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Preface

I have written much of this thesis while under some type of lockdown during the Coronavirus pan-
demic. Most everybody during this period acknowledges the critical role that medical staff have
played in providing all types of support during this emergency. I dedicate this thesis to those peo-
ple, in particular the nurses as this year - 2020 - was some time ago designated as the International
Year of the Nurse by the World Health Organisation [126]. 2020 was chosen because it marks the
200th anniversary of the birth of Florence Nightingale in Italy, which occurred in May of 1820. Her
life was dedicated to nursing, and her work provided a model for modern nursing and modern pol-
icy making in that realm. What many do not realize is that her biographers call her the ‘Passionate
Statistician’ as she treated the analysis and use of data as if statistics was her religion [88]. In fact,
she has been credited with the invention of what we now call the pie chart. Her polar area diagram
helped convince policy makers that more soldiers were dying from disease than from traditional
battle injuries during the Crimean war. This tool provided an efficient and effective way to look at
information through a different lens, giving new insights into what in those days was a complex
problem. For this, and other advances, she was admitted as the first woman to the Royal Statistical
Society. Since that period, in nursing and other professions, the interpretation and presentation of
information has played a critical role. Whether during war or pandemic, speed and efficient use of
resources are critical in winning a battle. A day or month can make a difference.

This thesis continues in the tradition of developing new tools that make the interpretation of en-
gineering information more efficient. My own interest in developing such tools started during my
studies in structural engineering, and in using traditional methods such as finite element analysis.
I was also interested in forensic structural engineering and potential tools for damage prediction.
It is perhaps a matter of impatience (waiting for computer run programmed scripts to completion)
that caused me to muse about whether artificial intelligence (AI) might be part of that toolkit. I am
of the generation that has grown up with so-called "smart" systems, where everything from vacuum
cleaners to cars managed to do some of the thinking and decision-making for us. What started as
curiosity turned into greater interest in doing theoretical or practical research in developing such
tools. An internship at Airbus Defense and Space in 2018 opened my eyes to the potential practical
applications of AI in the aerospace field. I thank my colleagues there, especially Lex Meijer, Henk
Cruijssen, and Garmt Grommers for offering their mentoring during some design challenges where
I was using more traditional analytical techniques to assist design efforts relating to a multi-satellite
deployment platform. After that, in 2019, I am most grateful to Dr. Boyang Chen of TU Delft for his
help in identifying a tractable project that would potentially contribute to some of the theoretical
underpinnings of validating the use of neural networks in structural design. That project turned
into this thesis.

My thanks go well beyond that initial mentoring. Dr. Chen has been generous with his time
throughout, and I thank him for comments on earlier drafts as well as for proofing and helping
debug some of the code written in support of this thesis. This thesis also partially builds on earlier
thesis work by Tom Gulikers of TU Delft, who considered neural networks applications in user-
material subroutines (UMAT). I thank Tom for his time at early stages of my project in helping me
understand his approach and conclusions. My own thesis took me to subjects and directions that
I had not necessarily anticipated at the outset. For example, I had to learn FORTRAN so that my
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Python script could work with legacy FORTRAN routines used in ABAQUS. I am grateful to Giorgio
Balducci for reviewing parts of my FORTRAN code. I also acknowledge the kindness of Max Roest of
FloatScans in offering to test and print - at no cost - his new 3D printers on a few of my structures,
including one complex organic-inspired structure. I also thank all of the staff at TU Delft Faculty
of Aerospace Engineering for their office support while I was working out of the faculty before we
moved to a home-based working protocol. Finally, I thank my parents and my partner Rhythm for
proofing parts of this thesis, and for their unfailing moral support. As always, however, any errors of
omission or commission in this thesis are my own.



Abstract

In this thesis, a new data-driven finite element is developed, which is referred to as a neuromorphic
element (designated as NmT2). Its goal is to reduce the computational expense of FEA models with-
out compromising solution accuracy by embedding a neural network, trained on an element level.
The neural network is developed such that the traditional trial-and-error approach to determin-
ing its hyperparameters may be bypassed. This is achieved through a multi-objective optimization
algorithm that builds networks with random configurations and uses Latin Hypercube sampling to
test them on a fraction of the overall data repository. Once the algorithm reaches a state of diminish-
ing returns over the development of multiple networks, the program is halted and the best perform-
ing neural network is saved. The resultant network is then trained over the entire data repository
consisting of over half a million datasets. The entire process of a self-designing neural network is
called a neuromorphic engine.

The neuromorphic engine is designed to determine the local nodal force vector of a truss mem-
ber based on the structure’s geometry and axial nodal displacements. Axial tension and compres-
sion are the two modes of loading that are considered and are pushed to the nonlinear regimes by
including post-buckling and material plasticity. In addition, the user is provided with the option of
including structural defects in the truss members. Once trained, the neuromorphic engine can be
inserted within a user-element subroutine and deployed in ABAQUS.

The neuromorphic element is essentially a truss element which includes the deformation ca-
pabilities of beam elements. Unlike traditional FEA methods requiring multiple beam elements,
a single NmT2 element can be used when meshing a truss member to model complex behaviour
such as post-buckling deformation. To test the capabilities of the neuromorphic element, three
case studies are designed as a proof of concept, comparing the performance of NmT2 elements
against traditional FEA elements (T2D2 or B22). Overall, the NmT2 elements managed to accel-
erate the computing time of an FEA model by up to 1,000%, while maintaining solution accuracy
within 5%. These results affirm the potential of neural networks within active FEA simulations in
the field of data-driven computational mechanics as a means to define complex nonlinear element
formulations.
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�
Introduction

Let us consider the chair. The chair is composed of multiple components: minimally a seat, and
front and rear legs. Your chair may also have an apron as well as a back made of two stiles, a cross
rail, and (perhaps) a few spindles. All these components are assembled together to constitute a
piece of furniture which has to support our weight under various conditions. The moment we sit
down on the chair, the entire structure becomes loaded under a vertical downward force. The front
and rear legs will be loaded under compression to compensate for our body weight. If we lean back,
then the back support of the chair and stiles could be subject to bending loads. Regardless of how
we position ourselves, the chair’s integrity must not fail. If one or more of the structural components
were removed or slightly damaged, we might fall to the floor.

The purpose of this analogy is to convey that a structure is composed of multiple components
which are interconnected to form a complete product. If the overall structure is loaded in any con-
figuration, then the loads are propagated through the individual structural components. Some com-
ponents might be loaded in tension, others in compression, some in bending, and perhaps some in
torsion. Analyzing the structural components or groups of components that make up a structure,
rather than directly analyzing the full structure, is known as substructuring. The process of substruc-
turing is fundamental to the work in this thesis. It permits us to divide complex structures into their
constituent parts; an analysis of those constituent parts permits us to understand the behaviour of
the larger structure.

The design of a sturdy chair requires us to understand how its individual structural components
respond and deform when loaded. Computational structural mechanics is a discipline that revolves
around the study of structural phenomena governed by mechanical principles using computational
methods. In the chair example, such methods could be used by structural engineers to determine
the stresses and deformation of all the components and whether any of them are prone to failure.
One of the most used tools for substructuring work is Finite Element Analysis (FEA) software that
uses the Finite Element Method (FEM) to compute the mechanical behaviour of structures under
various loading schemes. The numerical mathematics used throughout these processes allow en-
gineers to design and analyse structures, with complex boundary conditions, such that they can be
modelled as realistically and accurately as possible.

In the context of aerospace engineering, computational structural mechanics is a key aspect
present in any design and optimization cycle. Designing sound structures that meet the exigent
safety tolerances of the aerospace industry all while minimizing the overall mass is a permanent
conundrum for engineers. Often costly, high-fidelity FEA numerical models are required. There is
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2 1. Introduction

a constant trade-off during an FEA process of accuracy versus computational efficiency: the higher
the degree of accuracy the user wishes to achieve, the longer it takes to run the simulation. Ide-
ally, engineers have cluster-based computing systems and are not restricted in terms of hardware,
meaning that extensive amounts of computational processing power can be entirely off-loaded for
a single FEA analysis. Even with this, numerical models might take hours, days or even weeks to
converge to an acceptable solution. An alternative to accelerate the process is to halt the analysis
and judge when the results are sufficient, or "good enough". This, however, requires both experi-
ence with the software, and competence in the particular engineering field. Such expertise may not
be readily available. An alternate idea is to internally change the computational process of the FEA
model to accelerate the speed at which it reaches a solution, without requiring excess hardware or
computational power. This is when machine learning can be of help.

Machine learning is a field of study focused on the belief that machines are capable of inter-
preting and analyzing data and, from there, make observations and decisions on their own as well
as future predictions, without human assistance. The underlying drive behind this field is data. By
continuously providing machines with the appropriate data and the proper environment to learn
from the data, they are capable of extraordinary feats. Although machine learning dates back to
the 1940s, its popularity exploded in the 1990s with the introduction of the deep neural network.
The expressive and predictive capabilities of neural networks are highly promising for engineering
applications. Given that they are purely data-driven processes, there are no complex computa-
tions or equations that are continuously being solved. Introducing machine learning, and neural
networks in particular, within computational structural mechanical processes such as FEA, could
improve significantly computational efficiency and entirely reduce the need for extravagant com-
puting hardware and resources.

1.1. Aim and scope

The overall aim of this master thesis is to demonstrate that traditional FEA analyses can be accel-
erated by incorporating machine learning techniques, notably a deep neural network, while main-
taining solution accuracy. The overall aim is to improve computational efficiency without compro-
mising solution accuracy. To that end, a new kind of finite element – the neuromorphic element
– is developed: it uses a neural network at specific points within the user-subroutine to acceler-
ate expensive computational tasks. The new element is then built into an FEA model such that it
may be used during an active simulation. Given the level of expressiveness that can be achieved
using a properly trained neural network, the new element attempts to model more complex be-
haviour (such as material plasticity and post-buckling), which would otherwise require complex
mesh discretization schemes and higher order elements. Regarding the development of the neu-
ral network itself, choosing the appropriate architecture to model and to extrapolate the dataset in
a high-fidelity manner is typically achieved through a trial-and-error approach. Although such an
approach might be valid in simpler settings, it is considered extremely inefficient, unreliable, and
paradoxically defeats the purpose of building an intelligent system. Therefore, building a neural net-
work that selects its own architecture is of high importance throughout this project. The contents
of this thesis ultimately strive to showcase the potential of data-driven computational mechanics
versus traditional FEA methods. With this in mind, the following research objective may be formu-
lated:

The objective within the time-span of the thesis is to reduce the computational expense of a finite
element analysis – without compromising its accuracy – by embedding neural networks trained on

an element level into an active mesh.
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A selection of research questions (RQ) are also devised to guide the overall research objective:

RQ1 Is it possible to develop an intelligent framework for neural network design such that the user
does not need to manually select and test all parameters to create a high-fidelity model?

RQ2 Is it feasible to embed a trained neural network into an active finite element analysis? Fur-
thermore, can the neural network-based elements work together without disrupting the rest
of the FEA environment?

RQ3 Can a neural network-based finite element accurately capture highly nonlinear phenomena
such as plasticity and post-buckling that would otherwise require complex FEA models?

RQ4 If the previous question is answered positively, does the change in computational expense
justify the development of complex neural network-based systems for FEA modelling?

1.2. Thesis layout

Chapters 2 and 3 contain the literature review for this project. Chapter 2 focuses on neural network
development, whereas Chapter 3 investigates neural network usages in the context of structural
mechanics and FEA interaction. Chapter 4 establishes an overall computational architecture, and
defines the key aspects of the development of a custom finite element that uses an embedded neu-
ral network. The extensive data generation strategy is outlined in Chapter 5, and the development
of the neural network is presented in Chapter 6. Chapter 7 represents the last of the preparatory
phase and explains how the neural network is integrated within a custom finite element and can be
deployed in a FEA analysis. Case studies to test the validity of the new element and how it measures
up to traditional FEA processes, are presented in Chapters 8, 9 and 10. A final summary and dis-
cussion is presented in Chapter 11 to review the entirety of the project, including the four research
questions noted above. The discussion of the research questions is informed by the analytical find-
ings of the thesis (for RQ1, RQ2, and RQ3); the author’s personal judgement and experience during
this period are used to provide an opinion on whether further use of the approach is justified (for
RQ4). Suggestions for future research are treated in Chapter 12. The thesis closes in Chapter 13
with the author’s personal thoughts on the use of data-driven methods applied to computational
structural mechanics, as well as to other applications in general.
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�
Neural Networks: An Introduction

Machine learning is a scientific field under the artificial intelligence (AI) umbrella that focuses on
developing computer models to perform specific tasks without requiring explicit instructions. Given
the current era of Big Data, machine learning can capitalize on the large amounts of information
being quantified, collected and stored on a daily basis to help streamline tasks across countless in-
dustries. Neural networks are one of the dominant machine learning techniques that are employed
for their expressive and predictive capabilities when applied to complex problems. For example,
unsupervised neural networks are the backbone of algorithmic high-frequency trading (stock mar-
ket trading which aims to profit from minute price shifts over the course of milliseconds), which
accounts for more than half of equity shares traded on US markets [56]. Self-driving vehicles is an-
other emerging technological field that relies on convolutional neural networks to steer the vehicle
in the correct direction while ensuring passenger safety. The capabilities of these smart algorithms
will infiltrate every industry within the coming decade to help companies maximize their effective-
ness, whether it be improving marketing schemes or manufacturing processes.

Within the context of engineering, machine learning is not as prominent as in other fields. The
reasons for this can be traced back to safety and risk tolerances, where the idea of a neural network
introduces skepticism and uncertainty. This stems from a gap between the computer science and
engineering worlds, which will be discussed at the end of this thesis. Despite the scarce usage of
machine learning in engineering, it has become more widespread over the past decade in two spe-
cific areas: highly detailed numerical optimization, and high level design. Finite element modelling
is one example of the former, and it is the focus of this literature study and thesis.

The finite element method (FEM) is a numerical approach that is widely used to solve highly
complex engineering problems that cannot be solved analytically. In aerospace engineering, it is
most used in computational solid and fluid mechanics. In either case, engineers must often com-
promise between the time it takes to run a finite element simulation (which can quickly become
of the order of days in the case of complex problems), and the reliability of the model. The scope
of this literature review pertains to the solid domain where neural networks are starting to be used
in conjunction with finite element software (such as ABAQUS or NASTRAN), to improve computa-
tional efficiency without compromising accuracy. This section provides an introduction to neural
networks in the structural engineering sector.

5



6 2. Neural Networks: An Introduction

2.1. Defining the neural architecture

Numerical neural networks are essentially based on their biological counterpart: the human brain.
The cells within the human nervous systems are referred to as neurons (or nuclei), which are con-
nected to one another via axons and dendrites. The regions between the latter two are called synapses
[5]. Both the biological and artificial neurons are illustrated in Figures 2.1 and 2.2. As may be seen,
the artificial neuron has a similar architecture to the biological one. Inputs of the form of discrete
values (x1, x2, x3, ..., xn) are projected along singular paths that are each attributed a synaptic weight
(w1, w2, w3, ..., wn) culminating at a summation point. The sum of all the inputs are then passed
through an activation function before being output. In both instances, neurons are combined to
form a multi-nodal network leading to the central nervous system in the case of the human body, or
an artificial neural network in the case of computer science.

Figure 2.1: Biological neuron [127]. Figure 2.2: Artificial neuron [127].

The workings of a neuron were first proposed in 1943, by neurophysiologist Warren McCulloch
and mathematician Walter Pitts [87]. Although their research was focused on modelling a biolog-
ical neuron in the brain, it was used as a stepping stone in 1958 by Frank Rosenblatt to develop
the perceptron algorithm, the basis for all neural networks [101]. Despite these advancements, it
can be argued that Alan Turing was the first to radically suggest that an intelligent computer system
similar to that of the human brain could be developed. However, this requires that the machine be
subjected to an appropriate course of education, thereby mimicking the evolution of a child’s brain
into that of an adult’s [119]. In any case, the concept of training a machine to think and make con-
clusions without explicit instructions has been around for more than half a century.

The neural architecture is a key factor that influences the predictive capabilities of the network
and can be tailored for each application. It can be broken down into two categories: the perceptron
and the layering process.

2.1.1. The perceptron

A perceptron is the simplest possible neural network as it contains only one computational layer,
shown in Figure 2.2. The number of inputs can be compiled into an input vector X̄ which contains n
feature variables such that X = [x1, x2, x3, ..., xn]. As each input is passed through its respective axon,
it is subjected to a synaptic weight where the global vector has the same dimensions as the input
vector: W = [w1, w2, w3, ..., wn]. It should be stressed that up until this point, the input layer has not
performed any computations on its own. A linear function is then applied to sum all the inputs and
weights: W ·X =Pn

i=1 wi xi . The final step is passing this summation through an activation function
typically denoted as©. Therefore, the output of a perceptron can be written as:

ŷ =©(W ·X ) (2.1)
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Figure 2.3: Pre-activation and post-activation values within a neuron (recreated from [5]).

An artificial neuron is computing two functions within a node: a summation and an activation,
also referred to as pre-activation and post-activation respectively as shown in Figure 2.3. Typically,
the focus is always on the output of an artificial neuron, however, the summation stage plays an
important role when optimizing the network through backpropagation, which will be discussed in
the following section. The final step in defining the architecture of the perceptron is to determine
the nature of ©. The choice of activation function is critical as it ultimately defines the output of
a neuron. There exists multiple activation functions and should be carefully chosen based on the
application of the network.

Linear activation

©(¿) = ¿ (2.2)

The linear activation (commonly referred to as the identity function) is the simplest activation
function which provides no nonlinear representation. In a multilayered network, the identity func-
tion is sometimes used in the final output layer when the desired target is a real value unconstrained
by a scaled domain: R(©) 2 (°1,1). A simple example would be a perceptron that converts miles
to kilometers. The input vector would contain a singular value in miles that is fed into a neuron and
then passed through the identity function. Given the linear nature, the neuron outputs a real value
on the same scale as the input. The conversion from miles to kilometers is therefore entirely depen-
dant on the synaptic weight. Such a function facilitates simple integration and high computational
efficiency, but cannot when nonlinear modelling is required.

Sign

©(¿) = sign(¿) (2.3)

Binary classification problems benefit the most from the sign function (also known as the bi-
nary step or heaviside function) which simply returns a value of either 1 or °1. When confined to
the perceptron, this function can be particularly powerful, especially when trained on an extensive
dataset. It is currently being extensively implemented within the medical sector to assist doctors in
determining whether a tumour is malignant or benign [90]. Unfortunately, the capabilities of this
activation quickly break down when embedded in a network due to its non-differentiability.
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Sigmoid

©(¿) = 1
1+e°¿

(2.4)

The output of the Sigmoid function will always be between 0 and 1: R(©) 2 (0,1), making it
perfectly suited for computing probabilistic quantities. Its nonlinear behaviour and non-zero, con-
tinuous derivative have made it one of the most used activation functions in the field of machine
learning. However, outputs from a Sigmoid function are not centered around 0, which introduces
unfavourable dynamics when optimizing the network through backpropagation [5]. Furthermore,
the Sigmoid suffers from a concept known as the vanishing gradient meaning that there is practi-
cally no variation in the gradient at high and low values of ¿. These two latter problems will become
apparent when discussing the training of a neural network.

Hyperbolic tangent

©(¿) = tanh(¿) = e2¿°1
e2¿+1

= 2 ·Sigmoid(2¿)°1 (2.5)

The hyperbolic tangent is closely related to the Sigmoid function as shown in Equation 2.5.
Graphically, when compared to the Sigmoid, it is horizontally re-scaled and vertically extended such
that its outputs are always between °1 and 1: R(©) 2 (°1,1). Given that it is zero-centered, it cir-
cumvents the training problems that plague the Sigmoid function, while retaining the nonlinear
expressiveness and a continuous non-zero derivative. Therefore, the hyperbolic tangent is usually
preferred over the Sigmoid, especially when the outputs of the network are desired to be both posi-
tive and negative.

Hard hyperbolic tangent

©(¿) = max{min[¿,1],°1} (2.6)

In recent years, it has been found that piecewise activation functions are more computation-
ally efficient than continuous ones [5]. One example is the hard hyperbolic tangent, which has the
same output range as the classical hyperbolic tangent but helps the network converge faster to the
desired optimum. An important observation is that ©0(¿ < 1_¿ > 1) = 0. Inputs corresponding to
the aforementioned domain cause the derivative of the function to become zero, which impairs the
network from learning through backpropagation. This is referred to as the dying hard hyperbolic
tangent. Provided that the input data is properly conditioned, it can be easily contained but does
require active monitoring. Although this function does help a network converge quickly and is com-
putationally efficient, it is often substituted for its piecewise counterpart: the rectified linear unit.

ReLU (Rectified Linear Unit)

©(¿) = max{¿,0} (2.7)

The rectified linear unit is another piecewise activation function that has proven to be highly
computationally efficient and is the most used in the design of artificial neural networks. It is very
similar to the hard hyperbolic tangent, except that its output is not capped at ±1. In other words:
R(©) 2 [0,1). This unique property makes it the sole activation function that shows asymmetric
saturation which accelerates the training process. However, similarly to the hard hyperbolic tan-
gent, the ReLU suffers from an undefined gradient for certain input values: ©0(¿ < 0) = 0. Though
in practice, this is usually not problematic as additional neurons within a network compensate for
those whose input/output is 0. The ReLU is being increasingly used across a wide variety of appli-
cations to the extent that it is almost always present in any given neural network.
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Leaky ReLU

©(¿) = max{∑ ·¿,¿} (2.8)

The leaky ReLU is an attempt to eradicate the dying ReLU problem by providing a small negative
slope when ¿< 0. This fixes the zero-gradient problem but does not provide a significant amount of
added benefit to the ReLU which is already very computationally efficient.

Swish

©(¿) = ¿

1+e°¿
= ¿ ·Sigmoid(¿) (2.9)

Swish is another attempt to further improve the ReLU by Google researchers Prajit Ramachan-
dran, Barret Zoph, and Quoc Le. It is closely related to the Sigmoid function and emulates the piece-
wise nature of the ReLU function, therefore it is simple to manually code into a neural network if the
chosen programming environment does not already offer it as a module. Furthermore, its contin-
uous nature eradicates the dying ReLU problem. Performance improvements showed that Swish
is on average 0.6%°0.9% more accurate than ReLU for classification problems without decreasing
its convergence speed [99]. Although this might seem like a minute improvement, it does make a
difference for high-speed classification tasks that are used in self-driving algorithms.

Softmax

©(¿)i =
e¿i

PN
n=1 evn

for i = 1,2, ..., N (2.10)

Also known as the normalized exponential function, Softmax normalizes an N -dimensional in-
put vector into a probabilistic distribution with N probabilities whose sum is equal to 1. This makes
it perfectly apt for an output node within a neural network and well-suited for multilayered classifi-
cation problems.

These activation functions are the most common and are always considered when designing a
neural network. Figure 2.4 shows a graphical representation of all the listed activation functions in-
cluding Softmax, which was created using a randomly generated vector. The ReLU is regarded as the
most successful and widely used function due to its computational efficiency [99]. Although some
alternatives have been proposed such as the leaky ReLU and Swish, neither of them have managed
to entirely replace the ReLU. This, however, does not mean that continuous functions such as the
Sigmoid and hyperbolic tangent are no longer in use. They continue to be very useful in conjunc-
tion with piecewise functions that work together in deep neural networks.

When choosing the appropriate activation function, not only should the output range and ap-
plication be considered, but also the derivative of the function. This will become of significant im-
portance during the training process, which relies on backpropagation to optimize a network. This
section focused solely on the architecture of the network, but the training stage is an equally impor-
tant stage that will be elaborated subsequently.

The perceptron is the simplest form of a neural network as it only contains one neuron with one
activation function. From here, it is a small step to a neural network which is simply a combination
of multiple perceptrons.



10 2. Neural Networks: An Introduction

Figure 2.4: Various activation functions.
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2.1.2. Multilayered neural networks

Unlike a perceptron, a multilayered neural network (sometimes referred to as multilayered percep-
tron or MLP for short) has multiple computational layers. These contain an input layer, an output
layer, and several layers in between called hidden layers. Such networks are known as feed-forward
networks since each layer feeds into the following one until the output is reached. Therefore, the
architecture of a neural network is fully defined when the number of layers and nodes in each layer
are set.

Figure 2.5 shows an example of a neural network. Data is first inserted into the input layer which
does not perform any computations in its own right. The inputs are directly fed into the first hid-
den layer, being subjected to a synaptic weight vector W1. Each neuron in the hidden layer sums its
inputs and then passes them through an activation function denoted as f1 in the diagram below. It
is important to note that although each neuron in a layer could have a different activation function,
this is never the case as it would require too much input from the user and would hinder the train-
ing process [5]. The outputs of the first hidden layer are fed into the second along with a second
synaptic weight vector W2. Another activation function, f2, is used to compute the output of each
neuron which is finally passed on to the output layer where a final activation function is used to
compute the output of each neuron. It should be noted that in most cases, the activation functions
used in the hidden layers are all the same (i.e., f1 = f2), but are not necessarily the same as those
used in the output layer. The reason for this is purely user simplicity. Building a neural architecture
is extremely difficult due to the infinite number of variables. Normalizing the activation function
across all hidden layers is one boundary constraint that helps streamline the design of the network.
In practice, it is also found that networks are more efficient if the same activation function is used
in the hidden layers [5].

Figure 2.5: Example of a neural network with two hidden layers and multiple outputs [6].
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Figure 2.6: Feed-forward neural network with two hidden layers and one output layer, with and without bias
neurons (recreated from [5]).

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!" = $% ∙ '()  

*+ = Φ($% ∙ '()) 

*+ = Φ(!") 

'( 

'( 

$%  

$%  

∑ 

∑ 

Φ 

Φ 

Break Up 

Pre-activation value 
Post-activation 

value 

01 

02 

03 

04 

05 

Input layer 

Output layer 

	*+ 

Hidden layers 01 

02 

03 

04 

05 

Input layer 

Output layer 

	*+ 

Hidden layers 

+1 +1 +1 

01 

02 

03 

04 

05 

0̅ 

	*+ 

ℎ2((( ℎ1((( 

ℎ11 

ℎ12 

ℎ13 ℎ23 

ℎ22 

ℎ21 

Scalar weights 
on connections 

(a) No bias neurons (b) With bias neurons 

ℎ1((( 
 

0̅ 
 

	*+ 0̅ 
 

ℎ2((( 
 

Weight matrices on 
connections 

(a) Scalar notation (b) Vector notation 
(a) Scalar notation.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!" = $% ∙ '()  

*+ = Φ($% ∙ '()) 

*+ = Φ(!") 

'( 

'( 

$%  

$%  

∑ 

∑ 

Φ 

Φ 

Break Up 

Pre-activation value 
Post-activation 

value 

01 

02 

03 

04 

05 

Input layer 

Output layer 

	*+ 

Hidden layers 01 

02 

03 

04 

05 

Input layer 

Output layer 

	*+ 

Hidden layers 

+1 +1 +1 

01 

02 

03 

04 

05 

0̅ 

	*+ 

ℎ2((( ℎ1((( 

ℎ11 

ℎ12 

ℎ13 ℎ23 

ℎ22 

ℎ21 

Scalar weights 
on connections 

(a) No bias neurons (b) With bias neurons 

ℎ1((( 
 

0̅ 
 

	*+ 0̅ 
 

ℎ2((( 
 

Weight matrices on 
connections 

(a) Scalar notation (b) Vector notation 
(b) Vector notation.

Figure 2.7: Feed-forward neural network using scalar and vector architectures (recreated from [5]).

An additional parameter that can be embedded within a neural network is a bias neuron. This is
simply an entity that always transmits a value of b =+1 to an activation function. Therefore a nodal
output with bias would be of the form ŷ =©(W ·X +b). Introducing a bias becomes very useful if the
desired outputs do not display a trend that passes through the origin i.e. f (0) = 0. Figure 2.6 shows
the same network, one of which has bias neurons and one that does not. Just like the activation
function, a bias neuron could be selectively attributed to specific neurons but in practice, they are
globally added to streamline the training process.

One final important concept concerns the notation of a neural network. The number of layers
is typically represented by a variable k, and each layer contains p1, ..., pk neurons, which defines its
dimensionality. The column vectors representing the outputs of each layer are denoted as h1, ...,hk .
The weights of the axons between the r th hidden layer and (r +1)th hidden layer are contained in
a pr £ pr+1 matrix Wr . Vector notation is extensively used when programming a network and is
summarized by the following set of recursive equations for a d-dimensional input vector x:

h1 =©(W T
1 x)

hp+1 =©(W T
p+1hp ) 8p 2 {1, ...,k °1}

o =©(W T
k+1hk )

[Input to Hidden Layer]

[Hidden to Hidden Layer]

[Hidden to output Layer]
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Figure 2.7 shows a graphical example of a neural network with vector and scalar notation. Scalar
notation is straightforward to understand, but is rarely used as vector notation is more computa-
tionally efficient.

The number of hidden layers and nodes in each layer is essentially all that is required to define
the architecture of a network. The difficulty lies in the reasoning behind these design choices. For
instance, adding multiple hidden layers does increase the expressiveness of a network but also en-
courages overfitting. A phenomenon that paradoxically hinders expressivity. The same logic can be
applied to the number of neurons in a layer. Moving from a layer that contains relatively few neu-
rons to one that contains many produces sparsity within the dataset. The opposite compresses the
data into a reduced representation. Unfortunately, there is still no formula for designing the optimal
neural architecture. Trial and error, and experience in the field of machine learning are what helps
the most. However, in practice, a neural network with two hidden layers each containing less than
50 neurons is capable of solving most complex nonlinear problems [5].

