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INTRODUCTION

Time dependent correlation functions play an important role in
the theories that describe the dynamical behaviour of fluids and
gases. It is well known that macroscopic transport coefficients,
such as the diffusion coefficient, can be expressed as time integrals
over these correlation functions (Forster, Martin, 1970). The most
important correlation functions are the density-density correlation
function G(;,t), introduced by van Hove (1954), and the velocity
autocorrelation function CD(t). Classically G(;,t) is proportional
to the probability that there is a particle at time t and position
; given that there was some particle at t = 0 in the origin. Expe-
rimentally the fourier transform of G(;,t) with respect to the
position ; and the time t, the so-called scattering function S(k,w),
can be obtained by slow neutron scattering on noble gases (Andriesse,
1970; Hasman, 1973; Lefevre, Chen, Yip, 1972). Time dependent corre-
lation functions can also be calculated by means of molecular dyna-
mics (Verlet, 1967).

Theoretically the exact calculation of the time dependent corre-
lation functions is only possible for the two following totally
different time domains:

a) For short times it is possible to make a time expansion of the
correlation functions, the so-called moments expansion (de Gennes,
1959). Only the first few moments are exactly known in terms of
the static correlation functions. The time domain in which this
expansion is useful is restricted by the shortest microscopic
time scale present. In fluids, where the molecules undergo
sudden collisions, this is the duration of the collision, which
may be extremely small (10-145), much smaller for instance than
the mean free time in moderately dense gases.

b) For large times the hydrodynamic equations become valid. Then a
complete description of the correlation functions is possible in
terms of the transport coefficients of the fluid. The hydrodyna-
mic time domain is restricted from below by the largest micros-
copic time scale. For a moderately dense gas this is the mean

free time.




Thus a gap exists in the time domain where no rigorous description
is possible. For dense fluids the gap is small enough that one may
try an interpolation scheme as for instance suggested by Jhon

e.a. (1975). For more dilute gases the gap is much too wide and a
kinetic approach seems more apprcpriate.

Neutron scattering experiments for low density systems are possible
on well chosen systems such as Ar36 (Andriesse, 1970) which has a
very large scattering cross section. The time scale of such an expe-
riment is precisely of the order of the mean free time, so that the
most important contribution to the correlation function for these
times comes from the collisions in which only two particles are
involved.

The conventional Boltzmann equation cannot be used for an ade-
quate description of the detailed time dependence of the correlation
functions, because in the Boltzmann collision operator the collisions
are treated in an asymptotic way (as cross sections), where as the
correlation functions have a time scale in which the duration of
the collision may not be taken zero.

The Boltzmann equation may be modified (Mazenko, 1973, 1974) such
as to treat thg individual collisions in full detail and the solu-
tion of this modified equation provides the full time dependence
of the correlation functions in the low density limit.

The solution of the modified Boltzmann equation is however quite
involved and in this thesis we present a simpler approach with a
more limited scope: to extend the calculation of the correlation
functions for moderately dense gases up to a time scale of the order
of a mean free time. For this purpose we have used the Ursell-
expansion of the correlation functions; in this expansion the suc-
cessive terms describe the effect of an increasing number of
colliding particles. The first term contains only the free streaming
of the particles yielding the ideal gas behaviour of the correlation
functions. The second term represents the effect of the two particle
collisions, so this term gives the most dominant contribution to the
deviation of the correlation function from its ideal gas value for

times up to the mean free time.
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As a first approximation for a real gas we have taken a hard
spheres system, which has the advantage that the mathematical
expressions, that describe the two particle collision, are very
easy. A disadvantage is however that the duration of the collision
is zero, so that the moments expansion is not valid; it has to be
replaced by a modified moments expansion, which can be obtained
from an extension of the hard spheres Liouville operator (Ernst
et. al., 1969). Because the replacement of the true potential by
the hard spheres interaction is rather drastic, we expect that our
theoretically calculated correlation functions agree with the expe-
rimentally measured functions only in a qualitative way. Therefore
we have also done calculations for a system of particles with a
Lennard-Jones interaction, which accounts very well for the equi-
librium properties of noble gases like argon (Verlet, 1976, 1968).
These calculations are however more complicated because the
equations of motion can only numerically be solved on a computer.

This dissertation is divided into four chapters. Chapter 1 con-
tains the definitions of the correlation functions and a short
discussion of the moments expansion. In chapter 2 the Ursell expan-
sion is derived. In chapter 3 the Ursell expansion of the hard
spheres system is discussed, while in chapter 4 our theoretically
calculated correlation functions for a Lennard-Jones interaction
are compared with correlation functions, obtained by neutron

scattering and by molecular dynamics.
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CHAPTER 1

DEFINITION AND PROPERTIES OF THE SYSTEM

DEFINITIONS

We consider a classical one-component monatomic system con-
sisting of N particles of mass m enclosed in a volume V. Assum-
ing that one has only two-particle interactions the Hamilton
function H(I') of this system is:

N

pi/2m+;—2 5o (r. ) (1.1)
1 i#g I

(o -

H(T) =

i

where Ei and ?i are the momentum and the position of the i'th
particle, ' stands for the collection of momenta and coordinates
31'?1’§2’?2""'§N'?N and ¢(ri.) is the interaction between the
particles i and j on a distance Tiy = I?i—?j’.

Given the Hamilton function H(I') one can calculate the cano-
nical ensemble average of an arbitrary function f(I') in the phase

space as:
<£(M)> = [ ar oM £(IN (1:2)
where the phase space density p(I') is given by:
o(T) = exp(-BH(I)) / [ al' exp (-BH(T)) (1.3)

with B = l/kBT, kB is Boltzmann's constant and T ic the abso-
lute temperature.

In the following chapters we shall frequently make use of
some equilibrium distribution functions such as the Maxwell-
Boltzmann momentum distribution function ¢ (p):
% e—Bp2/2m

d(p) = (B/2mm) (1.4)

and the m-particle static correlation function g(?1?2...? )
m




defined as (Minster, 1969):

=1 N
nmg(_fl_fz : .?m)=N(N-1) . (N-m+1) Qo [d"fm+1 s .d?Nexp(-be )
{1%5)
N

where n = N/V is the number density, ®(? ) = Q(;l"';N) is the
potential energy:

oY) =%ZZ¢(ri_), (1.6)

i#3 ’
and QN is the configuration integral, given by:
B o 3 » 5N
QN = [ drl...drN exp (-BO(¥ 7)) (1..7)

Of particular interest for the two-particle problem is the
two-particle distribution function g(?l?z), also called the
pair or radial distribution function which depends only on the
relative distance ri of both particles in an isotropic system.
The pair correlation function g(r) gives the difference of the
probability to find a particle at a distance r from the origin,
given that there is at the same time another particle in the
origin, and the probability to find both particles at distance
r in a completely random distribution.

The difference between the pair correlation function g(r)

and its asymptotic value one will be called G(r):
G(r) = g(r)-1, (1.8)

which has the following fourier transform (with respect to the

spatial variable 7):

> 5

et n
n(d})e ikEodny o ath) =8 i -1 (1.9)

where S(k) is the structure factor which can be directly mea-

sured by slow neutron scattering.
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Another important two-particle distribution function is the

direct correlation function C(r) that is defined implicitly in
terms of G(r) in the Ornstein-Zernike equation (Rice and Gray,

1965) :
G(r) = C(x) +n J az' c(|rF'hex (1.10)

From (1.9) and the fourier transform of (1.10) it follows that
the structure factor S(k) can also be obtained from:

Y -1
S(k) = (1-n C(k)) (1.11)

with 8(k) the fourier transform of C(xr).

Because the following chapters concern with time dependent
correlation functions the time evolution of the system is of
great importance. The trajectory ['(t) of the N-particle system
in phase space is generated by the streaming operator St(l..N).
If one has at t = 0 some arbitrary function f£(I') of the phase
space coordinates [ = (ﬁl..ﬁN,?l..fN), this function will have

at time t the value;
£(T(8)) = s (1. £(T) (1.12)
In the case of a non-singular interaction potential St is given

by (Balescu, 1975):

S, = exp(tL) (1.13)

where the Liouville operator LN is the Poisson bracket with the

Hamilton function:

N
JH 9 JH 3
L =L(1..N) = I (30— - 3 -3 ° )
N i=1 api Bri Bri Bgi

(1.14)
= 1 ;s
=L (1..N) +5; z L. (i3)
i#j

One observes that LN consists of the free streaming part




N N B. 3
L (1..N) = E L (i) = 21 = W (1.15)

and an interaction part containing terms like:

3 5 B‘ﬂ(ri.)
LI(lj) = (5g;>- gilﬂ : ——§§IJ—> (1.16)

o+
The hermitian conjugate L' of the Liouville operator L with

respect to the weight function p(T'), given in (1.3), will be
defined by:

[dF oMY E(ML g(r) = [dr o(MgMlem (1.17)

where f(I') and g(I') are arbitrary functions of phase space. By
partial integration one can easily verify that L is antihermi-

tian:
L = <L (1.18)

In the case of the singular hard spheres interaction, defined

by:

W (1.19)

with O the diameter of the spheres, one sees from (1.16) that
the definition (1.13) for the streaming operator makes little
sense. Another expression for St is given by Ernst et al. (1969)
in terms of "pseudo" Liouville operators L,. For forward resp.
backward streaming they obtained the following streaming ope-

yatore:

0
]

exp(tL+) (1.20)

v A o
AN 1V
, > A = |

exp(tL_)
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with Li given as:

1 y o
L, = LO : §~; ; Tt(lj) = LO * Li
i#j

(1.21)

Here Lo is the free streaming part (1.15) of the Liouville ope-

rator and the T, operators are defined as:
T, (i3) = [, -7 |0, ., 06, 0)(b, -1) (1.22)
x ; 5 i dy| b ij i3

> _ - (T 2 ~ - ) g X
where vij p../m (pi pj)/m, rij rij/rij' (x) is the unit
step function:

0(x) =0 X" 0 (1.23)

and the operator bijchanges the initial momenta Ei,ﬁj into those

after the collision gi,ﬁé according to:

> > #
bijf(Plr?l;--rﬁi,rir --:isj:rjr--rf;N:?N)

(1.24)
= £8y By B e B By Bty
with
>y _ 2 _ (+ - -~
Py Py pij i3’ ij
(1.25)
By =B, ¢ By 7
3 3 ij S

As the fact that different Liouville operators are needed for
forward (t>0) and backward (t<0) streaming may seem a little bit
strange we shall give here a short comment. One sees immediately
that the collisional part of a hard sphere Liouville operator
should be defined at the point of contact rij = 0. In ['-space
two sets of these points can be distinguished, namely those

where the relative velocity 3ij has the same direction as the




1

relative contact vector T, . (vij . ?ij>0) and those where

v . ?ij<0. The first case refers to backward streaming (be-
cause the particles have already collided), the latter one to
forward streaming (because the particles are going to collide).
So it is clear that the relevant ['-spaces for forward and back-
ward streaming are not the same. One should declare an operator
zero in the region where it does not apply as is done in (1.22)

by means of the step functions 0(+v,. - ?ij)' Thus it is impos-

i
sible to make use of the same analytical expression in the whole
I'-space.

This has also a consequence for the hermitian conjugate Lj
of the pseudo Liouville operator with respect to the canonical
ensemble average. For the hard spheres interaction the following

relation can be derived:
L = -L (1.26)

The detailed calculation of this hermitian conjugate will be
given in appendix A.
A summary of all relations that are important with respect

to the hard spheres streaming operator can be found in table I.
TIME DEPENDENT CORRELATION FUNCTIONS

The time dependent density-density correlation function
s
G(?—?';t) and the self part G (?—;';t), which are of interest
for neutron scattering, are defined by (van Hove, 1954):
=3 N

N
G(E-T';t) =n <I I 8(r,-0)8E. (t)-2")>
i=t §=1 T J

and kL. 27)

GS(F-T';it) =n < 6(?1-?)6(?i(t)—?')>

i=1

with ;i the position of particle i at t = 0 and ;j(t) the posi-

17




Table I. The hard spheres streaming

operator.

Forward streaming (t>0) St = exp(tL+)
Backward streaming (t<0) St = exp(tL )
Pseudo Liouville operator L, = Lo L}
N By L)
Free streaming part LO = 1 o 5
i=1 i
Interaction part L} = %—Z LT, (ij)
¥ i# *
T, (i) = |V, -, |0(F,, - F, )8, 0) (b, 1)
£ ij 17 43 S iy ij 13
with
> -2 MR- . -~ - .
vij pij/m (pi pj)/m and rij rij/rij
Collision operator bij:
> > > > > > > >
bijf(pllrlr--rPilril--rpjlrj: rlerN)
T R TI S T 2
pll 1,~-rpir il"lpjl jl' IpNI N
with
' =4>_—‘)‘ od b
By = By~(Byy - *y9)Tyy
t=B+@, . - L, T
gJ ﬁJ 5l] 1] 1]

Hermitian conjugate defined by:

18
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tion of particle j at time t. G(T-Z';t) is proportional to the
probability to find a particle at position 7' and time t given
that there was at t = 0 a particle at ¥. The self function
Gs(?—?';t) refers to the case that both particles are identical.
For convenience we will consider the fourier transforms (with
respect to the spatial variable ?) of these correlation functions,

which are called the intermediate scattering functions:

Fk(t) = [ ar exp(—ii.?)G(?;t)
-1 N N > >
L R T exp(-iK.T,)exp(ik.r, (t))>
. . ¥ j
i=1 j=1
and (1.28)
s -1 B > > > >
F (t) = N < I exp(-ik.r,)exp(ik.r, (t))>
k {iml i i

With (1.5) and (1.9) it is easy to verify that their initial

values are:

Fk(O) S(k)

(1.29)

]
-

S
Fk(O)

The intermediate scattering function Fk(t) and its self part
Fi(t) are often referred to as the coherent and incoherent inter-
mediate scattering function. Their fourier transforms with re-
spect to the time are called the coherent and incoherent scat-
tering functions, S(k,W) resp. Ss(k,w). They can be measured by
slow neutron scattering. The expressions (1.28) for Fk(t) and
Fi(t) will frequently be used in another form by introducing
the streaming operator St = exp(tL) ((1.12) and (1.13)). They
take then the following form:

N

N
N_1< 2 exp(—iﬁ.?i)exp(tL) & exp(iﬁ.;<)>
i=1 =1

F, (t)

19
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and (1..30)

N
Fi(t) = N_1< % exp(*iﬁ.;i)exp(tL)exp(iﬁ.?i)>
i=1
The calculation of Fk(t) and Fi(t) for free particles is very

easy and yields:
F (t) = Fi(t) = eXp(—k2t2/28m) (1.31)

Because we are interested in the differences between the corre-
lation functions of a gas of interacting particles and those
of an ideal gas, we shall, instead of Fk(t) and Fi(t) itself,
calculate their deviations Ek(t) and E;(t) from the ideal gas

values. So we write:

]

P, (t) S(k)[exp(-k2t2/28m)+€k(t)]

and (1.32)

Il

2.2
Fj(t) = exp(-k't°/2Bm)+€; ()
Comparing this with (1.29) one sees immediately that the ini-

tial values of the deviations are:

s
Ek(O) = Ek(O) =0 (1.33)
Another correlation function that we will consider is the

velocity autocorrelation function CD(t):
cp(t) = <¥(0) - J(t)>/<H(0) - V(0)> (1.34)

where ; is the velocity of some particle, say particle 1. For
free streaming particles CD(t) =.1. Finally we shall give a
relation between CD(t) and the second derivative of Fs(t)

k
(Egelstaff, 1967):




153

2%r (1)
CD(t) = -Bm lim T {1.35)
0 k ot

This relation enables us to calculate the velocity autocorre-
lation function CD(t) if the incoherent intermediate scattering

function is known.
THE MOMENTS OF THE CORRELATION FUNCTIONS

One possibility to obtain a short time expansion of corre-
lation functions is to expand these functions in a power series
in the time t. For the intermediate scattering functions this
can be accomplished by substituting in (1.30) for the streaming

operator the series expansion o0f the exponent:

exp(tL) = & t"L%/n! (1.36)
n=0
So we may write:
F(8) = £ M (Xt /n!
k =0 n
o (1.37)
s S n, ,
Fk(t) = I Mn(k)t /nl
n=0

and in the same way for the velocity autocorrelation function:

(e o]
c(t) = I c_t/n! (1.38)
D n
n=0
The expansion coefficients are often referred to as the moments
or the sum rules. Calculations of de Gennes (1959) show for the

first few moments of the intermediate scattering function:

]

M_(k) S (k)
o

My (k) = -k°/Bm (1.39)

M4(k)=k4(m28)_1[ 3/B+nk 4 [d_fg (r) (1-cosR. 23850 % (1))

21




For the incoherent intermediate scattering function they become:

M3(k) =1

[e]

s 2

MZ(k) = -k"/Bm (1.40)
ME (k) = k4(m23>'1[(3/e>+<n/3k2)f a2 g(n)¥% ()]

and for the velocity autocorrelation function:

(1.41)

0
]

-(n/3m) [ ar g(r)§2¢(r)

The higher order moments contain three and more particle corre-
lation functions that are only roughly known.

These expressions hold only for non-singular interactions.
In that case also all odd moments vanish and the moments of
Fk(t) and Fi(t) can be expressed in terms of their time fourier
transforms, the scattering functions S(k,w) and Ss(k,w). From

(1.37) one sees immediately that:

n
3 Fk(t)
Mn(k) = n
ot )
oo
n 2
- a_n_ {dw I o)
o )
=0
= (-1)" [ aw w"s (k,w) (1.42)

and for the incoherent function:
) =
Mz(k) = (-i)" f dw w"'s® (k,w)
-00

The usefulness of these series is determined by their conver-

22




gence. An indication of the convergence can be obtained by
studying the relative magnitude of the successive terms. To see
under which conditions this series expansion is worthwhile we
shall calculate the ratio of the fourth and the second moment
of the self function. From (1.40) it is found that:
s 2 > %2

M4/M2 = -3k /Bm - n/(3m) dr g(r)Ve(r) (1.43)
For small densities g(r) can be approximated by:

g(r) = exp(-B¢(r))
and we find for the integral in the right hand side of (1.43):

o
f a7 exp(-Bo (r)) V70 (r)

Integrating this once partially, we get:

= I aZ{V exp(-Be ()} - W (x)

]

8 [ a% exp(-B¢ (r)) [V (r)]2

R

B I az g(xr) [V ()] 2

and this is essentially the average of the square of the inter-
molecular force. One sees that the range of validity of the
time expansion is smaller when kK becomes larger and when we
have to do with stronger forces.

In the case of the hard spheres interaction (and also for
other singular potentials) the force is infinite on the sphere
and from (1.39), (1.40)2and (1.41) it follows that M4(k),

.MZ(k) and C2 are infinite. This means that the moments expansion
diverges for this singular interaction. An alternative for hard
spheres can be found by using, instead of the singular Liouville

operator L, the pseudo Liouville operators L, defined in (1.21).
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From (1.12), (1.20) and (1.28) it is seen that the intermediate

scattering function takes the following form for t > O:

_.1<

]
=
)
2
™M 2

> >
exp(-ik.r,)exp(tL )

" 1 =
i=1 J

[ 5o B~

> >
exp(ik.r_ )> (1.44)
1 3

The moments are obtained by making a Taylor expansion of the
exponentional streaming operator. Because the calculations are
rather complicated they will be carried out in appendix B. The

results are for Fk(t):

M (k) = S(k)
[e]
M, (k) =0

M2(k) = —k2/Bm (1.45)

1 3
M (k) = 87°n g(0)/(3(Bm?) [ (ko)? -

- 3k0 sink0 - 6cosk0 + 6 (sink0o) /ko]

We see that the hard spheres moments up to the second moment
are exactly the same as the moments (1.39) of a system with a
continuous potential. The reason is that every system behaves
like an ideal gas for very short times because the particles
do not feel the interaction yet. But the intermediate scattering
function is for these very short times just determined by the
first few moments, so the first hard spheres moments have to
correspond with those of the ideal gas, just as the first mo-
ments of a system with a continuous potential. The appearance
of uneven moments, like the third moment, is due to the fact
that during a hard spheres collision the velocity changes
instantaneously and the force between the particles is infinite
(Sears, 1972).

The calculations of the first moments of the self part of the
hard spheres intermediate scattering function are also carried

out in appendix B and yield:




uS (k) = 1
(o]
Mf(k) =0
(1.46)
M3 (k) = %2 /Bm
1 3
M3 (k) = 872 n g(0) (k) %/ (3 (Bm) 2)

The first moments of the velocity autocorrelation function.

become:

! 1 (1.47)
C. = -8m2ng? g(0) /(3 (Bm) 2)

The fourth and higher order moments contain integrals over
3- and more particle distribution functions, so they cannot be
calculated exactly yet. Recently de Schepper and Cohen (1976)
have succeeded to give an expression for C2, valid for low

densities.
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CHAPTER 2

THE URSELL EXPANSION OF THE CORRELATION FUNCTIONS

In this section we will give a systematic expansion of the
above defined correlation functions where the successive terms
involve an increasing number of colliding particles. The first
term gives the ideal gas, the second term the effect of the two
particle collisions in time t and so on.

To do this we first introduce’the expansion of the streaming
operator S, that describes the trajectory I'(t) of the system in
phase space. The next section will be concerned with the straight-
forward expansion of the correlation functions. Because we are
interested in the short time behaviour, where the most impor-
tant contributions come from the two particle collisions, we
will derive some detailed expressions of the two particle terms
in these expansions. However, it will appear that the expression
for the intermediate scattering function consists of two parts,
one of which contains the static triple distribution function.
Because there is little known of this distribution function it
is necessary to make an approximation for it. It will be shown
that as a consequence of this approximation the second and
higher moments do not agree with the exact moments.

To avoid this disagreement in the last sections another ex-
pansion of the correlation functions will be derived taking as
a starting point the second derivative of the intermediate
scattering functions and making use of the antihermiticity of
the Liouville operator. In this approach no approximations for
the static correlation functions are needed and it will be
proved that the zeroth, second and fourth moments of the two

particle terms correspond with the exact moments.

THE URSELL EXPANSION OF THE STREAMING OPERATOR

In order to obtain the desired expansion of the correlation

functions we make use of the Ursell expansion (Cohen, 1968;




van Leeuwen and Yip, 1965) of the streaming operator St:
= BN st 231
St(l...N) Ut(l)Ut( ) Ut(N) ( )

+ I U (3,300, (1) ..U (3,-1U, (3, +1)...
{3,3,

e U (3,=1) U, (3,+1) .. .U (N)

+ D UL(33,35)0 (1) 0 (-1 U G )
{3,3534

U (3,m DU (3,41) ..U (35=1U (35+1) ..U (D ...

t t

with

Ut(l) =S, (1) = s (1)

o
U, (12) = s, (12 - s°(12)
% £ . (2.2)

o o
Ut(123) = St(123) - St(12)St(3) - St(13)St(?)

o o
- St(23)St(1) + ZSt(12$

Here is Sz(l..m) the free streaming operator of m particles, so

o -—
St(l..m) = exp(tLo(l..m)) {2.3)

in '1241) {j1j2} means all pairs of particles (j1’j2)' {j }

1j2j3
all combinations of three different particles (jl,j2,j3) etc.
Ut(l) describes the free streaming of particle 1. Ut(12) gives
the effect of the interaction between the particles 1 and 2 on
their trajectories, because the free streaming of the both par-
ticles is subtracted. Analogously Ut(123) gives the difference
between the situation that all three particles collide and the

situations that one particle is free streaming while both of

the other particles may or may not be colliding.

