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INTRODUCTION 

Time dependent correlation functions play an important role in 

the theories that describe the dynamical behaviour of fluids and 

gases. It is well known that macroscopic transport coefficients, 

such as the diffusion coefficient, can be expressed as time integrals 

over these correlation functions (Forster, Martin, 1970). The most 

important correlation functions are the density-density correlation 

function G(r,t), introduced by van Hove (1954), and the velocity 

autocorrelation function C (t). Classically G(r,t) is proportional 

to the probability that there is a particle at time t and position 
->-
r given that there was some particle at t = 0 in the origin. Expe-

->-
rimentally the fourier transform of G(r,t) with respect to the 

->-
position r and the time t, the so-called scattering function S(k,u), 

can be obtained by slow neutron scattering on noble gases (Andriesse, 

1970; Hasman, 1973; Lefevre, Chen, Yip, 1972). Time dependent corre

lation functions can also be calculated by means of molecular dyna

mics (Verlet, 1967) . 

Theoretically the exact calculation of the time dependent corre

lation functions is only possible for the two following totally 

different time domains: 

a) For short times it is possible to make a time expansion of the 

correlation functions, the so-called moments expansion (de Gennes, 

1959). Only the first few moments are exactly known in terms of 

the static correlation functions. The time domain in which this 

expansion is useful is restricted by the shortest microscopic 

time scale present. In fluids, where the molecules undergo 

sudden collisions, this is the duration of the collision, which 
-14 

may be extremely small (10 s), much smaller for instance than 

the mean free time in moderately dense gases. 

b) For large times the hydrodynamic equations become valid. Then a 

complete description of the correlation functions is possible in 

terms of the transport coefficients of the fluid. The hydrodyna

mic time domain is restricted from below by the largest micros

copic time scale. For a moderately dense gas this is the mean 

free time. 
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Thus a gap exists in the time domain where no rigorous description 

is possible. For dense fluids the gap is small enough that one may 

try an interpolation scheme as for instance suggested by Jhon 

e.a. (1975). For more dilute gases the gap is much too wide and a 

kinetic approach seems more appropriate. 

Neutron scattering experiments for low density systems are possible 

on well chosen systems such as Ar (Andriesse, 1970) which has a 

very large scattering cross section. The time scale of such an expe

riment is precisely of the order of the mean free time, so that the 

most important contribution to the correlation function for these 

times comes from the collisions in which only two particles are 

involved. 

The conventional Boltzmann equation cannot be used for an ade

quate description of the detailed time dependence of the correlation 

functions, because in the Boltzmann collision operator the collisions 

are treated in an asymptotic way (as cross sections) , where as the 

correlation functions have a time scale in which the duration of 

the collision may not be taken zero. 

The Boltzmann equation may be modified (Mazenko, 1973, 1974) such 

as to treat the individual collisions in full detail and the solu

tion of this modified equation provides the full time dependence 

of the correlation functions in the low density limit. 

The solution of the modified Boltzmann equation is however quite 

involved and in this thesis we present a simpler approach with a 

more limited scope: to extend the calculation of the correlation 

functions for moderately dense gases up to a time scale of the order 

of a mean free time. For this purpose we have used the Ursell-

expansion of the correlation functions; in this expansion the suc

cessive terms describe the effect of an increasing number of 

colliding particles. The first term contains only the free streaming 

of the particles yielding the ideal gas behaviour of the correlation 

functions. The second term represents the effect of the two particle 

collisions, so this term gives the most dominant contribution to the 

deviation of the correlation function from its ideal gas value for 

times up to the mean free time. 

10 



As a first approximation for a real gas we have taken a hard 

spheres system, which has the advantage that the mathematical 

expressions, that describe the two particle collision, are very 

easy. A disadvantage is however that the duration of the collision 

is zero, so that the moments expansion is not valid; it has to be 

replaced by a modified moments expansion, which can be obtained 

from an extension of the hard spheres Liouville operator (Ernst 

et. al., 1969) . Because the replacement of the true potential by 

the hard spheres interaction is rather drastic, we expect that our 

theoretically calculated correlation functions agree with the expe

rimentally measured functions only in a qualitative way. Therefore 

we have also done calculations for a system of particles with a 

Lennard-Jones interaction, which accounts very well for the equi

librium properties of noble gases like argon (Verlet, 1976, 1968). 

These calculations are however more complicated because the 

equations of motion can only numerically be solved on a computer. 

This dissertation is divided into four chapters. Chapter 1 con

tains the definitions of the correlation functions and a short 

discussion of the moments expansion. In chapter 2 the Ursell expan

sion is derived. In chapter 3 the Ursell expansion of the hard 

spheres system is discussed, while in chapter 4 our theoretically 

calculated correlation functions for a Lennard-Jones interaction 

are compared with correlation functions, obtained by neutron 

scattering and by molecular dynamics. 

11 



CHAPTER 1 

DEFINITION AND PROPERTIES OF THE SYSTEM 

1.1 DEFINITIONS 

We consider a classical one-component raonatomic system con

sisting of N particles of mass m enclosed in a volume V. Assum

ing that one has only two-particle interactions the Hamilton 

function H(r) of this system is: 

^ 2 1 '̂  
H(r) = Z p /2m + - E Z^(r. .) (1.1) 

i=l ^ i^j ^3 

where p. and r. are the momentum and the position of the i'th 
1 1 '̂  

particle, T stands for the collection of momenta and coordinates 

5-,r, ,p. ,r , . . . ,p ,r andip(r,.) is the interaction between the 

particles i and j on a distance r., = |?.-?.|. 

13 1 3 

Given the Hamilton function H(r) one can calculate the cano

nical ensemble average of an arbitrary function f(r) in the phase 

space as: 

<f(r)> = dr p(r)f(r) (1.2) 

where the phase space density p(r) is given by: 

p(r) = exp(-BH(r)) / dr exp(-BH(r)) (1.3) 

with S = 1/k T, k is Boltzmann's constant and T 11 the abso-
B B 

lute temperature. 

In the following chapters we shall frequently make use of 

some equilibrium distribution functions such as the Maxwell-

Boltzmann momentum distribution function (t>(p): 

1 2 
(()(p) = (B/27rm)2 e"^P ^^^ (1.4) 

and the m-particle static correlation function g(r,r....r 
1 2 n 

12 



defined as (Munster, 1959): 

n ' " g ( r , r „ . . r )=N(N-1) . .(N-m+l)0^/ Idr , . . .dr exp(-B$ (r'") ) 
^ 1 2 m ' N m + 1 N 

(1.5) 

where n = N/V i s the number dens i ty , $ ( r ) = $( r . . . r ) i s the 

p o t e n t i a l energy: 

$(?^) = i E Z ¥'(r . .) , (1.5) 

i?^3 

and Q is the configuration integral, given by: 

Q^ = d?^...dr^ exp(-B$(?^)) (1.7) 

Of particular interest for the two-particle problem is the 

two-particle distribution function g(r r ) , also called the 

pair or radial distribution function which depends only on the 

relative distance r of both particles in an isotropic system. 

The pair correlation function g(r) gives the difference of the 

probability to find a particle at a distance r from the origin, 

given that there is at the same time another particle in the 

origin, and the probability to find both particles at distance 

r in a completely random distribution. 

The difference between the pair correlation function g(r) 

and its asymptotic value one will be called G(r): 

G(r) = g(r)-l, (1.8) 

which has the following fourier transform (with respec t to the 

s p a t i a l v a r i a b l e r) : 

f -V - i k ? '^ 
n dr e G(r) = n G(k) = S(k)-1 (1.9) 

where S(k) is the structure factor which can be directly mea

sured by slow neutron scattering. 

13 



Another important two-pa r t i c l e d i s t r i b u t i o n function i s the 

d i r e c t c o r r e l a t i o n function C(r) t h a t i s defined imp l i c i t l y in 

terms of G(r) in the Ornstein-Zernike equation (Rice and Gray, 

1955) : 

G(r) = C(r) + n I d? ' C (I r - r ' I )G (r ') (1.10) 

From (1.9) and the fourier transform of (1.10) it follows that 

the structure factor S(k) can also be obtained from: 

S(k) = (1-n C(k)) ^ (1.11) 

with C(k) the fourier transform of C(r). 

Because the following chapters concern with time dependent 

correlation functions the time evolution of the system is of 

great importance. The trajectory r(t) of the N-particle system 

in phase space is generated by the streaming operator S (1..N). 

If one has at t = 0 some arbitrary function f(r) of the phase 

space coordinates V = (?i •-^N'^I ''^H'' ^^^ function vrill have 

at time t the value: 

f(r(t)) = 5^.(1..N)f(r) (1.12) 

In the case of a non-singular interaction potential S is given 

by (Balescu, 1975) : 

S^ = exp(tLj^) (1.13) 

where the Liouville operator I- is the Poisson bracket with the 

Hamilton function: 

\ = M1..N) = Z ( . _ . ) 

'=' ^ ^ ' ^ (1.14) 

= L (1..N) + ^ Z L^(ij) 
o 2 I -' 

One observes that L consists of the free streaming part 
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N N p . 
L (1..N) = l L (i) = l — • :r5- (1.15) 
o . , o . , m dr, 

1=1 1=1 1 

and an interaction part containing terms like: 

a S 3v(r. ,) 

3 1 1 

The hermitian conjugate L of the Liouville operator L with 

respect to the weight function p(r), given in (1.3), will be 

defined by: 

dr p(r)f(r)L g(r) = Ur p(r)g(r)L"''f(D (I.17) 

where f(r) and g(r) are arbitrary functions of phase space. By 

partial integration one can easily verify that L is antihermi-

tian: 

t 
L = -L (1.18) 

In the case of the singular hard spheres interaction, defined 

by: 

^(r)=»= r < a . j^_jgj 

= 0 r > a 

with a the diameter of the spheres, one sees from (1.15) that 

the definition (1.13) for the streaming operator makes little 

sense. Another expression for S is given by Ernst et al. (1969) 

in terms of "pseudo" Liouville operators L^. For forward resp. 

backward streaming they obtained the following streaming ope

rators : 

S^=exp(tL^) t > 0 jj_2^, 

= exp(tL ) t < 0 

15 



with L^ given as: 

L. = L ± ^ T. I T, (ij) = L + L: (1.21) 
± o 2 ... ± o ± 

17̂ 3 

Here L is the free streaming part (1.15) of the Liouville ope

rator and the T^ operators are defined as: 

T.,(ij) = 1^.. • r,.|e(+v.. . r..)6(r.. a)(b..-l) (1.22) 
± 13 13 13 13 13 13 

where v. . = p. ./m = (p.-p.)/m, r. . = r. ./r. ., 9(x) is the unit 
13 13 1 3 13 13 13 

step function: 

e(x) = 0 x < 0 . (j_23) 

= 1 x > 0 

and the operator b.. changes the initial momenta p.,p. into those 

after the collision p.',p'. according to: 

with 

b..f(5j,?^,..,?,,?.,..,f.,?.,..,?^,?^) = 

= f ( ? j , ? j , . . , ? : , ? , , . . , ? • , ? . , . . , ? ^ , y 

P' = P- - (P- • • r, .)r. . ^1 '̂ i ^ij 1] 13 

p = p. + p., • r..)r.. 
3 3 13 13 13 

(1.24) 

(1.25) 

As the fact that different Liouville operators are needed for 

forward (t>0) and backward (t<0) streaming may seem a little bit 

strange we shall give here a short comment. One sees immediately 

that the collisional part of a hard sphere Liouville operator 

should be defined at the point of contact r.. = 0 . In F-space 
13 

two sets of these points can be distinguished, namely those 

where the relative velocity v.. has the same direction as the 
13 
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relative contact vector r.. (v,. • r..>0) and those where 
^ 13 13 13 
v • r.,<0. The first case refers to backward streaming (be-
13 13 

cause the particles have already collided), the latter one to 

forward streaming (because the particles are going to collide). 

So it is clear that the relevant F-spaces for forward and back

ward streaming are not the same. One should declare an operator 

zero in the region where it does not apply as is done in (1.22) 

by means of the step functions 6(+v.. • r..). Thus it is impos-
13 13 

sible to make use of the same analytical expression in the whole 

F-space. 

This has also a consequence for the hermitian conjugate L 

of the pseudo Liouville operator with respect to the canonical 

ensemble average. For the hard spheres interaction the following 

relation ccin be derived: 

L = -L_ (1.25) 

The detailed calculation of this hermitian conjugate will be 

given in appendix A. 

A summary of all relations that are important with respect 

to the hard spheres streaming operator can be found in table I. 

TIME DEPENDENT CORRELATION FUNCTIONS 

The time dependent density-density correlation function 

G(r-r';t) and the self part G (r-r';t), which are of interest 

for neutron scattering, are defined by (van Hove, 1954): 

_ N N 
G(r-r';t) = n < T I 6 (J .-?) 6 (? . (t)-?') > 

i=l j=l ^ ^ 

and (1.27) 

G^(r-?';t) = n <̂ S 6(?.-?)6(?. (t)-r')> 
i=l ^ 

with r. the position of particle i at t = 0 and r.(t) the posi-

17 



Table I. The hard spheres streaming operator. 

Forward streaming (t>0) S = exp(tL ) 

Backward streaming (t<0) S = exp(tL_) 

Pseudo Liouville operator L, = L ± L' 

^ + o .̂  ± 
Free streaming part L = Z -

o . , m d 

Interaction part 

N Pi 3 

.̂ , m • W7 
1=1 1 

L; = i z z T^(ij) 
^1^3 

(+^. . • ?. .)6(r. .-a) (b. .-1) 

with 

T.,(ij) = V. . • r. . e(+^. . • ?. .)ö(r. .-a) (b. 
± 13 13 13 13 1] 1 

V. . = p. ./m = (p.-p.)/m and r. . = r. ./r. . 
ij 13 1 3 13 1] 13 

Collision operator b . .: 

-> •+ b..f(pj,rj,..,p.,r,,..,p,,r^,..,p^,r^) 

= f(p^,rj,..,p',r.,..,p',r.,..,p^,r^) 

with 

J: = p.-(p. . • r. .)r. . 
1 1 1j 1] 1] 

J'. = ?. + (?. . • £, .)r, . 
3 : 13 ^1 13 

Hermitian conjugate defined by: <fL g> = <(L f) g> 

L + = - L 
+ 



tion of partiele j at time t. G(r-r';t) is proportional to the 

probability to find a particle at position r' and time t given 

that there was at t = 0 a particle at r. The self function 

G (r-r';t) refers to the case that both particles are identical. 

For convenience we will consider the fourier transforms (with 

respect to the spatial variable r) of these correlation functions, 

which are called the intermediate scattering functions: 

Fĵ (t) = dr exp(-ik.r)G(r;t) 

_ N N 
= N < S Z exp{-iic.r.)exp(ik.r . (t) 

i=l j=l ^ ^ 
> 

ana (1.28) 

_j N 

Ff(t) = N < Z exp(-ik.r.)exp(ik.r. (t) )> 
k . . 1 1 

1=1 

With (1.5) and (1.9) it is easy to verify that their initial 

values are: 

F, (0) = S(k) 
k 

F^(0) = 1 

(1.29) 

The intermediate scattering function F (t) and its self part 

F, (t) are often referred to as the coherent and incoherent inter-
k 

mediate scattering function. Their fourier transforms with re

spect to the time are called the coherent and incoherent scat

tering functions, S(k,u) resp. S (k,w). They can be measured by 

slow neutron scattering. The expressions (1.28) for F, (t) and 
s 

F (t) will frequently be used in another form by introducing 

the streaming operator S = exp(tL) ((1.12) and (1.13)). They 

take then the following form: 

_ N N 
F (t) = N < Z exp(-ilt.r.)exp(tL) Z exp(ik.r.)> 

^ i=l "• j=l 
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and (1.30) 

_j N 

F^(t) = N < Z exp(-ik.r . )exp(tL)exp(iic.r, )> 
1=1 

The calculation of F (t) and F (t) for free particles is very 

easy and yields: 

F, (t) = Ff(t) = exp(-k^t^/2em) (1.31) 
k k 

Because we are interested in the differences between the corre

lation functions of a gas of interacting particles and those 

?^{t) and F^( 3 
of an ideal gas, we shall, instead of F (t) and F̂ (̂t) itself, 

g 

calculate their deviations E (t) and £, (t) from the ideal gas 

values. So we write: 

Fĵ (t) = S(k)[exp(-k^t^/2Bm)+ej^(t)] 

and (1.32) 

F^(t) = exp(-k^t^/2Bm)+e^(t) 

Comparing this with (1.29) one sees immediately that the ini

tial values of the deviations are: 

c^{Q) = e^(0) = 0 • (1.33) 

Another correlation function that we will consider is the 

velocity autocorrelation function C (t): 

C (t) = <v(0) • v(t)>/<v{0) . ̂ (0)> (1.34) 

where v is the velocity of some particle, say particle 1. For 

free streaming particles C (t) = 1 . Finally we shall give a 

relation between C (t) and the second derivative of F, (t) 
D k 

(Egelstaff, 1967) : 



1 3'^k<^' 
C (t) = -Bm lim ^ 5 — (1.35) 
° k+0 k 3t 

This relation enables us to calculate the velocity autocorre

lation function C (t) if the incoherent intermediate scattering 

function is known. 

3 THE MOMENTS OF THE CORRELATION FUNCTIONS , 

One possibility to obtain 'a short time expansion of corre

lation functions is to expand these functions in a power series 

in the time t. For the intermediate scattering functions this 

can be accomplished by substituting in (1.30) for the streaming 

operator the series expansion Of the exponent: 

00 

exp(tL) = Z t^L^/n: (1.36) 
n=0 

So we may write: 

F, (t) = Z M (k)t"/n: 
k n " 

"=° • (1.37) 
00 

Ff(t) = Z M^(k)t"/n: 
k n 

n=0 

and in the same way for the velocity autocorrelation function: 

C (t) = Z C t"/n: ^ (1.38) 
D „ n 

n=0 

The expansion coefficients are often referred to as the moments 

or the sum rules. Calculations of de Gennes (1959) show for the 

first few moments of the intermediate scattering function: 

M (k) = S(k) 
o 

M2(k) = -k^/Bm (1.39) 

M (k)=k'*(m^B)~^ 3/B+nk"'' drg(r) (l-cosïï.?) {t.^)% (r)] 

21 



For the incoherent in termediate s c a t t e r i n g function they become: 

M"(k) = 1 
o 

M^{k) = -k^/Bir (1.40) 

M^(k) = k^(m^B)"^(3/B)+(n/3k^) dr g{r) ̂ ^•^(r)] 

and for the velocity autocorrelation function: 

(1.41) 

-(n/3ra) 
->• * 2 
dr g(r)V <P (r) 

The higher order moments contain three and more particle corre

lation functions that are only roughly known. 

These expressions hold only for non-singular interactions. 

In that case also all odd moments vanish and the moments of 

F (t) and F (t) can be expressed in terms of their time fourier 
k k 

s 
transforms, the scattering functions S(k,a)) and S (k,ü)). From 

(1.37) one sees immediately that: 

\n_ 

M (k) 
n 

F^(t) 

3t n 
t=0 

3t" 

-iut 
dw e S(k,a)) 

t=0 

-i) du (i) S (k,a)) (1.42) 

and for the incoherent function: 

M^(k) = (-i)" dw 0ü"ŝ (k,üJ) 
n ' 

The usefulness of these series is determined by their conver-

22 



gence. An indication of the convergence can be obtained by 

studying the relative magnitude of the successive terms. To see 

under which conditions this series expansion is worthwhile we 

shall calculate the ratio of the fourth and the second moment 

of the self function. From (1.40) it is found that: 

M^/M^ = -3k^/Bm - n/(3m) [ dr g(r)^^¥'(r) (1.43) 

For small densities g(r) can be approximated by: 

g(r) = exp(-BM' (r) ) 

and we find for the integral in the right hand side of (1.43) 

dr exp{-?*P{r))V'P{r) 

Integrating this once partially, we get: 

dr{V exp(-Bv'(r)) } • Vf (r) 

dr exp(-B^(r)) [^V(r)]^ 

d? g(r) [̂ -̂ (r)] ̂  

and this is essentially the average of the square of the inter-

molecular force. One sees that the range of validity of the 

time expansion is smaller when k becomes larger and when we 

have to do with stronger forces. 

In the case of the hard spheres interaction (and also for 

other singular potentials) the force is infinite on the sphere 

and from (1.39), (1.40) and (1.41) it follows that M (k), 
s 

M (k) and C_ are infinite. This means that the moments expansion 

diverges for this singular interaction. An alternative for hard 

spheres can be found by using, instead of the singular Liouville 

operator L, the pseudo Liouville operators L^ defined in (1.21). 
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From (1.12), (1.20) and (1.28) it is seen that the intermediate 

scattering function takes the following form for t > 0: 

_ N N 
F (t) = N < Z exp(-ik.r. )exp(tL ) Z exp(ik.r.)> (1.44) 

1=1 j=l -* 

The moments are obtained by making a Taylor expansion of the 

exponentional streaming operator. Because the calculations are 

rather complicated they will be carried out in appendix B. The 

results are for F, (t) : 
k 

M (k) = S(k) ;-. • .. 
o •' 

M (k) = 0 

M.(k) = -k̂ /Bra .< , (1.45) 
2' 

1 I 
2„ „ln\/I^IR^\2\ r fVnl M^(k) = STr'n g(CT)/(3(Bm)'^) [ (ko) 

- 3ka sinka - 6coska + 6(sinka)/ka] 

We see that the hard spheres moments up to the second moment 

are exactly the same as the moments (1.39) of a system with a 

continuous potential. The reason is that every system behaves 

like an ideal gas for very short times because the particles 

do not feel the interaction yet. But the intermediate scattering 

function is for these very short times just determined by the 

first few moments, so the first hard spheres moments have to 

correspond with those of the ideal gas, just as the first mo

ments of a system with a continuous potential. The appearance 

of uneven moments, like the third moment, is due to the fact 

that during a hard spheres collision the velocity changes 

instantaneously and the force between the particles is infinite 

(Sears, 1972) . 

The calculations of the first moments of the self part of the 

hard spheres intermediate scattering function are also carried 

out in appendix B and yield: 

24 



M^(k) = 1 
o 

M^(k) = O 
(1 .46) 

M2(k) = -k^/Bm 

1 ^ 
M^(k) = 8TT2 n g(a) (ka) ^ / (3 (Bm) 2) 

The f i r s t moments of the ve loc i t y au tocor re l a t ion funct ion. 

become: •• , 

C 
o 

(1 .47 ) 

C^ = -STT^na^ g ( a ) / ( 3 ( B m ) 2 ) 

The fourth and higher order moments contain integrals over 

3- and more particle distribution functions, so they cannot be 

calculated exactly yet. Recently de Schepper and Cohen (1975) 

have succeeded to give an expression for C , valid for low 

densities. 
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CHAPTER 2 

THE URSELL EXPANSION OF THE CORRELATION FUNCTIONS 

In this section we will give a systematic expansion of the 

above defined correlation functions where the successive terms 

involve an increasing number of colliding particles. The first 

term gives the ideal gas, the second term the effect of the two 

particle collisions in time t and so on. 

To do this we first introduce the expansion of the streaming 

operator S that describes the trajectory F(t) of the system in 

phase space. The next section will be concerned with the straight

forward expansion of the correlation functions. Because we are 

interested in the short time behaviour, where the most impor

tant contributions come from the two particle collisions, we 

will derive some detailed expressions of the two particle terms 

in these expansions. However, it will appear that the expression 

for the intermediate scattering function consists of two parts, 

one of which contains the static triple distribution function. 

Because there is little known of this distribution function it 

is necessary to make an approximation for it. It will be shown 

that as a consequence of this approximation the second and 

higher moments do not agree with the exact moments. 

To avoid this disagreement in the last sections another ex

pansion of the correlation functions will be derived taking as 

a starting point the second derivative of the intermediate 

scattering functions and making use of the antihermiticity of 

the Liouville operator. In this approach no approximations for 

the static correlation functions are needed and it will be 

proved that the zeroth, second and fourth moments of the two 

particle terms correspond with the exact moments. 

2.1 THE URSELL EXPANSION OF THE STREAMING OPERATOR 

In order to obtain the desired expansion of the correlation 

functions we make use of the Ursell expansion (Cohen, 1958; 
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van Leeuwen and Yip, 1955) of the streaming operator S : 

S^(1...N) = U^(1)U^(2) ... U^(N) (2.1) 

' , ^ U^(3i32)"t(l'---"t'^l-l'"t'^l^l'--

with 

.U^(J2-1)U^(J2 + 1) .. -"^(N) 

\ ^ . A(3i3233)Ut(l)...ü^(3i-l)U^(3i + l)... 
{313233} 

...U^(32-l'"t<^2 + l'---"t<^3-^'"t'^3-^l'---"t'^'^-

U^(l) = S^(l) = S^(l) 

(2.2) 
U^(12) = S^(12 - S^(12) 

U^(123) = S^(123) - S^(12)S°(3) - S^(13)S°(?) 