2.2. Training a neural network

Up until now, the notions of training and optimizing a neural network have been mentioned several
times. This is a pivotal step in designing an effective network as it defines its computational effi-
ciency and effectiveness for a given application.

The dominant method for training a network is known as supervised learning. To begin with, a
dataset containing inputs and their respective outputs is compiled. The inputs are then fed into the
network resulting in a forward cascade of computations across numerous layers, using certain sets
of weights. The resulting predicted output of the network, ŷ is then compared to the actual output,
y , and the error between the two is computed by means of a loss function. This error is then prop-
agated back through the network using backpropagation to alter the synaptic weights. This cycle
repeats until the error converges below an acceptable tolerance. Once the network is considered
sufficiently trained, it can be deployed as a "black box": inputs in the same range as the training set
can be input into the network, which generates reliable outputs assured by a convergence criterion
during training.

Supervised learning can be split into two areas. The first is determining which loss (or cost) func-
tion to use to measure the error between outputs, and the second is the backpropagation phase used
to update the synaptic weights in the network. This section provides an overview of the essentials
of both steps which are the final steps in designing a neural network.

2.2.1. Loss functions

Choosing the correct loss function is a critical step since it defines the output error of a network
which directly influences the training process through backpropagation. In the context of a neu-
ral network, a loss function should incorporate the individual errors of n training examples. This
ensures that a scalar quantity is produced, which can be differentiated with respect to the weight
and bias vectors. Furthermore, the loss function should only be determinant on the output layer,
thereby leaving the hidden layers untouched. Both conditions are required for backpropagation
[5, 93, 96]. The following are some of the most common loss functions in use today. In each case,
y (i ) and ŷ (i ) represent respectively the true and predicted output of the i th data point.
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Hinge loss

L = 1
n

nX

i=1
max

n
0,1° y (i ) · ŷ (i )

o
(2.11)

Hinge loss (sometimes referred to as max-margin objective) is particularly suited to support vec-
tor machines that are used to implement learning methods, as well as training classifiers. The target
outputs should be in the domain of y 2 {°1,+1}. One drawback is that the derivative of the hinge
loss is undefined at y (i ) · ŷ (i ) = 1.

Squared hinge loss

L = 1
n

nX

i=1

≥
max

n
0,1° y (i ) · ŷ (i )

o¥2
(2.12)

The squared hinge loss is a simple variation on the classical hinge loss that solves the problem
of the aforementioned undefined derivative at y (i ) · ŷ (i ) = 1. Other than this, it possesses the same
properties and applications as the hinge loss.

Mean squared error (MSE)

L = 1
n

nX

i=1

≥
y (i ) ° ŷ (i )

¥2
(2.13)

Mean squared error is a widely used function in linear regression. It is versatile in handling mul-
tiple types of datasets since it is unconstrained by a set domain. In the context of neural networks,
however, it tends to slow down the learning process with asymptotic activation functions, making it
only fit for logistic regression.

Mean squared logarithmic error (MSLE)

L = 1
n

nX

i=1

≥
log(y (i ) +1)° log(ŷ (i ) +1)

¥2
(2.14)

MSLE is closely related to MSE in that it is best suited for performing logistic regression. It is
also known for penalizing under-estimates more than over-estimates and can be compared to MSE
in the following manner:

1. If
°
y (i ) ^ ŷ (i )¢ø 1, then MSE º MSLE .

2. If
°
y (i ) _ ŷ (i )¢¿ 1, then MSE > MSLE .

3. If
°
y (i ) ^ ŷ (i )¢¿ 1, then MSE > MSLE .

Mean absolute error

L = 1
n

nX

i=1
|y (i ) ° ŷ (i )| (2.15)

The mean absolute error can be directly compared with MSE. It too suffers from a slow learning
rate with asymptotic functions. Though within a neural network, it tends to perform better than
MSE since it does not amplify large errors making it more robust to outliers.
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Cross entropy

L =° 1
n

nX

i=1

h
y (i ) log(ŷ (i ))+ (1° y (i )) log(1° ŷ (i ))

i
(2.16)

Cross entropy measures the divergence between two probability distributions and is commonly
used in binary classification problems. As previously mentioned, MSE suffers from a slow training
phase when paired with asymptotic activation functions such as Sigmoid. Cross-entropy manages
to circumvent this problem making it extremely efficient. Softmax activation with cross-entropy
loss is one of the most popular and computationally efficient learning schemes for networks with
discrete-valued outputs [5].

Kullback Leibler (KL) divergence

L = 1
n

nX

i=1
DK L

≥
y (i )||ŷ (i )

¥

= 1
n

nX

i=1

h
y (i ) · log

≥ y (i )

ŷ (i )

¥i

= 1
n

nX

i=1

≥
y (i ) · log

°
y (i )¢¥

| {z }
entropy

° 1
n

nX

i=1

≥
y (i ) · log

°
ŷ (i )¢¥

| {z }
cross entropy

(2.17)

The KL divergence was first introduced in 1951 by Solomon Kullback and Richard Leibler as a
measure of how a probability distribution diverges to a second expected probability distribution
[67]. Essentially, it gauges the predictive power that each sample contributes and has shown to be
very effective for training multiple models in parallel by means of ensemble methods such as bag-
ging [131], or boosting [5].

The above-described loss functions are currently the most used in neural network design. When
choosing an appropriate loss function, it is vital to consider the application of a network (and thereby
its output), as well as the activation function used in the output layer. Failure to take these into ac-
count will greatly hinder the training process and reduce computational efficiency. It could also
make the network diverge altogether. Once the error at the output of a network is defined, it has to
be propagated backward through the network using backpropagation.

2.2.2. Backpropagation

The origins of backpropagation can be traced back to the 1960s where it was used to optimize multi-
stage allocation processes in control theory, especially in the context of flight paths [21, 60]. It was
only applied to neural networks in 1974 by Paul Webros [124], although the most recognized form
of the backpropagation algorithm is nowadays attributed to Rumelhart et al. [102]. The goal of the
backpropagation process is to compute the gradient of the loss function with respect to the synaptic
weights using differential calculus.

Consider a neural network with k layers, each containing one neuron, h. The designation of
any given node is therefore h1,h2, ...,hk and the synaptic weight between two nodes is denoted as
w(hr°1,hr ). Given a chosen loss function L and that there exists only one path between h1 and the
output node o, then the error with respect to any given synaptic weight is:

@L
@w(hr°1,hr )

= @L
@o

·
∑
@o
@hk

k°1Y

i=r

@hi+1

@hi

∏
@hr

@w(hr°1,hr )
8r 2 1, ...,k (2.18)
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It is important to realize that Equation 2.18 is only valid for a neural network with a singular
path from the input to the output node. By incorporating the multivariable chain rule, the gradient
along any given path for any given neural architecture can be determined. Amending the previous
expression yields (where P is the set of paths that exist from hr to o):

@L
@w(hr°1,hr )

= @L
@o

·
∑ X

[hr ,hr+1,...,hk ,o]2P

Ω
@o
@hk

k°1Y

i=r

@hi+1

@hi

æ∏

| {z }
Backpropagation computes ¢(hr ,o) = @L

@hr

@hr

@w(hr°1,hr )
8r 2 1, ...,k (2.19)

This expression can be further broken down into two components, the first of which is the path-
aggregated term (¢(hr ,o)). Since a neural network cycles between forward and backward phases,
it is possible to determine recursively the aggregation by starting at the output layer and working
backward to the input layer [5, 124]. This is sometimes referred to as dynamic programming but is
often avoided due to the confusion it causes with reinforcement learning (a tool used in unsuper-
vised learning, which is out of the scope of this literature review but is described in-depth by Charu
Aggarwal and Coates et al. [5, 27]). Considering that ah is the input value to a hidden unit h just
before applying the activation function, ¢(hr ,o) can be expressed as:

¢(hr ,o) = @L
@hr

=
X

h:hr !h

Ω
@L
@h

@h
@hr

æ
=

X

h:hr !h

@h
@hr

¢(h,o)

) ¢(hr ,o) =
X

h:hr !h
©0(ah) ·w(hr ,h) ·¢(h,o) (2.20)

The other component in Equation 2.19 is @hr
@w(hr°1,hr )

, which can be computed using the defined

activation function:

@hr

@w(hr°1,hr )
= hr°1 ·©0(ahr ) (2.21)

Finally, the entire backpropagation phase relies on the initialization of each output node in order
to compute the cascading gradients:

¢(o,o) = @L
@o

(2.22)

In the previous expressions, the term ah was used to break down Equation 2.19 and render it
comprehensible for practical applications. Such a term is commonly referred to as the pre-activation
variable, which is the counterpoint to the post-activation variable h (h =©(ah)). It may sometimes
be convenient to express the entire backpropagation process in terms of the pre-activation vari-
ables. Therefore, Equation 2.19 can be re-written as:

@L
@w(hr°1,hr )

= @L
@o

·©0(ao) ·
∑ X

[hr ,hr+1,...,hk ,o]2P

Ω
@ao

@ak

k°1Y

i=r

@ahi+1

@ahi

æ∏

| {z }
Backpropagation computes ±(hr ,o) = @L

@ahr

@ahr

@w(hr°1,hr )
8r 2 1, ...,k (2.23)

Where ±(hr ,o) can be computed as:

±(hr ,o) =
X

h:hr !h

Ω
@L
@ah

@ah

@ahr

æ

) ±(hr ,o) =©0(ahr )
X

h:hr !h
w(hr ,h)±(h,o) (2.24)
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Backpropagation is continuously applied until all the output losses are below an acceptable tol-
erance. Depending on the choice of neural architecture, the training process will converge any-
where between one and a couple of thousand epochs. From a programming point of view, it is
important to understand that backpropagation algorithms are conducted in a decoupled manner.
This is shown in Figure 2.8 using vector-based representation.
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Figure 2.8: Decoupled vector-centric representation of backpropagation (recreated from [5]).

Table 2.1 provides a list of a few functions and their corresponding backpropagation updates
between layers. Let zi represent the column vector of outputs of the i th layer, and the synaptic
weight vector between layers i and (i + 1) is denoted by W . Concerning the backwards phase, g i
represents the backpropagated vectors of gradients of layer i . Regarding the notation, it is important
to note that Ø is the element-wise multiplication of two vectors i.e. An£1 ØBn£1 = Cn£1. In the case
of an arbitrary function fk (·), it is required to compute the Jacobian matrix whose elements are:

Jkr =
@ fk (zi )

@z(r )
i

where z(r )
i is the r th element in zi . (2.25)

Numerical optimization by leveraging the magnitude and sign of a derivative is a tool that is
widely used in mathematics, computing, and engineering. The effectiveness of a neural network
relies on a concrete backpropagation scheme. Unfortunately, numerous problems can arise during
training as a result of backpropagation, which will be discussed in the following section. For ad-
ditional reading, Paul Werbos put forth a book in 1994 detailing the extensive history and uses of
backpropagation across all fields in [125].

Table 2.1: Backpropagation schemes corresponding to certain activation functions between the i th and (i +1)th layer [5].

Function Type Forward Backward

Linear Many-Many zi+1 =W
T

zi g i =W g i+1
Sigmoid One-One zi+1 = Sigmoid(zi ) g i = g i+1 Ø zi+1 Ø (1° zi+1)

ReLU One-One zi+1 = zi Ø I (zi > 0) g i = g i+1 Ø I (zi > 0)
Tanh One-One zi+1 = tanh(zi ) g i = g i+1 Ø (1° zi+1 Ø zi+1)
Hard
Tanh

One-One
Set to ±1(› [°1,+1])

Copy (2 [°1,+1])
Set to 0(› [°1,+1])
Copy (2 [°1,+1])

Arbitrary
function fk (·) Anything z(k)

i+1 = fk (zi ) g i = J T g i+1
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2.3. Advanced topics

The neural architecture and training through backpropagation are the two key elements that are
required to build a working neural network. However, they only scratch the surface of neural net-
work design. There are many more concepts that help further improve the training process and a
network’s efficiency. Even though these topics are more suited to computer science-based applica-
tions, this section aims to provide a brief overview of some of the more advanced topics in machine
learning. Though it should be noted that most of these are not currently being used for building
engineering-oriented neural networks.

2.3.1. Overfitting

Overfitting is one of the most common problems encountered when building a neural network. It
occurs when a model can accurately predict the training data but performs poorly when attempting
to predict unseen test data, even if the latter lies within the training domain. This unusual situation
often occurs when users train their neural networks until the loss error approaches zero (L º 0),
and then the network displays significant errors after deploying it on testing data. The ability for a
network to perform well on unseen test data is known as generalization. Possible causes of overfit-
ting are [5]:

• Not using a sufficiently large training set relative to the application.

• Using a complex model (deep neural network) to model a simple problem.

• Using a simple model (shallow neural network) to model a complex problem.

• Training until the error º 0.

With these in mind, designing the architecture of a neural network becomes a delicate balanc-
ing act. A network that is too simple will not be able to model the structure of the data, especially in
nonlinear datasets; whereas one which is too complex might wrongly represent outliers that should
be ignored [18]. From a statistical point of view, an effective network is one that uses an optimal
trade-off between high bias and variance (one that is too supple). A focus on high bias is character-
istic of an inflexible model; focusing on variance as a determinant in the loss error function typically
results in a model which is too supple. A good rule of thumb that is commonly used is that the num-
ber of data points used for training should be 2 to 3 times larger than the number of parameters in

Figure 2.9: Example of overfitting [16].
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the neural network [5]. Figure 2.9 shows an example of an overfitted, and underfitted, and a prop-
erly calibrated network.

In order to train a network to generalize, it has to be trained to forget: introducing ignorance
into a system allows it to ignore noisy patterns and outliers in the data. One way of achieving this
is through automated error-based optimization commonly referred to as regularization. Here, the
variance of a model is controlled by modifying the loss function with a penalty term ≠. Given that
the error E(X ) represents the error between the actual and predicted values (y ° ŷ), the updated
weight vector including a penalty term is of a given training instance X :

W √W (1°Æ∏)+Æ
X

X2S

E(X )X (2.26)

Where Æ is the update rate such that Æ > 0, and S is a given batch size. Penalty-based regular-
ization is the most used technique for preventing overfitting and can interestingly be interpreted as
adding noise to the training process. Christopher Bishop proves that using penalty terms to regular-
ize a network is equivalent to deliberately injecting noise into the dataset [18]. It has been demon-
strated experimentally in 1991 that network generalization can be improved by adding noise [109],
Bishop managed to draw parallels with Tikonov regularization (also known as L2 regularization) to
further streamline the penalty-based process. Although the benefits of training with noise have not
yet been demonstrated in engineering applications, they have shown to be extremely effective for
improving the accuracy of classifiers.

Another simple solution to prevent overfitting is known as early stopping, which simply termi-
nates the training process before it converges to the optimal solution. This is achieved by simul-
taneously monitoring the error on the training and testing sets. Unfortunately, such a method can
only be used if the user already has access to the testing data at the moment of training which isn’t
the case for most applications. One popular workaround is to randomly split the available data into
the training, validation, and testing data whose ratios are usually 50%, 25%, and 25% respectively
which have been used since the 1990s [5]. The validation set is used to calibrate overfitting using
early stopping to tune other network components such as the neural architecture or backpropaga-
tion scheme. Once tuned, the model can be deployed on the test set which has been left untouched.
This approach has been shown to improve the generalization capabilities of a network regardless of
its application.

Penalty-based regularization and early stopping are two very popular methods for preventing
overfitting, yet they induce additional difficulties: in both cases, the user either has more parame-
ters to tune (such as the penalty term and update rate) or is required to carefully monitor the bias-
variance trade-off. An ideal solution would help solve the problem of overfitting without burdening
the user with more tasks to perform. Such solutions do exist, known as Dropout or pretraining, but
given their complexity, they have been attributed their separate sections. The bias-variance trade-
off is a heavily researched area in statistics as well as neural networks. Trevor Hastie, Robert Tibshi-
rani, and Jerome Friedman have compiled an extensive study of this area in the context of machine
learning [49]. From a purely algorithmic point of view, Kong et al. and Kohavi et al. arguably intro-
duced the notion of error correcting through balancing the bias and variance of a system [63, 64],
even though their work was not centered on neural networks.
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2.3.2. Hyperparameter optimization

Every parameter that the user is required to define to build a neural network such as the number of
hidden layers, the number of nodes, the choice of activation functions, etc., is known as a hyperpa-
rameter. Choosing a good set of hyperparameters can greatly help with a network’s generalization
capability. Unfortunately, there are no predefined guidelines for determining effective hyperparam-
eters for a given application. In almost all cases, trial and error is used to find the type of network
that works best since the number of permutations of a neural network is infinite. Structural based
stabilization is a process that aims to prevent overfitting by starting off with an effective set of hyper-
parameters. This is also considered an outer-loop optimization process since it is not yet embedded
within an active neural network. The mathematical representation of this process can be expressed
as shown in Equation 2.27.

£(§) ¥ argmin
£2§

©
™(£)

™
(2.27)

Where£(§) represents the desired hyperparameter and™ is the hyperparameter response func-
tion active across a search space §. The response function can be considered as a fictitious param-
eter since it changes for every application and neural architecture. The most common approach to
this problem is to use grid search, which classifies every conceivable combination of hyperparam-
eters within §. Several attempts at formulating tailored versions of grid search to improve hyper-
parameter optimization may be found in [13, 14, 31, 52, 71, 76], though unfortunately these remain
extremely theoretical and have yet to be proven within a practical network. Furthermore, it has been
shown by Bellman in 1961 that grid search suffers from the curse of dimensionality: the number of
permutations grows exponentially with the number of hyperparameters [10]. Bergstra et al. clearly
stated that grid search is a poor choice for building machine learning algorithms and that random
set-sampling of hyperparameters is generally more effective and can be easily automated [12].

Hyperparameter optimization remains a very difficult problem, especially when considering
neural networks. So far, most solutions that have been proposed are not applicable when building
networks that model complex nonlinear phenomena. However, this outer-loop optimization prob-
lem is starting to be implemented in simpler applications such as binary-output networks. Thorn-
ton et al. showed in 2013 that Bayesian optimization could be leveraged to accelerate classification
tasks [118]. Their resulting program, Auto-WEKA, proved to be between 35% and 75% faster at clas-
sification tasks than conventional algorithms that use grid search or manual search to determine
their hyperparameters.

Unfortunately, there has not been any concrete implementation of hyperparameter optimiza-
tion in complex neural networks, especially for engineering applications. The extensive choice of
variables that the user is required to choose is one of the biggest drawbacks of supervised learning.
Unsupervised learning, on the other hand, benefits from feature-based learning to automatically
tune its hyperparameters. Trial and error using grid search remains the only way to design a neural
network for engineering-oriented problems.

2.3.3. Pretraining

Pretraining is another form of regularization that uses an out-of-loop greedy algorithm to find a
good initialization point for the synaptic weights prior to training the network. This eliminates one
hyperparameter as the user no longer has to decide how to initialize the weights before training.
Unsupervised pretraining has shown to be the most effective form of pretraining, which has been
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Figure 2.10: Multilayer autoencoder used for pretraining using dual-level reduction [5].

extensively demonstrated in [11, 34]. Supervised pretraining can also work, but typically leverages
the greedy algorithm too much and as a result, the weights in the first few layers are already di-
rectly related to the output. Unsupervised pretraining is slightly more docile and is able to initialize
the synaptic weights such as to minimize the training error and reduce the probability of overfitting.

Unsupervised pretraining relies on dimensionality reduction. Within the neural architecture,
this is achieved by reducing the number of nodes from the i th to the (i +1)th layer, and then sym-
metrically increasing the number of nodes in the (i +2)th layer as shown in Figure 2.10. This form
of neural architecture is also known as an autoencoder. Moving data between two layers, the second
of which has fewer nodes than the first, consequently reduces the dimensionality of the data. Due
to the symmetrical nature of the network, it can be assumed that the outer hidden layers contain a
first-level reduced representation of a larger dimensionality, and the inner ones represent a second-
level reduced representation but of smaller dimensionality [5]. Such a reduction permits a greedy
algorithm to quickly learn the synaptic weights of the network one layer at a time. From there, the
weights are used as initialization parameters to fine-tune the neural network through backpropaga-
tion. In practice, pretraining can be broken down into the following steps:

1. Consider a random neural architecture with k hidden layers, where each neuron in a hidden
layer has an activation function©1. The nodes in the output layer all have an activation func-
tion©2. With this in mind, pretraining starts at the end of the network and works towards the
beginning layer by layer.

2. The output layer is removed and the representation of the kth hidden layer is learned by cre-
ating an autoencoder with (2 ·k °1) hidden layers where the middle layer is the final hidden
layer.

3. The resulting architecture of the created autoencoder has (2·k°1) hidden layers where the first
(k °1) hidden layers are equal to the first (k °1) hidden layers of the original neural network.
However in the autoencoder, an additional (k-1) layers are added which are the symmetric
counterparts of those already present. The activation functions used in the autoencoders do
not have to be related to©1 or©2 (typically linear activations are used since the purpose of an
autoencoder is to recreate the input data i.e. x1 = x 0

1, x2 = x 0
2, ...).
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4. The autoencoder is trained using data from the global training set (the same training dataset
that would otherwise be used to train a neural network in the traditional sense).

5. Once trained, the weights from the first k hidden layers can be used to initialize the weights
in the original neural network. The weights between the final hidden layer and output layer
can also be initialized by training them separately as a cohesive single layered network.

The results of unsupervised pretraining using an autoencoder to initialize the weights of a neural
network are quite notable and have shown to be extremely effective in modelling complex problems.
Hinton et al. showed that significant performance improvements can be achieved as well reducing
the training and testing error to well below 1.5% across a wide variety of applications ranging from
image recognition to classification [53, 54]. Geoffrey Hinton even goes so far as to state that reducing
a dataset’s dimensionality is key in designing highly expressive neural networks [54]. An in-depth
study on pretraining can be found in [5, 34].

2.3.4. Morphable neural networks

A neural network that automatically alters its own architecture in order to optimize itself is highly
sought-after. This would unequivocally eradicate the concept of hyperparameter optimization, as
the network would choose the best combination of parameters by itself. Unfortunately, such tech-
nology is not yet present but is thought to be an area that large corporations such as Microsoft, Ap-
ple, IBM, and Google are investing in heavily. However, there are concepts that have been applied to
neural networks to alter and improve their architecture. The most popular one is known as Dropout.

Dropout is based on a theoretical dilemma called feature coadaptation [108]. Consider the dia-
gram shown in Figure 2.11. Two nodes in a hidden layer transmit their outputs to a singular output
node using synaptic weights w1 and w2 such that w1 6= w2. The error from the output node is then
determined and backpropagated to update the weights in the network. Given that the weights are
not the same, they will be updated differently. However, if w1 has already reached its optimal value,
then it would be unnecessarily absorbing some of the error that should be entirely diverted to cor-
rect w2. This is known as feature coadaptation. Although it is evidently impossible to know when a
certain synaptic weight has reached its optimal value, it introduces the notion that certain weights
need not be updated as much as others during training.

The first appearance of enabling a network to self-adapt its architecture in order to prevent fea-
ture coadaptation was introduced in 1988 by Sietsma et al. and was called pruning [108]. If during
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Figure 2.11: Synaptic weights between one layer containing 2 neurons, and an output layer.
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training, the output of a given node does not change with a variable input sequence, then such a
unit is not contributing to the solution and can be removed. Sietsma et al. showed that by pruning
units, not only did the simpler network become faster, its accuracy and robustness to overfitting
increased significantly. In the case of classification problems, pruning caused a 10-fold improve-
ment in classifying noisy patterns with substantially simpler architectures [108]. The downside to
this method was that the contribution of each node had to be individually evaluated.

Shortly after the introduction of pruning, LeCun et al. proposed an adapted version called opti-
mal brain damage (OBD) [75]. The slight variation employed the second derivative when backprop-
agating the error through the network to compute the saliencies of each neuron. When applied,
OBD managed to reduce the number of parameters in a practical neural network by a factor of four,
while maintaining the same level of accuracy as pruning. Despite the success of this method, there
is not enough emphasis on the fact that their program requires numerically evaluating and inverting
the Hessian matrix, which contains the numerical second derivatives and is a significant computa-
tional expense. This problem was deemed circumvented in 1993 by Hassibi et al. who introduced
optimal brain surgeon (OBS), which was proven to be more effective than pruning and OBD [48].

The accuracy of these methods stemmed from their reliance on computing the second deriva-
tive during backpropagation. However, as the applications became more complex, the computa-
tional costs started to increase greatly. Dropout built on the concept of pruning and introduced
a retention probability into the network: each neuron is initiated with a random probability from
a Bernoulli distribution that scales the weights during training. After a certain number of epochs,
some nodes will be dropped out due to their retention probability dropping below a threshold. The
resulting network is one that is far simpler than the original as entire layers have been automatically
deleted in most cases.

Dropout has quickly become the most powerful tool for preventing overfitting and improving
the generalization capability of a neural network. It has also shown to be equally effective across
applications such as speech recognition, image detection and classification problems. The most
effective version of Dropout to date includes a tailored activation function known as Maxout [41].
An in-depth introduction to Dropout may be found in [113] and a thorough summary is presented
in [112]. More specific applications and versions of Dropout can be found in [24, 55, 109, 122, 123].

The most important conclusion from the extensive use of Dropout is that a neural network does
not have to have a complex architecture to model complex problems, which is an ongoing miscon-
ception when building a neural network. Dropout can assist in automatically altering a network’s ar-
chitecture by removing units and layers (the opposite concept of adding neurons and layers has yet
to prove its effectiveness), which simplifies the hyperparameter optimization process: one can sim-
ply start with an overly large network and let Dropout simplify it. The only drawback from Dropout
is that the training process is typically 2 to 3 times longer [113].

2.3.5. Momentum

Neural networks with many hidden layers often face training difficulties due to the manner in which
gradients are backpropagated from layer to layer. One common problem is known as the vanish-
ing gradient. For example, backpropagating through a network with Sigmoid activation will induce
a numerical update to each synaptic weight of 0.25 or less [5]. After moving through r layers, this
value becomes 0.25r meaning that after moving through 10 hidden layers, the update magnitude
drops to 10°6 of its original value. At the other extreme, if activation functions with larger gradients
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are used or the weights are initialized at larger values, the gradient would increase to orders of mag-
nitude higher than its original value. This is intuitively called the exploding gradient.

Such gradient problems have been more prevalent when using continuous activation functions.
This is why piecewise numerical functions (Hard Tanh, ReLU, Maxout, etc.) have become so popu-
lar in recent years as they manage to circumvent the problem (the only exception is Google’s Swish
which is essentially a continuous representation of a numerical function). Both the exploding and
vanishing gradients problems are equally bad as they hamper the network’s ability to learn and con-
verge to a solution. One effective workaround is to use Dropout to rid the network of useless neu-
rons as explained in the previous section [48, 75, 113]. However, from a programmer’s point of view,
building a network with Dropout is far more complex than tuning the backpropagation scheme us-
ing a new parameter: momentum.

Momentum-based learning incorporates two new parameters into the network: the learning
rate Æ and friction parameter Ø 2 (0,1). The former can be expressed by the initial decay rate Æ0,
epoch t , and variable decay rate k. The reason for using a learning rate is that it prevents a constant
learning rate and training inconsistencies due to vanishing or exploding gradient issues. The two
most used forms of learning rate are exponential and inverse decay [5, 49]:

Æt =Æ0e(°k·t ) [Exponential Decay]

Æt =
Æ0

1+k · t
[Inverse Decay]

(2.28)

The update scheme for the synaptic weights can now be expressed using an additional vector V
which captures the exponential smoothing from the learning rate and friction parameters, shown
below:

V √ØV °Æ
µ
@L

@W

∂

W √W +V
(2.29)

A slight adaptation of the previous scheme is known as Nesterov momentum and was first intro-
duced in 1983. It showed that the converge error reduced to O(k°2) after k steps rather than O(k°1)
in the case of traditional momentum. The altered updated scheme incorporates the friction param-
eter within the computation of the gradient to propagate additional information regarding how the
gradients change [89]:

V √ØV °Æ
µ
@L(W +ØV )

@W

∂

W √W +V

(2.30)

There are many more adaptations of momentum-based learning all of which have been shown
to be effective in certain applications such as AdaGrad, RMSProp, AdaDelta, etc. A complete list
and explanation of all these variations can be found in [5]. However, a recent update algorithm that
has become immensely popular was introduced in 2015 and is known as ADAM [61]. It self-adjusts
its learning rate using a bias correction factor to account for unrealistic initialization of exponential
smoothing parameters Ai and Fi . The former is the exponentially averaged value of the i th synaptic
weight wi . In most momentum schemes, Ai is the aggregate i th value:

Ai √ Ai +
µ
@L
@wi

∂2

8i (2.31)
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In the case of ADAM, instead of using just the squared gradients to estimate Ai , exponential
averaging uses the same decay rate k as in Equation 2.28. The reason behind this is that exponential
averaging does not risk prematurely slowing down due to a constant scaling factor Ai , as in the
case of simply using the aggregate values. In addition to Ai , ADAM exponentially smooths the first-
order gradient through Fi with a different decay parameter Ø. The purpose of this is to incorporate
momentum into the update process. The update scheme for ADAM can therefore be written as:

Ai √ k Ai + (1°k)
µ
@L
@wi

∂2

8i

Fi √ØFi + (1°Ø)
µ
@L
@wi

∂
8i

wi √ wi °Æt

s
F 2

i

Ai +≤
8i

(2.32)

The inclusion of ≤ in the denominator is a small positive value such as 10°8 that allows for better
conditioning of the update scheme [61]. One important note is that the learning rate Æt is different
than before to incorporate the adjusted bias:

Æt =Æ

µp
1°kt

1°Øt

∂

| {z }
Adjusted Bias

(2.33)

ADAM has shown to be one of the most effective kinds of momentum-based learning processes
and is implemented in most neural networks regardless of their application. Training a network
using momentum can significantly improve the convergence speed and the overall generalization
capability of a network. However, Sutskever et al. pointed out that momentum is only beneficial in
the case of a properly initialized network [115]. A network whose weights are initialized randomly
might not benefit at all and could even be damaged from momentum-based learning [49, 115]. The
key to enabling momentum-based learning is to perform pretraining on the network to initialize
properly the synaptic weights.

