay aware for a while until he or she
gets tired of the awareness and forgets about the awareness. After that, this individual might get aware again
because he or she sees some new information about the epidemic in the social network, but it is unlikely that
this individual would be aware again because of the epidemic, since this individual is not recovered and gets
used to the long-time infection. For a newly infected node i, injection could happen under two constraints:

1. When the node i gets infected, on the social network layer it is unaware. In other words, only if the node
i was US before getting infected instead of aware and susceptible (AS) could injection happen. If node i
was already aware of the epidemic right before it gets infected, then getting infected cannot make node
i become aware again. One may argue that if an aware individual gets infected, his information of the
epidemic is "refreshed", and might take longer time for this individual to lose awareness. For example,
if normally awareness in node i would recover after 20 hours, meanwhile 10 hours after the node i gets
aware, injection of information happens in node i, then the awareness is refreshed and would take an-
other 20 hours to get recovered. However, in our case, the recovery of awareness is a Poisson process,
and the interarrival time of a Poisson process follows an independent exponential distribution. A char-
acteristic of an exponential distribution is the memoryless property: Pr (T > s + t |T > t ) = Pr (T > s).
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Therefore, even if awareness is "refreshed", the distribution of its recovery time of awareness still re-
mains the same. We define in the EAIP model II that if a node i was AS right before it gets infected,
before this node is recovered from the epidemic, injection would not happen for this node.

2. After the node i gets infected, if node i gets aware from aware neighbors in the social network layer,
injection would not happen for this node before it is recovered in the physical layer. The reason is, if an
individual gets alertness from friends after he or she is infected, we could say the mission of injection
is completed, since this individual already gets aware.

Due to the complexity of the injection process in this model, we have to add one more state to clearly illustrate
the state transitions compared to the EAIP model I. State transitions between in total 5 states for a node in the
EAIP model II are described in detail as followed:

Unaware and Susceptible (US) state. A node could leave the US state with two possibilities. One is that the
node i gets informed by its aware neighbors in the social network to become aware and susceptible
(AS). The other is that node i gets infected by its infected neighbors in the physical network. After
getting infected, node i becomes unaware and infected, meanwhile it has an injection rate γε to inject
awareness from the physical network layer to the social network layer. We define this state as Unaware,
Infected and able to Inject (UII).

Unaware, Infected and able to Inject (UII) state. In the EAIP model II, we divide the Unaware and Infected
(UI) state into two states. One of them is UII. A node i could leave UII state with three possibilities. The
first possibility is that the epidemic in the physical network is recovered, and becomes US. The Second
possibility is that injection of awareness happens in this node. After the injection, node i becomes
Aware and Infected (AI). The Last possibility is that node i is informed by aware neighbors in the social
network and also becomes AI.

Unaware, Infected and canNot inject (UIN) state. The other division of the UI state is the UIN state. In the
UIN state node i is unaware and infected, but injection cannot happen for this node. Node i could leave
the UIN state either by recovering from the epidemic in the physical network and becomes US, or by
getting aware from aware neighbors in the social network and becomes AI.

Aware and Susceptible (AS) state. Node i who is aware of the epidemic could lose alertness to the epidemic
and become US. Furthermore, an aware individual might get infected and become Aware and Infected
(AI).

Aware and Infected (AI) state. An AI node could either lose alertness and become UIN, or recover from the
epidemic in the physical layer and become Aware and Susceptible (AS).

5.2. MONTE-CAROL SIMULATIONS

Similar Monte-Carol simulations as in the EAIP model I, which are written in C++ language, are used to sim-
ulate dynamic processes in the EAIP model II. In consistent with EAIP model I, we use similar parameters as
used in model 1. Each layer of a two-layer network has N = 1000 nodes, and all nodes have one-one inter-
layer links representing the same set of nodes in different network layers. Both layers have the same degree
distribution, either ER-ER, or SF-SF. For an Erdős-Rényi (ER) random network, we set the average degree
E [D] = 4. For a scale-free network, the exponent of the power law degree distribution Pr [D = k] = ck−λ is
λ= 2.5. We set the minimum degree Kmi n = 2, and the maximum degree Kmax = 100 for scale-free networks.
The overlap extent φ between two network layers is a controllable parameter. We use a sample time∆t = 0.01
to sample the continuous-time Markov processes in the EAIP model II. Some constant parameters that we
chose for all simulations are: the basic awareness spreading rate on each link β1 = 0.3, the basic awareness
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Figure 5.1: State transition processes between 5 possible states: Unaware and Susceptible (US), Unaware and Infected and could Inject
(UII), Unaware and Infected and canNot inject (UIN), Aware and Susceptible (AS), and Aware and Infected (AI) in model 5. Infect and
recover rates on social network are β1 and δ1 respectively, and infect and recover rates on physical network are β2 and δ2 respectively.
ai j = 1 if node i and j are connected in the upper social network layer, otherwise ai j = 0. In the physical contact layer, bi j = 1 if there is
a link between node i and j, otherwise bi j = 0. At time t, node i has a probability ui to be aware in online social network, and probability
vi to be infected in physical contact network.

recovery rate on each node δ1 = 0.6, the epidemic recovery rate on each node δ2 = 1.0. When a susceptible
node is aware of epidemic, the infection rate for this node is reduced by a factor ofα. The epidemic spreading
rate on each link β2 and the time scale γ are controllable, and manipulated in our simulations to understand
the influence of these parameters. Initially 10% of randomly chosen nodes are set to be unaware and infected
(UII). The rest of nodes in the network are unaware and susceptible (US). 200 realizations are implemented
for each set of parameters. The most important result we get from simulations is the steady state fraction of
infection ρ2. In the meantime, a lot of other results are obtained for us to better understand what happened
in the EAIP model II, such as the steady state fraction of awareness ρ1 and the time evolution of the epidemic
in the physical network layer.

5.3. INDIVIDUAL-BASED MEAN FIELD APPROXIMATION I

We develop our original Individual-Based Mean Field Approximation (IBMFA) as a theoretical analysis of the
EAIP model II. In the IBMFA, we could calculate the steady state fraction of infection ρ2 and the steady state
fraction of awareness ρ1 in the EAIP model II where interactions between epidemic spreading and awareness
propagation happen.

5.3.1. INDIVIDUAL-BASED MEAN FIELD APPROXIMATION EQUATIONS

The derivation of IBMFA equations for the EAIP model II is similar to that for the EAIP model I. We denote
state Yi (t ) = 1 as node i is aware at time t in the social network layer, and Yi (t ) = 0 as node i is unaware at time
t. In the physical network layer, we denote X S

i (t ) = 1 as node i is susceptible at time t, and X S
i (t ) = 0 as node i
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is infected at time t. As described in Section.5.1, since the injection of information from the physical network
to the social network does not happen at the moment an US node gets infected in the physical network, we
divide the UI state into an UIN state and an UII state. Similarly, in the IBMFA we divide the infected state in
the physical network into two states, where X I I

i (t ) = 1 means node i is infected in the physical network and

injection is possible at time t, and X I N
i (t ) = 1 means node i is infected but cannot inject. The normalization

condition is that at any time t, for a node i one and only one of X S
i (t ), X I I

i (t ) and X I N
i (t ) is 1, meanwhile the

other two are 0.

Furthermore, we denote ui (t ) = Pr [Yi (t ) = 1] as the probability that node i is aware at time t in the social
network, and Pr [Yi (t ) = 0] = 1−ui (t ) as the probability that node i is unaware at time t. According to the
three states S, II and IN in the physical network, we denote vS

i (t ) = Pr
[

X S
i (t ) = 1

]
as the probability that

node i is susceptible at time t in the physical network, v I I
i (t ) = Pr

[
X I I

i (t ) = 1
]

as the probability that node i

is infected and could inject information to the social network at time t, and v I N
i (t ) = Pr

[
X I N

i (t ) = 1
]

as the
probability that node i is infected and cannot inject information at time t. The normalization condition here
is vS

i (t )+ v I I
i (t )+ v I N

i (t ) = 1 for all nodes at any time t. The IBMFA equations are

dui (t )

d t
=−γδ1ui (t )+ (1−ui (t ))γβ1

N∑
j=1

a j i u j (t )+γεv I I
i (t ) (5.1a)

d vS
i (t )

d t
=− vS

i (t )

(
[ui (t )α+ (1−ui (t ))]β2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
+δ2

(
v I I

i (t )+ v I N
i (t )

)
(5.1b)

d v I I
i (t )

d t
=− v I I

i (t )

(
δ2 +γε+γβ1

N∑
j=1

a j i u j (t )

)
+ vS

i (t ) (1−ui (t ))

(
β2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
(5.1c)

d v I N
i (t )

d t
=−δ2v I N

i (t )+ vS
i (t )ui (t )

(
αβ2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
+ v I I

i (t )

(
γε+γβ1

N∑
j=1

a j i u j (t )

)
(5.1d)

Here we interpret the physical meanings for each term in the Equ.5.1. In the aware probability ui (t ) equation
Equ.5.1a, there are three terms:

1. The −γδ1ui (t ) term. When the node i is aware in the social network with a probability ui (t ), node i could
recover from the awareness with a rate −γδ1.

2. The (1−ui (t ))γβ1
∑N

j=1 a j i u j (t ) term. When the node i is unaware with a probability (1−ui (t )), node i
could get aware from aware neighbors in the social network layer. Each aware neighbor contributes to
the total infection rate of node i in the social network by a rate γβ1. The total infection rate of node i in
the social network is therefore γβ1

∑N
j=1 a j i u j (t ).

3. The γεv I I
i (t ) term. When a node i is in the II state in the physical network, node i is definitely unaware

according to our definition of the EAIP model II. In this case, injection of information could happen
with an injection rate γε.

In the differential equation Equ.5.1b for the susceptible state in the physical network, the three terms are
explained as followed:

1. The δ2
(
v I I

i (t )+ v I N
i (t )

)
term. If node i is infected in the physical network with a probability 1− vS

i (t ), due

to the normalization condition 1− vS
i (t ) = v I I

i (t )+ v I N
i (t ). In this case node i could recover from the

epidemic with a rate δ2 and become susceptible.

2. The −vS
i (t )ui (t )αβ2

∑N
j=1 b j i

(
v I I

j (t )+ v I N
j (t )

)
term. When a node i is susceptible with the probability vS

i (t ),

and meanwhile this node i is aware with the probability ui (t ), this node could get infected from infected

neighbors
(
v I I

j (t )+ v I N
j (t )

)
of node i with a reduced infection rateαβ2 from each infected neighbor. Af-

ter infected, node i becomes the IN state in the physical network.
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3. The −vS
i (t ) (1−ui (t ))β2

∑N
j=1 b j i

(
v I I

j (t )+ v I N
j (t )

)
term. When the node i is susceptible vS

i (t ) and unaware

(1−ui (t )), it could get infected from each infected neighbor
(
v I I

j (t )+ v I N
j (t )

)
with an infection rate β2.

This explains the −vS
i (t ) (1−ui (t ))β2

∑N
j=1 b j i

(
v I I

j (t )+ v I N
j (t )

)
term. After infected, node i becomes the

II state in the physical network.