• - S^(23)S°(1) + 2S°(123) 

Here is S (l..m) the free streaming operator of m particles, so 

S°(l..m) = exp(tL (l..ra)) (2.3) 
t o 

In (2.1) {jjjj} means all pairs of particles {jj,J2)/ {313233} 

all combinations of three different particles (jwj,,j,) etc. 

U (1) describes the free streaming of particle 1. U (12) gives 

the effect of the interaction between the particles 1 and 2 on 

their trajectories, because the free streaming of the both par

ticles is subtracted. Analogously U (123) gives the difference 

between the situation that all three particles collide and the 

situations that one particle is free streaming while both of 

the other particles may or may not be colliding. 
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2.2 THE URSELL EXPANSION OF THE CORRELATION FUNCTIONS 

In this section we shall derive expressions for the Ursell 

expansion of the intermediate scattering functions F (t) and 

F, (t) and the velocity autocorrelation function C„(t). Let us 
k D 
start with F (t), given in (1.28) by: 

_ N N 
F, (t) = N < Z Z exp(-ijt-r.)exp(iit-r. (t))> (2.4) 

1=1 ]=1 

With (2.1) the expression expdl?-?. (t) ) can be written as: 

exp(i5-r . (t) ) = S (1. .N) exp (ilt-r .) 

= [U^(j)+Z'U^(jj^) + y Z' U^(jjjJ2) + ..]exp(iit-? ) 

Jl jjjj 

N-1 

= [\(j)+^ ^ ^' "t'^r-^m" ^'^P'ik-? ) (2.5) 
m=l • 3iJ2--J„ 

where use has been made of: 

- * • - » - - > • - > 

U (j )exp(ik-r.) = exp(ik-r.) for j, î  j 

because the free streaming of particle j does not influence 

the streaming of particle j. In (2.5) the primes over the sum

mation signs indicate that the summation indices must be diffe

rent to each other and may also not be equal to j; the factor 

ml is inserted to avoid double counting. Substituting (2.5) in 

(2.4) one obtains for the intermediate scattering function: 

_ N N 
Fĵ (t) = N < Z Z exp(-iit-r.) [U (j) 

'-' ^=' ' (2.5) 
N-1 J 

1 z m 

and an analogous expression for the self function. This expres

sion is svmmetric in the indices j,j,,..,j , so one can label 
1 m 

particle j as particle 1, oarticle j. as particle 2, , 
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partiele j as particle (m+1). Since there are N possibilities 
•^ m 

for choosing j, (N-1) for choosing j , .... (N-m) for choosing 

j , the summation over j,j....j produces a factor (N-1)(N-2)., 
m 1 2 m 
. . (rj-m) . Using this in (2.5) one gets: 

,r. ,^^ y N(N-l) (N-2) . . (N-m+1) ^ y , -t t ^,, ,n i 
F, t = Z ; -— < I exp -ik-r , )U^(12. .m) 
k , N{m-1) ; . " It 

m=l 1=1 

- * - - > • 

exp(ik-r ) > 

V N(N-l) (N-2) ..(N-m+1) _ ^ .^.^ 
= Z ;; < I exp(-ik-r.)U (12..m) 

, Nm.' . , it 
in=l i=l 

m 
Z exp(ik-r.)> (2.7) 

3 = 1 ' 

The first term of this expansion corresponds with the free 

streaming of particle 1 in the given time t. The other terms 

describe the trajectories of particle 1 in phase space result

ing from dynamical interactions with the particles 2..m. Thus 

the particles (12..m) form an independent dynamical cluster and 

the motion of these particles is wholly determined by their 

mutual interactions. From (2.7) one sees that there is only a 

dynamical correlation at time t=0 and a time t later between 

the particles i and j as i belongs to the set (12..m). This sug-

A B A 

gests to split F (t) in two terms F (t) and F (t); F (t) repre

sents mainly the dynamical correlations, F (t) also the sta

tistical correlations; they are given by the following expressions: 

r.*,̂ > r N(N-l) (N-2) .. (N-m+1) ^ " .^ ̂. 
Fj^(t)= Z — • ^^, < Z exp(-ik-r^)U^(12. .m) 

ra=l • i=l 

m 

Z exp{ik-r .)> 

3=1 ' 

and (2.8) 

^^r^i V N(N-l) (N-2) ..(N-m+1) , ^ , -t ^ s„ ,,-, 
F (t)= Z -—; < Z exp(-ik-r . )U^ (12. .m) 
k , Nm; . , I t 

m=l i=m+l 
m 
Z exp(ik.r.)> 

3 = 1 

29 



Writing out the canonical ensemble average one arrives at: 

,r^,^, V N(N-l) (N-2) ..(N-m+1) ! ^j, , , , X, , F^(t) = Z — dF *(pj)..^(p^) 
m=l ^ 

-1 " 
Q„ exp(-B$(r, ..r^ )) Z exp(-i)t-?.) U^ (12 . .m) 
N I N . , i t 

1=1 

m 
Z exp(i)t-r.) (2.9) 

3 = 1 

where <}>(p.) i s the normalized Boltzmann d i s t r i b u t i o n (1 .4) , Q 
1 N 

the configurat ion i n t e g r a l (1.7) and 0 ( r . . r ) t he p o t e n t i a l 

energy (1 .5 ) . The i n t eg ra t i ons over J . . . • ? in (2.9) can 
m+l N 

immediately be carried out. It is also possible to do the inte
grations over r ,...r formallv, resulting in a m-particle 

m+l N ' ^ 

static correlation function g(r,r...r ), defined in (1.5). After 

doing this one gets for F (t) : 

A, , - 1 ^ 1 
F, t = N Z —p 
k , m.' 

m=l 
d5^..d?^d?^..d#^<t>(Pi)..*(p^)n'"g(?^..?^) 

Z exp(-i)<.r.)U (12..m) Z expdït-r.) 
1=1 ^ j=l ^ 

This can also be written as: 

_ N m m 
F (t)=N Z —7 < Z exp(-iit-r. )U (l..m) Z exp(ii<-r.)> 

^ m=l "• 1=1 "- ^ j = l ^ m 

(2.10) 

where <...> means an averaging over all possible m-particle 

configurations: 

<f(p, ..p ;?, ..? )> = de, ..d? d?, ..d? (f)(p,) ..<t>{p ) 
'^l '^m 1 ram J "1 "̂ m 1 m -̂ 1 ^m 

n"'g(? ..? )f(? .J ;?,..? ) (2.11) 
1 m 1 m l m 

Expression (2.10) shows that there exists not only a dynamical 

correlation between the particles i and j but via the m-particle 

equilibrium correlation function g(r,..r ) also a static corre-
1 m 
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lation. 

Returning to the "static part" F (t) (2.8), we see that we 

have here to do with the particles i that are not dynamically 

correlated with the particles j so the summation over i runs 

from m+l to N. Taking for particle i particle m+l the summation 

over i produces only a factor (N-m): 

r-B,̂ , y (N-1) (N-2) .. (N-m) ^ , .* ->. ,,, ,, ^ 
F, (t) = Z ; <exp(-ik.r .)U^(l..m) 
k . ml m+l t 

m=l 
m 
Z exp(il<-?.)> 

3 = 1 ' 

In the same way as is done for F (t) the integrations over 

p o-.P and r _..r can be carried out; the result is: 
m+2 '̂ N m+2 N 

N m 
Ff(t)=N" Z —;- <exp(-ik-r J u (12..m) Z exp (ilt-r .) > , 
k , m; m+l t . , 1 m+l 

m=l ]=1 

(2.12) 

The self part of the intermediate scattering function, F (t), 

and the velocity autocorrelation function C (t) are obtained in 

the same way. In this case the particles are alwavs dynamically 
3 

correlated so the "static" term disappears. For F (t) one obtains 

the following expression: 

1 ^ 1 
F^(t)=N" Z -^^-^ <exp(-iI<-rj)U^(l..m)exp(ik.?^)>^ 

m=l 

(2.13) 

and for the velocity autocorrelation function: 

1 1 ^ 1 
C„(t) = - BmN Z TYT <v, •U^(l..m)v > (2.14) 
D 3 , (m-1) . ' I t 1 m 

m=l 

Finally we shall give an approximation for F (t) in terms of 

F, (t) . To do this we write for the equilibrium correlation 
k 
function g(r,..r , ) : 

1 m+l 
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m+l .-v ->• . m ,-+ -> , r 
n g(r ..r ) = n g(r ..r ) (n + 

1 m+l l m 
(2.15) 

m 
+ n Z G(r .-r. ) + higher order correlations] 

. , m+l 1 
1=1 

with G{r) = g(r)-l, the difference between the pair correlation 

function and its asymptotic value : i . We now make the following 

approximation: we restrict ourselves to the first two terms in 

the square brackets of (2.15). Thus we are considering the case 

that particle m+l is either not correlated at all with the par

ticles (l..m) or only correlated via a two particle correlation. 

Substitution of this approximated g(r,..r ,) in (2.12) yields: 
1 m+l 

^l^^^~-^'' \ ^K--'5Pm+l<^^r-^Vl*'Pl'--<^'Pm+l' 
m=l ' 

m 
m+l n""" g(?,..? )[1+ Z G(? ^,-r.)] 

1 m . . m+l 1 i=l ^^' 
m 

exp(-il<-r JU (l..m) Z exp(ii<-r.) (2.16) 
m+l t . . 1 

3 = 1 

The integration over p , gives 1 and for the integration over 
m+l 

r , one finds for k^O: 
m+l 

dr [1+ Z G(r ,-r.)]exp(-iiï-r ^, ) = G(k) Z exp(-ik-r.) 
m+l . , m+l 1 m+l . . i 

1=1 1=1 

where G(k) is the fourier transform of G(r). Inserting this in 

(2.15) one gets: 

. N ra 
F, (t) = nG(k)N" Z -7 < Z exp(-iit-r.)u^(l. .ra) 
k . ra; . , i t 

m=l 1=1 
m 
Z exp(i]t-?.)> = nG(k)Ff(t) (2.17) 

j=l 3 m k 

where use has been made of (2.10). Adding together F (t) and 
B 

F (t) one finds with (1.9): 
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Fĵ (t) ^ [ l+nG(k)]F^(t) = S(k)FJ^(t) 

N m 
= S(k)N" Z -i- < Z exp(-i^-?,)U^(l..m) 

, m.' . , ^ 1 t 
m=l 1=1 

m 
Z exp(i)t-?.)> (2.18) 
j = l ^ m 

where S(k) is the structure factor. So it is in this approxima-

tlon sufficient to calculate F, (t) . 
k 

The results obtained in this section are listed together in 

table II. 

Table II. 

Fĵ (t) = F^(t)+F^(t) ^ S(k)F^(t) 

N m m 
F^t) = N " Z -=-7 < Z exp(-i^-r )U (l..m) I exp(i)t-r.)> 
" m=l "• 1=1 ^ ^ j=l ^ m 
„ , N . m 

Ff(t) = N"^ Z ^ <exp(-iit-r ^,)U^(l..m) Z exp(iit.r.)> , 
k , m; m+l t . , '^ j m+l 

m=l 3=1 

= nG(k)P^(t) 

F^(t) = N Z -̂ ^̂j-YT-j- <exp(-iS.rj)U^(l..m)exp(ik-rj)>^ 
m=l 

C^(t) =i6mN-* Z ^X.^<^^.u^(i..m)^,>_^ 
m=l 

The Ursell expansion of the intermediate scattering functions 
3 

F, (t) and F, (t) and of the velocitv autocorrelation function 
k k 

C^(t). 

2.3 THE TWO PARTICLE TERM 

We shall now work out in detail the first two terms in the 

Ursell expansion of the correlation functions. The m = 1 term 

in (2.18), that represents the ideal gas, can be calculated 
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exactly. Calling this term F^ (t) we find with (2.18) and 

(2.11) : • ; 

(1) -1 
F, ' (t)=N S(k) 
k 

dp. dr (J) (p ) ng (r. ) exp (-ik-r ) U (1) exp (ik • r ) 

(2.19) 

U (1) generates the free streaming of particle 1, so 

U^.(l)exp(ik-r^)=s;^(l)exp(iR-r^)=exp(ik.(rj+p^t/m)l 

Inserting this in (2.19) and noticing that g(r ) = 1, for the 

intermediate scattering function of the ideal gas immediately 

is found: 

F'^' (t) = S(k)exp(-k^t^/2Bm) . (2.20) 

In the same way we get for the free streaming p a r t of the s e l f 

function with (2.13): 

F ^ * ^ ' (t) = exp(-k^t^/2Bm) (2.21) 

and with (2.14) for the velocitv autocorrelation function: 

C*^' (t) = 1 (2.22) 

Because we are only interested in the deviations from the 

ideal gas behaviour we see that only the terms with m > 2 are 

of importance. From (1.32), (2.13), (2.18), (2.20) and (2.21) 

k' 
s 

we find for the deviations C,_(t) and e, (t) the following ex 

pressions: 

•i"! X " 
e, (t) = N Z —r < Z exp(-ik-r.)U (l..m) Z exp(ik-r.)> 

m=2 1=1 j=l m 

and (2.23) 
_1 N 

e^(t) = N Z -—7 <exp(-ik-?,)U^(l..m)exp(i)t-?,)> 
k _ (m-1) '. '^^ I t 1 m m=2 
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Note that the expression for E, (t) simplifies due to the approxi

mation (2.17) . 

For the short time behaviour of the correlation functions of 

a low density system one expects, as will be discussed later in 

this section, that the two particle collisions (terms with ra=2) 

play a dominant role. Therefore we shall restrict ourselves in 

the following to the terms with m=2. The deviations will in 

this approximation be indicated by E (t) resp. E (t). From 
(2) 

(2.23) one finds for £, ' (t) : 
k 

£^^'(t) = y n V ^ I d?jd52<3?id?2<(>("i)<|)(P2)g(?i?2' 

•' {exp(-iit-r )+exp(-iic-r ) }u (12) {exp(ii<-r )+exp(iit-r2) } 

/ -,. . _ (2.24) 

To carry out the integrations it is useful to split the motion 

of the two particles in their center-of-mass motion and their 

relative motion. So, instead of considering two particles of 

mass m with momenta p ,p and positions r ,r we look at a 

"center-of-mass particle" with mass 2m, momentum P and position 

R and a "relative particle" with the reduced mass m/2, momentum 

J and position ?. Thus we make the following transformation: 

p^+P2 = P r^+r2 = 2R 

(2.25) 

P1-P2 = 2p rj-r2 = r 

When one keeps in mind that the pair correlation function in 

gases onlv depends on the relative distance of the both particles 

" 1^2' 
so that g(r r ) = g(r), and that 

with 

(j)(Pj)(})(P2) = '̂ (p)<ï>(P) 

3/2 2 
>p(p) = (B/TTm) '̂  exp(-Bp /m) (2.26) 
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and 

$(P) = (B/4TTm)^^^exp(-BP^/4m) 

(2) 
one finds for £, (t) 

k 

E'2' (t) = i nV^ 
k 2 

dpdPdrdRP(p)$(P)g(r)exp(-ik-R) 

{exp(iit.r/2)+exp(-ik-r/2) }u (12)exp(i)t-R) 

{exp(ik-?/2)+exp(-iJt-r/2)} (2.27) 

Because the pair potential depends only on the relative 

distance of the particles the center of mass is streaming free

ly so it is possible to write for the Ursell operator U (12): 

U^(12) = 3°(PR)U^(pr) 

o "*-*• 
where S (PR) is the free streaming operator for the "center of 

mass particle" with mass 2m while U (pr) is the difference of 

the streaming operator with interaction and that without inter

action, both with respect to the relative motion. Thus one 

finds: 

U (12)exp(ik.R)exp(iic-r/2)=S°(PR)exp(ik-R)U (pr)exp(i)c-r/2) 

= exp(ik.(R+Pt/2m))U^(pr)exp(iit-r/2) (2.28) 

Insertion of this expression in (2.27) yields: 

E^ ' (t) = ^ n N 1 dpdPdrdR.^(p)$(P)g(r)exp(iit-?t/2m) 

{exp(ik-r/2)+exp(-ik-r/2)}u^.(pr){exp(ilt-r/2)+exp(-ik-r/2)} 

Now one can integrate over the center of mass momenta P and 
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coordinates R, resulting in: 

Ej[ '̂ (t) = j n exp(-k^t^/4Bm) dpdw'(p)g(r) 

{exp(i)t-r/2)+exp(-iït-r/2)} 

U (pr) {exp(iit-r/2) +exp(-i5.r/2) } 

The action of U (pr) on r gives the difference between the real 

trajectory r(t) and the free .streaming r+2pt/m, so 

U (pr)exp(ilt-r/2) = exp(i)c-r (t)/2)-expdf-(r+2pt/m))/2 

(2) 
Thus e (t) becomes: 

k 

(2) 1 2 2 
\ (t) = y n exp(-k t /4Bm) 

d$dtp(p)gli) 

{exp(iit-r/2)+exp(-i)c-r/2) } 

{exp(i)c-r(t)/2)+exp(-iic.r(t)/2)-exp(iic- (r/2+pt/m) ) 

- exp(-ik.(?/2+5t/m))} (2.29) 

The intermediate scattering function of an isotropic system 

can only depend on the magnitude of k, so it is allowed to 
-v 

average over the direction k of k. This has the advantage that 
't-

one gets rid of an additional direction (that of k) in the in
tegrand of (2.29). If a is an arbitrary vector then one finds 
for such an average: 

dk exp(ik-a)/ dk = j (k|t|) (2.30) 

with j (x) = X sinx, the zeroth order spherical Bessel func-
o 

tion and k = |k| . 

Averaging the right hand side of (2.29) in this way over k 
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gives the following expression: 

Ej^^' (t) = n exp(-k^t^/4Bm) [ d5d^(p)g(r) 

(j (k|r+r(t) |/2)+j^(k|r-r(t) 1/2)- (2.31) 

-j^(kpt/m)-j^(k|r+pt/m|)] 

In the case of the self part of the intermediate scattering 

function the calculation goes analogously. We shall give here 

only the result: 

e^*^'(t) = n exp(-k^t^/4Bm) | dpdrv(p)g(r) 

f 

[ j^(k|?-?(t) |/2)-j^(kpt/m)] (2.32) 

The order of magnitude of the deviations (2.31) and (2.32) 

is found by considering the expressions between the square 

brackets; if the particles are free streaming these terms have 

the numerical value 0, while, if the particles are colliding, 

they can roughly be approximated by the value 1. The integrals 

yield then precisely the volume in phase space containing the 

particles that within a time t are going to collide; the volume 
2 

of this collision cylinder is ITO vt with a the diameter of the 

particles and v the thermal velocity. Thus a crude estimate of 

the deviations £ (t) and £ (t) is, apart from a numerical 
_ k k 

factor, TTna vt = t/x where T is the mean free time. One sees 

that the restriction to the two particle terms is justified 

for low densities and for times small compared with the mean 

free time. 

Finally one finds from (2.14) for the two particle term of 

the velocitv autocorrelation function: 



C^^^ (t) = y B(Nm)"^ dp^dp2drjdr2(|)(Pj)(|)(p2) 

n^g(r^r2>?i-"t'^^'^l ^^•^^'' 

Making again the transformation to the relative and the center 

of mass coordinates of the both particles and noting that for 

the center of mass raotion holds 

U (12)P = 0 

while for the relative motion 

U^(12)p = p(t)-p 

(2) 
one gets immediately for C (t) 

Cj^^' (t) =yBn^(Nm)~^ dpd?d?d3^ (p)'I'(P)g(r) 

(?/2+?) •(?(t)-5) 

• , " < . - . 

The integrations over the center of mass momenta and coordi

nates are very easy and yield: 

C^^' (t) = J Bn/m dpd?V>(p)g(r) (p-p(t)-p^) (2.34) 

The two particle terms of the deviations of the intermediate 

scattering functions and of the velocity autocorrelation func

tion are put together in table III. 
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Table III. 

E'^'(t) = n exp(-k^t^/46m) 
k 

dpd?v'(p)g(r)[ j (k | ?+?(t) |/2) 

+ j^(k|r-?(t)|/2)-j^{kpt/m)-j^(k|?+?t/m|)] 

£^'^'(t) = n exp(-k^t^/4Bm) I dpdrv» (p) g(r)[ j^(k|r-r (t) |/2) 

-j^(kpt/m)] 

(2) 1 
% (t) = J 6n/m 

dpdrv'(p)g(r) (p-p(t)-p ) 

Two particle collision terms in the Ursell expansion of the 
s 

deviations of F (t) , F, (t) and C (t) from their ideal gas 

values. 

2.4 THE MOMENTS OF THE TWO PARTICLE TERMS 

For a good short time theory its moments have to correspond 

with the in Ch. 1.3 given exact values. It is therefore inte

resting to see what the moments are of the two particle terms 

in the Ursell expansion. These moments will be indicated by a 

superscript u. Let us begin with the deviation of the inter

mediate scattering function, given by (2.24): 

= ^ ^ t , - l . V ' dPldp2drjdr2!t'(Pi)<(>(P2)g(rj2' 

(exp(-ik-r )+exp(-ik-r ) }u (12){exp(i)t-r,)+exp(i')c-r )} 

(2.24) 

The coefficients of the successive powers of the time t are 

found by expandin 

way, using (2.2) : 

found by expanding the Ursell operator U (12) in the following 
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Û .(12) = exp(tL(12))-exp(tL^(12)) 

t̂ : 
n! 

Z ^ [ { L ( 1 2 ) } " - { L (12)}"] (2.35) 
n"0 

After substituting this in (2.24) the coefficients of the zerotJi 

and first power of t are immediately found to be zero. The cal-
2 

culation of the coefficient of t is more complicated and is 

given in detail in appendix C. The results for the first moments 

are: 

M" = S(k) = M 
o o 

Mj = o = M 

00 

M" = (-k̂ S(k)/Bm)-t4TrftikS(k)/m) r^g(r) j ̂  {kr)ip ' (r) dr (2.36) 

with 

-2 -1 
j (kr) = (kr) sinkr-(kr) coskr, 

the first order spherical Bessel function. The fourth moment 

is not worked out but it is clear that it will not yield the 

exact value, since already M„ ^ M„ (see (1.39)). 

Of course it is also possible to make a time expansion of 

the deviation E (t). Writing 

00 

e, (t) = Z E t"/n! 
k - n 

n=0 

one sees with (1.32) and (1.37) immediately that the first non 

zero moment of £, (t) is the second moment: 
k 

e^ = k^/6m + M2(k)/s(k) 

Substituting M,(k) from (1.39) one finds for the exact second 
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moment of E, (t) : 

£2 = k^(Bm)~^ [ 1-1/S(k)] 

while the Ursell second moment is: 

£2 = k^/Bm + M2(k)/S(k) 

with M (k) given in (2.36). -

To see how large the difference is between the exact second 

moment and the Ursell second moment, both moments are calculated 

for the case of a Lennard-Jones (12,6) potential (fig. 1). One 

3.01-

-3.0 

Fig. 1 Comparison of the exact second moment £„ (full 
line) with the Ursell second moment E " (dashed 
line) for a Lennard-Jones (12,6) potential 
((̂ (r) = 4E[ {a/r)^^-ia/r)^]) . The density 
na-̂  = 0.1, the temperature k T/e = 1.5. 

observes that the discrepancy is small. The differences be

tween the exact and Ursell values for the second moment are 

completely due to the approximation (2.15); expansion of the 

two particle terms in the original expressions of F (t) and 



g 

F (t), (2.10) and (2.12), leads to the exact second moment. 

Because in the derivation of the two particle term (2.32) of 

the self part of the intermediate scattering function no approxi

mation is made, one expects that at least its second moment 

agrees with the exact value. The detailed calculation is again 

carried out in appendix C; the results for the first four mo

ments are : 

M^'" = 1 = M= 

Mj'" = 0 = M^ 

Mj'" = -k^/Bm = M2 (2.37) 

M^'" = 0 = M3 

M^'" = 3k (Bm) +nk m" d?g(r)[| B " ^ ¥'(r)-(d/'/dr) ] 

Indeed the second moment of the Ursell expansion of the self 

function is equal to the exact second moment. However, here 

appears a difference between the Ursell fourth moment and the 

exact fourth moment. 