Optimizing numerical convergence is not a recent topic and is extensively used when training a
neural network. In all programming environments (TensorFlow, Octave, etc.), there are preset func-
tions that automatically embed momentum into the training process. Regardless of application,
momentum-based learning has become (almost) universally used in neural network development.

2.3.6. Additional noteworthy topics

The previous sections focused on a handful of advanced concepts in neural network design that are
starting to be used more and more for practical uses. There are however a few concepts that focus
on very precise issues which are important to be aware of even if they are not as widely used as the
previous ones.

Data sparsity

Sometimes, a user is required to build a neural network capable of capturing an extremely com-
plex problem, but only a limited amount of training data is available. Often, data sparsity occurs
when conducting field work that involves capturing data from non-numerical phenomena. In the
context of engineering, this might occur in laboratory experiments which introduce a significant
amount of human and systematic error. An effective way for modelling a complex problem with
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sparse datasets is by using autoencoders such as that in Figure 2.10. By leveraging dimensionality
reduction and expansion on the dataset, neural networks are effective and capable of generalizing
problems well with limited amounts of training data.

A complete overview of sparse autoencoders can be found in Andrew Ng’s Lecture Notes [91].
The literature also provides specific examples of applications of handling data sparsity in the field
of speech and image recognition [25, 72–74], as well as in others [5, 49, 50]. Thankfully, the problem
of sparse datasets will not come into play when building neural networks into finite element models
since an unlimited amount of training data can be generated. In practice however, time constraints
will come into play preventing the construction of infinite datasets.

Bagging and subsampling

On the other extreme of a sparse dataset is one that is infinitely large. This poses a unique prob-
lem in that the variance of such a dataset asymptotically reduces to 0 [49]. Variance reduction is
desired as it can be the primary cause of overfitting, yet the problem stems from the fact that it is
impossible to utilize an infinite database during training as it would simply take too long. Bagging is
one method that is used to randomly sample the training data with replacement. The sampling size
s is used to train a given model. Once optimized, the data are resampled with replacement to train
another model. The resampled data will contain duplicates of the original dataset with a fraction of
(1°1/n)n º e°1 where n is the size of the original training set. The outputs of the various models are
then averaged to yield an accurate prediction [5]. Evidently, the disadvantage of this method is that
it requires multiple training models which is highly time-consuming. However, the results show a
system that has an exceptionally low variance and strong generalization capability. If parallel pro-
cessing is available, then bagging is highly recommended.

Subsampling is almost identical to bagging. The difference is that subsampling samples the data
without replacement. It has been shown that bagging performs better with a finite amount of data,
however, when training data can be endlessly created, subsampling is more effective. In both cases,
the resultant variance is far lower than simply training a network on a singular dataset permitting,
better generalization.

Bagging first appeared in 1996 and was introduced by Breiman as bootstrap aggregating [20].
A complete mathematical analysis of bagging was published in 2002 by Bühlmann et al. [22]. A
detailed study of bagging and subsampling within the context of neural network design may be
found in [105, 131].

Boosting

Boosting is the opposite of bagging and subsampling. Whereas the latter two focus on variance
reduction, boosting is a bias-reduction method that is typically applied to datasets with low vari-
ance and a high bias [7]. Boosting is most commonly used for classifiers and was first introduced
in 1990 by Robert Schapire and Yoav Freund who proposed that weak hypotheses could be used
to create highly accurate neural networks [103, 104]. Michael Perrone then extended on Schapire’s
work and proposed alternate uses for boosting in neural networks, notably regression problems [98].

In essence, boosting focuses on altering the weights within the training dataset, which is an en-
tirely new concept. In a neural network architecture, the emphasis is on synaptic weights, however
boosting also considers the importance of each data point in the training set. Figure 2.12 shows a
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Figure 2.12: Example of a boosting scheme using AdaBoost [7].

brief overview of a boosting process. First the training set is used to train a shallow neural network.
In the case that no backpropagation is used, the measured output error is directly related back to
the training data which are reformatted to compensate for their error. In Figure 2.12 this is graphi-
cally shown by some data points becoming larger/smaller than others. This process is repeated until
the resulting error converges below a predefined threshold. Such a process is evidently extremely
powerful for classifiers to the extent that it is considered faster than training a neural network using
backpropagation. However, from the moment the complexity of the problem increases (for exam-
ple speech and image recognition or multi-output optimizers), then neural networks outperform
ensemble schemes using boosting [103].

Backpropagation can also be incorporated into boosting but then the optimization process be-
comes difficult as it is very difficult to determine the optimal update scheme between updating the
synaptic weights and altering the weights of the training set. AdaBoost and gradient boosting are
two of the most common boosting techniques [5, 7, 103].

2.4. Closure

The goal of this chapter was to provide the reader with a sufficient background in neural network
theory to understand how neural networks are used in practice, and some of the techniques that will
be used throughout this thesis. The components of a neural architecture and training through back-
propagation are unequivocally the most important concepts in neural network design. Additionally,
it is very important to consider the following:

1. One of the biggest misconceptions in neural network design is that the more complex its ar-
chitecture, the better it will be at generalization. Properly initializing the synaptic weights and
the manner in which they are trained are far more important. This has been proven experi-
mentally and theoretically by Bartlett in 1998 [9]. The result of Dropout also independently
proves this notion by simplifying overly complex architectures to extremely simple ones that
are just as expressive.

2. Overfitting is still one of the biggest problems, regardless of the application of the neural net-
work. The quickest and most effective workaround is to deliberately inject noise into the
dataset, which helps the network develop a sense of ignorance towards noisy patterns in the
data thereby making it a better predictor. This has shown to be a difficult task for program-
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mers to incorporate, since it is unnatural to deliberately introduce error into a system when it
could be avoided [130].

All of the advanced approaches, with the exception of momentum-based learning, are seldom
used in engineering applications. Moving forward, this presents a unique opportunity: incorporat-
ing these advanced concepts in network design for complex engineering problems such as finite
element modelling could be an area of untapped potential.
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Neural networks are known for their data-driven ability to accurately and efficiently model complex
problems. They are therefore well suited for the field of engineering optimization where precise
solutions are required from multivariable nonlinear problems. However, one interesting observa-
tion is that the employment of neural networks in such engineering disciplines is far less mature
than in audio or speech recognition (some of the reasons for this will be put forward in Chapter
13). Nevertheless neural networks and machine learning are progressively entering the workplace.
For example, NASA’s Jet Propulsion Laboratory recently collaborated with Autodesk to create a ma-
chine learning interface that designed the structure of an interplanetary lander. From the governing
boundary conditions, the resulting structural concepts all boasted organic-inspired models, which
ventures far out of the conventional design space. Another example is that Airbus Defence & Space
is starting to implement convolutional neural networks to accelerate the damage evaluation of solar
arrays, thereby streamlining the maintenance process.

Finite element analysis is a tool that is widely used by engineers to model complex structures
and materials under specific loading conditions (Zienkiewicz et al. have compiled a complete and
in-depth study of the finite element method, which may be found in [132]). The results of such
simulations are used in tandem with experimental tests to design efficient structures for tailored
applications. Due to the heavy computational expense of finite element models, engineers are of-
ten faced with trading off accuracy for simulation time which can quickly become of the order of
days depending on the model’s complexity. Given that neural networks are purely data-driven sys-
tems, they would be able to theoretically improve the computational efficiency of a finite element
model without compromising its accuracy. However, FEM models are extensive and consist of mul-
tiple strata of complexity making it difficult to know where a neural network might be effective.

This chapter provides a literature review to establish the state of the art of neural networks being
employed in numerical structural optimization problems. Neural network usage in the context of
FEA can be grouped into two broad areas: coupled and uncoupled networks. The distinction refers
to the integration between the neural network and the FEA model. In an uncoupled network, the
neural network works in isolation of the FEA model. In contrast, in a coupled network, the neu-
ral network resides within the FEA model and is fully embedded. Recall in Chapter 1 that research
question RQ2 explicitly asks: "Is it feasible to embed a trained neural network into an active finite
element analysis". Clearly, the focus of the thesis is therefore in the realm of coupled networks.
To understand how such coupled networks might operate, however, it is instructive also to review
quickly how an uncoupled network operates. Some of the literature on uncoupled networks, for
example, has already addressed to some degree issues that this thesis seeks to address in a cou-
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pled network: structural failure and damage prediction; quick network training in a manufacturing
context; post-buckling behaviour of panels or beams; complex crash behaviour and interpretation.
Each of these issues in the uncoupled neural networks provide insights into how active integration
through a coupled network can operate.

The chapter therefore commences in Section 3.1 with a quick review of uncoupled neural net-
works and their applications in damage prediction, manufacturing, and post-buckling, and crash
behaviour. Section 3.2 builds on this and goes into further detail on the literature addressing active
FEA integration in a coupled neural network. Section 3.3 provides a comparative discussion on how
a coupled neural network may expand on or complement analyses currently relying on uncoupled
neural networks.

3.1. Uncoupled neural networks

Uncoupled networks represent a class of networks that follow a scheme summarized in Figure 3.1.
First, training data are generated from user-defined finite element models. Data are then split into
the training and testing data. The former are used to train the neural network. This step is iter-
ated until the model is sufficiently optimized and then the test data are incorporated to validate the
model. The entire process is repeated until the neural network has obtained the desired general-
ization and expressivity capabilities. Once the workflow is complete, the model can be deployed
and used independently [65]. The concept of an uncoupled network refers to the fact that after de-
ployment, the neural network will not be embedded within a finite element model. It is meant to
function as an isolated system. This section provides an overview of some of the applications for
which such a workflow can be used.

3.1.1. Top-level damage prediction

One application of uncoupled neural networks is damage prediction. The manner in which ma-
terials and structures damage is an extremely complex topic but essential when considering how
a design might eventually fail. Composite laminates are particularly intricate due to the multiple
modes in which they can damage (matrix cracking, delamination, fibre breakage, etc.). In most ap-
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Figure 3.1: Proposed workflow to train uncoupled finite element-based neural networks (recreated from [65]).
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plications of damage modelling, neural network inputs are either the direction and magnitude of
the loading vector, or strain values; and outputs are the location and size of the resultant damage. It
is important to note that damage prediction can also be carried out using coupled neural networks,
which will be discussed in another subsection. Top-level damage prediction refers to the type of
inputs provided to the neural network. Often, training data take the form of top-level parameters
such as the geometry and global loading situation of a structure. From these it is very difficult to
obtain an accurate prediction of where the damage is going to occur, especially since the resultant
network is meant to function in isolation.

One method for obtaining training data to model damage in composites is by using smart struc-
tures. These are composite structures with embedded sensors that provide real-time strain mea-
surements. This is known as active health monitoring. One of the first examples of extracting such
data to train a neural network appeared in 1992. Teboub et al. showed that once trained on a suffi-
cient amount of experimental data, the neural network could be deployed as a self-contained pro-
gram to provide quick diagnostics for the health of composite beams [117]. The resulting network
was essentially a classifier capable of distinguishing between delamination, fibre breakage and ma-
trix cracking based on an internal strain state provided by the sensors. Although the results sug-
gested a potential for neural networks in such an application, the difficulty was in obtaining suf-
ficient training data to be able to model all the conceivable kinds of damage patterns. The strain
data provided by the smart structures were not enough to ensure a reliable classification. This was
further emphasized by Labossière et al. in 1993 who predicted the failure envelope of a unidirec-
tional composite laminate given the direction and magnitude of the loading vector [69]. Su et al.
efficiently predicted delamination occurrence in glass fibre-reinforced laminates using fibre Bragg
grating sensors [114]. Recent work by Elenchezhian et al. showed that the reliability of damage clas-
sifiers for composite structures could be drastically improved with modern non-destructive testing
technology, particularly broadband dielectric spectroscopy [33].

Training neural networks on experimental data is a difficult task given the amount of human er-
ror and noise that is created, especially in the case of composite laminates. Finite element analyses
can provide far more training data and are subject to fewer sources of error. Kudva et al. proposed
an approach where a neural network was capable of predicting the damage size and location of a
grid-stiffened aluminum panel under unidirectional compression, trained using finite element sim-
ulations [66]. For composite structures, leveraging the limitless data creating-capabilities of finite
element analysis has shown to be particularly effective when only considering one mode of dam-
age. Malik et al. conducted 100 simulations of composite plates being impacted by a rigid spherical
solid travelling at 6.0m/s. The two-dimensional geometry was fixed, and the number of plies and
stacking sequence was varied for both CFRP and GFRP. The resulting network was designed to pre-
dict the absorbed energy given a certain stacking sequence and material properties (CFRP or GFRP).
The results showed a 99.91% correlation with test data while only using a network with one hidden
layer [84].

The ability to capture or predict damage patterns using neural networks is attractive due to the
heavy computational costs of modelling composite structures. Past research suggests that mod-
elling using neural networks is most effective when using large datasets and focusing on just one
mode of damage initiation. A classifier algorithm capable of predicting the type and location of
damage given a certain geometry, loading conditions and stacking sequence is very appealing, but
also too complicated to train. More examples of neural networks being used to predict delamination
may be found in [23, 51, 120]. Alternative applications of uncoupled neural networks for damage
prediction similar to those mentioned in this subsection may be found in [35, 77, 78, 83, 85].
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An alternate approach for damage prediction relies on using coupled neural networks. Embed-
ding machine learning algorithms at the material level within an active FEM analysis can overcome
the lack of accuracy from top-level damage predictors generated by uncoupled neural networks.
Nevertheless, the latter do enable a quick assessment of the type of damage and its location, al-
though this should always be examined further due to the amount of uncertainty in such neural
network models.

3.1.2. Manufacturing

Neural network-based optimization has also proven to be effective in the context of manufacturing.
For instance, Shahani et al. applied it to a hot rolling process, which is one of the most common
manufacturing processes since it concerns 80% of all metallic products, irrespective of their appli-
cation [106]. Therefore, there is a significant incentive to optimize the process as much as possi-
ble. A finite element model was developed to output the stress, strain, strain rate, temperature and
rolling force distributions for a set of input parameters such as thickness reduction, rolling speed,
initial temperature, and friction coefficient. These were used to train a neural network with two hid-
den layers, which showed an excellent coherence with testing data [106]. Just as in previous cases,
the resulting model was deployed as a self-contained, computationally efficient alternative to a full
finite element model permitting the user to quickly obtain predictions regarding a hot rolling pro-
cess. Such a tool is ideal for lab technicians working directly on the manufacturing line. A similar
approach was used to optimize the process of air-bending forming of sheet metal by Fu et al. in
2010 [37].

3.1.3. Post-buckling and crash behaviour

Post-buckling represents an extremely nonlinear deformation regime of a structure. Modelling such
a phenomenon proves to be a very expensive computational endeavor. Bisagni et al. proposed the
use of neural networks and genetic algorithms to model the post-buckling behaviour of composite
stiffened panels [17]. (Genetic algorithms are another machine learning tool, which are essentially a
numerical manifestation of biological evolution. A practical introduction to genetic algorithms can
be found in [28]). Instead of a singular neural network, a total of 10 neural networks were designed
to work in parallel. The reasoning behind this was that it would be simpler to create multiple neural
networks to model each type of structural response (buckling load, collapse load, etc.) rather than
one cohesive network. Although this is debatable since a neural network that is properly calibrated
could theoretically model a combined structural response, it is an effective approach given that the
neural architectures were limited to two hidden layers and no more than 5 nodes in each layer. An
added benefit of a clustered-network approach is that the training set for each network becomes
small compared to that which would be required to train a cohesive system. The resulting scheme
resulted in an average error of less than 10% across all types of structural response [17].

Recently in 2018, Abambres et al. published a study modelling the post-buckling behaviour
of steel beams using a singular neural network. Using similar inputs as Bisagni et al., Abambres
managed to further reduce the average error to 2%, thereby proving that it is possible to model the
combined structural response of a post-buckled beam with one neural network [3]. However, it
should be noted these improvements were conducted on a steel beam, which is easier to model
than a composite beam as in the case of [17].
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Lanzi et al. used the same approach as in [17] (multiple small neural networks working in par-
allel) to reproduce load-time curves of structural behaviour during the event of a helicopter crash
[70]. Finite element analysis using PAMCRASH [1] was used to generate the training data that con-
sisted of the scaled design variables as inputs, and consequently returned the required components
to generate a load-time curve (load at first peak, maximum force, and mean force). Again, a system
of small neural networks running in parallel proved to be effective as the resultant average error was
12% [70]. It is important to emphasize that creating a system of clustered neural networks experi-
ences diminishing returns as the complexity of the problem increases, as the global training process
will become less efficient than that of a singular neural network. Furthermore, it also becomes far
more difficult to troubleshoot discrepancies and improve overfitting, since the loss function in the
final combined output cannot be traced back to the responsible neural network(s).

3.2. Coupled neural networks: active FEA reintegration

Coupled neural networks rely on a slightly different workflow structure than uncoupled networks.
In the previous examples, the resulting networks were deployed for self-contained usage, i.e., once
they were trained, they were meant to function on their own. Given that they were designed for a
specific application, their data-driven architecture could easily bypass the computational expense
of complicated finite element tasks. Coupled networks take the trained networks one step further
by reintegrating them back into an active finite element model. This new workflow may be seen in
Figure 3.2. Depending on how they were trained, multiple units of the same neural networks could
be reintegrated to work together along with the rest of the computational model to accelerate the
entire finite element analysis. The application of the neural networks could take any form of compu-
tational task that is performed over the course of a FEM analysis, thereby improving computational
efficiency at key locations. Theoretically, this would allow the user to conduct an accelerated finite
element simulation on any given application, without compromising accuracy.

One example of coupled neural networks was developed by Liao et al. who embedded active
neural networks within a finite element simulation of a waveguide filter to accelerate the deter-
mination of spatial EM-field couplings [80]. Although their method is not evidently relatable to
computational solid mechanics, it does show that an FEA can be substantially accelerated without
losing accuracy by using trained neural networks. Liao et al. stress that the success of this method
relies on a robust training scheme and a seamless understanding of the thresholds between neural
networks and the remaining numerical tasks. Another case was proposed in 2005 by Ramuhalli et al.
who integrated neural networks to determine the global stiffness matrix of a mesh using the mate-
rial properties of each element as inputs [100]. The computational efficiency of their model heavily
hinges on constant boundary conditions which were used to train the network. The purpose of their
model was to solve complex differential equations for electromagnetic nondestructive evaluation.
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3.2.1. Constitutive modelling

Within the context of structural analysis, one area of research pertaining to coupled neural networks
is constitutive modelling. Stress-strain relations, also known as constitutive relations, intuitively
relate the stress and strain of a material to model its mechanical response. For example, in the case
of a linear elastic material, a constitutive relation would be:

æ= D("°"0)+æ0

or:

"= D°1(æ°æ0)+"0

(3.1)

Where D represents the material matrix. Constitutive models are used in finite element analyses
to define the behaviour of an element and can be embedded in an active FEA at the material level
via a user material subroutine in ABAQUS (UMAT). Depending on the complexity of the material,
multiple constitutive models might be used to capture more complex mechanical responses such
as plasticity or fracture. Neural networks were first introduced in the 1990s by Ghaboussi et al. as an
alternate, data-driven approach to building a constitutive model [38]. The networks should model
a constitutive relation, its inputs and outputs should be the stresses and strains respectively. How-
ever, Ghaboussi identified that the major difficulty would be capturing the nonlinear mechanical re-
sponse since material behaviour is path-dependent. The solution was to develop a stress-controlled
model: the inputs of the network would be the current states of stress and strain (æ1,æ2,"1,"2), as
well as the stress increment (¢æ1,¢æ2). The resulting output would be the predicted strain, i.e. ¢"1

and ¢"2. A neural network consisting of two hidden layers with 40 nodes in each layer was devel-
oped for the constitutive model, which was trained on experimental data extracted from biaxially
loaded concrete.

Figure 3.3 shows the neural architecture that was used by Ghaboussi et al. to develop a con-
stitutive model. Once trained, the network was deployed to predicted the constitutive relation-
ship of biaxially loaded concrete. When compared with experimental data, it was found that the
data-driven network could reasonably reproduce the nonlinear mechanical response of the ma-
terial, which was a promising outcome for network-driven computational mechanics [38, 59]. It is
however interesting to note that there was no motivation for the choice of neural architecture. It was
simply determined by trial and error. In their paper, Ghaboussi et al. do stress that more research

Figure 3.3: Neural architecture used for developing a constitutive model of biaxially loaded concrete [38].
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should be invested in building a neural architecture for structural engineering applications. How-
ever, the paper incorrectly postulates that the discrepancies between the artificial neural network
and the experimental data are due to a lack of complexity in the neural architecture. As was shown
in [9], augmenting the complexity of a neural network does not necessarily increase its expressivity.
Rather, more emphasis should be put on weight initialization. In the 1990s, a significant amount of
research had already been conducted in the field of neural network design and it is surprising that it
was not used when designing such experiments. Despite this, Ghaboussi et al. introduced the first
promising application of a neural network in structural computational mechanics at the material
level. Although some might argue that Kupfer et al. initiated the notion data-driven computational
mechanics in 1969, no neural networks were applied at such stage [68].

Constitutive modelling using neural networks really started to gain momentum in 1998 [39],
when they were used to model the behaviour of a composite laminate plate containing an open hole.
Composite materials are widely used in aerospace engineering for their high specific properties.
Unfortunately, the complexity of a composite laminate cannot be overstated. Multiple plies, each
containing fibers in specifically defined directions, carry, transmit and propagate the load differ-
ently depending on their respective position to various boundary conditions. Accurately modelling
composite structures is widely responsible for high computational costs in finite element models.
Hence, there is significant interest in rendering this process more efficient using alternate methods
such as machine learning. Two concise yet in-depth overviews of numerically modelling composite
materials can be found in [81, 116].

Ghaboussi et al. introduced a new approach to designing a neural network known as autopro-
gressive training [39]. This essentially starts with a simplified neural architecture, whose weights are
first trained. Neurons are then added to each layer (note that no new hidden layers are inserted), the
weights that have already been trained are frozen, and the new synaptic weights are trained on re-
sampled data. Finally, the old connections are unfrozen and all the synaptic weights are fine-tuned
together. This could be interpreted as a form of bagging but used within a singular model instead
of across multiple networks, or it could also be considered as a kind of supervised pretraining. In

Figure 3.4: Autoprogressive training overview [39].
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any case, the end goal is the same: improve the generalization capability of the network by properly
initializing the synaptic weights (thereby reducing the variance of the overall system). Figure 3.4
shows an overview of this process. Hashash et al. used this same framework to model the material
behaviour of inelastic metal through an inverse shift analysis [47].

The autoprogressive training scheme was used to develop a constitutive model that predicted
the stress increment from the strain state and strain increment. As opposed to the previous case
where experimental data was used, Ghaboussi et al. used finite element analyses to create a vast
training set for the network [39]. The training scheme was analogous to the workflow in Figure 3.1
and is shown in detail in Figure 3.6. A composite plate with an open hole under compression was
used to test the neural network. Experimental data from strain gauges measuring the shortening of
the plate were compared to the results from the neural network that was trained at the material level
using a finite element model. The results were very promising showing that neural networks were
also capable of modelling complex composite materials. Autoprogressive training was shown to be
effective for initializing the synaptic weights, but did not overcome the lack of expressivity which
was still present. A trial-and-error approach was used to determine the number of hidden layers:
two. A review of neural networks being used to model fiber-reinforced polymeric composites may
be found in [44].

Modelling the constitutive relations via neural networks has since been applied to more com-
plex structures. Tom Gulikers leveraged their expressive capabilities to model a composite laminate
with an elliptical hole under biaxial tension. Stress-strain relationships were extracted at the bound-
ary and showed excellent coherence with test data generated from finite element simulations. The
architecture of the neural network was determined by trial and error, and it was found that two hid-
den layers were sufficient to capture the mechanical response of composite structures, including
their damage criteria [42]. This required reformulating the elasticity matrix to account for dam-
age and ultimately produced satisfactory results while using a neural network with only two hidden
layers. Gulikers took the devised framework one step further and postulated that a trained con-
stitutional model could be reintegrated back into an active mesh [42]. For instance, if the neural
network was trained on a plate with an elliptical cutout, the resulting model could be used to re-
place such cutouts in larger structures as shown in Figure 3.5. Unfortunately, such an approach is
limited when complex non-uniform or non-periodic boundary conditions are applied on the RVE
or substructure. Therefore, another approach should be employed; for instance: training a neural
network at the element level rather than at the material-point level and then proceeding with mesh
reintegration.

(a) Traditional mesh discretization. (b) Neural network constitutional model.

Figure 3.5: Modelling elliptical cutouts in a fuselage panel [42].
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One final example that is slightly different than those already mentioned centers on human
bone fatigue crack growth. Hambli et al. devised a hybrid framework to build neural networks at
the integration point level to accelerate the transition from macro to meso scales by determining
the crack length and density based on the cycle number, apparent stress, density, and Young’s mod-
ulus [45]. The neural network was incorporated into ABAQUS using a UMAT subroutine. Figure 3.7
shows the devised framework by Hambli et al. Although a sufficient amount of experimental data is
lacking to validate the cohesive model, the results were promising as well as a staggering 4.32 ·105

times faster than the original finite element simulations. Oishi et al. also devised a similar ap-
proach at the integration point level, but on a deeper level: the neural network was used to enhance
numerical integration of the element’s stiffness matrix using the Gauss-Legendre quadrature. The
minimum number of integration points required for a given error tolerance was estimated using
neural networks. Overall, this allows for each element to use the optimal number of integration
points to reduce computational expense without sacrificing accuracy [94].

Figure 3.6: Neural network training to develop a constitutive model from finite element training data [39].



3.2. Coupled neural networks: active FEA reintegration 39

Figure 3.7: Multiscale finite element approach using neural networks embedded at the integration point-level [45].

Constitutional modelling represents one of the larger areas of coupled neural networks being
used for structural analysis. Neural networks also proved capable of modelling cyclic behavior at
a material level [39, 129]. More examples of constitutive modelling using neural networks may be
found in [40, 46, 57].

3.2.2. Framework development & data management

The expressive power of neural networks has proven to be extremely successful when reintegrat-
ing back into an active finite element model, as shown in the previous section. This then prompts
the desire to extend neural networks to more complex structural problems, at which point a new
issue might come into play. For a given problem, the dimensionality of the design space is expo-
nentially linked to the required number of sampling points. Bessa et al. described this as the curse
of dimensionality [15], a concept that was first introduced in 1961 by Bellman when evaluating the
effectiveness of grid search [10]. In essence, if the number of sampling points required to train a
neural network is large enough, the use of a neural network might start to experience diminishing
returns as the time required to train it is equal to or exceeds the time required to develop a tra-
ditional FEM model. Several recent findings have developed frameworks to manage the copious
amounts of data in high-design space problems without impairing the effectiveness of data-driven
solutions.
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In 2016, Liu et al. developed a novel technique for organizing the data of problems with large
sampling dimensionality called self-consistent clustering analysis [82]. The idea behind this was to
help lower the size of the training domain by decomposing a high-fidelity Representative Unit Cell
(RUC) into material clusters. Figure 3.8 shows an overview of the developed cluster analysis. The of-
fline stage essentially subdivides a high-fidelity RUC into a reduced-order model which is then used
on the online stage in the predictive process. The simplified model permits faster computations by
reducing the dimensionality of the data into material clusters. Although in his example Liu did not
use neural networks, the framework could be easily extended to the training domain of a network
by using only data from key representative locations in a mesh rather than at every point.

Bessa et al. built on principles of the self-clustering analysis to develop a new framework that
builds large databases that are suitable for machine learning shown in Figure 3.9 [15]. One key ele-
ment in this process is the Design of Experiments stage (or DoE), which uses space-filling analysis
to treat similar inputs as a cohesive unit and could be argued to be an extension of Liu et al. self-
clustering analysis [82]. An overview of various types of space-filling methods was compiled in 2001
by Simpson et al. [110]. The purpose of the DoE stage is to identify the required design samples
to build a representative yet efficient domain for computational analysis, which is also considered
as the bottleneck of the framework. The design samples are then passed through computational
analyses where the outputs are used to build machine learning models to make predictions on new
models. The entire process can then be refined, starting by refining the sampling in the DoE stage.
If the generated design samples prove to create machine learning models that are not sufficiently
accurate, then the space-filling methods can be re-evaluated to increase the number of samples. On
the other hand, if the accuracy of the machine learning model is adequate, the DoE process could be
revised to group the data even more to promote increased computational efficiency. Bessa showed
that the devised framework serves as a robust starting point for rendering complex structural prob-
lems with high-dimensionality design spaces accessible for data-driven solutions [15]. The key el-
ement remains the effectiveness of the space-filling methods in the DoE phase, which drastically
reduces the number of required design samples.