In the differential equation Equ.5.1c, we explain the two terms as followed:

1. The −v I I
i (t )

(
δ2 +γε+γβ1

∑N
j=1 a j i u j (t )

)
term. If the node i is infected and could inject in the physical net-

work with a probability v I I
i (t ), node i could recover from the epidemic with a rate δ2 and become sus-

ceptible. In addition, the II state indicates that node i is unaware. If the injection of information hap-
pens in the node i with the injection rate γε, node i becomes the IN state after the injection. On top of
that, the unaware node i could get aware from aware neighbors with a total infection rate in the social

network layer
(
γβ1

∑N
j=1 a j i u j (t )

)
. As described in the definition of the EAIP model II, the injection of

information cannot happen if this node gets aware from aware neighbors. Therefore node i goes to the
IN state after getting aware.

2. The vS
i (t )ui (t )αβ2

∑N
j=1 b j i

(
v I I

j (t )+ v I N
j (t )

)
term. This is the same term as the second explained term in

the differential equation for the susceptible state Equ.5.1b in the physical network.

In the differential equation Equ.5.1d, all terms have been explained in the former explanation. Therefore, the
physical meaning of all terms in the IBMFA equations Equ.5.1 are explained.

In the IBMFA for this model, we assume the independency between the infection states (infected or suscep-
tible) of two neighboring nodes in the physical contact network as in NIMFA, the independency between the
awareness states (aware or unaware) of two neighboring nodes in the social network, and the independency
between the infection state and the awareness state of the same node though the injection has been taken
into account.

In Equ.5.1, we need to solve four differential equations for each node in our EAIP model II. In a two-layer
network with in total N = 1000 nodes, we denote U (t ) as a column vector with N = 1000 elements U (t ) =
[u1(t ),u2(t ) · · · u1000(t )]T , and similarly column vectors with N = 1000 elements V S (t ), V I I (t ) and V I N (t ).
Writing the differential equations Equ.5.1 in the matrix format, we get

dU (t )

d t
=−γδ1U (t )+di ag (u −U (t ))γβ1 AU (t )+γεV I I (t ) (5.2a)

dV S (t )

d t
=−di ag

(
V S (t )

)(
di ag [U (t )α+ (u −U (t ))]β2B

(
V I I (t )+V I N (t )

))+δ2
(
V I I (t )+V I N (t )

)
(5.2b)

dV I I (t )

d t
=−di ag

(
V I I (t )

)(
δ2u +γεu +γβ1 AU (t )

)
+di ag

(
V S (t )

)
di ag ((u −U (t )))

(
β2B

(
V I I (t )+V I N (t )

))
(5.2c)

dV I N (t )

d t
=−δ2V I N (t )+di ag

(
V S (t )

)
di ag (U (t ))

(
αβ2B

(
V I I (t )+V I N (t )

))
+di ag

(
V I I (t )

)(
γεu +γβ1 AU (t )

)
(5.2d)

where u is all 1 column vector with N = 1000 elements. Still, we are interested in the meta-stable state of the
system in the IBMFA solutions.
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5.3.2. METHOD OF SOLVING IBMFA EQUATIONS

In a two-layer network with N = 1000 nodes, we need to solve in total 4000 differential equations to get the
steady state for this network. Analytical solutions cannot be solved due to complexity of Equ.5.2. However,
numerical solutions of differential equations in Equ.5.2 could be obtained with the ode45 function in matlab.
With a set of parameters (we use same sets of parameters in the IBMFA and the Monte-Carol simulations
in order to verify the accuracy of the IBMFA) and a two-layer network (shown in the adjacency matrix A
and B), we solve Equ.5.2 with ode45. 10 realizations were implemented in IBMFA equations for each set
of parameters, each realization with an independently generated two-layer network. Initially, ui (0) = 1 and
v I N

i (0) = 1 for all nodes. With sufficiently long spanning time, we could achieve the steady state fraction of
aware nodes ρ1 and the steady state fraction of infected nodes ρ2 with

ρ1 =
∑N

i=1 ui (∞)

N

ρ2 =
∑N

i=1 v I I
i (∞)+ v I N

i (∞)

N

(5.3)

5.4. INIDIVIDUAL-BASED MEAN FIELD APPROXIMATION II

In addition to the IBMFA that we describe in Section.5.3, we find a second form of IBMFA equations for our
EAIP model II. In this IBMFA equations II, we reduce the number of equations for each node in the EAIP
model II from four as in Section.5.3 to three.

We still denote Yi (t ) = 1 as node i is aware at time t in the social network layer, and Yi (t ) = 0 as node i is
unaware at time t. Xi (t ) = 1 as node i is infected in the physical network layer, and Xi (t ) = 0 as node i is
healthy and susceptible. On top of that, we add the third state Ti (t ). Ti (t ) indicates the status of injection for
node i. Ti (t ) = 1 represents that it is possible for node i inject the information to the social network layer at
time t, and Ti (t ) = 0 as node i cannot inject. From the description of the EAIP model II in Section.5.1, we could
see that Ti (t ) = 1 represents the UII state, since the only state that injection the information could occur is
the UII state. Ti (t ) makes the description of injection easy in this IBMFA.

Due to the similar derivation method with the IBMFA equations Equ.4.1 and 5.1, we omit the derivation of
this IBMFA equations II and directly give the result. With expressions

ui (t ) =Pr [Yi (t ) = 1]

vi (t ) =Pr [Xi (t ) = 1]

zi (t ) =Pr [Ti (t ) = 1]

(5.4)

We achieve the IBMFA equations II as

dui (t )

d t
=−γδ1ui (t )+ (1−ui (t ))

(
N∑

j=1
a j iγβ1u j (t )

)
+γεzi (t ) (5.5a)

d vi (t )

d t
=−δ2vi (t )+ (1− vi (t ))

(
N∑

j=1
b j i (ui (t )α+ (1−ui (t )))β2v j (t )

)
(5.5b)

d zi (t )

d t
=−zi (t )

(
N∑

j=1
a j iγβ1u j (t )+γε+δ2

)
+ (1− vi (t )) (1−ui (t ))

(
N∑

j=1
b j iβ2v j (t )

)
(5.5c)

The physical interpretations of Equ.5.5 are as followed.

1. The dui (t )
d t equation. An aware node i ui (t ) could lose alertness of the epidemic with a rate γδ1. If node

i is unaware (1−ui (t )), it could get aware in two ways. The unaware node i could be informed by
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aware neighbors, or get aware by injection from the physical network layer. According to our definition
of Ti (t ), only when Ti (t ) = 1 could injection occurs with the injection rate γε. In addition, Ti (t ) = 1
indicates the UII states as we discussed in Section.5.1, therefore zi (t ) includes the condition that node
i is unaware (1−ui (t )). Hence the term describing injection is γεzi (t ).

2. The d vi (t )
d t equation. This equation is the same as Equ.4.1b. Therefore we omit the explanation for this

equation and focus on the zi (t ) equation Equ.5.5c.

3. The d zi (t )
d t equation. An UII node i with the probability zi (t ) could leave the UII state with three possi-

bilities: recovers in the physical network with rate δ2, gets aware via injection of information with the
injection rate γε, and gets aware from aware neighbors with the total infection rate in the social network∑N

j=1 a j iβ1u j (t ). If node i is not in the UII state with the probability (1− zi (t )), only if node i is unaware
and susceptible could it directly change to the UII state by getting infected from infected neighbors
in the physical network layer. The unaware and susceptible term (1− vi (t )) (1−ui (t )) is a subset of
(1− zi (t )), hence we don’t multiple 1− zi (t ) after using (1− vi (t )) (1−ui (t )).

Worthy to mention is, in this IBMFA equations Equ.5.5, besides assuming the independency between the in-
fection states (infected or susceptible) of two neighboring nodes in the physical contact network as in NIMFA,
the independency between the awareness states (aware or unaware) of two neighboring nodes in the social
network, and the independency between the infection state and the awareness state of the same node though
the injection has been taken into account, it seems like we make a further assumption of the independency
between the injection state of a node and the state of its neighbors in the social network layer. However,
this new assumption is self-satisfied after assuming the independency between the infection states and the
awareness states of two neighboring nodes. As a conclusion, we reduce the number of equations from four
in the IBMFA equations Equ.4.1 to three in the IBMFA equations Equ.5.5 without further assumption.

In Equ.5.5, we need to solve three equations for each node i in the EAIP model II. In a two-layer network with
N = 1000 nodes, we denote U (t ) as a column vector with N = 1000 elements U (t ) = [u1(t ),u2(t ) · · · u1000(t )]T ,
and similarly for column vectors V (t ) and Z (t ). We write Equ.5.5 in the matrix format as

dU (t )

d t
=−γδ1U (t )+di ag (u −U (t ))

(
γβ1 AU (t )

)+γεZ (t ) (5.6a)

dV (t )

d t
=−δ2V (t )+di ag (u −V (t ))

(
di ag (U (t )α+ (u −U (t )))β2BV (t )

)
(5.6b)

d Z (t )

d t
=−di ag (Z (t ))

(
γε+δ2

)−di ag (Z (t ))γβ1 AU (t ) (5.6c)

+di ag (u −V (t )) ·di ag (u −U (t )) ·β2BV (t ) (5.6d)

In the steady state, dU (t )
d t = 0, dV (t )

d t = 0, and d Z (t )
d t = 0. Numerical solutions could be obtained by ode45

function in matlab, and initial conditions are ui (0) = 1, vi (0) = 1 and zi (0) = 0 for all nodes. The steady state
fraction of aware nodes ρ1 and the fraction of infected nodes ρ2 are obtained by

ρ1 =
∑N

i=1 ui (∞)

N

ρ2 =
∑N

i=1 vi (∞)

N

(5.7)

5.5. MICROSCOPIC MARKOV CHAIN APPROACH

Due to the complexity of our EAIP model II, we need one more equation compared to the Microscopic Markov
Chain Approach (MMCA) equations Equ.4.8 in the EAIP model I. The MMCA equations in accordance with
this model is shown as followed.
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For our EAIP model II with five possible states: Unaware and Susceptible (US) state, Unaware, Infected and
able to Inject (UII) state, Unaware, Infected and canNot inject (UIN) state, Aware and Susceptible (AS) state,
Aware and Infected (AI) state, we denote ri (t ) as the probability that a node i is not informed by neighbors at
time t in the social network, qU

i (t ) as probability that unaware node i is not infected by neighbors at time t in

the physical network, and q A
i (t ) as the probability that aware node i is not infected by neighbors at time t in

the physical network. Expressions of ri (t ), qU
i (t ) and q A

i (t ) are the same as Equ.4.7:

ri (t ) =
∏

j

(
1−a j i p A

j (t )β∗
1

)
(5.8a)

qU
i (t ) =

∏
j

(
1−b j i p I

j (t )β∗
2

)
(5.8b)

q A
i (t ) =

∏
j

(
1−b j i p I

j (t )αβ∗
2

)
(5.8c)

where p A
j (t ) = p AS

j (t )+p AI
j (t ) is the probability that node j is aware at time t, and p I

j (t ) = pU I I
j (t )+pU I N

j (t )+
p AI

j (t ) is the probability that node j is infected at time t. The probability that a node gets informed by an aware

neighbor within a time step of interval ∆t follows β∗
1 = γβ1 ·∆t . Similarly we have δ∗1 = γδ1 ·∆t , β∗

2 = β2 ·∆t ,
δ∗2 = δ2 ·∆t . The time interval ∆t should be small so that this discrete-time approach well approximates the
continuous time processes. In consistent with Monte-Carol simulations, we use the sample time ∆t = 0.01.