The moments of the two particle term of the velocity auto 

correlation function are also derived in appendix C. The first 

moments agree completely with the corresponding exact moments 

C , C, and C. (1.41) . 
o 1 2 

THE SECOND DERIVATIVE EXPANSION 

The last three sections were concerned with the Ursell ex

pansion of the intermediate scattering functions and the velo

city autocorrelation function. For instance F (t) could with 

(1.12), (1.13) and (1.28) be written as: 
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-1 ^ ->. ^ -e -> 
F (t) = N < Z exp(-i)c.r .)exp(tL(l. .N) ) Z exp(ik-r.)> 
" i=l ^ j=l ^ 

A N N 

= dFp(F)N Z exp(-i)?-r.)exp(tL) Z exp(i)t-r.) 
' i=l ^ j=l ^ 

(2.38) 

where p(r) = exp(-6H(F))/ df exp(-BH(F)) is the phase space 

density. The next step was the Ursell expansion (2.1) of the 

streaming operator exp(tL). Each term contained an Ursell ope

rator U (l..m). This gave rise to a splitting of each term into 

two parts: one part contained the particles i that belonged to 

the set of colliding particles l,2..m, the other part contained 
A B 

the remaining particles. We called these parts F (t) resp. F (t) 
B k k 

(2.8). The m'th term in F (t) was more difficult to calculate 
'^ A 

as the corresponding term in F (t) because the B-term was an 

average over m+l particles (2.12) whereas the A-term was only 

a m-particle average (2.10) . Therefore the B-terms were with 

the approximation (2.15) reduced to a much simpler form. But 

this had the undesirable consequence that the second moment 

(2.36) in the two particle collisions term did not agree with 

the exact second moment. 

Therefore the question rises if there exists another expan

sion where the splitting in A- and B-terms does not occur. Such 

an expansion will be given here and is inspired on the work of 

Rao (1974) . 

Starting point is not F (t) itself but its first derivative: 
3Fj^(t) _j 
— 5 - — = N~ <Z exp(-ik-r. )exp(tL)L Z exp(iit-r.)> 

9t ^ 1 j 3 

= N <Z exp(-ik-r.) exp(tL) Z (i!<-p ./m) exp(iS-r .) > 
1 . D 1 

1 3 

= N'MdFp (F) Zexp (-lie-r^) exp (tL) Z ( ik-p ./m) exp ( ik - r .) 
•' i j -' -̂  

(2 .39) 
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whereafter an integration follows over t to obtain F (t). In 

the straightforward Ursell expansion of this first derivative 

again the A- and B-terms are present leading to approximation 

(2.16). However, because the Liouville operator L(1..N) and the 

Hamilton function H(r) commute with each other, (2.39) may also 

be written as: 

^ = " - ' dF Zexp(-ik-r.)exp(tL)Z(ik-p./m)exp(ik-r )p(F) 
i ^ j ^ 

(2.40) 

If one substitutes in (2.40) for the streaming operator exp(tL) 

the Ursell expansion (2.1) one gets an expansion similar to that 

of Rao. After working out the two particle term it appears that 

the splitting in A- and B-terms is absent and furthermore that 

the second and fourth moment are in agreement with the corre

sponding exact values. Because Rao derives his expansion in the 

frequency domain his zeroth moment is not the same as the exact 

zeroth moment. What we consider as another drawback of this 

approach is that the Ursell operators work also on the phase 

space density. 

Another possibility is to take the second derivative of F (t) 

as starting point. We will show in the rest of this chapter that 

in this method the B-terms are also absent and that the first 

four moments agree with the corresponding exact values. 

The second derivative of F (t) follows from (2.38) as: 

^ \ ' ^ ' -1 
2~= ^ dFp(F)Zexp(-ik-r. ) Lexp (tL) LZexp(ik-r .) 

i ^ j •' 

Because for a non singular interaction the Liouville operator 

is antihermitian (1.18), this can be written as: 

3^F (t) r 
5 — = N " dFp(F)[-LZexp(-i)t-r.)]exp(tL)LZexp(iJ-r ) 

•èt^ ' i. "• j ^ 

= N-1 dF p(r)Z (ik-p./m) exp (-ik-r.) exp (tL)Z (ik-p./m) 
i ^ ^ j 3 

exp(i)<-r.) (2.41) 
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In an analogous way the second derivative of the self part of 

the intermediate scattering function is obtained as: 

3t^ 
dFp(F)Z(ik-p./m)exp(-ik-r.)exp(tL) (iic.p./m) 

exp(ik-r.) (2.42) 

If we now substitute in (2.41) and (2.42) for the streaming 

operator exp(tL) the Ursell expansion (2.1) we get what we shall 

call the second derivative expansion: 

'^^^^n-' 
3t 

dFp{F)Z(ik-p^/m)exp(-iJt-r^)[ U^(l) . . .U (N) + 

\ ^ "t 'Ji^2'"t' i ' - -"t'Jri '"t'^i^^'--

{3i32} 

..U^(J2-l)Uj.(J2 + l) ..U^(N)+..]Z(ik-2 /m)exp(i)t-r.) 

(2.43) 

and an analogous expression for the self function: 

3V(t) r 
5 — = N" dFp(F)Z(iit-p./m)exp(-i)t-r.)[U (1) ..U (N) + 

3t J i "• 1 t t 

\.^ "t<^1^2'\'^'--\<^rl'"t'^l^l^ 
{3i32} 

-.U^(J2-1)U^.(J2+1) ..U^(N)+..] (ii^-p^/m)exp(i]t.?^) 

(2.44) 

If the second derivatives are known, the intermediate scattering 

functions can easily be obtained from: 

Fĵ (t) = Fĵ (O) + dt' dt" ^ 

and 

3t" 

F^(t) =F^(0) +1 d f J d t " — - ^ 

(2.45) 
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where F (0) = S(k) and F (0) = 1. In the following section we 

shall derive detailed expressions for the two particle terms 

of (2.43) and (2.44). 

THE FREE STREAMING AND TWO PARTICLE TERMS IN THE SECOND DERIVA

TIVE EXPANSION 

The free streaming part of the second derivative of the 

intermediate scattering function follows from (2.43) as: 

5\<t)\ r 
2 — = N dFp(F)Z(ii<-p./m)exp(-iit-r.) 

^^ 'l ^ ' ' (2.45) 

U (1)..U (N)Z(n<-p./m)exp(iic-r.) 
t t ] J 

According to the definition of the free streaming operator 

U (1)..U (N) we have to make ii 

it the following substitution: 

U (1)..U (N) we have to make in all quantities on the right of 

? .^5 . 

t . -* ?.+p.t/m 
3 3 3 

So (2.45) becomes: 

- ^ — = -N 
3t'' , 

dFp(F)Z k-p,/m exp(-ilt-r . ) Z t.-p./m 

i ^ ^ 3 "" 

exp(ik.(r.+p.t/m)) 
3-3 • 

Because the momentum integrations of (k-p./m)(k-p./m) give a 

zero result for i 7̂  j only the terras with i = j survive. We can 

take particle i as particle 1, the suraraation over i produces 

only a factor N and thus holds: 

'V'*l (-.- ..̂ - , .2 
3t2 
2—I = - dp (j) (p ) (k-p /m) exp (ik-p t/m) 
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The momentum integrations are elementary and yield: 

at^ 
-k^m"^(m/B-k^t^/6^)exp(-k^t^/2Bm) 

The double time integral in (2.45) becomes: 

* ^' ^\<^">1 2 2 
d f I dt"l !^—1 = exp(-k t /2em)-l 

(2.47) 
3t" 

o o '1 

The self function is treated in exactly the same manner, 

leading to: 

df I dt"l ^ 
3t „2 

exp(-k^t^/2Bm)-l (2.48) 

o o ' '1 

With (2.47) and (2.48) the expressions (2.45) for the inter

mediate scattering functions take the following form: 

Fĵ (t) = S(k)-l+exp(-k^t^/26m)+Fj^^' (t) + ., 

and (2.49) 

F̂ (t) = exp(-k^t^/23m)+F^*^'(t) + . 

where F, (t) and F, (t) are thé double time inteorals of the 
k k 

two particle terms in (2.43) and (2,44), 
(2) 

F, (t) is given in detail bv: 
k • 

'f'<" -1 drp(F)Z iic-p./m exp (-lie-?.) Z 

t f 

df dt"N 

o o 

"t"'^i^2'"t"'" ••"t"'^r""t"'^i''^' 

^ ^hh^ 

.U^„(J2-1)U^„(J2 + 1) ..U^„(N)Z i)J-Ĵ /m exp(ilc-?J 

(2.50) 

Without loss of generality we can take particle i as particle 

1. It is clear that j must be equal to one of the colliding 
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particles j. or j to give a non zero contribution. Then the 

product of free streaming operators U (1)..U (N), in which 

U „(j.) and U „(j_) are absent, gives a factor 1 because it 

works on a function depending only on the particles j. and j_. 

Furthermore <ik-p /ra> = 0, thus the contributions of all pairs 

(J1J9) that do not contain particle 1 vanish. So we can take 

for the particles j and j_ the particles 1 and 2, the summa-
(2) 

tion over all pairs (j.j,) produces a factor (N-1) and F (t) 

becomes: 

t f 
,(2) 

F^r it) = -(N-1) dt dt" dFp(F)lc.pj/m exp(-il<-rj)U^„(12) 

(it-p./m exp(iit-r )+ic-p /m exp(ik-r )) (2.51) 

One sees that because of the occurrence of k-p./ra in (2.50), 

which averages to zero if i does not belong to the pair (j.j-), 

in this second derivative expansion no splitting in A- and B-

terms takes place as in the case of the Ursell expansion. 

Therefore in this term of the present expansion no approxima

tion at all is needed. 

Using (1.5) the integrations over the variables r ..r , 

p,..p in (2.51) can be done: 

t f 

Fj[̂ '(t) = - n V M d f dt"\d$^3$^df^At^<^{p^]<i>(p^)gU^^)i:-p^/m 

o o 

exp(-it-r^)U^„ (12) (I<-Pj/ra exp (ilt-r j)+l<-p2/m exp(ilc.r2) ) 

(2.52) 

Remembering that (2.2): 

U^(12) = exp(tL(12))-exp(tL (12)) 
t o 

one can easily verify that 
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U^(12) (it-p̂ /m exp(iiï-rj)+)c-52/in exp(it-?2)) 

i vr [U^(12) (exp(ik-r, )+exp(iit-r.) )] 
dt t 1 / 

and so the integration over t" in (2.52) yields the following 

result: 

t 

Fj^^' (t) = in^N'Mdt' dpjd?2dr̂ dr2(})(Pj)(()(P2)g(r̂ 2''̂ "Pl/'" 

o 

exp (-ik-r )U , (12) (exp(ik-r )+exp(ik-r )) (2.53) 

We now introduce center of mass variables P, R and relative 

variables f, ?, defined in (2.25), and obtain, using (2.25) 

and (2.28) , for Fj^^' (t) : 

t 

Fj^^' (t) = in^N'Mdf dpdPdrdR$(P)V(p)g(r)it-(P/2+p)/m 

o 

exp(-iit-r/2)exp(ilt.?f/2m)[exp(i)<-r(f )/2) + 

+exp(-ik-r(f )/2)-exp(ik-(r+2pf/m)/2) 

-exp(-iït-(?+2pf/m)/2)] 

After doing the integrations over the center of mass variables 

P and R one gets: 

t 

F'^' (t) = in d f exp(-k^t'^/4Bm) dpdr^(p)a(r) (̂  ik^f (6m) ^ + 

+lt-p/m)exp(-i3c.r/2)[ exp(iic-r (f )/2)+exp(-ilt-r (f)/2) 

-exp(i)<- (r+2pf/m)/2)-exp(-iic- (r+2pf/m)/2) ] (2.54) 

(2) 
Because of isotropy F (t) depends only on the magnitude of 

k, so, to get rid of the vector k, it is .nermitted to average 
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(2.54) over the direction k of k. Using (2.30) and the relation 

(417) Mdk(ït-S)exp(iit-1) = ik a-S j (k|a|) (2.55) 

with j.(k|5|) the first order spherical Bessel function and a 

and b arbitrary vectors, we find finally for the two particle 

contribution: 

t 

.fa, =i„.̂  d f exp(-k^f ̂ /46m) d?div'(p)g(r)fj^(^;f ) 
(2.56) 

with 

f (p?;f) = -(Bm) ^f[j (k|?+?(f) |/2)+j (k|?-?(f) 1/2) 

-j^(k|r+pf/m|)-j^(kpf/m)]+2p/m-[^(?+r(f)) 

j j ( k | ? + ? ( f ) 1 / 2 ) J j j ( k | ? - * ( f ) 1 / 2 ) 

k | ? + ? ( f ) | / 2 + 2 ' ' * " * ' * ' ' " k | ? - ? ( f ) | / 2 

•it+^f/m) 
j^(k|?+?f/m| 

k|?+ff/ml 

j (kpf/m) 
+ ?f/m ^ ^,, ĵ (2.57) 

kpt'/ra 

s (2) 

The two particle term F (t) of the self part of the inter

mediate scattering function follows from (2.44) as; 

t f 

F^*^'(t) = d f dt"N"-' dFp(F)Z iic-p./m exp(-ii?-r.) Z 

o o ^ ^ ' ^^1^2^ • 

ö^„(JlJ2)U^„(l)-.U^„(jj-l)U^„(j^+l)..U^.,(J2-l)U^„(J2 + l).. 

.U , (N)ilt.5./m expdic-f.) 

(2) 
The same procedure as was applied to F (t) can for this self 

part be used; the result is: 

t 
^s(2),^, 1 .2 
F, (t) = — nk 
k 2 

d f exp(-k f /4Bm) dgd?v'(p)g(r)f^(J?;f; 

(2.58) 
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with 

f^(pr;f) = - (Bm)'^f [ j^(k|r-r(f ) |/2)-j^(kpf/m)]+2p/m-

j (k|?-?(f) 1/2) j (kpf/m) 

•fy'*-^'^"'» k|?-t(f)|/2 ^ ?̂ '/'" kpf/m Ï 

(2.59) 

(2) 
Finally we shall denote how the deviations £ (t) and 

s(2) 
E (t) of the intermediate scattering functions from their 

ideal gas values can be expressed in F, (t) and F (t) as 

given in (2.56)-(2.59). From (1.32) and (2.49) it follows im

mediately that, as far as the two particle collisions are 

concerned: 

E^^' (t) = (1-1/S(k)) (l-exp(-k^t^/2Bm))+F'^' (t)/S(k) 

and (2.50) 

£^^2'(t)=F^'^>(t) 

The results that were obtained in this section for the second 

derivative expansion are listed together in table IV. 

It is now interesting to see if the moments in the second 

derivative expansion agree better with the exact moments than 

those of the Ursell expansion. For this purpose expression 

(2.53) is a suitable starting point. A time expansion of this 

two particle term can be found by substituting (2.35) for the 

Ursell operator U (12) in the same way as was done for the 

Ursell expansion. The calculation of the moments is carried 

out in appendix D. It appears that there is up to the fourth 

moment (coherent and incoherent) complete agreement with the 

exact moments (1.39) and (1.40). 

We have thus made a considerable progress with respect to 

the straightforward Ursell expansion because on the one hand 



Table IV 

Intermediate s c a t t e r i n g functions and devia t ions from t h e i r 

idea l gas values in the second de r iva t i ve expansion. 

Coherent in te rmedia te s c a t t e r i n g function 

F, (t) = S(k)-l+exp(-k^t^/2Bm)+F'^' (t) 

Ej[^' (t) = (1-1/S(k)) (l-exp(-k^t^/2Bm))+F^^' ( t ) /S(k) 

t 

Fj^^' (t) = J nk^ d f exp ( -k^ f ^/46ra) d?d*P(p )g ( r ) f j ^ (^ ; f ) 

o 

fj^(i5f;f) = -(Bm)"-^f [ j ^ ( k | r + ? ( f ) | / 2 ) + j ^ ( k | r - ? ( f ) | / 2 ) -

j ( k | ? + ? ( f ) | / 2 ) 

- j ^ (k | ?+? tVm| ) - j^ (kp tVm)]+2 jS /m-[2(?+?( tM)- -Y |YT?I fT i72~ 

j ( k | ? - ? ( f ) | / 2 ) j j ( k | ? + J f / m | ) 

-* ' 2 ' ^ - ? ( f ) ) ^^t-iit')\/2 - <^^g^'/"" k | ^+g f /m | ^ 

j j ( k p f / m ) 
+pt' /m —!—-7-7 ] 

kp t ' /m 

Incoherent in termedia te s c a t t e r i n g function 

F^(t) =exp(-k^t^ /2Bra)+F^ '^ ' ( t ) 

E ^ ' 2 ) , „ = p S ( 2 ) ^ ^ , 

F ^ ' ^ ' ( t ) = i nk^ d f exp ( -k^ f ^/4Bm) 

o 
-1 

d?d?v ' (p )g( r ) f^ ( J? ; f ) 

f ° ( p r ; f ) = -(Bm) f [ j ^ ( k | r - ? ( f ) | /2 ) - j (kpf/m)]+2p/m-

j ( k | ? - ? ( f ) | / 2 ) j (kpf/m) 

[ 2 ( r - ? ( f ) ) , | ^ _ ^ ( , . ) , / 2 - J t ' / " - T H f A i ^ ] 

53 



in the second derivative expansion nowhere an approximation is 

made such as (2.16) in the Ursell expansion and on the other 

hand not only the second moments but also the fourth moments 

agree with the corresponding exact moments. A disadvantage of 

the second derivative expansion is that the expressions 

(2 .55)- (2 .59) for the two particle terms are more complex than 

the two particle expressions (2.31) and (2.32) in the Ursell 

expansion. 

The difference between the straiahtforward Ursell expansion 

and the second derivative expansion is a consequence of the 

different moments on which the expansion of the streaming ope

rator is made: in the Ursell expansion the expansion is direct

ly made, while in the second derivative expansion the expansion 

is made in the second derivative of F (t) and is followed by 

a double time integration. Of course the exact theory (no re

striction to the two particle terms) yields the same results 

in both theories. The difference between the results of the 

straightforward Ursell expansion and the results of the second 

derivative expansion is a measure of the accuracy of this 

method. 



CHAPTER 3 

THE URSELL EXPANSION FOR THE HARD SPHERES SYSTEM 

In chapter 2 general expressions were derived for the devia

tions of the intermediate scattering functions and the velocity 

autocorrelation function as far as the two particle collisions 

are concerned (see table III) . As a first approximation of a 

real gas of interacting particles we shall in this chapter con

sider a system of hard spheres. This choice has been motivated 

by the simpleness of the hard spheres trajectories. On the other 

hand this assumption is rather drastic and has as a consequence 

that the theoretical calculations can only be compared with 

experimental results in a qualitative way. Of course it is 

possible to compare the hard spheres results with molecular 

dynamics experiments. 

In the first section of this chapter the structure of the 

hard spheres system will be discussed. In the next section we 

shall substitute the trajectory of a particle in a hard spheres 

potential in the general expressions for £ (t), £ (t) and 
(2) 

C (t) that were derived in section 2.3. We have already seen 

that the moments of the two particle terms in the Ursell expan

sion are not the same as the exact moments. Even the second 

moment of F (t) differs from the exact second moment, due to 

the aporoximation that is made in (2.16). Explicit expressions 

for the moments of the hard spheres Ursell expansion will be 

given in section 3.3. .. , 

In the case of a non singular interaction it is possible to 

make another expansion, the second derivative expansion (section 

2.5), by making use of the antihermiticity of the Liouville 

operator. In that expansion the first moments do all correspond 

with the exact moments. Since the hard spheres Liouville opera

tor is not antihermitian, as can be seen from (1.25), such an 

expansion cannot be made for hard spheres. In section 3.4 another 

expansion, the Ursell-2 expansion, will be discussed, where 

also use has been made of the different hermitian properties of 
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the hard spheres Liouville operator. This expansion is only 

valid for hard spheres. It will be shown that in the Ursell-2 

expansion the first moments agree with the exact hard spheres 
s (2) 

moments. Furthermore it will appear that the deviation £ (t) 

of the incoherent intermediate scattering function takes a very 

simple form: a multiplicative factor times a function only 

(2) 

depending on kt. The deviation C (t) of the velocity auto

correlation function is in this expansion the same as the exact 

first moment of C (t). 

Finally in the last section the results of the hard spheres 

calculations will be given; they will also be compared with 

molecular dynamics experiments. ' fT>; 

3.1 THE STRUCTURE OF THE HARD SPHERES GAS 

The static structure of a fluid or gas will be described by 

the pair correlation function g(r), which gives the probability 

to find a particle at a distance r from another particle in the 

origin. Frcm (1.5) it is clear that, if the interaction poten

tial ¥> (r) is known, one can in principle calculate g(r). How

ever this cannot be done exactly; so some approximation has to 

be used. It can be done as follows: the Ornstein-Zernike equa

tion (1.10) defines the direct correlation function C(r) in 

terms of G(r) = g(r)-l. In order to be able to calculate g(r) 

one must have another relation between C(r) and g(r). For low 

densities satisfactory results are obtained from the Percus-

Yevick equation (Percus, Yevick, 1958): 

C(r) = (l-exp(Bv(r))g(r) ' (3.1) 

Furthermore hard spheres cannot nenetrate into each other so 

one should require that: 

T'»-) = 0 for r < 0 (3.2) 
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Thiele (1963) and Wertheim (1963, 1964) showed that these 

equations can be solved exactly for the case of the hard spheres 

potential. The direct correlation function C(r) appears to be 

a very simple function because 

i) C(r) = 0 for r > a as can be seen from (3.1) and 

ii) C(r) is a cubic polynomial for 0 < r < O: 

C(r) = -(l-n)"^( (l+2n)^-6n(l+ri/2)^(r/a) 

+ i- ri(l+2n)^(r/a)^] 

for 0 < r < a 

(3.3) 

0 for r > a 

where ri = — TTnCT . After taking the fourier transform of (3.4) 
5 

the structure factor S(k) follows immediately from (1.11) as: 

S(k) = (l-nO^f (ka)/(ka))~^ (3.4) 

with 

f(ka) = -27r(l-n)~'*[-(rî -3ri+2)cos ka/ka 

3 2 
+2(5ri -6ri+l)sin ka/(ka) 

+6ri(ka) ^{ (7n^+4ri-2)cos ka+(2+n)^} 

(3.5) 

-24ri(l+2n) (kO) ''{sin ka+(cos kO-D/ko}] 

The easiest way to obtain the pair correlation function g(r) 

consists of taking the inverse fourier transform of (3.4) 

(Handel et. al., 1970) . 

It is well known that for intermediate and high densities 

the Percus-Yevick equation does not give satisfactory results; 

57 



g(ry 

I 

UD 

I' 

1.2 

1.0 

• 

\ 

- \ • . 

•^ i ,v^ 

, 1 1 

1.0 1.5 2.0 

.r/cr 

2.5 

Fig. 2. The hard spheres pair correlation function g(r) for the reduced 
densities no^ = 0.1 (full line), na-̂  = 0.2 (dashed line) and 
no-̂  = 0.3 (dotted line) . 

1.2r 

1.0 
S(k) 

0.8 

0.6 

Q.i, 

/ 

Fig . 3 . The hard spheres s t r u c t u r e fac tor S(k) . The dens i t i es a re the 
same as in f i g , 2. 

58 



for that case Verlet and Weis (1972) have improved the exact 

solution of the Percus-Yevick enuation. This regime falls how

ever outside the domain where we can handle the time dependence 

of the correlation functions by an expansion as discussed in 

chapter 2. 

Both g(r) and S(k) are calculated for the reduced densities 

na 0.1, 0.2 and 0.3 (see fig. 2 and 3). 

2 THE URSELL EXPANSION FOR THE HARD SPHERES SYSTEM 

We shall now in this section apply to the hard spheres 
(2) 

system the general expressions for the deviations E (t), 

E, (t) and C (t) which were obtained in chapter 2 (see 
k D 

table III). Therefore we have to substitute the hard spheres 

position ï(t) and momentum J(t) in these expressions. 

The trajectory can be found as follows (see fig. 4): suppose 

that one particle is fixed in the origin O of the coordinate 

Fig. 4. The hard spheres collision. The initial 
position and momentum is r resp. p; the 
post-collisional momentum is p'. The 
collision takes place at a. 
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system and that the other particle has at time t = 0 an initial 

position r and an initial momentum J. The latter particle col

lides at time t = T and position i = Ü with the fixed sphere. 