27




2.2 THE URSELL EXPANSION OF THE CORRELATION FUNCTIONS

In this section we shall derive expressions for the Ursell
expansion of the intermediate scattering functions Fk(t) and
Fi(t) and the velocity autocorrelation function CD(t). Let us

start with Fk(t), given in (1.28) by:

N N
P (t) =N I I expl-i%% )expUif-T (0))> (2.4)
i=1 j=1 = J

With (2.1) the expression exp(iﬁ-fj(t)) can be written as:

exp(iﬁ-?j(t)> = St(l..N)exp(ik-?.)

J
: i i 1 5 T s
= [Ut(JHZ, U (33 + 3 .Z. Ut(331]2)+..]exp(1k rj)
5 J172
N-1 .
b [Ut(3)+ T S .Z . Ut(jjl..jm)] exp(lk-rj) (2.5)
m=1 3435--3,

where use has been made of:
9 ol - _ Nk i i
Ut(jl)exp(lk rj) = exp(ik rj) for 3y #3

because the free streaming of particle j1 does not influence
the streaming of particle j. In (2.5) the primes over the sum-
mation signs indicate that the summation indices must be diffe-
rent to each other and may also not be equal to j; the factor

'

m!: is inserted to avoid double counting. Substituting (2.5) in

(2.4) one obtains for the intermediate scattering function:

N N

F () =N <L I exp(-ik-%,) [U, (4)
K i=1 §=1 e
(2.6)
Ngl 1 | . ) > 5
+ -’ - j jZ ; Ut(jjl..jm)]exp(lk rj)
1°2°"“m

and an analogous expression for the self function. This expres-
sion is symmetric in the indices j,jl,..,ﬁm, so one can label

particle j as particle 1, particle j1 as particle 2, ..... i
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particle jm as particle (m+l). Since there are N possibilities
for choosing j, (N-1) for choosing jl’ «e.. (N-m) for choosing
jm' the summation over j1j2"'jm produces a factor (N-1)(N-2)..
..(N-m). Using this in (2.6) one gets:

N N
=2 MO D ) ) S axp(~iRr ). 02, ;)
o N(m-1)! i=1 L

Fk(t)

> >
exp(ik-r1)>

N
< I exp(-i
i=1

N(N-1) (N-2) .. (N-m+1)
Nm!

kK-F.)u, (12..m)
i Sl <

> >
exp(ik-rj)> (2x7)

The first term of this expansion corresponds with the free
streaming of particle 1 in the given time t. The other terms
describe the trajectories of particle 1 in phase space result-
ing from dynamical interactions with the particles 2..m. Thus
the particles (12..m) form an independent dynamical cluster and
the motion of these particles is wholly determined by their
mutual interactions. From (2.7) one sees that there is only a
dynamical correlation at time t=0 and a time t later between

the particles i and j as i belongs to the set (12..m). This sug-
A
k
sents mainly the dynamical correlations, Fk(t) also the sta-

gests to split Fk(t) in two terms F, (t) and Fi(t); F:(t) repre-

tistical correlations; they are given by the following expressions:

FA(t) N (N-1) (N-2) .. (N-m+1)

Nm!
o m=1 1 i

N

m
<% exp(-iﬁ-?i)ut(lz..m)
=1

m
X

exp(i§~?.)>
i 8

(2.8)
N > >
sl exp(—ik-ri)Ut(12..m)
i=m+1

N (N-1) (N-2) .. (N-m+1)
Nm!

exp(ii-?j)>




30

Writing out the canonical ensemble average one arrives at:

N

A B N(N-1) (N-2) .. (N-m+1)

Fk(t) = L ey Jdl‘ tb(pl)..i)(pN)
m=1
-1 2 > =+
oy exp(-B@(?l..?N))iglexp(-ik-ri)Ut(12..m)
m >
z exp(ik-?j) (2.9)
j=1

where ¢(pi) is the normalized Boltzmann distribution (1.4), QN
>

the configuration integral (1.7) and ¢(?1..rN) the potential

energy (1.6). The integrations over §m+1"'§N in (2.9) can
immediately be carried out. It is also possible to do the inte-

grations over ;m+1"';N formally, resulting in a m-particle

static correlation function g(?l? ..?m), defined in (1.5). After

2
A
doing this one gets for Fk(t):

N
AR |
F(t) =N I

1 <> m 5> >
A ET—{dpl..dﬁmdfl..d?m¢(p1)..¢(pm)n g(¥,..x)
m > >
exp(—iﬁ~?i)ut(12..m) T exp(ik-r,)
1 j=1 J

N ~mB

i i

This can also be written as:

1

([ e 1

m
A - 1 >
Fk(t)—N s 8. E exp(-ik-

exp(iﬁ-;,)>
1 i J

m 1 m

(2.10)

where <...>m means an averaging over all possible m-particle

configurations:

- > _
<f(p1..pm;?1..?m)>m = [dﬁl..dﬁmdfl..d?m¢(p1)..¢(pm)

m_ 5 .

n g(rl..?m)f(ﬁi..ﬁm,?l..?m, (2.11)
Expression (2.10) shows that there exists not only a dynamical
correlation between the particles i and j but via the m-particle

equilibrium correlation function g(?l..?m) also a static corre-




lation.

Returning to the "static part" Fi(t) (2.8), we see that we
have here to do with the particles i that are not dynamically
correlated with the particles j so the summation over i runs
from m+1 to N. Taking for particle i particle m+l the summation

over i produces only a factor (N-m):

N
(N-1) (N-2) .. (N-m) s
)5 ~ <exp(—1k.rm+1)Ut(1..m)

Fo(t)
k
m=1

m
I exp(ik-%.)>
j=1 3

. A ;
In the same way as is done for Fk(t) the integrations over

gm+2";N and ;m+2"?N can be carried out; the result is:
B -1 s 1 > > %
Fk(t)= T Ty <exp(—ik-rm+1)Ut(12..m) .z exp(iﬁ-?jpm+1
m=1 j=1
(2.12)

The self part of the intermediate scattering function, Fi(t),
and the velocity autocorrelation function CD(t) are obtained in
the same way. In this case the particles are always dynamically
correlated so the "static" term disappears. For Fi(t) one obtains

the following expression:

N

F}S((t)=?—1mi1 TE%TTT-<exp(—i§-?1)ut(1..m)exp(iﬁ-?1)>m
(2.13)
and for the velocity autocorrelation function:
B0 ol Bef 5w o e
Cy(t) = §-BmN mzl DT U (emY > (2.14)

B
Finally we shall give an approximation for Fk

A . i A i '
Fk(t). To do this we write for the equilibrium correlation

E

(t) in terms of

’ > >
function g(rl..rnw1
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m+1—>—>)_m(—-> ~>)[+
n g(rl..rm+1 =nglr,..r)in

- (2.15)
+n L G(? —?.) + higher order correlations]
§=i m+l Ti
with G(r) = g(xr)-1, the difference between the pair correlation

function and its asymptotic value : 1. We now make the following
approximation: we restrict ourselves to the first two terms in
the square brackets of (2.15). Thus we are considering the case
that particle m+l is either not correlated at all with the par-
ticles (1..m) or only correlated via a two particle correlation.

Substitution of this approximated g(;l";m+1) in (2.12) yields:

N
B I 1_ o > -
Fy (£) =N m§1 = fdpl..d§m+1dr1..drm+1¢(p1)..¢(pm+1)

m+1 n

> >
n g(?l..fm)[1+ z G(rm+1—riH
i=1
m

.

exp(—lk-; )Ut(l..m) z exp(if-?

. (2.16)
=1

.)
3

The integration over 5m+1 gives 1 and for the integration over

> "
¥ 4y one finds for k#0:

m
e > > > >
[drmﬂl1+i§1G(rm+1—ri)]exp(—lk-rm+1 .

"
where G(k) is the fourier transform of G(r). Inserting this in

(2.16) one gets:
N m
B N -1 1_ .2
Fk(t) ~ nG(k)N E =% E exp (-ik ri)Ut(l..m)
v A
)> = nG(k)Fk(t) (2.17)

where use has been made of (2.10). Adding together Fi(t) and

Fi(t) one finds with (1.9):




2 v A - A
Fk(t) B [1+nG(k)]Fk(t) S(k)F ()

3

'<
b

= s(x)N"
m

exp(-ii-;i)Ut(l..m)
1

([ e 4
n~g

m
z exp(ifo?.)> (2.18)
j=1 7 om
where S(k) is the structure factor. So it is in this approxima-
tion sufficient to calculate Fi(t).

The results obtained in this section are listed toagether in

table II.
Table II.
A B . A
Fk(t) = Fk(t)+Fk(t) = S(k)Fk(t)
A -1 d 1 m m >
F,(t) =N = L = < I exp(-ik+%,)U, (1..m) I exp(ik-Z,)>
k m! . 1" L ; j
m=1 i=1 j=1 m
B -1 N i > 5 o > >
Fk(t) =N mil =T <exp(-1k-rm+l)Ut(1..m)jilexp(lk.rjwm+1

= né(k)pﬁm

N
s -1 1 * > >
Fk(t) =N m§1 T <exp(—ik'r1)Ut(1..m)exp(lk r1)>m
1 Wy 4 '
- <>
CD(t) = -5 BmN mzi —(’—n-_—:i—)—! <31-Ut(1..m) V1>m

The Ursell expansion of the intermediate scattering functions
Fk(t) and Fi(t) and of the velocity autocorrelation function

CD(t).

2.3 THE TWO PARTICLE TERM

We shall now work out in detail the first two terms in the
Ursell expansion of the correlation functions. The m = 1 term

in (2.18), that represents the ideal gas, can be calculated
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{1)

X (t) we find with (2.18) and

exactly. Calling this term F
(2.11):

r D (o ants ) Jdﬁid?1¢(p1)ng(?1)exp(-i

- > >
¢ &

k-_fl)Ut(l)exp(lk~ )

k 1

(2.19)

Ut(l) generates the free streaming of particle 1, so

Ut(l)exp(iﬁ-?1)=si(1)exp(iﬁ-?1)=exp(ii-(? +§1t/m))

1
Inserting this in (2.19) and noticing that g(?l) = 1, for the
intermediate scattering function of the ideal gas immediately
is found:
2
et (6) = S0 exp (k" t2/26m) (2.20)
In the same way we get for the free streaming part of the self
function with (2.13);
s(1)

Fk (t) = exp(—k2t2/28m) (2.21)

and with (2.14) for the velocity autocorrelation function:

@y, et
c, (e =1 (2.22)

Because we are only interested in the deviations from the
ideal gas behaviour we see that only the terms with m > 2 are

of importance. From (1.32), (2.13), (2.18), (2.20) and (2.21)

we find for the deviations sk(t) and Ei(t) the following ex-
pressions:
-1 N 1 m m
€. (t) =N I =—< I exp(-ik-%,)U_(1..m) I exp(ik-7.)>
k m! A j
m=2 1=1 j=1 m

and (2.23)

s —1N 1 > > > >

= —_< -ik- ik- 5
Ek(t) N miz TR exp(-ik rl)Ut(l..m)exp(lk rl) -




Note that the expression for ek(t) simplifies due to the approxi-
mation (2.17).

For the short time behaviour of the correlation functions of
a low density system one expects, as will be discussed later in
this section, that the two particle collisions (terms with m=2)
play a dominant role. Therefore we shall restrict ourselves in
the following to the terms with m=2. The deviations will in
this approximation be indicated by 8;2)(t) resp. Ei(z)

(2
A ()=

(t) . From
(2.23) one finds for €

0 2 34 £
€. (t) =3 n'N f dﬁldﬁzdfld?2¢(p1)¢(p2)q(r1r2)

{exp(—iﬁ-? )+exp(—iﬁ-? y}u (12){exp(iﬁ-; )+exp(iﬁ'f )}
1 2 t 1 2

(2.24)

To carry out the integrations it is useful to split the motion
of the two particles in their center-of-mass motion and their
relative motion. So, instead of considering two particles of

. > > P
mass m with momenta PPy and positions L e, we look at a

>

"center-of-mass particle" with mass 2m, momentum P and position
>
R and a "relative particle" with the reduced mass m/2, momentum

P and position ¥. Thus we make the following transformation:

> > 0 > > _ a2
p1+p2 =P r1+r2 = 2R
(2.25)
- AP SRR o —»_—>=->
Py-P, = 2p T, r2 [ 5

When one keeps in mind that the pair correlation function in
gases only depends on the relative distance of the both particles

so that g(?i?z) = g(r), and that
¢(p)d(p,) = v (p)O(P)

with

/2

¢(p) = (B/mm) 2 expt-Bp /m) (2.26)
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and

/2

8(P) = (B/amm) > %exp (~BP*/4m)

(2)

one finds for Ek

()2

2 -1

el (y) = %—n N J aBaBaTaRe (p) ® (P) g (r) exp (-ik-R)

k
{exp(ii-?/Z)+exp(—iK-;/2)}Ut(12)exp(if-§)
{exp (ik-7/2)+exp (-iR-¥/2)} (2.27)

Because the pair potential depends only on the relative
distance of the particles the center of mass is streaming free-

ly so it is possible to write for the Ursell operator Ut(12):
po, < s o >
Ut(12) = at(PR)Ut(pr)
O b,
where St(PR) is the free streaming operator for the "center of
mass particle" with mass 2m while Ut(ﬁ?) is the difference of
the streaming operator with interaction and that without inter-
action, both with respect to the relative motion. Thus one
finds:
Ut(12)exp(iE-E)exp(i%-?/2)=sz(;§)exp(iﬁ-ﬁ)Utﬁﬁ?)exp(iﬁ-?/Z)
= exp(iﬁ.<§+§t/zm))ut<§?)exp<iﬁ-?/z> (2.28)
Insertion of this expression in (2.27) vields:
2 -
sﬁ Y ey - %—nzN . I dpaBazaRy (p)® (P) g (r) exp (ik-Bt/2m)
{exp (iK-2/2) +exp (-1k-¥/2) Ju_(BF) {exp (1R-F/2) +exp (-1K-2/2)}

" >
Now one can integrate over the center of mass momenta P and
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-
coordinates R, resulting in:

eliz) (t) = %n exp (-k>t%/4Bm) f dpdzy (p) g (r)

{exp(ik-%/2) +exp (-ik-%/2) }
Ut(i;?) {exp(ik’-?/Z)+exp(—i7€-?/2)}

The action of Ut(-ﬁ?) on ¥ gives the difference between the real

> . > >
trajectory r(t) and the free streaming r+2pt/m, so

ut(s?)exp(iﬁ.f/z) = exp(ik-Z(t)/2) -exp(ik- (F+2Bt/m)) /2

(2)

Thus Ek (t) becomes:

(2) _
ek (t) =

%n exp(—k2t2/48m) J apdze (p) g (x)

{exp (iR-¥/2) +exp (-iK-¥/2) }
{exp (iK-T (t) /2) +exp (-iK. ¥ (t) /2) —exp (ik- (¥/2+pt/m))
- exp(-ik- (£/2+pt/m)) } (2.29)

The intermediate scattering function of an isotropic system
can only depend on the magnitude of _}:, so it is allowed to
average over the direction k of k. This has the advantage that
one gets rid of an additional direction (that of -1:) in the in-
tegrandof (2.29). If 2 is an arbitrary vector then one finds

for such an average:

J dk exp (ik-3)/ [dfc = jo(k|3|) (2.30)
with jo(x) = x_lsinx, the zeroth order spherical Bessel func-
tion and k = IKI .

Averaging the right hand side of (2.29) in this way over k
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gives the following expression:

Eiz)(t) = n exp(—k2t2/48m) [ dpd®¥ (p)g(r)

[3, x[F2® /2043 x|E-E (@) |/2)- (2.31)
. > >
-3 o (kpt/m) =3 (k| E+Bt/n])]

In the case of the self part of the intermediate scattering
function the calculation goes analogously. We shall give here
only the result:

s(2)

€ (t) = n exp(—k2t2/48m) J dpdry (p)g(x)

[jo(k]?-?(t)I/2)-jo<kpt/m)] (2.32)

The order of magnitude of the deviations (2.31) and (2.32)
is found by considering the expressions between the square
brackets; if the particles are free streaming these terms have
the numerical value 0, while, if the particles are colliding,
they can roughly be approximated by the value 1. The integrals
yield then precisely the volume in phase space containing the
particles that within a time t are going to collide; the volume
of this collision cylinder is ﬂczvt with 0 the diameter of the

particles and v the thermal velocity. Thus a crude estimate of
(2) s(2)

9 k k

factor, "™n0 vt = t/T where T is the mean free time. One sees

the deviations € (t) and € (t) is, apart from a numerical
that the restriction to the two particle terms is justified
for low densities and for times small compared with the mean
free time.

Finally one finds from (2.14) for the two particle term of

the velocity autocorrelation function:
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(2) _l =1 > > o> >
h (t) = 3 B (Nm) [ dpldpzdrldr2¢(p1)¢(p2)
n2g(? ¥)B,-U0,_(12)P (2.33)
12271 "3t £
Making again the transformation to the relative and the center
of mass coordinates of the both particles and noting that for
the center of mass motion holds
U _(12)% = 0
¢! %
while for the relative motion
U, (12)B = B(t)-B

one gets immediately for Céz)(t):

2 () = % B2 thm) I apabazaky (p) 6 (P)g(r)

(B/2+B) - (B (1) -B)

The integrations over the center of mass momenta and coordi-

nates are very easy and yield:
{2) . 3 ™ > b 2
Cp (t) = 3 Bn/m | dBATe (p)a(r) (B-B(t)-p") (2.34)
The two particle terms of the deviations of the intermediate

scattering functions and of the velocity autocorrelation func-

tion are put together in table III.
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2.4
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Table III.

8;2)(t) = n exp(-kot>/4bm) I dBate (p)g(n)[ 3 (x| B2 (81 |/2)

+jo(k|?-?(t)|/2)-j°(kpt/m)-jo(k|?+§t/mln

e:(2)(t) = n exp(-k>t>/4fm) I aBade (p)g(n)[ 3 _(k|#-2(t)|/2)

*jo(kpt/m)]
Céz)(t) - %—Bn/m J aBae (p) glx) (BB (L) -p>)

Two particle collision terms in the Ursell expansion of the
deviations of Fk(t), Fi(t) and CD(t) from their ideal gas

values.

THE MOMENTS OF THE TWO PARTICLE TERMS

For a good short time theory its moments have to correspond
with the in Ch. 1.3 given exact values. It is therefore inte-
resting to see what the moments are of the two particle terms
in the Ursell expansion. These moments will be indicated by a
superscript u. Let us begin with the deviation of the inter-
mediate scattering function, given by (2.24):

(2) 2 -1

o il P S ey
€y (t) = 5N I dpldp2dr1dr2¢(p1)¢(p2)g(r12)

- >
: %

{exp(—ii-?1)+exp(-ii. ,) o, (12) {exp (iK- 1)+exp(1i-?2)}

(2.24)
The coefficients of the successive powers of the time t are

found by expanding the Ursell operator Ut(12) in the followina

way, using (2.2):




Ut(12) = exp(tL(lZ))-exp(tL°(12))

0

n
« I &S an)®-L a2t (2.35)
n=0 ** %

After substituting this in (2.24) the coefficients of the zeroth

and first power of t are immediately found to be zero. The cal-

culation of the coefficient of t2 is more complicated and is

given in detail in appendix C. The results for the first moments

are:

k4
[}
)]
z
n
=

=
]
o
]
=

=
[}

o
2 ‘

(—kzs(k)/ﬁm)ﬂﬂ(nks(k)/m)l r’g(r)3, (kede ' (n)ar  (2.36)
with

: -2 ., -1

jl(kr) = (kr) “sinkr-(kr) “coskr,
the first order spherical Bessel function. The fourth moment
is not worked out but it is clear that it will not yield the

5 (see (1.39)).

Of course it is also possible to make a time expansion of

exact value, since already M; #M

the deviation ek(t). Writing

(o]
n
ek(t) e e, t /n!
n=0

one sees with (1.32) and (1.37) immediately that the first non

zero moment of €k(t) is the second moment:
2
€, = k7/Bm + M, (k) /s(k)
Substituting Mz(k) from (1.39) one finds for the exact second
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moment of Ek(t):

g, = k2 (Bm) ! [1-1/5(k)]

while the Ursell second moment is:
2 u
€. =k"/Bm + Mz(k)/S(k)

with M;(k) given in (2.36).

To see how large the difference is between the exact second
moment and the Ursell second moment, both moments are calculated
for the case of a Lennard-Jones (12,6) potential (fig. 1). One

3.0F

1.5

0.0

—» pmo’e,

=
-

-3.0

1 J
0 2 4 6 8
———3 kg
Fig. 1 Comparison of the exact second moment €, (full
line) with the Ursell second moment Eg (dashed
line) for a Lennard-Jones (12,6) potential
(0 (r) = 4el (0/r)12-(0/x)®]). The density
no” = 0.1, the temperature kBT/e = 1.5.

observes that the discrepancy is small. The differences be-
tween the exact and Ursell values for the second moment are
completely due to the approximation (2.16); expansion of the

two particle terms in the original expressions of Fi(t) and




Fi(t), (2.10) and (2.12), leads to the exact second moment.
Because in the derivation of the two particle term (2.32) of
the self part of the intermediate scattering function no approxi-

mation is made, one expects that at least its second moment
agrees with the exact value. The detailed calculation is again
carried out in appendix C; the results for the first four mo-

ments are:

3k41(3m)-2

+nk2m-2Id_fg(r)[ % 8”192 () - (aw/ar) 4

Indeed the second moment of the Ursell expansion of the self
function is equal to the exact second moment. However, here
appears a difference between the Ursell fourth moment and the
exact fourth moment.

The moments of the two particle term of the velocity auto
correlation function are also derived in appendix C. The first
moments agree completely with the corresponding exact moments
Co' %

1 and C2 G141 ) .