The MMCA equations describe the one time evolution of the probability that each node is in each of the five
possible states:

pU S
i (t +1) =(

pU I I
i (t )+pU I N

i (t )
)

ri (t )δ∗2 +p AI
i (t )δ∗1δ

∗
2 +pU S

i (t )ri (t ) qU
i (t )+p AS

i (t )δ∗1 q A
i (t ) (5.9a)

pU I N
i (t +1) =pU I N

i (t )ri (t )
(
1−δ∗2

)+p AI
i (t )δ∗1

(
1−δ∗2

)+p AS
i (t )δ∗1

(
1−q A

i (t )
)

(5.9b)

pU I I
i (t +1) =pU I I

i (t )ri (t )
(
1−δ∗2

)
(1−γε∗)+pU S

i (t )ri
(
1−qU

i (t )
)(

1−γε∗)
(5.9c)

p AS
i (t +1) =(

pU I I
i (t )+pU I N

i (t )
)

(1− ri (t ))δ∗2 +p AI
i (t )

(
1−δ∗1

)
δ∗2+

pU S
i (t ) (1− ri (t )) qU

i (t )+p AS
i (t )

(
1−δ∗1

)
q A

i (t ) (5.9d)

p AI
i (t +1) =pU I I

i (t )
[
(1− ri (t ))

(
1−δ∗2

)+ ri (t )
(
1−δ∗2

)
γε∗

]+pU I N
i (t ) (1− ri (t ))

(
1−δ∗2

)+
p AI

i (t )
(
1−δ∗1

)(
1−δ∗2

)+pU S
i (t )

[
(1− ri (t ))

(
1−qU

i (t )
)+ ri (t )

(
1−qU

i (t )
)
γε∗

]+ (5.9e)

p AS
i (t )

(
1−δ∗1

)(
1−q A

i (t )
)

where γε∗ is the sampled injection rate from the physical network layer to the social network layer γε∗ =
γε ·∆t . For each node i in the two-layer network, the normalization condition should be satisfied at any time
t

pU S
i (t )+pU I N

i (t )+pU I I
i (t )+p AS

i (t )+p AI
i (t ) = 1 (5.10)

In the steady state, pi (t +1) = pi (t ) is satisfied for all states and nodes. We could the derive the steady state
fraction of awareness ρ1 and the steady state fraction of infection ρ2 by

ρ1 =
∑N

i=1

(
p AS

i (∞)+p AI
i (∞)

)
N

ρ2 =
∑N

i=1

(
pU I N

i (∞)+pU I I
i (∞)+p AI

i (∞)
)

N

(5.11)

In this MMCA for the EAIP model II, we could still derive the epidemic threshold for epidemic spreading. The
derivation of the epidemic threshold is shown in Appendix.B.2.

5.6. ACCURACY OF IBMFA AND MMCA

In this section we study the accuracy of our three theoretical analysis methods, i.e. IBMFA I, IBMFA II and
MMCA for the EAIP model II. In Monte-Carol simulations, the accurate steady state fraction of infection ρ2 is
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achieved. Therefore, we compare the numerical solutions of IBMFA and MMCA with the simulation results to
estimate the precision of these two analytical approaches. We plot Fig.5.2 and Fig.5.3 with results from four
different methods in the same injection rate γε and the same time scale γ.

(a) SF-SF ε= 1,γ= 0.125 (b) SF-SF ε= 1,γ= 1

(c) SF-SF ε= 1,γ= 8

Figure 5.2: Compare results from Monte-Carol simulations, IBMFA equations and MMCA equations. The injection rate is set to γε with
ε = 1. The relative time scale in the social network layer are: (a) γ = 0.125, (b) γ = 1, (c) γ = 8. Parameters we choose here are: β1 = 0.3,
δ1 = 0.6, δ2 = 1.0,α= 0.2. Network size is N = 1000. In each scale-free network, exponent for the power-law degree distribution isλ= 2.5.
The overlap between two network layers is φ= 1. Results are averaged over 10 realizations.

In Fig.5.2 and Fig.5.3, we could observe that results of two types of IBMFA equations Equ.5.2 and Equ.5.6 are
always the same. The comparison of performance between IBMFA equations and MMCA equations depends
on the relative time scale γ in the social network layer. For a small γ, like γ = 1/8, MMCA solutions is closer
to MC simulations results, while around the epidemic threshold the performance of MMCA and IBMFA are
almost the same. When γ is increased to 1, the IBMFA shows a more accurate epidemic threshold τc than
the MMCA, while at large β2 the MMCA performs better. As γ continues increasing to γ= 8, the entire IBMFA
curves are below the MMCA curve, in other words the IBMFA is more accurate than the MMCA. In conclusion,
our IBMFA equations perform well at around the epidemic threshold τc for the physical network layer, and
IBMFA equations totally outperform MMCA in the large γ.

Even though there are some difference between solutions from IBMFA and MMCA approximations and our
numerical simulations, we develop IBMFA and MMCA as the theoretical analysis for our EAIP model II. We
prove that our IBMFA is very accurate in some circumstance (when γ is large). Our original IBMFA methods
outperform MMCA, which has been used in a lot of researches and papers, at the epidemic threshold in the
physical network and at large γ. Another advantage of IBMFA is that solution for a certain two-layer network
is definite. Therefore IBMFA is more stable than Monte-Carol simulations, and the only randomness in so-
lutions of IBMFA is in the generation of two-layer networks. Compared to Monte-Carol simulations, IBMFA
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(a) SF-SF ε= 2,γ= 0.125 (b) SF-SF ε= 2,γ= 1

(c) SF-SF ε= 2,γ= 8

Figure 5.3: Compare results from Monte-Carol simulations, IBMFA equations and MMCA equations. Injection rate is set to γε with ε= 2.
Relative time scale in social network layer are: (a) γ = 0.125, (b) γ = 1, (c) γ = 8. Parameters we choose here are: β1 = 0.3, δ1 = 0.6,
δ2 = 1.0, α = 0.2. Network size is N = 1000. In each scale-free network, exponent for the power-law degree distribution is λ = 2.5. The
overlap between two network layers is φ= 1. Results are averaged over 10 realizations.
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takes much less time to get the steady state fraction of infection and the steady state fraction of awareness.
On top of that, the time consumed in matlab to solve IBMFA equations is also much less than solving MMCA
equations.

5.7. THE INFLUENCE OF TIME SCALE γ ON EPIDEMIC MITIGATION

After introducing in total four different tools (Monte-Carol simulation, two types of IBMFA, and MMCA) we
develop to study the EAIP model II, we could explore the influence of two key factors on epidemic mitiga-
tion: (i) the relative time scale γ of information propagation in the social network layer to the spread of an
epidemic in the physical contact network, and (ii) the structure of two-layer networks. We firstly discuss the
relative time scale γ in this section. We only use Monte-Carol simulations in this section since the simula-
tions are supposed to precisely simulate the continuous-time Markov processes. The results of investigating
the influence of γ on epidemic mitigation with the IBMFA and the MMCA are shown in Appendix.B.3.

5.7.1. THE RELATIVE TIME SCALE γ VS EPIDEMIC SPREADING

As defined in Section.5.1, in the EAIP model II the injection of information from the physical network layer
to the social network layer is positively related to the relative time scale γ. We assume the injection rate is γε

because of the generality of the polynomial relation in mathematical.

In addition, the injection rate γε is also a practical value. In reality, when the time scale γ in the social network
layer is small, awareness (or information about the epidemic) propagates slower than the epidemic spreading
in the physical contact network. In this case, most people would get infected before they get the awareness
information, hence propagation of information does not play well in the role of prevention of the epidemic.
People don’t have enough motivation to inform their friends about the epidemic when they are infected since
information propagation is not very effective, which leads to a very small injection rate. Oppositely, when the
time scale γ in the social network is large, awareness propagates faster than the epidemic, and people tend
to get information before they get infected by the epidemic. Consequently the information could effectively
remind people to take precautions, hence people are more motivated to share the information when they
are infected. Additionally, the fast propagation of information would cause extensive discussions about the
precautions of the epidemic, therefore practical information of precautions is more likely to be extracted. In-
dividuals would be more willing to share these exact information with friends when they get infected, because
the effective precaution methods could truly prevent their friends from getting infected. As a conclusion, a
large time scale γ results in a very large injection rate. These interpretations reflect the realistic significance
of the injection rate γε.

To comprehensively consider different relationships between the injection rate and the time scale, we show
simulations results of the injection rate γε with ε = 1, where the injection rate is linearly related to the time
scale γ, and ε = 2, where the injection rate is the square of the time scale γ. Two-layer scale-free networks
SF-SF are used here to illustrate the phenomenon, while in ER-ER network the observation is similar (shown
in Appendix.B.4).

As shown in Fig.5.4 , when the injection rate is linearly related to the time scale γ, i.e. ε= 1, the phenomenon
is similar to Fig.4.4. With an increasing time scale γ, the fraction of infection ρ2 in our EAIP model II seems
to increase monotonously. However, when ε= 2, the change of ρ2 is no longer monotonous with the increase
of γ. In Fig.5.5, γ= 0.25 and γ= 0.5 curves are actually below the γ= 0.125 curve.

In order to explain our observations, we would introduce the upper bound and the lower bound in our EAIP
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Figure 5.4: The Effect of time scales γ on epidemic spreading in two-layer networks SF-SF with the overlap φ = 1. The x axis is the
infection spreading rate β2, and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and
here we set the value ε= 1, i.e. the injection rate is linearly related to the time scale γ. Other parameters used in this figure are: β1 = 0.3,
δ1 = 0.6, δ2 = 1.0, α = 0.2. The network size is N = 1000. For a scale-free network, the exponent in the power-law degree distribution
is λ= 2.5. Initially, 10% of randomly chosen nodes are unaware and infected (UII). The rest of nodes are unaware and susceptible (US).
Results are averaged over 200 realizations.

model II. Since the observations in Fig.5.5 are not very clear (some curves are overlapped together), we would
use one β2 value: β2 = 1.0, where the difference between curves is evident, to further explore the influence of
changing γ on the steady state fraction of infection ρ2 in the following.