Since we are considering hard spheres the collision is elastic 

and instantaneous. The post-collisional momentum p' is easily 

calculated from the conservation laws of energy and momentum 

as 

p' = 5-2(J-a)a (3.6) 

where O is a unit vector in the direction of J. The momentum p(t) 

as a function of time becomes: 

5(t) = 5-2(5-5)5 6(t-T) • (3.7) 

where 9(t-T) is the unit step function defined in (1.23). The 

trajectory r(t) can now immediately be written as: 

?(t) = ï+25t/m for 0 < t < T 

= ?(T)+25'(t-T)/ra = r+25T/m+25'(t-T)/ra (3.8) 

for t > T 
] 

The factor 2 in the right hand side of (3.8) reflects the use 

of relative coordinates (reduced mass = m/2). The collision 

time T can be found from the condition: 

r(T) = r+2pT/m = J 

As |3| = 0 is fixed, T follows from: 

r^+4?-5T/m+4p^T^/m^ = O^ (3.9) 

This quadratic equation has two solutions for i of which we 



have to take the smallest one corresponding to the point 1 in 

fig. 4. The other solution (point 2 in fig. 4) gives the second 

intersection of the trajectory with the sphere in the case that 

the particle would stream freely through the sphere. 

The above found expressions for 5(t) and ?(t) can now be 

inserted in the expressions for the deviations (2.31), (2.32) 

and (2.34). This calculation will not be done in detail here 

but will be carried out in appendix E. 

It appears, as can easily be seen from dimensional analysis, 

that £ (t) and E (t) depend only on the following three 

quantities: 

i) a reduced wave vector k = kO 
X 3 

ii) a reduced density n = nO ; 
X 1/2 

and iii) a dimensionless time t = t/a(Bm) 
(2) 

The deviation of the velocity autocorrelation function C (t) 
X X 

depends only on n and t . 

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE HARD SPHERES 

URSELL EXPANSION 

The moments of the hard spheres Ursell expansion in the two 

particle approximation are derived in completely the same way 

as the moments in the case of a non singular interaction 

(section 2.4). Because the calculation is rather complicated 

it is carried out in detail in appendix F. The results for the 

coherent intermediate scattering function are: 

M"(k) = S(k) 
o 

M"(k) = 0 . 

M2(k) = -S(k) (4Trnka^g(a) jj(ka)/Bm+k^/Bm) (3,10) 

M"(k) = 8Tr̂ ''̂ nS(k) (Bm)"-^''^[-2ka^g'(a) j^(ka) 

2 
+g(a){(ka) /3-kasinka-2coska+2sinka/k0]] 
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where j (kO) is the first order spherical bessel function 

(2.36) and g'(ö) the first derivative of the pair correlation 

function at r = O . 
+ 

Comparing (3.10) with (1.45) we see that the first Ursell 

moments differ considerably from the corresponding exact 
moments. This discrepancy is due to the approximation (2.16) 

for the m-particle static correlation function. In fig. 5 the 

Fig. 5. The ratio M2/M2 of the Ursell second 
moment and the exact second moment 
(left) and the ratio M^/Mj of the Ursell 
and the exact third moment (right). 

ratios of the Ursell and exact second and third moment are 

shown. 

The expression for M (k) can be written in another form 

by noting that for very low densities, where g(r) = 9(r-a) , 

the structure factor S (k) follows from (1.9) as: 

S°(k) = l-4Trnâ j (ka)/k 
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so that the expression for M (k) becomes: 

M2(k) = S(k)(k^g(a){s°(k)-l}/Bm-k^/Bm] 

Because in this low density limit S (k) = 1 one sees that 

M (k) approaches its exact value. 

The first moments of the incoherent intermediate scattering 

function F (t) and of the velocity autocorrelation function 

C (t) agree completely with the exact moments (1.45) and (1.47), 

3.4 THE URSELL-2 EXPANSION FOR HARD SPHERES 

It appeared in the last section that the first moments of 

the two particle term of the Ursell expansion of the inter

mediate scattering function F (t) for hard spheres do not 

agree with the exact moments. The reason is the same as in 

the case of a continuous potential (section 2.4): the splitting 
A B B 

of F (t) in two parts F, (t) and F (t) whereafter F (t) is 

again connected to F (t) by means of the approximation (2.16) 

for the static (m+l)-particle distribution function. To avoid 

this splitting the second derivative expansion was introduced 

where the A- and B-terms were absent and that yielded the 

correct moments. Because, as from (1,25) can be seen, the 

hard spheres Liouville operator L is not antihermitian the 

second derivative expansion is not applicable for hard spheres. 

An alternative for hard spheres can be found by making use 

of the binary collision expansion (Ernst et, al,, 1959) of 

the streaming operator: 

exp(tL) = exp(tL )+exp(tL )*ZT (a)exp(tL) 
a 

= exp(tL )+exp(tL)* Z T (a)exp(tL ) 
a 

with the convolution integral defined by: 

(3,11) 
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t 
f(t)*g(t) = jdt^f (t-tj)g(t^) (3.12) 

o 

Expression (3.11) may be verified by differentiating with re

spect to the time t. The summation runs over all pairs of 

particles o and T (a) is the interaction part of the hard 

spheres Liouville operator (1.22) as far as the pair a is 

concerned. 

The expansion can be obtained by substituting for exp(tL) 

again the whole expression (3.11), resulting in: 

exp(tL) = exp(tL )+exp(tL )*ZT (a)exp(tL ) 

'•' ° ° " ' ° (3.13) 

+exp(tL )*ZT (a)exp(tL )*ZT (B)exp(tL )+... 
o + o _ + o a 6 

This procedure may be continued till the desired number of 

binary collisions is reached. • '' ' 

We will now consider some time dependent correlation func

tion <f(0)g(t)> where f and g are arbitrary time dependent 

functions of the phase space variables. With (1.12), (1.13) 

and (3.13) we write this correlation function in the following 

form: 

<f(0)g(t)> = <f (0)exp(tL)g(Ö)> ?', 

<f(0)exp(tL )g(0)> 

+ <f(0)exp(tL )*ZT (a)eXp(tL )g(0)> (3.14) 
o + o a 

+ <f(0)exp(tL )*ZT (a)exp(tL )*ZT (B) 
o + "̂  o „ + a B 

exp(tL )g(0)> 
o 

+ terms containing three and more collisions. 
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All operators in (3.14) work on the functions following the 

operators. One observes that this expansion is similar to the 

Ursell expansion derived in chapter 2. The first term gives 

the free streaming, the second term contains the two particle 

collisions and the next terms are concerned with higher order 

collisions. 

Just as in the case of the second derivative expansion for 

continuous interactions a more symmetric expression is obtained 

by shifting one Liouville operator to the left in the second 

term of (3.14), leading to: 

<[ exp(tL ) f (0)]*ZT (a)exp(tL )g(0)> 
o 01 + o 

t 
where L is the hermitian conjugate of L , defined in (1.17). 

o ^ o 
From (A.9) one obtains the following explicit expression for 

L ^ 
O 

L"" = -L -ZK(a) 
o o 

a 

with (3.15) 

K(a) = 6(r -a)r .5 /m 

where p and r are the relative momentum and position of the 

particles of pair a. One verifies easily by differentiation 

with respect to t that for exp(tL ) an expression holds 

analogous to (3.11) for the full streaming operator exp(tL): 

t t 
exp(tL ) = exp(-tL )-exp(tL )*ZK(a)exp(-tL ) (3.16) 

o o o o 
a 

where use has been made of (3 .15) . Subs t i tu t ion of (3.16) in 

the second term of (3.14) r e s u l t s in the following expression 

for the c o r r e l a t i o n funct ion: 
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<f(0)g(t)> = <f(0)exp(tL )g(0)> 

+<[exp(-tL )f(0)]*ZT (a)exp(tL )g(0)> 
a 

-<[ exp(tL')*ZK(B)exp(-tL ) f (0) ] *ZT^(Cl)exp( tL )g(0 
o ^ o + o )> 

+<f(0)exp(tL )*ZT (a)exp(tL )*ZT (B)exp(tL )g(0)> 
o + o ^ + o 

+ (3.17) 

We shall now show that the third term of (3.17) is needed 

to obtain a symmetric version of the two collisions term 

(the fourth term). To do this we shift in the third term 

exp(tL ) again to the right and in the fourth term 

exp(tL )ZT (a) to the left; after addition of both terms the 
o a + 

result is: 

t t 
<[ -ZK{a)exp(-tL )f (0)+ZT (a)exp(tL )f(0)] 

o + o 
a a 

•exp(tL )*ZT (B)exp(tL )g(0)> 
o ^ + o 

In appendix A (A.15) we have derived for the hermitian conju 

gate T (a) of the interaction part of the hard spheres 

Liouville operator the expression: 

T'̂ (a) = T (a)+K(a) (3.18) 

with K(a) given in (3.15). Substitution of (3.16) and (3.1! 

in the expression above, thereby restricting ourselves to 

the free streaming part exp(-tL ) of (3.16), leads to the 

following expression for the correlation function: 
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<f(0)g(t)> = <f(0)exp(tL )g(0)> 

+<(exp(-tL )f(0)]*ZT (a)exp(tL )g(0)> 
° a ° 

+<[ ZT_(a)exp(-tL )f (0)]*exp(tL )*ZT_^(6) exp(tL )g(0)> 
a ~ ° ° B 

+ (3,19) 

The second term on the right hand side of (3,16) is again 

needed to symmetrize the three collisions term etc. One sees 

again that the first and second term of (3,19) contain the 

free streaming and the two particle collisions, while in the 

other terms two and more collisions are involved. The expansion 

(3,19) will in the following be referred to as the Ursell-2 

expansion. In the remaining of this section the Ursell-2 expan

sion of the intermediate scattering functions and of the velo

city autocorrelation function will be discussed as far as the 

two particle terms are concerned, 

a) The incoherent intermediate scattering function 

From (1.28), (3.12) and (3.19) it is seen that the self 

^k' 
3 

function F (t) consists in the two particle approximation of 
two parts: 

F^(t) = F^'^'(t)+F^'^'(t) (3.20) 
k k k 

with the free streaming part given by: 

(n 1 ^ 
Ff* '(t) = N~ Z <exp(-iic-r.)exp(tL ) exp(ii<-r . ) > (3.21) 
k . , 1 o 1 

1=1 

while the two particle collisions yield: 

(71 1 f ^ 
F^' ' (t) = N~ Z dt Z <[ exp(-(t-t )L ) exp (-it-?.)] 
K J 1 1 O 1 

° '=' (3.22) 
T (a)exp(t L )exp(ik-r.)> 
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s(l) 
The free streaming part F (t) is the same as in the Ursell 

expansion and follows from (2.21) as: 

F^'^'(t) = exp(-k^t^/2Bra) (3.23) 

s (2) 
The calculation of F (t) is rather coraplicated and will be 

discussed in appendix G; the result is: 

F^'^^t) = TÎ ''̂ nâ g(a) (kO) ^f(A) (3.24) 

with 

f (A) = A~''exp(-A^/4) du u exp(-u^/4)[ 2sin(Au/2)Si(Au) 

o (3.25) 

+2cos(Au/2){Ci(Au)-In(Au)-y}-Au sin(Au/2)] 

where A is a dimensionless variable, defined by: 

A = (Bm)'^''^kt, (3.26) 

Y = 0.577215 is the Euler constant and Si and Ci are the sine-

and cosine-integrals (Abramowitz, Stegun, 1965). 
s (2) 

One sees that F (t) takes a very simple form: a multi-
k 2 

plicative factor only depending on the reduced density no and 

the reduced wavevector ka times a function f(A) only depending 
-1/2 

on (Bm) kt. Fig. 6 shows the function f(A) explicitly. 

b) The coherent intermediate scattering function 

The coherent function F (t) can be written analogous to the 

self function and with the aid of (1,28), (3,12) and (3,19), 

as the sum of two terms: 

Fĵ (t) = Fj[^' (t)+Fj^^' (t) (3,27) 

with the free streaming and the two particle terms given by: 
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0.6r 

f(X) 

O.L 

-1/2 
Fig. 5. The function f(A) (A = (Bm) kt), which 

is discussed in the text. 

fn -1 ^ ^ 
F, ' (t) = N < Z exp(-i)f.r.)exp(tL ) Z exp(ilt-r,)> 
k , , 1 '̂  o , 3 

1=1 ]=1 

? N 
F'^' (t) = N'^'Z dt,<[ exp(-(t-tjL ) Z exp(-ilt-?.)] (3.28) 
'̂  J ^ 1 ° 1=1 ^ 

N 
T (a)exp(t,L ) Z exp(iit-r,)> 

^ ° j=l ^ 

The free streaming term F (t) yields again the same result 

(2.20) as in the Ursell expansion: 

F'^'(t) = S(k)exp(-k^t^/2Bm) (3,29) 

We write the two particle term as the sum of three terms: 

F̂ 2)(t) ^FI^^^M+F^M^FIU) (3,30) 
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s(2) 
where F (t) is the two partiele term (3,24) of the self 

part of the intermediate scattering function (the terms with 

i=j in (3,28)), The terms containing different particles (i?̂ j) 
A B A 

give a contribution to F (t) and F (t). F (t) includes all 

situations where particle i is the same as one of the colliding 
g 

particles of the pair a whereas in F (t) particle i does not 

belong to this pair of colliding particles. The calculation 

of these terms is carried out in appendix G, It will be shown 
g 

there that, in contrast with the corresponding term F (t) in 

the Ursell expansion, it is possible to eliminate the triple 

distribution function in F (t). The results are: 

1 1 

F^(t) = Tr^/^n*g(a)exp(-A^/4)t* di du exp(-A^T^(l-u^)/4) 

(3.31) 

dw w exp(-w /4)[ cos(u(k*+Aw/2) )-cos(u(k''+AwT/2) )] 

F^(t) = 1 TT̂ /̂ A exp(-A^/4)erf(A/2)[4TTn'*jj(k'*)g(a)/k* 

+S(k'')-1] 

where the dimensionless variables n , k and t were intro

duced at the end of section 3.2, A = k t and erf(A/2) is the 

error function (Abramowitz, Stegun, 1965). One sees that in 

contradiction to the Ursell expansion, where an approximation 

for the static (m+l)-particle correlation function was needed 
B A 

to express F (t) in terms of F (t) (see section 2.2), in the 

Ursell-2 expansion this term can be calculated exactly and 

takes finally a simple form. 

c) The velocity autocorrelation function 

From (1.34), (3.12) and (3.19) one observes that the velo

city autocorrelation function can be written in the two 

particle approximation as: 
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C^(t) = ~ Bm<^^(0) •^^(t)> 

= -̂  6m<v, -exp(tL )v > (3.32) 
3 l o l 

t 

+ j BmZldtj<[exp(-(t-t^)L )vj •T_^(a)exp(tjL^)v^> 

o 

Because the free streaming operator L leaves the velocity v. 

unchanged this reduces to: 

t 
Cĵ (t) = J Bm<^j-^^> + i- BmZ 

a-* 
dt^<v^-T^(a)^j> (3.33) 

o 

It is clear that the free streaming term yields the ideal gas 

value 1. For the two particle interaction term the first 

mcraent (1.47) of C (t) is obtained. Thus: 

Cĵ (t) = 1- I Tr^/^g(a)n'*t* (3.34) 

The moments of the correlation functions in the Ursell-2 

expansion are calculated in the same way as in the Ursell 

expansion. The computation is carried out in appendix H and 

leads to the result that, in contrast with the Ursell expansion 

for hard spheres, the first moments all agree with the exact 

hard spheres mcjuents (1.45), (1.46) and (1.47). Another advan

tage of the Ursell-2 expansion is that the expressions for the 

correlation functions are much easier. For the incoherent inter

mediate scattering function (3.24) and the velocity autocorre

lation function (3.34) this is quite obvious and for the 

coherent intermediate scattering function (3.31) one sees 

immediately that the pair correlation function g(r) does not 

occur in the integrand, so that the integral is independent 

of the density; g(r) is only present as a multiplicative fac

tor g(a) and in F, (t) as the structure factor S(k). Also com-

k 

pared with the second derivative expansion for non singular 
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interactions (see table IV) the corresponding expressions in 

the hard spheres Ursell-2 expansion have a much more simple 

form. " • 

3.5 NUMERICAL RESULTS FOR HARD SPHERES 

In this section we shall present the results of the calcu

lations which are carried out for the hard spheres system. They 

will also be compared with molecular dynamics results and with 

the moments expansion. 

a) The incoherent intermediate scattering function. 
s(2) 

The deviation e, (t) of the incoherent intermediate 
k 

scattering function is calculated for a reduced density 
3 

na = 0.098. The results of both the Ursell expansion and 

the Ursell-2 expansion are plotted in fig. 7, together with 

the results of molecular dynamics calculations of Lyklema 

(1975). One observes that there is a good agreement between 

the theoretical hard spheres calculations and molecular 

dynamics. This should be expected because our restriction 

to two particle collisions is only valid when the time t is 

;. smaller than the mean free time T (for na = 0.098 is 
\ / 2 ^ — 1 

T/a(6m) = (/2Trna ) =2,3, which is twice as much as our 

largest time), 

• Furthermore it is clear that the differences between the 

Ursell and Ursell-2 expansion are small; only at the maximum 
s(2) 

of the deviation e (t) they become larger. It is obvious 

that the Ursell-2 expansion describes the short time beha

viour better than the Ursell expansion which is a conse

quence of the fact that in the Ursell-2 expansion nowhere 

an approximation for the static m-particle distribution 

function is made such as (2.15) in the Ursell expansion. 

In fig. 8 the theoretical results are compared with the 

hard spheres moments expansion. One sees that the moments 

expansion is only valid' for very short times (up to 

t/a(em)^''^ = 0.1) . 
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Fig. 8. The incoherent deviation eĵ (t) of a hard spheres system 
with density na = 0.098 as calculated with the Ursell 
expansion (circles) and the Ursell-2 expansion (squares), 
compared with the hard spheres moments expansion (full 

line) (k" ko and t" t/a(Bm)l/2) 

b) The coherent intermediate scattering function. 

In fig. 9 the numerical results of the calculations on 
(2) 

the deviation e' (t) of the coherent intermediate scattering 
3 

function are shown for a density na = 0.098. The differences 

between the deviations of the Ursell- and the Ursell-2 ex

pansion are also small for the coherent function. Fig. 10 

shows the theoretical results compared with the moments 

expansion; one observes that, just as for the incoherent 

deviations, the validity of the moments expansion is 
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Ursell expansion; the squares give the values of the Ursell-2 
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1/2 
restricted to very short times (up to t/a(Bm) = 0.1). 

c) The velocity autocorrelation function. 

In fig. 11 the results of the calculations on the Ursell-

and the Ursell-2 expansion of the velocity autocorrelation 

function are plotted, together with the molecular dynamics 

calculations of Lyklema (1975). One should keep in mind 

that the Ursell-2 expansion is the same as the moments 

expansion up to the first moment (see (3.34)). We notice 

that also the theoretical calculated velocity autocorrela

tion functions follow the molecular dynamics results quite 

well. 

The validity of the hard spheres moments expansion is, in 

contrast with the moments expansion for continuous potentials, 

not restricted by the duration of the collision. This is clearly 

demonstrated by fig. 11, where one sees that the moments ex-
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Pig. 11. The hard spheres velocity autocorrelation function C (t) for 
a density na^=0.098 (t'*=t/a (Bm) ̂ /2) as obtained by the Ursell 
expansion (dashed line) and the Ursell-2 expansion (full 
line; identical with the hard spheres moments expansion). 
The circles denote the molecular dynamics results (Lyklema). 

pansion (in this case identical with the Ursell-2 expansion) 

follows the Ursell expansion quite well. For the intermediate 

scattering functions the convergence becomes poorer as k grows 

larger. This is due to the fact that the third moments (1.45) 
2 3 

and (1.45) are proportional to k so that the terms with t 

become relatively larger as k becomes larger and have to be 

compensated by the fourth and higher moments, which are not 

yet known. 
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CHAPTER 4 

NUMERICAL RESULTS FOR THE LENNARD-JONES POTENTIAL 

In the last chapter the results of the hard spheres Ursell 

expansions were presented. However, because we did only take 

into account the hard core of the interaction, we can only 

expect that these results agree with the results of measure

ments in a qualitative way. The intermediate scattering func

tions can be measured with neutron scattering experiments on 
-12 

a time scale of 10 s and for wave vectors k of the order of 

1 A . Because our theory is valid for times up to the mean free 

time, which is inversely proportional to the density, we are 

primarily interested in low density neutron scattering experi

ments. Such experiments can only be done for systems with a 

large scattering cross section like Ar (Andriesse, 1970). 

Therefore we have carried out calculations for a system with 

a Lennard-Jones (12,6) potential, which accounts very well for 

the equilibrium properties of noble gases like argon (Verlet, 

1967, 1958) . 

In the case of the Lennard-Jones potential, defined by: 

V(r) = 4£((a/r)^^-(a/r)^) (4.1) 

where £ is the depth of the potential and a the molecular dia

meter, the calculations are much more complicated than in the 

case of hard spheres, because it is not possible to give an 

analytical expression for the trajectories such as (3.8) for 

hard spheres. The equation for the trajectory can be solved 

by integration for a spherical potential such as (4.1) , but 

such an integration procedure is more laborious than straight

forward integration of the equations of raotion. We have solved 

the equations of raotion numerically by using the prescription 

of Verlet (1967) . 

The integrals that occur in the expressions for the devia-



tions of the intermediate scattering functions and of the velo

city autocorrelation function (see tables III and IV) are 

calculated by means of Monte Carlo integration (Hammersley, 

Handscomb, 1967), which we shall here describe briefly. Suppose 

we have the following multidimensional integral: 

f(«)di (4.2) 

over the n-dimensional hypercube, f(x) being a given function. 

The simplest Monte Carlo procedure (crude Monte Carlo) con

sists of selecting a sequence of M independent, uniformly distri

buted points X., i = 1,2,..,M in the hypercube and calculating 

the average value: ., , 

_, M 
F„ = M Z f(x.) (4.3) 

• " 1=1 ' 

over this M points. It is possible to show that the expectation 

value of this estimate is equal to the desired integral: 

<F„> = F . (4.4) 

while the square of its standard deviation a follows from: 

a^ = M ^ dx(f(x)-F)^ (4.5) 

Thus by increasing the number of points M the expected error 

can be made as small as desired. Assuming that f()t) is roughly 

proportional to a known positive function g(x), so that the 

regions which make important contributions to the integral of 

f(x) are also important regions for the integral 

G = g(x)dx (4.6) 

we can write: 
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with 

F = G dx h(i)p(5) (4.7) 

h(J) = f(i)/g(S) 

aa& 

p(x) = g{x)/G 

Interpreting p(x) as a probability distribution function we 

sample M independent points x,...x from p(x) and form the 
1 M 

estimate. 

M ^ 

F„ = G M ' Z h(x.) (4.8) 
" i=l ^ 

• •' . t.' .• 

which has as expectation value the desired integral F (4.2), 

while the sta.ndard relative error follows as the square root 

from: 

(a/F)^ = (MF/G)~^ dx(h(5)-F/G)^ (4.9) 

With a suitable choice of g(x) this relative error can be made 

smaller than that of the crude Monte Carlo estimate. This pro

cedure is called importance sampling, because in sampling with 

•f a probability proportional to the known function g(x) we try 

to weight more heavily the regions that contribute much to the 

• desired integral. 

Returning to the Ursell expansion (see table III) it appeared 

profitable to sample from the Maxwell-Boltzmann momentum distri-
4 

bution function ¥> (p) . In that case 3-10 points are sufficient 

to reach an accuracy of a few percent whereas for the conven

tional numerical integration methods a multiple of this number 

of points is needed. So to save computing time we have chosen 
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for this weight factor in the Monte Carlo integration. The 

results of these calculations will be presented in the re

mainder of this chapter. 

a) Incoherent intermediate scattering function. 

As already discussed in chapter 2 we expect that the restric

tion to the two particle collisions in the Ursell expansion is 

permitted for times smaller than the mean free time T, which 

is inversely proportional to the density n. So, to cover a 

large time scale, it is necessary to consider a system with a 

small density. It appears that for densities up to na 'i' 0.1 

the useful time scale is of the same order of magnitude of that 

reached in neutron scattering experiments, which is the reason 

that we have only done calculations for densities n0 < 0.1. 

Fig. 12 shows the results of the calculations that were 

carried out for the Ursell expansion and the second derivative 

expansion of a system with a Lennard-Jones interaction (density 

na =0.1, temperature k T/E = 1.5). In fig. 12 are also plotted 

the results of the molecular dynamics calculations of Michels 

(1976). One observes that there is an excellent agreement be

tween both the Ursell expansion and the second derivative 

expansion and the molecular dynamics results, which should be 

expected because for times smaller than the mean free time T 
1/2 3 

(T/0(3m) - 2 for no =0.1) the two particle collisions 

dominate. Furthermore one sees that the results of the Ursell 

expansion agree quite well with the results of the second 
ii 

derivative expansion. We note that the calculations in the 

case of the second derivative expansion are less accurate for 

large times than in the case of the Ursell expansion because 

the time integration in (2.58) has to be done over a few number 

of points (20) to save computing time. 