Figure 3.8: Graphical overview of the self-clustering analysis [82].
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Reducing the dimensionality of the sampling space for complex problems is essential when
using neural networks or else the accuracy of the model will not outweigh the computational ex-
pense during training. Although the previous examples pertain to the micromechanical domain,
they are just as applicable to higher-level problems. Typically genetic algorithms are used in high-
dimensional optimization problems, however, they lack the expressive and predictive capabilities
of neural networks. Hybrid approaches that combine a neural network with a genetic algorithm are
sometimes used to help reduce the design samples for the neural network as shown by Bisagni et
al. [17]. Although this was shown to be effective, it requires simultaneously developing two types of
machine learning models. Bessa and Liu’s framework, on the other hand, revolves around one ma-
chine learning model and focuses on the DoE phase to reduce the dimensionality of the problem
[15, 82].

Figure 3.9: Overview of global framework developed by Bessa et al. [15].
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3.3. Closure

As shown throughout the previous section, coupled neural networks are a relatively new area of
research. This is mainly because it is very difficult to properly determine where neural networks
should be embedded within active finite element analyses, especially in structural analysis appli-
cations. Compatibility with the other computational components such as the overall mesh and
adjacent elements has to be seamless. Otherwise, the coupled neural network might worsen the
computational expense of the model. Despite the challenges, integrating machine learning within
finite element analyses appears to be an area of high potential for improving the efficiency of com-
plex structural optimization problems.

Uncoupled neural networks, on the other hand, are being widely used for structural optimiza-
tion tasks. Their self-contained state allows the user to quickly obtain accurate results concerning
complex optimization tasks that would otherwise require extensive finite element models. It should
be emphasized, however, that such models are only functional within an input parameter domain
defined by the training set. Anything outside such a domain would require the network to extrapo-
late, which no longer guarantees the same degree of accuracy.

Concerning the neural architectures and learning schemes, it is surprising how little emphasis
is put on network hardening given the current state of research in the field of machine learning. No
study in the literature reviewed in this chapter conducted sensitivity testing on the network’s per-
formance or utilized any of the more advanced topics in neural network design to further improve
model performance. All the neural architectures were formed by trial and error leading to a network
design with two hidden layers in most cases and used a Levenberg-Marquardt training algorithm
[43, 79, 86]. Despite its effectiveness, it has not shown to be as efficient as other momentum-based
learning algorithms such as ADAM [61]. Only Ghaboussi et al. and Bisagni et al. showed creative
and novel approaches to designing neural networks, using autoprogressive training and clustered
neural networks respectively [17, 39].

The potential of integrating neural networks into engineering applications is immense. There
is also an extended literature regarding data-driven approaches - other than neural networks - to
model physics-based problems [26, 36, 62, 92]. One common factor between all the examples cited
in this chapter is that the computational efficiency of structural simulations can be greatly improved
without compromising accuracy. This alone is sufficient to further pursue this field of research, and
see just how far the modelling capabilities of neural networks can be pushed. The literature pre-
sented in Chapter 2 (neural network design) and Chapter 3 (neural network use in FEA), provides
the confidence and motivation to build a coupled neural network at an element-level for active us-
age during an FEA simulation. The research objective for this thesis presented in Chapter 1 along
with the supporting research questions, is reiterated below.

The objective within the time-span of the thesis is to reduce the computational expense of a finite
element analysis – without compromising its accuracy – by embedding neural networks trained on

an element level into an active mesh.
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Building a neural network at an element level to be used in active FEA simulations is a complex
multi-platform endeavour requiring meticulous planning. This endeavour involves designing a
custom finite element with a built-in neural network. The element can be imported into the FEA
software by the user. Such an element is commonly referred to as a user-element (UEL) or user-
subroutine. Because a goal of this thesis is to integrate an active neural network into the user-
element, the UEL will also be referred to as a neural element. This chapter outlines the computa-
tional framework used to create and deploy such a neural element within an active FEA simulation.

4.1. The appropriate context: biomimicry

User-elements are typically developed when the conventional elements present in a finite element
library do not satisfy the user’s needs. For instance, modelling delamination in composites requires
specially formulated elements that can take into account the regions of large plastic deformation
and material yielding. Another example are geometrically-exact slender beam elements of arbitrary
curvature, which undergo large displacements and rotations. However, within this research frame-
work, a new element is created to improve the computational efficiency of elements that already
exist using machine learning. The chosen context therefore should be as simple as possible, while
still being able to demonstrate the capabilities of the neural element.

A logical starting point is a one-dimensional modelling space, where only axial loads are present.
This intuitively corresponds to truss structures, where each truss member can only be loaded in ei-
ther tension or compression. Creating a machine learning framework to model the deformation of
simple truss structures could be argued to be excessive, since it is very straightforward to build such
models using existing elements. However, it becomes appropriate when considering that the neu-
ral element could potentially be used to model complex truss structures and incorporate nonlinear
deformations, which extend beyond the capabilities of traditional FEA truss elements.

Organic-inspired structures are becoming more widespread thanks to improvements in 3D-
printing manufacturing. Topology optimizers are now fully present during the design stage in en-
gineering projects. With the required boundary conditions, the optimizers are capable of designing
potential structures that satisfy all the design requirements, while minimizing the overall mass. In
most cases, the resulting structure has shown to be more lightweight and efficient when compared
to traditional design methods. Figure 4.1 shows an example of a topology optimization scheme con-
ducted on a bracket.

43
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Figure 4.1: Example of a topology optimization process conducted on a bracket. The resultant structure (far right) is
capable of withstanding the original loads and boundary conditions, but is lighter than the initial design (far left) [58].

However, the complexity of organic-inspired structures is a different matter. Their unique geom-
etry is often referred to as organic, since they emulate structures found in nature such as structural
veins within leaves (Figure 4.2) or those found in human shin bone (Figure 4.3). Both of these pos-
sess a multi-truss structure. Thousands of small structural members of varying shapes and sizes
form an intertwined lattice of the final product: a lattice best manufactured using 3D-printing tech-
niques. In addition to the manufacturing process of such structures, it is also difficult to predict
accurately their mechanical response, since finite element models quickly become complex and
computationally expensive. Additionally, predicting the material defects due to the 3D-printing
process and how the defects affect structural integrity remains a persisting issue. These organic
structures have opened an entirely new field of structural engineering known as biomimicry and is
believed to be the future of structural design [8]. Unfortunately, as of now, organic structures are
typically dismissed in the early design stages due to their complexity both in terms of manufactur-
ing and computational modelling.

Despite their complexity, the lattices emerging from biomimicry can be simplified to a ran-
dom collection of interconnected truss members, each loaded under either tension or compres-
sion. Consider the example in Figure 4.4. The structure on the far left depicts part of a multi-truss

Figure 4.2: Organic structural lattice of a leaf [29]. Figure 4.3: Porous bone structure [111].
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lattice, which might be the outcome of a topology optimization process. The red nodes indicate
the points where the truss members are interconnected. If this structure is loaded in any fashion,
the loads propagated through each truss member will not be the same. Some will be under ten-
sion, and others under compression. If the deformation of each truss member remains within the
linear-elastic domain, then the overall structure is readily modelled by replacing each truss member
with a truss element in ABAQUS (T2D2). However, if the loading scheme on the structure is such
that some truss members are compressively loaded, and if manufacturing defects are present, then
these truss members might buckle and enter the post-buckling regime. Such a situation cannot be
modelled using truss elements, since truss elements do not allow for deformation out of the axial
plane. Instead, beam elements (B22 for example) would have to be used to model the buckling phe-
nomenon. In addition, buckling and post-buckling regimes also require a finer mesh, therefore one
beam element cannot be used to model one truss member. Instead, multiple beam elements are
required for each truss member to achieve an accurate solution. An example of such a mesh dis-
cretization, shown in Figure 4.4, and naturally comes with a higher computational cost. Given that
multi-truss structures resulting from biomimicry can be highly complex and possess multiple slen-
der truss members, this creates an opportune context for a neural element. A neural element can be
designed as a truss element to be used in multi-truss structures. It can be loaded axially while also
incorporating the out-of-axial plane deformation found in beam elements; thereby improving com-
putational efficiency. This would lead to a FEA model where each truss member could be replaced
with a user-element as shown on the far right of Figure 4.4.
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Figure 4.4: Example of the practical usage of a neural element. Far left: initial planar multi-truss structure. Middle:
traditional FEA discretization (traditional FEA shown in blue). Right: discretization using neural elements (neural

element shown in green).

For this thesis research, the neural element will be developed as a truss-like element that incor-
porates the modelling capabilities of beam elements. The final user-element will be able to deform
under tension and compression, and include out-of-plane modelling capabilities such as buckling
and post-buckling. To summarize, the full deformation field the neural element will encompass:

• Axial tensile deformation including material plasticity.

• Axial compressive deformation including post-buckling and material plasticity.

This approaches retains the simplicity of the modelling domain by restricting the deforma-
tion domain to axial loading (axial tension and compression), while including additional nonlinear
regimes such as material plasticity and post-buckling, which cannot be modelled in traditional truss
elements. The computational efficiency of the neural element can then be deployed into multi-truss
structures (such as organic lattices) to overcome the high computational expense that is a current
bottleneck in the modelling process.

To ensure an incremental design approach, the neural element will only be deployed on 2D
(planar) multi-truss structures. If a positive outcome is achieved, then it may be deployed to 3D
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lattices and this will be addressed in this thesis. Additionally, it is assumed that all connection points
between truss members (the red nodes on the far left of Figure 4.4) are pinned joints, and do not
restrict rotational degrees of freedom.

4.2. Establishing the parameter design space

To proceed with the design of a neural element for multi-truss applications, the parameter design
space has to be meticulously defined. As mentioned previously, the user-element has to model both
tensile and compressive deformation. Throughout this section, the entire parameter design space
will be specified. The design space refers to all the parameters flowing into and out of the neural
network, and built within the respective user-subroutine; this is required to construct a machine
learning framework for the neural network and the overall computational framework.

4.2.1. T2D2: The fundamental FEA truss element

In finite element modelling, the truss element is widely considered the simplest as it can only be
loaded axially, meaning that it cannot deform out-of-plane like a beam element. In 2D-space, this
can be mathematically translated into two degrees of freedom per node as shown in Figures 4.5 and
4.6.

Linear formulation

The two nodes of the truss element are denoted as 1 and 2 respectively, each of which is at-
tributed two degrees of freedom in the local coordinate system. Therefore, the element as a whole
possesses four degrees of freedom: ae1x , ae1y , ae2x , and ae2y . Intuitively, ae1x and ae2x are axially
aligned with the truss which can induce axial tension and compression in the overall structure. The
other components normal to the axis of the truss, ae1y and ae2y have no effect on the tensile defor-
mation or compressive loads throughout the structure, but will rather cause rigid-body motion. It
should be noted that up until this point, all notation concerns solely the truss’ nodal displacements
in the local coordinate system. In the global reference system, nodal displacements are applied as
a1X , a1Y , a2X , and a2Y and need to be translated to the truss’ local coordinate system depending on
the angle µ between the reference frames as shown in Figure 4.5. Mathematically, this relation can
be described by Equation 4.1.

a1X = ae1x cosµ°ae1y sinµ

a1Y = ae1x sinµ+ae1y cosµ

a2X = ae2x cosµ°ae2y sinµ

a2Y = ae2x sinµ+ae2y cosµ

(4.1)

The nodal displacements can be translated into matrix form for efficient notation: a = Te ae .
Where a is the global displacement vector, Te is the transformation matrix which rotates the global
coordinate system to the local one, and ae is the local displacement vector. Although Te and ae are
element-specific, a assembles all the nodal degrees over all elements in a system. In the case of truss
elements, if each node has two degrees of freedom and the system as a whole has N global degrees
of freedom, then ae is a 4-dimensional vector, a is an N -dimensional vector, and Te is a N £4 ma-
trix. These represent the nodal displacements, through the exact same approach can be used for
the forces as well. The global force vector f is related to the nodal forces, fe through the exact same
transformation matrix, T such that: f = Tfe .
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Figure 4.5: Truss element in 2D space, in local (x ° y) and
global (X °Y ) reference frames (recreated from [107]).
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Figure 4.6: Example of a truss element subjected to
combined loading causing an elongation and rotation.

It should be noted that this is a purely discrete notation of the element’s displacement. Truss
elements make use of simple linear interpolation between nodes expressed via shape functions hk .
For a single planar truss element, the continuous displacement field in local coordinates ue can be
expressed as (where ¥ represents the 1D parametric coordinate system of a truss element):

ue =
2X

k=1
hk (ª)ak °! ue = Hae (4.2)

In the context of linear modelling, the relationship between the forces and resultant displace-
ment in local coordinates is described by fe = Ke ae where Ke is the element’s stiffness matrix in
local coordinates. For a T2D2 member, the stiffness matrix can be expressed through Equation 4.3
where Ee , Ae , and Le denote the element’s Young’s modulus, cross-sectional area, and initial length
respectively.

Ke =
Ee Ae

Le

2
6664

1 0 °1 0
0 0 0 0
°1 0 1 0
0 0 0 0

3
7775 (4.3)

In the global reference frame, the stiffness matrix of the element has to be altered using the
transformation matrix: f = TKe TTa. If multiple elements are interconnected, then their individual
stiffness matrices can be superimposed to create a global stiffness matrix K. From there, the struc-
tural displacement a can be solved for any loading scheme f. It is however important to note that
this formulation is only valid in the linear deformation regime.

One final important aspect to underline is the possible deformation field of a truss member.
Given its nodal degrees of freedom it is capable of axial shortening/elongation, and rigid body mo-
tion. Figure 4.6 provides a qualitative example of a truss element under combined loading. If the
truss is loaded in such a way that the resultant displacement field is equal and opposite in both the x
and y directions as displayed in the figure, then two events will occur simultaneously. The opposite
axial loads ue1x and ue2x induce tension in the structure resulting in an elongation; whereas ue1y and
ue2y cause a rigid-body rotation of the structure. The truss’ final deformation state is shown in red
in Figure 4.6.
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Nonlinear formulation

The nonlinear finite element formulation differs slightly from the linear one, and has to be used
when the relation f = Ka no longer holds. This occurs in problems where material, geometrical, or
contact nonlinearities occur. In such cases, the mathematical solver adopts an approach where the
internal forces are balanced with the external forces: fext°fint = 0. In a nonlinear model, a nonlinear
continuum is discretized, thereby requiring an iterative approach to arrive at a solution. Moreover,
since materials typically exhibit path-dependent behaviour, it is even more important to iterate the
solver using relatively small strain values such that the final structural stress and strain paths are as
close to reality as possible. The expressions for fext and fint may be readily derived from the weak
form of the finite element discretization in the initial configuration:

Z

≠0

±""" ·ææædV0 =
Z

≠0

±u ·b0dV0 +
Z

°0

±u · t0dA0 (4.4)

Where ≠0 and °0 represent the initial domain and boundary, and b0 and t0 are the initial body
force densities and engineering stress. The external force vector fext may be expressed as follows:

fext =
Z

≠0

HT b0dV0 +
Z

°0

HT t0dA0 (4.5)

On the other hand, the internal force vector fint, is expressed as:

fint =
Z

≠0

BTææædV0 (4.6)

The stiffness matrix K which was introduced in the linear formulation is also included in the
nonlinear formulation and consists of two components: the geometrical stiffness matrix (KGeo), and
the material stiffness matrix (KMat). These two components are added together to form the overall
stiffness matrix: K = KGeo +KMat. The full expression is expressed as follows:

K = @fint

@a
=

Z

≠0

µ
@BT

@a

∂
ææædV0 +

Z

≠0

BT
µ
@æææ

@a

∂
dV0 (4.7)

From here, the iterative incremental solver using the Newton-Rhapson method can be initiated.
For each loading increment, the following numerical scheme takes place (iterative analysis starts at
i = 0:

1. Initialise data for loading step by setting ¢a0 = 0

2. Compute the new external force vector ft+¢t
ext

3. Compute the initial residual force vector, ri using the internal forces from the previous itera-
tion (denoted as fint,i):

r0 = ft+¢t
ext ° fint,0

4. Determine the tangential stiffness Ki :

Ki =
@fint(at +¢ai )

@a
=°@ri

@a

5. Compute incremental displacement vector ¢ai+1:

¢ai+1 =¢ai +K°1
i ri

6. Compute """,æææ, and B
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7. Compute internal force vector, summed over all integration elements and integration points:

fint,i+1 =
Z

≠0

BTææædV0

8. Check convergence: “ ft+¢t
ext ° fint,i+1 “< ¥ where ¥ is a small number such as the convergence

tolerance. If the convergence criteria are satisfied, then the iterative process is finished, and
the solver proceeds to the next loading step. If not, then the iterative solver returns to Step 3.

This scheme is iterated until “ ft+¢t
ext °fint,i+1 “ tends to zero, or within an acceptable convergence

margin, ¥. Another consideration is the stiffness matrix. It has to be factorized, which can become
expensive for large systems. This will be further discussed when implementing the neural network.
The Newton-Rhapson method is just one of many that is used in FEA nonlinear analyses. Others
such as the Quasi Newton-Rhapson or Modified Newton-Rhapson methods improve the efficiency
of the numerical scheme by altering the manner in which Ki is calculated. It is also important to
understand how these linear and nonlinear schemes are built into an FEA solver which will be ad-
dressed shortly.

The type of element used in this example and brief introduction is designated as a T2D2 (2-
node, linear 2D truss) element within ABAQUS’ modelling environment, and it is the simplest el-
ement in finite element theory. There exist more complex variations of the truss element, such as
T2D3 or T2D3H; however, those will not be required for the purposes of data generation as will be
explained throughout this chapter. The importance of the T2D2 element in the context of this thesis
is to emphasize the properties of a structural truss element in finite element formulation, as well as
providing a benchmark case to which the capabilities of the neural network can be compared. De-
spite their simplicity, T2D2 elements represent the foundation of the finite element method and are
widely used in FEA simulations to model and optimize multi-truss structures. Unlike the T2D2 ele-
ment, the neural element will not make use of finite element formulation: from here on, a machine-
learning perspective is required.

4.2.2. Standard user-element (UEL) formulation

Up until now, the neural element has been defined as a truss-like element that includes the defor-
mation properties of beam elements. However, the key part of the neural element is that it leverages
a neural network to bypass computational steps within the numerical solver during an FEA analysis.
Therefore, to be able to define the parameter design space of the neural network, it is important to
understand how such numerical solver schemes function at the user-element level. Consider the
incremental-iterative Newton-Rhapson scheme in ABAQUS shown in Figure 4.7. The input file con-
tains all the model details, such as the structure’s geometry, material, mesh-discretization, num-
ber of elements and their respective locations, the boundary conditions, and other relevant user-
defined parameters. It is also where the user can reference a user-subroutine to embed within the
simulation. The user-subroutine cannot be directly written into the input file, but has to be created
in a separate FORTRAN file. Once the model is loaded into ABAQUS’ FEA environment via the input
file, it is passed to the ABAQUS/Standard solver.

The solver starts by applying an initial external loading increment, followed by the initial resid-
ual force vector, and then initialises the data for the loading step. This is the exact process as out-
lined in previously in the numerical scheme for the Newton-Rhapson method. However, here a new
notation is introduced to represent solely the element’s displacements in the global reference frame:
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ãe . The use of a tilde accent serves to denote that a matrix/vector of reduced order (applied to a sin-
gle element) is computed in the global reference frame. A brief summary of the used notation is
shown below.

• ae : Nodal displacement vector of a single element in local coordinates.

• ãe : Nodal displacement vector of a single element in global coordinates.

• a : Nodal displacement vector of all nodal displacements in a model in global coordinates.

The user-element is then responsible for determining the stiffness matrix and internal force vec-
tor at the element level, K̃e,i and f̃e,int,i+1 respectively. Once completed, the ABAQUS solver assem-
bles all the data into a global stiffness matrix and internal force vector (Ki and fint,i+1), upon which
the convergence test is performed. Depending on the outcome, the iterative process is continued
to the following increment: i = i +1, or the data is saved and the solver shifts to the following load
increment. By understanding the UEL framework within ABAQUS, the requirements of the neural
network used to build the neural element can now be established.

Start/next
loading
increment

Compute element
stiffness matrix

UEL Subroutine

Update element
incremental

displacement vector

Compute element
internal force vector

Compute element
strain increment

Compute element
stress increment

Initialise/next
iteration loop
for all elements

Assemble global
stiffness matrix

Assemble global
internal force vector

Input file

User-element
file (UEL)

ABAQUS/Standard
Solver

OBD Results

Next load
increment

or
DONE

Iteration Loop

User Interaction

Converged?

Output results

YES

Increment-Iterative Solver
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Distribute residuals
over all elements

Compute the new
external force

vector

Initialise data for
loading step

Compute global
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Figure 4.7: Flowchart of the solver process within ABAQUS using an interfaced user-element (UEL) subroutine.
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4.2.3. Neural Network user-element (UEL) formulation

As outlined in Chapter 2, neural networks rely on large amounts of training data to build a robust
prediction tool. To design a neural element, the finite element approach has to be reformulated in
terms of raw inputs and outputs into and out of the network. The iterative loop within the numerical
solver is typically the source of high computational cost for an FEA simulation. This high cost could
be due to the extensive iterations required within a loading step to achieve convergence, or rather
due to the inversion process of the stiffness matrix to compute the residual vector, ri . Therefore, cre-
ating a neural network in the user-element has significant potential to reduce the computing time.

The two key entities that are required from a user-element are the element-wise stiffness matrix
and internal force vector (K̃e,i and f̃e,int,i+1) to form the global stiffness matrix and internal force
vector (Ki and fint,i+1). The other steps in the numerical scheme are required to generate these out-
puts, but they do not necessarily need to be included as long as the outputs of the UEL comply with
the ABAQUS solver to conduct the convergence test. One possible scenario is to have a neural net-
work that is capable of directly computing the elemental stiffness matrix and internal force vector.
The required inputs for this network would be the element’s geometry, its material properties and
its spatial positioning all of which influence its stiffness matrix. Additionally, the neural network
would require the nodal displacements as input, which would allow the determination of the inter-
nal force vector.

Unfortunately, this solution is not feasible when considering the required training domain. Build-
ing a training dataset for such a neural network would require performing FEA analyses on truss
members of various geometries, material properties and nodal displacement combinations. All of
this is possible, however, the dimensionality of the training domain explodes when including spa-
tial positioning. This phenomena was introduced in Chapter 2 and is commonly referred to as the
curse of dimensionality [15]. As seen before, in both the linear and nonlinear formulations, the nu-
merical solver requires the elemental stiffness matrix in global coordinates, which in turn requires
the element’s angular position relative to the global reference frame. Considering that all these in-
puts makes the training domain far too large, any gains in computational efficiency by the neural
network in comparison to the traditional FEA model will be offset by the time required to build the
training data.

A logical step is to scale down the required inputs and outputs of the network by removing the
spatial positioning from the input data, although then it will not be possible to determine K̃e,i . The
stiffness matrix of the truss member in local coordinates (Ke,i ) can still be determined, though it
could be computed simply, rather than being passed through a network. Additionally, assuming
that the entire structure is composed of the same isotropic material (metal for example), then the
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material properties can be removed from the input layer of the neural network. The ability of the
network to output the entire internal force vector in global coordinates is also stringent. In the case
of multi-truss structures, a more practical output and simpler for the network to compute is the in-
ternal nodal force of one of the truss’ nodes (node 1 for example) in local coordinates, denoted as
f ANN

e,int,i+11
. The final proposed input-output configuration is shown in Figure 4.8.

The proposed network in Figure 4.8 provides the nodal force as an output but the user-element
is still required to output the elemental stiffness matrix and internal force vector in global coordi-
nates. Since the neural network disregards spatial positioning, it is no longer possible to determine
the tangential elemental stiffness matrix as used in the Newton-Rhapson method, which is required
to build the internal force vector.

One option to circumvent this problem is the Quasi Newton-Rhapson method, which computes
the secant stiffness as opposed to the tangential stiffness [32]. It might require more iterations until
convergence, but ultimately achieves the same goal. Furthermore, it can be recursively computed
from a singular nodal force in the truss’ local coordinate system, f ANN

e,int,i+11
. An extensive explanation

of the Quasi Newton-Rhapson method and how it measures-up to the traditional Newton-Rhapson
method may be found in [19]. The calculation of the elemental material stiffness matrix in local
coordinates using this approach when compared to the linear computation may be described as
follows:

KMat
e = Ee Ae

Le

2
6664

1 0 °1 0
0 0 0 0
°1 0 1 0
0 0 0 0

3
7775

nonlinear°°°°°°! KMat
e,i =°

f ANN
e,int,i+11

¢ae,axial,i+1

2
6664

1 0 °1 0
0 0 0 0
°1 0 1 0
0 0 0 0

3
7775 (4.8)

Where ¢ae,axial,i+1 is a scalar representing the truss’ axial elongation/shortening and can be
computed from the local nodal displacements such that: ¢ae,axial,i+1 = ¢ae,i+12x °¢ae,i+11x . Re-
call that ¢ae,i+11x and ae,i+12x represent the axial displacement components of the element’s nodal
displacement vector in local coordinates, ¢ae,i . This reformulation of the local material stiffness
matrix leverages the f AN N

e,int,i+11
output of the neural network by subsequently computing the truss’

secant material stiffness matrix in its local coordinate system. In the nonlinear formulation, how-
ever, it is also required to compute the geometrical stiffness matrix. In the local coordinate system,
this is expressed as:

KGeo
e,i =°

f ANN
e,int,i+11

Le

2
6664

1 0 °1 0
0 1 0 °1
°1 0 1 0
0 °1 0 1

3
7775 (4.9)

From here the element’s stiffness matrix in global coordinates can be assembled as follows:

K̃ei = Te (KMat
ei

+KGeo
ei

)TT
e (4.10)

Using this approach, the neural element will have the correct outputs to provide to the ABAQUS
solver. The individual processes for the neural element have been successfully identified and con-
stitute the neural element.

The entire process and framework for the neural element are summarized in Figure 4.9. The
custom element leverages the expressive power of a neural network to compute quickly the nodal
forces which are then used to build the required outputs for the ABAQUS solver. One noteworthy
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feature of the UEL is that in the case of the initial iteration (¢a0 = 0), the stiffness matrix is com-
puted using the linear formulation to prevent singularities in the numerical solver which would be
obtained when using the Quasi Newton-Rhapson approach. Although the new framework appears
more complex than the traditional UEL, the neural network allows for higher computing speeds in
addition to the fact that the neural element models an entire truss member rather than just a single
element within the truss.
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Figure 4.9: Flowchart of the solver process within ABAQUS using the interfaced neural element.
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4.2.4. Geometrical boundaries

The final stage in defining the parameter design space of the neural element concerns the geomet-
rical boundaries of the truss member onto which the element is deployed. The neural network can
only be applied to truss members that are within the boundaries of its training domain. Hence, the
geometrical boundaries have to be prescribed, because the network cannot be expected to model
any random configuration (especially at this early development stage). The geometrical boundaries
of truss members are globally defined by the suggested context and their associated manufacturing
process: biomimicry and 3D-printing.

3D-printing imposes a material constraint which is that the entire structure is made from the
same isotropic material: typically either metal or plastic. Although plastics are one of the most
common materials for 3D-printing, they are disregarded for this thesis. Small slender, truss mem-
bers made from polymeric plastics have the potential to exhibit hyper-elastic tendencies that re-
quire dedicated material models. This complexity can be avoided by modelling the structures out
of metal (Figures 4.10 and 4.11 show an example of powder bed fusion which is one method used to
3D-print metal structures). Steel is the chosen material to build the parameter design space of the
neural network since it represents an available material in 3D-printing [121]. The common use of
steel in manufacturing coupled with its known specific properties implies that it can be used for a
variety of applications including multi-truss organic structures as well as other demanding indus-
trial uses.

Figure 4.10: Example of a metal 3D-printing process using
powder bed fusion [2]. Figure 4.11: Possible product resulting from a metal

3D-printed process (rendered in KeyShot).

