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NASA’s ACS3 mission aims to be the first Earth-bound solar sail to execute calibration steering laws for in-orbit 
estimation of solar-sail acceleration parameters. To maximise the mission’s scientific return, this study identifies 
the physical effects to include in the dynamical model, the solar-sail acceleration parameters observable from 
flight data, and the uncertainties to consider during the orbit determination process. The sensitivity of the solar-

sail dynamics to perturbations, model uncertainties, and sail-attitude errors is investigated by 1) comparing a 
reference orbit with modified orbits, each altered in a single dynamical aspect, and 2) evaluating the accuracy 
of modified models in reconstructing the reference orbit through iterative initial state adjustments.

For the one-sigma 10-meter observation noise level of the ACS3 mission and a seven-day arc, results indicate 
that higher-order lunar perturbations, planetary third-body effects, and relativistic corrections can be omitted 
from the dynamical model. Additionally, the geopotential expansion may be limited to degree and order 32. In 
contrast, the dynamics should include the effects of solid Earth tides, account for the instantaneous Sun-sailcraft 
distance in the solar radiation pressure model, and assume imperfect reflection from the sail surface in the solar 
and planetary radiation pressure models. Furthermore, the analysis reveals varying levels of observability for the 
sail optical coefficients, with frontside reflectivity and specularity showing the strongest influence on the solar-

sail dynamics. Finally, systematic attitude errors and uncertainties in atmospheric density and accommodation 
coefficients are the most challenging factors to absorb through initial state adjustment, potentially complicating 
the estimation of solar-sail acceleration parameters.

1. Introduction

Solar sailing is a propulsion system that uses solar radiation pressure 
(SRP) exerted on a thin, lightweight sail to generate thrust. This propel-

lantless technology has attracted significant interest for a wide range of 
applications, spanning Earth-bound, interplanetary, and even interstel-

lar missions [1,2]. Over the past decade, several technology demonstra-

tor missions have advanced solar-sail technology. These include IKAROS 
by JAXA (2010), NanoSail-D2 by NASA (2010), and LightSail 1 and 2 
by The Planetary Society (2015, 2019) [3,4]. Continuing to push the 
boundaries of this technology, NASA launched the Advanced Compos-

ite Solar Sail System (ACS3) mission on April 23, 2024 [5].

ACS3 serves as a sail-deployment demonstrator and aims to be the 
first sailcraft to execute calibration steering laws. These steering laws are 
attitude control profiles designed to isolate the different contributions 
that make up the solar-sail acceleration, particularly SRP, planetary ra-

diation pressure (PRP), and aerodynamic effects. Through the in-orbit 
estimation of parameters governing these accelerations, the calibration 
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laws facilitate the acquisition of valuable data for improving current 
solar-sail acceleration models. This improvement is particularly crucial 
for solar sails in Earth-bound orbits, where factors such as albedo, black-

body radiation, solar-cycle variability, and sail degradation have yet to 
be thoroughly investigated.

Despite extensive research on solar-sail behaviour around Earth, the 
majority of studies focus on trajectory optimisation in simplified dy-

namical environments. For instance, Carzana et al. [6] examined the 
effects of solar-cycle variability on locally optimal control laws for ideal 
sails, considering atmospheric drag and Earth’s oblateness while ne-

glecting PRP acceleration. Other works developed optimal steering laws 
for ideal solar sails under blackbody and albedo radiation pressure but 
overlooked the effects of higher-order Earth gravity, third-body per-

turbations, and atmospheric drag [7,8]. Studies that employed a more 
realistic optical flat-sail model generally restrict their dynamics to grav-

itational perturbations only [9–11]. Recent literature [12–14] has also 
examined various sail deformation factors: surface roughness, creases 
from folding and deployment, crinkles from mechanical processing, 
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wrinkles from localised compressive stress, and billowing from man-

ufacturing errors, thermal gradients, or incorrect boom deployment. 
These studies demonstrate that deviations from a flat-plate geometry 
can affect both the magnitude and direction of the sail acceleration, yet 
without addressing their impact on the solar-sail orbital dynamics in 
perturbed environments. This fragmented approach, while valuable for 
isolating individual effects, falls short of providing a comprehensive un-

derstanding of solar-sail dynamics in the highly perturbed near-Earth 
environment. The present study addresses this gap by investigating the 
sensitivity of the ACS3 solar-sail dynamics to various perturbations, 
model uncertainties, and sail-attitude errors. While modelling the ac-

tual geometry of a deployed sail is beyond the scope of this work, the 
sensitivity analysis addresses factors that can mimic deviations from the 
flat-plate behaviour and can provide insights into their effects on the 
sail’s orbital evolution. This sensitivity analysis is also the necessary first 
step in the overall investigation of the ACS3 mission, as it will directly 
inform future studies exploring the capabilities of calibration steering 
laws to estimate solar-sail acceleration parameters.

The behaviour of the solar-sail dynamics is analysed over a seven-

day window, representing the maximum flight time allocated to each 
candidate calibration steering law in ACS3 mission planning. One of 
these laws, referred to as backside nadir pointing, corresponds to ACS3’s 
standby mode. This calibration law orients the sail with its back facing 
Earth and perpendicular to the orbit radial direction, ensuring optimal 
contact with ground stations since the antennas are placed on the back 
of the sailcraft bus. Given its guaranteed implementation in the mis-

sion, the backside nadir pointing calibration steering law serves as the 
nominal attitude profile examined in this study.

The sensitivity analysis relies on two complementary approaches. In 
the first, a high-fidelity reference orbit, propagated using a reference 
acceleration model, is compared with so-called modified orbits. These 
modified orbits are propagated using acceleration models that deviate 
from the reference one in a single aspect. The differences between the 
reference orbit and each modified orbit are referred to as pre-fit resid-

uals. The second approach simulates ideal three-dimensional position 
observations using the reference acceleration model. These observa-

tions, combined with each modified acceleration model, feed into a 
least-squares orbit determination algorithm. This algorithm iteratively 
adjusts the sailcraft’s initial state to compute a new, fitted orbit that 
minimises deviations from the reference orbit. These deviations are de-

fined as post-fit residuals. By simulating the sailcraft dynamics under 
diverse conditions and analysing the resulting pre-fit and post-fit resid-

uals, this work helps to determine the key factors affecting the solar-sail 
orbital evolution and evaluate the robustness of the dynamical model 
to uncertainties and errors. Specifically, the sensitivity analysis identi-

fies potential model simplifications having a negligible impact on the 
accuracy of the orbit solution, highlights uncertainties requiring careful 
consideration during orbit determination, and indicates the solar-sail ac-

celeration parameters best suited for estimation from flight data. To the 
best of the authors’ knowledge, this study represents the first compre-

hensive sensitivity analysis of its kind applied specifically to solar-sail 
dynamics, offering invaluable insights for ACS3 mission analysis and 
laying the groundwork for improved, flight-data-driven models that can 
more accurately predict solar-sail trajectories and performance.

The paper is structured as follows: Section 2 provides a description 
of the dynamical models governing the solar-sail dynamics. Section 3
presents the two-step approach employed for the sensitivity analysis, 
followed by Section 4, which describes the simulation setup used to gen-

erate the results. Section 5 provides the results of the sensitivity analysis, 
along with a discussion of their implications for the ACS3 mission. Fi-

nally, Section 6 offers a summary of the overall conclusions.

2. Dynamical models

The dynamics of ACS3 are described in an Earth-centred inertial 
(ECI) reference frame 𝐼(�̂�I , �̂�I , �̂�I). In this frame, the �̂�I -axis points north 

in the direction of Earth’s rotation axis, the �̂�I �̂�I -plane coincides with 
Earth’s equatorial plane, the �̂�I -axis aligns with the mean vernal equinox 
at January 1st, 2000, and the �̂�I -axis completes the right-handed system. 
Unless explicitly stated otherwise, all vectors and equations in this paper 
are expressed in the ECI frame. The equation of motion is given by:

�̈� = 𝒂𝑔𝑟𝑎𝑣 + 𝒂𝑎𝑒𝑟𝑜 + 𝒂SRP + 𝒂PRP (1)

where 𝒓 denotes the sailcraft position vector, and the overhead dot nota-

tion indicates differentiation with respect to time. The term 𝒂𝑔𝑟𝑎𝑣 repre-

sents the acceleration due to gravitational interactions of 𝑁 bodies, 𝒂𝑎𝑒𝑟𝑜

denotes the aerodynamic acceleration, and 𝒂SRP and 𝒂PRP represent the 
accelerations due to solar radiation pressure and planetary radiation 
pressure, respectively. The following subsections detail the models used 
to characterise each of these acceleration components.

2.1. Gravitational acceleration

To accurately model the gravitational acceleration, 𝒂𝑔𝑟𝑎𝑣, the gravi-

tational potentials of relevant bodies need to be defined. This potential-

based approach captures central body and third-body interactions, ad-

dressing both point mass and extended body characteristics, as well as 
tidal perturbations, while relativistic effects are incorporated as addi-

tional corrective terms.