THE SECOND DERIVATIVE EXPANSION

The last three sections were concerned with the Ursell ex-
pansion of the intermediate scattering functions and the velo-
city autocorrelation function. For instance Fk(t) could with

£3:42) . L TE3) and‘(1.28) be written as:
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4 N N

F,(t) =N <L exp(—iﬁ-;.)exp(tL(l..N)) z exp(iﬁ-; )>
k . i " 3
i=1 j=1
-1 N N
= (de(F)N b exp(—i*-?.)exp(tL) z exp(if-?.)
. 1 : E
i=1 j=1
(2.38)

where p(I') = exp(-BH(F))/JdT exp(-BH(T')) is the phase space
density. The next step was the Ursell expansion (2.1) of the
streaming operator exp(tL). Each term contained an Ursell ope-
rator Ut(l..m). This gave rise to a splitting of each term into
two parts: one part contained the particles i that belonged to
the set of colliding particles 1,2..m, the other part contained
the remaining particles. We called these parts Fi(t) resp. Fz(t)
(2.8). The m'th term in Fi(t) was more difficult to calculate
as the corresponding term in Fi(t) because the B-term was an
average over m+l particles (2.12) whereas the A-term was only

a m-particle average (2.10). Therefore the B-terms were with
the approximation (2.16) reduced to a much simpler form. But
this had the undesirable consequence that the second moment
(2.36) in the two particle collisions term did not agree with
the exact second moment.

Therefore the question rises if there exists another expan-
sion where the splitting in A- and B-terms does not occur. Such
an expansion will be given here and is inspired on the work of
Rao (1974).

Starting point is not Fk(t) itself but its first derivative:

3Fk(t) -1 > > >
——— =N <I exp(-ik-r,)exp(tL)L £ exp(ik-¥,)>
ot i i j 5

vl exp(—ii-¥i)exp(tL)z(iK-iSj/m) exp(iﬁ-?jw

i ]

N-l[de(F)Zexp(-iﬁ-?i)exp(tL)Z(if-gj/m)exp(i*~?j)
i ]

(2.39)




whereafter an integration follows over t to obtain Fk(t), In
the straightforward Ursell expansion of this first derivative
again the A- and B-terms are present leading to approximation
(2.16) . However, because the Liouville operator L(1..N) and the
Hamilton function H(I') commute with each other, (2.39) may also
be written as:
aFk(':) -1 > > > > > >
=N JdF Zexp(-ik-ri)exp(tL)Z(ik'pj/m)exp(ik-rj)D(F)
i 3
(2.40)

ot

If one substitutes in (2.40) for the streaming operator exp (tL)
the Ursell expansion (2.1) one gets an expansion similar to that
of Rao. After working out the two particle term it appears that
the splitting in A- and B-terms is absent and furthermore that
the second and fourth moment are in agreement with the corre-
sponding exact values. Because Rao derives his expansion in the
frequency domain his zeroth moment is not the same as the exact
zeroth moment. What we consider as another drawback of this
approach is that the Ursell operators work also on the phase
space density.

Another possibility is to take the second derivative of Fk(t)
as starting point. We will show in the rest of this chapter that
in this method the B-terms are also absent and that the first
four moments agree with the corresponding exact values.

The second derivative of Fk(t) follows from (2,38) as:
32Fk(t) -1 =R .
gy 8.1 [de(F);exp(-ik-ri)Lexp(tL)L;exp(i .rj)

ot - ;|
Because for a non singular interaction the Liouville operator
is antihermitian (1.18), this can be written as:
Bsz(t) w

—_— N'lfdrp(r)[-Lzexp(-iﬁ-?.)]exp(tL)LzexP(l 7))
3t* i 2 j J

N—lIdP p(T) L (KB, /m) exp (-1K-F ) exp (tL) (iiz-sj/m)
i j

exp(i*-?).) (2.41)
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In an analogous way the second derivative of the self part of
the intermediate scattering function is obtained as:
82Fi(t) -1 > > > > > >
5 =N Jde(P)Z(ik'pi/m)exp(—ik-ri)exp(tL)(ik-pi/m)
ot i

exp(iﬁ-ii) (2.42)

If we now substitute in (2.41) and (2.42) for the streaming
operator exp(tL) the Ursell expansion (2.1) we get what we shall
call the second derivative expansion:

2

9°F, (t)
. S l{dfo(F)Z(ii-g./m)exp(—iﬁ-?.)[U (1) ..U, (N)+
2 . i i o t
ot i
+{.Z. Ut(Jljz)Ut(l)"Ut(Jl_l)Ut(31+1)"
1132
: 2 > > (3
..Ut(j2—1)Ut(32+1)..Ut(N)+..]§(1k pj/m)exp(lk rj)
(2.43)

and an analogous expression for the self function:
2.8
F
] k(t)

by Ll > > e
3t2 =N [de(F)i(lk.pi/m)exp(-lk-ri)[Ut(i)..Ut(N)+

+ I U330, (1.0 (G -DU (5, +1) ..
G313,

..Ut(jz-l)ut(j2+1)..ut(N)+..](iﬁ-ﬁi/m)exp<iﬁ.?i)
(2.44)

If the second derivatives are known, the intermediate scattering

functions can easily be obtained from:

t ) Bsz(t")
F, (t) = F (0) + f dat' [ at"”
k k 3en?
(o] e}
and . (2.45)
' 2
Fo(t) = F5(0) + [ at’ ( at"
x k 2
ot
o [e]




where Fk(O) = S(k) and Fi(O) = 1. In the following section we
shall derive detailed expressions for the two particle terms

of (2.43) and (2.44).

2.6 THE FREE STREAMING AND TWO PARTICLE TERMS IN THE SECOND DERIVA~
TIVE EXPANSION

The free streaming part of the second derivative of the

intermediate scattering function follows from (2.43) as:

BZFk(t) e
-on 3l dep(F)Z(iﬁ-ﬁ./m)exp(-iﬁ-?.)
3¢ ¥ i i

1 x (2.46)
Ut(l)..Ut(N);(iﬁ-ﬁj/m)exp(if-?j)
J
According to the definition of the free streaming operator
Ut(l)..Ut(N) we have to make in all quantities on the right of
it the following substitution:

B, ~ B,

J J

?j ¥ ?j+ﬁjt/m

So (2.46) becomes:

2%, (©) )
wenaatl e -N Ide(F)Z X-3./m exp(—iﬁ-?.)i X-p./m
ot i s ty J
1 R ]

exp(iﬁ-(?j+gjt/m))

Because the momentum integrations of (i-;i/m)(f-gj/m) give a
zero result for i # j only the terms with i = j survive. We can
take particle i as particle 1, the summation over i produces
only a factor N and thus holds:
2
3
Fk(t)

= e P ) e
__525__ = - (dp1¢(p1)(k pl/m) exp (ik plt/m)
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The momentum integrations are elementary and yield:
2
3°F, (t)
—E ] = aPn? w/8-k%2/8%) exp (k72 /28m)
ot 1

The double time integral in (2,45) becomes:

t ¢ 3%, (£") 5

I dat! f acn s, i = exp(~k"t“/2fm)-1 (2.47)
Bt"

o (o]

The self function is treated in exactly the same manner,

leading to:
1
g [afen 3 5
[ dat!' I at"| ———m = exp(-k"t“/2Bfm)-1 (2.48)
at"2
o o

With (2.47) and (2.48) the expressions (2,45) for the inter-

mediate scattering functions take the following form:

P (£) = S(k)=14exp(-kt>/26m 48 %) (£)+..

and (2.49)

s(2)

Fi(t) = exp(—k2t2/23m)+Fk

(t)+:,

(2) s(2)
where Fy (t) and Fk
two particle terms in (2.43) and (2,44),

F(z)(t) is given in detail by:

(t) are the double time integrals of the

k
t !
P2 (o) = [dt‘l dt"N—ldeo(F)Z KB, /m exp(-ik-) I
) o i {3132}
Upn (31300, (1) 0.0 (3 -1 UL, (3,41) ..
: N 3
..Ut"(Jz-l)Ut"(]2+1)..Ut“(N); iﬁ-ﬁj/m exp(lﬁ-rj)

J
(2.50)

Without loss of generality we can take particle i as particle

1. It is clear that j must be equal to one of the colliding
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articles j, or j, to give a non zero contribution. Then the
P g 2

product of free streaming operators U_,(1)..U0

£n t"(N)' in which
Ut"(jl) and Ut"(jZ) are absent, gives a factor 1 because it
works on a function depending only on the particles jl-and j2.
Furthermore <iﬁ-§1/m> = 0, thus the contributions of all pairs
(jljZ) that do not contain particle 1 vanish. So we can take

for the particles j1 and j2 the particles 1 and 2, the summa-

tion over all pairs (j1j2) produces a factor (N-1) and Fiz)(t)
becomes:
ol
Fiz)(t) = - (N-1) [dtf dt"[drp(r)ﬁ.gl/m exp(_ig,;l)ut"(lz)
o o

(—> > > >

k-El/m exp(iﬁ-?1)+k-p2/m exp(ik-T.)) (2.51)

2
One sees that because of the occurrence of K-ﬁi/m in (2.50});

which averages to zero if i does not belong to the pair (j1j2)’
in this second derivative expansion no splitting in A- and B-
terms takes place as in the case of the Ursell expansion.
Therefore in this term of the present expansion no approxima-

tion at all is needed.

Using (1.5) the integrations over the variables ;3";N'
53..Bﬁ in (2.51) can be done:
¥ L
Fi2) gy = n?Haer | ae ap,dp,a¥, at ¢ (p,) ¢ (p,)g(x, )K-B,/m
k 17937172 i 2 12 1
(o [ug - ,

exp(—iﬁ-?l)Ut"(lz)(E-ﬁl/m exp(iﬁ-?1)+§-§2/m exp(iﬁ-?z))

(2.52)

Remembering that (2.2):
Ut(12) = exp(tL(12))—exp(tLo(12))

one can easily verify that
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Ut(12)(ﬁ-§1/m exp(iﬁ-?1)+ﬁ~§2/m exp(iﬁ-?z))

) > > > >
= -is¢ [Ut(12)(exp(1 -r1)+exp(1k-r2)ﬂ

and so the integration over t" in (2.52) vields the following

result:
t
P2 () = in?n tae o, ab ot a4 (p, ) blp) gz, ) BS, /m
x PO A A0 1Py 2 12 1
o]
exp(-iﬁ-?l)ut,(12)(exp(iﬁ.?1)+exp(iﬁ.?2)) (2.53)

> >
We now introduce center of mass variables P, R and relative
variables B, ¥, defined in (2.25), and obtain, using (2.26)

and (2.28), for Fé2)(t):

t
F;Z)(t) = in2N_1Jdt'[d§d;d?d§¢(P)¢(p)g(r)f-(§/2+§)/m
(o]

exp (-iK-7/2) exp (iR.Bt'/2m)[ exp (iK-T(t')/2) +
+exp (-iK-Z(t') /2) -exp (iK. (F+2Pt ' /m) /2)
—exp (-ik. (¥+2Bt'/m) /2)]

After doing the integrations over the center of mass variables
S B
P and R one gets:

1

¥4 ) = in[dt'exp(-kzt’2/48m)Idﬁd?¢(p)a(r)(%—ikzt'(ﬁm)_ "

k
o

+ﬁ-§/m)exp(—iﬁ-?/2)[exp(iﬁ-?(t')/2)+exp(—iﬁ¥?(t')/2)

—exp (iK- (F+2Bt"'/m) /2) —exp (-ik- (T+2Pt'/m) /2)]  (2.54)

Because of isotropy Fiz)(t) depends only on the magnitude of

>
k, so, to get rid of the vector ﬁ, it is permitted to average




(2.54) over the direction k of E. Using (2.30) and the relation
(4ﬂ)—1[dﬁ(~k>-3)exp(ik'-3) = ik a.b jl(kla‘l) (2.55)

with jl(k[3|) the first order spherical Bessel function and 3

and B arbitrary vectors, we find finally for the two particle

contribution:
. A
,i2) (t) = %nszdt'exp(—k2t'2/46m) [dﬁdﬁp(p)g(r) £, (BTt
o
(2.56)
with
£, BE ) = -(Bm) e[y (k| EE(ED) |72)+3 k|22 (1) | /2)

-3, k[ BBt /m|) -3 (kpt ' /m)] +28/m- [-—-(r+3:>(t'))

31(k|?+'f(c-)|/2) 3, k[2-EEn[/2)

1 L
K[F2ED]/2 ZT-EE) k[ E-Z () [/2
b 3, k| F4Be " /m|) j, (kpt'/m)
_(r+§t /m) kl +§t'/m| + 31: /m W} (2.57)
The two particle term Fi(z)(t) of the self part of the inter-

mediate scattering function follows from (2.44) as:

t ot
re? () - (dt'[ dt"N_lfdl"p(F)Z iK-B, /m exp(-ik-2) 3
A i {J }
Utlv(j1]2)Utn( )"Utn(jl— ) t"(J G t"(j2—1)Ut“(j2+1)"

t..(N):n.k E /m exp (ikK.¥ )

The same procedure as was applied to Féz)(t) can for this self

part be used; the result is:

, =
f{m (t) .= %nkz)[dt' exp(-kzt'2/43m) fd‘ﬁdw (p)g(x) fi (BF;t")
o

(2::58)
21
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with

£@Eitn) = - (Bm)_lt'[jo(k 2-2(£") [/2) -3 (kpt " /m]+2B/m-

3, k[E-Zen|/2) j, (kpt'/m)
K[Z-E(E) /2 M e

1 '
E-Fe ]

(2.59)

Finally we shall denote how the deviations eﬁz)(t) and
s(2)

€x (t) of the intermediate scattering functions from their
2
ideal gas values can be expressed in Fiz)(t) and Fi( )

given in (2.56)-(2.59). From (1.32) and (2.49) it follows im-

(t) as

mediately that, as far as the two particle collisions are
concerned:
(2)

g (t) = (1-1/5 (k)) (1-exp (-k>t2/2Bm) ) +F

(

2)
X (t) /s (k)

and (2.60)

s(2) _ .s(2)
€ (t) = Fk

(t)
The results that were obtained in this section for the second
derivative expansion are listed together in table IV.

It is now interesting to see if the moments in the second
derivative expansion agree better with the exact moments than
those of the Ursell expansion. For this purpose expression
(2.53) is a suitable starting point. A time expansion of this
two particle term can be found by substituting (2.35) for the
Ursell operator Ut,(12) in the same way as was done for the
Ursell expansion. The calculation of the moments is carried
out in appendix D. It appears that there is up to the fourth
moment (coherent and incoherent) complete agreement with the
exact moments (1.39) and (1.40).-

We have thus made a considerable progress with respect to

the straightforward Ursell expansion because on the one hand




Table IV

Intermediate scattering functions and deviations from their

ideal gas values in the second derivative expansion.

Coherent intermediate scattering function

(2)

Fk(t) G S(k)—1+exp(—k2t2/28m)+F (t)

j 3
el () = (1-1/500) (1-exp (-k*t?/28m) +r?) (£) /5 )
5 .
ri2 (e) = %nk2fat-exp(-k2t'2/4em)fazsaﬁp (D) g(r) £, (B t")
(o)
£ (BTt = -(Bm) el (k[ B (e | 72043 (k|2 (e | /2)-
g jl(k|?+?(t')|/2)
-3, (k| 4Bt " /m] ) -3 (kpt ' /m)] +2B/m-[ S(F+E (£1) EEEe ]z
%y 3, k[ E-2F (e [/2) b 3, (k|24 /m])
¥ E(r-r(t'n k]f—?(t')]/Z - (r+§t'/m)—_ET?:§ET7ET—_ o+
N 4 (kpt'/m)
+pt'/m _—75557737_—]

Incoherent intermediate scattering function

Fi(t) = exp(—k2t2/28m)+Fs(2)

St
812), . .8(2)
egilng =)
:
2
ra! Yiexy e %nk2[dt'exp(—k2t'2/4ﬁm)[dﬁdﬁﬂ (P)g(x) £ (B )

(o]

fi(E?;t') = —(Bm)_lt'[jo(kl?-?(t')|/2)—jo<kpt'/m)]+z§/m.

i, k|2-2en | /2) j, (kpt'/m)

l"_“’ ' e A s s FENES T
[ZE-T(t") K[Z-Z(t) [/2 R ot o i vy
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in the second derivative expansion nowhere an approximation is

made such as (2.16) in the Ursell expansion and on the other
hand not only the second moments but also the fourth moments
agree with the corresponding exact moments. A disadvantage of
the second derivative expansion is that the expressions
(2.56)-(2.59) for the two particle terms are more complex than
the two particle expressions (2.31) and (2.32) in the Ursell
expansion.

The difference between the straightforward Ursell expansion
and the second derivative expansion is a consequence of the
different moments on which the expansion of the streaming ope-
rator is made: in the Ursell expansion the expansion is direct-
ly made, while in the second derivative expansion the expansion
is made in the second derivative of Fk(t) and is followed by
a double time integration. Of course the exact theory (no re-
striction to the two particle terms) yields the same results
in both theories. The difference between the results of the
straightforward Ursell expansion and the results of the second
derivative expansion is a measure of the accuracy of this

method.



CHAPTER 3

THE URSELL EXPANSION FOR THE HARD SPHERES SYSTEM

In chapter 2 general expressions were derived for the devia-
tions of the intermediate scattering functions and the velocity
autocorrelation function as far as the two particle collisions
are concerned (see table III)., As a first approximation of a
real gas of interacting particles we shall in this chapter con-
sider a system of hard spheres. This choice has been motivated
by the simpleness of the hard spheres trajectories. On the other
hand this assumption is rather drastic and has as a consequence
that the theoretical calculations can only be compared with
experimental results in a qualitative way. Of course it is
possible to compare the hard spheres results with molecular
dynamics experiments.

In the first section of this chapter the structure of the
hard spheres system will be discussed. In the next section we

shall substitute the trajectory of a particle in a hard spheres

2
potential in the general expressions for ei )(t), Ei(z)(t) and
C(2)(t) that were derived in section 2.3. We have already seen

D
that the moments of the two particle terms in the Ursell expan-

sion are not the same as the exact moments. Even the second
moment of Fk(t) differs from the exact second moment, due to
the approximation that is made in (2.16). Explicit expressions
for the moments of the hard spheres Ursell expansion will be
given in section 3.3.

In the case of a non sinqular interaction it is possible to
make another expansion, the second derivative expansion (section
2.5), by making use of the antihermiticity of the Liouville
operator. In that expansion the first moments do all correspond
with the exact moments. Since the hard spheres Liouville opera-
tor is not antihermitian, as can be seen from (1.26), such an
expansion cannot be made for hard spheres. In section 3.4 another
expansion, the Ursell-2 expansion, will be discussed, where

also use has been made of the different hermitian properties of
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the hard spheres Liouville operator. This expansion is only
valid for hard spheres. It will be shown that in the Ursell-2
expansion the first moments agree with the exact hard spheres
moments. Furthermore it will appear that the deviation ei(z)(t)
of the incoherent intermediate scattering function takes a very
simple form: a multiplicative factor times a function only
depending on kt. The deviation Céz)(t) of the velocity auto-
correlation function is in this expansion the same as the exact
first moment of CD(t).

Finally in the last section the results of the hard spheres
calculations will be given; they will also be compared with

molecular dynamics experiments.

THE STRUCTURE OF THE HARD SPHERES GAS

The static structure of a fluid or gas will be described by
the pair correlation function g(r), which gives the probability
to find a particle at a distance r from another particle in the
origin. From (1.5) it is clear that, if the interaction poten-
tial ¢ (r) is known, one can in principle calculate g(r). How-
ever this cannot be done exactly; so some approximation has to
be used. It can be done as follows: the Ornstein-Zernike equa-
tion (1.10) defines the direct correlation function C(xr) in
terms of G(r) = g(r)-1. In order to be able to calculate g(r)
one must have another relation between C(r) and ag(r). For low
densities satisfactory results are obtained from the Percus-

Yevick equation (Percus, Yevick, 1958):
Cc(r) = (1-exp(By(r))glr) (3.1)

Furthermore hard spheres cannot penetrate into each other so

one should require that:

Alr) =0 for r <o (3.2)




Thiele (1963) and Wertheim (1963, 1964) showed that these
equations can be solved exactly for the case of the hard spheres
potential. The direct correlation function C(r) appears to be
a very simple function because
i) C(r) = 0 for r > 0 as can be seen from (3.1) and

ii) c(r) is a cubic polynomial for O < r £ O:
-4 2 2
C(r) = =(1-n) T (1+2n)“-én(14n/2) " (x/0)

- % n(1+2n)2(r/0)%
(333)

for 0O €. ¢r <@
=0 for r >0

where n = é—ﬂn03. After taking the fourier transform of (3.4)

the structure factor S(k) follows immediately from (1.11) as:

S(k) = (1-no°£ (ko) / (ko)) ~} (3.4)

with
-4 3
f(ko) = =2m(1-n) [ =(n"=3n+2)cos ko/ko

+2(5n3—6n+1)sin kc/(ko)2

(3:5)
e 2 2
+6n (ko) ~{(7n“+4n-2)cos ko+(2+n) “}

-24n(1+2n)2(kc)'4{sin ko+ (cos ko-1) /ko}]

The easiest way to obtain the pair correlation function g(r)
consists of taking the inverse fourier transform of (3.4)
(Mandel et. al., 1970).

It is well known that for intermediate and high densities

the Percus-Yevick equation does not give satisfactory results;

b7
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Fig. 2. The hard spheres pair correlation function g(r) for the reduced
densities no3 = 0.1 (full line), no3 = 0.2 (dashed line) and
no3 = 0.3 (dotted line).
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Fig. 3. The hard spheres structure factor S(k). The densities are the
same as in fig. 2.
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for that case Verlet and Weis (1972) have improved the exact
solution of the Percus-Yevick ecuation. This regime falls how-
ever outside the domain where we can handle the time dependence
of the correlation functions by an expansion as discussed in
chapter 2.

Both g(r) and S(k) are calculated for the reduced densities

n03 = 0.1, 0.2 and 0.3 (see fig. 2 and 3).

THE URSELL EXPANSION FOR THE HARD SPHERES SYSTEM

We shall now in this section apply to the hard spheres
2
system the general expressions for the deviations Ei )(t),

65(2)(t) and Céz)(t) which were obtained in chapter 2 (see

k
table III). Therefore we have to substitute the hard spheres
position F(t) and momentum P(t) in these expressions.

The trajectory can be found as follows (see fig. 4): suppose

that one particle is fixed in the origin O of the coordinate

Fig. 4. The hard spheres collision. The initial
position and momentum is E4 resp. B; the
post-collisional momentum is B'. The
collision takes place at 3.
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system and that the other particle has at time t = 0 an initial
position ¥ and an initial momentum P. The latter particle col-
lides at time t = T and position ¥ = 3 with the fixed sphere.
Since we are considering hard spheres the collision is elastic
and instantaneous. The post-collisional momentum 3' is easily
calculated from the conservation laws of energy and momentum

as
B' = B-2(3-6)0 (3.6)

where G is a unit vector in the direction of §. The momentum B(t)

as a function of time becomes:
B(t) = B-2(3-6)G 6(t-T) (3.7)

where 0(t-T) is the unit step function defined in (1.23). The

trajectory ¥(t) can now immediately be written as:

F(t) = F+2pt/m for 0 <t €T

F(T)+2B' (t-T) /m = F+2BT/m+23' (t-T)/m (3.8)

for t > 1

The factor 2 in the right hand side of (3.8) reflects the use
of relative coordinates (reduced mass = m/2). The collision

time T can be found from the condition:

(1) = ¥+2PT/m = G
As |3| =0 1is fixed, T follows from:
r2 44 BT /mrdpot2/mP = 02 (3.9)

This quadratic equation has two solutions for T of which we




3.3

have to take the smallest one corresponding to the point 1 in
fig, 4. The other solution (point 2 in fig. 4) gives the second
intersection of the trajectory with the sphere in the case that
the particle would stream freely through the sphere.