The 3D-printing manufacturing context also introduces another variable: structural defects
manifested through material porosity. Porosity defects are regions within the final product of lower
material density. These can lower the structure’s mechanical properties and are difficult to detect.
Despite current research and technological advancements, such defects are still a problem in 3D-
printed components [2]. Although it is difficult to model porosity, one possible simplification is to
have a defect radius, re,D , in the middle of the truss member that is smaller than the overall elemen-
tal radius: re,D < re . This creates a weak link in the truss member thereby reducing its mechanical
properties. The relationship between porosity and defect radius in a truss member is not yet estab-
lished, the inclusion of a defect radius provides the end-user with the potentially useful option to
introduce such a defect in the structure.
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Given the above considerations, the final geometrical design space of the truss member includes
the length and nominal radius, denoted as Le and re respectively, as well as a defect radius: re,D .
The chosen boundaries are such that a multi-truss structure remains relatively small. Figure 4.12
provides a diagram of a single truss element and its respective variables. Table 4.1 summarizes
all the variables and their defined boundaries. The overall length Le is capped between 10.0 and
30.0mm, and the radius re is bounded by 0.5 and 2.0mm. The defect radius re,D is defined as a
function of re such that the largest radial defect is equal to 50% of re . An undamaged truss member
possesses no radial defect, therefore in such a case: re,D = re . These three parameters are raw inputs
into the neural network, and when combined with the axial displacement, the nodal force at node 1
will be the output of the network. An additional constraint must be defined: the portion of the truss
that is subjected to re,D . The length, Le,D is constrained to 5% of the overall length, i.e., Le,D = 0.05Le .
The reason Le,D is not a variable in the element’s geometry is to maintain a relatively small design
space. Since it is an imposed constraint, it is greyed-out in both Figure 4.12 and Table 4.1.
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Figure 4.12: Overview of a truss element’s geometrical variables (imposed constraints are greyed-out and cannot be
altered by the end-user).

The final boundary introduced at this stage, because it is directly related to the geometrical
boundaries is the axial displacement ¢ae,axial. Note that this is slightly different from the previ-
ous notation: ¢ae,axial,i+1. The i + 1 subscript has been removed for clarity since it refers to the
iteration stage in the numerical solver scheme. For the remainder of this thesis, the axial elonga-
tion/contraction caused by applied loads, will be referred to as ¢ae,axial and is present in Table 4.1
(note that it is also greyed-out since it is determined by the global geometry of the truss member).
This parameter governs the resultant nodal force and will influence the deformation field of the
neural element. The boundary should be such that it is dependent on the geometrical parameters
of the truss, and is sufficient to induce nonlinear behaviour and not remain in the linear-elastic
regime. Therefore the chosen boundary is a function of the defect length of the structure and is set
to ¢ae,axial 2 ±[0,0.5Le,D ]. The reason for the ± sign is that the structure can be loaded in either
tension or compression.

Table 4.1: Neural network inputs and their respective boundaries (imposed constraints are greyed-out and cannot be
altered by the end-user).

Input Variable Symbol domain
Length Le Le 2 [10.0mm,30.0mm]
Radius re re 2 [0.5mm,2.0mm]

Defect Radius re,D re,D 2 [0.5re ,re ]
Defect Length Le,D Le,D = 0.05Le

Axial Displacement ¢ae,axial ¢ae,axial 2±[0,0.5Le,D ]
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4.3. Building the global framework

Establishing the parameter design space is arguably one of the most important steps in the entire
project. The end-goal is to produce a user-element that utilises a neural network to improve com-
putational efficiency, which can only be achieved when the inputs/outputs of the neural network
along with their boundaries are clearly formulated. If not properly done, then the design space of
the neural networks risks becoming too big and the time required to generate the adequate training
data will surpass any computational gains by the network [5].

However, despite its importance, the previous section is but a single step in the overall process.
This section incorporates the neural element into a global computational framework. This frame-
work outlines the necessary steps to build, deploy, and use the neural element in practical applica-
tions of multi-truss structures.

4.3.1. System settings

The global computational framework, in addition to addressing the separate processes that involve
building and deploying the neural element, must also include the system settings from a hardware
and software point of view to ensure replicability of the results. This is especially important since
this is a purely computational topic and every system setting can influence the computational cost
of an FEA simulation, or the speed at which a neural network is built.

Software

The principle FEA software used throughout this project is ABAQUS by Dassault Systèmes. All
FEA simulations are run locally without requiring cluster-based access. It should be noted to build
subroutines in ABAQUS (UEL, UMAT, etc.), cluster-based access is required. However, to avoid
queue times and have access to ABAQUS’ GUI after a simulation with a custom subroutine, the need
for cluster-based access was circumvented by internally linking ABAQUS with a FORTRAN and C++
compiler.

From a coding perspective, Python provides some powerful modules to build and optimize a
neural network such as Keras, TensorFlow and Talos. However, these are not suited to writing a user-
element that requires a dedicated FORTRAN compiler. In such a case, Microsoft Visual Studio 2013
along with Intel Parallel Studio XE 2016 proved to be an adequate choice. All the used software is
summarized in Table 4.2.

Table 4.2: Software used throughout the thesis.

Task Used Software
FEA ABAQUS

Neural Network development
and optimisation

Python 3 with Keras, TensorFlow, and Talos

UEL development
ABAQUS, Microsoft Visual Studio 2013, and Parallel

Studio XE 2013
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Table 4.3: Hardware used throughout the project.

Device Apple MacBook Pro 15" (late 2018)
Processor 2.9 GHz Intel Core i9
Memory 32 GB 2400 MHz DDR4

CPU 12 Cores (with Intel-based hyper-threading)
GPU Radeon Pro Vega 20 4 GB Intel UHD Graphics 630 1536 MB

Hardware

All FEA analyses, neural network development and UEL development was conducted locally.
The relevant hardware specifications are summarized in Table 4.3. All FEA analyses are conducted
on a Windows 10 partition interfaced via Parallel Desktop 14.

4.3.2. Global computational framework

The global computational framework can be divided into four different steps: data generation,
training the neural network, deploying in neural network inside the neural element, and finally
using the neural element in an FEA setting. Figure 4.13 describes the various steps and how they
interact with each other, all of which are described in greater detail below.

Step 1: Data Generation

To build and train a neural network for a given application, there has to be enough training
data pertinent to such an application to ensure that the final deployed network is sufficiently ro-
bust. First a combination of the element’s geometrical parameters is selected within their defined
boundaries and a corresponding FEA model is built within ABAQUS. The structure representing a
single truss member of length Le , radius re and defect radius re,D is then subjected to two isolated
analyses: one in tension, and the second in compression. Once the FEA simulations complete, the
force-displacement curve is extracted which represents the axial deformation of the truss member
ae,axial versus the internal force at node 1, fe,int1 . It is important to note that these two entities are ar-
rays of values over the course of the analysis, i.e.: ae,axial = at0

e,axial+at1
e,axial+at2

e,axial+ ..., and similarly:

fe,int1 = f t0
e,int1

+ f t1
e,int1

+ f t2
e,int1

+ .... Therefore, after combining the data from both FEA analyses, there
is a displacement field combining tension and compression, which corresponds to nodal forces at
node 1 which include both plastic deformation under tension and the post-buckling regime, for a
given truss member specific geometric parameters Le , re , and re,D .

This process is repeated for all geometrical configurations within the total parameter design
space. Then the quality of the total data repository is evaluated in terms of suitability for neural
network training. This is clarified in Chapter 5, however a brief example is that the post-buckling
regime is typically more nonlinear than the plastic deformation in tension for an isotropic beam-
like structure. Therefore, the numerical solver is required to take more loading steps to capture
the nonlinear regions in compression than in tension. The resultant dataset for an element with
selected geometrical parameters will have far more data-points corresponding to compression than
tension. If the data are randomly sampled, then this introduced an unintentional bias that in the
global dataset which would make the subsequent neural network favour compression over tension.
Hence assessing the quality of the data for a supervised learning process is a crucial step. If the
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data are considered inadequate, then the FEA models can be altered to correct for this, or, it is also
possible to alter the sampling process of the neural network at a later stage. This is discussed in
greater detail in Chapter 6 which focuses on building and training the neural engine.

Step 2: Building the neural network

Once the data depository has been built, it can be passed onto the neural network which builds
and trains a neural network. The first stage is reformatting the data in terms of inputs and outputs.
For truss members with a geometrical and displacement at time t , there is a nodal force at node 1.
The inputs/outputs can be summarized as follows:

• Neural network input:
h

Le re re,D ¢at
e,axial

iT

• Neural network output:
h

f ANN,t
e,int1

i

Once the inputs/outputs are formatted correctly, the data is then pooled, normalized, and ran-
domly split into training, validation and testing datasets. The ratios and techniques used to properly
split the global dataset were outlined in Chapter 2 and are reiterated in Chapter 6. The training and
validation datasets are passed to the neural network and to a multi-objective optimization scheme.
The latter aims to interpret the data and design architecture of the network so that the user does
not have to pick every hyperparameter through a conventional trial-and-error approach. Once a
suitable network is built and trained, its performance is assessed with the testing data. If the perfor-
mance and expressivity of the network are unacceptable, then the boundaries of the multi-objective
optimization scheme will be slightly altered. However, given the effectiveness of multi-objective op-
timization, it will be unlikely that the neural network has to be revised. Once an acceptable perfor-
mance is achieved, then the neural network is deployed into the next stage of the overall process.

Step 3: Deploying the neural element

Due to its intricacy, the framework of the neural element was attributed a dedicated section
and outlined in Figure 4.9. This step involves writing the custom user subroutine in FORTRAN and
embedding the trained neural network in the user-element. Hereafter it can be deployed into the
ABAQUS/ Standard solver as a user-element.

Step 4: Applying the neural element to multi-truss structures

The final step in the overall framework is applying the neural element to a variety of test cases
and comparing the computational performance against that of an FEA simulation with traditional
elements. Once a multi-truss structure is selected, two FEA models are built in ABAQUS. One is
meshed with traditional elements, whereas the other is meshed with the neural element. The same
boundary conditions are applied to both models and the simulations are initiated. Once completed,
the models are compared both in terms of computational efficiency, and accuracy. The exact met-
rics that are evaluated are discussed for each case study respectively in order to determine which
metric is/are most representative.

These four steps constitute the entire computational architecture that is used in this thesis. Fig-
ure 4.13 provides a global overview to illustrate how one process interacts with and flows into an-
other.
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Figure 4.13: Global computational framework to build, deploy and test the neural element on practical case studies.
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4.4. Closure

The required process to build the neural element is complex and involves multiple processes across
different platforms. The global computational architecture described in the previous section and
outlined in Figure 4.13 provides an overview of the reach of this project. In summary, the neural
element aims to achieve the following:

1. Circumvent the need for complicated mesh discretization schemes that are usually required
to model nonlinear deformation in multi-truss structures. Instead, each truss member may
be directly replaced by a single neural element.

2. The neural element will also permit the user to include material defects in the analysis since
the trained neural network will have been designed to do so. Building FEA models with tradi-
tional finite element that take into account material defects introduces another layer of com-
plexity that consumes more time in the overall process. Having a neural element with built-in
capability to model defects represents a significant amount of time saved just in the model
development phase.

3. The neural element will also take into account nonlinear deformation including the post-
buckling regime and material plasticity.

4. Reduce the overall computational time of FEA simulations by using a neural network to by-
pass the computation of local nodal forces and the stiffness matrix.

It is also important to reiterate that throughout the remainder of this thesis, a machine-learning
perspective should be adopted. Neural networks are capable of modelling the most difficult re-
gression problems, though they are purely data-driven systems. If the training data is inadequate,
unbalanced, or displays inherent bias, then a trained network will not perform well. In other words:
"garbage in, garbage out".
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Prior to commencing the training procedure of the neural engine, it is crucial to generate a suffi-
cient amount of useful data. The trained network will then be deployed as a user-element within
ABAQUS’ FEA environment so as to improve the computational efficiency of multi-truss structures.
Although outlined in the previous chapter, it bears repeating that the custom element will possess
modelling capabilities outside the deformation regime of a typical truss element. Notably, it can
treat the out-of-plane displacement during buckling and post-buckling when compressed, which
is found in beam elements. The truss designation refers to an imposed restriction that the user-
element can only take-up loads axially. Therefore, the resultant modelling domain of the network
has to capture the linear and nonlinear deformation regimes of a beam under axial tension and
compression. To reiterate from the previous chapter, the full deformation field of the neural truss
element encompasses:

• Axial tensile deformation including material plasticity.

• Axial compressive deformation including post-buckling and material plasticity.

Capturing both tensile and compressive deformation becomes a complex regression problem
for a neural network, especially given the degree of nonlinearity in each case. Not only will the
user-element have to predict the plastic deformation when stretched, but also be able to model the
post-buckling deformation when compressed. Both cases represent nonlinear behaviours. This be-
haviour can vary drastically even with slight alterations in the model’s geometry. Impacts can be
more pronounced when considering the addition of a defect radius re,D , as will be seen later in this
chapter. These requirements alone push the learning capabilities of a neural network to the edge.

Building a high-fidelity neural network capable of modelling such deformation regimes and
match the accuracy of traditional FEM analyses requires a large data volume, which is created
through thousands of FEM simulations using a bespoke automation framework. This chapter builds
on the developed computational architecture (Chapter 4), by focusing on the data generation strat-
egy that is used to build the extensive data repository for the neural network.

5.1. Boundary conditions

First, the notion of useful data has to be properly defined. In the context of supervised machine
learning, useful data is defined as: any data sample within the predefined parameter design space
that can single-handedly assist in improving the overall accuracy and expressivity of a neural network

61
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[5]. It should be emphasized that accuracy and expressivity measure very different attributes of the
network. Whereas accuracy is measured relative to the training dataset for a singular data sample,
expressivity is the network’s ability to predict robustly the overall trend for a regression problem (as
seen in Chapter 2). The parameter design space was established in the previous chapter, though as a
reminder, the inputs for a given input vector containing the truss member’s geometrical parameters
and axial deformation, the neural network is required to predict the internal nodal force:

• Neural network input:
h

Le re re,D ¢at
e,axial

iT

• Neural network output:
h

f ANN,t
e,int1

i

With this in mind, the current section aims to provide an overview of the boundary conditions
that are established throughout the data generation process. These can be grouped into two areas:
structural boundary conditions, and the boundaries imposed on the global data density. It will also
become clear why the neural network outputs the internal nodal force f ANN

e,int1
at node 1.

5.1.1. Structural boundary conditions

Whether in tension or compression, the boundary conditions remain the same throughout the data
generation process. Consider a singular truss structure as shown in Figure 5.1, which could also be
considered as a beam for the purposes of boundary condition definition. The beam is pinned at its
leftmost node (node 1), and simply supported at its rightmost end (node 2). The structure is then
subjected to an external displacement, ¢ae,axial, which could either load the structure under ten-
sion if positive or compression if negative (relative to the global coordinate system). Naturally, there
will be a reaction force at node 1 to counteract the disturbance and equilibrate the structure. This
reaction force corresponds to the internal nodal force that is required to train the network, fe,int1 .
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Figure 5.1: Structural boundary conditions imposed throughout the data generation process.

This simple set of boundary conditions is all that is required to commence the data generation
phase. Depending on the direction ¢ae,axial, the approach will be tailored to suit a compressive or
tensile deformation. It is also worth reiterating that the output of the trained neural network will
consequently be fe,int1 °! f ANN

e,int1
given a selected geometry and imposed external displacement of

the structure, ¢ae,axial.

5.1.2. Capping the global data density

The global data density refers to the amount of data that will be generated throughout the entire
data generation process. In the previous chapter, the boundaries of the parameter design space
were established, however this did not include any boundaries on the amount of data to be gener-
ated. Since this is a purely numerical process, the amount of data to be generated is theoretically
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limitless, however, this would be a highly time-consuming process which defeats the purpose of
the end-product: to be computationally efficient. Therefore, boundaries on the global data density
have to be established before initiating the data generation process. The input variables to the neu-
ral network and their respective boundaries were defined in Chapter 4, in Table 4.1.

The neural network inputs create a 4-dimensional design space from which an infinite number
of permutations can be drawn. Each permutation corresponds to a dataset that can be used to train
the neural network through an additional iteration. Usually, the amount of required datasets to train
a neural network adequately is closely related to the number of trainable parameters in the network
as well as the number of independent input variables (which is 4 in our case). However, such an
estimation is non-trivial given that the network architecture (and thereby the number of trainable
parameters) will be determined through a multi-objective optimization process. Moreover, the out-
put of the neural network will be capturing the internal nodal force throughout the deformation of
a beam in either tension or compression, which are two highly nonlinear phenomena. Therefore,
conventional estimates will not suffice to build the boundaries for the global data density.

Given the amount of expressiveness required of the neural network, a dense dataset is preferred
over a sparse dataset. Therefore, the imposed boundaries on the geometrical parameters of a truss
member are summarized below, in Table 5.1. The length, Le will be iterated every 1mm. The nom-
inal radius, re , every 0.1mm; and the defect radius, every 10%. This builds a simulation grid with
2,016 possible geometrical combinations. There is however, an additional input parameter that has
to be considered: ¢ae,axial. Unfortunately, it is impossible to constrain the amount of data gener-
ated through ¢ae,axial since it largely depends on the ABAQUS solver. Regions of high nonlinearity
require a high sampling rate manifested by a small step size. If the minimum step size is not small
enough, then the FEA simulation will likely abort stating problems of non-convergence. Though if
the maximum step size is too small, then the model will likely take a very long time to complete its
analysis. Furthermore, if the overall boundary for the step size is sufficiently large to prevent the pre-
vious two problems, then the resultant dataset will naturally be biased towards nonlinear regions,
which pull the focus away from linear regions that are just as important. In summary, determining
the optimal iteration boundary for ¢ae,axial is a delicate balance of the following aspects:

• Ensuring convergence of the FEA model.

• Maintaining the computing time as low as possible.

• Preventing inherent bias in the overall dataset.

These will be revised in the following sections during convergence studies as well as the data
repository analysis. For now, the iteration boundary will simply be labeled as Case specific as they

Table 5.1: Neural network input variables and their respective boundaries including iteration boundaries.

Input Variable Symbol Domain Iteration Boundary

Length Le Le 2 [10.0mm,30.0mm]
Every 1mm

L = [10.0,11.0, ...,29.0,30.0]

Radius re re 2 [0.5mm,2.0mm]
Every 0.1mm

re = [0.5,0.6, ...,1.9,2.0]

Defect Radius re,D re,D 2 [0.5re ,re ]
Every 10%

re,D = [0.5re ,0.6re , ...,0.9re ,re ]
Axial Deformation ¢ae,axial ¢ae,axial 2±[0,0.5Le,D ] Case specific
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will depend on the geometrical parameters of each truss member. Though considering that for
each geometrical combination of parameters Le ,re ,re,D , both tension and compression will be con-
sidered, the projected number of datasets will be 4,032£∑ where ∑ will be the number of iterations
of¢ae,axial for each truss members. Given the degree of non linearity of this project, ∑ is expected to
be anywhere between 30 and 200 depending on the convergence criteria of the developed models
resulting in a global simulation grid size of at least 100,000 datasets. With the boundaries for the
global data density established, the two loading cases can be discussed.

5.2. Axial tension: an overview

The first deformation mode considered is axial tension. From the boundary conditions established
in Figure 5.1, a tensile loading occurs when ¢ae,axial > 0. As ¢ae,axial > 0 is increased, the internal
reaction force at node 1, fe,int1 , increases in the opposite direction to oppose the structural elon-
gation. The axial displacement also induces a cross-sectional contraction that corresponds to the
Poisson effect, which can be computed through the Poisson ratio: ∫. Figure 5.2 shows a structure
subjected to a positive axial placement causing a structural elongation. Note that the elongated
section depicted in yellow is of smaller cross-sectional area, representing the Poisson effect. The
imposed displacement also results in a new overall length Le,new such that Le,new = Le +¢ae,axial.
For small values of ¢ae,axial, the truss will remain in the linear-elastic deformation regime. Upon
increasing ¢ae,axial further, the deformation will become nonlinear due to material plasticity. All
tension models will be loaded in such a manner to ensure that they enter the plastic deformation
regime, although not up to failure. This section focuses on establishing an overview of tensile de-
formation including material plasticity, which is required to build the FEA tension models in the
upcoming section.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

2 1 

Δ$%,'()'* +%,),-.  

/ 

0 
1% 

1%,,23 

2 1 

/ 

0 

3 4 

1% 

1%,6 Δa%,'()'* 

8%  8%,6 

2 1 

/ 

0 

3 

1% 

+%,),-.  Δ$%,'()'* 

8%  
4 

1%,6 

8%,6 

+%,),-.  

Figure 5.2: Effect of an axial displacement on a truss structure where ¢ae,axial > 0.

5.2.1. Engineering vs True stress/strain

Specimens under tensile loading are usually modelled through a stress-strain curve. In the linear
regime, the structural deformation can be modelled through Hooke’s law: æ = E" where E is the
material’s Young’s modulus. However this linear relation does not hold indefinitely. There comes a
point where Hooke’s relation no longer holds and the material begins to deform nonlinearly due to
material plasticity. From this stage onward, after the specimen is unloaded, it will no longer return
to its initial shape. Instead, it will be slightly longer due to plastic deformation ("plastic), which can
readily be extrapolated from the stress-strain curve using Hooke’s law as shown in Figure 5.3. The
yield strength, æyield is a first indicator of the structural response departing the linear domain and
corresponds to a plastic deformation of 0.2% as shown in Figure 5.3. After this point, the structural
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Figure 5.3: Example of a stress-strain curve for a isotropic material subjected to tensile loading.

integrity diminishes, but still continues to increase eventually reaching a maximum known as the
ultimate strength, æult. Hereafter structural integrity diminishes resulting eventually in fracture.

This linear portion of the tensile deformation path for a given specimen is usually simple to
estimate. Using the notion established in this section for axial displacement ¢ae,axial, and internal
reaction force at node 1, fe,int1 , Hooke’s law can be re-written as follows:

æ= E" °!
fe,int1

ºr 2
e

= E¢ae,axial (5.1)

fe,int1 = E¢ae,axialºr 2
e (5.2)

An important observation at this stage is that the stress æ is determined relative to the original
area, and thereby radius, re . Models computed in such a fashion are commonly referred to as the en-
gineering stress/strain and are denoted asæ(e),"(e). Their counterparts are the true stress/strain which
are a function of the instantaneous change in length (and hence cross-sectional area) and become
relevant during plastic deformation when the deformation becomes more substantial. Therefore,
the true strain, "(t ), is computed in the following manner:

"(t ) =
ZLe+¢L

Le

1
Le +¢L

dL = ln
µ

Le +¢L
Le

∂
= ln1+"(e) (5.3)

Where (Le +¢L)/Le is known as the extension ratio and can be directed related to the change in
cross-sectional area, Ae . From here the true stress, æ(t ) can be determined:

Le +¢L
Le

= Ae +¢A
Ae

°! æ(t ) =æ(e)
≥
1+"(e)

¥
(5.4)

The true stress/strain formulation is relevant for the data generation process since the models
will be deformed into the plastic regime where relatively important changes in cross-sectional area
will affect the stress-strain response of the structure. Although these relationships only hold until
the specimens start necking, they will suffice for the data generation purposes where the axial de-
formation is small. One final important distinction is the relationship between the various types
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of true strain that are measured. The total strain, "(t )
total, represents the total strain of the specimen.

The elastic strain, "(t )
elastic, refers to the extrapolated elastic strain; and the plastic strain "(t )

plastic is
the amount of plastic strain on the material (if the structural deformation has entered the plastic
regime).

5.2.2. Building a semi-analytical approximation

Building a fully analytical model to represent tensile plastic deformation is not a trivial process. Ex-
tensive experimental testing in conjunction with numerical models are usually required to obtain
high-fidelity stress-strain plots including the nonlinear deformation due to material plasticity. How-
ever, it is important to have an alternate model which will be used to verify the FEA models that will
be hereafter constructed in ABAQUS. When applying a nodal displacement ¢ae,axial, the structure
will elongate to a new length denoted as Le,new. From here, both the engineering and true strain
values may be computed in the following manner:

"(e) =
Le +¢ae,axial

Le
"(t ) = ln

µ
Le +¢ae,axial

Le

∂
(5.5)

Assuming that the deformation has entered the plastic regime, the amount of true plastic strain
is determined through:

"(t )
plastic = ln

µ
Le +¢ae,axial

Le

∂
° æEL

E
(5.6)

WhereæEL represents the stress at the elastic limit of the material, meaning thatæEL/E = "(t )
elastic.

Now consider a function that models the true material stress as a function of the axial displacement,
¢ae,axial:

æ(t ) =£
≥
¢ae,axial

¥
(5.7)

The true stress can be related back to the reaction force at node 1, fe,int1 while correcting for the
fact that the true stress is a function of the immediate cross-sectional area A(t ):

fe,int1 =
∑

ºr 2
e Le

Le +¢ae,axial

∏
£

≥
¢ae,axial

¥
(5.8)

This ultimately provides a relationship to describe the nodal force at node 1 as a function of
induced axial displacement ¢ae,axial and the structure’s undeformed radius and length: re and Le

respectively. The difficulty arises in determining £. Given that the chosen material for this project
is steel, there exist tabulated values at certain points in the plastic deformation regime, extracted
from experimental results. Therefore, £ can be built as a regression function from experimental
data. Provided a dataset of k +1 data points, extracted from the plastic deformation regime of steel,
a Lagrangian regression can be built leading to:

fe,int1 =
∑

ºr 2
e Le

Le +¢ae,axial

∏ kX

j=0

2
6664æ

(t )
j

Y

0∑m∑k
m 6= j
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>>><
>>>:
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∂
° æEL

E °"(t )
plastic,m

"(t )
plastic, j °"

(t )
plastic,m

9
>>>=
>>>;

3
7775 (5.9)

Naturally, this relationship between ¢ae,axial and fe,int1 is only valid for when "(t )
plastic > 0. While

the structural deformation is in the linear regime, the expression for fe,int1 reduces to:

fe,int1 = Eº(re °¢ae,axial∫)2 ln
µ

Le +¢ae,axial

Le

∂
(5.10)
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This approach is not entirely analytical since it utilizes experimental results to build a regression
which estimates the plastic deformation of the structure. However, the usage of a Lagrangian regres-
sion that interpolates exactly all experimental data and builds a continuous model will suffice as a
means to verify the FEA tension models. This will be revisited at the end of the following section,
when defining all the FEA parameters for tension data generator. In summary, a proposed semi-
analytical model to verify the plastic deformation of truss members is modelled through Equation
5.11.

fe,int1 =

8
>>>>><
>>>>>:

Eº(re °¢ae,axial∫)2 ln
µ

Le+¢ae,axial
Le

∂
, if : ln

µ
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∂
∑ "(t )
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∑
ºr 2
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∏Pk
j=0

Ω
æ(t )

j
Q

0∑m∑k
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E °"(t )
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"(t )
plastic, j°"

(t )
plastic,m

ææ
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(5.11)

5.3. FEA Tension model

The finite element approach of solving the tensile problem is relatively straightforward in ABAQUS.
The structure is setup exactly as shown in Figure 5.2, except now there is the option to discretize
the structure. This will become pertinent when considering mesh convergence, which is relevant
when considering the nonlinear deformation regime due to plasticity in the presence of a defect
radius, re,D . Recall that the domain of the axial deformation was defined in Chapter 4 as ¢ae,axial 2
±[0,0.5Le,D ] and in turn, the defect length was bounded to 5% of the beam’s length: Le,D = 0.05Le .
With this in mind, this section aims to establish the settings and data generation strategy of a beam
loaded in tension.

5.3.1. Plasticity in ABAQUS

In ABAQUS, material plasticity is defined through the true stress and true plastic strain which were
introduced previously. From a stress-strain curve, the nominal stresses and strains can be captured
at certain points within the plastic regime, and then converted to true stresses and strains. The data
is extracted from experimental tests and built directly into ABAQUS’ plastic material database. Ta-
ble 5.2 shows how the data should be extracted and converted from Figure 5.3. The final inputs into
ABAQUS are represented by the green columns.

From this data, ABAQUS is able to extrapolate the material data and apply it in an active FEA
simulation thereby modelling plastic deformation. Although this data is not sufficient to capture the

Table 5.2: Data conversion process from nominal to true values from experimental strain values corresponding to steel
under axial tension with E = 210GPa and ∫= 0.28. The green columns represent the final inputs into ABAQUS’ plastic

material behaviour [4].

Nominal Stress [MPa] Nominal Strain [-] True Stress [MPa] True Strain [-] Plastic strain [-]
200.0 0.00095 200.2 0.00095 0.0000
240.0 0.025 246.0 0.0247 0.0235
280.0 0.050 294.0 0.0488 0.0474
340.0 0.100 374.0 0.0953 0.0935
380.0 0.150 437.0 0.1398 0.1377
400.0 0.200 480.0 0.1823 0.1800



68 5. Data Generation & Automation

full plastic deformation field of a beam under axial tension, it will suffice to model small amounts
of plastic deformation which occur throughout the data generation process.

5.3.2. Mesh convergence and refinement

In an FEA analysis, the user is responsible for discretizing the modelling domain into a numerical
mesh. The coarseness of the mesh will ultimately affect the accuracy of the results, though only
up to a certain extent. If the mesh is too fine, the model will likely converge and provide reliable re-
sults, though the computational cost will be extremely high. On the other extreme, if the mesh is too
coarse, then the model might not converge but, if it does, then the reliability would be questionable.
Therefore, there is an optimal mesh density for a given model which ensures a high degree of accu-
racy and model convergence, while remaining computationally efficient. Ideally the mesh should
also be refined such that only locations experiencing highly nonlinear deformations and requiring
a greater order of computational accuracy have a denser mesh than regions that do not exhibit such
deformation. Figure 5.4 shows an example of a mesh refinement procedure for a plate with an open
hole. In the case of the tension data generator, mesh convergence studies are required to ensure a
computationally efficiency process.