Figure 5.5: The effect of time scalesγ on epidemic spreading in two-layer networks SF-SF with the overlapφ= 1. The x axis is the infection
spreading rate β2, and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and here we
set the value ε= 2, i.e. the injection rate has square relationship with the time scale γ. Other parameters used in this figure are: β1 = 0.3,
δ1 = 0.6, δ2 = 1.0, α = 0.2. The network size is N = 1000. For a scale-free network, the exponent in the power-law degree distribution
is λ= 2.5. Initially, 10% of randomly chosen nodes are unaware and infected (UII). The rest of nodes are unaware and susceptible (US).
Results are averaged over 200 realizations.
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5.7.2. UPPER BOUND AND LOWER BOUND OF ρ2

In the EAIP model II, the injection rate is positively related to the time scale γ. When γ → 0, even though
epidemic spreading is much faster compared to awareness propagation, injection hardly happens due to
the very small injection rate. As we explained in the EAIP model I, two factors that affect the steady state
fraction of awareness ρ1 in the social network are the effective infection rate τ1 = β1/δ1, and the amount
of injection. If the online social network is a single network that is independent with the physical contact
network, the change of time scale γ does not influence the steady state fraction of awareness ρ1 because γ

does not change the effective infection rate τ1 = γβ1/γδ1 in the social network. Therefore, the change of ρ1 in
the EAIP model II depends on the amount of injection. When γ→ 0, the very small injection rate γε is so small
that injection hardly occurs, consequently ρ1 is almost not influenced by injections. Since injections would
increase the fraction of awareness ρ1 (with injection, awareness comes from both awareness propagation in
the social network, and injection of information from the physical network, but without injection, awareness
only comes from awareness propagation in the social network), the γ→ 0 results in a low ρ1, and therefore a
high fraction of infection in the physical contact network ρ2.

Furthermore, we consider the extreme situation γ= 0. Both the awareness spreading rate γβ1 and the aware-
ness recovering rate γδ1 are 0, and also the injection rate γε = 0. In other words, people do not use social
network at all, as a consequence information about the epidemic cannot propagate. This is actually the worst
situation for epidemic mitigation because no one takes precautions against the epidemic, hence the epidemic
would spread in the physical network without obstruction. In this case the two-layer network is equivalent to
a single physical network. In conclusion, with γ= 0 we could achieve the upper bound in our EAIP model II.
Notice that this upper bound holds for all ε values.

In order to achieve the lower bound in this model, we need to find a situation that injection of information has
a maximum effect on the social network layer. However, we are unable to achieve a uniform case that makes
the effect of injection maximum for all ε values due to the complexity of the EAIP model II. There is indeed a γ
where the best epidemic mitigation effect occurs for a certain value of ε. We could find this γ in simulations,
but not with theoretical analysis. This optimum epidemic mitigation phenomenon will be further studied in
the following sections.

While the exact lower bound cannot be simply indicated, we could derive theoretically a loose lower bound in
this model. The best situation for epidemic mitigation is, all nodes stay aware in the steady state, i.e. ρ1 = 1.
In this case, everyone in the network knows about the epidemic and takes precautions. This is equivalent to
the a single physical contact network with the infection spreading rate αβ2 and the infection recovering rate
δ2. However, this lower bound is unreachable in our EAIP model II, since it requires a large injection rate in a
small γ situation (which is achievable in the EAIP model I).

By the theoretical analysis in this section, we show how the upper bound and the lower bound in the EAIP
model II are achieved. In Monte-Carol simulations, the upper bound is reached with a time scale γ= 0, and
the lower bound is reached in a single physical network with the infection rate αβ2 and the recovery rate δ2.
In the meantime, IBMFA equation for a single physical network with the infection rateβ and the recovery rate
δ is

d vi (t )

d t
=−δvi (t )+ (1− vi (t ))β

N∑
j=1

b j i v j (t ) (5.12)

We could replace the β by β2, and replace the δ by δ2 in Equ.5.12 to obtain the upper bound of the steady
state fraction of infection ρ2. The lower bound of ρ2 is achieved by replacing β by αβ2, and replacing δ by δ2.
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5.7.3. OPTIMUM EPIDEMIC MITIGATION

Under a certain value of ε for the injection rate γε, we would like to further explore the best relative time scale
γ at which the best epidemic mitigation effect is reached.

Figure 5.6: Effect of time scale γ on epidemic spreading in two-layer networks SF-SF with the overlap φ= 1. The x axis is the time scale γ,
and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and here we set the value ε= 2.
Other parameters used here are: β1 = 0.3, δ1 = 0.6, β2 = 1.0, δ2 = 1.0, α= 0.2. The network size is N = 1000. For a scale-free network, the
exponent in the power-law degree distribution is λ = 2.5. Initially, 10% of randomly chosen nodes are unaware and infected (UII). The
rest of nodes are unaware and susceptible (US). Results are averaged over 200 realizations.

As shown in Fig.5.6, for the injection rate γε with ε = 2, there is a clear minimum steady state fraction of
infection ρ2 at γ = 0.5. It indicates that in reality, given the epidemic spreading rate β2 and the epidemic
recovering rate δ2, we could achieve the best epidemic mitigation effect by adjusting the relative time scale γ
in the social network to a value that is close to the speed of epidemic spreading.

We could explain the optimum ρ2 as followed. As discussed in the upper bound of the steady state fraction
of infection ρ2, the highest ρ2 is reached when the time scale γ = 0. When γ is slightly larger than 0, the
awareness starts propagating in a slow speed. For ε = 2, in small γ the injection rate is very small, which
results in a very small amount of injection. In this case the steady state fraction of awareness ρ1 is dominated
by awareness propagation in the social network, consequently ρ1 is low. Small amount of awareness cannot
efficiently protect people from the epidemic, therefore ρ2 is high.

As the time scale γ increases, information propagating in the social network layer become faster, meanwhile
the injection rate γε also increases. Larger amount of injections efficiently causes a high fraction of awareness
ρ1, and therefore the epidemic is better controlled than the γ→ 0 situation. However, the increasingly fast
processes in the social network layer results in faster recovery of awareness, which means the information
that was injected from the physical network layer to the social network layer cannot stay for a long time (in
γ→ 0 case, one awareness information that was injected could last for long because of the small recovery rate
γδ1 in the social network layer). In other words, the effect of each injection becomes weaker in faster time
scale γ.

According to these two factors (the injection rate γε, and the effect of each injection) that influence the effect
of injections in the EAIP model II, we further analyze Fig.5.6. In γ ¿ 1, where awareness propagation in
the social network layer is much slower than epidemic spreading in the physical network layer, the augment
of the injection rate γε would significantly facilitate the amount of injected information from the physical
network layer to the social network layer. When ε= 2, the slope (or equally the increase of the injection rate
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γε) is small when γ is small. It means that in small γ the rising amount of injection is small, which leads to
slow decreasing of ρ2 in small γ. Therefore, before γ= 0.5 the fraction of infection ρ2 in the physical network
layer declines monotonously.

When time scale γ in the social network layer is increased to γ = 0.5, the speed of awareness propagation in
the social network layer is already comparable with the spread of the epidemic in the physical network layer.
In this case not only the rising injection rate γε needs to be considered, but we also have to take the effect of
each injection into account. When the time scale γ in the social network layer is close to the time scale in the
physical network layer, the augment of γ in the social network layer leads to a larger injection rate γε as well as
a smaller effect of each injection. After γ= 0.5, the influence of the increasing injection rate γε cannot exceed
the influence of the smaller effect for each injection, therefore with the rising γ, the ascension of ρ2 starts.
Note that when the relative time scale γ is large enough, no matter how fast the injection rate γε increases, in
other words, no matter how large the ε is, ρ2 would ascend with γ anyway, which could be derived from our
EAIP model I where the injection rate could be regarded as +∞.

After analyzing Fig.5.6, we could also discuss about the ε= 1 situation which is shown in Fig.5.7.

Figure 5.7: Effect of time scale γ on epidemic spreading in two-layer networks SF-SF with the overlap φ= 1. The x axis is the time scale γ,
and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and here we set the value ε= 1.
Other parameters we use here are: β1 = 0.3, δ1 = 0.6, β2 = 1.0, δ2 = 1.0, α= 0.2. The network size is N = 1000. For a scale-free network,
the exponent in the power-law degree distribution is λ = 2.5. Initially, 10% of randomly chosen nodes are unaware and infected (UII).
The rest of nodes are unaware and susceptible (US). Results are averaged over 200 realizations.

In the ε = 1 case, the upper bound of the steady state fraction of infection ρ2 still occurs at γ = 0. As the
relative time scale γ increases, the injection rate γε increases linearly with γ, therefore even in small γ the
augment of the amount of injection is significant. At a γ that is close to 0, the optimum point of epidemic
mitigation is reached, and after that less effect of each injection caused by faster awareness propagation in
the social network layer dominates the larger amount of injection from the injection rate γ1, consequently ρ2

would increase with the rising γ.

The optimum point that the best epidemic mitigation effect is achieved in γ = 1 situation is not shown in
Fig.5.7 because of limitations of Monte-Carol simulations. For a very small γ, awareness propagation in the
social network layer are too slow that very long time is required to reach the steady state for both layers in
two-layer networks. It means that we need more steps in the sampled-time Markov processes to reach the
steady state. Normally for γ values that are shown in Fig.5.7, 5×104 steps are enough to get the steady state
for both layers. However, for a very small γ, even 106 steps where Monte-Carol simulations take a long time
are not long enough to reach the steady state. Therefore, we did not run simulations for such small γ. Instead
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we focus on γ that makes the time scale of awareness propagation in the social network layer comparable to
epidemic spreading in the physical network layer, where the simulation time is acceptable. We use the time
scales from γ = 1/8 to γ = 8. In this range of γ the monotonously rising ρ2 is observed when ε = 1, however
the bottom of ρ2 curve does exist in a very small γ.

To further understand the influence of ε on the optimum epidemic mitigation effect, we show bottom points
of ρ2 under different exponents ε in the injection rate γε.

Figure 5.8: Influence of the exponent in injection rate γε on the optimum point of steady state fraction of infection ρ2 in two-layer
networks SF-SF with the overlap φ= 1. The x axis is the time scale γ, and the y axis is the steady state fraction of infection in the physical
network ρ2. Other parameters we use are: β1 = 0.3, δ1 = 0.6, β2 = 1.0, δ2 = 1.0, α = 0.2. The network size is N = 1000. For a scale-free
network, the exponent in the power-law degree distribution is λ= 2.5. Initially, 10% of randomly chosen nodes are unaware and infected
(UII). The rest of nodes are unaware and susceptible (US). Results are averaged over 200 realizations.

From Fig.5.8, we could see that in the range γ ∈ [1/8,8], the bottom of the ε= 0.5 and the ε= 1 curves cannot
be observed. The lowest ρ2 occurs at γ= 0.25 for the ε= 1.5 curve, at γ= 0.5 for the ε= 2 curve, and at γ= 1
for the γ = 3 curve. We could conclude from our observations in Fig.5.8 that the relative time scale γ where
the optimum effect of epidemic mitigation occurs increases with the exponent ε in the injection rate γε.

We would like to further explain the optimum epidemic mitigation effect here. For all values of ε in Fig.5.8,
the curves overlap in three γ: γ= 0 where the injection rate is 0, γ= 1 where the injection rate is 1, and γ=+∞
where infinite fast awareness propagation invalidates injections. For γ> 1, a larger value of ε leads to a larger
amount of injections, consequently a larger steady state fraction of awareness ρ1 and a smaller steady state
fraction of infection ρ2. For γ< 1, on the other hand, a larger value of ε leads to a smaller amount of injection,
consequently a smaller ρ1 and a larger ρ2.