The gravitational potential of body 𝑖, evaluated at point 𝑗, 𝑈𝑖(𝒓𝑗 ), can 
be decomposed into a point mass contribution 𝑈𝚤(𝒓𝑗 ), and an extended 
body contribution 𝑈𝚤(𝒓𝑗 ):

𝑈𝑖(𝒓𝑗 ) =𝑈𝚤(𝒓𝑗 ) +𝑈𝚤(𝒓𝑗 ) (2)

The potential of the point-mass gravity field is given by:

𝑈𝚤(𝒓𝑗 ) =
𝜇𝑖

𝒓𝑖𝑗
(3)

where 𝜇𝑖 is the gravitational parameter of body 𝑖, and 𝒓𝑖𝑗 = 𝒓𝑗 − 𝒓𝑖 rep-

resents the position vector from the centre of mass of body 𝑖 to point 
𝑗.

The extended body contribution, which accounts for any deviation 
in the spherical mass distribution of body 𝑖, is expressed using spherical 
harmonics [15]:

𝑈𝚤(𝒓𝑗 ) =
∞ ∑
𝑙=1 

𝑙∑
𝑚=0

𝑈𝑖,𝑙𝑚(𝒓𝑖𝑗 ) (4)

𝑈𝑖,𝑙𝑚(𝒓𝑖𝑗 ) = 𝜇𝑖

𝑅𝑙
𝑒,𝑖

𝑟 𝑙+1
𝑖𝑗

𝑃𝑙𝑚 (sin𝜙𝑖𝑗 ) 
(
�̄�

(𝑖)
𝑙𝑚

cos𝑚𝜆𝑖𝑗 + �̄�
(𝑖)
𝑙𝑚

sin𝑚𝜆𝑖𝑗

)
(5)

Here, 𝜙𝑖𝑗 and 𝜆𝑖𝑗 represent the latitude and longitude of point 𝑗 in a 
frame centred and fixed to body 𝑖, 𝑅𝑒,𝑖 is the reference radius of the 
spherical harmonic expansion (typically, the equatorial radius), 𝑃𝑙𝑚 is 
the normalised associated Legendre polynomial of degree 𝑙 and order 
𝑚, and �̄� (𝑖)

𝑙𝑚
and �̄�(𝑖)

𝑙𝑚
are the fully-normalised spherical harmonic co-

efficients of body 𝑖, expressing its mass distribution. In general, these 
coefficients change over time due to any number of tide-raising point 
masses 𝑞, with the main variation computed as [16]:

Δ�̄�
(𝑖)
𝑙𝑚

− 𝑖Δ�̄�
(𝑖)
𝑙𝑚

= 1 
2𝑙 + 1

∑
𝑞

𝑘𝑙𝑚

𝜇𝑞

𝜇𝑖

(
𝑅𝑒,𝑖

𝑟𝑖𝑞

)𝑙+1
𝑃𝑙𝑚 (sin𝜙𝑖𝑞) 𝑒−𝑖𝑚𝜆𝑖𝑞 (6)

where 𝜇𝑞 is the gravitational parameter of the tide-raising body 𝑞, and 
𝑘𝑙𝑚 is the tidal Love number at degree 𝑙 and order 𝑚.

The total gravitational acceleration acting on the sailcraft 𝑠, as ex-

erted by 𝑁 extended bodies, denoted with 𝑖 = 0,… ,𝑁 , with respect to 
the central body 𝑖 = 0, is expressed as:

𝒂𝑔𝑟𝑎𝑣 = 𝒂0,𝑠
|||0 + 𝑁∑

𝑖=1 
𝒂𝑖,𝑠

|||0 (7)
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where 𝒂0,𝑠 represents the gravitational acceleration acting on the sail-

craft due to the central body 0, and 𝒂𝑖,𝑠 denotes the so-called third-body 
perturbation acting on the sailcraft due to body 𝑖. The notation “|||0” 
indicates that the acceleration components are expressed in the frame 
originating at the centre of mass of the central body, which in this paper 
corresponds to 𝐼(�̂�I , �̂�I , �̂�I).

Using the gradient of the gravitational potential (Eqs. (2)-(4)), the 
first term on the right-hand side of Eq. (7), the acceleration due to the 
central body, is computed as:

𝒂0,𝑠
|||0 = ∇𝑈0(𝒓0𝑠) = −𝜇0

�̂�0𝑠‖𝒓0𝑠‖2 + ∇𝑈0̂(𝒓0𝑠) (8)

The second term on the right-hand side of Eq. (7), the third-body 
acceleration, is calculated as the difference between the gravitational 
attraction of body 𝑖 on the sailcraft and that exerted by body 𝑖 on the 
central body:

𝒂𝑖,𝑠
|||0 = ∇𝑈𝑖(𝒓𝑖𝑠) − ∇𝑈𝑖(𝒓𝑖0) (9)

Expanding Eq. (9) using the previously defined potentials yields:

𝒂𝑖,𝑠
|||0 =

(
−𝜇𝑖

�̂�𝑖𝑠‖𝒓𝑖𝑠‖2 + ∇𝑈𝚤(𝒓𝑖𝑠)
)
−
⎛⎜⎜⎜⎝−𝜇𝑖

�̂�𝑖0‖𝒓𝑖0‖2 + ∇𝑈𝚤(𝒓𝑖0) − ∇𝑈0̂(𝒓0𝑖)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

indirect oblateness 

⎞⎟⎟⎟⎠
(10)

The last two terms, collectively referred to as indirect oblateness [17], 
account for the gravitational attraction between the extended body 𝑖 and 
the point-mass 0, and the gravitational attraction between the extended 
body 0 and the point-mass 𝑖, respectively.

The gravitational accelerations described by the previous equations 
are based on a Newtonian model of gravity. While the total relativis-

tic perturbation includes several corrective terms, for low Earth orbit 
(LEO) applications not specifically related to geodesy or tests of relativ-

ity, only the Schwarzschild correction is typically considered [18]. This 
perturbation, approximately on the order of 109 smaller than the main 
Newtonian acceleration, provides a first-order correction to the central 
body point-mass acceleration given by Eq. (8) and is included in the 
model as an indication of the magnitude of relativistic effects [16]:

Δ𝒂0,𝑠
|||0 = 𝜇0

𝑐2𝑟30𝑠

[(
4
𝜇0
𝑟0𝑠

− �̇�0𝑠 ⋅ �̇�0𝑠

)
𝒓0𝑠 + 4(𝒓0𝑠 ⋅ �̇�0𝑠)�̇�0𝑠

]
(11)

where 𝑐 = 299792458 m/s is the speed of light in vacuum [19].

2.2. Aerodynamic acceleration

The aerodynamic acceleration is defined in the aerodynamic frame 
𝐴(�̂�A, �̂�A, �̂�A). This frame has its origin at the centre of mass of the sail-

craft, with the �̂�A-axis aligned along the sailcraft velocity vector relative 
to the atmosphere, the �̂�A-axis opposite to the direction of the lift accel-

eration, and the �̂�A-axis completing the right-handed coordinate system. 
The aerodynamic acceleration is expressed in frame 𝐴 as [20]:

𝒂𝑎𝑒𝑟𝑜
|||𝐴 = −

⎛⎜⎜⎝
𝐶𝐷

𝐶𝑆

𝐶𝐿

⎞⎟⎟⎠ 12𝜌𝑣2
𝑆𝑟𝑒𝑓

𝑚 
(12)

where 𝐶𝐷 , 𝐶𝑆 , and 𝐶𝐿 are the drag, side force, and lift coefficients, 
respectively, 𝑣 is the sailcraft velocity relative to the atmosphere, 𝜌 is 
the atmospheric density, 𝑆𝑟𝑒𝑓 is the aerodynamic reference area, and 𝑚
is the sailcraft mass.

In LEO, the low atmospheric density leads to a free molecular flow 
regime, where Gas-Surface Interactions (GSI) become predominant in 
determining the aerodynamic coefficients. The nature of these inter-

actions varies due to several factors, including the spacecraft speed 

relative to the atmosphere, the spacecraft surface temperature, the at-

mospheric translational temperature, and the atmospheric composition 
[21]. This paper adopts the Schaaf and Chambre (SC) model for describ-

ing these interactions [22]. The SC model can simulate various types of 
reflection for the surface-interacting particles – specular, diffuse, and 
quasi-specular – through momentum accommodation coefficients, mak-

ing it versatile for different LEO conditions. In contrast, other models, 
such as Sentman’s and Schamberg’s, have limitations. Sentman’s model, 
which assumes diffuse reflection, may not accurately represent particle 
behaviour above ∼500 km where reflection characteristics are less cer-

tain [23]. Schamberg’s model assumes hyperthermal flow, where the 
sailcraft velocity is much larger than the thermal velocity of the atmo-

spheric particles, which becomes less accurate at higher altitudes [24].