The concept of porosity and material defects during 3D-printing was introduced in Chapter 4.
In the case of a truss member, it is represented by a reduced radius at the centre of the truss cor-
responding to re,D such that re,D < re . In the context of building a FEA model of a beam with such
a defect, the mesh is minimally discretized into 3 elements to reflect the region of reduced radius
as shown in Figure 5.5. Notice that the numbering of the nodes starts with the boundaries of the
structure and then fills-in the remaining nodes. This is the convention that ABAQUS uses when
generating an input file and will be adopted throughout this thesis.

Interestingly, since the tensile deformation is only measured at the model’s extremities through
¢ae,i+1axial and fe,int1 , and overall the deformations are small, mesh refinement does not influence
the model’s accuracy. This implies that the number of elements can be kept at a bear minimum of 3
or 1 in the case where re,D = re . It is numerically verified through ABAQUS for two geometrical con-
figurations. Figure 5.6 shows force-displacement plots for a 30mm beam with a 2mm radius and a

Figure 5.4: Example of mesh refinement for a plate with an open hole using varying sizes of triangular and quadrilateral
elements. Note that the mesh density increases closer to the hole to capture the highly-varying stress field [30].
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Figure 5.5: Minimal mesh discretization of a beam into 3 elements to include the presence of a structural defect,
represented by re,D .

50% defect. The model is meshed with 3 elements (as shown in Figure 5.5), 15 elements (5 elements
per truss section), and 45 elements (15 elements per beam section). As may be seen, in both cases,
the mesh refinement has no effect on the final plot. Therefore throughout the data generation pro-
cess, all models will be meshed with 3 elements or 1 in the case where re,D = re .

(a) [Le ,re ,re,D ] = [10.00mm,1.00mm,0.75mm] (b) [Le ,re ,re,D ] = [30.00mm,2.00mm,1.00mm]

Figure 5.6: Effect of mesh discretization using T2D2 elements on two randomly generated truss members.

5.3.3. Data generation rate

Although mesh refinement is not as critical in the tension case, the numerical step size, is critical. In
most cases, it is of importance to ensure the nonlinear numerical solver and FEA model converge.
When building data for a neural engine, it is important to consider that the data will be used to train
a neural network and any bias or imbalance will result in a less reliable system. Therefore, the step
size of the numerical increments should be such that convergence is guaranteed, but also sufficient
data is generated.

Initial, minimum and maximum values are chosen for the increment size and will be hereon re-
ferred to as ¢t0, ¢tmin, and ¢tmax respectively. These values are used when the Automatic setting is
chosen which essentially allows ABAQUS to decide the increment as a function of structural defor-
mation. The greater the nonlinearity of the path, the smaller the increment and vice versa. This en-
sures a computationally efficient simulation while maintaining convergence. However, in the case
of a data generator, the value of ¢tmax is extremely important. Consider a beam where Le , re , and
re,D are randomly assigned and equal 30mm, 1.5mm and 1.2mm respectively. Two versions of the
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same model are configured and ¢tmin is chosen to ensure numerical convergence in the nonlinear
portions of structural deformation. The only difference between the two models is that¢tmax = 0.05
in one model, and ¢tmax =¢tmin = 0.0001 for the other. The latter configuration forces the loading
increment to be as small as possible thereby creating a computationally inefficient model. The for-
mer provides a substantial amount of flexibility to the solver while still ensuring convergence. The
results are displayed in Figure 5.7.

As expected, both models show an identical force-displacement deformation, however the amount
of data generated differs vastly. The model with ¢tmax = 0.05 reaches completion in under 10 sec-
onds and generates 36 datasets, whereas the other took around 10 minutes and computed 10,001
increments. Both results are near-identical with the sole difference being an interpolation discrep-
ancy around ¢ae,axial = 0.12mm where the computationally efficient model does not fully capture
the plastic transition. However, the most interesting observations lie at the very beginning of the
curve. There is a higher density of data for the model with¢tmax = 0.05 to allow the numerical solver
to capture the deformation. Hereafter, the increments space apart throughout the remainder of the
deformation. The only exception is at the first material plastic transition around ¢ae,axial = 0.02mm
where the solver reduces the load step slightly for a few increments to capture the transition. If
this data is directly fed into a neural network, the corresponding outputs will produce a more reli-
able regression at the beginning of the deformation, than throughout the rest of the plot. A simple
solution is to produce a uniform amount of data which is manifested by the second case, where
¢tmax =¢tmin = 0.0001. In this scenario, the smaller value ¢tmax forces the numerical solver to pro-
duce a uniform amount of data resulting in a highly dense dataset and prevents bias injection into
the dataset. This implies that the resultant neural network will be able to model all portions of the
structural deformation with the same reliability. While this approach appears ideal, it is not feasible.
It takes roughly 10 minutes to generate such a dataset for a single geometrical configuration. If all
2,016 configurations are considered in tension, then the required time to generate the data would
be 14 days of non-stop computational processing: assuming, of course, that the process can be au-
tomated.

Although possible, the uniform data approach is not suitable since it represents a computa-
tionally inefficient system which arguably defeats the purpose of the neural network. Therefore a
balance must be found to ensure convergence of the model while producing a sufficient amount
of data such that all regions of the deformation curve can be reliably captured. This approach will

Figure 5.7: Maximum load increment step refinement of fe,int1 vs. ¢ae,axial for a randomly generated truss member
where: [Le ,re ,re,D ] = [30.00mm,1.50mm,1.20mm].
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inevitably introduce some bias within the final dataset, however this can be compensated by the
architecture of the neural network. Additionally, the bias in the data is arguably favourable and gen-
erates a more robust and expressive neural network in the end [5]. The final step parameters are
determined for the extremes of the geometrical boundaries, which are then used for all of the per-
mutations. The chosen step configurations will be displayed along with the remainder settings for
the tension generator at the end of this section.

5.3.4. Final ABAQUS parameters

Verification is a necessary step when setting up any engineering model. Unfortunately, the previ-
ously developed semi-analytical model does not account for a double-stepped beam and therefore
is not suited to model beams with a defect radius where the plastic deformation becomes more
complex at the interface between nominal and defective portions of the beam. However, it can be
used for the geometrical extremes, where there is no defect present. This leads to four geometrical
configurations such that: [Le ,re ,re,D ] = [{10.0,30.0}, {0.5,2.0}, {0.5,2.0}]. The same material dataset
used represents the plastic material behaviour of steel that was loaded in ABAQUS from Table 5.2
was used to build the analytical plot define in Equation 5.11. The results are shown in Figure 5.8,
and all show an excellent coherence, especially regarding the transition from the elastic to plastic
regimes. Slight discrepancies are present at the end of the displacement curve, which likely pertain
to either numerical errors or the Lagrangian regression. It is also interesting to note that there is
only one point of transition for each model into the plastic regime. Thereby appearing like two lin-
ear functions. This only occurs for models with no radial defect. As soon as there is a radial defect
present (re,D < re ), then the transition into and within the plastic regime shows a higher degree of
curvature. In any case, this high degree of correlation verifies the boundaries of the numerical ten-
sion models permitting us to move forward with the development of the model generator.

The geometrical boundaries were similarly investigated regarding the data generation and the
optimal step sizes were determined such as to ensure model convergence and guarantee a sufficient
amount of data production. Given that not all 2,016 models could be individually investigated, a
conservative approach is to produce a generous amount of data rather than a sparse (though per-
haps sufficient) dataset. All the used parameters used to build the data generator for tension are
summarized in Table 5.3. It is important to note that within the numerical solver, the nonlinear ge-
ometry has to be enabled to ensure the solver utilizes the true stress/strain values are opposed to
the engineering ones. This concludes the tension portion of the model generation. The degree of
nonlinearity present is relatively low, though the sharp changes will prove challenging for a neural
network to capture. From here, the compression phase of the model generation will be addressed.

Table 5.3: Essential ABAQUS settings for the tension model generator.

ABAQUS parameter Setting
Element type T2D2 (2-node linear truss element)
Number of elements 3 (or 1 if re,D = re )
Initial increment, ¢t0 0.001
Minimum increment, ¢tmin 0.001
Maximum increment, ¢tmax 0.01
Maximum number of increments 500000
Nonlinear geometry Enabled
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(a) {Le ,re ,re,D } = [10.00mm,0.50mm,0.50mm] (b) {Le ,re ,re,D } = [10.00mm,2.00mm,2.00mm]

(c) {Le ,re ,re,D } = [30.00mm,0.50mm,0.50mm] (d) {Le ,re ,re,D } = [30.00mm,2.00mm,2.00mm]

Figure 5.8: Nodal reaction force, fe,int1 versus axial elongation ¢ae,axial comparing analytical and FEA models
for the four truss member configurations which lie on the imposed geometrical boundary.
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5.4. Axial compression: an overview

Compression is a nonlinear deformation regime and is an entire field of research on its own. When
considering a beam under compression, there are three stages throughout the deformation regime
that are of concern. In the beginning, there will be a linear response to the compressive load, similar
to that in the case of tension. As the load is increased, there will come a point at which the structure
buckles (known as the critical buckling load) and loses a significant portion of its structural integrity
by deforming out of the axial plane as shown in Figure 5.9. The final part of the deformation regime
is known as the post-buckling regime which represents the deformation of the structure after the
buckling point. These different regimes are all relevant to the neural element which is required to
model the deformation into the post-buckling stage. This section focuses on the data generation
process for the compression deformation regime. An analytical model is used to mould the numer-
ical FEA simulation in ABAQUS, which is then used to generate the data for the neural network.
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Figure 5.9: Simply supported beam under axial compressive load P . As the axial load is increased, the structure will
eventually reach a point where it buckles out of the axial plane (shown in orange).

Arguably, the most important part during the compressive deformation process is the critical
buckling load, which corresponds to the load required to buckle the structure. Consider the simply
supported beam as shown in Figure 5.9. The beam is loaded at the rightmost node by load P . The
expression for the total potential energy is shown in Equation 5.12 where w represents the tangential
deflection from the beam’s nominal position.

¶= E I
2

ZLe

0

µ
d 2w
d x2

∂2

d x ° P
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0

µ
d w
d x

∂2

d x (5.12)

Furthermore, for a simply-supported beam the deflection w can be modelled as follows:

w(x) =
NX

n=1
an sin

≥nºx
Le

¥
(5.13)

Combining the two equations together and using the principle of minimum total potential en-
ergy yields the expression for the critical buckling load, denoted as Pcr which is the lowest buckling
load corresponding to a structure buckling in the first mode, hence n = 1. This provides the final
expression for Pcr:

) Pcr =
Er 4

e º
3

4L2
e

(5.14)
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It should be emphasized that for this approach leads to a deflection solution of w(x) = 0 for
P < Pcr. This shows that in this domain where P < Pcr, the material undergoes linear-elastic defor-
mation, just as in the case for axial tension, and therefore the beam remains straight. However, now
consider the structure that has an initial out-of-plane deflection w0. The total potential energy of
the structure now becomes:

¶= E I
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Where the initial imperfection may be expressed as:

w0(x) =
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µ
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∂
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With ±1n being Kronecker-Delta function. Following the same procedure as before, the total
potential energy can be expanded leading to:
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Then the total potential is minimized to obtain an expression for an :
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Note that the domain of P is such that it cannot equate to the critical buckling load Pcr, or else
an becomes undefined. Using this, the final deflection of the beam while including an initial defect
can be derived:
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Where∏ represents the amplitude of the initial imperfection or in other words: ∏= w0(x = Le /2).
From this expression, the axial shortening can also be directly derived:

¢aeaxial =
1
2

ZLe

0

∑µ
d w
d x

∂2

°
µ

d w0

d x

∂2∏
d x = Le∏

2

4

∑µ
1° P

Pcr

∂°2

°
µ
º

Le

∂2∏
(5.21)

Following these derivations, the following summarizes the most important points regarding the
buckling and deflection of a simply supported axially loaded beam under compression:

• For a perfect beam with no initial imperfection, there exists a load at which the structure will
buckle, called the critical buckling load, denoted as Pcr.

• In the case of a perfect beam, it is impossible to analytically solve for the deflection w once
the structure buckles. This is due to the fact that the neutral equilibrium state is essentially
indeterminate.

• For a perfect beam, in the region where P < Pcr, the axial deformation complies with the same
linear-elastic model derived from Hooke’s law in the case for axial tension.

• An imperfect beam is characterized by an initial imperfection manifested by an initial deflec-
tion w0 with amplitude ∏.
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• The deflection for an imperfect beam can be determined as a function of the applied load P
and the axial position x, provided P < Pcr. Outside this domain, it is no longer possible to
model the structural deflection to the highly nonlinear nature of the post-buckling regime.

It is also important to add that in the case of an imperfect beam, it is very difficult to estimate
when buckling occurs, though the previously derived formulation is considered sufficiently valid for
small initial defects i.e. ∏ is very small. These relationships for a beam up until buckling will provide
a good basis to verify the developed numerical FEA models. Before proceeding, it is important to
consider the other deformation regime during axial compression: the post buckling regime.

5.5. FEA Compression model

Building a compression model in ABAQUS is not as straightforward as tension. Column buckling
means that the deformation occurs out of the axial plane, therefore truss elements cannot be used
and have to be replaced with beam elements which are able to model bending. Furthermore, a
perfect structure modelled under pure compression will not buckle in an FEA model. Either an im-
perfection or a small moment at one node has to be introduced to initiate buckling. Therefore, it is
impossible to build a high fidelity compression model with a singular FEA model. Rather a linear
model upon which an eigenvalue analysis is performed has to be analyzed first, and then the output
of the linear model is fed into a nonlinear model along with an imperfection. In addition to this, nu-
merical convergence becomes even more important due to the nature of the nonlinear deformation
regime. This section focuses on the process to build a singular compression model, and establish
the parameters for the entire compression data generator by understanding the parameters affect-
ing the outcome of a post-buckling analysis.

5.5.1. Linear eigenvalue analysis

The first step in creating an FEA compression analysis is building a linear eigenvalue model. This
essentially serves to determine the critical buckling load of a beam with no imperfections, thereby
using the previously derived relation, which is reiterated below:

Pcr =
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Within ABAQUS, the model is created as per usual, except when defining the loading step. Rather
than initializing a general loading step, a linear perturbation is defined which initiates a buckling
analysis once the model is submitted for analysis. Consider one of the geometrical configurations
defined in the parameter design space with a Le = 30.00mm and re = 2.00mm. From the above
relation, the critical buckling load for this specimen corresponds to Pcr = 28930N. From a numer-
ical solver point of view, the buckling load corresponds to the point at which the model stiffness
matrix becomes singular. The critical buckling load corresponds to the model’s first eigenvalue ∏1.
Therefore, the numerical relation which is being analysed is:

(K0 +∏1K¢)¿1 = 0 (5.23)

Where ¿1 denotes the shapes of the first buckling mode. The linear eigenvalue analysis is not
computationally taxing, although mesh refinement is still important. Figure 5.10 plots the differ-
ence in critical buckling load versus the analytical solution up to 20 elements. It can clearly be seen
that the B22 and B21 elements eventually converge to the same value which corresponds to a critical
buckling load of Pcr = 28055N, however, there is a noticeable difference with the analysis solution.
This is because B21 and B22 elements follow the Timoshenko beam theory which provides a more
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Figure 5.10: Effect of mesh discretization and element selection on the truss member’s numerically calculated critical
buckling load (Pcr) using B21, B22, and B23 beam elements.

conservative estimate of the critical buckling load. The B23 elements on the other hand follow the
Euler-Bernoulli beam theory, and therefore converge to the same value as the analytical solution.
The conservative estimates from B22 elements coupled with their high degree of modelling accu-
racy make them an ideal choice for the data generation process. The reason a linear eigenvalue
analysis is conducted in the first place is to determine the value of Pcr which is then imported into
the nonlinear buckling analysis, which will be presented subsequently.

5.5.2. Initiating the nonlinear buckling analysis

After the linear eigenvalue analysis, a nonlinear model is constructed using the same geometrical
parameters which extracts some of the features of the linear model, notably the critical buckling
load. Form a user point of view, this interaction between linear and nonlinear models happens
through the various input files. Figure 5.11 show the process of feeding the linear model into the
nonlinear and highlights the most important features.

Prior to conducting the linear eigenvalue analysis, the input file is edited to export the nodal
displacements and eigenvalues to a results file. The compression model is then built with the sole
difference being the loading step configuration which is defined as a Riks analysis which permits a
nonlinear buckling analysis. Then the loading boundary condition is altered to equate to the first
eigenvalue from the linear analysis. Finally, prior to initiating the post-buckling analysis, an imper-
fection has to be introduced via the input file. This imperfection corresponds to the amplitude ∏
that was introduced in the derivation of the buckling load for a beam with imperfection . ABAQUS
requires an imperfection to initiate the buckling analysis, otherwise the result will be pure compres-
sion with no axial out-of-plane deformation.
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Loading Step:
Linear perturbation
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Figure 5.11: Overview of the interaction between linear and nonlinear models to conduct a nonlinear buckling analysis.
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5.5.3. Choosing the initial imperfection

The choice of the initial imperfection is responsible for initiating the buckling analysis and is there-
fore highly important. Structures with multiple closely-spaced eigenvalues tend to be more sensitive
to initial imperfections than others, however this is not the case for a simply supported beam un-
der axial compression. In any case, it is good practice to investigate the effect on the imperfection
factor on the numerical analysis to determine how imperfection-sensitive the structure is. ABAQUS
defines the initial geometrical imperfection in the following manner:

¢xi =
NX

i=1
≥i¡i (5.24)

Where ¡i corresponds to the shape of the ith eigenmode, and ≥i is the user-defined scaling fac-
tor for the ith eigenmode. As a rule of thumb, ≥i is usually a few percent of the beam’s cross-section.
Unfortunately, it is not possible to obtain an analytical relation between ≥ and ∏, however running
multiple FEA helps to better understand the effect of the imperfection factor.

Consider a simply supported beam with no defects of length and radius Le = 30.00mm and
re = 2.00mm respectfully. Figure 5.12 shows the effect of the user-defined scaling factor ≥ on the
nodal reaction force at node 1, fe,int1 . For now, the material plasticity is ignored. The case for
≥ = 0.00 represents a beam with no initial imperfection. As expected, the beam does not buckle
and continues to deform linearly past the critical buckling load. When ≥ = 0.01 = 1%, the struc-
ture buckles almost exactly at the critical buckling load Pcr. After the structure buckles (around
¢ae,axial º°0.35mm, the reaction force at the left-most node saturates towards the critical buckling
load. Increasing ≥ reduces the point at which the structure initially buckles, though for all cases,
the nodal reaction forces saturate towards the critical buckling load. It should be emphasized that
this observation only holds for the deformation domain that is being used for this project where the
axial deformation is capped at 2.5% of the length of each specimen due to the expected small ax-
ial deformations. If the axial deformation continues, then the nodal reaction force will continue to
slowly increase. Ideally, the value of ≥ should be such that buckling is triggered close to the critical
buckling load, and the structure deforms linearly until then.

It may also be seen in Figure 5.12 that the analytical solution derived from the Ritz method is
also included with an initial imperfection of ∏ = 0.01. Unfortunately, it is not representative of the
numerical deformation paths, because it does not capture the linear elastic part of the compressive
deformation and assumes that the structure buckles instantly. However, the resultant nodal reaction
force, fe,int1 , does converge towards the same value as the other FEA models. Furthermore, changing
the value of the imperfection factor ∏ in the Ritz method does not improve the solution. When the
applied load is P = 0, the axial displacement is proportional to the square of the initial imperfection:
¢ae,axial(P = 0) / ∏2. This means that as ∏ is increased, the axial displacement becomes non-zero
even when no load is applied which is representative of the deformation field. Therefore, the Ritz
method is only suited for very small initial imperfections and is not able to model the linear elastic
deformation of a beam under compression before buckling. However, regarding the numerical FEA
models, a scaling factor of ≥= 0.01 is considered suitable to initiate the post-buckling deformation
regime.

It bears repeating that the previous discussion on the effect on initial imperfections completely
neglects material plasticity, which does play a role in compression. Given that plasticity was in-
cluded in the tension part of the data generator, it cannot be neglected for compression. If the
same beam of length and radius Le = 30mm and re = 2.0mm, is subjected to compression while
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Figure 5.12: Effect of imperfection scaling factors ≥ on initiating a post-buckling analysis for a simply supported beam
where: [Le ,re ,re,D ] = [30.00mm,2.00mm,2.00mm]. Material plasticity is neglected.

including material plasticity, then the effect of the initial imperfection ≥ may be seen in Figure
5.13. The first point of interest is the linear part of the deformation curve which all models have
in common. In the case where plasticity was neglected, the linear deformation regime terminated
around ¢ae,axial = °0.375mm. When plasticity is included, this same linear portion ends around
¢ae,axial = °0.025mm. For the cases when ≥ = {0.00,0.01,0.02,0.03}, buckling is not triggered and
the deformation regime continues to follow a path that is extrapolated from plastic data in the same
fashion as tensile plastic deformation. However, for when ≥= {0.05,0.10,0.15,0.20}, buckling is trig-
gered and the beam entered the post-buckling regime. It is important at this stage to point out that
the load at which the structure buckles is almost an order of magnitude less than the calculated crit-
ical buckling load Pcr, which emphasises the effect of material plasticity in compression.

One possibility to analytically approximate the critical buckling load of a beam while including
material plasticity is known as the Johnson-Ostenfeld approach, and was developed from empirical
data collected from column-buckling experiments [95]. The resultant expression relates a material’s
yield stressæy and ultimate stressæult to the stress includes from the critical buckling load, denoted
as æcr as shown below:

æult =æy

µ
1°

æy

4æcr

∂
(5.25)

The expression can easily be altered to correct the critical buckling load to take into account
material plasticity, denoted as P̂cr:

P̂cr =æyºr 2
e

µ
1°

æyºr 2
e

4Pcr

∂
(5.26)

To remain on the conservative side, it is assumed thatæy represents the engineering stress as op-
posed to the true stress æ(t )

y . Therefore, using the same example, a beam of length Le = 30.0mm and
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Figure 5.13: Effect of imperfection scaling factors ≥ on initiating a post-buckling analysis for a simply supported beam
where: [Le ,re ,re,D ] = [30.00mm,2.00mm,2.00mm]. Material plasticity is included.

radius re = 2.0mm made form steel has a engineering yield stress of: æ(t )
yield = 240MPa. The recalcu-

lated critical buckling load is: P̂cr = 2937N which is shown in Figure 5.13 and is a far better estimate
of the critical buckling load as opposed to the original value of P̂cr. The remaining discrepancy be-
tween the adjusted critical buckling load and the load at which buckling is initiated (P º 2400N) can
be attributed to the approximative nature of the Johnson-Ostenfeld formula [95].

Once buckling is initiated, the effect of the initial imperfect has the same effect as the case where
plastic material behaviour was neglected. The ideal choice for the FEA model is the lowest possi-
ble imperfection factor which initiates post-buckling, while still maintaining the transition point as
close to critical buckling load as possible and guaranteeing numerical convergence. For this par-
ticular case, this corresponds to a value of ≥ = 0.05. It should be noted that ≥ = 0.04 is not present
in the diagram since it produced a model that diverged entirely, which is thought to be caused by
numerical instability between the buckled and nominal-plastic regions.

When considering a defect in the beam such that re,D < re , then it is no longer possible to an-
alytically predict the buckling behaviour of the beam using the previously derived relations. This
is because the introduction of a symmetrical step in the beam reduces its structural integrity, al-
though not in an intuitive manner. The defect portion will naturally cause greater elastic instability,
although it still derives stiffness form the surrounding portion of the beam of greater radius. Cre-
ating a comparative (semi) analytical model for post-buckling of a beam with a defected radius is
considered out of the scope of this thesis. However, given that the proposed derivations adequately
verify the buckling behaviour of a perfect beam with no radial defect, numerical and convergence
studies are deemed sufficient for modelling beams with a defect.

It is not realistic to conduct an imperfection sensitivity study for each of the 2,016 geometrical
beam configurations. Rather, just as in the case for axial tension, the boundaries of all the geomet-
rical configurations will serve to determine the ≥ parameter for the entire compression data gener-
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ation aspect. Given that all the preferable imperfection scaling factors are relatively similar and of
the order of 5%, it is decided that ≥= 0.05 will be adequate for the entire data generation process.

5.5.4. Overview: final ABAQUS parameters

The geometrical configuration of a truss member has a significant impact on the computational ef-
ficiency of an FEA analysis. Therefore, a single set of parameters which define the analysis cannot
be defined for all models as in the tensile case. This is mostly pertinent to the meshing of the struc-
ture as well as the initial imperfection scaling factor ≥ to trigger the buckling analysis. Models are
therefore analysed per length, and the defined settings are applied throughout a single length do-
main. Such an approach might be more time consuming than applying a single suite of settings to
the entire compression data generator, however ensuring mesh convergence and optimal computa-
tional efficiency will be more time efficient in the end. It was found that a total of 15 beam elements,
equally divided along a truss member are sufficient to ensure solution convergence. Table 5.4 sum-
marizes the parameters for the compressive data generation process.

With this, the intricacies of the data generator for both the tensile and compressive loading con-
ditions have been addressed. However, manually conducting over 4,000 FEA analyses is simply not
feasible meaning that the entire process has to be automated. The following sections focus on the
automation of the data generator and how the data repository will be built.

Table 5.4: Essential ABAQUS settings for the compression model generator.

ABAQUS parameter Setting
Element type B22 (3-node quadratic beam element)
Number of elements 15 (split equally between all 3 truss sections)
Initial arc, ¢r0 0.000001
Minimum arc, ¢rmin 0.000001
Maximum arc, ¢rmax 3.000000
Maximum number of increments 500000
Nonlinear geometry Enabled
Imperfection scaling factor ≥ 0.05
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5.6. Automating the data-generation process

In total, 4,032 models are run in ABAQUS equally split between tension and compression. Manually
adjusting the settings of each model is not considered as an option, which is why the entire process
is automated. Tension analyses on average are far less complicated than those in compression. As
explained previously, for each compression analysis, an additional linear eigenvalue analysis has to
be conducted and then fed into the nonlinear model. Furthermore, the computational processing
time of the compression models is expected to take far longer due to the severe nonlinearity of the
deformation regime and the nature of the Riks solver. Fortunately, automating the entire process
is possible thanks to ABAQUS’ internal Python terminal. This section is dedicated to outlining the
software architecture that was developed to automate the data-generation process.

5.6.1. Software architecture

The global software architecture consists of four separate programs designed to work together to
build the global dataset.

1. The overlord program: this program contains all the data and parameters that will be used
throughout the data-generation process and triggers all underlying programs. It is the sole
point of interaction between the user and the data-generation process. All other programs
are designed to be left untouched.

2. Tension model generator: responsible for building the tension models for analysis.

3. Compression model generator: responsible for building the compression models for analysis
including the linear eigenvalue analysis.

4. Data formatter & extractor: submits the models for analysis and extracts the relevant data
from the ABAQUS simulations (¢ae,axial and fe,int1 ), and formats the information in an effi-
cient matter for the global data repository.

Graphically, these four programs and their sub-components are displayed in Figure 5.14. Al-
though the code architecture might appear dense, it is simply a combined representation of all the
parameters for both the tension and compression cases that have been discussed up until this point.
However, there are particular aspects which are worth highlighting.

The sole interface between the user and the software is when defining the input parameters in
the overlord program, which can be grouped into three categories: object, FEA, and software prop-
erties. Object properties refer to the established parameter design space regarding the truss lengths,
nominal and defect radii, as well as the elasto-plastic material properties of steel. The FEA proper-
ties refer to the various FEA parameters that were investigated throughout this chapter which affect
the numerical result such as the mesh density, the step and loading domain, as well as the initial
imperfection scaling factor ≥ for the post-buckling analysis. Finally, the software properties refer to
the directories where the data will be stored, as well as the hardware distribution in terms of CPU,
GPU and RAM.

Once the input parameters are defined, the data generation phase can commence. The pro-
cess flow for the tension model and compression model is self-explanatory, as well as the entire
data extraction phase. However, one additional noteworthy aspect concerns contingency planning.
Although the numerical FEA models were analysis and tuned at the boundaries of the parameter
design space, some models may still abort the FEA analysis. This could, for example, be due to



5.6. Automating the data-generation process 83

element distortion in the mesh for particular geometrical configurations or loading increment be-
ing too small to satisfy numerical tolerances. Therefore, a Risk Analysis Report is embedded into
the data extraction phase of the data-generation process. Should a model abort for any reason,
it is flagged and written to the risk report along with the summary of the program extracted from
ABAQUS’ monitor. Whatever data that can extracted from the aborted model is still extracted and
saved to the repository, but the fact that it has been flagged will allow the user to instantly review the
data and the parameters of the model. This is all done in such a manner such that it does not halt
the entire data extraction phase. One the aborted model is flagged and appended to the risk report,
the data extraction proceeds with the subsequent model.

At the end of the data generation process, the user will have two global outputs: the data repos-
itory and the risk report. The data repository contains the nodal displacements and reaction forces
for each model as well as the amount of time it took for the model to be analysed. The risk report is
a file which contains a record of all aborted models and the reason why the analysis stopped. Such
outputs allow the user to more easily revise the models which were problematic and redefine the in-
put parameters such that they can be revised. Additionally, the CAE models are saved more readily
to permit their review at any point in time.

The entire software architecture is designed to reduce the amount of user-interaction when cre-
ating the global data repository, thereby also reducing any potential sources of human error. It is
important to note that the data automation process does not conduct any analyses on the global
data repository, which will be conducted by a separate program described in the following section.