Mathematically, for the ε = 0.5 curve, since when γ < 1 the injection rate for γ0.5 is even larger than γ1 situ-
ation, the optimum point might occur at an γ even closer to 0 than ε = 1 situation. For ε > 1, small changes
in the injection rate is observed in γ < 1. At γ = 1 all curves overlap due to the fact that any power of 1 is 1
for the injection rate. A larger ε leads to a smaller injection rate γε for γ < 1, which in turn results in higher
fraction of infection in the physical network layer ρ2. For the ε= 3 curve, when γ< 1, injection rate is reduced
so significantly that the fraction of infection ρ2 immediately starts increasing. Therefore the optimum point
for the effect of epidemic mitigation occurs at γ = 1 when ε = 3. For the ε = 2 curve, the injection rate γε is
reduced slower than ε= 3 case, therefore at γ= 0.5 the bottom of curve is reached. For ε= 1.5 curve the bot-
tom is similarly reached at a smaller γ. As the value of ε decreases, the optimum value of γ for the epidemic
mitigation effect also decreases.
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In conclusion, with the knowledge of the exponent in the injection rate γε, we could find a γ that makes the
epidemic mitigation effect by using awareness the best. In reality, this result could help us discovering the
best time scale γ in the social network layer that facilitates the control of an epidemic. When an epidemic
starts spreading in an area, the government or medias could adjust the intensity of news in order to control
the relative time scale γ to a certain extent so that the epidemic is better controlled.

5.8. INFLUENCE OF OVERLAP φ

In addition to the relative time scale γ in the social network layer, in this section we explore the other fun-
damental factor that influences the effect of epidemic mitigation, the overlap φ between two layers in a two-
layer network. We use two-layer scale-free networks as example here, while same phenomena are observed
in two-layer ER-ER networks which is shown in Appendix.B.5.

(a) SF-SF ε= 1,γ= 0.125 (b) SF-SF ε= 1,γ= 0.5

(c) SF-SF ε= 1,γ= 2 (d) SF-SF ε= 1,γ= 8

Figure 5.9: Influence of overlapφ between two layers in two-layer scale-free networks on the fraction of infection in the physical network
ρ2. The injection rate is set to γε with ε= 1. The relative time scale in the social network layer are: (a) γ= 0.125, (b) γ= 0.5, (c) γ= 2, (d)
γ= 8. Parameters we choose here are: β1 = 0.3, δ1 = 0.6, δ2 = 1.0, α= 0.2. The network size is N = 1000. In each scale-free network, the
exponent for the power-law degree distribution is λ= 2.5. Initially 10% randomly chosen nodes are infected. Results are averaged over
200 realizations.

As shown in Fig.5.9, the overlap φ = 1 situation always has a better epidemic mitigation effect compared to
the φ= 0 situation. Keeping in touch with real life friends is beneficial for hindering the epidemic spreading,
since an infected individual could effectively propagate the information about the epidemic to his or her
friends in the physical contact network who indeed need the information to prevent from getting infected
by the infected individual. In different time scales γ, the difference between φ = 1 and φ = 0 is similar. It
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(a) SF-SF ε= 2,γ= 0.125 (b) SF-SF ε= 2,γ= 0.5

(c) SF-SF ε= 2,γ= 2 (d) SF-SF ε= 2,γ= 8

Figure 5.10: Influence of overlapφbetween two layers in two-layer scale-free networks on the fraction of infection in the physical network
ρ2. The injection rate is set to γε with ε= 2. The relative time scale in the social network layer are: (a) γ= 0.125, (b) γ= 0.5, (c) γ= 2, (d)
γ= 8. Parameters we choose here are: β1 = 0.3, δ1 = 0.6, δ2 = 1.0, α= 0.2. The network size is N = 1000. In each scale-free network, the
exponent for the power-law degree distribution is λ= 2.5. Initially 10% randomly chosen nodes are infected. Results are averaged over
200 realizations.
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indicates that the effect of protections against epidemic by using φ= 1 two-layer networks is almost the same
under different time scales γ when the injection rate is γε with ε= 1.

From Fig.5.10, we could see that φ= 1 is still beneficial for impeding epidemic spreading when the injection
rate is γε with ε = 2. Around the epidemic threshold, the φ = 1 is very effective because the few infected
nodes in the physical contact network could inform neighbors in the physical network to take precautions.
However, in the large β2 situation most nodes are infected, therefore the advantage of φ = 1 structure is not
as evident as in small β2.

In conclusion, the structure of two-layer networks is essential for epidemic mitigation. The more overlapped
two-layer networks structure should be suggested to defend a population from an epidemic.



6
CONCLUSION AND FUTURE WORK

6.1. CONCLUSION OF OUR WORKS

In this thesis, we mainly propose and investigate two models for dynamic interacting processes of epidemic
spreading and awareness propagation in two-layer networks to study epidemic mitigation via awareness
propagation. In our models, epidemic spreading in the physical network and awareness propagation in the
social network interacts with each other. Aware individuals have a lower rate to get infected by an epidemic.
The Epidemic and Awareness Interaction Processes (EAIP) model I describes the scenario where individuals
get immediately aware when they get infected by an epidemic. The Epidemic and Awareness Interaction Pro-
cesses (EAIP) model II describes the scenario where infected individuals get aware after some time instead of
immediately get aware. Although the interactions between epidemic spreading and awareness propagation
in two-layer networks make the model much more complicated than the simple viruses spreading in a single
network, they are more realistic and practical for studying real-life processes.

Our focus is to understand how the optimum epidemic mitigation effect could be achieved with awareness
propagation. There are two factors that influence the epidemic mitigation effect: the relative time scale γ

of awareness propagation in the social network layer compared to that in the physical network layer, and
the structure of two-layer networks. We develop Monte-Carol simulations to study the steady state fraction
of infected nodes in different scenarios. In addition, we analytically derive the infected probability and the
aware probability for each node in both models via our original Individual-Based Mean Field Approximation
IBMFA. IBMFA is proved to be an accurate approximation, and outperforms the Microscopic Markov Chain
Approach MMCA, especially around the epidemic threshold in our two-layer networks.

In our EAIP model I, when an individual is infected by an epidemic in the physical network, he or she imme-
diately becomes aware in the social network. In other words, the injection of information from the physical
network layer to the social network layer happens immediately at the moment a node in the physical network
layer is infected. Counter-intuitively, the epidemic mitigation effect becomes worse with rising γ, i.e. the fre-
quent update of information in the social network layer leads to a higher steady state fraction of infection
in the physical network layer. The reason is, the faster information updates in the social network actually
dilute the specific information about the epidemic by other important information when people always get
aware and share the information in the social network layer immediately when they get infected by an epi-
demic. Therefore, people could reduce the frequency of information updates in the social network to achieve
a better epidemic mitigation effect.

53
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In our EAIP model II, we consider the situation that if an individual does not use the social network very
frequently, it takes some time for this individual to get aware in the social network layer. If an individual is very
enthusiastic about socializing online, the chance that he or she updates information in the social network
immediately after getting infected is high. Taking these facts into consideration, we propose a general form of
the injection rateγε which considers different relationships between the injection rate and the time scaleγ. In
this model, an optimum γ for epidemic mitigation is witnessed where the propagation speed of information
is comparable with the spreading speed of the epidemic.

Besides the time scale γ, the structure of two-layer networks is also essential for epidemic mitigation. We have
shown that in both two-layer Erdős-Rényi random networks ER-ER, and in two-layer scale-free networks SF-
SF, a higher overlap extent between two network layers always helps the control of an epidemic. To better
protect people from an epidemic, communication with real life friends in the online social network should
be encouraged.

One challenge in studying two-layer networks where epidemic spreading and awareness propagation inter-
acts with each other is the too many parameters in a model. Therefore we propose these two fundamental
models which are still analytical traceable.

Since we are unable to find detailed data for such two-layer dynamic interacting processes as in the EAIP
model I and the EAIP model II, we propose two models to describe different scenarios. In the future, if some
real life data is found, we could apply our models for such data to analyze the best situation for epidemic
mitigation.

6.2. FUTURE WORKS

In this thesis work, we propose two fundamental models that are analytical traceable to capture the two
key scenarios. Based on our two models, some possible extensions could be carried out with respect to the
following directions:

• It is possible that during a chronic illness like cancer, even though a person has experienced being aware of
the illness and then forgetting about the illness, after some time he might again become aware due to a
new round of treatment, or the illness re-check. Therefore, we could describe this scenario by allowing
possible injections as soon as an individual is infected in the physical network.

• In order to consider the influence of self-conscious of each individual on the recovery of awareness, we
could add a constant value in the awareness recovering rate γδ1.

• Instead of reducing the infection rate from each infected neighbors when an individual is aware as in our
models, we could use adaptive networks that cut off links connected to infected neighbors of an aware
individual. By using adaptive networks, we could describe the scenario where an aware individual stops
meeting with infected friends to prevent from getting infected.

• People would pay more attentions to an epidemic when their real-life friends are infected by the epidemic,
compared to when strangers are infected by the epidemic. Consequently, we could set different aware-
ness propagating rates for the "neighbors are infected" case and the "strangers are infected" case rep-
resenting different importance of the information.
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APPENDIX FOR THE EPIDEMIC AND

AWARENESS INTERACTION PROCESSES

MODEL I

A.1. DERIVATION OF INDIVIDUAL-BASED MEAN FIELD APPROXIMATION IN

EPIDEMIC AND AWARENESS INTERACTION PROCESSES MODEL I

As introduced in the mean-field approximation, the two state Markov chain for the SIS process in one network
layer is characterized by an infinitesimal generator Qi (t ) as

Qi (t ) =
[−qi (t ) qi (t )

δ −δ
]

(A.1)

where qi (t ) is the actual random infection rate for a node i at time t,

qi (t ) =β
N∑

j=1
a j i 1{X j (t )=1} (A.2)

In our two-layer networks, we denote the state Yi (t ) = 1 as node i is aware at time t in the social network layer,
and Yi (t ) = 0 as node i is unaware at time t. Similarly, Xi (t ) = 1 as a node i is infected at time t in the physical
network layer, and Xi (t ) = 0 as the node i is susceptible at time t. Here we consider time-dependent random
variables Ri (t ) = 1{Yi (t )=1} for the social network layer, and Si (t ) = 1{Xi (t )=1} for the physical network layer [24].
Ri (t ) = 1 if Yi (t ) = 1, and Ri (t ) = 0 otherwise. Si (t ) = 1 if Xi (t ) = 1, and Si (t ) = 0 otherwise. The change of
Ri (t ) in an infinitesimal interval ∆t in the social network layer is expressed as

Ri (t +∆t )−Ri (t )

∆t
=−γδ1Ri (t )+ (1−Ri (t ))

(
γβ1

N∑
j=1

a j i 1{Y j (t )=1} + (1−Si (t ))β2

N∑
j=1

b j i 1{X j (t )=1}

)
(A.3)

We explain the equation Equ.A.3 in detail here. Ri (t ) could change from 1 to 0 with the awareness recovering
rate γδ1, which leads to the term −γδ1Ri (t ). When Ri (t ) = 0, i.e. node i is unaware at time t, Ri (t ) could
change to 1 with the sum of two rates:

1. Informed by aware neighbors. For an unaware node i Ri (t ) = 0, it could get alertness of the epidemic from
its aware neighbors in the social network layer. a j i = 1 means node j is a neighbor of node i in the social
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network. If node j is aware, i.e. Y j (t ) = 1, node j would contribute to the actual random infection rate of

node i in the social network by γβ1. These explain the term (1−Ri (t ))
(
γβ1

∑N
j=1 a j i 1{Y j (t )=1}

)
.