Considering the sail’s relatively large area in relation to the main 
spacecraft body, the sailcraft can be modelled as a flat plate. This sim-

plification allows using Storch’s closed-form solutions for aerodynamic 
coefficients of basic geometries under the SC model [25]. Then, in the 
aerodynamic reference frame, the aerodynamic coefficients of a flat 
plate in free-molecular flow can be expressed as:

𝐶𝐷
|||𝐴 =

𝜎𝑛

𝑠 

√
𝜋 𝑇𝑠
𝑇∞

𝑛2
𝑥
+ 2 

𝑠
√

𝜋

[
(2 − 𝜎𝑛) 𝑛2𝑥 + 𝜎𝑡

(
𝑛2
𝑦
+ 𝑛2

𝑧

)]
𝑒−𝑠2𝑛2𝑥 +

+ 2
[
(2 − 𝜎𝑛)

(
𝑛2
𝑥
+ 1 

2𝑠2

)
+ 𝜎𝑡

(
𝑛2
𝑦
+ 𝑛2

𝑧

)]‖𝑛𝑥‖ erf(𝑠‖𝑛𝑥‖)
(13)

(
𝐶𝑆

𝐶𝐿

)|||||𝐴 = 2
⎡⎢⎢⎣
2 − 𝜎𝑛 − 𝜎𝑡

𝑠
√

𝜋
𝑒−𝑠2𝑛2𝑥 +

𝜎𝑛

2𝑠 

√
𝜋 𝑇𝑠
𝑇∞

⎤⎥⎥⎦ 𝑛𝑥

(
𝑛𝑦

𝑛𝑧

)

+
[
2 − 𝜎𝑛

𝑠2
+ 2

(
2 − 𝜎𝑛 − 𝜎𝑡

)
𝑛2𝑥

]
erf

(
𝑠 𝑛𝑥

)(𝑛𝑦

𝑛𝑧

) (14)

In these equations, �̂�|||𝐴 =
(
𝑛𝑥, 𝑛𝑦, 𝑛𝑧

)
denotes the sail normal direction 

expressed in the aerodynamic frame, 𝜎𝑛 and 𝜎𝑡 represent the normal 
and tangential momentum accommodation coefficients, respectively, 𝑇𝑠
is the temperature of the sail surface, 𝑇∞ is the atmospheric transla-

tional temperature, and 𝑠 is defined as the ratio of the sailcraft inertial 
velocity to the atmospheric particle average thermal velocity 𝑣𝑎 . The 
average thermal velocity 𝑣𝑎 is calculated using the Maxwell-Boltzmann 
distribution [26]:

𝑣𝑎 =

√
2𝑘B𝑇∞

𝑚𝑎

(15)

where 𝑘B = 1.380649 × 10−23 K∕J is the Boltzmann constant, and 𝑚𝑎 is 
the mean molecular mass of the atmospheric particles.

To express the aerodynamic acceleration in frame 𝐼 , the intermedi-

ate body frame 𝐵(�̂�B, �̂�B, �̂�B) is introduced. This frame has its origin at 
the centre of mass of the sailcraft, with the �̂�B-axis directed normal to 
the sail, pointing out from the front of the sail, the �̂�B�̂�B-plane coincid-

ing with the plane of the sail, the �̂�B-axis directed parallel to one edge of 
the sail, and the �̂�B-axis completing the right-handed system. Fig. 1 il-

lustrates the transformation from frame 𝐼 to frame 𝐵, achieved through 
three successive rotations: a rotation about the �̂�I -axis, followed by a ro-

tation about the (local) �̂�1-axis, and concluded by a rotation about the 
�̂�B-axis. The angles associated with these rotations are the yaw 𝜓 , pitch 
𝜃, and roll 𝜙 angles, respectively. These Euler angles express the atti-

tude of the sailcraft with respect to the inertial frame. Fig. 2 shows the 
transformation from frame 𝐵 to frame 𝐴, requiring two consecutive ro-

tations: a rotation about the �̂�B axis over an angle equal to the negative 
angle of attack −𝛼, followed by a rotation about the �̂�A axis over an 
angle equal to the positive angle of sideslip 𝛽.

The acceleration in frame 𝐼 can then be expressed as:

𝒂𝑎𝑒𝑟𝑜
|||𝐼 =𝑪𝐼 ,𝐵 𝑪𝐵,𝐴 𝒂𝑎𝑒𝑟𝑜

|||𝐴 (16)
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Fig. 1. Schematic representation of the inertial (index I) and body (index B) 
frames.

Fig. 2. Schematic representation of the body (index B) and aerodynamic (index 
A) frames.

where 𝑪𝐵,𝐴 = 𝑹�̂�B
(𝛼) 𝑹�̂�A

(−𝛽) is the rotation matrix from the aerody-

namic frame to the body frame, and 𝑪𝐼 ,𝐵 = 𝑹�̂�I
(−𝜓) 𝑹�̂�1

(−𝜃) 𝑹�̂�B
(−𝜙)

is the rotation matrix from the body frame to the inertial frame.

2.3. Solar radiation pressure acceleration

The SRP acceleration model employed in this study is based on the 
flat-sail optical SRP acceleration model of McInnes [27], but extended 
to scenarios where either side of the sail can be illuminated. This exten-

sion is particularly relevant for the ACS3 mission, because its standby 
attitude mode results in sunlight exposure of the back of the sail.

The SRP acceleration is defined as:

𝒂SRP = ν 
2𝑆⊕

𝑐

(1AU
𝑢 

)2 𝐴

𝑚 
(
�̂� ⋅ �̂�𝑢

){
𝑏1�̂�+

[
𝑏2
(
�̂� ⋅ �̂�𝑢

)
+ 𝑏3

]
�̂�𝑢

}
(17)

with ν the Earth shadow function computed using the conical shadow 
model [15], 𝑆⊕ the solar irradiance at one astronomical unit (AU) from 
the Sun, 𝐴 the sail area, and �̂� = 𝒖∕𝑢 the instantaneous Sun-to-sailcraft 
unit vector. The sail normal direction without any positive component 
towards the Sun, �̂�𝑢, is given by:

�̂�𝑢 = sgn(�̂� ⋅ �̂�) �̂�

where �̂� is the sail normal direction pointing out from the back of the 
sail.

The parameters 𝑏1, 𝑏2, and 𝑏3 are defined as:

𝑏1 =
1
2
(1 − 𝑟𝑠𝑙 �̃�𝑠𝑙) 𝑏2 = 𝑟𝑠𝑙 �̃�𝑠𝑙

𝑏3 =
1
2

(
B𝑠𝑙 (1 − �̃�𝑠𝑙) ̃𝑟𝑠𝑙 + sgn(�̂� ⋅ �̂�) (1 − 𝑟𝑠𝑙) 

𝜀𝑓 B𝑓 − 𝜀𝑏B𝑏

𝜀𝑓 + 𝜀𝑏

)
where 𝑟, �̃�, B, and 𝜀 denote the reflectivity, specularity, non-Lambertian 
coefficient, and emissivity of the sail, respectively. The subscripts “f”, 
“b”, and “sl” indicate whether the optical coefficients correspond to the 
front, back, or sunlit side of the sail. Depending on the attitude of the 
sail, the sunlit optical coefficients match those of either the front or back 
of the sail:

𝑟𝑠𝑙, �̃�𝑠𝑙, B𝑠𝑙 =

{
𝑟𝑓 , �̃�𝑓 , B𝑓 if sgn(�̂� ⋅ �̂�) = 1
𝑟𝑏, �̃�𝑏, B𝑏 otherwise

2.4. Planetary radiation pressure acceleration

The PRP acceleration model employed in this paper is the spherical 
optical PRP acceleration model presented in Carzana et al. [28]. This 
model accounts for the albedo radiation pressure (ARP) and blackbody 
radiation pressure (BBRP) accelerations exerted on the sailcraft due to 
sunlight reflected by the Earth and thermal radiation emitted by the 
Earth, respectively, while considering the sail optical properties. The 
total PRP acceleration can be expressed as the sum of these two compo-

nents:

𝒂PRP = 𝒂BBRP + 𝒂ARP (18)

Both the ARP and BBRP components share a similar mathematical struc-

ture, which can be expressed in the following general form:

𝒂𝑝 =
𝑆𝑝

𝑐

𝐴

𝑚 

{2
3
[(
1 + 𝑟𝑖𝑛�̃�𝑖𝑛

)
𝐺FNS,in −

(
1 + 𝑟𝑜𝑢𝑡�̃�𝑜𝑢𝑡

)
𝐺FNS,out

]
sgn(�̂� ⋅ �̂�) �̂�

+
[(
1 − �̃�𝑖𝑛

)
𝑟𝑖𝑛B𝑖𝑛 𝐺FND,in −

(
1 − �̃�𝑜𝑢𝑡

)
𝑟𝑜𝑢𝑡B𝑜𝑢𝑡 𝐺FND,out

]
sgn(�̂� ⋅ �̂�) �̂�

+
𝜀𝑓 B𝑓 − 𝜀𝑏B𝑏

𝜀𝑓 + 𝜀𝑏

[(
1 − 𝑟𝑖𝑛

)
𝐺FND,in +

(
1 − 𝑟𝑜𝑢𝑡

)
𝐺FND,out

]
�̂�

+ 2 
3𝜋

[(
1 − 𝑟𝑖𝑛�̃�𝑖𝑛

)
𝐺FT,in +

(
1 − 𝑟𝑜𝑢𝑡�̃�𝑜𝑢𝑡

)
𝐺FT,out

]
𝒅
}

(19)

In this equation, the geometrical factors 𝐺FNS , 𝐺FND, 𝐺FT represent the 
normal specular, normal diffusive, and transversal geometrical factor, 
respectively, and depend on the instantaneous Earth-sail geometrical 
configuration. The subscripts “in” and “out” indicate if the optical co-

efficients and geometrical factor refer to the inward or outward side of 
the sail with respect to Earth. The sail normal direction �̂� is defined the 
same as for the SRP model. The sailcraft radial direction �̂� is the unit 
vector from the centre of the Earth to the sailcraft, and the transversal 
direction 𝒅 is defined as:

𝒅 = �̂� × �̂� × �̂�‖�̂� × �̂�‖ (20)

The subscript 𝑝 in Eq. (19) serves to differentiate between the two types 
of radiation pressure, indicating that the sail reflectivity 𝑟 and the inci-

dent radiation flux 𝑆 are radiation-source specific. For ARP and BBRP, 
the reflectivity pertains to the visible and infrared spectrum, respec-

tively. The fluxes for albedo and blackbody radiation are defined as 
[29]:

𝑆AR = 𝑆⊕

[
Λeq +

(
Λpol −Λeq

)
𝐿𝐹

]
Φ (21)

𝑆BBR = 𝑆BBR,eq +
(
𝑆BBR,pol −𝑆BBR,eq

)
𝐿𝐹 (22)

Here, Λeq and Λpol are the reference albedo coefficients at the equator 
and poles, respectively, 𝐿𝐹 is the latitudinal factor, Φ is the albedo 
phase function, and 𝑆BBR,eq and 𝑆BBR,pol are the reference blackbody 
radiation fluxes at the equator and the poles, respectively.