The above found expressions for B(t) and F(t) can now be
inserted in the expressions for the deviations (2.31), (2.32)
and (2.34). This calculation will not be done in detail here
but will be carried out in appendix E.

It appears, as can easily be seen from dimensional analysis,

(2) s(2)
that Ek (t) and Ek

(t) depend only on the following three
quantities:
i) a reduced wave vector k® = ko

ii) a reduced density n® = n03

/2

1
and iii) a dimensionless time t® = t/a(fm)

(2)

The deviation of the velocity autocorrelation function CD ()

depends only on nt and tx.

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE HARD SPHERES
URSELL EXPANSION

The moments of the hard spheres Ursell expansion in the two
particle approximation are derived in completely the same way
as the moments in the case of a non singular interaction
(section 2.4). Because the calculation is rather complicated
it is carried out in detail in appendix F. The results for the

coherent intermediate scattering function are:

u
Mo(k) = S(k)

M‘ll(k) =0
M;(k) = -5(k) (411nkczg(o)jl(kO)/Bm+k2/Bm) (3.10)
M‘;(k) = 81255 x) (Bm) " -2ka%g" (0) iy (k0)

+g(0){(kO)2/3—kUsink0—2c05k0+2sinkO/kO}]
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where jl(kO) is the first order spherical bessel function
(2.36) and g'(0) the first derivative of the pair correlation
function at r = O+.

Comparing (3.10) with (1.45) we see that the first Ursell
moments differ considerably from the corresponding exact
moments. This discrepancy is due to the approximation (2.16)

for the m-particle static correlation function. In fig. 5 the

1.1 11
1.0F v 1.0
/’ i Lad
-7 =
s A ~
S m I
0.9 = i)
0.8 fua- o 1
1 1 4 .; | o
0 3 6 3 0 3 6 9
—k o —_— K

Fig. 5. The ratio Mg/Mz of the Ursell second
moment and the exact second moment
(left) and the ratio M%/M3 of the Ursell
and the exact third moment (right).

ratios of the Ursell and exact second and third moment are

shown.
The expression for M;(k) can be written in another form
by noting that for very low densities, where g(x) = 6(r-0),

the structure factor So(k) follows from (1.9) as:

s®x) = 1—4ﬂn02j1(k0)/k




so that the expression for Mg(k) becomes:
u 2 o 2
M, (k) = S(k)[k"g(0){s"(k)-1}/Bm-k"/Bnl

Because in this low density limit So(k) ~ 1 one sees that
Mg(k) approaches its exact value.

The first moments of the incoherent intermediate scattering
function Fi(t) and of the velocity autocorrelation function

CD(t) agree completely with the exact moments (1.46) and (1.47).

THE URSELL-2 EXPANSION FOR HARD SPHERES

It appeared in the last section that the first moments of
the two particle term of the Ursell expansion of the inter-
mediate scattering function Fk(t) for hard spheres do not
agree with the exact moments. The reason is the same as in

the case of a continuous potential (section 2.4): the splitting
A
A k
again connected to Fk(t) by means of the approximation (2.16)

of Fk(t) in two parts F, (t) and Fi(t) whereafter Fi(t) is

for the static (m+l)-particle distribution function. To avoid

this splitting the second derivative expansion was introduced

where the A- and B-terms were absent and that yielded the

correct moments. Because, as from (1.26) can be seen, the

hard spheres Liouville operator L+ is not antihermitian the

second derivative expansion is not applicable for hard spheres.
An alternative for hard spheres can be found by making use

of the binary collision expansion (Ernst et. al., 1969) of

the streaming operator:

exp(tL)

1]

exp(tLo)+exp(tLO)*ZT+(a)exp(tL)

A (3.11)

exp(tLo)+exp(tL)* ZT+(a)exp(tLo)
o

with the convolution integral defined by:
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t
f(t)*g(t) = Idtlf(t—tl)g(tl) (3.12)
o
Expression (3.11) may be verified by differentiating with re-
spect to the time t. The summation runs over all pairs of
particles 0 and T+(a) is the interaction part of the hard
spheres Liouville operator (1.22) as far as the pair a is
concerned.
The expansion can be obtained by substituting for exp(tL)

again the whole expression (3.11), resulting in:

exp(tL) = exp(tLo)+exp(tLo)*§T+(a)exp(tLo)
(3.13)
+exp(tL°)*ZT+(a)exp(tLo)*ZT+(3)exp(tLo)+..-
o B
This procedure may be continued till the desired number of
binary collisions is reached.

We will now consider some time dependent correlation func-
tion <£(0)g(t)> where f and g are arbitrary time dependent
functions of the phase space variables, With (1.12), (1.13)
and (3.13) we write this correlaﬁion function in the following

form:
<£(0)g(t)> = <f(0)exp(tL)g(0)>
= <£(0)exp(tL )g(0)>
+ <f(0)exp(tLo)*ZT+(u)exP(tLo)g(O)> (3.14)

o

- <f(0)exp(tLo)*§T+(a)exp(tLo)*éT+(B)

exp(tLo)g(0)>

+ terms containing three and more collisions.




All operators in (3.14) work on the functions following the
operators. One observes that this expansion is similar to the
Ursell expansion derived in chapter 2. The first term gives
the free streaming, the second term contains the two particle
collisions and the next terms are concerned with higher order
collisions.

Just as in the case of the second derivative expansion for
continuous interactions a more symmetric expression is obtained
by shifting one Liouville operator to the left in the second

term of (3.14), leading to:
<[ ex (tLT)f(O)]*ZT (a)exp(tL )g(0)>
P o o + P (o]

where L; is the hermitian conjugate of Lo, defined in (1.17).

From (A.9) one obtains the following explicit expression for

L
Q
L = -L -IK(q)
(e} (o]
a
with (3.15)
K(a) = d(ra—o)ra-ﬁa/m

where ﬁa and ?a are the relative momentum and position of the
particles of pair 0. One verifies easily by differentiation

} g
with respect to t that for exp(tLo) an expression holds

analogous to (3.11) for the full streaming operator exp(tL):
f t
- M 5 * poe
exp(tLo) exp ( tLO) exp(tLo) iK(a)exp( tLo) (3.16)

where use has been made of (3.15). Substitution of (3.16) in
the second term of (3.14) results in the following expression

for the correlation function:
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<£(0)g(t)> = <f(0)exp(tLo)g(O)>

+<[ exp(—tLo) f(O)]*§T+(OL) exp(tLo) g(0)>

—<[exp(tLZ)*ZK(B)exp(—tLo)f(O)]*ZT+(u)exp(tLo)g(O)>
B o.

+<£(0) exp (tLO)*§T+(OL) exp (tLo)*éT+(B) exp (tLo) g(0)>

L T (3.17)

We shall now show that the third term of (3.17) is needed
to obtain a symmetric version of the two collisions term
(the fourth term). To do this we shift in the third term
exp(tLZ) again to the right and in the fourth term
exp(tLo)§T+(a) to the left; after addition of both terms the

result is:

< -ZK(a) exp(-tL,_) £(0) +IT, (@) exp (£L)) £(0)]
o o

* * >
exp(tLo) ZT+(B)exp(tLo)g(O)
B
In appendix A (A.16) we have derived for the hermitian conju-
gate Ti(a) of the interaction part of the hard spheres

Liouville operator the expression:
Ti(a) = T_(a)+K(a) (3.18)

with K(&) given in (3.15). Substitution of (3.16) and (3.18)
in the expression above, thereby restricting ourselves to
the free streaming part exp(—tLO) of (3.16), leads to the

following expression for the correlation function:




<f(0)g(t)> = <f(0)exp(tLo)g(0)>

+<[exp(-tLo)f(O)]*ZT+(a)exp(tLo)g(O)>
o

+<[ZT (a)exp(-tL )£(0)]*exp(tL )*IT, (B)exp(tL )g(0)>
VR o o B 9 o

e (3.19)

The second term on the right hand side of (3.16) is again
needed to symmetrize the three collisions term etc. One sees
again that the first and second term of (3.19) contain the

free streaming and the two particle collisions, while in the
other terms two and more collisions are involved. The expansion
(3.19) will in the following be referred to as the Ursell-2
expansion. In the remaining of this section the Ursell-2 expan-
sion of the intermediate scattering functions and of the velo-
city autocorrelation function will be discussed as far as the

two particle terms are concerned.

a) The incoherent intermediate scattering function

From (1.28), (3.12) and (3.19) it is seen that the self
function Fi(t) consists in the two particle approximation of

two parts:

s(1) s(2)

s
Fk(t) = Fk (t)+Fk (t) (3.20)

with the free streaming part given by:

N
1 -1
FE( )(t) =N ¥ <exp(—if-?.)exp(tL )exp(iK-¥,)> (3.21)
PP L o i

while the two particle collisions yield:

s(2) -1 g
F, o (t) =N g[dtl T <[ exp(—(t-—t1)Lo)exp(-ilt-"fi)]
o i=1

S t3522)
T+(a)exp(t1Lo)exp(ik-ri)>
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1 .
The free streaming part Fi( )(t) is the same as in the Ursell

expansion and follows from (2.21) as:

Fi(l)(t)  axpl-k2t/2Bu) (3.23)

The calculation of Fi(2)

discussed in appendix G; the result is:

(t) is rather complicated and will be

r2? (1) = 120’5 (0) (ko) e ) (3.24)
with
-1 2 2 . .
£(A) = X “exp(-A /4)Idu u exp(-u“/4)[ 2sin(Au/2)Si(Au)
o {3.25)
+2cos (Au/2) {ci (Au) -1n (Au) =y}-Au sin(Au/2)]
where A is a dimensionless variable, defined by:
A= (Bm) %k, (3.26)

Y = 0.577216 is the Euler constant and Si and Ci are the sine-

and cosine-integrals (Abramowitz, Stegun, 1965).

(2)

One sees that FS (t) takes a very simple form: a multi-

k
: 3
plicative factor only depending on the reduced density nO  and

the reduced wavevector kO times a function f£(A) only depending

142

on (Bm) ~/“kt. Fig. 6 shows the function £(\) explicitly.

b) The coherent intermediate scattering function

The coherent function Fk(t) can be written analogous to the
self function and with the aid of (1.28), (3.12) and (3.19),
as the sum of two terms:

( (2)

B 1)
Fk(t)—Fk (t)+Fk (t) (3.27)

with the free streaming and the two particle terms given by:




1 1
3 4
—— A
) -4 /2 .
The function f£(A) (A = (Bm) kt), which
is discussed in the text.

N_1< exp(—if-?i)exp(tLo) exp(iﬁ-fj)>

1 j=1

: N
= N_lz[dt1<[exp(—(t—tl)Lo).Z exp(-iﬁ-?i)] (3.28)

a i=1

& N
T+(a)exp(t1Lo).Z exp (i

i

@

K-%.)>
3

1)

The free streaming term Fﬁ (t) yields again the same result

(2.20) as in the Ursell expansion:

Fil)(t) = 5 (k) ekpl-k"t"/20H) (3.29)

We write the two particle term as the sum of three terms:

s(2) A B
(t)+Fk(t)+Fk(t) {35 30)
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(2)(t) is the two particle term (3.24) of the self

where Fi
part of the intermediate scattering function (the terms with
i=j in (3.28)). The terms containing different particles (i#j)
give a contribution to Fi(t) and Fi(t). Fi(t) includes all
situations where particle i is the same as one of the colliding
particles of the pair O whereas in Fi(t) particle i does not
belong to this pair of colliding particles. The calculation
of these terms is carried out in appendix G. It will be shown
there that, in contrast with the corresponding term Fi(t) in
the Ursell expansion, it is possible to eliminate the triple
distribution function in Fi(t). The results are:
y (Y !

P t) = /%% (0) exp(-22/4) t* )[d‘rfdu exp (1212 (1-u) /4)

® 2100

Idw w exp(—w2/4)[cos(u(kx+kw/2))—cos(u(kx+AwT/2)H
{3.31)

1T1/2

o
F.(t) =;— A exp(-A2/4)erf(A/2)[4Tm*j1(k")g(o)/k"

+S (k™) -1]

where the dimensionless variables nx, kx and tx were intro-
duced at the end of section 3.2, A = Kt ana erf(A/2) is the
error function (Abramowitz, Stegun, 1965). One sees that in
contradiction to the Ursell expansion, where an approximation
for the static (m+1)-particle correlation function was needed
to express Fi(t) in terms of Fi(t) (see section 2.2), in the
Ursell-2 expansion this term can be calculated exactly and

takes finally a simple form.

c) The velocity autocorrelation function

From (1.34), (3.12) and (3.19) one observes that the velo-
city autocorrelation function can be written in the two

particle approximation as:




W=

=1
cy(t) Bm<v1 (0) -31 (t)>

= Bm<v

w|=

=
: >
1 exp(tLo)v1 {3.32)

t

A | ot A

+ 3'Bmijdtl<[exP(—(t_tl)Lo)Vll T+(a)exp(t1Lo)v1>
o

Because the free streaming operator LO leaves the velocity 31

unchanged this reduces to:

-T+(a)vl> (3.33)

1
CD(t) iy

1
o

it
Bm<<71 -61> + —é— Bmedtfv
o
It is clear that the free streaming term yields the ideal gas
value 1. For the two particle interaction term the first
moment (1.47) of CD(t) is obtained. Thus:

12 gt (3.34)

CD(t) = 1- % b

The moments of the correlation functions in the Ursell-2
expansion are calculated in the same way as in the Ursell
expansion. The computation is carried out in appendix H and
leads to the result that, in contrast with the Ursell expansion
for hard spheres, the first moments all agree with the exact
hard spheres moments (1.45), (1.46) and (1.47). Another advan-
tage of the Ursell-2 expansion is that the expressions for the
correlation functions are much easier. For the incoherent inter-
mediate scattering function (3.24) and the velocity autocorre-
lation function (3.34) this is quite obvious and for the
coherent intermediate scattering function (3.31) one sees
immediately that the pair correlation function g(r) does not
occur in the integrand, so that the integral is independent
of the density; g(r) is only present as a multiplicative fac-
tor g(0) and in Fi(t) as the structure factor S(k). Also com-

pared with the second derivative expansion for non singular
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density no”=0.098, as calculated with the Ursell expansion
(squares), the Ursell-2 expansion (triangles) and with molecu-
lar dynamics (circles).
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interactions (see table IV) the corresponding expressions in
the hard spheres Ursell-2 expansion have a much more simple

form.

NUMERICAL RESULTS FOR HARD SPHERES

In this section we shall present the results of the calcu-
lations which are carried out for the hard spheres system. They
will also be compared with molecular dynamics results and with
the moments expansion.

a) The incoherent intermediate scattering function.

The deviation 25(2)

(t) of the incoherent intermediate
scattering function is calculated for a reduced density

n03 = 0.098. The results of both the Ursell expansion and
the Ursell-2 expansion are plotted in fig. 7, together with
the results of molecular dynamics calculations of Lyklema
(1975) . One observes that there is a good agreement between
the theoretical hard spheres calculations and molecular
dynamics. This should be expected because our restriction
to two particle collisions is only valid when the time t is
smaller than the mean free time T (for n03 = 0.098 is
‘|.'/(J(Bm)1/2 = (/2ﬂno3)_1 = 2.3, which is twice as much as our
largest time).

Furthermore it is clear that the differences between the
Ursell and Ursell-2 expansion are small; only at the maximum
of the deviation ei(z)(t) they become larger. It is obvious
that the Ursell-2 expansion describes the short time beha-
viour better than the Ursell expansion which is a conse-
guence of the fact that in the Ursell-2 expansion nowhere
an approximation for the static m-particle distribution
fiinction is made such as (2.16) in the Ursell expansion.

In fig. 8 the theoretical results are compared with the
hard spheres moments expansion. One sees that the moments
expansion is only valid for very short times (up to

t/o(Bm /2 = 0.1).

L e s




0.03 0.03 0.03

€5 (t)

0.02 0.02

0.01 0.01

0.00 0.00
0. 0

0.02
exlt)

0.01

0 0
0.0 0.2 0.0 0.2
—_—t® —_—t®

Fig. 8. The incoherent geviation ei(t) of a hard spheres system
with density no~ = 0.098 as calculated with the Ursell
expansion (circles) and the Ursell-2 expansion (squares),
compared with the hard spheres moments expansion (full
line) (k* = ko and t* = t/o(Bm) /).

b) The coherent intermediate scattering function.

In fig. 9 the numerical results of the calculations on
the deviation eiz)(t) of the coherent intermediate scattering
function are shown for a density nG3 = 0.098. The differences
between the deviations of the Ursell- and the Ursell-2 ex-
pansion are also small for the coherent function. Fig. 10
shows the theoretical results compared with the moments
expansion; one observes that, just as for the incoherent

deviations, the validity of the moments expansion is
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restricted to very short times (up to t/c(fm) 2 e 01

The velocity autocorrelation function.

In fig. 11 the results of the calculations on the Ursell-
and the Ursell-2 expansion of the velocity autocorrelation
function are plotted, together with the molecular dynamics
calculations of Lyklema (1975). One should keep in mind
that the Ursell-2 expansion is the same as the moments
expansion up to the first moment (see (3.34)). We notice
that also the theoretical calculated velocity autocorrela-
tion functions follow the molecular dynamics results quite

well.

The validity of the hard spheres moments expansion is, in

contrast with the moments expansion for continuous potentials,

not restricted by the duration of the collision. This is clearly

demonstrated by fig. 11, where one sees that the moments ex-
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Fig. 11. The hard spheres velocity autocorrelation function C_(t) for
a density no3=0.098 (tX=t/c(Bm)1/2) as obtained by the Ursell
expansion (dashed line) and the Ursell-2 expansion (full
line; identical with the hard spheres moments expansion) .

The circles denote the molecular dynamics results (Lyklema).

pansion (in this case identical with the Ursell-2 expension)
follows the Ursell expansion quite well. For the intermediate
scattering functions the convergence becomes poorer as k grows
larger. This is due to the fact that the third moments (1.45)
and (1.46) are proportional to k2 so that the terms with t3
become relatively larger as k becomes larger and have to be
compensated by the fourth and higher moments, which are not

yet known.
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CHAPTER 4

NUMERICAL RESULTS FOR THE LENNARD-JONES POTENTIAL

In the last chapter the results of the hard spheres Ursell
expansions were presented. However, because we did only take
into account the hard core of the interaction, we can only
expect that these results agree with the results of measure-
ments in a qualitative way. The intermediate scattering func-
tions can be measured with neutron scattering experiments on
a time scale of 10_12 s and for wave vectors k of the order of

-1
1 87, Because our theory is valid for times up to the mean free

“time, which is inversely proportional to the density, we are

primarily interested in low density neutron scattering experi-
ments. Such experiments can only be done for systems with a
large scattering cross section like Ar36 (Andriesse, 1970).
Therefore we have carried out calculations for a system with

a Lennard-Jones (12,6) potential, which accounts very well for
the equilibrium properties of noble gases like argon (Verlet,
1967, 1968).

In the case of the Lennard-Jones potential, defined by:
1< 6
¢ (x) = 4e((0/x) "-(0/r)") (4.1)

where € is the depth of the potential and 0 the molecular dia-
meter, the calculations are much more complicated than in the
case of hard spheres, because it is not possible to give an
analytical expression for the trajectories such as (3.8) for
hard spheres. The equation for the trajectory can be solved

by integration for a spherical potential such as (4.1), but
such an integration procedure is more laborious than straight-
forward integration of the equations of motion. We have solved
the equations of motion numerically by using the prescription
of Verlet (1967).

The integrals that occur in the expressions for the devia-




tions of the intermediate scattering functions and of the velo-
city autocorrelation function (see tables III and IV) are
calculated by means of Monte Carlo integration (Hammersley,
Handscomb, 1967), which we shall here describe briefly. Suppose

we have the following multidimensional integral:
F = [ £(X)ax (4.2)

over the n-dimensional hypercube, £(X) being a given function.
The simplest Monte Carlo procedure (crude Monte Carlo) con-

sists of selecting a sequence of M independent, uniformly distri-
buted points ii' i=1,2,..,M in the hypercube and calculating

the average value:
M
F,o=M I £(X) (4.3)

over this M points. It is possible to show that the expectation

value of this estimate is equal to the desired integral:

<P > = 4.4

P F (4.4)
while the square of its standard deviation 0 follows from:

-1

o’ =M J ax (£ (%) -F) 2 (4.5)
Thus by increasing the number of points M the expected error
can be made as small as desired. Assuming that f(¥) is roughly
proportional to a known positive function g(?), so that the
regions which make important contributions to the integral of
£(X) are also important regions for the integral

G = f g (%)dx (4.6)

we can write:
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F=¢G f dx h(X) p(R) (4.7)

with

h(X) = £&) /9@

and

-
p(;) g(x) /G
Interpreting p(i) as a probability distribution function we

sample M independent points % §M from p(?) and form the

IR
estimate.

M
F.=GM I h(X,) (4.8)

which has as expectation value the desired integral F (4.2),
while the standard relative error follows as the square root
from:

(o/F)% = (r/c) L

I &% (h (%) -F/G) (4.9)
With a suitable choice of g(ﬁ) this relative error can be made
smaller than that of the crude Monte Carlo estimate. This pro-
cedure is called importance sampling, because in sampling with
a probability proportional to the known function g(i) we try
to weight more heavily the regions that contribute much to the
desired integral.

Returning to the Ursell expansion (see table III) it appeared
profitable to sample from the Maxwell-Boltzmann momentum distri-
bution function ¢ (p). In that case 3-104 points are sufficient
to reach an accuracy of a few percent whereas for the conven-
tional numerical integration methods a multiple of this number

of points is needed. So to save computing time we have chosen




for this weight factor in the Monte Carlo integration. The
results of these calculations will be presented in the re-

mainder of this chapter.

a) Incoherent intermediate scattering function.

As already discussed in chapter 2 we expect that the restric-
tion to the two particle collisionsin the Ursell expansion is
permitted for times smaller than the mean free time T, which
is inversely proportional to the density n. So, to cover a
large time scale, it is necessary to consider a system with a
small density. It appears that for densities up to n03 i 20 8 £
the useful time scale is of the same order of magnitude of that
reached in neutron scattering experiments, which is the reason
that we have only done calculations for densities nO3 < 0.1.