2. Injection from the physical network. For an unaware node i Ri (t ) = 0, if it is susceptible at time t Xi (t ) = 0,
in the physical layer node i could get infected by each of its infected neighbors X j (t ) = 1 with a rate β2.
In total the actual rate that node i get infected in the physical network at time t is β2

∑N
j=1 b j i 1{X j (t )=1}.

As we introduced above, in our two-layer network model, when a node is in the US state, and it gets
infected in the physical network layer, the injection of information would happen immediately. As

a consequence, Ri (t ) could change from 0 to 1 with a rate (1−Ri (t ))
(
(1−Si (t ))β2

∑N
j=1 b j i 1{X j (t )=1}

)
because of the injection mechanism.

Similarly, we explain here the change of Si (t ) in an infinitesimal interval ∆t in the physical network layer as
followed.

term −δ2Si (t ). Si (t ) could change from 1 to 0 with an epidemic curing rate δ2 in the physical network layer.

term (1−Si (t )) (1−Ri (t ))β2
∑N

j=1 b j i 1{X j (t )=1}. The rate that a susceptible node i Si (t ) = 0 in the physical
layer gets infected by its infected neighbors depends on the state of node i in the social network layer.
If node i is unaware in the social network (1−Ri (t )), the infection rate that each infected neighbor
X j (t ) = 1 contributes is β2. Summing up the infection rate from all infected neighbors of node i, we get
β2

∑N
j=1 b j i 1{X j (t )=1}.

term (1−Si (t ))Ri (t )αβ2
∑N

j=1 b j i 1{X j (t )=1}. When a susceptible node i Si (t ) = 0 is aware in the social network
Yi (t ) = 1, the rate that node i is infected by any infected neighbors in the physical network is reduced
from β2 to αβ2. Summing up the reduced infection rate from all infected neighbors of node i at time t,
we get αβ2

∑N
j=1 b j i 1{X j (t )=1}.

Consequently, the change of Si (t ) in an infinitesimal interval ∆t in the physical network layer is expressed as

Si (t +∆t )−Si (t )

∆t
=−δ2Si (t )+ (1−Si (t )) ((1−Ri (t ))+Ri (t )α)β2

N∑
j=1

b j i 1{X j (t )=1} (A.4)

Taking the expectation on both sides of Equ.A.3 and Equ.A.4, and denoting ui (t ) = E [Ri (t )] = Pr [Yi (t )] and
vi (t ) = E [Si (t )] = Pr [Xi (t )], we get

ui (t +∆t )−ui (t )

∆t
=−γδ1ui (t )+γβ1

N∑
j=1

a j i v j (t )−E

[
1{Yi (t )=1}γβ1

N∑
j=1

a j i 1{Y j (t )=1}

]
+β2

N∑
j=1

b j i v j (t )

−E

[
1{Xi (t )=1}β2

N∑
j=1

b j i 1{X j (t )=1}

]
−E

[
1{Yi (t )=1}β2

N∑
j=1

b j i 1{X j (t )=1}

]
(A.5a)

+E

[
1{Yi (t )=1} ·1{Xi (t )=0} ·β2

N∑
j=1

b j i 1{X j (t )=1}

]
vi (t +∆t )− vi (t )

∆t
=−δ2vi (t )+β2

N∑
j=1

b j i v j (t )−E

[
1{Yi (t )=1}β2

N∑
j=1

b j i 1{X j (t )=1}

]

+E

[
1{Yi (t )=1}αβ2

N∑
j=1

b j i 1{X j (t )=1}

]
−E

[
1{Xi (t )=1}β2

N∑
j=1

b j i 1{X j (t )=1}

]
(A.5b)

+E

[
1{Xi (t )=1} ·1{Yi (t )=1}β2

N∑
j=1

b j i 1{X j (t )=1}

]

−E

[
1{Xi (t )=1} ·1{Yi (t )=1}αβ2

N∑
j=1

b j i 1{X j (t )=1}

]
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Since there is no self-loop in our two-layer model, ai i = 0 and bi i = 0 are always satisfied. According to Bayes
law, the first remaining expectation in Equ.A.5a, as an example of an expectation with two 1{Yi (t )=1}-like terms
could be written as

E
[

1{Yi (t )=1} ·1{Y j (t )=1}

]
=Pr

[
Yi (t ) = 1,Y j (t ) = 1

]
=Pr

[
Y j (t ) = 1|Yi (t ) = 1

]
Pr [Yi (t ) = 1]

(A.6)

where the conditional probability meets

Pr
[
Y j (t ) = 1|Yi (t ) = 1

]≥ Pr
[
Y j (t ) = 1

]
(A.7)

because adding a condition cannot negatively affect the probability. Similarly, a remaining expectation with
three 1{Yi (t )=1}-like terms in Equ.A.5a could be written as

E
[

1{Yi (t )=1} ·1{Xi (t )=1} ·1{X j (t )=1}

]
=Pr

[
Yi (t ) = 1, Xi (t ) = 1, X j (t ) = 1

]
=Pr

[
Yi (t ) = 1, Xi (t ) = 1|X j (t ) = 1

]
Pr

[
X j (t ) = 1

] (A.8)

In our IBMFA approximation, we assume the independency between the infection states (infected or suscep-
tible) of two neighboring nodes in the physical contact network as in NIMFA, the independency between the
awareness states (aware or unaware) of two neighboring nodes in the social network, and the independency
between the infection state and the awareness state of the same node though the injection has been taken
into account.

Applying our assumption to Equ.A.5, we rewrite Equ.A.7 as

Pr
[
Y j (t ) = 1|Yi (t ) = 1

]= Pr
[
Y j (t ) = 1

]
(A.9)

Equ.A.6 becomes

E
[

1{Yi (t )=1} ·1{Y j (t )=1}

]
= Pr

[
Y j (t ) = 1

]
Pr [Yi (t ) = 1] = u j (t )ui (t ) (A.10)

With the same principle, Equ.A.8 is rewritten as

E
[

1{Yi (t )=1} ·1{Xi (t )=1} ·1{X j (t )=1}

]
=Pr [Yi (t ) = 1, Xi (t ) = 1]Pr

[
X j (t ) = 1

]
=Pr [Yi (t ) = 1|Xi (t ) = 1]Pr

[
X j (t ) = 1

]
=Pr [Yi (t ) = 1]Pr [Xi (t ) = 1]Pr

[
X j (t ) = 1

]
=ui (t )vi (t )v j (t )

(A.11)

Other remaining expectations in Equ.A.5 could be rewritten the same way as Equ.A.10 and Equ.A.11. After
rewriting all remaining expectations, Equ.A.5 becomes

dui (t )

d t
=−γδ1ui (t )+ (1−ui (t ))

(
N∑

j=1
a j iγβ1u j (t )+ (1− vi (t ))

N∑
j=1

bi jβ2v j (t )

)
(A.12a)

d vi (t )

d t
=−δ2vi (t )+ (1− vi (t ))

(
N∑

j=1
b j i (ui (t )α+ (1−ui (t )))β2v j (t )

)
(A.12b)

This is the derivation of IBMFA equations in our EAIP model I.

A.2. DERIVATION OF THE EPIDEMIC THRESHOLD τc IN THE MMCA

In the MMCA, we could calculate the epidemic threshold τc in the physical network layer as a function of the
rest of parameters in the system [1]. Probability that node i is infected in the steady state is

p I
i = pU I

i +p AI
i (A.13)
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Similar to Equ.4.5, p I
i could be rewritten by adding Equ.4.8b and 4.8d as

p I
i = p I

i (1−δ2)+pU S
i

(
1−qU

i

)+p AS
i

(
1−q A

i

)
(A.14)

Near the epidemic threshold τc , probability that nodes are infected is close to 0, i.e. p I
i = εi ¿ 1. In this

situation, Equ.4.7b and 4.7c are written as

qU
i ≈1−β2

∑
j

b j i ε j = 1−σi

q A
i ≈1−αβ2

∑
j

b j i ε j = 1−ασi
(A.15)

where
σi =β∗

2

∑
j

b j i ε j (A.16)

Then Equ.A.14 becomes
εi = pU I

i +p AI
i =εi

(
1−δ∗2

)+pU S
i σi +p AS

i ασi

≈εi
(
1−δ∗2

)+pU
i σi +p A

i ασi
(A.17)

The approximately equal is because p I
i ≈ 0, so pU

i ≈ pU S
i , and p A

i ≈ p AS
i . Replacing σi in Equ.A.17, we have

εi = εi
(
1−δ∗2

)+ (
pU

i +p A
i α

)
β∗

2

∑
j

b j i ε j (A.18)

which equals to ∑
j

[
β∗

2

(
pU

i +p A
i α

)
b j i −δ∗2 ei j

]= 0 (A.19)

ei j is an element of an identity matrix, i.e. {ei j = 1, i = j }, and {ei j = 0, i 6= j }. We define the matrix H with
elements

hi j =
(
pU

i +p A
i α

)
b j i (A.20)

Non-trivial solutions of Equ.A.19 are eigenvectors of H, whose largest real eigenvalues are equal to δ∗2 /β∗
2 .

Therefore, the epidemic threshold τc =β∗
2 /δ∗2 in the physical network layer is given by

τc = β2

δ2
= β∗

2

δ∗2
= 1∧

max (H)
(A.21)

A.3. COMPARISON OF THE ACCURACY OF THE IBMFA AND THE MMCA

In this section, we plot figures Fig.A.1 to compare the accuracy between the IBMFA and the MMCA in the
overlap φ= 0 situation.

A.4. INVESTIGATE THE INFLUENCE OF TIME SCALE γ IN THE IBMFA AND THE

MMCA

In this section we study the effectiveness of our theoretical analysis methods, i.e. the IBMFA and the MMCA.
We plot figures that is comparable with our simulation results as in Fig.4.4 and Fig.4.5. For the IBMFA equa-
tions, we achieved the upper bound from Equ.4.14, and the lower bound from normal IBMFA equation
Equ.4.2 with γ= 0.