For a comprehensive treatment of the model, including detailed defi-

nitions of the geometrical factors, albedo phase function, and latitudinal 
factor, the reader is referred to Carzana et al. [28,29].
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3. Methodology

This paper evaluates the sensitivity of the ACS3 orbit to various 
perturbations, model uncertainties, and sail-attitude errors, providing 
insights into the relative importance of different dynamical effects on 
the solar-sail behaviour. The methodology adopted here has been widely 
used in astrodynamics to investigate the impact of dynamical perturba-

tions and modelling assumptions, with applications ranging from plan-

etary moon dynamics to spacecraft orbit determination [30–33]. To 
present this methodology, it is helpful to first define the state vector, 
𝒙, which evolves over time, 𝑡, and is influenced by its initial state, 𝒙0, 
and by the acceleration model, 𝒂, describing its dynamics:

𝒙 = 𝒙(𝑡;𝒙0,𝒂) (23)

The sensitivity analysis is conducted using two complementary ap-

proaches, each offering distinct insights into the impact of perturbations 
and model uncertainties. The first approach involves propagating a ref-

erence orbit and a series of modified orbits, all originating from the 
same initial state. The reference orbit is propagated using a high-fidelity 
acceleration model incorporating all known perturbations with their 
nominal parameter values. Modified orbits are generated using accel-

eration models that deviate from the reference one in a single aspect, 
such as deactivating a particular perturbation, employing an alternative 
perturbation model, or altering specific perturbation parameters. This 
process causes the modified orbits to deviate from the reference one. 
These deviations, defined as pre-fit orbit residuals, Δ𝒙pre, are computed 
as:

Δ𝒙pre(𝑡) = 𝒙(𝑡;𝒙0,𝒂mod) − 𝒙(𝑡;𝒙0,𝒂ref ) (24)

where 𝒂ref and 𝒂mod represent the reference and modified acceleration 
models, respectively. By assuming perfect knowledge of the orbital start-

ing conditions, this approach quantifies the direct impact of each model 
modification on the accuracy of the propagated orbit and provides in-

sight into how different perturbations and model uncertainties affect the 
trajectory over time.

The second approach evaluates model differences through an orbit 
determination process, determining how accurately the modified accel-

eration models can reproduce the reference orbit when adjusting the 
initial state. The analysis of whether and how model deviations are ab-

sorbed through initial state estimation – accounting for the real-world 
uncertainty in orbital starting conditions – provides insights into the ob-

servability of different perturbations and model parameters within the 
constraints of available knowledge.

To implement this approach, ideal three-dimensional position ob-

servations of ACS3 are simulated at times 𝑡𝑗 as 𝒙(𝑡𝑗 ,𝒙0,𝒂ref ) using the 
reference acceleration model. Based on ACS3 operational capabilities, 
these observations are simulated at regular intervals of 60 seconds across 
a seven-day window. This cadence is also sufficiently small to capture 
the effects of the model modifications analysed in this study, which 
have characteristic time scales longer than one minute. As the obser-

vations are assumed to be error-free, any mismatch post-convergence 
is solely due to differences in the dynamical model. A least-squares or-

bit determination algorithm is used with uniform observation weighting 
and without estimating any parameters of the acceleration model. The 

correction to the initial state vector, Δ𝒙0, is then obtained by minimis-

ing:

min
Δ𝒙0

(∑
𝑗

‖𝒙(𝑡𝑗 ;𝒙0 + Δ𝒙0,𝒂mod) − 𝒙(𝑡𝑗 ;𝒙0,𝒂ref )‖2) (25)

Consequently, the post-fit orbit residuals are calculated as:

Δ𝒙post(𝑡) = 𝒙(𝑡;𝒙0 + Δ𝒙0,𝒂mod) − 𝒙(𝑡;𝒙0,𝒂ref ) (26)

It is important to note that while this approach allows for unconstrained 
adjustments of the initial state, in practice, the uncertainty level of the 
available observations would limit the magnitude of these adjustments. 
By not imposing constraints on the initial state estimation, the results 
of this paper can be applied to scenarios with varying measurement ac-

curacies. Furthermore, if the analysis suggests that a perturbation or 
model uncertainty should be included in the dynamics and the initial 
state adjustment is larger than allowed, imposing realistic constraints 
on the initial state estimation would reduce the absorption of the as-

sociated effect. As a result, larger post-fit residuals would be observed, 
reinforcing the conclusion that such aspects should be accounted for in 
the dynamical model.

Fig. 3 illustrates the two approaches schematically. In the first ap-

proach, both orbits start from the same common initial state, and their 
differences accumulate as the propagation progresses. In the second, the 
initial state of the reference orbit is used with the modified model to start 
an iterative process that yields a new, fitted orbit whose differences with 
the reference orbit are minimised.

The numerical implementation of both approaches relies on the free 
open-source TU Delft Astrodynamics Toolbox1 (Tudat) [34,35], facilitat-

ing the reproducibility of the results presented in this paper. While the 
gravitational acceleration models detailed in Section 2.1 are included 
in Tudat’s standard distribution, the software has been extended with 
acceleration models for free-molecular flow aerodynamics, solar radia-

tion pressure, and planetary radiation pressure, implemented according 
to the equations provided in Sections 2.2–2.4.

The sensitivity of the ACS3 orbit to acceleration model modifications 
is evaluated using three complementary metrics: the root mean square 
(RMS) of the pre-fit residuals, the RMS of the post-fit residuals, and the 
magnitude of the maximum position adjustment required to minimise 
the residuals along the fitted arc. The RMS of pre-fit residuals offers 
a measure of the strength and influence of different perturbations and 
model uncertainties on the solar-sail dynamics, while their comparison 
with post-fit RMS residuals reveals the extent to which these effects can 
be absorbed by adjusting the initial state. Although pre-fit residuals pro-

vide valuable insights into the model’s behaviour, the post-fit residuals 
guide the decision-making process. Depending on the model alteration 
under consideration, significant post-fit RMS residuals can indicate the 
need to include specific perturbations in the dynamics, suggest refining 
the acceleration model to address uncertainties and errors, or present 
opportunities for isolating and estimating parameters of interest. Con-

versely, negligible post-fit RMS residuals can uncover potential model 
simplifications without significant loss of accuracy, identify uncertain-

1 https://docs.tudat.space/en/latest/, accessed August 08, 2024.

Fig. 3. Schematic representation of the propagation (left) and fitting (right) approaches. 
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ties and errors that can be absorbed through initial state adjustments, 
or identify parameters that may prove challenging to estimate. When 
the RMS of post-fit residuals falls below the observation noise level, 
the magnitude of the maximum required position adjustment along the 
fitted arc serves as an additional check. This metric helps to identify sit-
uations where an apparently good fit is achieved through observation 
adjustments that exceed realistic measurement uncertainties, indicating 
the fit may be unfeasible. The combined evaluation of these three met-

rics contributes to the estimation strategies of the ACS3 mission, guides 
the analysis of its flight data, and informs future solar-sail studies and 
missions.

4. Simulation setup

This section presents the simulation setup for the sensitivity analysis 
of the ACS3 solar-sail dynamics. Table 1 provides the values of the space-

craft properties and orbital parameters used as input for all simulations. 
This set of values, which remains unchanged throughout the study, in-

cludes the mass and sail area of ACS3, the simulation start epoch, and 
the corresponding sailcraft’s initial orbital state. The simulation start 
epoch is set for November 1st, 2024, as it was originally expected that 
by this date, the commissioning phase of ACS3 would have been com-

pleted, with the sail fully deployed and operational. The initial state 
vector 𝒙0 is derived from the orbital elements representing a 1000 km 
altitude, circular, Sun-synchronous orbit with a 10:30 PM local time of 
the ascending node (LTAN). While this state vector is intended to repre-

sent ACS3 orbit after launch, the conclusions of the sensitivity analysis 
are independent of the exact initial state used. The choice of the simu-

lation start epoch also does not influence the conclusions, as the initial 
state vector would be adjusted for any alternative date to ensure a 1000 
km, Sun-synchronous orbit with a 10:30 PM LTAN. In addition to these 
common inputs, Table 2 presents the nominal values of the optical co-

efficients specific to the ACS3 solar sail [36]. These values are used in 
the reference acceleration model and are subject to variation in some 
modified acceleration models to evaluate their impact on the dynamics.

The following subsections detail the reference acceleration model 
and the modified acceleration models employed in both approaches of 
the sensitivity analysis.

Table 1
Constant simulation parameters.