5.6.2. ABAQUS-Python interface: selected notes

From a developer’s perspective, there are a few additional attributes concerning ABAQUS’ coding
interface which are worth noting. Some of these are only pertinent when attempting to simulta-
neously automate multiple FEA simulations but are relevant for anyone attempting to conduct a
similar project to this one.

1. Python console: ABAQUS has an embedded Python console which can be used to run scripts
and develop models in the ABAQUS environment. However, its latest version only runs on
Python 2.7, which should be taken into account if the user wishes to uses modules that may
require a more recent version of Python.

2. Kernel access: When running scripts, ABAQUS can have unrestricted Kernel access meaning
that it can tap into the operating system’s underlying hardware. Caution should be exercised
since inadvertently abusing Kernel privileges can lead to halting the entire operating system.

3. Cloud-interfacing: Many computers use cloud-based drives to save and store data. The time
it takes to upload a file to a cloud-based drive depends on the file size and the security mea-
sures put into place by the developers. When automating processes through ABAQUS, the
software continuously opens, closes, and writes files to its working directory. If the working
directory is placed on a cloud-based drive, then it is possible that ABAQUS will abort the en-
tire process because it cannot locate a file in the working directory; this might occur due to
the time it requires to sync a file to the cloud drive as compared to the time it takes ABAQUS
to re-sample a file. This difference is typically of the order of a few milliseconds but is enough
to abort the entire process.

4. DS files: Sometimes a .DS_Store file is included in a directory which is used by the operat-
ing system’s GUI to set the default visual preferences of the directory window. This ghost file
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cannot be seen by the user when working with a directory, though it can be seen by any form
of program which samples a prescribed directory. It is usually recommended to work around
this file when designing a program such that it does not cause any errors. This issue is partic-
ularly known to affect Apple users.
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Figure 5.14: Code architecture designed to automate the data-generation process.
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5.7. Closure

The final data repository includes all the data gathered from the tension and compression data gen-
erators. This implies that for a given geometrical configuration, the entire deformation field span-
ning from tension to post-buckling including material plasticity can be generated for 2,016 geomet-
rical configurations. Figure 5.15 shows an example of two full-deformation curves for a specimen,
one for a perfect beam, and the other for the same beam with a 50% radial defect. The impact of the
structural integrity is significant. The load-carrying capability of the structure with a 50% radial de-
fect is reduced by nearly 75% when compared to that of the intact structure. Figure 5.15 also serves
to reinforce the manner in which the data is stored in the repository. It is important to understand
that the amount of data is defined by axial displacement (¢ae,axial), rather than the geometrical des-
ignation. For a given length, radius, defect radius and axial displacement (Le ,re ,re,D and ¢ae,axial),
there is a a singular value for the nodal reaction force fe,int1 . This is referred to as a single dataset
from here onwards.

Figure 5.15: Example of the full deformation domain including material plasticity and post-buckling within the
prescribed boundaries for specimen of length and nominal radius: Le = 30.00mm, re = 1.80mm. All the defective

configurations within the parameter design space are considered.

Roughly 5% of the generated FEA models aborted due to errors and were filed in the risk report
due to convergence issues, which pertained to the compression models. These were manually ad-
justed to achieve a converged result. The global data balance between tension and compression is
40%:60% respectively meaning that the data repository is biased towards compressive behaviour.
However, given the amount of data available, it is unlikely that this offset will cause any problems
during the training phase of the neural network. Overall, the automated generator built and ran
4,032 FEA models equally split between tension and compression resulting in 587,142 datasets;
more than 5 times the amount initially anticipated. This provides a solid foundation upon which
a neural network can be developed and trained.
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Building the Neuromorphic Engine

With the data repository fully constructed, the neural network training procedure can begin. Chap-
ter 1 noted that one of the goals of this thesis is to develop the neural network in a non-conventional
manner. This mainly refers to the architecture of the network and the choice of hyperparameters.
These values are conventionally determined through a trial-and-error approach, which is a highly
inefficient process. Although it might be suitable for regression problems on a smaller scale, a trial-
and-error approach is inadequate for the level of expressiveness that is demanded from the neural
network in this thesis. As a reminder, the trained network will have to model the following deforma-
tion regimes of an axially loaded structural member:

• Axial tensile deformation including material plasticity.

• Axial compressive deformation including post-buckling and material plasticity.

The amount of nonlinearity present in each case is significant, and when considering the do-
main of the parameter design space, the scale of the regression problem increases greatly. Choosing
the appropriate neural architecture is therefore of paramount importance and cannot be left to a
trial-and-error process. Rather, the neural network will be programmed to choose its own neural
architecture and hyperparameters. The sole requirement from the user will be to specify which hy-
perparameters to consider, which is essentially equivalent to choosing the parameter design space
of the neural network.

Providing a neural network with the ability to alter and design its own architecture, based on the
type of data flowing through it, is suggestive of the morphable neural network that was introduced
in Chapter 2. Although the morphable neural network of Chapter 2 revolves around the Dropout
method (a tool used to alter a neural network’s architecture by removing nodes and layers during
the training process), the concept of morphability is a starting point for the contents of this chapter.
Hence, to reflect its morphable nature, the neural network developed here is renamed to account for
its ability to alter its own settings and neural architecture as a neuromorphic engine. This chapter
focuses on the process of building and designing it. Many of the terms used in neural network
design were outlined in Chapter 2 and will not be reiterated here.

6.1. Data formatting & preparation

The first step in training any neural network is the proper formatting of the data. The global data
repository developed in the previous chapter stores data in terms of specimen length, nominal ra-
dius, defect radius, axial displacement, and corresponding nodal reaction force. Prior to feeding the

87
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data through the neuromorphic engine, it has to be properly formatted to ensure a smooth training
process. This consists of two main parts: data normalization and data segregation.

6.1.1. Data normalization

The first step is normalizing the entire data repository to a uniform scale. The importance of data
normalization cannot be overemphasized and is often overlooked when tailoring data for a neural
network. Typically, a data repository is normalized such that all datasets fall within a highly con-
strained domain such as [0,1] for example. If the data were not normalized, then large differences
in values would either saturate or crash the backpropagation scheme which hampers the learning
process. Users who manage to achieve a properly trained neural network without normalizing the
data are often considered lucky. By restricting all data to a small confined domain, the backpropa-
gation scheme is able to maintain its efficiency.

In the current case, normalizing the entire data repository is a relatively simple process. Once
the boundary values are known for all parameters, then every single data point can be normalized.
Although this could work, the complexity of the deformation regime that the neuromorphic engine
is required to capture cannot be overlooked. It is worth repeating that both tensile and compres-
sive deformation for any geometrical configuration have to be modelled by the final neuromorphic
engine. Although the values of Le , re , and re,D will always be positive, the displacements and nodal
forces (¢ae,axial and fe,int,1) fluctuate between positive and negative values. If these were also to be
normalized in a [0,1] domain along with the geometrical parameters, then it will be all the more
difficult for a machine to differentiate the compressive and tensile cases. One simple way to help
the neuromorphic engine learn the data trends and deformations is to provide it with the following
simple guidelines:

• If ¢ae,axial > 0, then fe,int,1 < 0 (Tensile case).

• If ¢ae,axial < 0, then fe,int,1 > 0 (Compressive case).

These are simple properties of the deformation domains which require tailored normalized data
domains. Therefore, positive quantities for either ¢ae,axial or fe,int,1 will be normalized to [0,1] and
negative ones will be normalized to [°1,0]. Guidelines such as these can make a significant amount
of difference with regard to the expressivity of the final product.

Table 6.1: Data normalisation boundaries for all parameters flowing into and out of the neural network. Recall that Le ,
re , re,D and ¢ae,axial are inputs to the network and fe,int,1 is the projected output.

Parameter Max boundary value Min boundary value Normalization domain
Le 30.0mm 10.0mm [0,1]
re 2.0mm 0.5mm [0,1]

re,D re 0.5re [0,1]

¢ae,axial
0.75mm (Tension)

0.00mm (Compression)
0.00mm (Tension)

-0.88mm (Compression)

(0,1] if : ¢ae,axial > 0mm
[°1,0) if : ¢ae,axial < 0mm

0 if : ¢ae,axial = 0mm

fe,int,1
0.0N (Tension)

2503.3N (Compression)
-3185.1N (Tension)
0.0N (Compression)

(0,1] if : fe,int,1 > 0N
[°1,0) if : fe,int,1 < 0N

0 if : fe,int,1 = 0N
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With all this in mind, Table 6.1 summarizes the data normalization domains of all the parame-
ters that will be flowing into and out of the neuromorphic engine as well as their respective bound-
ary values. With this the full data suite falls within [°1,1], which is optimal for network training.

6.1.2. Data segregation

Once the data has been normalized, the last step in the formatting process is splitting it into train-
ing, validation, and testing data. As outlined in Chapter 2, a good rule of thumb for these ratios
is 50%, 25%, and 25% respectfully. However, in practice, these ratios are only effective for a small
data repository. When data quantity is not a constraint, than these ratios can be significantly al-
tered in favour of the training ratio. In any case, the ratios for the three categories will remain:
{n : (100°n)/2 : (100°n)/2} where n 2 [50%,100%).

For the current topic, n is chosen to be 98%. This means that 98% of the data repository will be
randomly sampled and used to train the network. Of the remaining 2%, half will be used to validate
the training process of the network after each epoch, and the other half will be held out for testing
the network once fully trained. Given that the amount of datasets in the repository is in excess of
half a million, these ratios are deemed sufficient to properly evaluate the training process of the
network.

6.2. Morphability: A self-designed neural architecture

Designing an environment that enables a neural network to define its own hyperparameters is not
as daunting as it may seem. The end goal is to almost entirely remove the human element from
the process thereby eradicating the trial-and-error approach, which is often used when building a
neural network. The trial-and-error process is generally only applicable in the case where the com-
plexity of the problem is either limited (which is a subjective concept in itself), or there is a foun-
dation to the problem in literature which has already been addressed. Unfortunately, the current
problem does not conform with either of these scenarios: the degree of complexity is considerable
since the final neural network has to be able to model both tensile and compressive deformation. In
addition, the amount of nonlinearity present is considerable, caused by material plasticity and/or
the post-buckling regime. If a neural network had to be built by trial and error for this problem,
then a justifiable reflex would be to build an extremely deep network with many nodes and hidden
layers; since the deeper the network, the greater the degree of expressivity. As shown in Chapter 2,
this is not necessarily the case. The relative importance of hyperparameters cannot be generalized
and differs from problem to problem. Therefore, a trial-and-error approach is not desired.

Removal of the human element from the neural architectural design can be accomplished by
using an optimizer environment based on random selection, with some very strict parameters.
The only role of the user is to specify which hyperparameters to investigate, the random sampling
method used, and which metric to target. Given the specifications the algorithm is processed in the
following fashion:

1. The algorithm chooses a set of hyperparameters within the prescribed boundaries and builds
a neural network.

2. It then randomly samples a portion of the data repository (typically 5-10%) using the defined
random sampling method.

3. It then trains the network within a highly limited number of epochs (usually less than 100).
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4. Throughout the training process, it monitors the metric defined at the very beginning.

5. If the algorithm observes no improvement of the defined metric over 5 consecutive iterations,
then it halts the training process. Otherwise, it continues to train the network up until the
limit number of epochs.

6. After training, it saves the data and builds another neural network with another set of hyper-
parameters and repeats the entire process.

7. Once finished, the best hyperparameter configuration is selected which corresponds to the
network that displayed the best rate of improvement in the defined metric, over the fewest
number of epochs.

8. The user is provided with a high-fidelity neural network architecture at a low computational
cost. The selected neural network is trained over the entire data repository.

The random sampling method is a crucial choice. If only a fraction of the data repository is to
be sampled each time, then it could be that the random sampler extracts data from only the ten-
sile or compressive case. However, given that the algorithm re-samples the data repository for each
network configuration, there is a certain reliability in the results after many evaluations. Although
this alone is not sufficient, since the amount of risk in generating a final network that completely
disregards a deformation regime is too high. An more reliable approach is not to enable pure ran-
dom sampling. Latin Hypercube and Improved Latin Hypercube are both proven techniques for
randomly sampling data by subdividing the data repository into clusters of similar data, and then
randomly sampling the data within each cluster equally. This ensures that a representative random
group of data is used for the training process since it removes the risk of sampling within a confined
domain. A review of Latin Hypercube’s capabilities and its improved version may be found in [128]
and [31] and will not be discussed here.

Another aspect which has to be addressed, is the extent of the hyperparameter space the algo-
rithm investigates. If all permutations within the prescribed boundaries are investigated, then it
could easily be argued that the algorithm is no better than an automated version of the trial-and-
error approach. Thankfully, this is not the case. The developed algorithm tailors its hyperparameter
choice depending on the improvement in the defined metric of the previous iteration, and the over-
all best configuration to date. If it experiences continuous diminishing returns over the course of
5 consecutive network configurations, then the process is automatically ended since the optimal
solution has been determined. In practice, less than 20% of all permutations are investigated.

It could be argued that since not all permutations are considered, then the end product will
never be as good as it could be. Although valid, it is important to recall that there is no such thing
as an infallible machine, or an infallible human. An intelligent entity is not infallible. Leaving room
for errors and discrepancies has proven to create more robust neural networks, which is why a user
should not be obsessed with finding the perfect neural architecture. There are two other areas that
merit explanation before initiating the algorithm: the choice of metric and the hyperparameters to
be optimized.

6.2.1. R-squared Metric

Despite the overall complexity, the problem at hand is simply a regression problem. Most avail-
able metrics for neural networks outlined in Chapter 2 pertain to selection-based problems. For
regression cases, the R-squared metric (also known as the coefficient of determination, or R2) is a
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measure of how well a regression fits a dataset. It is computed as a ratio between the regression sum
of squares and the total sum of squares between a regression projection and a dataset. Mathemati-
cally, it is expressed as:

R2 = 1°
P

i ( fi ° ȳ)2

P
i (yi ° ȳ)2

(6.1)

An R2 value of 1 indicates a perfect fit since it means that
P

i ( fi ° ȳ)2 = 0. Given the amount
of data available, a network displaying acceptable performance has an associated R2 value of 0.9
or greater. In addition to the R2 metric, the algorithm also observes the mean squared error loss
function as a backup, which is defined as:

LMSE = 1
n

nX

i=1

≥
y (i ) ° ŷ (i )

¥2
(6.2)

Even though the loss function is evaluated after a batch sweep through the network, the two
metrics should be correlated such that as R2 nears closer to 1, the mean-squared error (LMSE) ap-
proaches 0. Should this not be the case, the algorithm will flag this problem and allow the user to
intervene.

6.2.2. Hyperparameter selection

Prior to initiating the developed optimizer algorithm, the hyperparameters selected to be optimized
are chosen and summarized in Table 6.2. The neuron density and number of hidden layers are obvi-
ous choices which always affect the expressiveness of the trained neural network. Additionally, the
activation function used in the hidden layers will be interchanged between the ReLU (rectified linear
unit), which has proven itself as a piecewise numerical function that ensures an effective training
scheme; and the ELU (exponential linear unit). The ELU is a continuous version of ReLU, similar
to the leaky ReLU, to prevent saturation of the backpropagation scheme. Furthermore, the learning
rate of the optimizer (ADAM) is also considered. Lower learning rates promote a steadier training
progression whereas higher ones promote severe fluctuations. However, higher learning rates do
guarantee a faster convergence, which is appealing when considering the size of the data reposi-
tory. The Dropout rate is also implemented to prevent feature co-adaptation ranging from 0.00 (not
activated) to 0.50. In the case of a deep network, higher values of dropout are favorable to ensure
regularization. Since the depth of the network is not certain however, the dropout rate cannot be
easily defined which is why it is another hyperparameter variable. Finally, the affect of the batch
size is also considered, which varies between 2,000 and 50,000 datasets.

In addition to the hyperparameters that are varied, there are fixed hyperparameters. Table 6.3
shows those that are fixed throughout the entire process. As mentioned previously, the number of
epochs is set relatively low to 200. However, it is expected that the algorithm will never reach this

Table 6.2: Chosen hyperparameters to optimise.

Hyperparameter Symbol Min boundary value Max boundary value
Neuron density Ωneuron 5 neurons per layer 1,000 neurons per layer
Hidden layers nhidden 0 hidden layers 100 hidden layers

Activation function ©i ReLU ELU
Learning rate L 0.0005 10.0000
Dropout rate D 0.00 0.50

Batch size Vbatch 2,000 datasets 50,000 datasets
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Table 6.3: Fixed hyperparameters throughout the optimisation algorithm.

Hyperparameter Symbol Constraint
Epochs nepoch 200

Network shape n.a. Brick
Optimizer n.a. ADAM

Loss function L Mean-squared error (MSE)
Output activation ©out Hyperbolic tangent

Bias bi Enabled

number due to the cutoff constraint: if the improvement in the R2 metric over 5 consecutive epochs
is less than 0.1%, then the process terminates and proceeds to the next configuration. The network
shape is an interesting parameter which as of now is constrained to a brick shape. This means that
the number of neurons in each layer is the same. As described in Chapter 2, there are significant
advantages to alerting the network shapes, which expand and compress the dimensionality of the
data. Its effect will not be investigated in this thesis. The optimizer is chosen as ADAM due to its
consistent performance and reliability, while ensuring a fast convergence of the network. The MSE
loss function was chosen previously and is a suitable evaluation for regression-type problems. The
output activation©out is perhaps the most important parameter and is selected to be the hyperbolic
tangent for multiple reasons. Its continuous natures permits a consistent evaluation of the deriva-
tive when starting the backpropagation process, and it generates an output the range of [°1,1],
which is required since the nodal reaction forces, fe,int1 were normalized to [°1,1]. Finally, bias is
enabled throughout the entire process.

This concludes the overview of the hyperparameters used throughout the process of optimizing
the neural architecture. From here, the algorithm may be enabled to determine a suitable suite of
parameters. However, before proceeding, this is a good point to review the differences between
datasets, batch and epochs.

• Dataset: Single set of values in the repository {Le ,re ,re,D ,¢ae,axial, fe,int1 }(i ).

• Batch: One batch contains n datasets. The synaptic weights of the network are updated
through backpropagation after each batch (and not each dataset).

• Epoch: One epoch is one pass of the entire data repository through the neural network.

6.2.3. Chosen architecture

The number of possible neural architectures within the defined hyperparameter boundaries amount
to 400,000. Out of those 400,000, the developed algorithm only tested 5,824 before coming to a stop.
This corresponds to roughly 1.5% of the total amount of neural architecture permutations. Table 6.4
summarizes the performance metrics of the algorithm while Table 6.5 shows the hyperparameters
which the algorithm considered to be the best possible combination for developing a neural net-
work on the data repository. What is remarkable is that the selected neural architecture experienced
a performance saturation within 17 epochs which is incredibly fast. This means that over those 17
epochs, the R2 performance had already saturated to a value of 0.9989 by epochs number 12 (since
the program assumes convergence if the performance improvement over 5 consecutive epochs is
less than 0.1%). The total run-time of the algorithm was around 42 hours. Although this might seem
like a long time, devoting less than two days to determining an optimal hyperparameter configura-
tion for a neural network is very short.
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The developed algorithm has shown that a neural network with 5 hidden layers each containing
100 neurons is sufficient to model the nonlinear tensile and compressive deformation regimes of
2,016 different truss members. The algorithm also showed that there is no need to considered every
network configuration since many optimums exist. From the chosen hyperparameters, the network
can be trained on the full data repository.

Table 6.4: Performance metrics from the developed algorithm which selects an optimal configuration of
hyperparameters on a randomly sampled dataset from the global repository.

Entity Value
Total number of potential neural architectures 400,000
Number of neural architectures tested 5,824
Time required to reach completion º 42 hours
Average training time per network º 26 seconds
Epochs before performance saturation of best network 17
Attainable R2 of best network 0.9989

Table 6.5: Selected hyperparameters.

Hyperparameter Symbol Final value
Neuron density Ωneuron 100 neurons per layer
Hidden layers nhidden 5 hidden layers

Activation function ©i ReLU
Learning rate L 0.0008
Dropout rate D 0.00

Batch size Vbatch 15,000 datasets

6.3. Training the neuromorphic engine

The chosen neural architecture for the neuromorphic engine was outlined in the previous section
and can now be fully trained on the entire data repository. This section focuses on assessing its
capabilities in terms of general performance and compounded error analysis. The assessment is an
important step in locating any shortcomings or limitations of the neuromorphic engine, since this
is the last stage where it can still be corrected. Should there be limitations which cannot be solved,
then it is important to be aware of them before moving forward.

6.3.1. General performance

Once unleashed on the entire data repository, the neuromorphic engine is trained across more than
half a million datasets representing the tensile and compressive deformation regimes for the selec-
tion of truss members. The training process for the hyperparameter optimization was near-identical
to the hyperparameter optimization algorithm, with the exception of the early-stopping. In the pre-
vious section, the training process was halted if the improvement in the R2 metric over 5 consecu-
tive epochs was less than 0.1%. During the training process of the chosen configuration, the early-
stopping criteria is slightly adjusted to halt the process not when the level of accuracy saturates,
but if the R2 improvement inverts and starts depreciating. This is a phenomenon that sometimes
occurs during the development of an intelligent system: there is an optimal number of epochs to
the train the model before its performance substantially decreases. Although this pertains more to
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Figure 6.1: R-squared (R2) evolution over the training
process for training and validation datasets.

Figure 6.2: Mean-squared-error (LMSE) evolution over the
training process for training and validation datasets.

classification problems than regression-based ones, it is still accounted for by adjusting this moni-
toring process.

Figures 6.1 and 6.2 show the general performance metrics of the neuromorphic engine. As ex-
pected from the hyperparameter analysis, the overall loss, LMSE and R2 metrics are coordinated
and saturate very quickly, in less than 20 epochs. However, the training process is forced until 500
epochs to showcase the neuromorphic’s engine’s ability to maintain the attained level of accuracy.
Recall that the R2 metric is desired to converge as close to 1.0 as possible, whereas LMSE should
converge to zero. The performance metrics of the two cases (training and validation) support two
expected phenomena. The first phenomenon involves the validation error, which is less than the
training error in the early stages. Since the validation dataset is held out and only tested after each
epoch, it is expected to perform slightly better than the training data which are used through the
epoch. The second phenomenon involves the fluctuations in the metrics even while they converge.
These fluctuations are expected in the training process of the neural network design process and
typically indicate that the batch sizes used are too small. Here again it becomes a delicate balance:
choosing batch sizes that are too large, results in a network that converges at a much slower rate.
Given that the fluctuations converge to zero with increasing number of epochs, these fluctuations
can be disregarded as a whole.

The network converges to an exceptional level of accuracy, despite the complexity of the data
repository it is modelling. Table 6.6 summarizes the metrics and the amount of data the network
was trained on. Given that all R2 and MSE values for training, validation, and testing are greater

Table 6.6: Key final performance metrics of the trained neuromorphic engine after 500 epochs.

Parameter Symbol Value
Amount of training datasets n.a. 524,854
Amount of validation datasets n.a. 10,711
Amount of testing datasets n.a. 10,711
R-squared training value R2

training 0.9999

R-squared validation value R2
validation 0.9998

R-squared testing value R2
testing 0.9999

MSE training LMSE,training 4.45 ·10°7

MSE validatio LMSE,validation 5.32 ·10°7

MSE testing LMSE,testing 5.04 ·10°7



6.3. Training the neuromorphic engine 95

than 0.99 and less than 10°6 respectively, the neuromorphic engine may be considered sufficiently
trained and suitable for deployment. The next step is conducting a cohesive error analysis of the
trained network.

6.3.2. Compounded error analysis

Other than the neuromorphic engine’s overall performance during the training process, it is impor-
tant to conduct an error analysis over the entire data repository. Overfitting is the biggest enemy
at this stage but cannot be assessed through general performance metrics. Hence, to conduct an
error analysis over the entire data repository, the neuromorphic engine’s modelling capabilities are
compared against all 4,032 models in the data repository. For each geometric configuration, the
trained network is evaluated against the FEA results, and the relative error is computed for each
data point. Given that all FEA models originate from zero: fe,int1 (¢ae,axial) = 0N, the error is disre-
garded for the first data point to prevent division by zero. Furthermore, an error threshold is defined
to be 5%: "limit = 5%. With this in mind, an entire error analysis can be conducted encompassing
the whole data repository, thereby assessing the neuromorphic engine’s modelling capabilities on
the provided data.

Two-tone error map: evaluating all tension and compression models

Figure 6.3 shows a post-training error map of all 4,032 specimens of the neuromorphic engine
after 10 epochs. Tensile models are shown in blue whereas compression is coloured red. The posi-
tion of each bubble is dependent on modelling error of the network relative to the FEA deformation
curve. The maximum relative error intuitively refers to the largest amount of discrepancy in the
dataset of a geometrical configuration. On the other hand, the data fraction above the threshold
error is a measure of the amount of data for a simulation which is in excess of the defined threshold

Figure 6.3: Post-training error map between the neuromorphic engine and FEA models across all 4,032 models after 10
epochs.
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Figure 6.4: Post-training error map between the neuromorphic engine and FEA models across all 4,032 models after 500
epochs.

of 5%. For example, a model with coordinates (20%,60%) means that the largest error between the
FEA model and the neuromorphic approximation is 20% relative to the FEA model; and 60% of the
data points are above the 5% threshold. Evidently, this is not acceptable. Ideally, all bubbles should
be in the bottom left corner. However, models which have a low data fraction, but a high maximum
relative error are also adequate since a single data point with a high error in a near-perfect approxi-
mation will not hamper the modelling capabilities of the neuromorphic engine. It is also interesting
to note that there are more compression specimens which deviate from the ideal bottom-left-corner
than tensile ones. This is expected due to the difficulty in representing the highly nonlinear post-
buckling regime.

Figure 6.3 applies to the neuromorphic engine after 10 epochs, but if the training process is
extended to 500 epochs, then the results change drastically as may be seen in Figure 6.4. All mod-
els converge towards the bottom left corner meaning that the network is capable of modelling in a
near-exact fashion every single truss member in the data repository. Although 10 epochs is enough
to obtain a good rough approximation, training the neuromorphic engine for 500 epochs is far bet-
ter and will be used from hereon.

An error map whose axes are both percentages is not a user-friendly visualisation, however it is
highly representative of the neuromorphic engine’s capabilities. Admittedly, it is also extremely use-
ful for the user to visualise which models are problematic for the network. Unfortunately, Python’s
graphical GUI does not possess interactive settings to enable easy user-interaction. Because of this,
the same error map was produced with an external module known as PlotLy, which builds the same
error-map within the computer’s internet browser. When hovering the cursor over one of the bub-
bles in the error map, the geometrical parameters of the considered model and the exact data point
in the dataset which corresponds to the maximum relative error. Thereby allowing the user to pin-
point the problematic simulation and conduct a case-by-case evaluation if needed.
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Average error across selected data groups

In addition to the error map in Figure 6.3 which shows the network’s performance for each in-
dividual model, average values are also a good indicator. Furthermore, average values per category
can also be highly insightful to the neuromorphic engine’s shortcomings. Figure 6.5 summarizes
the average errors for some key data groups. As expected, the average error for the tension models
is far lower than the compression models due to the severe Nonlinearity in the post-buckling do-
main. In addition to the tension/compression differentiation, it is also interesting to differentiate
between those models that have a radial defect and those having no such defect. It is not entirely
surprising those models with a radial defect (re,D < re ) have a higher average error than those that
do not since the presence of a defect induces an additional variation, especially in the compressive
case. Although these observations provide interesting insights into the modelling capabilities of the
neural network, it should still be noted that the global error is roughly 0.25%, which is more than
acceptable from a performance standard.

Figure 6.5: Post-training averages errors for selected data groups.

Random model assessment

Random model assessment is one final way the performance of the neuromorphic engine may
be investigated. Geometrical parameters are randomly sampled within the parameter design space
and the full deformation plot from tensile material plasticity to post-buckling behaviour is con-
structed. Figure 6.6 compares the modelling capabilities of the neuromorphic engines against 6
randomly selected FEA models from the data repository spanning the entire deformation domain
of the specimen from tension to the post-buckling regime, all while including material plasticity. As
may be seen, the degree of correlation is almost exact and showcases the expressive capabilities of
the trained network. Neither the length, radius and whether there is a radial defect present ham-
pers the accuracy of the network. Despite the complexity and degree of nonlinearity of the entire
problem, the neuromorphic engine has no problem capturing the various deformation regimes. In
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addition, overfitting of any sort is not present.

Although assessing the performance of the network against datasets that it was trained and val-
idated against will naturally be accurate, it does not detract from the network’s overall modelling
capabilities. Given that it is able to model all 2,016 model from tension to post-buckling with a
minimal error, the neuromorphic engine can be considered suitable for deployment.
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(a) {Le ,re ,re,D } = [25.00mm,1.50mm,1.05mm] (b) {Le ,re ,re,D } = [30.00mm,2.00mm,2.00mm]

(c) {Le ,re ,re,D } = [26.00mm,0.90mm,0.54mm] (d) {Le ,re ,re,D } = [28.00mm,1.40mm,1.40mm]

(e) {Le ,re ,re,D } = [16.00mm,0.70mm,0.35mm] (f) {Le ,re ,re,D } = [24.00mm,1.80mm,0.90mm]

(g) {Le ,re ,re,D } = [17.00mm,1.10mm,0.99mm] (h) {Le ,re ,re,D } = [20.00mm,0.60mm,0.30mm]

Figure 6.6: Modelling capabilities between randomly sampled FEA in the data repository and the trained
neuromorphic engine.
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6.4. Closure

Building a neural network that chooses its own hyperparameters worked favourably to create the
final neuromorphic engine. The global performance measures and error analyses showcase the
modelling capabilities of the final product, which is now considered ready for deployment. To sum-
marize, there were two main goals that were achieved in this chapter:

1. Eradicate the trial-and-error approach from the network design, which is known to be ex-
tremely time consuming. Volumes could still be written on the sensitivity study of a trial-and-
error approach and the effect of the hyperparameters on the network’s performance. The
trial-and-error approach for neural network as a whole should come to an end since there is
no need for them anymore. Data-sampling algorithms which have been present in the fields
of computer science for decades can easily be adapted to remove human error from the se-
lection process.