Fig. 12 shows the results of the calculations that were
carried out for the Ursell expansion and the second derivative
expansion of a system with a Lennard-Jones interaction (density
n03 = 0.1, temperature kBT/E = 1.5). In fig. 12 are also plotted
the results of the molecular dynamics calculations of Michels
(1976) . One observes that there is an excellent agreement be-
tween both the Ursell expansion and the second derivative
expansion and the molecular dynamics results, which should be
expected because for times smaller than the mean free time T
(1/0(Bm) /2

dominate. Furthermore one sees that the results of the Ursell

~ 2 for n03 = 0.1) the two particle collisions

expansion agree quite well with the results of the second
derivative expansion. We note that the calculations in the
case of the second derivative expansion are less accurate for
large times than in the case of the Ursell expansion because
the time integration in (2.58) has to be done over a few number
of points (20) to save computing time.

Fig. 13 shows the results of our calculations on a system
with a Lennard-Jones interaction with density nc3 = 0.1 and
temperature kBT/e = 1.18, together with the hard spheres

results for this same density. The choice of this point will
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Fig. 12. The incoherent deviation si(t) of a system with a Lennard-
Jones interaction; the density no°=0.1, the reduced tempera-
ture kBT/£=1.5 (t*=t/0(8m)1/2, k*¥=ko). The circles denote
the values obtained by the Ursell expansion, the squares
the values of the second derivative expansion while the full
line gives the molecular dynamics results (Michels).
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be explained at the discussion of the coherent intermediate
scattering function. One sees at once that the hard spheres
deviation Ei(t) has qualitatively the same behaviour as the
Lennard-Jones interaction but it is a factor 2 smaller in mag-
nitude; apparently the negative part of the Lennard-Jones
interaction is very important for a good description of the
short time behaviour. A closer inspection of where the contri-
butions come from shows that in particular the region in the
potential well contributes heavily.

In fig. 14 the results of our calculations at a lower den-
sity nG3 = 0.075 and the same temperature kBT/E = 1.18 are
plotted. The choice of this density and temperature will also
be motivated at the discussion of the coherent function. As
to the correspondence between the Ursell and the second deri-
vative expansion in the last two cases, the same remarks as
above apply.

Unfortunately there exist at these densities no neutron
scattering experiments for the incoherent intermediate
scattering function so that it is not possible to compare our
theoretical results with experimental data. The lack of neutron
data is explained by the fact that only unusual effective
scatterers like Ar36 allow to perform measurements at these
densities. Ar36 scatters however coherently. The other candi-
date would be H2' but experiments at these low densities are
not yet performed.

The behaviour of Fi(t) for very short times has to agree

with the moments expansion (1.37). Fig. 15 shows the deviation
s(2)
€
K
moment. It is clear that the moments expansion is only usuful
1/2

(t) together with the moments expansion up to the fourth
up to times t/0(Bm) = 0.1. This is a consequence of the
fact that, due to the hard core, the duration of the collision
is small comparea with the mean free time.

Finally an interesting feature should be noted. From (3.24)

one observes that in the hard spheres Ursell-2 expansion
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Ei(t) consists, apart from a density dependent factor, of

(kO)'—1 multiplicated by a function depending only on (Bm)_l/2

kt..
It should be interesting to see if the deviations of a Lennard-
Jones system also obey this scaling property (Yip, 1971). There-
fore in fig. 16 kO E (t) is plotted as a function of

(Bm)-l/ kt in the case of the second derivative

expansion for a system with a Lennard-Jones interaction. It is
clear that, especially for the smaller k-values, this scaling
property is quite good fulfilled. The question is if the exact
deviation Ei(t) has also this scaling property; only a low
density neutron scattering experiment can give evidence on

this point.

b) Coherent intermediate scattering function.

For the coherent intermediate scattering function there
exist low density neutron scattering experiments, performed on
gaseous Ar36 (Andriesse, 1970) for values of temperature and
density which explain our choice of these quantities. Fig. 17
shows the neutron data for a density n = 0.25 - 1022 cm_3
(no3 = 0.1) and a temperature T = 141.2K (kBT/E = 1.18), to-
gether with the theoretical results both for the Lennard-Jones
as for the hard spheres interaction. One observes at once that
there is a large discrepancy between the Lennard-Jones devia-
tions and the neutron scattering results. Although both devia-
tions have qualitatively the same behaviour the values of the
neutron scattering data are much larger. Because there is for
the incoherent intermediate scattering function a good agree-
ment between our results and those of molecular dynamics and
there is no reason to suppose that this should be different
for the coherent intermediate scattering function, it is
difficult to explain the difference between the neutron
scattering spectra and our calculations. The neutron data also
fail to agree with the moments expansion which applies for very
short times; from fig. 18 it appears that there is for these

times a good agreement between our results and the moments
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expansion.

Interesting is also the comparison between the Lennard-Jones
and the hard spheres results. One sees from fig. 17 that the
hard spheres deviations have, apart from the smallest k-value,
qualitatively the right behaviour but they are too small, just
as in the case of the incoherent intermediate scattering func-
tion. Here also the influence of the negative tail of the
interaction and in particular of the potential well is manifest.

Comparison of the results of the Ursell expansion with those
of the second derivative expansion in fig. 17 shows that there
are, in contrast with the incoherent intermediate scattering
function, larger differences between both expansions. There
are two reasons for this:

i) the approximation (2.16) for the triple distribution func-
tion which has as a consequence that even the second moment
(2.36) of the Ursell expansion does not agree with the
exact second moment (1.39).

ii) in the case of the second derivative expansion it appears
that, especially for k v 12_1 where ek(t) is small, the
results are statistically more inaccurate than that for
the Ursell expansion; to get satisfacto;y results the
double number of points (72000 points) had to be taken for
PR g

Unfortunately there are no molecuiar dynamics experiments for

the coherent function so that it is not possible to decide yet

which expansion gives the better results. Although theoretically
the second derivative expansion has a small edge over the

Ursell expansion we must for the time being take the difference

of the two methods as a measure for the accuracy.

In fig. 19 the neutron scattering data for the smaller den-
sity n = 0.19 - 1022 cm_3 (nc3 = 0.075) and the temperature
T = 141.6K (kBT/E = 1.18) are plotted, together with the
theoretical results for the Lennard-Jones potential. Although
one should expect that for this smaller density the theory

would give even better results as in the foregoing case, one
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sees at once that the discrepancies are just as large.

Finally fig. 20 shows the theoretical results for a density
n03 = 0.1 and a temperature kBT/e = 1.5. As to the difference
between the Ursell- and the second derivative expansion in the

two last cases the same remarks as in the first case apply.

c) Velocity autocorrelation function.

The velocity autocorrelation function, as calculated with
the Ursell expansion, is presented in fig. 21 for three densi-
ties and temperatures. Fig. 22 shows that the moments expansion
also in this case holds for times short compared to the mean

free time.

d) Discussion.

As earlier discussed in this chapter our theory is valid
for times smaller than the mean free time, which is inversely
proportional to the density. So to cover a large time range
it is necessary to consider low density systems. But on the
other hand, if one is content with a shorter time interval, it
is also possible to carry out calculations for systems with a
higher density, for which neutron scattering experiments are
performed on Ar36 (Hasman, 1973). Fig. 23 and 24 show resp.
the incoherent and coherent neutron data for the density
n = 0.85 . 1022 cm“3 (nU3 = 0.34) and the temperature T = 152.7K,
together with the theoretically computed deviations for a
Lennard-Jones interaction. It is clear that for this density
the discrepancy is also quite large. Because the experimental
error of 10-15% is of the same order of magnitude as the calcu-
lated deviations more accurate neutron scattering experiments
shall be necessary to decide if the theory gives a true result.

We note that on the one hand our theoretical results agree
quite good with molecular dynamics calculations for times
smaller than the mean free time while on the other hand there
is a great difference between our results and those of neutron
scattering experiments. It should be worthwile to have accu-

rate low density neutron scattering data, both for the coherent
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as for the incoherent intermediate scattering function, so

that a comparison between the theoretical results and the
measurements becomes possible.

From the theoretically calculated deviations it appeared
that there is, especially for the coherent intermediate scatter-
ing function, a sometimes appreciable difference between the
Ursell expansion and the second derivative expansion. The
reasons for this are discussed in the foregoing. Summarizing
we can say that the Ursell expansion has the disadvantage that
it not yields the exact moments but has the advantage that it
can be calculated with a reasonable number of points in the
Monte Carlo integration procedure; the second derivative ex-
pansion on the other hand yields the exact moments but has the

disadvantage that the statistical accuracy is poor.
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APPENDIX A

THE HERMITIAN CONJUGATE OF THE HARD SPHERES PSEUDO LIOUVILLE
OPERATOR L+

The hermitian conjugate Li of the pseudo Liouville operator L+
is defined in (1.17):

.l.
<fL,g> = <gL > (a.1)

where £(I') and g(I') are arbitrary functions of the phase space

variables I'. The operator L, is given in (1.21) as:

1 .
L, =L+ 5); Z T (i3) (A.2)
i#j

Substituting (A.2) in (A.l) one obtains:

1
<M [L_+>ZZ T (1] g)>
o - i3 +
’ (a.3)
= <g(T) [LJr . ) T+(ij)] £(I)>
o 2., .0 *
i#j
We shall examine the free streaming and the interaction part
of this expression separately. Let us denote the free part by

Io(f,g),so
Io(f,g) = <f(F)Log(F)> (A.4)

After substitution of (1.15) this average becomes:

o¥

Io(f.g) = <£(T) :

LI e 4

El . §%~ g(l)>

1 : 3
B,

= 2 9
b - ¥ gf—q(l“)
=1 i

(A.5)

I dl.p (L) £(T)
5

where use has been made of (1.2). Integrating this once par-
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tially one obtains:
>

D,
i 3
Io(f,g) = - [ ar g(M ? el p (T £() (A.6)
i i
and after working out the derivatives:

Io(f,g) = - <g(T)Lof(F)> -
> (B.7)
Py

9
B ( dl £(Mg(M) Z ==« 55— p(I)
i i
Let us now pay our attention to the second term of this expres-
sion. Using the Hamilton function given in (1.1) and the phase
space density (1.3) this term can be written for non singular

potentials in the following form:

B<E(M g(I) = B e 3 E elnlys
gul. 4 gt Ty 4 ik
i i j#k
§i . dw(ri.)
= B<£(Mg(l) Z z(—— SR Wb ~ W
g\ ij/ ar,.
i#3 ij

One obtains a somewhat other form by interchanging i and j and

then adding both expressions:

1 N & -
> B )i#? <EM g (r; N8, y/m) - x>

with

This average contains the factor

exp(-Bv(rijnw'(rij) = -B

d
ar exp(-Bw(rij))
1]

Writing the right hand side for hard spheres as:

d 6(r,,-0) = 6(r,,.-0)
1]

i)
drij
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we come to the following result for hard spheres:

-1
— ' = -
exp ( B¢(rij))¢ (rij) B 5(rij-0)
Now rij has to be taken at the outside of the sphere, where
exp(-B¢(rij)) = 1, so this factor can again be supplemented and

one gets finally for the second term of (A.7):

1 > 2
- 5—§#§ <f(F)g(F)6(rij—0Xpij/m)' rij>

With (A.7) the following expression is obtained:

<ML g(M> = —<g(ML_£()>
(A.8)
1 e -
—< =1z . >
gl 7 - ; 6(rij—0Xpij/m) rijf(F)
i#)
So the hermitian conjugate Lz of the free streaming part of
the pseudo Liouville operator L, is:

T 1
Ly = "Lg =3¢

ot %
s ; G(rij—GXpij/m)- rij (A.9)

i#)

The second term in (A.3), the interaction part, will be de-

noted by I'(f,q):
I'(£,q) = <£(I) % LIt (i5)g()> (A.10)
i#j
This becomes after substitution of (1.22):
: "
' = |ar v . ks -
1'(f,q) [d p(F)f(F)5§#§|vij rij|9( Yy ?ij)é(rij—c)

(bij~1)g(F) (A.11)

[N

> <> > & >
§#§ [dr p(T)f(..,pi,..,pj,..)|vij rij|6( vij.?ij)

N

N ' s > <>
G(rij—o) [g(..,ﬁi,..,ﬁj,..) g(..,pi,..,pj,..ﬂ

105




where use has been made of (1.24) and (1.25). In the first term
of (A.11) we make a change of variables from ﬁi,Ej to 5;,55.

The element of phase space dI' and the phase space density func-
tion p(I') are invariant under this transformation from I' to I''.

So dI' = aI'' and p(I') = p(T''"). Furthermore

p'i'j . ?ij = _313' . ?ij (A.12)

as can easily be verified with (1.25). After this transformation

we obtain for the first term of (A.11):

1 ' ' b o I - = 4 T2 pod >
2?#? JdF p(l )f(..,pi (pij-rij)rij,..,pj+(pij-rij)rij,.J

S = ¥ g T '
| vij'rij|e(vij ?ij)ﬁ(rijﬁc)g(..,pi,..,ﬁj,.d

and after omitting the primes and again introducing the col-

lision operator bij:

1 > - e
3?#? fdf p(F)g(F)Ivij-rij|8(vij-?ij)é(rij-o)bijf(F)

So the collision term I'(f,g) becomes:
1 > -~ 2 >
' =<g(=L L . . § - >
I'(£f,q) gl )2i#j|vij rijlewij 7, )8(x; j-0)b £(T)

e 513 2 B .
- <g(F)2§#§|vij-rij|e( ¥y fij>a(rij-o)f(r)> (a.13)

and one sees immediately that the hermitian conjugate Ti(ij)

of T+(ij) is:

'1'.._—7“ S 2
T+(lj) = |vij-rijle(vij.rij)d(rij—c)bij
(A.14)
- ¥, |0 L F )6 (2, -0)
1] 1) 13 13 1]

The first term on the right hand side looks very similar to

the expression (1.22) for T_(ij). This suggests that we can
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write (A. 14) in the following form:
T (43) = T_(1+[¥, 5,60, O, E, )-8(=v, -E, )]
+ - Gy ko 5 13 13" 43 L 5y e Xy

(A.15)

which is easily seen to be the same as:

s B 2= > Sa
T+(1j) T-L43) + (vij rij)5(rij—0)

(ar.16)

T (1j) + Eij/m . fij 8(xy =)

With (A.3), (A.9), (A. 16) and (1.21) one obtains finally for

the hermitian conjugate Li:

+ t 1 L
L+ = LO + 5 E#Z T+(lj)
4 (A.17)
1 S
= —LO + 5—; ; T_(ij) = -L_
i#j
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APPENDIX B

THE CALCULATION OF THE EXACT HARD SPHERES MOMENTS

From (1.36), (1.37) and (1.44) one sees that the n'th moment

Mn(k) of the intermediate scattering function can be written as:

M (k) = N <T exp(-ik.2.) (L™ L exp(ik.7,)>  (B.1)
n i i * j J

In an analogous way the moments of the incoherent intermediate

scattering function are obtained as:
S -1 > > n e
= < -ik. ik. > T
Mn(k) N i exp(-ik ri)(L+) exp(ik ri) (B.2)

So it follows from (B.1) and (B.2) that:

M_(k) = Mi(k) + N'1<; ;exp(—iﬁ.?i)(L+)nexp(iz.;j)>

i#j
(B.3)

and calling the i'th and j'th particle particle 1 and 2 resp.

the summation yields merely a factor N(N-1):
S &> > n > >
= -1)< -i >

Mn(k) Mn(k)+(N 1)<exp( lk.rl)(L+) exp(1k.r2) (B.4)
One should take care of the sequence of the operators in (B.1)-
(B.4), because LO and T, do not commute.
We shall now give a derivation of the first few moments.
a) Zeroth moment

M) = Nz exp(-iK.Z Jexp(ik.2,)> = 1 (B.5)

i

Thus with (B.4) the zeroth moment of Fk(t) becomes :

M (k) =1+ (N-1)<exp(-iﬁ-(?1-?2))>




From (1.5) and (1.9) this is easily seen the same as:
N
Mo(k) = 1 + nG(k) = S(k) (B.6)

b) First moment
The first moment Mf(k) of the incoherent intermediate scat-

tering function follows from (B.2) and (1.21) as:

M‘;‘(k) SN exp(-ikK.F)[L_ + Lesgwe (191
b & o 2 E oile g
i . i (B.7)

Lo

exp (ik.7,)>

: 1
One observes immediately that in (B.7) the operator T+(ij) works
only on a function of the space variables and therefore gives
a contribution zero because of the presence of the operator

(bij-l) in T+(ij) (see (1.22) and (1.24)). Thus:
s I | > > e
Ml(k) =N <§ exp ( 1k.ri) Lo exp(lk.ri)>

and after the substitution of Lo from (1.15) this expression

becomes:

I'U+

3
m

M () N Lz exp (-iK.7 )2

] & ¥
i >
. §?T~exp(1k.ri)

J

.

N i<z iﬁ.§i/m>
i

This is an average of an odd power of the momentum so the first

moment of Fi(t) is zero:
Mik) =0 (B.8)
The first moment of Fk(t) follows from (B.4) and (B.8) as:

- 3 ST >
Ml(k) = (N-1)<exp( 1k.r1)L+ exp(lk.r2)>
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In the same way as for the self function one arrives at:
M, (k) = (N-1)<<i}”<‘.§2/m)exp(-ii€.(?1-?2))>

and because we have here also an odd power of the momentum we

find finally:
Ml(k> =0 (B.9)

c) Second moment

The second moment of Fi(t) follows from (B.2) as:

s -1 > > 2 3
= < 4%, 7,)>
M, (k) =N i exp(-ik.¥,) (L) exp (ik )
Here we can simplify the computation by making use of the her-
mitian conjugate LI of L.+ defined in (1.17) and (1.26) to

obtain:

-1
M3 (k) = N <I[-L_ exp(-ik.r )][L, exp(ik.¥)]>
2 i = - 4 + i
The operators T, (ij) that are contained in the pseudo Liouville
operators L, (1.21) give again a zero result because of the

presence of (bij—l), so we get:

s -1 LSt S>>
M2(k) N <;[_Lo exp(—lk.ri)][Lo exp(lk.ri)]>

1
(B.10)

= —N_1<2(ﬁ.§i/m)2> = -kz/Bm
i

The expressions (B.4) with n = 2 and (B.10) yield for the

second moment of Fk(t):
2 > 2 > >
Mz(k) = -k /Bm+(N—1)<exp(—1k.rI)(L+) exp(ik.r2)>

Shifting one of the L+ operators to the left and proceeding in
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the same way as for M;(k) we find:

M, (k) = %%/ B+ (N-1) < (KB, /m) (., /m) exp(-ik. (F,-%,))>
Again the average over the momenta is zero, so

M, (k) = -k°/Bm (B.11)

d) Third moment
From (B.2) one sees that the third moment of the incoherent

intermediate scattering function can be written as:

>
r,)>

s -1 e 3 >
M3(k) =N <I exp(—lk.ri)(L+) exp (ik. i

i
We can choose particle i as particle 1, so the sum over i pro-
duces merely a factor N. Furthermore one Liouville operator L+

may be shifted to the left, yielding:
s +> > > >
= <[ - -i i >
M3(k) [-L_ exp( 1k.r1)]L+[L+ exp(Lk.rIH

Because only the free streaming parts Lo in the Liouville
operators L, (1.21) give a nonzero contribution if they work
on a function of the coordinates only, this expression takes

the following form:

= s A P il
M (k) —<[Lo exp(-lk.rl)]L+[LO exp(lk.rl)]>

~dk.p, /m)exp(~iR.Z )L+ =L 5 T (i)]
1 1 Dl AR
i#]

('E.El/m) exp(ii.?lh (B.12)
One observes at once that the free streaming part L gives a
contribution —1<(k pi/m) > and this is zero because it is an
average over an odd power of the momentum. The operator T+(lj)
yields only a finite contribution if -the pair (ij) contains

particle 1.

111




112

For the other particle we can take particle 2, so the summation

produces only a factor (N-1) and we get for the third moment

s
M3.