Parameter Symbol Value 
Sailcraft mass 𝑚 16 kg 
Sail area 𝐴 80 m2

Simulation start epoch 𝑡0 2024-11-01 00:00:00 
Semi-major axis 𝑎0 7378136.3 m 
Eccentricity 𝑒0 0.0 
Inclination 𝑖0 99.4793 deg 
Right ascension of ascending node Ω0 13.8328 deg 
Argument of pericenter 𝜔0 0.0 deg 
True anomaly 𝜃0 0.0 deg 

Table 2
ACS3 optical coefficients.

Parameter Frontside Backside 
Symbol Value Symbol Value 

Reflectivity1 𝑟𝑓 0.90 𝑟𝑏 0.43 
Infrared Reflectivity2 𝑟𝑓IR

0.97 𝑟𝑏IR
0.40 

Specularity �̃�𝑓 0.82 �̃�𝑏 0.53 
Non-Lambertian Coefficient B𝑓 0.79 B𝑏 0.67 
Emissivity 𝜀𝑓 0.03 𝜀𝑏 0.60 
1 These reflectivity values are used by the SRP and ARP models.
2 These reflectivity values are used exclusively by the BBRP 

model.

4.1. Reference acceleration model

Table 3 presents the reference acceleration model, 𝒂ref , summaris-

ing the perturbations affecting the solar-sail dynamics and the nominal 
values of the parameters used in the perturbation models. Some of these 
parameters require further explanation:

• Accommodation coefficients, 𝜎𝑛, 𝜎𝑡: due to inconclusive evidence 
on particle reflection distribution and atomic oxygen adsorption at 
orbital altitudes higher than 500 km [41], 𝜎𝑛 and 𝜎𝑡 are both set to 
0.8, consistent with other solar-sail studies [6,42,43].

• Speed ratio, 𝑠: at a 1000 km altitude, the atmospheric conditions 
are characterised by helium as the dominant species, with a mean 
molecular mass, 𝑚𝑎, of 3.94 kg/kmol and a translational tempera-

ture, 𝑇∞, of 1000 K, as per the US76 Standard Atmosphere [44]. 
These values are used in Eq. (15) to compute the average thermal 
velocity, 𝑣𝑎. Combined with the sailcraft orbital speed of 7350 m/s 
for a 1000 km circular orbit, the value of 𝑣𝑎 is used to obtain the 
speed ratio 𝑠=3.60.

• Sail surface temperature, 𝑇𝑠: a thermal analysis is conducted con-

sidering the sailcraft’s standby nadir-pointing attitude throughout 
its orbit. The orbit is divided into three phases: eclipse, back of the 
sail exposed to sunlight, and front of the sail exposed to sunlight, 
lasting 32.5%, 17%, and 50.5% of the orbital period, respectively. 
While the SRP alternately acts on the front and back of the sail, 
the PRP consistently acts on the back of the sail due to its nadir-

pointing orientation. Assuming a uniform temperature distribution 
across the 2.115-micrometre thick sail [36], energy balance equa-

tions are formulated for each orbital phase:

1. Eclipse: (1 − 𝑟𝑏IR
) �̄�BBR = (𝜀𝑓 + 𝜀𝑏) 𝜎 𝑇 4

e
2. Back sunlit: (1 − 𝑟𝑏IR

) �̄�BBR + (1 − 𝑟𝑏)(cos �̄� + Λ̄𝜙) 𝑆⊕ = (𝜀𝑓 +
𝜀𝑏) 𝜎 𝑇 4

b
3. Front sunlit: (1− 𝑟𝑏IR

) �̄�BBR +(1− 𝑟𝑓 ) 𝑆⊕ cos �̄�+(1− 𝑟𝑏) 𝑆⊕ Λ̄𝜙 =
(𝜀𝑓 + 𝜀𝑏) 𝜎 𝑇 4

f

In these equations, 𝜎 = 5.670374419 × 10−8 W∕(m2 K4) is the 
Stefan-Boltzmann constant and the solar irradiance, 𝑆⊕ , is set at 
1361 W/m2. The mean angle, �̄�, between the sail normal direction 
and the sunlight direction has values of 49 and 75 degrees when 
the front and the back of the sail are sunlit, respectively. These 
angles correspond to albedo phase functions, 𝜙, of 0.6116 and 
0.2630, respectively. In addition, the uniform albedo coefficient, 
Λ̄, of 0.3259 and the uniform blackbody radiation flux, �̄�BBR , of 
234.723 W/m2 are derived from surface-averaged ANGARA yearly 
maps. These maps, developed by Hyperschall Technologie Göttin-

gen GmbH [45], use satellite data from the 1980s Earth Radiation 
Budget Experiment (ERBE) mission [46]. Using the energy balance 
equations, the sail surface temperature is computed as a weighted 
sum of the temperatures in each phase, where the weights corre-

spond to the fraction of the orbital period spent in each phase:

𝑇𝑠 = 0.325 𝑇𝑒 + 0.17 𝑇𝑏 + 0.505 𝑇𝑓 (27)

• Atmospheric density, 𝜌: although not listed in Table 3, this property 
is required to compute the aerodynamic acceleration as specified 
in Eq. (12). The density value is obtained at each propagation step 
from the NRLMSISE-00 atmospheric density model [47], using in-

dices of solar radio flux at 10.7 cm and geomagnetic activity relative 
to the 50th percentile retrieved from the Marshall Space Flight Cen-

ter’s forecast of August 2024.2

• Reference albedo coefficients, Λeq,Λpol, and blackbody radiation 
fluxes, 𝑆BBR,eq, 𝑆BBR,pol: the values of these parameters are deter-

mined through a sinusoidal least-squares fit to the ANGARA yearly 

2 https://www.nasa.gov/msfcsolar/archivedforecast, accessed August 08, 
2024.
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Table 3
Perturbations and nominal parameter values of the reference acceleration model.

Perturbation Type Nominal Parameter Values Equations 
Earth gravity1 𝑙,𝑚 = 64 (8)

Third-body gravity2

Moon 𝑙,𝑚 = 2 (10)

Sun, Venus, Jupiter 𝑙,𝑚 = 0 (10)

Solid Earth Tides3 𝑞 = Sun, Moon; 𝑙,𝑚 = 2 (6)

Relativistic Effects Schwarzschild corrections applied to Earth point mass gravity (11)

Aerodynamics4 𝜎𝑛, 𝜎𝑡 = 0.8; 𝑠 = 3.60; 𝑇∞ = 1000 K; 𝑇𝑠 = 300 K (16)

Radiation Pressure4,5

Solar 𝑆⊕ = 1361.0 W/m2 (17)

Albedo 𝑆⊕ = 1361.0 W/m2; Λeq = 0.1854; Λpol = 0.6149 (19), (21)

Blackbody 𝑆BBR,eq = 264.6095 W/m2; 𝑆BBR,pol = 173.4356 W/m2 (19), (22)

1 Earth gravitational parameter and spherical harmonics coefficients from Petit and 
Luzum [16] and Fecher et al. [37], respectively.

2 Third bodies gravitational parameters from Park et al. [38]. Moon spherical harmonics co-

efficients from Goossens et al. [39].
3 Love numbers 𝑘2,0, 𝑘2,1, 𝑘2,2 from Petit and Luzum [16].
4 Detailed explanations provided in the main text.
5 Sail optical properties given in Table 2. Solar irradiance value from Kopp and Lean [40].

averaged albedo coefficient and blackbody radiation flux maps as 
a function of latitude.

4.2. Modified acceleration models

Table 4 presents an overview of the modified acceleration models, 
𝒂mod , employed in the sensitivity analysis. Each modification is designed 
to investigate the impact of a specific perturbation or model parameter 
on the solar-sail dynamics. While most cases are self-explanatory from 
the table, several modifications to the reference acceleration model re-

quire additional explanation:

• Geopotential order variation: while the reference acceleration 
model uses a geopotential expansion up to degree and order 64 
to balance accuracy and computational complexity, two higher-

fidelity runs (𝑙,𝑚 = 128,720) are included to assess the influence of 
increased geopotential accuracy, with 720 being the maximum de-

gree and order available in the GOCO05c gravity field model. Three 
lower-fidelity runs (𝑙,𝑚 = 32,16,8) evaluate the impact of reduced 
accuracy.

• Density variation: two cases examine the effect of atmospheric den-

sity uncertainties on the solar-sail dynamics. The density values 
computed with the NRLMSISE-00 model are adjusted by ±15% 
at each propagation step. This range is based on estimates of up-

per atmospheric density model uncertainties, which typically fall 
between 10% and 15% [48]. Key factors contributing to these un-

certainties include the varying solar extreme ultraviolet radiation, 
geomagnetic fluctuations, and localised changes in atmospheric 
conditions [49].

• Accommodation coefficients variation: two modifications to the ac-

commodation coefficients are considered. The first case sets both 
normal and tangential coefficients to 1.0, representing a + 25% vari-

ation from the nominal value and corresponding to fully diffusive 
particle reflection. The second case uses a value of 0.6 for both coef-

ficients, representing a −25% variation from the nominal value and 
maintaining a quasi-specular reflection while exploring the impact 
of a lower particle reflection distribution.