As shown in Fig.A.2, all phenomena that we observed in Monte-Carol simulations could be observed in IBMFA
results. As the time scale γ increases, the effect of epidemic mitigation through awareness propagation gets
worse, and when γ= 16 the curve is very close to the upper bound.
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(a) ER-ER φ= 0, γ= 1 (b) SF-SF φ= 0, , γ= 1

Figure A.1: Compare the accuracy between Monte-Carol simulations, the IBMFA approximation and the MMCA approximation under
the same set of parameters. Two-layer Erdős-Rényi random networks with overlap φ= 0, and two-layer scale-free networks with overlap
φ= 0 are used. Parameters we choose here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5, γ = 1. The network size is N = 1000. For
Erdős-Rényi random networks, the average degree E [d ] = 4. For scale-free networks, the exponent in the power-law degree distribution
is λ= 2.5.

(a) ER-ER φ= 1 (b) SF-SF φ= 1

Figure A.2: Effect of time scales γ on the epidemic spreading in two-layer networks by IBMFA equations. X axis is the infection rate on
each link in the physical networkβ2, and y axis is the fraction of infection in the physical network in the steady state ρ2. Two-layer Erdős-
Rényi random network with an overlap extent φ= 1, and two-layer scale-free network with the overlap extent φ= 1 are used. Parameters
we use here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5. The network size is N = 1000. For Erdős-Rényi random networks, the
average degree E [d ] = 4. For each scale-free network, the exponent in the power-law degree distribution is λ= 2.5. Initially, all nodes are
aware and infected (AI). Results are averaged over 10 realizations.
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For MMCA equations, we were unable to achieve the upper bound due to the fact that probabilities in Equ.4.7
cannot be larger than 1. We got the lower bound by setting γ= 0.

(a) ER-ER φ= 1 (b) SF-SF φ= 1

Figure A.3: Effect of time scales γ on the epidemic spreading in two-layer networks by MMCA equations. The x axis is the infection rate
on each link in the physical network β2, and the y axis is the fraction of infection in the physical network in the steady state ρ2. Two-layer
Erdős-Rényi random networks with the overlap extent φ = 1, and two-layer scale-free networks with the overlap extent φ = 1 are used.
Parameters we use here are as followed: β1 = 0.3,δ1 = 0.6,δ2 = 1.0,α = 0.5. The network size is N = 1000. For Erdős-Rényi random
networks, the average degree E [d ] = 4. For scale-free networks, the exponent in the power-law degree distribution is λ= 2.5. Initially, all
nodes are aware and infected (AI). Results are averaged over 10 realizations.

From Fig.A.3, we could see that the MMCA also works well for our model. Observations for the changes in the
epidemic mitigation effect with γ from Monte-Carol simulations could also be observed in the MMCA.
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B.1. DERIVATION OF INDIVIDUAL-BASED MEAN FIELD APPROXIMATION I IN

EPIDEMIC AND AWARENESS INTERACTION PROCESSES MODEL II

We consider time-dependent random variables Ri (t ) = 1{Yi (t )=1} for social network layer, and SS
i (t ) = 1{X S

i (t )=1},

S I I
i (t ) = 1{X I I

i (t )=1} and S I N
i (t ) = 1{X I N

i (t )=1} for physical network layer. The change of Ri (t ) in infinitesimal

interval ∆t in social network layer is expressed as

Ri (t +∆t )−Ri (t )

∆t
=−γδ1Ri (t )+ (1−Ri (t ))

(
γβ1

N∑
j=1

a j i 1{Y j (t )=1}

)
+γεS I I

i (t ) (B.1)

Ri (t ) = 1 indicates that node i is aware at time t, so Ri (t ) could change from 1 to 0 with awareness recovering
rate γδ1, which leads to the term −γδ1Ri (t ). When Ri (t ) = 0, i.e. node i is unaware at time t, Ri (t ) could
change to 1 in two ways.

1. First way is that node i gets aware from aware neighbors in the social network layer. If a neighbor of
node i is node j, and node j is aware Yi (t ) = 1, node j contributes to infection rate of node i by γβ1.

Getting awareness from neighbors leads to the term (1−Ri (t ))
(
γβ1

∑N
j=1 a j i 1{Y j (t )=1}

)
.

2. Second way is, node i get aware by injection from physical network layer. Injection requires S I I
i (t ) = 1

in physical network layer. When S I I
i (t ) = 1, from dynamic processes we defined in two-layer network

model 2, Ri (t ) = 0 is certainly met, i.e. Pr
[
Ri (t ) = 0 | S I I

i (t ) = 1
] = 1. Considering injection rate γε, we

reach the term γεS I I
i (t ) .

Similarly for physical contact layer, there are three terms for change of SS
i (t ) which are listed as followed.

61
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term δ2
(
S I I

i (t )+S I N
i (t )

)
. If node i is infected (S I I

i (t ) = 1 or S I N
i (t ) = 1) at time t, node i has recovery rate δ2 in

physical network layer. In this case (S I I
i (t ) = 1 or S I N

i (t ) = 1), SS
i (t ) = 0 is self satisfied.

term −SS
i (t )Ri (t )αβ2

∑N
j=1 b j i 1{X I I

j (t )=1⊕X I N
j (t )=1}. An aware and susceptible (AS) node i SS

i (t ) = 1, Ri (t ) = 1

could be infected by each of its infected neighbors X I I
j (t ) = 1 or X I N

i (t ) = 1 with rate αβ2.

term −SS
i (t ) (1−Ri (t ))β2

∑N
j=1 b j i 1{X I I

j (t )=1⊕X I N
j (t )=1}. An unaware and susceptible node i SS

i (t ) = 1 and Ri (t ) =
0 might get infection from each of its infected neighbors X I I

j (t ) = 1 or X I N
j (t ) = 1 with rate β2.

In conclusion, change of SS
i (t ) in infinitesimal interval ∆t is expressed in equation

SS
i (t +∆t )−SS

i (t )

∆t
=δ2

(
S I I

i (t )+S I N
i (t )

)−SS
i (t )Ri (t )αβ2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

−SS
i (t ) (1−Ri (t ))β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

(B.2)

Terms for the change of S I I
i (t ) are:

term −S I I
i (t )δ2. An II node i at time t S I I

i (t ) = 1 could be recovered and become susceptible in physical net-
work with rate δ2.

term −S I I
i (t )γε. An II node i at time t is certainly unaware. It could become aware via injection from physical

network layer with injection rate γε. After injection, in physical layer II state goes to IN state.

term −S I I
i (t )γβ1

∑N
j=1 a j i 1{Y j (t )=1}. Node i in II state S I I

i (t ) = 1 could also get awareness from aware neigh-
bors. After getting aware, node i goes to IN state.

term SS
i (t ) (1−Ri (t ))β2

∑N
j=1 b j i 1{X I I

j (t )=1⊕X I N
j (t )=1}. When S I I

i (t ) = 0, node i is either susceptible, or in IN

state in physical network layer. IN state cannot directly go to II state, therefore we only consider sus-
ceptible state here, i.e. SS

i (t ) = 1. In this case, if in social network layer node i is unaware Ri (t ) = 0, node
i could get infected with infection rate β2 from each of its infected neighbors in physical network, and
becomes II state.

Thus change of S I I
i (t ) in infinitesimal interval ∆t is expressed as

S I I
i (t +∆t )−S I I

i (t )

∆t
=−S I I

i (t )δ2 −S I I
i (t )γε−S I I

i (t )γβ1

N∑
j=1

a j i 1{Y j (t )=1}

+SS
i (t ) (1−Ri (t ))β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

(B.3)

Similarly, node i could leave IN state with rate δ2 and become susceptible, meanwhile S state as well as II state
could change to IN state. Change of S I N

i (t ) in infinitesimal interval ∆t is

S I N
i (t +∆t )−S I N

i (t )

∆t
=−S I N

i (t )δ2 +S I I
i (t )γε+S I I

i (t )γβ1

N∑
j=1

a j i 1{Y j (t )=1}

+SS
i (t )Ri (t )αβ2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

(B.4)
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We take expectation on both sides of Equ.B.1, B.2, B.3 and B.4, and denote

ui (t ) =E [Ri (t )] = Pr [Yi (t ) = 1]

vS
i (t ) =E

[
SS

i (t )
]= Pr

[
X S

i (t ) = 1
]

v I I
i (t ) =E

[
S I I

i (t )
]= Pr

[
X I I

i (t ) = 1
]

v I N
i (t ) =E

[
S I N

i (t )
]= Pr

[
X I N

i (t ) = 1
] (B.5)

We could take expectation on both sides and derive

ui (t +∆t )−ui (t )

∆t
=−γδ1ui (t )+γβ1

N∑
j=1

a j i u j −E

[
1{Yi (t )=1}γβ1

N∑
j=1

a j i 1{Y j (t )=1}

]
+γεv I I

i (t ) (B.6a)

vS
i (t +∆t )− vS

i (t )

∆t
=δ2

(
v I I

i (t )+ v I N
i (t )

)−E

[
1{X S

i (t )=1} ·1{Yi (t )=1} ·αβ2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]

−E

[
1{X S

i (t )=1}β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]

+E

[
1{X S

i (t )=1} ·1{Yi (t )=1} ·β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]
(B.6b)

v I I
i (t +∆t )− v I I

i (t )

∆t
=− v I I

i (t )
(
δ2 +γε

)−E

[
1{X I I

i (t )=1}γβ1

N∑
j=1

a j i 1{Y j (t )=1}

]

+E

[
1{X S

i (t )=1}β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]

−E

[
1{X S

i (t )=1} ·1{Yi (t )=1} ·β2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]
(B.6c)

v I N
i (t +∆t )− v I N

i (t )

∆t
=− v I N

i (t ) (δ2)+ v I I
i (t )

(
γε

)+E

[
1{X I I

i (t )=1}γβ1

N∑
j=1

a j i 1{Y j (t )=1}

]

+E

[
1{X S

i (t )=1}αβ2

N∑
j=1

b j i 1{X I I
j (t )=1⊕X I N

j (t )=1}

]
(B.6d)

Since II and IN states are exclusive states,

E

[
1{X I I

j (t )=1⊕X I N
j (t )=1}

]
=Pr

[
X I I

j (t ) = 1∪X I N
j (t ) = 1

]
=Pr

[
X I I

j (t ) = 1
]
+Pr

[
X I N

j (t ) = 1
] (B.7)

By assuming independency between the infection states (infected or susceptible) of two neighboring nodes
in the physical contact network as in NIMFA, the independency between the awareness states (aware or un-
aware) of two neighboring nodes in the social network, and the independency between the infection state
and the awareness state of the same node though the injection has been taken into account, according to
Bayes law we have

E
[

1{X S
i (t )=1} ·1{Yi (t )=1}

]
=Pr

[
X S

i (t ) = 1,Yi (t ) = 1
]

=Pr
[

X S
i (t ) = 1

]
Pr

[
Yi (t ) = 1|X S

i (t ) = 1
]

=Pr
[

X S
i (t ) = 1

]
Pr [Yi (t ) = 1]

=vS
i (t )ui (t )

(B.8)
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With the same principle, we could rewrite all remaining expectations in Equ.B.6 as

dui (t )

d t
=−γδ1ui (t )+ (1−ui (t ))γβ1

N∑
j=1

a j i u j (t )+γεv I I
i (t ) (B.9a)

d vS
i (t )

d t
=− vS

i (t )