Fig. 13 shows the results of our calculations on a system 

with a Lennard-Jones interaction with density nO =0.1 and 
temperature k T/E = 1.18, together with the hard spheres 

B 
results for this same density. The choice of this point will 
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Fig. 12. The incoherent deviation e^(.t) of a system with a Lennard-
Jones interaction; the density na^=0.1, the reduced tempera
ture kgT/e = 1.5 (t'*=t/a(Bm) 1/2, k'*=ka) . The circles denote 
the values obtained by the Ursell expansion, the squares 
the values of the second derivative expansion while the full 
line gives the molecular dynamics results (Michels). 

84 



be explained at the discussion of the coherent intermediate 

scattering function. One sees at once that the hard spheres 

deviation £. (t) has qualitatively the same behaviour as the 

Lennard-Jones interaction but it is a factor 2 smaller in mag

nitude; apparently the negative part of the Lennard-Jones 

interaction is very important for a good description of the 

short time behaviour. A closer inspection of where the contri

butions come from shows that in particular the region in the 

potential well contributes heavily. 

In fig. 14 the results of our calculations at a lower den

sity na = 0.075 and the same temperature k T/E = 1.18 are 
B 

plotted. The choice of this density and temperature will also 

be motivated at the discussion of the coherent function. As 

to the correspondence between the Ursell and the second deri

vative expansion in the last two cases, the same remarks as 

above apply. 

Unfortunately there exist at these densities no neutron 

scattering experiments for the incoherent intermediate 

scattering function so that it is not possible to canpare our 

theoretical results with experimental data. The lack of neutron 

data is explained by the fact that only unusual effective 

scatterers like Ar allow to perform measurements at these 

36 
densities. Ar scatters however coherently. The other candi
date would be H , but experiments at these low densities are 
not yet performed. 

s 
The behaviour of F (t) for very short times has to agree 

with the moments expansion (1.37). Fig. 15 shows the deviation 
s(2) 

E (t) together with the moments expansion up to the fourth 

mcment. It is clear that the monents expansion is only usuful 
1/2 

up to times t/a(Bm) ==0.1. This is a consequence of the 

fact that, due to the hard core, the duration of the collision 

is small compared with the mean free time. 

Finally an interesting feature should be noted. From (3.24) 

one observes that in the hard spheres Ursell-2 expansion 
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E (t) consists, apart from a density dependent factor, of 
-1 -1/2 

(ka) multiplicated by a function depending only on (Bm) kt. 

It should be interesting to see if the deviations of a Lennard-

Jones system also obey this scaling property (Yip, 1971). There-
s 

fore in fig. 15 ka E, (t) is plotted as a function of 
-1/2 ^ 

(Bm) kt in the case of the second derivative 

expansion for a system with a Lennard-Jones interaction. It is 

clear that, especially for the smaller k-values, this scaling 

property is quite good fulfilled. The question is if the exact 
g 

deviation E, (t) has also this scaling property; only a low 

density neutron scattering experiment can give evidence on 

this point. 

b) Coherent intermediate scattering function. 

For the coherent intermediate scattering function there 

exist low density neutron scattering experiments, performed on 

gaseous Ar (Andriesse, 1970) for values of temperature and 

density which explain our choice of these quantities. Fig. 17 
22 -3 

shows the neutron data for a density n = 0.25 - 10 cm 
(no =0.1) and a temperature T = 141.2K (k T/E = 1.18), to-

B 

gether with the theoretical results both for the Lennard-Jones 

as for the hard spheres interaction. One observes at once that 

there is a large discrepancy between the Lennard-Jones devia

tions and the neutron scattering results. Although both devia

tions have qualitatively the same behaviour the values of the 

neutron scattering data are much larger. Because there is for 

the incoherent intermediate scattering function a good agree

ment between our results and those of molecular dynamics and 

there is no reason to suppose that this should be different 

for the coherent intermediate scattering function, it is 

difficult to explain the difference between the neutron 

scattering spectra and our calculations. The neutron data also 

fail to agree with the moments expansion which applies for very 

short times; fran fig. 18 it appears that there is for these 

times a good agreement between our results and the moments 
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expansion. 

Interesting is also the comparison between the Lennard-Jones 

and the hard spheres results. One sees from fig. 17 that the 

hard spheres deviations have, apart from the smallest k-value, 

qualitatively the right behaviour but they are too small, just 

as in the case of the incoherent intermediate scattering func

tion. Here also the influence of the negative tail of the 

interaction and in particular of the potential well is manifest. 

Comparison of the results of the Ursell expansion with those 

of the second derivative expansion in fig. 17 shows that there 

are, in contrast with the incoherent intermediate scattering 

function, larger differences between both expansions. There 

are two reasons for this: 

i) the approximation (2.16) for the triple distribution func

tion which has as a consequence that even the second moment 

(2.36) of the Ursell expansion does not agree with the 

exact second moment (1.39) . • v' 

ii) in the case of the second derivative expansion it appears 

that, especially for k '\' lA where E, (t) is small, the 

results are statistically more inaccurate than that for 

the Ursell expansion; to get satisfactory results the 

double number of points (72000 points) had to be taken for 

k = l r ^ 
Unfortunately there are no molecular dynamics experiments for 

the coherent function so that it is not possible to decide yet 

which expansion gives the better results. Although theoretically 

the second derivative expansion has a small edge over the 

Ursell expansion we must for the time being take the difference 

of the two methods as a measure for the accuracy. 

In fig. 19 the neutron scattering data for the smaller den-
22 -3 3 

sity n = 0,19 - 10 cm (no = 0.075) and the temperature 

T = 141,5K (k T/E = 1,18) are plotted, together with the 
B 

theoretical results for the Lennard-Jones potential. Although 

one should expect that for this smaller density the theory 

would give even better results as in the foregoing case, one 
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Fig. 20. The coherent deviation Eĵ  (t) , obtained by the Ursell expan

sion (circles) and the second derivative expansion (squares) 
for a Lennard-Jones system with density no-'=0.1 and temperature 
kBT/e=1.5; k'<=ka and t>«=t/a(Bm) ̂ /^. 

97 



sees at once that the discrepancies are just as large. 

Finally fig. 20 shows the theoretical results for a density 

na =0.1 and a temperature k T/E = 1.5, As to the difference 
B 

between the Ursell- and the second derivative expansion in the 

two last cases the same remarks as in the first case apply. 

c) Velocity autocorrelation function. 

The velocity autocorrelation function, as calculated with 

the Ursell expansion, is presented in fig. 21 for three densi

ties and temperatures. Fig. 22 shows that the moments expansion 

also in this case holds for times short compared to the mean 

free time. 

d) Discussion. 

As earlier discussed in this chapter our theory is valid 

for times smaller than the mean free time, which is inversely 

proportional to the density. So to cover a large time range 

it is necessary to consider low density systems. But on the 

other hand, if one is content with a shorter time interval, it 

is also possible to carry out calculations for systems with a 

higher density, for which neutron scattering experiments are 

performed on Ar (Hasman, 1973). Fig. 23 and 24 show resp. 

the incoherent and coherent neutron data for the density 
22 -3 3 

n = 0.85 - 10 cm (nO = 0.34) and the temperature T = 152.7K, 

together with the theoretically computed deviations for a 

Lennard-Jones interaction. It is clear that for this density 

the discrepancy is also quite large. Because the experimental 

error of 10-15% is of the same order of magnitude as the calcu

lated deviations more accurate neutron scattering experiments 

shall be necessary to decide if the theory gives a true result. 

We note that on the one hand our theoretical results agree 

quite good with molecular dynamics calculations for times 

smaller than the mean free time while on the other hand there 

is a great difference between our results and those of neutron 

scattering experiments. It should be worthwile to have accu

rate low density neutron scattering data, both for the coherent 
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neutron scattering results of Hasman, 1973 (squares); the den
sity n=0.85-10^2 cm"-̂ , the temperature T=152.7K. 
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Fig. 24. The coherent deviation £j^(t), obtained by the Ursell expansion 
for a Lennard-Jones system (full line), compared with the 
neutron scattering results of Hasman, 1973 (squares); the 
density n=0.85-1022 cm~^, the temperature T=152.7K. 

101 



as for the incoherent intermediate scattering function, so 

that a comparison between the theoretical results and the 

measurements becomes possible. 

From the theoretically calculated deviations it appeared 

that there is, especially for the coherent intermediate scatter

ing function, a sometimes appreciable difference between the 

Ursell expansion and the second derivative expansion. The 

reasons for this are discussed in the foregoing. Summarizing 

we can say that the Ursell expansion has the disadvantage that 

it not yields the exact moments but has the advantage that it 

can be calculated with a reasonable number of points in the 

Monte Carlo integration procedure; the second derivative ex

pansion on the other hand yields the exact moments but has the 

disadvantage that the statistical accuracy is poor. 
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APPENDIX A 

THE HERMITIAN CONJUGATE OF THE HARD SPHERES PSEUDO LIOUVILLE 

OPERATOR L 

t 

The hermitian conjugate L of the pseudo Liouville operator L 

is defined in (1.17): 

<fL g> = <gL f> (A.1) 

where f(r) and g(r) are arbitrary functions of the phase space 

variables T. The operator L is given in (1.21) as: 

L = L -(• ̂  Z Z T_̂ (ij) (A.2) 
+ o 2 . , , + 

1̂ 3 
Substituting (A.2) in (A.1) one obtains: 

<f(r) [L + ̂  Z Z T^(ij)] g(r)> 
o 2 . , , •*• 

17'3 

= <g(r) [L^ + J ̂  S T^dj)] f (r)> 

(A.3) 

We shall examine the free streaming and the interaction part 

of this expression separately. Let us denote the free part by 

I^(f,g),so 

I (f,g) = <f(r)L g(r)> (A.4) 

After substitution of (1.15) this average becomes: 

i ^ ( f ,g ) = < f ( r ) ẑ ^ - 3 ^ g { r ) > 

'=' - (A.5) 

dr p(r)f(r) z — - ̂ 1 - g(r) 
, , m 87, 
1=1 i 

where use has been made of (1.2). Integrating this once par-
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t i a l l y one ob ta ins : 

( Pi a 
i ^ ( f , g ) = - d r g ( r ) ^ -^ • ^ p ( r ) f ( r ) ( A . 6 ) 

' i i 

and after working out the derivatives: 

I (f,g) = - <g(r)L f(r)> -
o 

(A.7) 
P. 3 

dr f ( r ) g ( r ) z — • ^ p(r) 
, m dr, 
1 1 

Let us now pay our attention to the second term of this expres

sion. Using the Hamilton function given in (1.1) and the phase 

space density (1.3) this term can be written for non singular 

potentials in the following form: 

h 8 1 
B<f(r)g(r) z ^ - g | - i z z . ( r )> , 

1 1 j^k -' 

/?, \d¥'(r. .) 
= 6<f( r )g( r ) z z ^ - r . .1 ^ "-̂  > 

.^.\m 13/ dr. . 

One obtains a somewhat other form by interchanging i and j and 

then adding both expressions: 

i- 6 Z Z <f (r)g(r)V'(r, .)$. ,/m) - r, .> 
iT̂ j ^ "-̂  ^^ 

with 

p. . = p. - p, 
13 1 3 

This average contains the factor 

exp(-6¥'(r, .))V'(r. .) = -g"^ -^— exp(-6^ (r . .) ) 
13 13 dr^^ ^ 13 

Writing the right hand side for hard spheres as: 

d e(r. .-a) = 6(r, .-a) 
— 1] ij 

^^13 
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we come to the following result for hard spheres: 

exp(-3.p(r. ,))V(r. ,) = -6~^6 (r, ,-a) 
13 13 13 

Now r,. has to be taken at the outside of the sphere, where 
13 

exp(-&P(r..)) = 1 , so this factor can again be supplemented and 

one gets finally for the second term of (A.7): 

- i- Z Z <f(r)g{r)6(r. .-a)(p. Vm) - r. .> 
2 ,^j 13 ^ij X3 _ 

With (A.7) the following expression is obtained: 

(A.8) 

<f(r)L^g(r)> = -<g(r)L^f(r)> 

-<g(r) ̂  Z Z 6(r, .-0Xp. ./m) • r, ,f(r)> 
^ 2 .^. 13 13 13 

So the hermitian conjugate L of the free streaming part of 

the pseudo Liouville operator L is: 

L"*" = -L - -̂  Z Z 6(r. .-a)(p. ./m) • r. . (A.9) 
o o 2 ̂ ^^ 13 ^13 1] 

The second term in (A.3) , the interaction part, will be de

noted by I'(f,g): 

I'(f,g) = <f (D ^ Z Z T (ij)g(r)> (A.10) 

This becomes after substitution of (1.22): " 

I'(f,g) = dr p(r)f(r)i-Z Z|^. ..r. .|6(-^, ,-?. .)6(r. -a) 
J 2^^^' 1] 1]' 13 1] 1] 

(b..-l)g(r) (A.11) 

= i£^z (dr piT)fi..S,,..3,...)\%-r,^\ei-\..t^.) 

6(r.^-a) [g(..,5^,..,J',..)-g(..,i^,,..,5^,..)] 
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where use has been made of (1.24) and (1.25). In the first term 

of (A.11) we make a change of variables from p.,p. to p!,pl. 

The element of phase space dF and the phase space density func

tion p(r) are invariant under this transformation from F to P'. 

So dF = dF' and p(F) = p(F') . Furthermore 

$'. . - ?. . = -?, , • ?, , (A.12) 
13 13 13 13 

as can easily be verified with (1.25) . After this transformation 

we obtain for the first term of (A.11) : 

^ Z dF' p(r')f (..,p:-(p! .-r. .)r pl-Kp.' .-r. .)r ) 
2 ^ ^ . J ^1 ^iD 13 13 3 13 13 13 

|-̂ : .-r. .|e(^! .-?. ,)6(r. .-a)g(,.,p.•, . , ,?: , , ,) 
' 13 13 13 13 13 1 3 

and after omitting the primes and again introducing the col

lision operator b,,: 
1 ] i • „ 

k z dF p(r)g(F) V. ,-f. . 9(v, .-?. .)6(r. .-0)b. .f(F) 
13 13 13 13 13 13 

So the collision term I'(f,g) becomes: 

I"(f,g) = <g(F)k Z|v, .-r, ,|e(v. .-r. .)(5(r. .-a)b, ,f(F)> 
2^^^' 13 13' 13 1] 1] 1] 

- <g(F)4z Z|v, ,-r. .|e(-^, .-?. .)6(r. .-a)f (F)> (A. 13) 
2^^^' ID 1]' 1] 1] 1] 

and one sees immediately that the hermitian conjugate T (ij) 

of T (ij) is: 

T (ij) = Iv, .-r , ,|e(v, , ,r. .)6(r. .-a)b. , 
+ 13 13 13 13 13 13 

(A,14) 

- Iv, .-r. .|e(-^. .-?. )6(r. .-a) 
13 13 13 13 13 

The first term on the right hand side looks very similar to 

the expression (1,22) for T (ij). This suggests that we can 
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write (A, 14) in the following form: 

T (ij) = T (ij)-î lv. ,-r. .|6(r. .-a)[Q{v. .-?. .)-e(-v. .-r. .)] 
+ - ' 1] 13' 13 13 13 13 13 

(A.15) 

which is easily seen to be the same as: 

T (ij) = T (ij) -I- (v. .-r. .)6(r. .-0) 
+ - 13 13 13 

= T_(i3) + P.ĵ j/m • r^. 6(r^^-a) 

(A,16) 

With (A,3), (A,9), (A, 16) and (1,21) one obtains finally for 

the hermitian conjugate L : 

^ = ^o * 2" ̂ / ^+<^3> 
1̂ 3 

= -L^ -H i- Z Z T_(ij) 

i?̂ 3 

(A,17) 
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APPENDIX B 

THE CALCULATION OF THE EXACT HARD SPHERES MOMENTS 

From (1,36), (1.37) and (1.44) one sees that the n'th moment 

M (k) of the intermediate scattering function can be written as: 

M (k) = N~^<Z exp(-i)t.r.) (L ) " Z exp(ik.r.)> (B.1) 
n . 2. + . 3 

1 3 

In an analogous way the moments of the incoherent intermediate 

scattering function are obtained as: 

M®(k) = N-^<Z exp(-ik.r.) (L ) " exp(iic.r.)> (B.2) 
n . 1 •(• 1 

1 

So it follows from (B.1) and (B.2) that: 

M (k) = M^(k) •!• N"^<Z Zexp(-ilt.r.) (L ) "exp(i)t.?.) > 
n n ... 1 -r 3 

1/3 

(B.3) 

and calling the i'th and j'th particle particle 1 and 2 resp. 

the summation yields merely a factor N(N-l): 

H (k) = M^(k)-f(N-l)<exp(-iit,r ) (L_|̂ )"exp(i)c,r2)> (B,4) 

One should take care of the sequence of the operators in (B,l) 

(B,4), because L and T, do not commute, 
o ± 

We shall now give a derivation of the first few moments, 

a) Zeroth moment 

M^(k) = N~''<Z exp(-ik,r.)exp(i)?,r,)> = 1 (B,5) 
o , 1 1 

1 

Thus with (B,4) the zeroth moment of F, (t) becomes: 
k 

M (k) = 1 -H (N-l)<exp(-ik-(rj-r2))> 
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From (1,5) and (1,9) this is easily seen the same as: 

M (k) = 1 -f nG(k) = S(k) (B,6) 
o 

b) First moment 
s 

The first moment M (k) of the incoherent intermediate scat
tering function follows from (B,2) and (1,21) as: 

M^(k) = N " ^ < Z exp(-ii<.r^)[L^ -H |-Z Z T^(ij)] 

' ^ ° '^^ (B.7) 

exp(ik.r , )> 

One observes immediately that in (B.7) the operator T (ij) works 

only on a function of the space variables and therefore gives 

a contribution zero because of the presence of the operator 

(b..-l) in T (ij) (see (1.22) and (1.24)). Thus: 
13 + 

Mf(k) = N " <Z exp(-ik.r.) L exp(it.i.)> 
1 , 1 o "̂  1 

1 

and after the substitution of L from (1.15) this expression 

becomes: 

1 P • 3 
Mf(k) = N " < Z exp(-ik.r.)Z -J- - TT^T- exp (lie. r , ) > 
1 J 1 , m dr . 1 

i 3 3 

= N-^<Z i]?.g./m> 
• • . i 

This is an average of an odd power of the momentum so the first 
s 

moment of F, (t) is zero: 
k 

M^(k) = 0 (B.8) 

The first moment of F, (t) follows from (B.4) and (B.8) as: 
k 

M^(k) = (N-l)<exp(-ik.rj)L^ exp(ik.r2)> 
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In the same way as for the self function one arrives at: 

M^(k) = (N-l)<(iR.p2/m)exp(-ik.(rj-r2))> 

and because we have here also an odd power of the momentum we 

find finally: ^ 

Mj(k) = 0 (B.9) 

c) Second moment 

The second moment of F, (t) follows from (B.2) as: 
k 

M^(k) = N~^<Z exp(-i)t.r.) (L ) ̂ expdlt.r . ) > 
2 . 1 •t̂  1 

Here we can simplify the computation by making use of the her

mitian conjugate L of L , defined in (1.17) and (1.26) to 

obtain: 

M2(k) = N~'̂ <Z[ -L_ exp(-ii?.r^)][ L^ exp(i)c.r, ) ] > 

The operators T^(ij) that are contained in the pseudo Liouville 

operators L^ (1.21) give again a zero result because of the 

presence of (b.,-1), so we get: 
13 

M^(k) = N~^<Z[-L exp(-ik.r, )] [L exp(i)t.r ,)] > 
/ . o 1 o 1 

1 

(B.10) 

= -N ^<Z(it.p./m)^> = -k^/Bm 
i 

The expressions (B.4) with n = 2 and (B.10) yield for the 

second moment of F, (t) : 
k 

M2(k) = -k^/3m^H(N-l)<exp(-ik.?^) (L^)^exp(ik.?2)> 

Shifting one of the L operators to the left and proceeding in 



the same way as for M (k) we find: 

M2(k) = -k̂ /em-(N-l)<(î .p̂ /m) ()t.p2/m)exp(-ik.(?j-?2))> 

Again the average over the momenta is zero, so 

M2(k) = -k^/6m (B.11) 

d) Third moment 

From (B.2) one sees that the third moment of the incoherent 

intermediate scattering function can be written as: 

M^(k) = N-^<Z exp(-ik.rĵ ) (L̂ )'̂  exp(i)t.r.)> 
, i 

We can choose particle i as particle 1, so the sum over i pro

duces merely a factor N. Furthermore one Liouville operator L 

may be shifted to the left, yielding: 

M^(k) = <[-L_ exp(-ik.?j)]LjL^ exp(if.?j)]> 

Because only the free streaming parts L in the Liouville 

operators L.̂  (1.21) give a nonzero contribution if they work 

on a function of the coordinates only, this expression takes 

the following form: 

M^(k) = -<[L exp(-ik.r,)] L,[L exp(ik.r,)]> 
3 o l + o 1 

= -<ö̂ .p̂ /m)exp(-ik.?j)[L̂  -!• j Z Z T̂ (ij)] 

(i<.Pj/m)exp(ik.?j)> (B.12) 

One observes at once that the free streaming part L gives a 

3 ° 

contribution -i<(k.p./m) > and this is zero because it is an 

average over an odd power of the momentum. The operator T (ij) 

yields only a finite contribution if the pair (ij) contains 

particle 1. 
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For the other particle we can take particle 2, so the summation 

produces only a factor (N-1) and we get for the third moment 

M^(k) = -(N-l)<(k.Pj/m)exp(-ik.rj)T^(12Xk.pj/m)exp(ik.rj)> 

(B.13) 

From (1.22) and (1.24) it follows that: 

T^(12)k.p^/m = |pj2-rj2/m|0'-Pi2-^i2'**''l2"^' 

(k.pj/m - k.p,/m) 

With (1.25) this expression can be rewritten as: 

T^(12)k.Pj/m = (p^^-i^^/m)^(t-i^^)Q{-^^^-t^^)S(r^^-a) 

(B.14) 

Substituting (B.14) in (B.13) we obtain: 

M^(k) = -(N-l)<(l^.p^/ra) ()t.r^2"Pi2*^12/'"'^ 

ö'-5l2-^12'*<'^12-°'> 

Interchanging the indices 1 and 2 the factor (it.J /m) (Ic.r -) 

goes over in - (it.p /m) (it.r ) and if we add both expressions 

we come to: 

M^Ck) = - |-(N-l)<(lt.5^2/™"^-^l2"Pl2'^12/' 
2 

m) 

0<-Pl2-^12'«<'^12-^)> 

The ensemble average can be written out as: 
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M^(k) = -n^/(2N) dr^dr2dp^dp2 exp(-B(p^+p^)/2m)g(r^2) 

It.^^^/m) Ot.;j2) (?i2-12/"''^'-Pl2-^12'«<'^12-°' 

[ I dpjdp2 exp(-B(pj-t-p2)/2m)] "̂  

where use has been raade of (1.5)-(1.7). 

We now make a transformation to the center of mass coordi

nates R and momenta P and to the relative coordinates ? and 

momenta p, defined by: 

^=?1^?2 • R=(?i+?2'/2 

(B.15) 

P = (Pj-P2)/2 r = r j - r 2 

After t h i s t ransformation the i n t e g r a l becomes: 

M^(k) = -n /(2N) dRdrdPdp exp(-3(P /4-Hp )/m)g(r) 

()t.2p/ra) (iJ.r) (25.i^/m)^0(-p.r)6(r-a) -

[ d?dp exp(-B(P^/4-i-p^)/ra)l'^ 

The integration over R yields only a factor V, that over P in 

the numerator and denominator cancel and the integral over p 
3/2 

in the denominator gives a factor (TTra/B) so we get for the 

third moment: 

- ( 
M^(k) = - |n (6/TTm)2 d?dj exp (-8p̂ /ra) g (r) 

(B.15) 

(k.25/m) (it-r) (2p.r/m)^0(-p-r)6(r-a) 

We s t a r t with the ca l cu la t ion of the p - i n t e g r a l : 
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dp exp(-6p^/m) (it-2p/m) (r-2p/m) ̂ 0(-p-?) 