• Sail temperature variation: the sensitivity to sail temperature is ex-

amined by considering two boundary conditions. The first condition 
corresponds to the minimum value of the sail temperature along the 
orbit, which occurs during eclipse at the poles, where only BBRP 
acts on the sail and the BBR flux is at its lowest. The second con-

dition corresponds to the maximum value of the sail temperature 

along the orbit, which is achieved when all three radiation sources 
– Sun, blackbody, and albedo – illuminate the less reflective back 
of the sail, causing it to absorb more heat. The highest temperature 
in this scenario happens at the poles, where the albedo pressure is 
greatest, and at a sunlight incident angle of 60 degrees, the maxi-

mum angle for this scenario.

• Constant Sun-sailcraft distance: two cases are considered to eval-

uate the sensitivity of the solar radiation pressure to the instanta-

neous Sun-sailcraft distance, 𝑢. The first case assumes a constant 
value of 1 AU = 149597870700 m [16], while the second case sets 
the constant Sun-sailcraft distance equal to the arithmetic mean be-

tween the Sun-Earth distance at the simulation start and end epoch.

• Boundary cases for planetary radiation pressure: to assess the im-

pact of variations in planetary radiation pressure, monthly val-

ues for the reference albedo coefficients and blackbody radiation 
fluxes are derived from sinusoidal least-squares fits to the ANGARA 
monthly maps as a function of latitude. From these fits, four distinct 
boundary cases are identified: the lowest average albedo coefficient 
(July), the highest average albedo coefficient (January), the lowest 
average blackbody radiation flux (March), and the highest average 
blackbody radiation flux (also July).

• Solar irradiance: two cases are considered to assess the sensitivity 
to variations in the nominal solar irradiance value of 𝑆⊕ = 1361
W/m2. The first case applies a 0.34% decrease, corresponding to the 
largest recorded short-term change in irradiance [40]. The second 
case applies a 0.12% increase, representing the average variation 
observed between solar minima and maxima [40].

• Optical coefficients variation: to address potential experimental er-

rors in the testing of ACS3’s film material, a one-sigma uncertainty 
of 10%3 is considered for the optical coefficients listed in Table 2. 
The front infrared reflectivity is excluded from the analysis as it 
does not affect the sail acceleration due to the nadir-pointing atti-

tude, where the blackbody radiation pressure acts only on the back 
of the sail.

• Attitude Error Model: The sailcraft orientation is defined by the sail 
normal direction pointing out from the back of the sail, �̂�. Devia-

tions from the nominal orientation are modelled with a rotation 

3 Uncertainty value taken from personal communication with J. Ho Kang, Ad-

vanced Materials and Processing Branch, NASA Langley Research Center, March 
2024.
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Table 4
Modified acceleration models employed in the sensitivity analysis.

Perturbation Source Modification Parameter Values 
Geopotential Order variation 𝑙,𝑚 = 720, 128, 32, 16, 8 

Third-body

Jupiter excluded -

Venus excluded -

Jupiter & Venus excluded -

Moon indirect oblation excluded -

Moon extended body contribution excluded 𝑙,𝑚 = 0 
Solid Tides Excluded -

Relativistic Schwarzschild correction excluded -

Aerodynamics

Density variation ±15% 
Accommodation coefficients variation 𝜎𝑛, 𝜎𝑡 = 0.6,1.0
Sail temperature variation 𝑇𝑠 = 232 K,374 K

SRP
Constant Sun-sailcraft distance 𝑢 = 1AU, 148352576319.0875 m 
Ideal model 𝑏1 , 𝑏3 = 0; 𝑏2 = 1

PRP

Ideal model 𝑟, �̃� = 1; 𝐺FND, 𝐺FT = 0
Minimum AR configuration Λeq = 0.2122; Λpol = 0.5320 
Maximum AR configuration Λeq = 0.1917; Λpol = 0.6416 
Minimum BBR configuration 𝑆BBR,eq = 263.8755 W/m2 ; 

𝑆BBR,pol = 167.5518 W/m2

Maximum BBR configuration 𝑆BBR,eq = 267.1935 W/m2 ; 
𝑆BBR,pol = 179.8487 W/m2

Visible spectrum reflectivity for BBRP -

SRP & PRP
Solar irradiance 𝑆⊕ = 1356.4, 1362.6 W/m2

Optical coefficient variation ±10% to each coefficient in Table 2
excluding front infrared reflectivity 

Spacecraft
Random attitude error 𝛾 =𝒩(0,0.08◦); 𝛿 =𝒰[0◦,360◦)

initial random seeds: 0, 15, 42 
Systematic attitude error 𝛾 = 0.08◦; 𝛿 = 0◦,15◦, ...,345◦

defined by a half-cone angle, 𝛾 , and a clock angle, 𝛿. This rotation 
can be described using the Euler-Rodrigues rotation formula [50]:

�̂�𝑎𝑐𝑡𝑢𝑎𝑙 = �̂� cos 𝛾 + (𝒆 × �̂�) sin 𝛾 + 𝒆(𝒆 ⋅ �̂�)(1 − cos 𝛾) (28)

Here, 𝒆 is the rotation axis and is expressed in terms of two auxiliary 
vectors, �̂�1 and �̂�2:

�̂�1 =
𝒉 × �̂�‖𝒉 × �̂�‖ (29)

�̂�2 = �̂� × �̂�1 (30)

𝒆 = sin 𝛿 �̂�2 − cos 𝛿 �̂�1 (31)

where 𝒉 is the angular momentum vector of the sailcraft orbit. The 
last term in the Eq. (28) vanishes as 𝒆 ⋅ �̂� = 0, simplifying the actual 
unit normal vector to:

�̂�𝑎𝑐𝑡𝑢𝑎𝑙 = �̂� cos 𝛾 + (�̂�1 sin 𝛿 + �̂�2 cos 𝛿) sin 𝛾 (32)

A schematic representation of the attitude error model is shown in 
Fig. 4, which illustrates the relationship between the nominal and 
actual sailcraft orientations. The first three cases in the bottom row 
of Table 4 assess the sensitivity of the solar-sail dynamics to random 
attitude errors, each using a different seed number. In these cases, 
at each propagation step, half-cone angles are drawn from a half-

normal distribution with a mean of zero and standard deviation of 
0.08 degrees, while clock angles are drawn from a uniform distri-

bution between 0 and 360 degrees. This standard deviation value 
corresponds to the absolute performance error of the attitude deter-

mination and control system of the ACS3 12U CubeSat, as specified 
by Nanoavionics,4 and results in sailcraft attitude changes falling 
within the maximum turning rate of 0.5 degrees per second achiev-

able by ACS3’s reaction wheels. The remaining 24 cases evaluate 

4 https://nanoavionics.com/small-satellite-buses/12u-cubesat-nanosatellite-

m12p/, accessed August 12, 2024.

Fig. 4. Schematic representation of the attitude error model. 

systematic attitude errors using a fixed half-cone angle of 0.08 de-

grees and clock angles varying by 15-degree increments, thereby 
providing a comprehensive assessment of potential attitude biases 
across all directions.

5. Results and discussion

This section presents the results of the sensitivity analysis of the ACS3 
solar-sail dynamics to the modifications of the reference acceleration 
model detailed in Table 4. As discussed in Section 3, the impact of each 
modification is assessed based on the RMS of pre-fit and post-fit orbit 
residuals, as well as the maximum position adjustment required to min-

imise the residuals along the fitted arc.

For precise orbit determination, the accuracy of the acceleration 
model is crucial. If the model is insufficiently accurate, the least-squares 
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algorithm may minimise errors induced by the model rather than errors 
in the measurements. Based on this consideration, the impact of acceler-

ation model errors should be at least an order of magnitude smaller than 
that of measurement errors. For the discussion of the results, this paper 
assumes a one-sigma observation noise level of 10 metres on each Carte-

sian component. While such a noise level represents a realistic estimate 
for the ACS3 mission and reflects typical accuracies of onboard orbit so-

lutions derived from GPS measurements, the results remain applicable 
to other noise levels, with implications scaling accordingly.

The discussion begins with the sensitivity of the ACS3 solar-sail dy-

namics to gravitational perturbations, followed by its sensitivity to non-

gravitational perturbations, variations in the optical coefficients, and 
attitude errors. Tables A.1 through A.4 in Appendix A provide the nu-

merical results of the sensitivity analysis for each acceleration model 
modification, complementing the graphical representations provided in 
the following subsections.

5.1. Gravitational perturbations

Fig. 5 illustrates how various gravitational perturbations influence 
the solar-sail dynamics. The geopotential model exhibits a clear trend 
of increasing impact as the degree and order of the expansion decrease. 
Higher-order potentials (𝑙,𝑚 = 720, 128) show minimal deviations from 
the reference model, as both pre-fit and post-fit residuals remain well 
below the 1-meter model accuracy requirement. Lower-fidelity models, 
however, exhibit progressively larger residuals. The 𝑙,𝑚 = 32 expansion 
offers a potential model simplification, maintaining post-fit residuals 
near the 1-meter threshold and keeping position adjustments within the 
10-meter observation uncertainty. In contrast, the 𝑙,𝑚 = 16, 8 cases 
show substantial orbital deviations, with residuals far exceeding the 10-

meter observation noise level even after the initial state adjustment, 
indicating that such low-order models are inadequate for precise orbit 
determination.

The analysis of third-body effects reveals that Jupiter and Venus’s 
contributions can be safely omitted from the dynamics without com-

promising accuracy – excluding either or both planets results in post-fit 
residuals three to four orders of magnitude below the model accuracy 
requirement. Similarly, neglecting the Moon’s indirect oblation or its 
extended body contribution leads to post-fit residuals well below the 
1-meter threshold, indicating that higher-order lunar perturbations are 
not essential in the acceleration model of the current mission scenario.