M;(k) = -(N-1)(k.B, /m) exp(-iﬁ.?l)T+(12xi€.§1/m) exp(iii.?lw

(B.13)

From (1.22) and (1.24) it follows that:
> > > - > -
T, (12)k.p,/m = Iplz.rlz/mlO(-plz.rlz)é(rlz—o)
(K.3!/m - K.B,/m
With (1.25) this expression can be rewritten as:

> > i P 2 2
T,(12)k.p,/m = (p,,+E,,/m) (Korlz)e(-ﬁlz-?n)6<r12ﬂ)
(B.14)

Substituting (B.14) in (B.13) we obtain:
s 2 ¥ > - > - 2
M3(k) = -(N—1)<(k-p1/m)(k.rlz)(plz-rlz/m)
(-3, %) 8(x ,-0>

Interchanging the indices 1 and 2 the factor (K.ﬁi/m)(ﬁ.flz)

goes over in -(E.ﬁz/m)(ﬁ.flz) and if we add both expressions

we come to:
M3(k) = - lm-1)<0¥3 /m) K.z, ) (B, ..2../ )2
3 2 B3P 2957 Py 50,/
> >
0(-p,%,,)8(x),-0)>

The ensemble average can be written out as:




W Bhadiidss  puye s Dk 2
M3(k) = -n /(2N) [ drlerdpldp2 exp(-B(p1+p2)/2m)g(r12)

- - % 2 - I > %
(K.§12/m)(K.rlz)(plz-rlz/m) C‘(—plz.rlz)é(r12 o)

5 224 292 -1
[[ ag, dp,, exp(—@(p1+p2)/2m)]
where use has been made of (1.5)-(1.7).
We now make a transformation to the center of mass coordi-

- >
nates R and momenta P and to the relative coordinates ¥ and

momenta ﬁ, defined by:

5 o > >
P=3,+5, R = (F,+%,)/2
(B.15)
p I~ e ¢ g L %
p = (p1 p,) /2 r =% -r,
After this transformation the integral becomes:
2 2
M (k) = -n2/2m) [ dRAZAPAP exp(-B(P*/4+p”) /m)g(r)

~ - 2
(X.28/m) (K.r) (2p.2/m) “O(-B-%) 8 (r-0)
2 2 -1
[J aBad exp(-B(P“/4+p”) /m)]
The integration over § yields only a factor V, that over g in
the numerator and denominator cancel and the integral over E

/2
in the denominator gives a factor (mm/RB) / so we get for the

third moment:
1 3> 2
Mj(k) = - 3n (B/mm) 2 [ d¥dd exp(-Bp~/m)g (r)
(B.16)

(K-28/m) (-£) (2B.2/m) 20(--2) 6 (r-0)

We start with the calculation of the ;—integral:
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[ a3 exp(-Bp>/m) (X-25/m) (£+28/m) 20(-3-2)

If we take r as the polar axis and go over to spherical coordi-
nates (p,0,¢) the integral becomes:

© m 2m

2 2 > > 2
pdp | sin® a8 | d¢ exp(-Bp~/m) (k-2p/m) (2p cosB/m) O (-pr cosh)

o o o
The step function O(-pr cosf) reduces the interval of the
f-integration to (m/2,m) . Then all integrations are elementary

and yield:
-am %.2/8°
Substitution of this result in (B.16) leads to:
1 E

M3(k) = 2n T 2(Bm) 5’[ at glx) (-2Y%8 (z-0)

The remaining integrations over the space coordinates are also

very easy and give finally:

—-

3

Mz(k) = 872ng(0) (ko) ° (Bm) 2/3 (B.17)
The third moment M3(k) (o) v Fk(t) follows from (B.4) as:
- mS a2 3 P
M3(k) = M3(k) + (N-1)<exp(-ik rl)(L+) exp (ik r2)>

In the same way as we arrived to (B.12) we get here by shifting

one Liouville operator L+ to the left:

_ S _ _ .z _,—>.—+
M3(k) = M3(k) (N-1)<(k pl/m)exp( ik rl)[Lo +
1 = o > >
+ 5—? ; T+(1J)Nk-p2/m exp(lk-r2)>

i#3

The free streaming part Lo gives a contribution:




-> -

—(N—lk(ﬁ-pl/m)exp(—iﬁ-rl)i(K-ﬁz/m)zexp(iﬁ-?2)>

This vanishes because of the factor ?-Bl/m. Thus the expression

for M3(k) becomes:

My (k) = Mj(k) - (N-1%@E-P /m)exp(-ii-?l) £IT (i])

i#J

=

1

(ﬁ-gz/m)exp(if~;2)>

It is clear that the operator T+(ij) gives only a non vanishing

contribution if the pair (ij) contains particle 2, so

My (k) = Mi(k) - (N-1x(E-Bl/m)exp(—if-?l)[T+(12> +
N >

+ 2 7 (21)]K-B,/m exp (ikK-%.)> (B.18)
i=3 + 2 2

Let us first consider a term with T+(2i), say
<(?-§1/m)exp(—i?-?l)T+(23Xﬁ'§2/m)exp(iﬁ-?2)>

-
This is zero because of the occurrence of k-gl/m. Thus from

(B.18) there only results the term with T+(12):

My (k) = M§(k) - (N-1)¥K-D /mlexp (-iR-¥ )T (12)

1
(X-p,/m) exp (iK-%,)>

2 2
and again using (B. 14) this becomes:

S > > g - > 2
M3(k) = M3(k) + (N—1)<(k'p1/m)(k'r12)(rlz-plz/m)

et P>
O('Plz'rlz)5(r12—0)exp(—lk-r )>

12

After the introduction of the center of mass and the relative
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coordinates (B.15) we can calculate this average in precisely
the same way as in the case of the self function. This leads
to the following expression:

1 3

M (k) =(8/3) 2 ng(0) (Bm) 2 (ko)2-3k0 sinko -
(B.19)

- 6cosk0 + 6(sinko) /ko]

e) Velocity autocorrelation function

Finally we shall give some expressions for the first moments
Cn of the velocity autocorrelation function CD(t). There is no
need to calculate the coefficients Cn separately because they
can be obtained from the moments of the self part of the inter-
médiate scattering function Fi(t) by means of the relation
(1.35). By substituting for Fi(t) its time expansion (1.37)
and for CD(t) (1.38) one finds immediately for the moments c,

of CD(t) :

C_ = -fm Lim MS+2(k)/k2 (B.20)
k>0

Inserting (B.10) and (B.17) in (B.20) one sees that the first

moments are given by:

(B.21)
1 1

~8/3) 2 no’g(0) (Bm) 2

O
]
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APPENDIX C

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE URSELL EXPANSION

(2)
4 (t)

2
The coefficient a, of t in the Ursell expansion of €

follows from (2.24) and (2.35) as:

1 >

o 27l e a2
e Jdpldpzdrldr2¢(p1)¢(p2)g(r12){exp( ik

a1
+

o

)+exp(ii-? )}

+exp(—i_lz-?2)}[ L2(12)-Li(12)]{exp(ik’-? X

1
(c.1)

Noticing that, using (1.15) and (1.16):

L2(12)—L2<12) = L2(12)+L (12)L_(12)+L_(12)L (12) (C.2)
o & o z 4 [o)

and that
LI(12)exp(iK-? ) = LI(12)exp(i§-
we find easily that:

2P

[L2(12)—Li(12)]{exp(lk-? ) +exp (ik-

Substituting this in (C.1) the expression for a, becomes:

2
a, = odienTl] ok R e
2 2 Pdp,dr,dr ¢ (p )¢ (py)g(r, ;)
e o (r, )
{exp(—iﬁ-; )+exp(—iﬁ-? )} i}—5»- ———;ig—
1 2 m oY

1

e

{exp(ii-?l)—exp(ik-?z)}

which can also be written as:
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1 . 2 =1l > > > >
a, = - 7 in” (Nm) [dpldpzdrldrzcb(p1)¢(P2)9(r12)

> > > 3¢’(r12)
{exp(ik-'r, ) -exp(-ik-r, )}k + ——0
12 12 Brlz
After the introduction of the center of mass and relative coor-

" > > " . > - >
dinates R and ¥ and after integration over Pys Py and R we get:

T . 3¢ (r)
3

By ™ = %—inm_ljd? g(r) {exp(ikK-¥) -exp (-iK-¥) }
Now it is useful to average over the direction k of K; this

yields for a,:

2, % nkm—ifd? g(r)jl(kr)f . é%%EL

with jl(kr) the first order spherical Bessel function (Abramo-
witz, Stegun, 1965). The integrations over the angles r can be

carried out, resulting in:

a, = 27nkm f rzg(r)jl(kr)w'(r)dr (C.4)
(o]

The intermediate scattering function Fk(t) follows from

(1.32) as:
./
F (t) = S(k) {exp(-k“t /ZBm)+€k(t)} (c.5)

Expanding the exponentional in a power series in t and substi-

tuting the series for ek(t) we find:

F(8) = §(K) {1—k2t2/28m+a2t2+0(t4)} (c.6)

With (1.37) the moments of the Ursell expansion can be obtained

from this expression as:




M~ = S(k)
o
{c.7)
5 S 2
M, = S (k) (-k /Bm+2a2)

with a, given by (C.4).
The two particle term of the self part of the intermediate
scattering function follows from (2.11) and (2.13) as:
2 (6 = oA f a8, B, 2,0 (p)) 6 (D) g (x )
(c.8)
exp(—ii-?l)ut(lz)exp(i*-?l)
To calculate the coefficients of the successive powers of t
again the expansion (2.35) will be used. After substituting
this expression in (C.8) one sees immediately that the coeffi-
cients of the zeroth and first power of t are zero. The

2
coefficient a® of t follows as:

N

T l_ 2 -1 > > > > >
a, =5nN J dpldpzd?ldr2¢(p1)¢(p2)g(r12)exp(—lk-rl)

{L2(12)—LZ(12) Yexp (iR-2))

Using (C.2) and (C.3) ag becomes:

a=-Lin2om! | @B 88,42 a2 6(p,)0(p.)glxr, )R ——7—8\0&12)
AT e DL P dp,dz, dr, ¢ (p) ¢ (p,)glx )k - 9%,

Because of isotropy this mayv be averaged over the direction

k of K, resulting in:
a, =0 (C:9)
The coefficient as of t3 follows from (C.8) and (2.35) as:

3
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s 1 2 -1 > > > > L
ay=gn N [ dpldp2dr1dr2¢(p1)¢(p2)g(r12)exp( ik rl)
{L3(12)—L2(12)}exp(i§-? )

1

After working out the effect of the Liouville operators on

exp(ii-;l) the expression becomes:

1 2 -1
a§ =zn'N f dﬁldgzd?ld?2¢<pl)¢<p2)q(rlz)
f-geb A - ST U Bl t U iky
Hepy/ml 3?1 m 3?1 8?1 m

The integrations over the momenta 51 and 52 are easy and lead

again to a result zero:
27 = 0 (c.10)

From (C.8) and (2.35) the coefficient az of t4 can be de-

rived as:
a® = n2(24N)_1 dp,ap,dr, a¥. ¢ (p,) ¢ (p,)gl(r,.)
4 : By AR T i 2 12
>

exp(—ik-?1>{L4<12)-L§(12)}exp(i‘1€-? )

which, after calculation of the effect of the operators, leads

Tt
s _ 1 2. -1 e ebl S 3
Ay gl N J dpldpzdr dr2¢(p1)¢(p2)g(r12)
®,-8,) ¥(r..) .o
[ - 4(1k3/m){———- 2 -712—;—](}
e 99 (r o (r,,) 2
-6(1'12-}31/m) {;— . —a:r,—lz—}w{lg o, £
1
B 5 (3175 y . ) gy
(= IV {——— - =} A
m 3?1 Lo arl oty m
(p_z 2, (By-Py) 5 . dlry,) iy
m 9%, m BN oF m
¢ (r,.) ¢ (r } :
- 2 12 3 12 lK]
m arl Brl Brl e
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Averaging over k simplifies this expression considerably, be-

. 1 :
cause all terms, that contain an uneven power of k, disappear:

2.88=1 S e i L e
n kN f dpldpzdrldr2¢(p1)¢(p2)q(rlz)

= g B 4 s
{ig'(pl—p2) 3 8¢(r12) Py 1 &p(r12) a¢(r12)

SR N Sl e L TR T

%
4~ 22

After integration over the momenta 51 and 52 this coefficient

becomes:
ai = -—-1—-n2k2(Nm2)_1 é? d¥. gl ){4£ R ﬁii;lgl}
T {90 S5 9% kop 3%, 9%,
3¢(r12) 5¢(r12)
=3 s =1 (c. 11)
8r1 Brl

Finally the introduction of center of mass and relative coor-

dinates R resp. T yvields:

ai = Eg-nkzm_Z [ d}q(r){%-8'132¢(r)—(d¢/dr)2} (c.12)

Using (1.32), (C.9), (C.10).and (C.12), one finds for the
s

k(t):

time expansion of F.

s 2.2 s
Fk(t) exp(-k t /2Bm)+€k(t)

2 -
1-x°t2/28m + % x%t4 (Bm) 2+azt4+0(t6)

1]

So with (1.37) the moments follow as:

e o

M5 = -k%/Bm (C.13)
S,ua _ 4 -2 s

My"" = 3k (Bm) T"+24a)

with az given by (C.12).
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It should be noted that (C.11) can be written in another
form by using the static relation between the pair correlation

function and the triple distribution function (Minster, 1969):

dg(x,,) 3 (r,.) 3¢ (r, )
12 12 5 13 5 59 B3
oF, -B 3%, glr,;)-nb [ s —"5?1——'g(r112r3)
(C.14)

Replacing of one vector 3¢(r12)/3?1 by means of this rela-

tion in the last term of (C.11) yields for aj:

W (x,.,)
8L 22582 -tf 4 sk 9 12
a4 oy n k” (Nm“B) Idrldr2{§ g(r12) a—-IT - —-a—-;—l—
. Bw(rlz) . Bg(rlz) . aw(rlz) - [ Bw(r13) " 3
3, 3, oo G0 I 1%2%3

The second term may be reduced bv partial integration:

3¢(r12) ag(rlz) 3¢(r12)
d? ar 5 . —- = -|a¢ aF glr.,) = —s5—
o 3r1 Brl 1.2 12 arl Brl

)

In the terms containing the pair correlation function q(r12

. : b ->
now center of mass and relative coordinates, R and r, are

introduced, leading finally to:
1 2 s = 2
a, = 7§—nk (m™R) f ar g(r)ﬁ ¢ (r)
9
V(rlz) 9 (r, )

3?1 8?1

1, 32 2, -1 &
o s
54 0 k” (Nm“B) fd?ld?zd?3g(?1r2?3)

(€. 15)

where the first term gives the exact fourth moment (1.40).

The two particle term of the velocity autocorrelation func-

tion was defived in (2.33):

(2) 5 52 S 5 N N
Cp  (t) =3 Bn” (Nm) fdpldﬁzdrld?zm(pl)¢(pz)q(rlz)pl-Ut(IZ)pl

(C.16)
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After substituting (2.35) cne sees immediately that the constant,

c . R ¢ :
ao, vanishes. The coefficient a1 of £ in:s

Yor2 -1 a5 Gy 5
E-Bn (Nm) [dpldﬁzdrldr2¢(p1)¢(p2)g(r12)p1-LI(12)p1

L g0 m "l aB aB.a2 a2 0 (p. )0 (p) glr, 0B kel
7 ek b DR e o PR, S ol By a?l

Integration over 31 leads to a result zero:
(C.17)

The coefficient ag of t2 follows from (C.16) and (2.35) as:

1 2 -1 S
3 Bn” (Nm) (dﬁldp‘zd?idf2¢(p1)¢(pz)g(rlz)pl-
2 2 &
[L (12)—Lo(12)]p1

(. -1
- g—Bn (Nm) fd§1d§2dfld?2¢(p1)¢(p2)g(rlz)

(ByPy) g Wlrplol
oF, 3?1 Py

The integrations over the momenta 51 and 52 and the center of

mass coordinates E are elementary and vield finally:
2
{ &% a(x) Ve (x)
m
From (2.22), (C.17) and (C.18) it follows that:
c. 2 4
CD(t) = 1+a2t +0:(t")

Compariscn with (1.38) gives the moments:




what is the exact value

(1.41).

(€.19)




APPENDIX D

THE MOMENTS OF THE TWO PARTICLE TERMS OF THE SECOND DERIVATIVE

EXPANSION
(2)

The two particle term Fk (t) of the intermediate scattering

function Fk(t) follows from (2.53) as:

t

F 4y = in?nae' a5, aB.a%. 620 (0.) 6 (p.) glr, VBB, /

k = Py OBa0ky 0T3P 1Ryl ¥\ Pg 1 iEgp) Kby
o

exp(—ik’-?l)ut,(12)[exp(iﬁ-?lnexp(fiz)] (D.1)

We shall write this as a power series in t:
(2) B 2 3 4
Fk (t) = a1t+a2t +a3t +a4t +oen (D.2)

by means of (2.35). Substitutino (2.35) in (D.1) one sees

immediately that

For a3 we find:

1 , 2.~1l.3 .+ .5 . . L
a; =g in N Jdpldp2dr1dr2¢(p1)¢(p2)q(r12)k pl/m exp(-ik-x,)

o

[L2(12)—Li(12)] [ exp(iﬁ-?inexp(ii’-?z)]

After working out the Liouville operators this becomes:
a, = = n°N"|dB. 4B, a2, a2, 0(p,) 6 (p,)g(r, KB, /m exp(-ik-Z,)
e ISl o R AN S g T Ry P

1
U n)

S L
« ——=— [ exp(ik-r,) -exp (i
Brl 1

k-?z)]

3 |~Y

» : . s
Because of the occurrence of k~n1/m in this expression the

: . - =
inteoration over Dl aives Zero:
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a. =0 (D.4)

The coefficient a4 is found to be:

oY
-

™
g
[}
X
]
T
&
=
3

= 4 2 -1 > 3> 2.
a, = in"(24N) (dpldﬁzdridr2¢(p1)¢(92)g(r12)k
3 3 > > o
[L (12)—Lo(12)][exp(1k-r1)+exp(1k-r2)]

and after some calculations this becomes:

.2 =i R
a, = -in (24N) [dﬁldﬁzdfldf2¢(pl)¢(pz)g(rlz)?-pl/m

®,-3,) 5 d (x,,)

R ¥
ar1 arl

exp(-ii-?l)[ ( . %1 (exp (iR-%,) -

m

. LY Ls)
k
_exp(iﬁ.fz)) + 3 ir-. __s?ig_.(iﬁ.gl/m exp(iﬁ.?l)_

—iﬁ-;z/m exp(iﬁ-?z)ﬂ

The integrations over the momenta are simple, resulting in:

2 -
. - -in"m(24NR) 1(d?16?2g(r12)exp(—lﬁ-?l)
o (x, ) >
-2 3 12 X : .
e X ovggeT - —1m) (exp (1R-,) -exp (ik-%,))

) o (r,.)

2 =2,ik 12
+3ik m (l? . —3?—1——-) exp(lvlz-_l.:l)]

After the introduction of the center of mass and relative coor-
-

dinates, R and T (2.25), the integration over R can be performed.

The last term in the integrand gives a result zero because of

isotropy. Then the coefficient a, becomes:

21}
1]

n(24m28)_1Jd?g(r) (1-exp(-1%-2)) - D% (1)
(D.5)

1]

n(24m28)-1[d?g(r) (1-cos £-3) (k-¥) %0 (r)
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The time expansion of the intermediate scattering function

Fk(t) follows then from (2.49) and (D.2)-(D.5) as:

P (t) S(k)—1+exp(—k2t2/28m)+F]i2) (t)
(D.6)

st -k’t?/28me (< k¥ (Bm) “P4a ) thr0 (£%)

Comparison of (D.6) with (1.37) shows for the moments of the

second derivative expansion:

M(2)(k) = S (k)
o

m? () = -k%/Bm

(2) ol -2
My (k) 3k " (Bm) +24a4

Thev all agree with the exact values.

2 .
The two particle term Fi( )(t) of the self function is given

t
L2 =1 > >
in"N [dt Jdpldpzdrldr2¢(p1)¢(p2)q(r12)

e
)Ut,(12)exp(lk-r1)

We write this as the following power series in t:

s (2) s B, 2-'s 364
= + Fele .
Fk (t) ait a2t +a3t +a4t + (D.8)
The calculation of these coefficients is carried out in exactly

the same wav as al...a4. The results are:

n(24m23)—1[d_f g(x) (®-9) % (x)




128

g s .
Because of isotropy a, can also be written as:

az = nk2(72m2@)—1[d? A

(D.10)

The time expansion of Fi(t) follows then from (2.49) and

(D.8)-(D.10) as:

4

and with (1.37) there results for the moments:

us(2)
o

(k) =1

s(2)

M2 (k) —k2/ﬂm

i

MS(Z)(k)

]

3k4(8m)‘2+24az

They also agree with the exact values.

F (t) = 1—k2t2/23m+(%-k4(Bm)_2+aZ)t +O(t6

)

(D.11)




APPENDIX E

DETAILED CALCULATION OF THE DEVIATIONS FROM THE IDEAL GAS

BEHAVIOUR FOR THE HARD SPHERES SYSTEM

In (2.31) we found for the deviation of the coherent inter-

mediate scattering function from its ideal gas value:
€. °7(t) = n exp(—k2t2/48m)Jd§dfw(p)a(r)[jo(k|f+?(t)|/2)
+i (k| 2-2(£) | /2) -3 (kpt/m) -3 (k| E+pt/m])] (E.1)

The trajectory ;(t) for hard spheres has been given in (3.8)
while the collision time T follows from (3.9). The function
between the square brackets on the right hand side of (E.1)
depends only on the magnitude of the initial interparticle distance
r, the magnitude of the initial relative momentum p and on the
angle between ;'and E; this function will in the following be
denoted by hk(p,r,ﬁ-f;t) where p and f are the directions of
resp. E and ;.
It is easy to see that hk = 0 as long as t < 1. This means that
the particle must have a momentum larger than some minimum momen-
tum Poin to reach the sphere within the time t. To determine the
boundaries of the integrations that are contained in (E.1) we
take first the initial relative position ; fixed along the nega-
tive z-axis (see fig. 25). In spherical coordinates the compo-
nents of ; are: its magnitude p, the angle Bp between ; and the
z-axis and some polar angle wp, where p runs from Doz to *; Op
from 0 to a maximum value emax and ¢p from 0 to 2m. emax is
given by (see fig. 25): sin emax = 0/r so emax = arcsin 0/r. The
integration over ¥ can immediately be carried out and gives a
factor 2n. For ; one can write rr where r is the direction of ;.
Because of spherical symmetry the integration over r contributes
a factor 4m. The range of r runs from ¢ to ®. Now (E.l) becomes

with p.r = -cos 6
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¥ (t) =2+2pt/m -

< T
__> _)l -
2_0Xis —r+2§T/m+2p (t-T)/m
\ t> 1
B(t) =] t<T
=p"' LT
F=F+237/m
B =B-2($-0)0
Fig. 25. The hard spheres binary collision. The meaning
of the symbols is explained in the text.
ot max
(2)(t) = 8W2n exp(—k2t2/4Bm)fr2q(r)dr[ sinepdep
w o o .
( D
) p ¢ (p)dp hk(p,r,cosep,t)
pmin
Introducing for ep a new variable u = cosep one gets:
w 21
. 2 2
1&2) (t) = 8T n exp(-k t2/48m)[r g(r)dr [ du
- (o] (1-0 /r2 142
2
,( p ¢ (p)dp hk(p,r,u;t) (E.2)
o)

“min

We shall now introduce reduced variables. The distance r can
be made dimensionless by the sphere diameter 0, so we write
r = 0Op where p is the dimensionless interparticle distance. The

momentum p can be reduced bv the mean momentum P in some direc-
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tion, sav with po = (m/B)1 , so the dimensionless momentum w
follows from p = pow. Furthermore one can introduce a dimen-
sionless time tx = pot/(Om). One sees that tx is the ratio of
the observation time t and the time that a particle with ther-
mal velocity po/m needs to travel a distance 0. Finally we
introduce a reduced densitv n" = no3 and a reduced wave vector
x* = ko.

Substitution of these new variables in (E.2) leads to the

following expression:

[ee]
2
el = anﬂl/zexp(—kxztxz/4)[p g(p)dp
| @ , 2 1 (E.3)
du w e w hk(p,w,u;tx)dw
t1-1/p%) H/2

min
where use has been made of (2.26).

Equation (3.9) for the collision time T has in the new re-
duced variables the solution:

*® 2'2 2 1/2
T = [pu-(p u-p +1) / 1/2w (E.4)

We now introduce for the angle u a new variable v that is pro-
portional to the collision time Tx:

it pu—(02u2—02+1)1/2

Then the collision time becomes very simple:
E
T = v/2w

The condition t > T must be fulfilled, so s = v/2w and

: P *
we find for the minimum momentum w_, = v/2t . So one gets

finally for the deviation Eﬁz)(t):
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@ (0%-1) /2
Eéz)(t) = 87 w2 J a(p)dp [
© 1 p-1

—(vV2-p%41) / (2vP) av [ aw wzexp(—wz)hk(w,o,v;tx) (E.5)
v/2 tx
where

® . . . .
hk(w,p,v;t ) = jo(a )+Jo(a2)—jo(a )-3 _(a,)

1 3’7318
a, = %‘k*[—(p2—v2-1)2+4v2+4+2wtx{(o w2 2-av -1} e X V2
(E.6)
a, = %-kx[(1—2wtx/v)(v o2y 2y 12
® X
a3 =k tw
2,%2,1/2

a; =%k [o —wt® (v +p —1)/v+ ]

s(2)
k
scattering function follows from (2.32) in completely the same

The deviation € (t) of the incoherent intermediate

way as:

£ (t) = 8n'm exp (-k /4)

X g(p)dp [

p-1
_(v2—02+1)/(2v2)dv f dw wzexp(—wz)hi(w,o,v;tx)(E.7)
v/2 £*

s(2) % 1/2 X2, %2 [
1

o

with
S x 3 i
hk(Orw,V,t ) = Jo(az)-Jo(a3)

where a, and ay are agiven in (E.6).