If we take r as the polar axis and go over to spherical coordi

nates (p,9,ip) the integral becomes: 

TT 2Tr 
2 f 

p dp sin6 dS 
2 -*• -*• 2 

dV exp(-Bp /m) (k-2p/m) (2p cos9/m) 9(-pr cos6) 

o o o 

The step function 0(-pr cos6) reduces the interval of the 

6-integration to (77/2,ir). Then all integrations are elementary 

and yield: 

-4-n it.r/B'^ . -. ' 

Substitution of this result in (B.16) leads to: 

M^(k) = 2n -FT 2(g^) 2 ^J ĝ .̂, (J.£) 5(i._o) 

The remaining integrations over the space coordinates are also 

very easy and give finally: 

i - 1 ' 
M^(k) = 8TT2ng(a) (ka)^(6m) ^/3 (B.17) 

The third moment M (k) of F. (t) follows from (B.4) as: 

M (k) = M^(k) + (N-l)<exp(-iic-r ) (L^) expdt-r )> 

In the same way as we arrived to {B.12) we get here by shifting 

one Liouville operator L to the left: 

M^(k) = M^(k) - (N-l)<Ö<-Pj/m)exp(-i)t-?j)[ L^ •f 

-̂  ̂  Z Z T_̂ (ij)](k-p2/m) exp(ik-?2)> 

The free streaming part L gives a contribution: 
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-(N-l}<(i-p^/m)exp(-it-r^)i.(t-^^/m)^expak-r^)> 

This vanishes because of the factor k-p./m. Thus the expression 

for M (k) becomes: 

M2{k) = M^(k) - (N-lX(J-pj/m)exp(-ik-?j)| Z Z T^(ij) 

(k-p2/m)exp(ik-r2)> 

It is clear that the operator T (ij) gives only a non vanishing 

contribution if the pair (ij) contains particle 2, so 

K^ik) = M^(k) - (N-l)<(Jc-p^/m)exp(-iit-?j)[T^{12) -H 

N 

+ Z T_̂ (2i)](ït-p2/m)exp(i)t-?2)> CB.18) 
1=3 

Let us first consider a term with T (21), say 

<(K-Pj/m)exp(-iK-rj)T^(23)a<-p2/m)exp(ik-r2)> 

This is zero because of the occurrence of k-p /m. Thus from 

(B.18) there only results the term with T (12): 

H^{h) = M^^(k) - (N-l)<(i^-Pj/m}exp(-ilf-rj)T^(12) 

(k-p /m) exp(ik-r )> 

and again using (B. 14) this becomes: 

2 
M^(k) = M^(k) + (N-l)<(i<-pj/m) (k-rj2"'^12"Pi2^'" 

e(-p^2-'^12''''^12"°'^''P''^'^'^12'^ 

After the introduction of the center of mass and the relative 
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coordinates (B.15) we can calculate this average in precisely 

the same way as in the case of the self function. This leads 

to the following expression: 

M (k) =(8/3)Tr2 ng(CT) (Bm) [̂ (ka)^-3ka sinka -

(B.19) 

- 6coska + 5(sinka)/ka] 

e) Velocity autocorrelation function 

Finally we shall give some expressions for the first moments 

C of the velocity autocorrelation function C (t). There is no 
n D 

need to calculate the coefficients C separately because they 
can be obtained from the moments of the self part of the inter-

s 
mediate scattering function F (t) by means of the relation 

(1.35). By substituting for F^(t) its time expansion (1.37) 

and for C (t) (1.38) one finds imraediately for the raoments C 
D n 

of Cĵ (t) : 

C = -Bm lim M^ .,(k)/k^ i (B.20) 
k-0 "^2 

Inserting (B.10) and (B.17) in (B.20) one sees that the first 

moments are given by: 

C = 1 • 
o 

(B.21) 
1 _ 1 

Cj = -(8/3) TT2 na^g(a) (Bm) ^ 
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APPENDIX C 

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE URSELL EXPANSION 

2 (2) 
The coefficient a of t in the Ursell expansion of £ (t) 

follows from (2.24) and (2.35) as: 

^2 " i"^^ ^\<3$^d$^dt^dt^<i>l.p^)^i.p^)gl.r^^){exp{-it-r^) + 

•l-exp(-iï̂ -?2) H L^(12)-L^(12)] {exp (iit-r ̂ )+exp (ik-?2) J 

(C.1)" 

N o t i c i n g t h a t , u s i n g (1 .15) and ( 1 . 1 5 ) : 

L^ (12) -L^(12) = L^(12)^fL (12)L (12)^fL (12)L (12) (C.2) 
o I o I I o 

and t h a t 

L ^ ( 1 2 ) e x p ( i l t - r ^ ) = L ^ ( 1 2 ) e x p ( i i t - ? 2 ) = 0 

we f ind e a s i l y t h a t : 

[ L ^ ( 1 2 ) - L ^ ( 1 2 ) ] {exp( i i?- r j ) - l -exp( i i?- r2) } = 

i ? 9 ^ ' - 1 2 ' ' ^ - ' ^ 
- - ~ • —yf-— t e x p ( i k - r j ) - e x p ( i k - r 2 ) } 

Substituting this in (C.1) the expression for a becomes: 

^2 = " i n^N"^|dJjd52d?jd?2c!'(Pj)4'(P2)g(rj2) 

texp(-ik-r ) •fexp(-ik-r ) } 
ra • ~3?7 

{exp(ik-rj)-exp(ilt-r ) } 

which can also be written as: 
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1 o — 1 I 
32 = - J in (Nm) dp^dp2dr jdr2<!) (Pj) (f) (P2) g(r^2) 

8v(rj2) 
{exp(ik-r )-exp(-ik-r )}k - — ^ 

After the introduction of the center of mass and relative coor-

dinates R and r and after integration over p., p and R we get: 

-l|,->. ,!ƒ , -^ ^\ , '^ ->•^ \^ 8v(r) 
inm dr g(r)lexp(ik-r)-exp(-ik-r);k - — 5 5 — 

1 , - 1 
a — — •-r inm 1 ui y \i v i eAp V i^-' ^ / -exp V—iJS - i ; J js. - —S[^ 

Now it is useful to average over the direction k of k; this 

yields for a : 

a = -J nkm dr g(r)3j(kr)r - —^ 

with j (kr) the first order spherical Bessel function (Abramo

witz, Stegun, 1955). The integrations over the angles r can be 

carried out, resulting in: 

a^ = 2TTnkm"-' r^g(r) j ̂  (kr)ip ' (r) dr (C.4) 

The intermediate scattering function F (t) follows from 

(1.32) as: 

Fĵ (t) = S(k) {exp(-k^t^/2Bm)-HE (t)} (C.5) 

Expanding the exponentional in a power series in t and substi

tuting the series for £. (t) we find: 

Fĵ (t) = S(k){l-k^t^/2Bm-Ha2t^-H0(t^)} (C.6) 

With (1.37) the moments of the Urse l l expansion can be obtained 

from t h i s expression as : 
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M" = S(k) 
o 

M2 = S(k) (-k̂ /Bm-f2a2) 

with a given by (C.4). 

(C.7) 

The two particle term of the self part of the intermediate 

scattering function follows from (2.11) and (2.13) as: 

E^'^'(t) = n̂ N M d3^d^^d-?^dt^<i>(p^)^{p^)gl.r^^) 

(C.8) 

exp(-ik-r )U (12)exp(ik-r ) 

To calculate the coefficients of the successive powers of t 

again the expansion (2.35) will be used. After substituting 

this expression in (C.8) one sees immediately that the coeffi

cients of the zeroth and first power of t are zero. The 
s 2 

coefficient a of t follows as: 

•'2 2 
a^ = — n N I dp^dp^dt^dt^(i){p^)<\>{p^)q{r )e-x.p{-ii-t^) 

{L^(12)-L^(12)}exp(i)t-?,) 
o 1 

Using (C.2) and (C.3) a becomes: 

s 1 2 -1 f -+ ^fi'^,2^ 
a2 = - 2" in (Nm) dpjdp2dr^dr2(|) (Pj) (f» (P2) ̂ (1^, 2''̂  ' —8"^ 

Because of isotropy this may be averaged over the direction 

k.of k, resulting in: 

aj = 0 (C.9) 

s 3 
The coefficient a of t follows from (C.8) and (2.35) as: 
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a^ = I" n^N dPjdp2drjdr2<l'(Pj)<(){P2) 9(̂ 12''5''P<-̂ '̂ "̂ l' 

{L-^(12)-L^(12)}exp(i)t-r,) 
o 1 

After working out the effect of the Liouville operators on 

exp(ik-r.) the expression becomes: 

a^ = I n^N ^ I dp,dp,dr,dr,(!)(p,)tt)(p,)g(r^,) 
'l"'-'2""r"2^^^l' 12 

{-3(iit-pVra) 
lit ^^'-12' ' ^ - ^ 2 ' 3 ^^'-12' ik 

1' ' m T? 3^ »1 
^} 

The integrations over the momenta p and p_ are easy and lead 

again to a result zero: . , 

a ^ O (C.10) 

s 4 
From (C.8) and (2.35) the coefficient a of t can be de

rived as: s , 

a^ = n^(24N) ^ I d5jd?2dljd?2<!> (Pj)'t» (P2) 9 (r^3) 

exp (-i5-?,){L'*(12)-L'*(12)}exp(iit-?, ) 1 o 1 

which, after calculation of the effect of the operators, leads 

to: , . . . . . 
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s 1 2^-1 
a , = — n N 

4 24 
d5jd?2d?jd?2<f' (Pj) <*> (P2> 9 ( r j j ) 

(? -1^ ) 3 v ( r , - ) . ^ 
[ - 4 ( i i ^ . j / „ , ) { _ L ^ . ^ - ^ ^ . i i } 

1 m df dr m 
^ ^ T ,!> 3'/ '(r,T) ,rt. 3 ^ ( r , „ 

, , , • + - * • , , 2 , i k 1 2 , . , , i R 12 
- 6 ( i k - p /m) {— - —5^T > - ^ 3 { — • —sr^r 

1 m d r , m 3r 
-} 

3 ' ^ 1 - ^ 2 ' 3 , ^ ' - 1 2 ' ii? 
ra 

P 
ra ' ' ^ i ' '̂  •" 9 r j o r j 

^ ( ^ . 9 ) f ' ^ ' " ^ 2 ' _ 3 J 3'^<'^12> . i ^ 
m 3 r j m 3 ? . 3?̂ ^ m 

. i ! ! ^ . 8 ^ " ' : i 2 ^ i S , 
• 1 ^r j d r j 



Averaging over k simplifies this expression considerably, be

cause all terms, that contain an uneven power of k, disappear 

â  = — n k N j dpjdp2drjdr2(})(Pj)(l)(p2)g(rj2) 

3m m 3r, 3r, m 2 3Ï, 3Ï. 1 1 m l 1 

After integration over the momenta p, and p this coefficient 

becomes: 

1 2 2,,, 2,-1 f -̂  ,̂  , ,,4 3 '̂̂ '-12' 
4̂ = 2Ï" '̂  <-^'"^ I ̂ VV'-12'^3| 3?^ • - 3 ? ^ ^ 

3v(r ) 3v(r, ) 

Final ly the in t roduc t ion of center of mass and r e l a t i v e coor

dinates R r e s p . r y i e l d s : 

â  = ^ nk^m ^ | drg(r) { j B ^^\ (r) - iófi/dr)^] (C.12) 

Usina (1.32), (C.9), (C.10) and (C.12) one finds for the 
s 

time expansion of F, (t) : 
k • 

F^(t) = exp(-k̂ t̂ /2Bra)+£̂ (t) 

22 1 4 4 - ? s 4 6 
= 1-k t /2Bm + j - k t (Bm) +a^t +0(t ) 

O 4 

So with (1.37) the moments follow as: 

M"'" = 1 
o 

M^'" = -k^/Bm (C.13) 

M^'" = 3k''(Bm)"̂ -H24â  

5 
with a given by (C.12) 
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It should be noted that (C.11) can be written in another 

form by using the static relation between the pair correlation 

function and the triple distribution function (Munster, 1969): 

- g j — = -B - ^ ^ g(rj2)-nS J dr3 - ^ ^ ^ir^r^r^) 

(C.14) 

Replacing of one vector 3v(r )/3r bv means of this rela

tion in the last term of (C.11) yields for a 

s 1 2,2,. 2„ -1 
a^ = 24 n k (Nra B) d?jd?2{3 g(rj2) 

8^(r^2' 

1 ""1 
3'̂ (r. J 

+ -1?^ 3?P ̂  -W^ ' T ^ —3?p'<^'^2^3' ̂  

The second term may be reduced by partial integration: 

drjdr2 
3v(rj2' 8<3<^i2' 

3?- ^l'^^25<>^12' 3 ? : 

3'̂ (rj2) 

3?, 

In the terms containing the pair correlation function g(r ) 

now center of mass and relative coordinates, R and r, are 

introduced, leading finally to: 

^ nk^(m^B)"^ 72 

1 3 , 2 , 

d ? g ( r ) ^ ^ ( r ) 

+ — n k (Nra B) d?^d?2c3?3g(?j?2?3) 
^(r^^) 3v(r^3) 

3?: 3?7 

(C.15) 

where the first term gives the exact fourth moment (1.40). 

The two particle term of the velocity autocorrelation func

tion was derived in (2.33): 

Cj^^'(t) = J Bn^(Nm)"Md?jd:^2^fjd?2*(Pi)<l'(P2)a(rj2)Pi-U^.(12)pj 

(C.16) 
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After s u b s t i t u t i n g (2.35) one sees imraediately t h a t the cons tan t , 
c c 

a , vanishes . The coef f ic ien t a of t i s : 
o 1 

aj = •J Bn^(Nm)"Md5^d52d?jd?2<t>(Pi)<f'(P2)9(ri2'Pi-^l'12)Pj 

1 7 - i f ^'^'^12' 
= - y Bn (̂Nm) 'd?jdf2d?jd?2<l'(Pi)<l'{P2) 9(5^12*^1 ' ~ ^ ? 

Integration over p leads to a result zero: 

aj = 0 (C.17) 

c 2 
The coefficient a of t follows from (C.16) and (2.35) as: 

32 = I Bn^(Nm)~Md?^d?2d?jd?2(f'(Pi)<J)(P2)g(rj2)Pi-

- [L^(12)-L^(12)]5, 
o 1 

= - I Bn^Nm)"Md?jdJ2d?jd?2'}'(Pj)'f>(P2)g(i-i2' 

3'̂ (r.„) (P1-P2) 3 3^(rj 

m 3f^ 3Ï^ '̂1 

The integrations over the momenta p and p and the center of 

mass coordinates R are elementary and yield finally: 

83 = - ̂  d? g(r)^^V(r) (C.18) 

From (2.22), (C.17) and (C.18) it follows that: 

Cjj(t) = 1-Ha2t̂ -H0(t'*) 

Comparist^n with (1.38) giveK the moments: 
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c"= 1 
o 

u . c 1 -1 
^2 = 2a2 = -3 nm {r)^\ dr g(r)V ^ (r) 

(0.19) 

what is the exact value (1.41) 
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APPENDIX D 

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE SECOND DERIVATIVE 

EXPANSION 

(2) 
The two particle term F (t) of the intermediate scattering 

function F, (t) follows from (2.53) as: 
k 

Fj[̂ ' (t) = in̂ N \df f3Pjdp2dr̂ dr2(f'(Pj)<t)(P2)g(î l2"̂ "Pl'̂ " 

exp (-ik-r J )U^, (12)[ exp (ik-r^)-i-expdk-rj) 1 (D.1) 

We s h a l l w r i t e t h i s a s a power s e r i e s i n t : 

(2) 2 3 4 
F, ( t ) = a , t • ^ a „ t -i-a.,t -i-a.t +... 

k 1 2 3 4 (D.2) 

by means of ( 2 . 3 5 ) . S u b s t i t u t i n a (2 .35) i n (D.1) one s e e s 

immedia te ly t h a t 

a^ = a2 = 0 (D.3) 

For a we find: 

1 • 2„-l 
a., = •;r in N 3 6 

dp,dp2dr dr (ti(p. )ct)(p ) g(r )k-p /m exp (-lit-r) 

[L^(12)-L^(12)][ exp(i)c-r, )+exD(ii<-r-)] 
o 1 ' 2 

Afte r work ing o u t t h e L i o u v i l l e o p e r a t o r s t h i s becomes: 

1 9 — 1 / 
33 = - n N \dp^d'$^di^dr^iti(p^)ii)(p^)q{r )t-p^/m exp( - i1c - r ) 

t 3¥>(r ) 
— • 5r ; r— I e x p ( i k - r ) - e x p ( i k - r ) 
m dr 1 2 

Because of the occurrence of k-n /m in this expression the 

intearation over D gives zero: 
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a3 = o (D.4) 

The coefficient a. is found to be: 
4 

a^ = in^(24N)"Mdpjd?2<5^i^^2''''Pl'''"P2'^''^12''^'^/'" exp(-ii<-r^) 

[ L^(12)-L^(12)][ exp(iJ-r^)^fexp(i)c-r2)] 

and after some calculations this becomes: 

a^ = -in^(24N)"Md?^d?2<3*i<3*2<t>'Pl'*'P2'^''^12'^'Pl/"' 

(?,-?,) - 3^(r ) * 
exp(-iS.?̂ )[ (_L-i- - ^ ^ - J ^ - ^Uexpiit-f^). 

.it 3v'(r ) 
-exp(i^-? )) + 3 — . .'•^ (i)c-5,/m exp(iit-r,)-

^ ra 3r 1 1 

-ik-p /m exp(ik-r2))] 

The integrations over the momenta are simple, resulting in: 

a^ = -in^m(24NB)"Mdtjd?2g(rj2)exp(-iIc-rj) 

-2 3 •^'^12' lit 
[m (k - T5 r̂ E ' —^) (exD(i)c-r )-exp(i)t-?.) ) 

dr 3r m • 1 - 2 
, , .;• 3v(r ) 

. T -1 2 -2 ,1k 12 , , .^ -»• , 1 •t-3ik m (— - — g ^ - — ) exp(ik-r )] 

After the introduction of the center of mass and relative coor-

dinates, R and r (2.25), the integration over R can be oerforraed. 

The last term in the integrand gives a result zero because of 

isotropy. Then the coefficient a becomes: 

a^ = n(24m^6)"Hdrg(r) (l-exp(-iit-?)) (it-'9)^(^(r) 

(D.5) 

n(24m B ) " drg(r)(l-cos )t-?) (k-^) ̂ v (r) 
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The time expansion of the intermediate scatterina function 

F (t) follows then from (2.49) and (D.2)-(D.5) as: 

F (t) = S(k)-l+exp(-k^t^/2Sm)+Fj|^' (t) 

= S(k)-k^t^/2Bm-K| k'*(Bm) -̂Hâ ) t̂ -nO (t^) 

(D.6) 

Comparison of (D.6) with (1.37) shows for the moments of the 

second derivative expansion: 

(2) 
M^ ' (k) = S(k) 

M2^' (k) = -k^/Bm (D.7) 

(2) 4 -2 
K\ ' (k) = 3k (Bm) -H24a, 
4 4 

They all agree with the exact values 

by 

s (2) 
The two particle term F (t) of the self function is given 

F^'^' (t) = in^N Mdt' dPjdp2dr^d?24'(p^)<i>(P2)g(rj2) 

t-p /m exp(-ik-r )U (12)exp(ik-r ) 

We write this as the following power series in t: 

F^'2'(t) = a^t+a^t^+a^t^a^t'*+... (D.8) 

The ca lcu la t ion of these coef f i c i en t s i s ca r r i ed out in exact ly 
the same wav as a , . . . a , . The r e s u l t s are : 

1 4 

s s s ^ 
a^ = a2 = a3 = 0 

(D.9) 

a^ = n(24m^B) M d r g ( r ) (It-'^) v̂? ( r ) 

127 



.s 
Because of isotropy a. can also be written as: 

a° = nk (72m B) | dr g(r)" v) (r) (D.10) 

s 
The time expansion of F, (t) follows then from (2.49) and 

k 
( D . 8 ) - ( D . 1 0 ) a s : 

q 2 7 1 4 - 7 q 4 6 
F ^ ( t ) = 1-k t /2Bm-K|- k (Bra) • f a p t -HO(t ) 

and with (1.37) there results for the moments: 

o 

M2*^' (k) = -kVSm (D.11) 

s f 7) 4 -7 s 
M^* ' (k) = 3k (Bm) •^24a^ 

They also agree with the exact values. 
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APPENDIX E 

DETAILED CALCULATION OF THE DE'^IATIONS FROM THE IDEAL r;AS 

BEHAVIOUR FOR THE HARD SPHERES SYSTEM 

In (2.31) we found for the deviation of the coherent inter

mediate scatterina function frora its ideal gas value: 

E'^'(t) = n exp(-k^t^/4Bm) dJd2v(p)o(r)f j_^(k|?-(-?(t) 1/2) 

-^j^(k|r-r(t) |/2)-j^ (kpt/ra)-j^(k| r-Hpt/ra| ) ] (E.1) 

The trajectory r(t) for hard spheres has been given in (3.8) 

while the collision time T follows from (3.9). The function 

between the square brackets on the right hand side of (E.1) 

depends only on the magnitude of the initial interparticle distance 

r, the magnitude of the initial relative momentum p and on the 

angle between r and p; this function will in the following be 

denoted by h (p,r,p-f;t) where p and f are the directions of 

resp. p and r. 

It is easy to see that h = 0 as long as t < T. This means that 

the particle must have a momentum larger than some minimum momen

tum p . to reach the sphere within the time t. To determine the 

min ^ 

boundaries of the integrations that are contained in (E.1) we 

take first the initial relative position r fixed along the nega

tive z-axis (see fig. 25). In spherical coordinates the compo-

nents of p are: its magnitude p, the angle 6 between p and the 

z-axis and some polar angle ip , where p runs from p to ", 6 
p rain p 

frora 0 t o a maximum v a l u e 6 and V from 0 t o 27r. 9 i s 
max p max 

given by (see fig. 25): sin 6 = a/r so 6 = arcsin a/r. The 
max max 

integration over f can immediately be carried out and gives a 
- * • - ~ ->• 

factor 211. For r one can write rr where r is the direction of r. 

Because of spherical symmetry the integration over r contributes 

a factor 4IT . The range of r runs from a to <». Now (E.1) becomes 

with p.r = -cos 9 : 
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max 

r ( t ) = r ^ f 2 p t / m t < T 

=r•^2pT/m•^2p' ( t -T) /m 

t > T 

?(t)=B 

3'=r+2pT/m 

$' =$-2{f-a)a 

t i l 

t > T 

F i g . 25 . The h a r d s p h e r e s b i n a r y c o l l i s i o n . The meaning 
of t h e symbols i s e x p l a i n e d i n t he t e x t . 

£,*^' ( t ) = 8-rr̂ n exp( -k^ t^ /4Bm) r ^ g ( r ) d r | s i n e d9 
k J • ) P P 

[ ^ p 'P{p)dp h, ( p , r , c o s e ; t ) 
J '̂  ' ^ k ^ p 

I n t r o d u c i n g f o r 6 a new v a r i a b l e u = cos9 one g e t s : 
P P 

(2) 2 2 2 1 2 
£^ ( t ) = 8TT n e x p ( - k t /4Bm) [ r g ( r ) d r du 

, , 2 , 2 , 1/2 
(1-a / r ) 

p ifi {p)dp h ( p , r , u ; t ) (E.2) 

P , • min 

We s h a l l now i n t r o d u c e r e d u c e d v a r i a b l e s . The d i s t a n c e r c a n 

be made d i r a e n s i o n l e s s bv t h e s p h e r e d ia rae te r O, s o we w r i t e 

r = ap where p i s t h e d i r a e n s i o n l e s s i n t e r p a r t i c l e d i s t a n c e . The 

raomentum p can be reduced by t h e mean momentum p i n some d i r e c -
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1/2 
tion, sav with p = (m/B) , so the dimensionless momentum w 

o 
follows from p = p w. Furthermore one can introduce a dimen-

o 
sionless time t = p t/(am). One sees that t is the ratio of 

" o 

the observation time t and the time that a particle with ther

mal velocity p /m needs to travel a distance O. Finally we 
H 3 

introduce a reduced densitv n = na and a reduced wave vector 

k" = ka. 

Substitution of these new variables in (E.2) leads to the 

following expression: 

^(2) «„1/2 , x2 K2 
e, (t) = 8n TT exp(-k t /4) 

2 
P g(P)dp 

2 1 (E.3) 

dul w e h (p,w,u;t )dw 

(l-l/p2)^/2 w . 
min 

where use has been made of (2.26). 