The exclusion of solid Earth tides results in post-fit residuals around 
ten metres, indicating that their effects should be included in the dy-

namical model of solar sails in LEO. In contrast, while neglecting the 
Schwarzschild relativistic correction initially produces considerable pre-

fit residuals, post-fit values decrease by over three orders of magnitude. 
This behaviour is expected, as a minor adjustment to the initial state 
in the radial direction can largely absorb the impact of omitting this 
correction. The Schwarzschild term acts as a constant outward radial 
acceleration, and its exclusion can be seen as a change in the experi-

enced central gravitational acceleration of the nominal orbit.

5.2. Non-gravitational perturbations

Fig. 6 presents the results of the sensitivity analysis for various modi-

fications related to the aerodynamic, SRP, and PRP acceleration models. 
Atmospheric density variations significantly impact the sailcraft orbit, 
generating post-fit residuals exceeding 1 km. The symmetrical response 
of both pre-fit and post-fit residuals to ±15% variations indicates a lin-

ear performance between density changes and their influence on the 
orbital dynamics within the 7-day arc. This linearity allows the residuals 
to be scaled for different density uncertainty values within the consid-

ered range. Due to the multiplicative nature of the terms in Eq. (12), 
similar conclusions apply to uncertainties in other aerodynamic vari-

ables, such as the aerodynamic coefficients or the velocity relative to 
the atmosphere.

Modifications to the accommodation coefficients 𝜎𝑛, 𝜎𝑡 also exhibit a 
linear behaviour over the 7-day arc, with post-fit residuals nearly dou-

ble those observed for density variations. These results highlight the 
sensitivity of the solar-sail dynamics to atmospheric particle reflection 

Fig. 5. Bar plot of the gravitational perturbations sensitivity results. 
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Fig. 6. Bar plot of the non-gravitational perturbations sensitivity results. 

distribution and indicate the potential for accommodation coefficient es-

timation from flight data. In contrast, sail temperature variations show 
minimal impact on the orbit evolution, with post-fit residuals approx-

imately three orders of magnitude below the model accuracy require-

ment.

The assumption of a constant Sun-sailcraft distance produces sig-

nificant orbital deviations, with the 1 AU case showing larger effects 
than using the mean Earth-Sun distance over the simulation period. 
Both scenarios lead to post-fit residuals exceeding the 1-meter accuracy 
requirement, underlining the need to include the instantaneous Sun-

sailcraft distance in the SRP acceleration model.

Simplifying the dynamics through the ideal SRP acceleration model 
results in post-fit residuals on the order of hundreds of meters, while 
using the ideal PRP acceleration model produces post-fit residuals in 
the tens of meters. This order-of-magnitude difference is also observed 
in the pre-fit values and reflects the relative strength of SRP and PRP 
accelerations in the ACS3 orbit. As the ideal models assume a perfect re-

flection of the radiation from the sail surface, the substantial deviations 
they produce emphasise the importance of accurately characterising the 
sail’s optical properties and incorporating their effects in both SRP and 
PRP acceleration models.

Changes in the AR and BBR configurations result in a linear response 
of pre-fit and post-fit residuals within the 7-day arc. Despite producing 
variations of similar magnitude in the PRP acceleration, as evidenced 
by comparable pre-fit residuals, the post-fit values diverge significantly. 
Modifications in the reference albedo coefficients lead to post-fit resid-

uals around ten meters, whereas changes in the reference blackbody 
radiation fluxes produce post-fit residuals approximately three orders 
of magnitude smaller. This divergence can be explained by the differing 
behaviour of the AR and BBR forces, even though both act radially when 
the sailcraft maintains a nadir-pointing attitude. Changes in albedo force 
are discontinuous due to the presence of eclipses, preventing initial 
state adjustments alone to compensate for them. The dependence of the 
albedo force on the illumination conditions of the Earth’s visible surface 

may also complicate the absorption of associated model uncertainties. 
In contrast, the blackbody radiation force exhibits periodic, continu-

ous changes, allowing them to be effectively absorbed by shifts in the 
initial radial position. This behaviour also appears when replacing in-

frared with visible reflectivity in the BBRP acceleration model, leading 
to a similar three-order magnitude difference between the pre-fit and 
post-fit residuals.

Finally, changes in the solar irradiance value also exhibit a linear 
behaviour over the 7-day arc. Post-fit residuals exceeding the 1-meter 
model accuracy requirement suggest that daily irradiance values should 
be used when available, with the lack of such data potentially posing a 
fundamental limitation on the model fidelity.

5.3. Optical coefficients variations

The results of the optical coefficients variations are presented in 
Fig. 7 and reveal different degrees of sensitivity across the various opti-

cal properties, with significant implications for both their observability 
and potential estimation strategies. The observed symmetry over the 7-

day arc between positive and negative 10% variations of each coefficient 
enables the extension of the results to other uncertainty values of the op-

tical coefficients within the original range. In this context, the surface 
roughness of the metal coating introduces local deviations in the sail op-

tical properties that fall well within this studied interval. Therefore, the 
presented results can be used to gain insights into the impact of these 
deviations on the sail orbital evolution without the need to explicitly 
model microscale features in the solar-sail acceleration model.

Uncertainties in frontside reflectivity, 𝑟𝑓 , and frontside specularity, 
�̃�𝑓 , have the largest impact on the orbit determination among the sail op-

tical coefficients, with post-fit residuals well above the observation noise 
level. These parameters have a strong signature on the solar-sail dy-

namics, indicating they could be effectively estimated from flight data. 
Uncertainty in the backside non-Lambertian coefficient, B𝑏, leads to sim-

ilarly large pre-fit residuals but smaller post-fit residuals. These results 
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Fig. 7. Bar plot of the optical coefficients variations sensitivity results. 

are consistent with the previously discussed behaviour, for which purely 
radial force changes, such as those caused by increasing or decreasing 
B𝑏, are effectively compensated for by adjustments in the initial radial 
position. In contrast, changes in 𝑟𝑓 and �̃�𝑓 alter the SRP force in the ra-

dial, along-track, and cross-track directions, making their uncertainty 
more challenging to compensate for through initial state adjustments 
alone.

Variations of the frontside non-Lambertian coefficient, B𝑓 , backside 
reflectivity, 𝑟𝑏, and backside specularity, �̃�𝑏, demonstrate moderate ef-

fects on the orbit accuracy, though less pronounced than those of the 
frontside reflectivity and specularity. While four times smaller than 
the pre-fit values, their post-fit residuals still exceed the assumed 10-

meter observation noise, suggesting that estimating their magnitude 
from flight data might be possible.

The uncertainty in the emissivity coefficients, 𝜀𝑓 and 𝜀𝑏, leads to 
post-fit residuals that are one order of magnitude below the observation 
noise level, indicating that their signatures may be challenging to detect 
from the available observations. In contrast, the post-fit residuals for the 
infrared backside reflectivity, 𝑟𝑏IR

, are below one centimetre, suggesting 
it will be impossible to estimate its value from flight data. The three-

order of magnitude drop between pre-fit and post-fit residuals occurs 
because changes in 𝑟𝑏IR

only affect the BBR force, allowing the least-

squares algorithm to effectively absorb these effects through initial state 
adjustments, as discussed earlier.

The observability of many of the optical coefficients, even for the 
relatively coarse orbital accuracy expected for the ACS3 mission, in-

dicates that tracking data could potentially reduce the experimental 
uncertainty in these parameters. At the same time, the strong sensitivity 
of the solar-sail orbital dynamics to the modest uncertainties in the op-

tical coefficients suggests that the optical solar-sail acceleration model 
may not fully capture the complex dynamics of solar sails.

5.4. Attitude errors

Fig. 8 illustrates the impact of attitude errors on the solar-sail orbital 
evolution. The first three cases, representing random attitude errors with 
different initial seeds, show consistent outcomes. While the comparison 

between pre-fit and post-fit residuals shows that the orbit determination 
process can mitigate random attitude errors of this small magnitude, 
the persistence of post-fit residuals slightly above the 1-meter threshold 
suggests that these errors may still have a limited impact on the overall 
accuracy of the orbit solution.

The analysis of systematic attitude errors across different clock an-

gles reveals a clear pattern in the magnitude of orbital deviations, evi-

dent in both pre-fit and post-fit residuals. Cases corresponding to 0◦ and 
180◦ clock angles exhibit the smallest deviations, while those at 90◦ and 
270◦ clock angles show the largest deviations. All other cases show de-

viations between these extremes, with a gradual increase and decrease 
pattern observable as the clock angle changes. This pattern can be at-

tributed to the direction of the normal vector offset relative to the sail 
orbit, with along-track offsets (90◦ and 270◦) inducing larger cumula-

tive position changes over time compared to out-of-plane offsets (0◦ and 
180◦).

Pre-fit residuals for the systematic attitude error cases span over an 
order of magnitude, demonstrating the varying impact that systematic 
attitude errors can have on the orbit accuracy. While post-fit residuals 
are consistently reduced from pre-fit values, the 1-meter model accu-

racy requirement is exceeded across all clock angles, with those near 
0◦ and 180◦ just marginally exceeding the threshold. Additionally, the 
least-squares algorithm requires position adjustments larger than the 
10-meter observation noise level to fit the observations for most clock 
angles, except near 0◦ and 180◦.