The deviation of the velocitv autocorrelation function can
be handled analogouslv. Takina as startina point expression
2 .
(2.34) for Cé )(t) we find after substitution of (3.7) and

(3.9) 2



céZ)(t) - %—nﬂ_3/2(6/m)5/20_2[d§d? exp{~Bp-/m)
(E.8)

g(r)(g-?+2p21/m)29(t-T)

where use has been made of (2.26). We can now go on in the
same way as in the case of the intermediate scatterina func-
tions and introduce the reduced variables p, v and w. Comparing
(E.8) with the corresponding deviation (E.1) of the interme-
diate scatterina function one observes that the inteorand of
(E.8) has a far more simple structure. This has as a conse-
auence that in this case the v- and w-integrations can be done,
resultino in:

Y

At TR % /2

nxfo g(P) I (p;t™ap (E.9)
1

where I(p;tx) is given by:

I(pit™) = [ =(p-1) /£%-4t™ (p-1) (p+2) +8t™] exp (- (p-1) 2/4t*%)

3

+[—1+3(o—1)+6(o—1)2+2(p—1) ]ﬂl/zerfc((o—l)/2tx)

o -8t*3+46% (0%-1) ] exp (- (p2=1) /4t™2)

1/2 T /

27 (92-1)3 erfc((Oz—l)l 2/2t”) (E.10)

with erfc(z) the complementarv error function, defined by
(Abramowitz, Stegun, 1965):
[e2]
erfc(z) = 2ﬂ_1/2 f exp(—tz)dt (E.11)
2

Fig. 26 shows the function I(p;tx).
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Fig. 26. The function I(p,tx), described
in the text.

1(1,6® = -x1/?
1(p,t*=0) = -1t/ 2 2(p%-1)3/2
—2o3+3p]
&
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APPENDIX F

THE MOMENTS OF THE HARD SPHERES URSELL EXPANSION

In chapter 2 detailed expressions for the deviations of the
correlation functions from the ideal gas behaviour were derived.
From (2.11) and (2.23) the deviation €£2)(t) of the intermediate

scattering function follows as:

(2) 2o =1l
€, . (Ths n°N Jdrldf2d31§$2¢(p1)¢(p2)g(r12>
2 (F.1)
exp(-iﬁ.?l)ut(12) ) exp(iﬁ-?j)

j=1

s(2)
k
deviations as an expansion in powers of t:

The term with j=1 gives the self part € (t) . Writing the

o
6(2)(t) = Lat®
k n
n=0
and (F.2)
oo}
ES(2>(t) e iy astn
k
n=0

the coefficients an and ai follow after substitution from

(2.35) 4n (®.l). &8s

. 2 [ =1l > > > e <
a =n (Nm!) Idrldr2dp1dp2¢(p1)¢(p2)q(r12)exp(—1k ri)
2
[Lm(12)—L2(12)] D) exp(iﬁ-?j) (F.3)
j=1

The term with j=1 gives again a;. One sees immediately that
a =a =0 (F.4)

-

and because [L(12)—Lo(12)]exp(i+-?? = T+(12)exp(1k-?j) ='0
that
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The coefficient a, follows from (F.3) as:

2
a, = l—nzN_1 ar,a¢,d8,dp. ¢ (p,) d(p,)alr )exp(—iﬁ-? )
2 -2 G Ie R R S LR D) 1
2 2 2
[L°(12)-L"(12)] £ exp(ik-r.)
(@] :,:1 J

The operator between square brackets can be written as:
2°.2 2 .2 2
L'-L = (L +T,) =L =L T +T L +T
o o '+ o o+ + o #
So we see that only T+Lo gives a contribution to a,- After

working out the effect of T+LO on exp(iﬁ-?j), using (1.22),

we arrive at:

_1,2—1—>~>—>—> g

a, = 5 in N [drldrzdpldp2¢(pl)¢(p2)q(r12)exp( 1k-r1)
LD > L > > 2 2
{exp(lk rl)—exp(lﬁ-rz)}(p12-r12/m)

(K-

The coefficient a; is found bv taking only the term exp(i?-?l).
Introduction of center of mass and relative coordinates,

g LY " A = T

P, R resp. p, ¥, followed by an inteoration over P and R yields

for a2:

a, = %»‘njdfdﬁw(p>g(r){1-exp<-i§-?)}(i.zg/m)z

(R-2)0(-B.2) 8 (r-0)

The term with 1 between the curly brackets gives az; one sees

immediately that
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520 (F.7)

The remaining integrations in (F.6) are elementary; using

(2.26) we find finally for az:

a2, = —2ﬂn(8m)—1k02g(6)j1(k0) (F.8)

with ji(kO) the first order spherical Bessel function (2.36).

The coefficient ay follows from (F.3) as:

_l 2 -1 -y _‘—*.+
, * & vt [dfldr2d§1d§2¢(pl)¢(p2)q(r12)exp( ik-%,)
2
(12)} T exp(ik-%.)
j=1 :

3

3 (12) -1
(o]

and because T+(12), working on a function of the coordinates

only, gives no contribution this amounts to:

_1 o2 -1 5 e P2
a;=gn'N [drldrzdﬁldp2¢(p1)¢(p2)g(rlz)exp( ik-7,)
3 2
{L (12)T (12)+T (12)L (12)+T°(12)}L (12) % exp(ik-Z.)
o + + o + o i=1 3
(F.9)

The term with j=1 gives the coefficient a§ of the self part
s(2)

Ek ().

e
The operator T+(12) does not contribute to a, because two
spheres cannot collide twice with each other. The term with

T L. can be written as:
+ 0

j PR o i
oL N [drldf2d§1d32¢(pl)¢(p2)C(rlz)exp(—lﬁ'?l)

I ™Moo

B (i2): (E-ﬁj/m)zexp(iz.fj)

j=1

The effect of T+(12) on the term with j=1 is:
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y, 2, 3 -1 P 5 =
en (Nm™) (d?ld?2d31d§2¢(p1)¢(p2)a(r12)(p12-r12)9(—p12~r12)

i P s L2 2 Los o
5(:12-o>{(§12-r12) (K-r12) —2(%-31)(E.r12)(plz.rlz)}

After interchanaing particles 1 and 2 and adding both expres-

sions, this becomes:

58§ ol e - 2.4 .
-gn (m ) [d?ld?2d§1d§2¢(pl)¢(p2)q(r12)(p12-r12) (K-rlz)

> 2

B ek -
OB, 2 ) 8(x) =0k (B ,=(By 5 T ,)Ey,)]

Observing that 312—(312-212)512 is the component of 312 per-
pendicular to r,,s one sees immediately that this term, after
integration over the anale of 312 with respect to 212, vanishes.
In the same way the term with j=2 can be shown to be 0.

Thus in (F.9) onlv the operator LOT+ oives a finite contri-

bution to a3:

12 9 % o
a, = g in'N fdﬁldﬁzd?ld?2¢(p1)¢(pz)g(rlz)exp(—lk-rl)

v,
Lo(12)T+(12)j£1(K-ﬁj/m)exp(iﬁ.?j)

o -
= ¢ in"N (dﬁldﬁzdfld?2¢(Pl)¢(p2)g(r12)exp(—1k-rﬁ

: ) & -
Lo(12)[exp(lﬁ-?l)-exp(lf-?z)](512-r12/m) (E'rIZ)

> >
6(-p12-r12)6(r12—0)

After partial integration with respect to ?1 and ?2 this

becomes:




1 - 2.-1
B, w s edn N (d$1d§2dild?2¢(pl)¢(p2>{Lo(12)g(r12)

F > ; - 2 5 -
exp(-lﬁ-?l)][exp(lk-?l)—exp(lﬁ-?z)](ﬁlz-rlz/m) (K-rlz)

ke 1 * 3,-1 T - A _
- s in” (Nm™) Idﬁidpzdrldr2¢(p1)¢(p2)[plz r,,9 (r12)

Ly RESES > - 2 -
—lk-plg(rlz)][l—exp(—lk-rlz)](P12-r12) (K~r12)
>
0(-py,F15)8(x -0

The term with 1 between the second pair of square brackets

: : S N P :
gives again a,. All remaining integrations are elementary; the

final result zor ai and a, is:
ag = g—n1/2n(8m)-3/2(k0)2g(0)
a, = 27/ 2n8m ™2 ko) [ -4g" (013, (k0) /k+g () £ - 20k !
sin k0-4(k0) 2cos ko+4 (ko) >sin ko}] (F.10)

The moments Mﬁ(k) and M:'u(k) (n=0,1,2,3) of the hard spheres
Ursell expansion can be calculated from (1.32), (1.37), (F.2),
(r.4), (F.5), (F.7), (F.8) and (F.10). The moments of Fk(t)
are given in (3.10) while the moments of F;(t) agree completely
with the exact moments (1.46).

As far as the velocity autocorrelation function is concerned
we shall write the two particle term of the hard spheres Ursell

expansion as:

(2) B D,n
e () = b at (F.11)
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From (2.11), (2.33) and (2.35) the following expression for

D
al follows:

D__ 1.4 2 & O S qan
a, =3 Bn~ (Nml!) Jdrldr2dp1dp2(ﬁ(pl)¢(Dz)q(rlz)
(F.12)
1 1
B, -[1 (12)-L"(12)]13
1 o 1
Because LO(12)—LZ(12) = 0 one sees immediately that
ab= 0 (F.13)
o

The coefficient a? is derived from (F.12) as:

o S L, A SR 3 3
a; =3 Bn" (Nm) (drldf2d§1d§2¢(pl)¢(p2)q(rlz)pl T+(12)§1

= %‘an(Nm2)_1[d?1d?2d§1dﬁ2¢(p1)¢(p2)q(r12)(312-212)2
(ﬁl-ilz)e(—512-?12)5(r12—0)
All integrations are easv and yield finally for a?:
2y = - 212 em ™ 2no?q(0) (F.14)
From (1.38), (2.22), (F.11), (F.13) and (F.14) one derives

easily the Ursell moments of CD(t); it appears that they

agree with the exact hard spheres moments (1.47).




APPENDIX G

THE TWO PARTICLE TERMS OF THE URSELL-2 EXPANSION FOR HARD

SPHERES

In this appendix a detailed calculation will be given of the
two particle terms of the hard spheres Ursell-2 expansion.

a) incoherent intermediate scatterina function.

The two particle term Fi(z)(t) of Fi(t) was derived in
(3.22) as:

(2) -1 i
Fo (t N de L <{exp(-(t-t,)L )exp(—iﬁ-r.)}
k & gl 1o i

o (3.22)
iTE v
T+(d)exp(t1Lo)exp(lk ri)

Taking particle i as particle 1 the summation over i may be

replaced by a factor N:

t
s(2) > >
F (t) = I |dat,<{exp(-(t-t, )L )exp(-ik-T,)}
k 1 1"g 1
a
o
> >
o S
T+(a)exp(t1Lo)exp(1k rl)
> > > =
Because Lor1 = r1+p1t/m the effect of the free streaming
operators leads to:
;
5(2 pae
(£) =& dt1<exp(—lk (rl--p1 /m o)
o
o

exp (ik- (¥ +plt /m))>

The pair of particles O must contain particle 1 to give a
non zero contribution; taking for the other particle particle

2 the summation over all pairs a produces only a factor (N-1):

o4
2
Fi( F ) (N—l)[dt1<exp(—ii'(?1—;1(t—t1)/m))
o (G.1)

> >
T+(12)exp(1k (r1+p1t1/m))>
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Writina the collisional part T+(12) (1.22) of the hard

spheres Liouville operator as:

-1.2 = N T ;
T, (12) =m 0 f do]ﬁlz-old(rlz-o)(b12-1) (G.2)
- Pa
.0<
Py+0<0
and using (1.24) and (1.25), the two particle term takes the

form:

Fs(2) 2

L
k a8, , 3|

t
(t) = (N-1)fdt1<exp(iﬁ-§1(t—tl)/m)m'lc
(o]

* "
-0<
p12 o0<0
> <> ay = 5
- ig- - . - : >
6(r12 ) [ exp (iR (ﬁl/m (plz/m O)G)tl) exp (i¥ ﬁltl/mﬂ
Writing out the ensemble average and introducing center

> >
of mass variables P, R and relative variables B, ¥ (2.25)

this expression takes the following form:

t
PP o) = n2(Nm)_lfdtlfd?d§d3d3¢(P)¢(p)c(r)exp(ii-gt/Zm)
(o]
ex_r.)(ik’.ﬁ(t—tl)/m)cr2 [ ac|2p.5|8 (2-3)

$.0<0

[eXP(if'(3'(23'-)5)tl/m)—exp(if~§t1/mﬂ
<> >
The integrations over P and R are easy and yield:

Fi(z)(t) “'m ia exp(—k2t2/48m)fdt1[d§d?¢(p)g(r)
o
exp(i}fc’-‘p’(t-tl)/m)o2 ( ac| 28+6| 8 (£-8)[ exp (iK- (B-
<0

Ty

-G
(2B~5)6)t1/m)-exp(iﬁ~3t1/m)]
For simplicity we shall substitute for 3 the relative velo-

city v = 2p/m:
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v
i(z)(t) =n exp(—k t /4Bm [d (dvdfp(v)g(r)
o
G

exp(lk J(t-t )/2)0 f d l 5|6(r—3)[exp(1k (¥/2-
3-0<0
<3.6)6)t1)-exp(ii.3tl/zn

with (G.3)

3/2

¢ (v) = (Bm/4m) exp(—Bmv2/4)

: : b= <1 . . .
The integration over r can immediately be carried out,

vielding:
T
i(z)(t) = nOZg(O)exp(—k2t2/4Bm)fdtljdzﬂ(v)exp(iﬁ-?(t—tl)/Z)
o
d&‘v-é‘[exp(iﬁ-z‘tl/2)—exp(iﬁ-3t1/2)]
v.6<0

where also the post collisional relative velocitv

¥' = ¥-2(¥-6)0 has been substituted. Now we replace the in-
tegration variable G bv v' (¥' = v'V' with v' = v) , thus

ac|v.6| -+ v/4[d§'

> &

v-0<0
After the introduction of v' the expression for FE<2)(t)
becomes:
t o
i(z)(t) = %-nc g(a)exp(- k * /4Bm)fd 1[v%0(v)dv(d9[d6'
Oh 20

exp(ii-z(t—tl)/Z){exp(ii-z'tl/Z)-exp(iﬁ-ztl/Z)}

The integration over tl is easy and yields:
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o]

)(t) = %-nozg(c)exp(—k2t2/48m)[v3¢(v)dvfd5jd§'
o
exp ( 1k t/2 exp(lk vt/2
[

TR /2 -t exp(iﬁ-?t/2)]

Taking E as the polar axis and introducing for v and v' the
polar coordinates (6,¢) and (0',0') we obtain for the two
particle term:

3

oo m™
iy - ﬂ2n029(0)exp(—k2t2/48m){V o ( v)dvfsxnedefs1n9'd9'
(o]

[exp(lkv cosf 't/2) -exp (ikv coset/2)

- t exp(ikv cosft/2)]
ikv(cosf'-cosf) /2
This expression becomes simpler bv substituting for 6 and 0'

the new variables u and w defined by:

u-w = cosf

ut+w = cosf'

The integration over u can be carried out and the result
for the two particle term is:

s(2)

k G X 8ﬂ2n03g(0b«k0)exp(-k2t2/48m)fv2w(v)dv

1 o
[ 2[dw(kth/2)~1sin(kth/2)sin(kv(1—w) t/2) -sin (kvt/2)]
o
The expression between the square brackets can be re-
written in terms of sine and cosine integrals (Abramowitz,
Stegun, 1965) and after the introduction of the followina
dimensionless variables:
v = (Bm)_l/Zu
(G.4)

A= (Bm)—l/zkt




the final result for Fi(2)(t) is:

i o

Fi(z)(t) = ﬂ2n03g(0)(kO)-lexp(-X2/4)A_1(u exp(—u2/4)du

o

[ 2sin(Au/2)Si (Au) +2cos (Au/2) {ci (Au)-1n(Au) -y}  (G.5)

-Au sin(Au/2)]

where Y is Euler's constant.

b) coherent intermediate scattering function.
(2)
k

The two particle term F (t) of the coherent interme-

diate scattering function follows from (3.22) and (3.28) as:

t
F ) =@ gtz s [dt <l exp (= (t~t, )L Jexplik-Z )]
k k o i#j 1 1" 7o - 4
(o]

i
T+(a)exp(t1Lo)exp(1k rj)

Taking for particles i and j resp. particles 1 and 2, the
summations over i and j produce merely a factor N(N-1), so:

t
(
F]i2) (t) = F;(z) (t)+(N-—1)§ Jdt1<[ exp(—(t—tl)Lo)exp(—iic’-?l)]

(o]
T (a)exp(t,L )exp(ik-r,)>
£ exp tl o exp 1 r2

This becomes after working out the effect of the free

streaming operators:

ri 0 = B2 (oD D [at <exp(-iks (B, (t-t,)/m)
k 5 1 (e 1

B L B oy

Rl 4
T, (@) exp (ik (r2+§2t1/m)) (G.6)
To give a non zero contribution to the two particle term
the pair 0 of colliding particles must contain particle 2;
for the other particle we can take on the one hand particle

1, on the other hand some other particle, sav particle 3.
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So we can write the two particle term in the following form:

F(2) (t) =

s(2)
k "

A B
(t)+Fk(t)+Fk(t)
with

at, <exp (-ik- (,-8, (t-t,)/m)T, (12)

A
Fk(t) = (N-1) 1

+ 0t

.+. > >
exp (ik (r2+p2t1/m)

and (G.7)
; of
Fim = (n-1) (N-z>[dt1<exp<—iﬁ-(?1—§1<t-t1)/m)
{ ® |
R A o
T+(23)exp(1k-(r2+p2t1/m))>

We shall start with fi(t). Just in the same way as was done
2 ;
for Fi( )(t) we can write out the ensemble average, intro-

duce center of mass and relative variables and integrate

over the center of mass variables; the result is:

(
Fi(t) =n exp(—k2t2/48m)[dtlfd?d3q(r)¢(v)exp(—iﬁ-;)
o
exP(iiE-v(t-tl)/z)oz f ac|v-6|6 (-3 (G.8)
v-0<0

[exp(—i?-(3—2(3-5)5)t1/2)—exp(-iﬁ-3t1/2ﬂ

The integration over ¥ is verv simple and vields:
<
A 2 2.2 - < 5
Fi (£) = no“g(0)exp(-k"t"/4Bm) |at |do exp(-ik -3) & (v)
o v-G<0

exp(i+-'\7(t-t1)/2)[3-5![exp(—i_ﬁ-(V—Z(V-G)G)tl/ )

—exp(—iﬁ-th/ZH
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The integrations over ¥ can be carried out by taking J as
the z-axis. The variables ¥ and Vv run from -© to ® while
v, runs from -® to 0 because of v-3<0. The integrations
lead to:

1

Fi(t) = nczg(o)(Bm/4ﬂ)2exp(-k2t2/46m) dat exp(—kz(t-2t1)2/48m)

1

D Se——t

(d& exp (-ik-3) exp( (t-2t,) . (k-6) 2/4Bm) (vzdvzexp(—Bmvi/m
(o]
exp (- % i(t—tl)(i-a)vz)[exp(— % itl(ﬁ-é)vz)

—exp(% it, (k-6)v )]
The integral over 0 is carried out by introducing polar
coordinates 0,9 for 0 while taking ﬁ as the polar axis;
after the transformation from 6 to u = cosf the expression
becomes:
¥ &

F:(t) = 2‘rTn02<_~r(O)(Bm/4‘n)2exp(—k2t2/48m)[dtlexp(—k2

1 o
vzdvzexp(-ﬁmvi/4)( du exp (-ikou)

-1

(t-2t1)2/4Bm)

NO~——38

exp(kz(t—Ztl) u2/48m)exp(— %-i(t—tl)kvzu)

«=2i 51n(kvzut1/2)

Writing out the exponentionals in sines and cosines and

introducing a new variable t' = t—2t1 for t1 the expression
for Fi(t) becomes:
i3 £
Fi(t) = ZNnOZg(G)(Bm/dﬂ)zexp(—k2t2/48m)f dt'exp(—kzt'2/48m)
© 1 -t

Ivzdvzexp(—Bva/4)[du exp(kzt'2u2/48m)[cos(ku(0+vzt/2))
o o

—cos(ku(0+vzt'/2))]
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Finally we can replace v by a dimensionless velocity

w i (Sm)l/Z 1/2

/OI

v, and t' by a dimensionless time T = t'(Bm)

resulting in:

1 1
Fi(t) = ﬂ2n03g(0)exp(—kz/4)txj dTJdu exp(-szz(l—uz)/4)
L -1 o

fw dw exp(—w2/4)[cos(u(kO+Aw/2))—cos(u(k0+XwT/2)ﬂ
o

(G.9)

1/2/0 and A = kOtx.

where t* = t(Bm)~
Although the expression (G.7) for Fi(t) appears more
difficult because three particles play a role, we shall
show that this part of the two particle term has a very
simple form. From (G.7) and (G.2), with (1.2) replaced by
(2.3), it follows that
=

Fi(t) = (N-l)(N-2)fdt1<exp(-ii-?

12)exp(if'sl(t—tl)/m)
(o]
m 15 [ a6|8,,6]8 (F,,-0) [ exp (iR~ (B,- (B,,-6)5) t, /m)
o by
Pra sy
-exp(iﬁ'ﬁztl/m)]>

Writing out the ensemble average, this becomes:
t
B - 3.-1 > > >
F (t) =n'N [dtlfdfldfzdf3d§1d§2d§3¢(p1)¢(p2)¢(p3)g(rlr2r3)
& :

h L > ~1 2 ~ 1> - 5
exp(—lk-rlz)exp(lk-pl(t—tl)/m)m o] [ d0|p23-0|6(r23—3)
5 -
Py3-0<e

[exp(i?°(32-(323-5)5)tl/m)—exp(i?-ﬁztl/mﬂ

where the triple correlation function q(?1?2?3) can be de-

rived from (1.5). The intearation over 31 is easy and vields
2 2

exp (-k (t_tl) /2Bm) . Furthermore we shall introduce instead

>
of the momenta 52 and 33 the center of mass momentum P and




the relative momentum E of the particles 2 and 3, defined by:

ot
P,tp3 = P
e R~ <>
Py~Py = 2p

It appears that after this substitution the integration

3 is simple and there results for Fi(t):

Fo(t) = n> (m) at, exo(- T t,) E /300 axip (=Xt /4Bm)

H
s

o
(dr az dr3g( 2% )Jdﬁp(mexp(—ik’-?lz)oz ( ac| 2p-6|
p+G<0

8(2,,-01 exp (iK- (B- (25-6)0) t,/m) -exp (iK-Bt,/m)]

with ¢ (p) given in (2.26).