Equation (3.9) for the collision time T has in the new re

duced variables the solution: 

T " = [ pu-(p^u^-p^ + l)^''^]/2w (E.4) 

We now introduce for the angle u a new variable v that is pro

portional to the collision time T : 

, 2 2 2 ,, 1/2 
V = pU-(p U -P -Hi) 

Then the collision time becomes verv simple: 

T" = v/2w 

The condition t > T must be fulfilled, so t > T = v/2w and 

we find for the minimum momentum w . = v/2t . So one gets 
(2) "'•" 

finally for the deviation £ (t): 
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(2) , , „ H 1/2 , , x2 x2 ,,, I , , , 
E' (t) = 8n TT ' exp(-k t /4) |p g(p)dp 

(P^-1)^/^ 

p-1 
2 2 2 2 2 X 

•(v -p -Hl)/(2v )dv dw w exp(-w )h (w,p,v;t ) (E,5) 
v/2 t" 

where 

hĵ (w,p,v;t'') = 3„{aj)+j^(a2)-j^(a3)-j^(a^) 

aj = y k''[-(p^-v^-l)2-H4v^-H4+2wt''{{p^-v2)^-4v^-l}/v-H4w^t''^] ^'"^ 

l x , , , , , X, , , 2 2 ,,2 . 2^x2, 1/2 '^•^' 
^2 " 2" ' n-2wt /v) (v -p -Hl) +4w t ] ' 

, X X 
a = k t w 

, X, 2 X, 2 2 , , , 2 x2, 1/2 
a = k [p -wt (v •Hp -D/v-fw t ] 

s(2) 
The deviation E, (t) of the incoherent interra.ediate 

k 

scattering function follows from (2,32) in completely the same 

way as: 
, 2 ,,1/2 

«> (p -1) ' 

E^*^'(t) = 8n''Tr̂ ^̂  exp(-k''^t''^/4) fp g(p)dp 

=" 1 p-1 

-(v^-p^-H)/(2v^)dv dw w^exn(-w^)h^(w,p,v;t'') (E,7) 

v/2 t** 

with 

hj^(P,w,v;t ) = JQ(a2)-j (aj) 

where a and a are given in (E,5), 

The deviation of the velocitv autocorrelation function can 

be handled analogouslv. Takina as startina point expression 

(2,34) 

(3,9) : 

(2) 
(2,34) for C (t) we find after substitution of (3,7) and 
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C^^' (t) = - I mT"^'^^(B/m)^/V^jd?d? exp(-Bp^/m) 

(E,8) 

g(r) (p-r-H2p^T/m)^e(t-T) 

where use has been made of (2,26) , We can now go on in the 

same way as in the case of the intermediate scatterina func

tions and introduce the reduced variables p, v and w. Comparing 

(E.8) with the corresponding deviation (E.1) of the interme

diate scattering function one observes that the intearand of 

(E.8) has a far more simple structure. This has as a conse-

ouence that in this case the v- and w-integrations can be done, 

resultina in: 

oo 

Cjï̂ '̂ (t) = f T̂ ''̂  n^jp g(p)l(p;t'')dp (E.9) 

1 

where I(p;t ) is given by: ' ' 

I(p;t'') = [-(p-l)/t'*-4t'*(p-l) (P^f2)-f8t''^]exp(-(p-l)^/4t''^) 

+1 -l-4-3(p-l)-H6(p-l)̂ -f2(p-l) ̂] TT^^^erfc( (p-l)/2t'') 

•f|-8t''-̂ -H4t'*(p̂ -l)]exp(-(p̂ -l)/4t''̂ ) 

-2TT^/^(p^-l)-^/^erfc((p^-l)^/^/2t'') .' (E.IO) 

with erfc(z) the complementarv error function, defined by 

(Abramowitz, Stegun, 1965): 

oo 

erfc(z) = 2TT"-'''̂  exp(-t^)dt (E.11) 

z 

Fig. 25 shows the function I(p;t ). 
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Fig. 26. The function l(p,t ) , described 
in the text. 

1(1,t") = -TT^/' 

I(p,t''=oo) = -TTl/2[2(p2_i)V2 

2p +3p] 
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APPENDIX F 

THE MOMENTS OF THE HARD SPHERES URSELL EXPANSION 

In chapter 2 detailed expressions for the deviations of the 

correlation functions from the ideal gas behaviour were derived. 
(2) 

From (2.11) and (2.23) the deviation £, (t) of the intermediate 
k 

scattering function follows as: 

EJI^' (t) = n^N Md?^d?2Cl?id?2(|)(p^)<l'(P2)g(r^2' 
(F.1) 

exp(-ik-r )u (12) Z exp (ik-r.) 

3=1 ^ 

s (2) 
The term with j=l gives the self part E (t). Writing the 

deviations as an expansion in powers of t: 

E'2) (t) = Z a t" 
'̂  n=0 " 

and (F.2) 

s (2) , , ^ s n 
E, (t) = Z a t 
k n 

n=0 

the coefficients a and a follow after substitution from 
n n 

(2.35) in (F.1) as: 

a = n^(Nm:)~^ 
m 

dr^dr2dpjdp (l)(pj)(t)(p2)g(r )exp(-iit-r ) 

2 
[L'"(12)-L"'(12)] Z exp(i!?-rj (F.3) 

j=l ^ 

The term with j=l gives again a . One sees immediatelv that 
m 

a = a^ = 0 (F.4) 
o o 

and because [L(12)-L (12) ] exp (i]<-r ) = T (12) exp (iit-r ,) = 0 
o j + 3 

that 
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a^ = a^ = o (F.5) 

The coefficient a follows frora (F.3) as: 

a = j n n dr d? df dj (}) (p )(j)(p )a(r ) exp (-iit-r^) 

2 2 ^ 
[ L (12)-L (12)] Z exp(ii<.r ,) 

° 3=1 

The operator between square brackets can be written as: 

2 2 2 2 2 
L -L = (L +T ) -L = L T -fT L -l-T 

o o-l- o 0-I--I-0-I-

So we see that only T L gives a contribution to a.. After 
-I- o ' 2 

working out the effect of T L on Z exp(ik-r,), using (1.22), 
-I- o 3 '̂ 

we arrive at: 

a2 = y in N dr jdr2dpjdp2(}) (p^) <}) (P2) g(r^2'^'^P f~i'^"^l' 

{exp(iit-rj)-exp(ilt.r2)}(p -r /m) 

<'^-^12'^t-Pl2-^12'^'-12-^' •• .̂.' ... •.. •̂ .' • 

The coefficient a is found bv taking only the term exp(ik-r ) . 

Introduction of center of mass and relative coordinates, 

" » • - > • - > • - > - ~ ^ ' * 

P, R resp. p, r, followed by an intearation over P and R yields 

for a2: 

^2 = ^ in dtd5¥'(p)g(r){l-exp(-i5-?)}(r.23/m)^ 

(F.6) 

(t-£)e(-g.?)6(r-a) 

The term with 1 between the curly brackets gives a ; one sees 

immediately that 
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2̂ = o (F.7) 

The remaining integrations in (F.6) are elementary; using 

(2.25) we find finally for a.: 

32 = -2TTn(Bm) ^ka^g(a) j ̂  (ka) (F.8) 

with j (ka) the first order spherical Bessel function (2.36). 

The coefficient a follows frora (F.3) as: 

3̂ " ^ri^^~^\'i^^3i^d$^d^2<ii{p^)<p{p^)g{r^^)exp{-it-t^) 

2 

{L'^(12)-L'^(12) } Z expdic-?.) 

° 3 = 1 ' 

and because T (12), working on a function of the coordinates 

only, gives no contribution this amounts to: 

a3=|-n^N Md?^d?2d?jdJ2tJ'(Pj) <t>(P2'? (r^2^ ̂ '^P'-^'^-^l' 

2 2 
{L (12)T (12)-)-T (12)L (12)+T (12)}L (12) Z exp(iic-r,) 

o + + o + o ._ 3 

(F.9) 

g 
The term with j=l gives the coefficient a of the self part 

S ' " ' t ) . 
^ 2 

The operator T (12) does not contribute to a because two 

spheres cannot collide twice with each other. The term with 

T L can be written as: 
+ o 

- -I n^N~^\dt^di^d^^d^^'i>{p^)<i>{p^)gir^^)exp{-it-t^) 

2 2 
T (12) Z (lt-5./m) exDdit-?,) 

" 3=1 ^ 

The effect of T (12) on the terra with j=l i s : 
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in^Nm3)-^Jd?jd?2<aV?2*<Pl>*'-''2'^'^12"Pl2-^2'Ö(-?i2-^12' 

5(rj2-^'^'?12-^12''<*-12''-2<'^-?l'"^-12"Pl2-12'^ 

After interchanging particles 1 and 2 and adding both expres

sions, this becomes: 

- |- n^(Nm^)"Mdtjd?2d?jdf2*<Pi>*'P2''''''l2"Pl2"^12'^"^'^12' 

e(-5j2-?i2'«'-12-"'[^-'Pl2-<Pl2-^12'^12'i 

Observing that p.^-(p,.-f )r is the component of p . per

pendicular to f , one sees immediately that this term, after 

integration over the angle of 3 _ with respect to i,--,' vanishes, 

In the same way the term with j=2 can be shown to be 0, 

Thus in (F,9) onlv the operator L T oives a finite contri-
o + 

bution to a : 

a3 = i inVMd?jd^2<='*i<3*2''''Pl**^-°2*^''^12'®''P'"'-'^'^l' 

2 
L (12)T (12) Z (It-f ,/m)exp(iic-r.) 

^ j=l '^ 3 

= |- inVMd?jd?2d?jdt2<l'(Pi)<f'{P2)g(r^2'^^P'"^'^'^l' "' 

L (12)[ exp(ik-r )-exp(i)c-r )] (p -r /m) ('̂•'̂,2' 

e<-?12-12'*''^12-'^) 

Aftët .partial integration with respect to r and r_ this 

becomes: 
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a3 = - |- inV^jd?jd?2<^*i<3?2*'Pl'*<P2"^o'^^'^'''l2' 

2 
exp(-ik-rj)][ exp(iïc-rj)-exp(iï<-r2)] i^^^'^io^^^ "^'^12' 

9(-Pj2-rj2)6(ri2-0) 

- 1" in^(Nm^)"Md?jd?2d?jd?2'f"Pi'"'''P2'fPl2"^12^''''l2'' 

-iït-Pjg(rj2']t 1-exp (-iS-r ̂2) ] <Pi2"^i2' '^"^12' 

Ö'-Pl2-12'«'>^12-'" 

The terra with 1 between the second pair of square brackets 
g 

gives again a , All remaining integrations are elementary; the 
3 

final result for a and a,, is: 

s 4 1/2 ,. ,-3/2„ ,2 , , 
a3 = g ir ' n(6m) (ka) g(a) 

2 1/2 -3/2 2 2 - 1 
a3 = 3 ir ' n(6m) ' (ka) [-4g'(a) j^ (ka)/k-Hg(a) {j - 2 (ka) 

-2 —3 
sin ka-4(ka) cos ka-H4(ka) sin ka}] (P,10) 

The moments M (k) and M ' (k) (n=0,l,2,3) of the hard spheres 
n n 

Ursell expansion can be calculated from (1,32), (1.37), (F.2), 

(F.4), (F.5) , (F.7), (F.8) and (F.10). The moments of F, (t) 
k 

are given in (3.10) while the moments of F (t) agree completely 

with the exact moments (1.46). 

As far as the velocity autocorrelation function is concerned 

we shall write the two particle term of the hcu:d spheres Ursell 

expansion as: 

C^2)(t) = ? a V (F.11) 
° n=0 " 
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From (2.11), (2.33) and (2.35) the following expression for 

a follows: 

a° = -J Bn^(Nml.')~Mdrjdr2dpjdp2((>(p^)(ti(D2'^'^12' 

(F.12) 

p^.[L^(12)-L^(12)]5j^ 

Because L (12)-L (12) = 0 one sees immediately that 
o 

a° = 0 (F.13) 
o 

The coefficient a is derived from (F.12) as: 

a° = •!• Bn^Nra) ^\d-ï^dt^df^d^^<^(p^)<i>{p^)giic^^)p^-T^{12)3^ 

= -J Bn^Nm^)"^ d?^d*2d?id?2'l"Pi"^(P2''''''l2* 'Pl2'^12'^ 

'?l-12'9(-?i2-^2'«'^2-^' 

D 
All integrations are easy and yield finally for a : 

D 8 1/2,„ ,-1/2 2 , , ' , ,., 
aj = - 3- TT ' (Bm) no g(a) (F.14) 

From (1.38), (2.22), (F.11), (F.13) and (F.14) one derives 

easily the Ursell moments of C (t); it appears that they 

aaree with the exact hard spheres moments (1.47). 
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APPENDIX G 

THE TWO PARTICLE TERMS OF THE nRSELL-2 EXPANSION FOR HARD 

SPHERES 

In this appendix a detailed calculation will be given of the 

two particle terms of the hard spheres Ursell-2 expansion. 

a) incoherent intermediate scatterina function. 
s (2) s 

The two particle term F, (t) of F, (t) was derived in 
k k 

(3.22) a s : 

r N 
F,̂  ( t ) = N~ Z d t , Z < { e x p ( - ( t - t , ) L ) e x p ( - i l t - r . ) } 

k 1 . , 1 o 1 
o (3.22) 

T (a)exp(t.L )exp(iit-r.) > 

Taking pa r t i c l e i as par t ic le 1 the summation over i may be 

replaced by a factor N: 

t 

F^*^'(t) = Z dt <{exp(-(t- t ,)L )exo(-iit-?, )} 
k 1 ' 1 o 1 

a -" 
o 

T (a)exp(t,L )exp(ik-r,)> 
+ 1 o " 1 

Because L r, = r.+D.t/m the effect of the free streaming 
o 1 1 ' 1 

operators leads to: 

t 

F^ '^ ' ( t ) =Z dtj<exp(-iJ- (rj-pj(t-tj)/m))T_^(a) 
a •' o 

expiit-{r^+p^t^/m))> 

The pair of particles a must contain particle 1 to give a 

non zero contribution; taking for the other particle particle 

2 the summation over all pairs a produces only a factor (N-1): 
t 

F^'^'(t) = (N-1) dtj<exp(-i5- (?j-pj(t-tj)/ra)) 

o (G.1) 

T_^(12)exp(iS- (?̂ -̂ p̂ t̂ /ra))> 
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Writing the collisional part T (12) (1.22) of the hard 

spheres Liouville operator as: 

T (12) = ra ̂ a^ da\i^^-a\6{r^^S) {b^^-D (G.2) 

and using (1.24) and (1.25), the two particle term takes the 

form: 

t 

da|p^2-'^ F^'^^(t) = (N-l) dtj<exp(iic-?^(t-t^)/m)ra"^a^ 

o Pj2-^*0 

6(?j2"*" ̂ '^P'^^' (?/ni-(pj2/m-Ö)a)tj)-exp(ilt-?jtj/m)]> 

Writing out the ensemble average and introducing center 

of mass variables P, R and relative variables p, r (2.25) 

this expression takes the following form: 

F^*^' (t) = n^(Nm) M dt drd$di^dP$(P)¥'(n) a(r) exp (iit-Pt/2m) 

exp(iit-p(t-t )/m)a da|2?-a|6(ï-(t) 

S-a<o 
[ expdic- (p-(2p-a)a)tj/m)-exp(if-ptj/m)] 

The integrations over P and R are easy and yield: 

t 

F^'^'(t) = m'̂ 'n exp(-k^t^/4Bm) dt dgd*) (p) g(r) 

exp(i!<-?(t-t^)/m)a da| 2^-a| 6 (r-3)[ expdit-(J-

p-a<0 

(2p-a) a) tĵ /m) -exp (iit-pt^/m) ] 

For simplicity we shall substitute for p the relative velo

city V = 2p/ra: 
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F^'^'(t) = n exp(-k^t^/4Bm) dtjd^div'(v)g(r) 

o 

exp(iic-v(t-tj)/2)a^ da|^-a|6(r-?)[ expdit-(v/2-

v-a<0 

(v-a)a) t^)-exp(iiJ-vt^/2)] 

with (G.3) 

3/2 2 
fiv) = (Bm/4Tr)^ exp(-Bmv /4) 

The integration over r can immediately be carried out, 

yielding: 

t 

F^'^'(t) = na^g(a)exp(-k^t^/4Bm) dt dW'(v)exp(iic-v(t-tj)/2) 

o 

da[^-a|[exp(iic-v'tj/2)-exp(il<-vtj/2)] 

v-a<0 

v/here also the post collisional relative velocitv 

v' = v-2(v-a)a has been substituted. Now v;e replace the in

tegration variable a by v' (y' = v'v' with v' = v ) , thus 

da|v-a| -* v/4 dv' 

v-a<o 
s (2) 

After the introduction of v' the expression for F (t) 

becomes: 

t <» 

F^'^' (t) = •I na^g(a)exp(-k^t^/4Bm) dtJv'^V (v)dv dv dv' 

o o 

exp(ik-v(t-t^)/2) {exp(ik-v ' t /2)-expdk-vt /2) } 

The integration over t is easy and yields: 
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F ^ ' ^ ' ( t ) = ;^ n a ^ g ( a ) e x p ( - k ^ t ^ / 4 B m ) v'̂ 'P (v)dv dv d v ' 

o 
, exp ( i k - v ' t / 2 ) - e x p ( i k - v t / 2 ) ^ , . ^ ->•,./is i 
[— -y ,-Vi ->-i /o t e x p d k - v t / 2 ) 

ik- (v -v) /2 

Taking k as the polar axis and introducing for v and v' the 

polar coordinates (9,v') and (6','/'') we obtain for the two 

particle term: 

oo IT IT 

F^'^'(t) = TT̂ nCT̂ g(a) exp (-k^t^/4Bm) v̂ î  (v)dvsinede sine'd9' 

o o o 

r e x p d k v cosO ' t / 2 ) - e x p d k v cos9t/2) Q,./OM 
[—~ • - t expdkv cosöt/2)J 

ikv(cos9 ' -cos9) /2 

This expression becomes simpler by substituting for 9 and 9' 

the new variables u and w defined by: 

u-w = cos9 

û fw = cos9 ' 

The integration over u can be carried out and the result 

for the two particle term is: ' •' 

oo 

F^'^'(t) = 87r^na^g(o)/(ka)exp(-k^t^/4Bra) ŷi/) (v)dv 

1 o 

[ 2 dw(kvwt/2)" sin(kvwt/2)sin(kv(l-w)t/2)-sin(kvt/2)] 

o 

The expression between the square brackets can be re

written in terms of sine and cosine intearals (Abramowitz, 

Stegun, 1965) and after the introduction of the followina 

dimensionless variables: 

V = (Bra) ̂ ^^u 

A = (Bra)~^/^kt 

(G.4) 
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s (2) the f i n a l r e s u l t for F, (t) i s : k 

i "̂  
F ^ ' ^ ' ( t ) = iT^na'^g(a) (ka)"^exp(-A^/4)A~Mu exp(-u^/4)du 

o 

[ 2sin (Au/2) Si (Au) -f2cos (Au/2) {ci (Au) - In (Au) -y} (G. 5) 

-Au s in (Au/2)] "''' 

where Y i s E u l e r ' s constant . 

b) coherent in termedia te s c a t t e r i n g funct ion. 

The two p a r t i c l e term F (t) of the coherent interme

diate s c a t t e r i n g function follows from (3.22) and (3.28) a s : 

t 

F,'^' (t) = F,^'^' (t)-HN"^Z Z Z d t < [ e x p ( - ( t - t , ) L ) êxpd l t - r , ) ] 
k k , , , 1 ' l o " 1 

a 1^3 ;, 

T {a)exp(t L )exp(i)t-r ,)> 

Taking for particles i and j resp. particles 1 and 2, the 

summations over i and j produce merely a factor N(N-l), so: 

t 

F'^' (t) = F^'^' (t)-KN-l)Z ldt^<[ exp(-(t-t^)L )exp(-i)t-rj)] 

a •' ° 
o 

T^(a)exp(t L )exp(ik-r2)> 

This becomes a f t e r ii;orking out the e f fec t of the free 

streaming ope ra to r s : 

t 

Fj[^' (t) = F ^ ' ^ ' (t)^f(N-l)Z d t <exp(-iit- ( r j - p j ( t - t j ) / m ) ) 
a •' 

o 

T^(a)exp(iit-(r2+P2tj/m))> (G.6) 

To give a non zero contribution to the two particle term 

the pair a of colliding particles must contain particle 2; 

for the other particle we can take on the one hand particle 

1, on the other hand sorae other particle, say particle 3. 
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So we can write the two particle term in the following form: 

Ff'(t) =F^<2>(t).F^(t).F^(t) 

with 

F^(t) = (N-1) dtj<exp(-ik-(r^-Pj(t-t^)/ra)T^(12) 

expdk- (r •Hp t./m)> 

and (G.7) 

F°(t) = (N-1) (N-2) dt^<exp(-ik-(rj-pj(t-tj)/m) 

T^(23)exp(ik-(r2-Hp2tj/m))> 

We shall start with F (t). Just in the same way as was done 

s(2) 

for F (t) we can write out the ensemble average, intro

duce center of mass and relative variables and integrate 

over the center of mass variables; the result is: 

t 

F^t) = n exp(-k t^/4Bm) dt drdvq(r)V (v) exp (-ik-r) 

expdi<-v(t-t )/2)a da| v-a| 6 (r-?) 

v-a<0 

[ exp(-iit- (v-2(v-a)a) t^/2)-exp(-il^-vtj/2)] 

(G.8) 

The in t eg ra t i on over r i s verv simple and v i e Ids : 

t 

F|^(t) = na^g(a)exp(-k^t^/4Bm) d t da exp(-iic-5) dvf (v) 

v-a<0 

e x p d k - v ( t - t ^ ) / 2 ) |v -a | [ exp(- ik- (v-2 (v-a)5) t^ /2) 

- e x p ( - i k - y t j / 2 ) ] 



The integrations over v can be carried out by taking a as 

the z-axis. The variables v and v run from -<» to ^ while 
X v 

V runs from -"» to 0 because of v-a<0. The intearations 
z 
lead to: 

^ t 

Ff(t) = na^g(a) (Bm/4TT)^exp(-k^t^/4Bm) dt,exR(-k^(t-2t,)^/46m) 
k ' ' J 1 1 

o «• 

dó exp(-iit-5)exp( (t-2t ) (it-a) /4Bm) v dv exp(-Smv /4) 

o 
^ • '• •:,) (k-a)v )[exp(- \ .... 1 z ^ 2 1 exp(- - i(t-tj (k-a)v_)[ exp(- - it, (k-a)v_^) 

-exp(- it J (It-a)v^)] 

The integral over a is carried out by introducina polar 
- - * • 

coordinates 6 ,'P for a while taking k as the polar axis; 

after the transformation from 9 to u = cos9 the expression 

becomes: 

7\ O n O ^ / 0 

F^(t) = 2Tfna a(a) (Bra/4TI) exp(-k t /4Bm) dt exp(-k 

oo 1 o 

(t-2t.) /4Bm) V dv exp(-Bmv /4) du exp(-ikau) 
1 J z z • z J 

o -1 
2 2 2 1 

exp(k (t-2t ) u /4Bm)exp(- - i(t-t )kv u) 

-2i sin(kv ut,/2) z 1 

Writing out the exponentionals in sines and cosines and 

introducing a new variable t' = t-2t for t the expression 
A 

for F, (t) becomes: 

i t 
F^t) = 2TTna^g(a) (Bm/47T)^exp(-k^t^/4Bm) dt'exp (-k^t'^/4Bm) 

oo 1 -t 

2 ( 2 2 2 
V dv exp(-Bmv /4) du exp(k t' u /4Bra) [ cos (ku (O-t-v t/2)) 
z z z z 

-cos(ku(a-Hv t'/2) )i 
z 
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Finally we can replace v by a diraensionless velocity 
1/2 ^ -1/2 

w = (Bm) V and t' by a dimensionless time T = t'(Bm) /a, 

resulting in: 

1 1 1 
F (t) = IT nO g(a)exp(-A /4) t" I 2 2 2 

dT du exp(-A T (1-u )/4) 
1 o 

w dw exp(-w /4)[ cos(u(ka-i-Aw/2) )-cos(u(ka+AwT/2) )] 

{G.9) 

X -1/2 X 

where t = t(Bm) /a and A = kat . 

Although the expression (G.7) for F (t) appears more 

difficult because three particles play a role, we shall 

show that this part of the two particle term has a very 

simple form. Frora (G.7) and (G.2), with (1.2) replaced by 

(2.3), it follows that 
t - . • 

F^(t) = (N-1) (N-2) dtj<exp(-i5-?^2's'^P(i'^"Pl(t-tj)/ra) 

-1 
â  I da\^^^-a\6[r^^-ê)[exput-{p2-ip^yd)a)t^/m) 

P23-5<0 

-exp(ilt-P2tj/m)] > 

Writing out the ensemble average, this becomes: 

t 

F^(t) = nVMdtJd?jd*2d?3d?jd?2d?3'f'(Pi)<*(P2)<^(P3)g(?ir2r3) 

o 

exp(-iit-?j2)exp(i!c-pj(t-t^)/ra)m"^a^ da|p23-a | 6 (r23-*) 

523-Ö<o 

[ expdk- (p -(p -a)a) t/m) -exp(ik-p t,/ ra)] 

where the triple correlation function g(r r r,,) can be de

rived from (1.5). The intearation over p. is easy and yields 
2 2 

exp(-k (t-t ) /2Bm). Furthermore we shall introduce instead 
- * • - * • - > • 

of the momenta p and p the center of mass momentum P and 



the r e l a t i v e momentum p of the p a r t i c l e s 2 and 3 , defined by: 

P2+P3 = P 

P2-P3 = 2p 

It appears that after this substitution the integration over 

P is simple and there results for F (t): 

t 

F^(t) = n^(Nm)"Mdtj exp (-k̂  (t-t j) ̂ /2Bm) exp (-k^t^/4Bm) 

o 

dt^dt^d-}^g(l^t^rj)\dpfi{p)expi-i'^-1c^^)a^ I da|2p-a| 

p-a<0 

^23~*'' expdït- (p-(2p-a)a)tj/m)-exp(i)t-ptj/m)] 

with V(p) given in (2.26). 