The persistence of significant post-fit residuals for most systematic 
attitude errors indicates that these errors cannot be fully compensated 
by adjusting the initial state alone. Based on these findings, once mis-

sion data becomes available, several approaches could be considered 
to mitigate the impact of systematic attitude errors on accurate orbit 
determination. These approaches may include estimating empirical ac-

celeration terms, implementing more sophisticated attitude models, or 
using consider parameters to assess the impact of attitude uncertainties 
on the overall orbit solution. Another approach could explore concur-

rent attitude and state estimation. However, accurate knowledge of the 
deployed sail geometry and centre of mass would be required for proper 
torque computation, or alternatively, a kinematic model would need to 
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Fig. 8. Bar plot of the attitude errors sensitivity results. 

be used for rotational motion alongside the dynamical model describ-

ing orbital motion. Overall, the observed pattern between the residuals 
and the clock angles offers valuable insight into which attitude error di-

rections most significantly affect the sail orbital evolution, potentially 
guiding the focus of these mitigation strategies.

Systematic attitude errors can also be used to investigate the sen-

sitivity to deformations in the sail surface, such as creases, crinkles, 
wrinkles, and asymmetric billowing. Since these deformations lead to 
deviations of local surface normals from their nominal flat-plate orien-

tation, representing them through systematic attitude errors provides a 
way to assess their impact on the sail orbital evolution without requiring 
computationally expensive finite element modelling of the sail shape. 
The sensitivity of the orbit solution to even minor systematic attitude 
errors emphasises the critical importance of robust attitude determina-

tion and control systems for solar-sail missions. In addition to providing 
accurate knowledge of the sail orientation, these systems must be de-

signed to actively compensate for unmodelled sail normal deviations 
and maintain commanded attitudes over time.

6. Conclusions

This paper has established a framework for identifying opportuni-

ties for dynamical model simplifications, evaluating the observability of 
solar-sail acceleration parameters, and quantifying the impact of model 
uncertainties and sail-attitude errors on solar-sail dynamics. For the one-

sigma 10-meter observation noise level of the ACS3 mission and a seven-

day arc, results have indicated that higher-order lunar perturbations, 
third-body effects from Jupiter and Venus, and relativistic corrections 
can be safely omitted from the dynamical model. Additionally, a geopo-

tential expansion of degree and order 32 proves sufficiently accurate, 
and the BBRP acceleration can be modelled assuming visible reflectivity. 
In contrast, based on their significant post-fit signatures, the dynamics 
should include the effects of solid Earth tides, account for the instanta-

neous Sun-sailcraft distance in the SRP modelling, and employ optical 
models for both SRP and PRP accelerations.

The sensitivity analysis on the optical coefficients has shown dif-

ferent levels of observability, suggesting an iterative approach to pa-

rameter estimation once mission data becomes available. Initially, the 

estimation should focus on the frontside reflectivity and frontside specu-

larity. These coefficients exhibit a strong influence on the dynamics and 
high observability, making them prime candidates for improving cur-

rent solar-sail acceleration models. Properties with weaker dynamical 
signatures – the non-Lambertian coefficient, backside reflectivity, and 
backside specularity – could be estimated in subsequent iterations to 
refine the acceleration models further, although distinguishing their in-

dividual effects may prove challenging. The emissivity coefficients and 
infrared reflectivity show observability below the noise level and could, 
therefore, remain fixed or be treated as consider parameters within the 
orbit determination process. Overall, the pronounced signature of many 
of the optical coefficients on the solar-sail dynamics suggests that the 
data analysis may reveal deficiencies in the current solar-sail accelera-

tion models.

The investigation of the model’s robustness has revealed that the dy-

namics can absorb uncertainties in the sail’s temperature and reference 
BBR fluxes, as well as random attitude errors of small magnitude. How-

ever, the model struggles to accommodate systematic attitude errors of 
similar magnitude and uncertainties in atmospheric density, accommo-

dation coefficients, reference albedo coefficients, and solar irradiance. 
The uncertainties and errors that cannot be absorbed into ACS3’s initial 
state present both challenges and opportunities. While they may compli-

cate the estimation of optical coefficients from mission data, they could 
enable the investigation of additional physical phenomena through the 
orbit determination process. Of particular significance is the potential 
for estimating the accommodation coefficients, given their strong dy-

namical signature and the limited understanding of particle reflection 
distribution above 500 km altitude.
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Appendix A. Numerical results

Table A.1

Gravitational perturbations sensitivity results.

Perturbation RMS Pre-fit Residuals (m) RMS Post-fit Residuals (m) Max Position Adjustment (m)

Geopotential 𝑙,𝑚=720 0.0278 0.0242 0.0504

Geopotential 𝑙,𝑚=128 0.0276 0.0242 0.0510

Geopotential 𝑙,𝑚=32 9.48 1.01 2.95

Geopotential 𝑙,𝑚=16 162.54 23.11 50.24

Geopotential 𝑙,𝑚=8 905.23 80.02 183.82

Jupiter excluded 0.00165 0.00031 0.000728

Venus excluded 0.000262 0.0000799 0.000183

Jupiter & Venus excluded 0.00231 0.000606 0.00121

Moon indirect oblation excluded 0.012 0.00476 0.01

Moon extended body excluded 0.012 0.00476 0.0101

Solid tides excluded 65.45 13.66 27.58

Schwarzschild correction excluded 9.26 0.00501 0.0071

Table A.2

Non-gravitational perturbations sensitivity results.

Perturbation RMS Pre-fit Residuals (m) RMS Post-fit Residuals (m) Max Position Adjustment (m)

Density variation + 15% 6593.89 1096.16 2414.57

Density variation −15% 6594.77 1096.11 2414.78

Accommodation coeff. 𝜎𝑛, 𝜎𝑡 = 0.6 10987.57 1826.96 4024.60

Accommodation coeff. 𝜎𝑛, 𝜎𝑡 = 1.0 10988.79 1826.83 4024.92

Sail temperature 𝑇𝑠 = 232𝐾 0.00232 0.00128 0.00283

Sail temperature 𝑇𝑠 = 374𝐾 0.00232 0.00124 0.00272

Constant 𝑢 = 1AU 146.93 47.21 104.38

Constant 𝑢 = 148352576319.0875 m 6.52 1.84 6.72

Ideal SRP Model 1700.21 267.27 584.74

Ideal PRP Model 392.64 37.92 81.79

Minimum AR configuration 68.54 14.59 31.22

Maximum AR configuration 72.80 17.43 37.36

Minimum BBR configuration 38.51 0.0223 0.0324

Maximum BBR configuration 54.07 0.0278 0.0376

BBRP with visible reflectivity 7.43 0.00424 0.0059

Solar irradiance 𝑆⊕ = 1356.4 N∕m2 25.05 8.10 17.64

Solar irradiance 𝑆⊕ = 1362.6 N∕m2 8.71 2.82 6.14

Table A.3

Optical coefficients variations sensitivity results.

Coefficient Variation (%) RMS Pre-fit Residuals (m) RMS Post-fit Residuals (m) Max Position Adjustment (m)

𝑟𝑓 + 10 383.80 100.01 236.32

𝑟𝑓 -10 386.25 100.01 236.00

𝑟𝑏 + 10 51.07 12.92 28.26

𝑟𝑏 -10 51.12 12.92 28.27

𝑟𝑏IR
+ 10 9.90 0.0057 0.0079

𝑟𝑏IR
-10 9.90 0.0057 0.0079

�̃�𝑓 + 10 291.07 87.24 194.53

�̃�𝑓 -10 291.44 87.34 194.58

�̃�𝑏 + 10 49.41 12.35 27.06

�̃�𝑏 -10 49.46 12.35 27.07

B𝑓 + 10 78.16 19.62 43.37

B𝑓 -10 78.21 19.62 43.37

B𝑏 + 10 226.89 18.86 40.42

B𝑏 -10 226.84 18.86 40.43

𝜀𝑓 + 10 18.19 1.68 3.62

𝜀𝑓 -10 18.37 1.70 3.65

𝜀𝑏 + 10 16.69 1.54 3.32

𝜀𝑏 -10 20.20 1.86 4.02
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Table A.4

Attitude errors sensitivity results.

Clock Angle (deg) RMS Pre-fit Residuals (m) RMS Post-fit Residuals (m) Max Position Adjustment (m)

random 14.65 2.09 5.03

random 12.88 1.16 3.95

random 9.91 1.31 3.34

0 9.90 2.36 4.70

15 85.08 15.58 38.38

30 173.00 29.95 70.07

45 249.80 42.45 97.21

60 310.20 52.17 117.95

75 349.97 58.43 130.84

90 366.11 60.76 134.89

105 357.22 58.93 130.37

120 323.61 53.03 118.51

135 267.42 43.44 98.39

150 192.52 30.83 71.39

165 104.14 16.09 39.32

180 9.84 2.36 4.56

195 87.94 16.11 39.48

210 177.53 30.77 71.81

225 254.46 43.30 99.02

240 313.42 52.80 119.25

255 350.55 58.64 131.19

270 363.57 60.45 134.10

285 351.89 58.15 128.82

300 316.61 51.96 116.32

315 260.30 42.32 96.07

330 186.82 29.91 69.47

345 101.07 15.61 38.34

Data availability

Data will be made available on request.
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