Introducing for the relative momentum B the relative

velocity I = 23/m as a new variable, and instead of the

over

. s - > : . . b < b 4
positions r, and r, the relative positions ¥ and r', de-

2 3
fined by
¥=7%-F
172
7' =¥ -F
-

thereby noticino that the triple correlation function
= = '
g(r1r2r3) only depends on Iflzl ¥, 1?23] r' and the

.¥_ . = r-7', we arrive for F () at:

A
'Fi(t) = nzjdtlexp(—kz(t-tl)2/23m)exp(—k2t?/48m)
o

Id? exp(-if-?)[d?'g(r,r-,E-f')[dﬁw(v)

02 ( ac 3-5[6(?L3)[exp(ii-;'t1/2)—exp(iz-ztl/ZH

v-0<0
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where ¢ (v) was given in (G.3) and the post collisional rela-
tive velocity v' = v-2(%-G)0 has been substituted.
If we write dV = vzdvdG and interchange the integrations

e - . B
over v and O, the expression for Fk(t) becomes:

=
FL(t) = nzfdtlexp(—kz(t—t1)2/28m)exp(-k2tf/48m)
5 .
[d? exp(—iﬁ'?)[d?'g(r,r',f-i')(v2¢(v)dv ozfdéd(?'—ﬁ)
(o]
d@l?-&][exp(iﬁ-?'/tl/Z)—exp(i?-?tl/Z)] (G.10)

v-G<0
The G—inteqral mav be simplified by introducing in the first
term of the inteqrand v' = ¥'/|¥'| as a new variable and in
the second term -v; this results in:
t
Fp(t) = nzfatlexp(—kz(t-ti)2/28m)exp(-k2tf/4sm)
o ©
fd? exp(-iﬁ-§)fd?'g(r,r',i-i')fvzw(v)dvozfdaa(?'-a)
o
d§|v-6|[exp(iK-th/Z)—exp(-iﬁ-3t1/2)] (G.11)
v-G>0
The integration over v can be performed by expanding the
exponentials in spherical harmonics (Merzbacher, 1961):
i
exp (£ik-Vt,/2) = ar [ f iljl(kvt1/2)yfm<ti>ylm(§) (G.12)
1=0 m=-1
where jl is the l'th order spherical Bessel function, the
¥ means the complex conjucate and Ylm is a spherical har-

monic. Substitution of (G.12) in (G.11) leads to:

t
F(6) = n2Idtlexp(-k2(:-tl)z/zem)exp(-kztf/43m)[d? sipl =it 2}
0
[df'n(r,r',f-f')fvzw(v)dv cz[déd(?'-B) (G.13)

@ 1

T % Hoa ¥ o e

am 2o mipd 3, Gevt /20y (k) -YD (k)] J av|3-6ly. (%)
G




By taking for v the spherical coordinates 0, with respect

to the polar axis & the v-integral may be written as:

/2 2m
[ d§|$-6lylm(?z) = [ sinf def dp v cosb Y, (8,¢)
v-.3>0 o o

Because Ylm contains a factor exp(im¢) this is zero if m#0.
After the introduction of a new variable z = cosf and sub-
stitution of this expression in (G.13), we obtain for Fi(t):
{ =
2
Fp(t) = nzjdtlexp(—k (t-tl)2/2Bm)exp(—k2tf/46m){d; exp (-ik-F)
o (o]
2y T o - 3 2 - x4 2
Ar'glr e vy (vidy o [do & (¥ -3) -8m
o 1
(k) -¥* (k)1 |zP. (2)dz
o lo 1

©

£ il (c.14)
1=0

[

b 3

2,
{ (21+1) 747} Jl(kvt1/2)[Yl

o
From the properties of Legendre polynomials it follows that

By iy Sead -
Ylm(-k) = (-1) Ylm(k), thus

O(—k) =0 1 even
(G.15)

Il

2y (k) 1 odd
lo

Furthermore the integration over 2z in (G.14) vields a very

simple result for 1 odd:

1 1 i
z P_(z)dz = & z P.(2)dz = - P, (z)P )Ydz = 2 §
A 32 L I 1(2)P,(2)dz = 3 0y 4
o -1 -1

(G.16)

Inserting (G.15) and (G.16) in (G.14), summing over 1 and
using that
I
v, () = (3/4m)? k-6

(3 was chosen as the polar axis), we arrive at:
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t
Fi(t) = 4ﬂn21(dtlexp(—k2(t—tl)2/26m)exp(-k2ti/43m)

fd'f exp (-ik-¥) [d}"g(r,r',f-f')(v% (v) j1 (kvt1/2)dv
(o]
o2 [ 868 @1 -3) (R-5)

The integrations over v and t1 can now be done and
result in:
1

Fp(t) = -;—Trznzi(Bm)

{
2t exp(-kt*/4Bm) exf (5 ke (Bm)  2)

|

N

[d’r’ exp (-ik-7) [d?'q(r,r' ,E-E')ozfdc‘rd (F'-3) (k-G)

where erf is the error function. The integration over § is

very easy and yields immediately:

1 1 1
FR(t) = 3 Tn°i(Bm) ¢ exp(-k°t’/4Bm) erf(3 kt(Bm) )
Id‘r’ exp (-ik-?) [d’r"g(r,r',f-f')&(r'—o) (k:z") (G.17)

To get rid of the triple correlation function we make use
of a relation, derived by Konijnendijk and van Leeuwen

(1973, appendix A):

n[d‘f‘é(r'-G)f'g(r,r',f‘-E') = -g'(r)r+g(0)§ (r-0)F (G.18)
Because g'(r) = 0 for r < 0 and g'(r) has a 8-singularity
at r = 0 associated with the jump from zero to g(0) in al(x),
one sees immediately that the following relation holds for
hard spheres:

g'(r) - g(0)8(xr-0) = g'(x)6(x=0) (G.19)

After the substitution of (G.18) and (G.19) in (G.17) the




P B
expression for F, (t) becomes:

k
1 2l &
Fi(t) = - %Wzni(Bm) 2t exn(—k2t2/48m)erf(% kt (Bm) )

N

Jd_r* exp(-ii()'_r’)a' (r)B(r-0)k.r

Intearatina this partiallv and makino use of (1.8) and

(1.9) one gets as the final result of the calculation:

1

)
nzkt(Bm) *

1
exp(—k2t2/46m) erf (% kt (Bm) 2)

(G.20)
[ 40> (k0) ‘1j1 (k0) g (0) +5 (k) -1]
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APPENDIX H

THE MOMENTS OF THE HARD SPHERES URSELL-2 EXPANSION

The coherent and incoherent intermediate scattering functions
in the Ursell-2 expansion were in chapter 3.4 ((3.20) and (3.27))

derived as:

s _ s(1) s(2)
Fk(t) ull (t) + F (t)
and (H.1)
(1) (2)
F (t) = Fy {t) Fo (t)
. 2 s(1) (1) .
with the free streaming parts Fk (t) and Fk (t) given by

(3.23) . and (3.29):

PP (0) = exp-k’t?/28m) = 1-k%t%/28ms. .

and (H.2)
(1)

Fk (t) = S(k)exp(—kth/ZBm) = S(k)—S(k)k2t2/28m+...

To obtain the moments of the Ursell-2 expansion we expand the

two particle terms Fi(z)(t) and Fﬁz)(t) in a power series in t:
2 Leo]
FS( >(t) = z astn/n!
k n
n=0
and (H.3)
2 Lo o]
£ (¢) = £ at/n!
k n
n=0

. s s
where the expansion coefficients an and an may be written as:
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n
s 9 Fs(2)

a = ( -y 8
n 3¢ k t=0
and (H.4)
n
a = S AL B B
ot

For the two particle terms in appendix G ((G.1) and (G.6)) the
following expressions were derived:
L
s(2)
(t) = (N-1)|dt <exo( ik (F -pl(t t )/m) T ¢12)

o

exp(iE-(?1+§1t1/m))>

and (H.5)

F]:” ) = 52 (o +m-nz

a

at, <exp (- -ik- (¥ —pl(t -t )/m))

Q== rt

T, (@) exp (ik - (?2+§2t1/m) )>

In the last expression the pair O must contain particle 2 to
give a non zero contribution to F(2)(t) We shall now give a
detailed calculation of the first moments.
a) zeroth moment

It is clear that

i(2)(0) =520 =0

thus the zeroth moments follow immediately from (H.1)-(H.4)

as:

Il
—-

M (k)
o]

and (H.6)

]
-

Mo(k)
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b)

c)

first moment

s(2)

k

immediatelv for the coefficient af:

Taking the first derivative of F (t) at t = 0 vields

af = (N—l)<exp(—if-?i)T+(12)exp(if-?1)>

From (1.22) and (1.24) one sees that T+(12) gives a vanishing
result if this operator works on a function of the position

variables only, so that

Because the free streamina parts (H.2) are even in t it is

clear that the first moments vanish:

s
Ml(k)

]
o

and (H.7)

M1 (k)

]
o

second moment
Taking the second derivative of (H.5) at t = O one sees

s
that the only nonvanishing part of a

5 is given by:

s >
a, = (N—1)<T+(12)1k-p1/m>
which can, with the aid of (1.22), (1.24) and (1.25), also

be written as:




8 ey R W e
a, = (N-1) im <(p12-r1

>

2 -~ >
5) (B r,)0(-p,, T -0)>

12080,

This yields zero because of the isotropy of the system, so:
a, =0 (H.8)

and (H.1)-(H.3) yield for the second moment of Fi(t):

M (k) = -k°/Bm (H.9)

The coefficient a, follows from (H.4), (H.5) and (H.8) as:

a, = (N-1) £ <exp(-ik-¥,.)T (2i)ik-p./m>
2 ; 12" "+ 2

i#2
For particle i we can take particle 1 or some other particle,

say particle 3, so that the expression for a, becomes:

i L >
= - & -1k .
a, (N-1)<exp (-i r12)T+(12)lk 02/m>
+(N—1)(N-2)<exp<ii-?12>T+(z3)iﬁ-;z/m> (H.10)
= A+B

where A represents the contribution of the pair (12) and B
the contribution of (23).
Writing out the ensemble average and working out the

effect of T+(12) one sees that A can be written as:

)

8 2 -1 g
A= -n i(Nm") (dﬁldﬁzd?ld?2¢(p1)¢(pz)g(rlz)exp(_l+.}12

> -~ 2.2

> = > >
(plz-rlz) (k-rlz)e(—p12 rlz)d(rlz—o)

All integrations are easy and yield:
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A = -4Tng(0) (Bmk)'1<ko)2j1(ko) (H.11)

with jl(kc) the first order spherical Bessel function.

The second term B of (H.10) is more complicated; writing
out the ensemble average and takinco into account the effect
of T+(23) we obtain for B:

Do bR I [ O S S g o
B = in” (Nm") [dridrzdrdeldpzdp3¢(p1)¢(p2)¢(p3)g(r1r2r3)

2

> > > - > = i ~
exp (~1Kk-X ) (P)3°T)q) " (K+T,3) 0(-P, %) ) 6(x,3-0)

The integration over ﬁl vields unity; the integrations over
§2 and §3 may be performed by introducing new variables E

>

and P, defined by:
o R,
P = p2+p3
+ : e T
p =3 (Py=py)

After the momentum integrations the expression for B becomes:

kD wilea . & > > > (> *
B=in~ (NBm) [drldrzdr3g(r1r2r3)exp( ik r12)(k r23)6(r23 a)

The integration over ¥, can be done by making use of the

3
following integral relation for the triple distribution

function (only valid for hard spheres) (Konijnendijk,

van Leeuwen, 1973):

> 2 2 i o
n[dr36(r23—0)k-r23g( 15 3) = k-r12[—g (r12)+g(0)5(r12 0)]
(H.12)

resulting in the following expression for B:




d)

B = —in(Bm)_lfd? exp(-ik-?) (X-)[ g' (r)-g(0) 8 (r-0)]

The term with g(0)8(r-0) yields -A, with A given in (H.11).

Remembering that

3 3
K-rg'(x) = ¥ 5§-(g(r)-1)

it is clear that, after one partial integration, B can be

written as:
2 -1{ > R
B = -A+nk” (Bm) dr exp(-ik+¥) (g(x)-1)

Adding A and B together and usina (1.9) one sees that the

final result for a, is:

a, = k2 (5(k)=1)/Bm

2
and that (H.1)-(H.3) vield for the second moment Mz(k):
2
M2(k) = -k"/Bm (H.13)
which is in agreement with the exact second moment.
third moment
The third derivative of F;(z)(t) (H.5) at t = 0 yields
for the coefficient ag:
S - _v-1)<r, (12) (k-B, /m) 2>
838 + 1

-<N—1)<(K-§1/m)T+(12)(ﬁ~31/m)>

The first term.of this expression was already discussed in
appendix F (the term in (F.9) with T+(12)L0(12) and. 1i=mel )
It was seen there that this term gives a vanishing contri-

bution.
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Writing out the ensemble average in the second term and
working out the effect of the collisional part T+(12) of

the Liouville operator, ag becomes:

S _ 2 vt o5 5 > > > .z 2
a; = -n"(Nm”) fdrldr2d§1d§2¢(pl)¢<p2>g(r12)(k B Ty %)

e
(kex))) 0B, F,)8(x),-0)

After doing the integrations and using (H.1)-(H.3) one gets

the following expression for the hard spheres third moment:

s _ 8. 1B /2
M3(k) = a3 =3 s

3/

n(8m 2 (x0) g (0) (H.14)

The coefficient a, follows from the third derivative of

3
Féz)(t) (H.5) at t = 0 as:

a = atH(N-1)'F <exp(-ik.Z, .37 (21) (iX-p./m) SS+(N-1) T
Y. ’ 1207 2 ,
i#2 i#2

<exp<—i*-?12)(iﬁ-Bl/m)T+(2i)(iﬁ-sz/m)>

The second term in this expression disappears for the same
reason as in appendix F (F.9) the term with T+(12)LO(12).
In the third term only the pair (12) gives a nonvanishing
contribution because of the presence of the factor
(iﬁ-gl/m). Writing out the ensemble average and taking into
account the effect of T+(12), a, becomes:

IR PV S § N

ay = agm (Nm™) [drld?zd§1d§2¢(p1)¢(pz)g(rlz)exp(—lk-r12)
> > e -~ 2 > > >
(K-py) (Pypexy5) "B (=B, ¥ ,)8(x),-0) (kex, )

All integrations can be done and yield with (H.1)-(H.3)

finally for the third moment:
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N, (k)= ay = %ﬂl/2n(8m)_3/2g(0)[ (ko) 2-3k0 sin ko

1
-6cos kO+6 (ko) “sin kO] (H.15)

Comparing the in this appendix derived moments of the hard
spheres Ursell-2 expansion ((H.6), (H.7), (H.9), (H.13)-
(H.15)) with the exact hard spheres moments (1.45) and
(1.46) , one sees that the corresponding moments all agree

with each other.
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SUMMARY

In this thesis the dynamical behaviour of the atoms in a fluid
or gas is studied with time dependent correlation functions as the
density-density correlation function and the velocity autocorrela-
tion function. Theoretically it is not possible to calculate these
correlation functions exactly for the whole time domain. An exact
calculation is only possible for times small with respect to the
duration of the collision (see Ch. 1), by using the moments expan-
sion, and for times large with respect to the mean free time by
solving the hydrodynamical equations.

In chapter 2 a method is described, the Ursell expansion, which
makes it possible to calculate the correlation functions for times
up to the mean free time. Experimentally the density-density
correlation function is known on this time scale from neutron
scattering on noble gases with a low density.

In the Ursell expansion the successive terms describe the effect
of an increasing number of colliding particles. For times smaller
than the mean free time the most dominant contribution to the
correlation functions comes from those collisions in which not more
as two particles. are involved. In chapter 2 a detailed expression
for the two particle term is derived. It is shown, that due to an
approximation for the static three particle correlation function,
the moments of the two particle term do not agree completely with
the exact moments. Therefore for continuous potentials another
expansion, the second derivative expansion, is derived; in this new
expansion the two particle term has the exact moments.

Chapter 3 gives the Ursell expansion for the case of a hard
spheres interaction; the advantage of this interaction is that the
mathematical expressions, that describes the collision, are very
easy. Because the moments of the two particle term do not agree
with the exact moments, another expansion, the Ursell-2 expansion,
will be derived. This expansion is only valid for hard spheres and
reproduces the exact moments. At the end of chapter 3 the results

of calculations on the hard spheres system are presented. It is
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shown that both expansions agree very well with molecular dynamics
calculations.

Chapter 4 contains the results of calculations on a system with
a Lennard-Jones interaction. It appears that both the Ursell expan-
sion and the second derivative expansion agree very well with mole-
cular dynamics calculations of the incoherent intermediate scattering
function. The discrepancy between the theoretically calculated
coherent intermediate scattering function and the experimental
scattering function is substantial. This may be due to the large
experimental error, which is of the same order of magnitude as the

deviation of the correlation function from its ideal gas value.
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SAMENVATTING

In dit proefschrift wordt het dynamisch gedrag van de atomen in
een vloeistof of gas onderzocht met behulp van tijdsafhankelijke
correlatiefuncties zoals de dichtheids-dichtheidscorrelatiefuncties
en de snelheidsautocorrelatiefunctie. Theoretisch is het niet moge-
lijk deze correlatiefuncties exact te berekenen in het hele tijds-
domein. Een exacte berekening is wel mogelijk voor tijden, die klein
zijn ten opzichte van de duur van een botsing (zie hoofdstuk 1), met
behulp van de momentenontwikkeling en voor tijden, die groot zijn
ten opzichte van de gemiddelde vrije tijd (tussen botsingen), door
de hydrodynamische vergelijkingen op te lossen.

In hoofdstuk 2 wordt een methode beschreven, de Ursellontwikkeling,
waarmee het mogelijk is de correlatiefuncties te berekenen tot tijden
van de orde van grootte van de gemiddelde vrije tijd. Experimenteel
is de dichtheids-dichtheidscorrelatiefunctie op deze tijdsschaal
bekend uit de neutronenverstrooiing aan edelgassen met een lage
dichtheid.

In de Ursellontwikkeling beschrijven de opeenvolgende termen het
effect van een toenemend aantal botsende deeltjes. Aangezien voor
tijden kleiner dan de gemiddelde vrije tijd de meest dominante bij-
drage tot de correlatiefuncties wordt geleverd door die botsingen,
waarbij hoogstens twee deeltjes betrokken zijn, wordt in hoofdstuk
2 een expliciete uitdrukking voor de twee-deeltjesterm afgeleid.
Aangetoond wordt dat, tengevolge van een benadering voor de statische
drie-deeltjescorrelatiefunctie, de momenten van de twee-deeltjesterm
niet geheel in overeenstemming zijn met de exacte momenten. Daarom
wordt voor continue potentialen ook een andere ontwikkeling, de
tweede-afgeleide ontwikkeling, afgeleid, waarvan de twee-deeltjesterm
wel de exacte momenten heeft.

Hoofdstuk 3 geeft de Ursellontwikkeling voor het geval van de
harde bollen interactie; het voordeel van deze wisselwerking is dat
de mathematische uitdrukkingen, die de botsing beschrijven, erg
eenvoudig zijn. Omdat de momenten van de twee-deeltjesterm niet
overeenstemmen met de exacte momenten, wordt, speciaal voor harde

bollen, een andere ontwikkeling, de Ursell-2 ontwikkeling, gegeven,
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die wel de exacte momenten reproduceert. Aan het eind van hoofdstuk
3 worden de resultaten van berekeningen aan een harde bollen systeem
gepresenteerd, waarbij wordt aangetoond dat beide ontwikkelingen
goed overeenkomen met de resultaten van moleculaire dynamica bere-
keningen.

Hoofdstuk 4 bevat de resultaten van berekeningen voor het geval
van een Lennard-Jones interactie. Het blijkt dat zowel de Ursell-
ontwikkeling als de tweede-afgeleide ontwikkeling zeer goed over-
eenkomen met moleculaire dynamica berekeningen van de incoherente
intermediaire verstrooiingsfunctie. De theoretisch berekende cohe-
rente intermediaire verstrooiingsfunctie komt daarentegen slecht
overeen met de experimentele verstrooiingsfunctie, wat waarschijnlijk
te wijten is aan de grote meetfout, die van dezelfde orde van grootte
is als de deviatie van de correlatiefunctie ten opzichte van de

ideale gas waarde.
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STELLINGEN

5

Een theorie, die het korte tijdsgedrag van correlatiefuncties be-
schrijft, kan, ondanks het feit dat de tweede en hogere orde momenten
niet overeenstemmen met de exakte momenten, toch bevredigende resul-

taten opleveren.

Dit proefschrift Ch. 3.5 en 4.

II

Bij neutronenverstrooiingsexperimenten dient ervoor gewaakt te worden
dat het te meten effect, zoals de deviatie van een correlatiefunctie

ten opzichte van de ideale gaswaarde, groter is dan de meetfouten.

Dit proefschrift Ch. 4.

11X

Het gebruik van het woord scattering law of verstrooiingswet is mis-

plaatst.

W. Marshall, S.W. Lovesey, Theory of thermal neutron scattering.

Iv

Voor het bepalen van de trajectorie van een deeltje in een centraal

krachtveld is de Hamilton-Jacobi theorie weinig zinvol.

H. Goldstein, Classical mechanics.

v

De resultaten van.de berekeningen van de snelheidsautocorrelatie-
functie met behulp van moleculaire dynamica zijn voor lange tijden

discutabel.

W.W. Wood, Fundamental problems in statistical mechanics III,

B.J. Alder, T.E. Wainwright, Phys. Rev. Al (1970) 18.




VI

Het gebruiken van programma's en subroutines uit de numerieke
bibliotheken, die in de meeste rekencentra aanwezig zijn, dient met

de uiterste voorzichtigheid te geschieden.

VII

Het effect van moderne audio-visuele hulpmiddelen op het leerproces
is nihil wanneer de temperatuur in collogquium- en collegezalen niet

bevredigend geregeld kan worden.

VIII

De veiligheid van het spoorwegverkeer zou nog toenemen als er na het
koppelen en loskoppelen van wagens of treinstellen altijd een rem-

proef werd gedaan.

IX

De kwaliteit van het openbaar vervoer neemt belangrijk toe als de
aankomst- en vertrektijden van streekbussen beter afgestemd worden

op resp. de vertrek- en aankomsttijden van treinen.

X

De gemeente dient de betalers van hondenbelasting te specificeren

waarvoor de opbrengsten van deze belasting gebruikt worden.

XI

De werkzaamheden van de Organisatie ter Verbetering van de Binnen-
visserij dienen erop gericht te zijn de inheemse visstand zo goed
mogelijk in stand te houden; dit wordt niet bevorderd door het

kweken en uitzetten van uitheemse vissoorten, zoals de graskarper.