Introducing for the relative momentum p the relative 

velocity v = 2p/m as a new variable, and instead of the 

positions r and r the relative positions r and r', de

fined by 

r = r^-r2 

r' = r —r 
2 3 

thereby noticina that the triple correlation function 

g(?,?„?3) only depends on l̂ .̂ l = r, |?„3l = r' and the 

angle r - r = f-f', we arrive for F (t) at: 

t 

F^(t) = n^ dtjexp(-k^{t-tj)^/2Bm)exp(-k^t^/4Bm) 

o 

dr exp (-lit-r) d?'g(r,r',r-f') Idwp (v) 

2 

a 
da| v-a I 5 (r'-?) [exp dk-v't/2)-expdk-vt/2)] 

v-a<0 
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, where V(v) was given in (G.3) and the post collisional rela
tive velocity v' = v-2(v-a)a has been substituted. 

o 
If we write dv = v dvdv and interchange the integrations 

* - B 
over V and a, the expression for F (t) becomes: 

F^(t) = n^ dt^exp(-k^(t-tj)^/2Bm)exp(-k^t^/46m) 

dr exp(-ilt-?) dr'g(r ,r ' ,r-r') v V(v)dv a daó (?'-?) 

o 

dv| v-a|[ exp(i!t-v'/tj/2)-exp(iit-^tj/2)] (G.10) 

v-a<0 

The v-integral mav be simplified by introducing in the first 

term of the intearand v' = "̂ '/Iv'l as a new variable and in 

the second term -v; this results in: 

t 

Ff(t) = n^ dt,exp(-k^(t-t,)^/2Bra)exp(-k^t^/4Bra) 
k 1 - 1 - 1 

d? exp(-ik-r) Idr •g(r ,r ' , r-r ') \\r\ (v)dvO^ daS (t'-*) 

dv|^-ó|[ exp(ilt-^tj/2)-exp(-i]t-vtj/2)] (G.11) 

va>0 

The integration over v can be performed by expanding the 

exponentials in spherical harmonics (Merzbacher, 1951): 

1 

e x p ( ± i i t - v t / 2 ) = 4TT i-"-! (kvt,/2)Y!' (±k)Y, (v) (G.12) 
1 1 Im Im 

1=0 m=-l 

where j, is the I'th order spherical Bessel function, the 

X means the complex conjuaate and Y, is a spherical har-
im 

monic. Substitution of (G.12) in (G.11) leads to: 

t 

F (t) = n dtjexp(-k (t-t^) /2Bm)exp(-k t /4Bm) dr exp(-i)c-r) 
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d?'o(r,r' ,r-f') I v̂ cp (v)dv a^ da6 (r'-a) 

CO 1 

4 ^ L Jii 3, (kyt,/2)[Y*' (k)-Y'* (-k)] 1=0 ra=l 1 1 Im Im 

(G.13) 

dvlv-a Y (v) 
im 

v.a>o 



By taking for v the spherical coordinates 9,v with respect 

to the polar axis o the v-integral may be written as: 

T./2 2-IT 

dtp V cos9 Y, (B,!̂ ) 
Im 

dv v-<5 Y, (v) = sine dO 
' ' Im 

v.a>0 o o 

Because Y, contains a factor exp(imp) this is zero if m^O. 
im 

After the introduction of a new variable z = cos9 and sub-

Stitution of this expression in (G.13), we obtain for F (t) 

F^(t) = T? dt exp(-k^(t-tj)^/2Bm)exp(-k^t^/4Bm) dr exp(-i]t-?) 

-r " - 3 2 
dr'g(r ,r ' ,r-r') Iv ¥'(v)dy a 

da 6(r'-5) -8Tr̂  Z i-"" (G.14) 

1 ° 1 
i2. 

1=0 

{(2l-H)/4Tr}'^jj_(kvt^/2)[Y^^(k)-Y^^(-k)] zP^(z)dz 

Frora the properties of Legendre polynomials it follows that 

Y, (-k) = (-l)̂ Y, (k) , thus 
Ira Im 

Y"* (k)-Y!;' (-k) = 0 
lo lo 

1 even 
(G.15) 

2Y (k) 1 odd 
lo 

Furthermore the integration over z in (G.14) yields a very 

simple result for 1 odd: 

1 1 1 

z P^(z)dz = 2" z P^(z)dz = J P^(z)P^(z)dz = -J <5ĵ  1 

(G.16) 

Inserting (G.15) and (G.16) in (G.14), summing over 1 and 

using that 

1_ 

Y^Q(k) = {3/47r}^ k-a 

(Ü was chosen as the polar axis), we arrive at: 
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F^(t) = 4iTn^i d t j e x p ( - k ^ ( t - t )^/2Bm)exp(-k^tj/4Bm) 

dr exp(-il t-?) d f ' g ( r , r • , r . r ' ) V V5 (v) j ^ (kytj/2) dv 

O da6(r '-3 ') (ic-a) 

The integrations over v and t can now be done and 

result in: 

F^(t) = |- TT^n^KBm) ^t exp(-k^t^/4Bm)erf (i kt(Bm) ^) 

d? exp(-ii?-r) ld?'a(r,r ' ,r-r' )a^|da6 (?'-Ü) (k-a) 

where erf is the error function. The integration over a is 

very easy and yields imraediately: 

1 1 1 

F^(t) = y TT^n^i(Bm) ^t exp(-k^t^/4Bra)erf(j kt(Bm) ^) 

d? exp{-it-t) dr'g(r,r ' ,r-r')6(r'-a) (k-r') (G.17) 

to get rid of the triple correlation function we make use 

of a relation, derived by Konijnendijk and van Leeuwen 

(1973, appendix A): 

"I df'6(r'-a)r'g(r,r',r-r') = -g ' (r) r-i-g(a) 6 (r-a) f (G.18) 

Because g'(r) = 0 for r < a and g'(r) has a 6-singularity 

at r = a associated with the jump from zero to g(a) in g(r), 

one sees immediately that the following relation holds for 

hard spheres: 

g'(r) - g(a)6(r-a) = g'(r)9(r-a) (G.19) 

After the substitution of (G.18) and (G.19) in (G.17) the 

i32 

^:v. 



T3 

expression for F, (t) becomes: 

k 

i _ i i 
F^(t) = - -i TT^nKBm) ^t exp(-k^t^/4Bm)erf (j kt(Bra) ^) 

dr exp(-iït-r)a'(r)e(r-a)k.r 

Intearatina this partially and makina use of (1.8) and 

(1.9) one gets as the final result of the calculation: 

i _ i _ i 
F^(t) = J Tr^kt(Bm) ^exp(-k^t^/4Bm)erf(j kt(Bm) ^) 

4TTna'̂ (ka)~̂ j (ka)g(a)-fs(k)-l] , 

(G.20) 
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APPENDIX H 

THE MOMENTS OF THE HARD SPHERES URSELL-2 EXPANSION 

The coherent and incoherent intermediate scattering functions 

in the Ursell-2 expansion were in chapter 3.4 ((3.20) and (3.27)) 

derived as: 

F^(t) =F^'^'(t) .F^'''(t) 

and (H.1) 

Fj^(t) = Fj[^' (t) + Fj[^' (t) 

with the free streaming parts F (t) and F (t) given by 

(3.23) and (3.29): 

F^*^'(t) = exp(-k^t^/2Bm) = l-k̂ t̂ /2Bm-l-. . . 

and • 't (H.2) 

F'^'(t) = S(k)exp(-k^t^/2Bm) = S (k)-S (k) k̂ t̂ /2gm-i-. 

To obtain the raoments of the Urse l l -2 expansion we expand the 

two p a r t i c l e terms F (t) and F (t) in a power se r ies in t : 

oo 
s(2) _ s n 

F, (t) = Z a t /n'. 
k n 

n=0 

and (H.3) 

F'2>(t) = Z a t"/n: 
•̂  n=0 " 

g 

where the expansion coefficients a and a may be written as: 
n n ^ 
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, 3 ^ ,3^,3(2, 
n -i,,.n k t=0 

CJt 

and (H.4) 

. = (3^,(2) , 
n - n k t=0 

For the two partiele terms in appendix G ((G.1) and (G.5)) the 

following expressions were derived: 

t 

F^*^' (t) = (N-1) 
k 

dt j<exp (-i)c- (r j-Pj (t-t^ ) /m) ) T^ (12) 

exp (lit- (?j-K?jtj/m))> 

and (H.5) 

t 

Fj[̂ ' (t) = F^'^' (t)-KN-l)Z dtj<exp(-i)t-(rj-pj(t-tj)/m)) 

o 

T^(a)exp(ii?-(r2-Hp2tj/m) )> 

In the last expression the pair a must contain particle 2 to 
(2) 

give a non zero contribution to F (t). We shall now give a 

detailed calculation of the first moraents. 

a) zeroth moraent 

It is clear that 

F̂ '2)(o) .rl'Uo) =0 

thus the zeroth moments follow immediately from (H.1)-(H.4) 

as: 

M^(k) = 1 . • 
o 

and (H.6) 

M (k) = 1 
o 
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b) first moment 
s (2) 

Taking the first derivative of F, (t) at t = O vields 
k 

immediately for the coefficient a^: 

aj = (N-l)<exp(-i!t-fj)T^(12)exp(ilc-r )> 

Frora (1.22) and (1.24) one sees that T (12) gives a vanishing 

result if this operator works on a function of the position 

variables only, so that 

s 

In the same wav one sees that 

1 

Because the free streamina parts (H.2) are even in t it is 

clear that the first moments vanish: 

M^(k) = 0 

and . , , - .. (H.7) 

Mj(k) = 0 

c) second moment 

Taking the second derivative of (H.5) at t = 0 one sees 
s 

that the only nonvanishina part of a_ is given by: 

a2 = (N-l)<T^(12)iit-p^/m> 

which Coin, with the aid of (1.22), (1.24) and (1.25), also 

be written as: 
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a2 = (N-l)im"^<(pj2-^i2'^''^'^12'®'"Pl2'^12'*''^12"'^'^ 

This yields zero because of the isotropy of the system, so: 

32 = 0 (H.8) 

g 
and (H.1)-(H.3) yield for the second moment of F, (t) : 

k 

M2(k) = -k^/Bm .. ••• (H.9) 

The coefficient a follows from (H.4), (H.5) and (H.8) as: 

a = (N-1) Z <exp(-ik-r )T (2i)ik-p /m> 
17̂ 2 

For particle i we can take particle 1 or some other particle, 

say particle 3, so that the expression for a becomes: 

a2 = (N-l)<exp(-ik-rj2)T^(12)ik-P2/m> 

-H(N-l) (N-2)<exp(ik-r^2'T_^(23)ik-p2/ra> (H.10) 

= A+B 

where A represents the contribution of the pair (12) and B 

the contribution of (23) . 

Writing out the ensemble average and working out the 

effect of T (12) one sees that A can be written as: 

A = -n i(Nm ) " dpjdp2dr jdf2(t> (Pi)(t) (P2) g(r ̂2'exp(-iit-r ̂ 2^ 

'Pl2-^12'''^-^12'9<-Pl2-12'*'^12-^' 

All integrations are easy and yield: 
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A = -4Trng(a) (Bmk)"* (ka)^j^(ka) (H.11) 

with j (ka) the first order spherical Bessel function. 

The second term B of (H.10) is more complicated; writing 

out the ensemble average and takina into account the effect 

of T (23) we obtain for B: 

T 7 — 1 / 

B = in (Nm ) dr^dr dr dp^dp dp3<t> (Pj ) «I) (P2) 4" (p,) g(r r r ) 

exp(-iS-?^2>'P23-^23''<'^-^23'''-P23-V^<^23-^) The integration over p yields unity; the integrations over 

^ and J., may be p( 

and P, defined by: 

^ and J., may be performed by introducing new variables p 

P = P2+P3 ., 

P = 2 tP2-̂ 3̂' 

After the momentum integrations the expression for B becomes: 

B=in^NBm)"Mdr^dr2dr3g(rjr2r3)exp(-i)^-rj2) (k-̂ 2̂3) 6 (r23-a) 

The integration over r can be done by making use of the 

following integral relation for the triple distribution 

function (only valid for hard spheres) (Konijnendijk, 

van Leeuwen, 1973): 

n dr36(r23-CT)it-r23g(?j?2^3' = ^'i^^^-g'ir^^)+g(a)& ir^^-a)] 

(H.12) 

r e s u l t i n g in the following express ion for B: 
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B = -in(Bm) Mdr exp(-i)^-r) (!<-r)[ g ' (r)-g(a) 6 (r-O) ] 

The term with g(a)6(r-a) yields -A, with A given in (H.11) 

Remembering that 

R-rg' (r) = k - •ĝ  (g(r)-l) 

it is clear that, after one partial integration, B can be 

written as: 

B = -A-l-nk^(Bm)~Mdr exp(-iic-r) (g(r)-l) 

Adding A and B together and using (1.9) one sees that the 

final result for a„ is: 

a2 = k^(S(k)-l)/Bm 

and that (H.1)-(H.3) yield for the second moment M (k): 

M„(k) = -k^/Bm •• ,, (H.13) 

which is in agreement with the exact second moment. 

d) third moment 
s (2) 

The third derivative of F (t) (H.5) at t = 0 yields 

for the coefficient a.,: • ' -

33 = -(N-1)<T_^(12) (k-Pj/m)^> 

-(N-l)<()^-Pj/m)T^(12) (it-pj/m)> 

The first term of this expression was already discussed in 

appendix F (the term in (F.9) with T (12)L (12) and j = 1). 

It was seen there that this term gives a vanishing contri

bution. 
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Writing out the ensemble average in the second term and 

working out the effect of the collisional part T (12) of 
s 

the Liouville operator, a becomes: 

a3 = -n^ {Nm^)''^ldi^dt^d^^d^^<^(p^)<i>{p2)g{ic^^) it-p^) (p^^-'r^^)^ 

(it-rj2'6'-5l2-?12'«<=^12-^> 

After doing the integrations and using (H.1)-(H.3) one gets 

the following expression for the hard spheres third moment: 

M3(k) = a3 = I TT̂ /̂ n(Bra) ^/^(ka)^g(a) " (H.14) 

The coefficient a,, follows from the third derivative of 

F,'̂ ' (t) (H.5) at t = 0 as: " ^' 
k 

83 = a3+(N-l) Z <exp(-ilt.?j2'T^'2i) (ik-J2/m)^>+(N-l) Z 
1̂ 2 ijt2 

<exp(-iit-?j2' (iï-Pj/m)T^(2i) (ii^-p2/m)> 

The second terra in this expression disappears for the same 

reason as in appendix F (F.9) the term with T (12)L (12). 
+ o 

In the third terra only the pair (12) gives a nonvanishing 

contribution because of the presence of the factor 

(ik-p /ra). Writing out the ensemble average and taking into 

account the effect of T (12), a, becoraes: 

33 = a3-i-n^(Nra^)"Md?jd?2d?^d?24>(Pi)*(P2)g(r^2)exp(-ii^-?12' 

'^•Pl"Pl2-12>'ö'-Pl2-^12'*'^12-'^''^-^12> 

All integrations can be done and yield with (H.1)-(H.3) 

finally for the third moment: 
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M3(k) = 33 = |lT^^^n(Bm) •̂ ^̂ g(a)[ (ka)^-3ka sin ka 

-6cos ka-^6(ka)~ sin ka] (H.15) 

Comparing the in this appendix derived moments of the hard 

spheres Ursell-2 expansion ((H.6), (H.7), (H.9), (H.13)-

(H.15)) with the exact hard spheres moments (1.45) and 

(1.46), one sees that the corresponding moments all agree 

with each other. 
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SUMMARY 

In this thesis the dynamical behaviour of the atoms in a fluid 

or gas is studied with time dependent correlation functions as the 

density-density correlation function and the velocity autocorrela

tion function. Theoretically it is not possible to calculate these 

correlation functions exactly for the whole time domain. An exact 

calculation is only possible for times small with respect to the 

duration of the collision (see Ch. 1), by using the moments expan

sion, and for times large with respect to the mean free time by 

solving the hydrodynamical equations. 

In chapter 2 a method is described, the Ursell expansion, which 

makes it possible to calculate the correlation functions for times 

up to the mean free time. Experimentally the density-density 

correlation function is known on this time scale from neutron 

scattering on noble gases with a low density. 

In the Ursell expansion the successive terms describe the effect 

of an increasing number of colliding particles. For times smaller 

than the mean free time the most dominant contribution to the 

correlation functions comes from those collisions in which not more 

as two particles, are involved. In chapter 2 a detailed expression 

for the two particle term is derived. It is shown, that due to an 

approximation for the static three particle correlation function, 

the moments of the two particle term do not agree completely with 

the exact raoments. Therefore for continuous potentials another 

expansion, the second derivative expansion, is derived; in this new 

expansion the two particle term has the exact moments. 

Chapter 3 gives the Ursell expansion for the case of a hard 

spheres interaction; the advantage of this interaction is that the 

mathematical expressions, that describes the collision, are very 

easy. Because the moments of the two particle term do not agree 

with the exact moraents, another expansion, the Ursell-2 expansion, 

will be derived. This expansion is only valid for hard spheres and 

reproduces the exact moments. At the end of chapter 3 the results 

of calculations on the hard spheres system are presented. It is 
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shown that both expansions agree very well with molecular dynaraics 

calculations. 

Chapter 4 contains the results of calculations on a system with 

a Lennard-Jones interaction. It appears that both the Ursell expan

sion and the second derivative expansion agree very well with mole

cular dynamics calculations of the incoherent intermediate scattering 

function. The discrepancy between the theoretically calculated 

coherent intermediate scattering function and the experimental 

scattering function is substantial. This may be due to the large 

experimental error, which is of the same order of magnitude as the 

deviation of the correlation function from its ideal gas value. 
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SAMENVATTING 

In dit proefschrift wordt het dynamisch gedrag van de atomen in 

een vloeistof of gas onderzocht met behulp van tijdsafhankelijke 

correlatiefuncties zoals de dichtheids-dichtheidscorrelatiefuncties 

en de snelheidsautocorrelatiefunctie. Theoretisch is het niet moge

lijk deze correlatiefuncties exact te berekenen in het hele tijds

domein. Een exacte berekening is wel mogelijk voor tijden, die klein 

zijn ten opzichte van de duur van een botsing (zie hoofdstuk 1), met 

behulp van de momentenontwikkeling en voor tijden, die groot zijn 

ten opzichte van de gemiddelde vrije tijd (tussen botsingen), door 

de hydrodynamische vergelijkingen op te lossen. 

In hoofdstuk 2 wordt een methode beschreven, de Ursellontwikkeling, 

waarmee het mogelijk is de correlatiefuncties te berekenen tot tijden 

van de orde van grootte van de gemiddelde vrije tijd. Experimenteel 

is de dichtheids-dichtheidscorrelatiefunctie op deze tijdsschaal 

bekend uit de neutronenverstrooiing aan edelgassen met een lage 

dichtheid. 

In de Ursellontwikkeling beschrijven de opeenvolgende termen het 

effect van een toenemend aantal botsende deeltjes. Aangezien voor 

tijden kleiner dan de gemiddelde vrije tijd de meest dominante bij

drage tot de correlatiefuncties wordt geleverd door die botsingen, 

waarbij hoogstens twee deeltjes betrokken zijn, wordt in hoofdstuk 

2 een expliciete uitdrukking voor de twee-deeltjesterm afgeleid. 

Aangetoond wordt dat, tengevolge van een benadering voor de statische 

drie-deeltjescorrelatiefunctie, de momenten van de twee-deeltjesterm 

niet geheel in overeenstemming zijn met de exacte momenten. Daarom 

wordt voor continue potentialen ook een andere ontwikkeling, de 

tweede-afgeleide ontwikkeling, afgeleid, waarvan de twee-deeltjesterm 

wel de exacte moraenten heeft. 

Hoofdstuk 3 geeft de Ursellontwikkeling voor het geval van de 

harde bollen interactie; het voordeel van deze wisselwerking is dat 

de mathematische uitdrukkingen, die de botsing beschrijven, erg 

eenvoudig zijn. Omdat de moraenten van de twee-deeltjesterm niet 

overeenstemmen met de exacte momenten, wordt, speciaal voor harde 

bollen, een andere ontwikkeling, de Ursell-2 ontwikkeling, gegeven, 
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die wel de exacte momenten reproduceert. Aan het eind van hoofdstuk 

3 worden de resultaten van berekeningen aan een harde bollen systeem 

gepresenteerd, waarbij wordt aangetoond dat beide ontwikkelingen 

goed overeenkomen met de resultaten van moleculaire dynamica bere

keningen. 

Hoofdstuk 4 bevat de resultaten van berekeningen voor het geval 

van een Lennard-Jones interactie. Het blijkt dat zowel de Ursell

ontwikkeling als de tweede-afgeleide ontwikkeling zeer goed over

eenkomen met moleculaire dynamica berekeningen van de incoherente 

intermediaire verstrooiingsfunctie. De theoretisch berekende cohe

rente intermediaire verstrooiingsfunctie komt daarentegen slecht 

overeen met de experimentele verstrooiingsfunctie, wat waarschijnlijk 

te wijten is aan de grote meetfout, die van dezelfde orde van grootte 

is als de deviatie van de correlatiefunctie ten opzichte van de 

ideale gas waarde. 
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STELLINGEN 

I 

Een theorie, die het korte tijdsgedrag van correlatiefuncties be

schrijft, kan, ondanks het feit dat de tweede en hogere orde momenten 

niet overeenstemmen met de exakte momenten, toch bevredigende resul

taten opleveren. 

Dit proefschrift Ch. 3.5 en 4. 

,. .'.', - I l 

Bij neutronenverstrooiingsexperimenten dient ervoor gewaakt te worden 

dat het te meten effect, zoals de deviatie van een correlatiefunctie 

ten opzichte van de ideale gaswaarde, groter is dan de meetfouten. 

Dit proefschrift Ch. 4. 

III 

Het gebruik van het woord scattering law of verstrooiingswet is mis

plaatst. 

W. Marshall, S.W. Lovesey, Theory of thermal neutron scattering. 

-"•-f 

IV 

Voor het bepalen van de trajectorie van een deeltje in een centraal 

krachtveld is de Hamilton-Jacobi theorie weinig zinvol. 

H. Goldstein, Classical mechanics. 

V 

De resultaten van .de berekeningen van de snelheidsautocorrelatie

functie met behulp van moleculaire dynamica zijn voor lange tijden 

discutabel. 

W.W. WocDd, Fundamental problems in statistical mechanics III, 

B.J. Alder, T.E. Wainwright, Phys. Rev. Al (1970) 18. 



VI 

Het gebruiken van programma's en subroutines uit de numerieke 

bibliotheken, die in de meeste rekencentra aanwezig zijn, dient met 

de uiterste voorzichtigheid te geschieden. 

VII 

Het effect van moderne audio-visuele hulpmiddelen op het leerproces 

is nihil wanneer de temperatuur in colloquium- en collegezalen niet 

bevredigend geregeld kan worden. 

VIII 

De veiligheid van het spoorwegverkeer zou nog toenemen als er na het 

koppelen en loskoppelen van wagens of treinstellen altijd een rem

proef werd gedaan. 

IX 

De kwaliteit van het openbaar vervoer neemt belangrijk toe als de 

aankomst- en vertrektijden van streekbussen beter afgestemd worden 

op resp. de vertrek- en aankomsttijden van treinen. 

.; X 

De gemeente dient de betalers van hondenbelasting te specificeren 

waarvoor de opbrengsten van deze belasting gebruikt worden. 

XI 

De werkzaamheden van de Organisatie ter Verbetering van de Binnen

visserij dienen erop gericht te zijn de inheemse visstand zo goed 

mogelijk in stand te houden; dit wordt niet bevorderd door het 

kweken en uitzetten van uitheemse vissoorten, zoals de graskarper. 