(
[ui (t )α+ (1−ui (t ))]β2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
+δ2

(
v I I

i (t )+ v I N
i (t )

)
(B.9b)

d v I I
i (t )

d t
=− v I I

i (t )

(
δ2 +γε+γβ1

N∑
j=1

a j i u j (t )

)
+ vS

i (t ) (1−ui (t ))

(
β2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
(B.9c)

d v I N
i (t )

d t
=−δ2v I N

i (t )+ vS
i (t )ui (t )

(
αβ2

N∑
j=1

b j i

(
v I I

j (t )+ v I N
j (t )

))
+ v I I

i (t )

(
γε+γβ1

N∑
j=1

a j i u j (t )

)
(B.9d)

Equ.5.1 is the final IBMFA equation for our two-layer network model 2. Four differential equations need to be
solved for each node i within totally N = 1000 nodes in a two-layer network. Write Equ.5.1 in matrix format,
with U (t ) representing a column vector with N = 1000 elements ui (t ), i ∈ [1,1000], and similarly V S (t ), V I I (t )
and V I N (t ), we get

dU (t )

d t
=−γδ1U (t )+di ag (u −U (t ))γβ1 AU (t )+γεV I I (t ) (B.10a)

dV S (t )

d t
=−di ag

(
V S (t )

)(
di ag [U (t )α+ (u −U (t ))]β2B

(
V I I (t )+V I N (t )

))+δ2
(
V I I (t )+V I N (t )

)
(B.10b)

dV I I (t )

d t
=−di ag

(
V I I (t )

)(
δ2u +γεu +γβ1 AU (t )

)
+di ag

(
V S (t )

)
di ag ((u −U (t )))

(
β2B

(
V I I (t )+V I N (t )

))
(B.10c)

dV I N (t )

d t
=−δ2V I N (t )+di ag

(
V S (t )

)
di ag (U (t ))

(
αβ2B

(
V I I (t )+V I N (t )

))
+di ag

(
V I I (t )

)(
γεu +γβ1 AU (t )

)
(B.10d)

where u is all 1 column vector with N = 1000 elements. In steady state, dU (t )
d t = 0, dV S (t )

d t = 0, dV I I (t )
d t = 0 and

dV I N (t )
d t = 0. Still, we are interested in meta-stable state of the system.

B.2. DERIVATION OF THE EPIDEMIC THRESHOLD τc IN THE MMCA

Similar to Equ.A.21, we derive epidemic threshold τc in the physical network layer as a function of the rest of
parameters in the system in the steady state. The probability that node i is infected in the steady state is

p I
i = pU I N

i +pU I I
i +p AI

i (B.11)

By adding Equ.5.9b, 5.9c and 5.9e, we get

p I
i = p I

i (1−δ2)+pU S
i

(
1−qU

i

)+p AS
i

(
1−q A

i

)
(B.12)

Near the epidemic threshold τc , probability that nodes are infected is close to 0, i.e. p I
i = εi ¿ 1. In this

situation, Equ.5.8b and 5.8c are written as

qU
i ≈1−β2

∑
j

b j i ε j = 1−σi

q A
i ≈1−αβ2

∑
j

b j i ε j = 1−ασi
(B.13)

where
σi =β∗

2

∑
j

b j i ε j (B.14)
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Then Equ.B.12 becomes

εi = pU I N
i +pU I I

i +p AI
i =εi

(
1−δ∗2

)+pU S
i σi +p AS

i ασi

≈εi
(
1−δ∗2

)+pU
i σi +p A

i ασi
(B.15)

The approximately equal is because p I
i ≈ 0, so pU

i ≈ pU S
i , and p A

i ≈ p AS
i . Replace σi in Equ.A.17, we have

εi = εi
(
1−δ∗2

)+ (
pU

i +p A
i α

)
β∗

2

∑
j

b j i ε j (B.16)

which equals to ∑
j

[
β∗

2

(
pU

i +p A
i α

)
b j i −δ∗2 ei j

]= 0 (B.17)

ei j is element of an identity matrix, i.e. {ei j = 1, i = j }, and {ei j = 0, i 6= j }. We define matrix H with elements

hi j =
(
pU

i +p A
i α

)
b j i (B.18)

Non-trivial solutions of Equ.B.17 are eigenvectors of H, whose largest real eigenvalues are equal to δ∗2 /β∗
2 .

Therefore, epidemic threshold τc =β∗
2 /δ∗2 in physical network layer is given by

τc = β2

δ2
= β∗

2

δ∗2
= 1∧

max (H)
(B.19)

B.3. INVESTIGATE THE INFLUENCE OF TIME SCALE γ WITH IBMFA AND MMCA

In Fig.B.1, we could see that for in Both IBMFA equations in Fig.B.1(a) and Fig.B.1(b), and MMCA equations
in Fig.B.1(c) in the range γ= 1/8 to γ= 8, fraction of infection ρ2 increases monotonously with time scale γ,
which is the same as our result in Monte-Carol simulation as shown in Fig.5.4. Position of upper bound which
we achieve from Equ.5.12 is also in the same position as in Fig.5.4. Difference between curves in MMCA is a
little larger than IBMFA equations.

As shown in Fig.B.2, the difference between curves in IBMFA equations in Fig.B.2(a) and Fig.B.2(b) is not so
evident as in Monte-Carol simulation. Optimum effect of epidemic mitigation via awareness propagation
could be observed at around γ = 1 when injection rate is γε with ε = 2, instead of at γ = 0.5 as in Monte-
Carol simulations. MMCA solutions in Fig.B.2(c) still shows larger difference between curves, while γ= 0.125,
γ = 0.25 and γ = 0.5 curves are almost overlapped together. It seems that fraction of infection ρ2 in MMCA
Fig.B.2(c) is in monotonic relationship with time scale γ even though ε= 2. We could say that the optimum γ

is not very accurate in both IBMFA and MMCA equations.

B.4. INFLUENCE OF THE TIME SCALE γ IN TWO-LAYER ERDŐS-RÉNYI (ER)
RANDOM NETWORKS

From figures Fig.B.3 and Fig.B.4, we could see that same observations for epidemic mitigation under different
values of γ are achieved in ER-ER networks as in SF-SF networks.

B.5. INFLUENCE OF OVERLAP φ IN TWO-LAYER ERDŐS-RÉNYI (ER) RANDOM

NETWORKS

Here we plot figures Fig.B.5 and Fig.B.6 to study the influence of overlap φ for two-layer ER-ER networks.
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(a) IBMFA equation Equ.5.2 with ε= 1 (b) IBMFA equation Equ.5.10 with ε= 1

(c) MMCA equation Equ.B.12 with ε= 1

Figure B.1: Result of three theoretical approximations, (a) IBMFA equation Equ.5.2, (b) IBMFA equation 2 Equ.B.13 and (c) MMCA equa-
tions Equ.B.12. Injection rate is set to be γε where ε = 1. Two-layer scale-free networks SF-SF with overlap φ = 1 is used here. Other
parameters we chose here are: β1 = 0.3,δ1 = 0.6,β2 = 1.0,δ2 = 1.0,α = 0.2. Network size is N = 1000. For each scale-free network, the
exponent of power-law degree distribution is λ= 2.5. Solutions are averaged over 10 independently generated two-layer networks.
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(a) IBMFA equation Equ.5.2 with ε= 2 (b) IBMFA equation Equ.5.10 with ε= 2

(c) MMCA equation Equ.B.12 with ε= 2

Figure B.2: Result of three theoretical approximations, (a) IBMFA equation Equ.5.2, (b) IBMFA equation 2 Equ.5.6 and (c) MMCA equa-
tions Equ.5.9. Injection rate is set to be γε where ε = 2. Two-layer scale-free networks SF-SF with overlap φ = 1 is used here. Other
parameters we chose here are: β1 = 0.3,δ1 = 0.6,β2 = 1.0,δ2 = 1.0,α = 0.2. Network size is N = 1000. For each scale-free network, the
exponent of power-law degree distribution is λ= 2.5. Solutions are averaged over 10 independently generated two-layer networks.
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Figure B.3: The Effect of time scales γ on epidemic spreading in two-layer networks ER-ER with the overlap φ = 1. The x axis is the
infection spreading rate β2, and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and
here we set the value ε= 1, i.e. the injection rate is linearly related to the time scale γ. Other parameters used in this figure are: β1 = 0.3,
δ1 = 0.6, δ2 = 1.0, α = 0.2. The network size is N = 1000. For an Erdős-Rényi (ER) random network, the average degree is E [d ] = 4.
Initially, 10% of randomly chosen nodes are unaware and infected (UII). The rest of nodes are unaware and susceptible (US). Results are
averaged over 200 realizations.

Figure B.4: The Effect of time scales γ on epidemic spreading in two-layer networks ER-ER with the overlap φ = 1. The x axis is the
infection spreading rate β2, and the y axis is the steady state fraction of infection in the physical network ρ2. The injection rate is γε, and
here we set the value ε= 2. Other parameters used in this figure are: β1 = 0.3, δ1 = 0.6, δ2 = 1.0, α= 0.2. The network size is N = 1000. For
an Erdős-Rényi (ER) random network, the average degree is E [d ] = 4. Initially, 10% of randomly chosen nodes are unaware and infected
(UII). The rest of nodes are unaware and susceptible (US). Results are averaged over 200 realizations.
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(a) ER-ER ε= 1,γ= 0.125 (b) ER-ER ε= 1,γ= 0.5

(c) ER-ER ε= 1,γ= 2 (d) ER-ER ε= 1,γ= 8

Figure B.5: Influence of overlap φ between two layers in two-layer Erdős-Rényi (ER) random networks on the fraction of infection in
the physical network ρ2. The injection rate is set to γε with ε = 1. The relative time scale in the social network layer are: (a) γ = 0.125,
(b) γ = 0.5, (c) γ = 2, (d) γ = 8. Parameters we choose here are: β1 = 0.3, δ1 = 0.6, δ2 = 1.0, α = 0.2. The network size is N = 1000. In
each Erdős-Rényi (ER) random network, the average degree is E [d ] = 4. Initially 10% randomly chosen nodes are infected. Results are
averaged over 200 realizations.
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(a) SF-SF ε= 2,γ= 0.125 (b) SF-SF ε= 2,γ= 0.5

(c) SF-SF ε= 2,γ= 2 (d) SF-SF ε= 2,γ= 8

Figure B.6: Influence of overlap φ between two layers in two-layer Erdős-Rényi (ER) random networks on the fraction of infection in
the physical network ρ2. The injection rate is set to γε with ε = 2. The relative time scale in the social network layer are: (a) γ = 0.125,
(b) γ = 0.5, (c) γ = 2, (d) γ = 8. Parameters we choose here are: β1 = 0.3, δ1 = 0.6, δ2 = 1.0, α = 0.2. The network size is N = 1000. In
each Erdős-Rényi (ER) random network, the average degree is E [d ] = 4. Initially 10% randomly chosen nodes are infected. Results are
averaged over 200 realizations.
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