2. Build an engine that is capable of modelling an extremely nonlinear regression problem, on a
large-scale parameter design-space.

This serves to underline yet again the potential of machine learning approaches and that their
potential is unlimited, provided they are given the proper environment to learn and adequate data.
An additional remark concerns the error analysis of the neuromorphic engine, or any trained neu-
ral network. From a numerical mathematical standpoint, there is always a constant obsession to
reduce the overall error as much as possible. This is not a bad thing, though it is not entirely appli-
cable in the context of machine learning. Stopping the training process of a neural network while
there still might be some errors present has been proven to be beneficial, since it helps prevent data-
attachment. This refers to the concept that the more a neural network is trained, the more it learns
the data that it is trained on. However, the training data are not necessarily representative of the data
which it will be deployed on. For instance, in the context of this thesis, the neuromorphic engine
might be deployed on a truss member of dimensions {Le ,re ,re,D } = [24.82mm,1.56mm,1.13mm].
Although this configuration is within the parameter design space that the model was trained on,
there is no model in the data repository which conforms to such values. Therefore, when developing
machine learning processes, the obsession of reducing the error into oblivion should be tempered.
Rather, error thresholds should be adopted, which are not too restrictive (5% in this case).

Finally, the author firmly believes that the modelling success of the neuromorphic engine is in
large part attributable to the fact that the data normalization domain was segregated for¢ae,axial and
fe,int1 . By extension, this introduced an additional boundary condition for the network during the
training procedure which helped it identify tensile and compressive cases. Should this additional
data segregation step have been overlooked, and all the data had been normalized to a standard
[0,1] domain, then the neuromorphic engine’s modelling capabilities would not have been as accu-
rate as they were, and a far more complex neural architecture would have been required to attain
the same level of expressiveness.

At this stage, the neuromorphic engine will no longer be re-trained, analyzed, or disturbed in
any fashion. It is now considered as what engineers refer to as a black box. It is saved as a singular
HDF5 file (see Chapter 7), which contains all the trained synaptic weights, biases, and other hyper-
parameters; it can be opened in either Python or Matlab. The next steps concern the wiring of this
black box into a user-element for finite element analyses, which will be described in the following
chapter.
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NmT2: A New Class of Element

The aim of this thesis is to produce a new element that can readily be implemented in an active FEA
simulation to improve computational efficiency without compromising accuracy. This is achieved
through the use of a neuromorphic engine trained on a properly built dataset to model axial defor-
mation of a truss-member. The previous chapter focused on building and honing the neuromorphic
engine, which constitutes a significant portion of the finite element development. But the custom
element is not yet suitable for deployment inside an active FEA simulation. The neuromorphic en-
gine has to be appropriately formatted in terms of a user-subroutine for usage in ABAQUS. The final
product represents a new form of finite element. It also introduces an entire new class of elements.
This new class of elements intelligent machine learning to reduce computational expense while
providing high-fidelity analyses of multi-truss structures. Additional metrics include the ability to
model material plasticity and the post-buckling regime. This new class of element is from hereon
referred to as a neuromorphic element. For the specific setting of this project, which focuses on
building an element in 2D space, the following element reference code is developed:

Nm
#

Neuromorphic Class

Truss Member
"
T 2

#
2D Space

The presence of the Truss Member and 2D Space descriptors implies that the neuromorphic ele-
ment class can be extended to 3D space and be used to model other structural components (plates
and shells for example). This is further discussed at the end of this thesis when contemplating future
work (Chapter 12). The current chapter focuses on the process of building the neuromorphic engine
into the neuromorphic NmT2 element. Although this is a relatively simple procedure which mostly
involves understanding and translating between various data formats, it merits its own chapter to
underline the deployment procedure.

7.1. Python - FORTRAN translator

It is important to understand that the trained neuromorphic engine cannot be directly exported
within an ABAQUS user-element. ABAQUS reads user subroutines in FORTRAN language whereas
the neuromorphic engine was developed in Python. Therefore, a translator is required to translate
the neural network from Python into FORTRAN.

The first step is saving the trained network in a suitable format. Hierarchical data formats, es-
pecially HDF5, are typically used to export and save machine-learning programs built in Python.

101
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HDF5 files essentially store an entire directory within a single file and are thereby perfectly suited
for large and complex programs with their own unique architecture. Neural networks are a prime
example of programs that have their own unique architecture and benefit from such file formatting.
A neural network can be exported and replicated exactly if the following are known:

• Input layer format (number of inputs).

• Output layer format (number of outputs).

• Number of hidden layers.

• Number of nodes in each hidden layers (º network shape).

• Activation function used in hidden layers.

• Activation function used in output layer.

• Values of all synaptic weights.

• Values of all nodal biases (if used).

The above parameters are all that are required to replicate a trained neural network exactly. The
scaling of the input data is also of crucial importance, although this is not included when formatting
the network. By saving the parameters in a hierarchical data structure, the trained network can be
exported and used by anyone without the need of a training database, sensitivity analysis, or opti-
mization scheme.

Unlike Python, FORTRAN is a compiled language and does not benefit from interpretive coding.
This means that to pass a neural network through FORTRAN code, it has to be reduced to sequential
operations. As outlined in Chapter 2, for a given input vector {x}, the output of the first network layer,
oi , can be computed as:

oi =√i

≥
WT

i {x}+bi

¥
for: i = 1 (7.1)

Where √i , WT
i and {b}i are, respectively, the activation function, trained weights, and biases of

each layer. For the subsequent layers, the outputs of each layer are:

oi =√i

≥
WT

i oi°1 +bi

¥
for: i > 1 (7.2)

In essence, all that is required to build the network are the activation functions used, and the
trained weights and biases. The dimensions of the layers in the network can be inferred from the
vector size of either the synaptic weight or bias vectors. Given that this information is stored in the
HDF5 file, it is possible to re-write the network such that FORTRAN can interpret it. This program
was developed such that it is not specific to the context of this thesis, and therefore may be used to
translate any neural network saved in HDF5 format into FORTRAN code. From here, the developed
neuromorphic engine can be built into FORTRAN, which is the first step in finalizing the UEL.
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7.2. NmT2 Deployment

The framework of the neuromorphic element and how it specifically interacts with the ABAQUS/Standard
solver was described in Chapter 4 and will not be reiterated here. The entire UEL of the NmT2 ele-
ment could be written as a standalone subroutine. But this approach is not preferable given that the
length of the FORTRAN code can become very long. For example, a neural network with four hidden
layers and 25 nodes in each layer produces 455 lines of FORTRAN code, thereby increasing the risk
of programmer error within the UEL. Therefore, the preferred approach is to build the neuromor-
phic engine into the UEL via a separate module that can be called when needed. The interaction
process between the ABAQUS input file and the neuromorphic element may be seen in Figure 7.1.

NmT2 Element

Call UEL
Model input file NmT2 user-

element (UEL)
Neuromorphic

Engine

ABAQUS
Solver

Figure 7.1: Interaction between the model input file and neuromorphic element NmT2 prior to being submitted to the
ABAQUS solver.

Note the double-headed arrow between the UEL and neuromorphic engine. The role of the
NmT2 user-element is to provide the ABAQUS solver with the required outputs. To compute the
nodal forces, the traditional methods are replaced by invoking the neuromorphic engine, which
then feeds the results back into the NmT2 UEL. As mentioned before, these two components could
potentially be merged into one, though this approach permits a more elegant format for the UEL
and minimizes the introduction of human error during development.

The last step involves calling the NmT2 element through the input file, which is conducted in
the same manner as any user-subroutine. With the neuromorphic engine translated into FORTRAN
and successfully interacting with the NmT2 UEL, the element is ready to be deployed and tested on
a series of case studies.
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8
Case Study 1: Single Truss Member

The first logical case study is that of a single horizontal truss member, loaded axially. This corre-
sponds to the same kind of model that was used to build the data repository. Such a verification also
provides a first step and a benchmark for potential applications to multi-truss structures. There-
fore, just as before, consider a horizontal truss member that is pinned at the left end and simply
supported at the right-most end as shown in Figure 8.1. The beam is displacement-loaded at its
right end and the reaction force at the opposite end is extracted as fe,int1 . The geometrical param-
eter design space includes a structural defect which ranges within re,D 2 [0.5re ,re ]. As described
before, in the case of tension, the structure can be meshed with only 3 T2D2 elements (as shown
in Figure 8.1). Compression, however, may contain several beam elements including mesh bias de-
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Figure 8.1: Case study 1: simply-supported beam with displacement loading (in this case, the structure is loaded in
tension).
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Figure 8.2: Case study 1: simply-supported beam with displacement loading (in this case, the structure is loaded in
compression, note the use of extra nodes to model accurately the post-buckling deformation).
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pending on the lengths used (an example is shown in Figure 8.2). If the neural element is used, then
the entire structure can be replaced with a single NmT2 element; there is no need for meshing the
structure (Figure 8.3). Rather, the neuromorphic element possesses the same geometrical proper-
ties as the meshed structure, which is theoretically sufficient to replicate the deformation field both
in the case of tension and compression, all while including material plasticity.
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Figure 8.3: Case study 1: simply-supported beam with displacement loading using a single NmT2 element that has the
same geometry as the truss member.

Given that the NmT2 element is purely data-driven, it is expected to be far more computation-
ally efficient than a traditional FEA analysis. This section evaluates the computational gains (if any)
and accuracy between a traditional FEA analysis and one using the newly developed NmT2 element
for a simply-supported structural member.

8.1. Preparing the analysis

The easiest way to submit a cohesive structure for analysis through ABAQUS is via an input file. It is
important to recall that once the geometrical parameters are established, the entire loading space of
the beam is defined by extension (since ¢ae,i+1axial 2 [0,0.5Le,D ]). Therefore, once the beam length,
radius, and defect are chosen (Le , re , and re,D respectively), the geometry and loading domain of
the structure are defined. The only additional parameter that the user must select is whether the
structure is loaded under tension or compression, which in turn affects the sign of ¢ae,i+1axial .

To prepare the analysis, a Python program is devised which builds two input files depending on
the global geometrical parameters. One input file uses the traditional FEA elements; the other uses
NmT2 elements. In the case of the traditional FEA analysis, a few extra parameters are built in for
the user to choose the mesh density, loading step size, and element type. These do not affect the
analysis using NmT2 elements. It is also important to note that for the structure using the NmT2
element, the input file must reference the neuromorphic element and neuromorphic engine sub-

Set primary
parameters

Input file writing
program

Input file with
NmT2 element

Input file with
traditional elements

Set secondary
parameters

Element type, mesh
density, etc.

Submit to
ABAQUS
Solver

Tension or
compression

Figure 8.4: Flow process to prepare the FEA analyses. One using traditional elements, and the other using a single NmT2
element.
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routines as described in the previous chapter. The entire flow process for the ABAQUS analysis is
summarized by Figure 8.4, which will also be used in the following case studies.

8.2. Results

In order to prevent user-bias, the primary geometrical parameters are randomly sampled within the
prescribed parameter design space defined in Chapter 4. A total of 30 random configurations are
produced to test the capabilities of the neural element for both the tensile and compressive cases.
This means that no identical model is subjected to both tension and compression. Therefore, in
total, 60 models are tested. For clarity, the results are divided between the tensile and compressive
cases; they are merged together at the end of the analysis. To reiterate, the purpose of these case
studies is to assess the capabilities of the NmT2 element both in terms of accuracy and computa-
tional efficiency relative to a traditional FEA model.

8.2.1. Tension

In the case of a tensile FEA model, 3 elements are sufficient as shown before and are initially set
to classic T2D2 elements. The main metric used to measure the accuracy between the traditional
FEA models and the neuromorphic element is simply the absolute errors: the lowest, highest, and
average percentage errors (denoted as ≤min, ≤max and ≤̄ respectively) are computed for each sim-
ulation relative to the traditional FEA models. However, it should be emphasized that there is no
longer an exact data match between the FEA and NmT2 models: unlike when analyzing the perfor-
mance of the neuromorphic engine relative to the data repository (meaning that (¢ae,axial)

(i )
NmT2 6=

(¢ae,axial)
(i )
T2D2. In this case the errors are extrapolated between the two closest data points. In addi-

tion to the absolute differences, the data imbalance lends itself well to the R2 metric which was in-
troduced in Chapter 6 when building the neuromorphic engine. The reason the R2 value is preferred
as an error evaluation over other conventional statistical metrics (such as the root mean-squared er-
ror, L2 norm, etc.) is that it provides a dimensionless quantity that represents the degree to which
an approximation regression fits a reference model. Recall that R2 can take on any real value from
zero to unity. The closer it is to 1.0, the better the statistical fit. Additionally, the computational pro-
cessing time is also reported: tT2D2 for the models meshed with T2D2 elements and tNmT2 for those
with a singular neuromorphic element.

Table 8.1 shows all the results for the tensile case and the geometrical models that were ran-
domly generated as well as the overall average values of the absolute error metrics, R2 value, and
the computational time required for a simulation to complete. At this stage, only an error analysis
is conducted. The graphical comparisons are left for the combined comparison between the com-
pressive and tensile cases.

In the tensile case, the average absolute error is roughly 1.0% which showcases the modelling
capabilities of the NmT2 element relative to traditional T2D2 elements. Although the absolute er-
ror metrics are useful, the most important metric is the R2 value, which is indicative of the overall
approximation of the regression. As may be seen in Table 8.1, R2 º 1 across all 30 models indicating
a near-exact approximation. The R2 metric is naturally lower than when using it to evaluate the
neuromorphic engine, since it is now being deployed on independent cases as opposed to the cases
sampled from the pre-existing data repository. Despite this, the performance of the neuromorphic
element in a live FEA setting is exceptional and is impervious to the presence of a defect or other
geometrical parameters. Furthermore, regarding computational performance, the NmT2 element
reduces the computational time by almost half. The T2D2 elements average roughly 40 seconds
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per FEA simulation whereas those with neuromorphic elements average 24 seconds. Although this
might seem like a small difference, it can become substantial if it holds when the complexity of the
FEA model is scaled up, as will be seen in the following section and chapters.

Before proceeding to the compression case, it is worth addressing outliers identifiable through
the maximum absolute error, ≤max. In some circumstances, the maximum ≤max peaks at 20%. If
this difference is located at a key design point in the load-bearing capability of the structure, then
it might pose a problem. However, given that ≤̄max º 7% over 30 randomly generated models, it re-
mains relatively low risk. From an error analysis standpoint, the results from the tensile case are
more than sufficient to verify the capabilities of the NmT2 element. From here, a similar error anal-
ysis may be conducted for the compression case.

Table 8.1: Error and temporal analysis for all tensile cases between traditionally meshed models using T2D2 elements
and models using a single NmT2 element.

Le [mm] re [mm] re,D [mm] ≤max [%] ≤min [%] ≤̄ [%] R2 [-] tT2D2 [s] tNmT2 [s]
13.85 1.44 0.76 3.901 0.156 2.271 0.994 39.75 25.56
14.05 0.65 0.40 6.090 0.004 1.496 0.994 42.01 26.78
14.28 0.88 0.59 2.509 0.128 0.878 0.994 38.98 25.76
16.23 1.23 1.16 15.134 0.013 1.137 0.993 37.65 24.12
17.08 1.08 0.98 2.174 0.010 0.654 0.994 36.99 25.55
17.51 1.31 0.78 4.815 0.025 0.799 0.995 38.76 26.01
17.95 1.78 1.73 3.780 0.013 0.407 0.997 42.70 25.89
18.45 0.76 0.39 7.010 0.108 2.194 0.997 39.45 22.23
18.87 1.45 0.83 5.001 0.002 1.868 0.996 39.12 24.66
18.94 0.76 0.40 9.034 0.133 2.473 0.996 38.57 24.56
20.05 1.49 1.11 4.939 0.015 0.618 0.997 38.85 25.06
20.14 1.79 1.63 3.323 0.004 0.529 0.997 44.17 24.13
20.63 1.39 0.95 3.864 0.041 0.572 0.997 40.72 25.29
20.70 0.57 0.36 7.160 0.017 1.532 0.997 39.02 25.64
20.97 1.42 1.15 2.345 0.002 0.345 0.998 39.25 23.76
21.86 1.29 1.18 7.416 0.004 0.563 0.998 43.27 21.36
22.29 1.00 0.75 2.278 0.015 0.779 0.998 42.12 24.04
22.86 1.05 0.89 4.372 0.036 0.624 0.998 40.34 25.99
23.10 1.14 0.75 2.304 0.087 0.948 0.998 35.79 26.11
23.32 0.62 0.59 14.267 0.003 1.380 0.998 34.51 24.36
23.93 0.98 0.49 7.014 0.087 0.969 0.998 39.55 24.99
24.66 0.64 0.54 10.877 0.003 1.656 0.998 39.01 23.03
24.72 1.29 1.28 14.34 0.000 1.015 0.997 40.19 25.24
24.89 1.59 1.35 3.307 0.006 0.509 0.997 45.29 23.44
25.19 0.86 0.43 3.646 0.028 0.991 0.997 39.77 25.57
25.39 1.95 1.92 20.367 0.014 1.375 0.994 34.24 23.13
25.49 0.59 0.35 4.749 0.049 1.426 0.994 42.13 21.98
26.06 1.13 1.09 11.80 0.010 1.032 0.994 39.66 24.06
26.69 1.76 1.66 16.36 0.029 1.039 0.994 39.98 23.46
28.30 1.36 1.07 2.682 0.033 0.519 0.994 38.65 22.53

Average 6.895 0.036 1.087 0.996 39.68 24.48
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8.2.2. Compression

The compression error analysis is carried out in the exact same manner as the tensile analysis,
across the same 30 models. However, the models are meshed with B22 elements in the case of
the traditional FEA analysis to allow for deformation out of the axial plane. The number of elements
and mesh convergence will not be discussed here as to not detract from the focus of this chapter.
However, all convergence was checked for each case following the same method as outlined in the
data-generation process of Chapter 5.

Table 8.2 shows the error analysis conducted across 30 models loaded in compression and into
the post-buckling regime, all while including material plasticity. Relative to the tensile model, all the
errors have increased, which is expected due to the nonlinear nature of the post-buckling regime.

Table 8.2: Error and temporal analysis for all compressive cases between traditionally meshed models using B22
elements and models using a single NmT2 element.

Le [mm] re [mm] re,D [mm] ≤max [%] ≤min [%] ≤̄ [%] R2 [-] tB22 [s] tNmT2 [s]
13.85 1.44 0.76 20.802 0.279 6.446 0.919 89.31 22.01
14.05 0.65 0.40 19.449 0.330 6.325 0.919 79.19 24.24
14.28 0.88 0.59 22.217 0.506 5.243 0.917 86.48 23.59
16.23 1.23 1.16 13.257 0.407 5.839 0.923 85.93 19.37
17.08 1.08 0.98 13.634 0.161 5.974 0.921 88.17 21.28
17.51 1.31 0.78 18.793 0.329 7.134 0.922 81.38 20.01
17.95 1.78 1.73 11.224 0.859 5.453 0.934 83.05 19.92
18.45 0.76 0.39 32.364 0.899 12.004 0.935 85.12 23.93
18.87 1.45 0.83 20.887 0.086 8.221 0.933 84.09 26.38
18.94 0.76 0.40 39.989 2.187 15.540 0.933 80.38 23.08
20.05 1.49 1.11 20.737 0.314 6.498 0.939 88.19 25.37
20.14 1.79 1.63 4.226 0.189 1.796 0.939 90.01 24.18
20.63 1.39 0.95 17.941 0.0367 4.696 0.958 89.27 18.38
20.70 0.57 0.36 10.336 0.857 13.885 0.959 85.88 18.29
20.97 1.42 1.15 9.445 0.184 3.219 0.962 83.36 20.20
21.86 1.29 1.18 9.85 0.373 3.075 0.964 79.98 21.39
22.29 1.00 0.75 17.619 0.261 4.644 0.964 91.05 23.39
22.86 1.05 0.89 10.001 0.157 4.331 0.965 88.38 22.38
23.10 1.14 0.75 7.966 0.517 2.790 0.965 88.42 24.49
23.32 0.62 0.59 23.256 0.248 5.964 0.965 82.34 20.29
23.93 0.98 0.49 17.545 0.450 5.022 0.965 86.96 20.98
24.66 0.64 0.54 15.413 0.116 6.404 0.965 81.19 18.28
24.72 1.29 1.28 7.910 0.259 3.093 0.967 85.38 17.89
24.89 1.59 1.35 6.903 0.187 3.122 0.969 88.87 24.10
25.19 0.86 0.43 11.588 0.178 4.407 0.969 87.79 25.01
25.39 1.95 1.92 3.854 0.121 1.667 0.978 81.08 24.98
25.49 0.59 0.35 37.347 1.548 19.329 0.978 88.00 24.67
26.06 1.13 1.09 9.164 0.227 3.212 0.978 83.01 20.38
26.69 1.76 1.66 5.036 0.045 1.514 0.981 80.89 28.97
28.30 1.36 1.07 12.817 0.300 4.582 0.981 90.83 19.89

Average 15.719 0.420 6.048 0.952 85.47 22.24
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However, the R2 value, although not as high as in the tensile case, still remains above 0.9 indicating
a high degree of correlation with the FEA model (over 30 simulations, the average R2 = 0.952). A
correlation is observable between the length of the specimen Le and R2 indicating that the neuro-
morphic element has a greater difficulty modelling short and stout truss members as opposed to
longer ones. Nevertheless, the difference remains small. Furthermore, loading a structure past the
point of buckling drastically increases the computational effort which now averages 85 seconds for
models meshed with B22 elements. However, the neuromorphic elements retain the same compu-
tational efficiency averaging around 22 seconds.

The absolute errors have all increased relative to the tensile case reaching a maximum of 40%
deviation in one case. The average error, ≤̄ is around 6% which is a six-fold increase when compared
to the tensile case. Overall, the error analysis is still satisfactory, mostly due to the R2 values which
are still concentrated above 0.9. Regarding the computational efficiency however, data-driven pro-
cesses start to excel relative to traditional FEA processes, resulting in nearly a 300% increase in com-
putational efficiency. Whether the increase in computational efficiency is sufficient to justify the
slight loss in accuracy remains debatable and will be reviewed at the end of this chapter. For now,
the results in compression are just as promising as those from the tensile case, despite the slightly
larger error gap in the compression analysis.

8.2.3. Global analysis

As in previous chapters, the tensile and compressive deformation regimes can be merged to form
the entire structural response of the single horizontal truss member. The same error analysis con-
ducted separately on the tensile and compressive cases can also be done for the combined case,
which is shown in Table 8.3. However, in this combined case, the maximum and minimum errors
(≤max and ≤min) are omitted since they would intuitively refer to the same values for either the tensile
or compressive case. Additionally, the computational time is omitted: it is not representative of an
actual FEA simulation since this global analysis is the result of two merged analyses. Only the aver-
age absolute error and R2 metric are reported and are considered sufficient to assess the difference
between traditional elements and a singular NmT2 element.

Regarding the R2 metric, as described during the development of the neuromorphic engine in
Chapter 6, it is unwise to apply blindly the error descriptor to the entire deformation curve which
has an output range that spans from negative to positive. This forces the mean of the overall de-
formation plot closer to zero, which in turns leads to a higher R2 value that is not representative.
Rather, the problem should be treated as two independent regression problems that are assembled
together. Hence the R2 metric of the global analysis is simply the average between the tensile and
compression cases. With this in mind, the R2 values reported in Table 8.3 are well above 0.9 indi-
cating that the NmT2 element provides an acceptable approximation to the model using traditional
FEA elements. On the other hand, the average absolute error is not as indicative of the quality of the
approximation as the R2 metric, however it remains useful as an indicator. The global average ab-
solute error, being mostly influenced by the compression case, is just over 3%, which is acceptable
for verification purposes.

The full deformation cycles of 8 randomly generated specimens are shown in Figure 8.5. Eight
were selected which best captured both the variation of geometrical configurations as well as the
various modelling problems the NmT2 has relative to traditional FEA elements.
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The first observations concern the tensile part of the curve which is the portion on the right
(where ¢ae,axial > 0. The neuromorphic element shows one type of abnormal response which is a
slight oscillatory behaviour nearing the end of the tensile deformation regime. This is slightly visi-
ble in Figure 8.5a and is more prominent in Figures 8.5b and 8.5c. Overfitting would be the typical
culprit when such behaviour is present. However, the oscillatory behaviour fades when the length
of specimen is increased, and no overfitting was present during the testing phases of the neuromor-
phic engine. This behaviour is only observed in smaller specimens where Le < 19.0mm. It will be
kept in mind during the evaluation of the other case studies before forming a final conclusion.

On the compression side where ¢ae,axial < 0, the error discrepancies become more visible. The
NmT2 element tends to overshoot the buckling peak which is most visible in Figures 8.5a through
8.5c. This is arguably the most difficult part of the post-buckling curve for the element to model;
the maximum absolute error consistently stems from this part of the curve. The remainder of the
deformation curve is quite well approximated by the neuromorphic element and always converges
to the same value as in the case of traditional FEA elements. The only other problem that occurs is
the relaxation rate in the post-buckling domain which is often overestimated by the NmT2 element
and most visible in Figure 8.5d. These two areas represent the height of nonlinearity in the overall
deformation regime and are the most difficult to model. For the remainder, the compression de-
formation regime is almost perfectly modelled and any discrepancies in the curve disappear with
increased specimen length Le leading to a near-perfect deformation plot.
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Table 8.3: Error analysis for all cases between traditionally meshed models using standard FEA elements (either B22 or
T2D2) and models using a single NmT2 element.

Le [mm] re [mm] re,D [mm] ≤̄ [%] R2 [-]
13.85 1.44 0.76 4.452 0.956
14.05 0.65 0.40 3.962 0.957
14.28 0.88 0.59 4.237 0.955
16.23 1.23 1.16 3.538 0.958
17.08 1.08 0.98 3.371 0.957
17.51 1.31 0.78 4.034 0.956
17.95 1.78 1.73 2.984 0.956
18.45 0.76 0.39 7.203 0.966
18.87 1.45 0.83 5.112 0.965
18.94 0.76 0.40 9.146 0.954
20.05 1.49 1.11 3.621 0.967
20.14 1.79 1.63 1.176 0.978
20.63 1.39 0.95 2.678 0.978
20.70 0.57 0.36 7.840 0.968
20.97 1.42 1.15 1.813 0.979
21.86 1.29 1.18 1.846 0.981
22.29 1.00 0.75 2.778 0.981
22.86 1.05 0.89 2.517 0.981
23.10 1.14 0.75 1.889 0.981
23.32 0.62 0.59 3.725 0.981
23.93 0.98 0.49 3.039 0.981
24.66 0.64 0.54 4.080 0.981
24.72 1.29 1.28 2.076 0.982
24.89 1.59 1.35 1.843 0.983
25.19 0.86 0.43 2.735 0.983
25.39 1.95 1.92 1.524 0.986
25.49 0.59 0.35 10.568 0.986
26.06 1.13 1.09 2.145 0.986
26.69 1.76 1.66 1.281 0.987
28.30 1.36 1.07 2.594 0.987

Average 3.660 0.973
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(a) {Le ,re ,re,D } = [14.05mm,0.65mm,0.40mm] (b) {Le ,re ,re,D } = [18.45mm,0.76mm,0.39mm]

(c) {Le ,re ,re,D } = [18.94mm,0.76mm,0.40mm] (d) {Le ,re ,re,D } = [20.05mm,1.49mm,1.11mm]

(e) {Le ,re ,re,D } = [20.14mm,1.79mm,1.63mm] (f) {Le ,re ,re,D } = [22.86mm,1.05mm,0.89mm]

(g) {Le ,re ,re,D } = [23.93mm,0.98mm,0.49mm] (h) {Le ,re ,re,D } = [26.06mm,1.13mm,1.09mm]

Figure 8.5: Comparison between a selection of randomly generated FEA models within the prescribed
parameter design space using traditional FEA elements (either T2D2 or B22 shown in blue), and the same

models meshed with a single NmT2 element (shown in orange).
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8.3. Closure

The purpose of this case study was to start assessing the capabilities of the neuromorphic element in
a simplified setting, which was identical to that defined during the data-generation process. Overall,
the NmT2 element performed very well when compared to traditional FEA elements such as T2D2
or B22. For tensile loading, the results were near-exact relative to the standard FEA deformation
profiles. The severe kinks due to material plasticity posed no problem whatsoever. When loaded in
compression, the correlation with the FEA model was just as good, with a few extra discrepancies
which are expected due to the nonlinear nature of the post-buckling regime. The sources of the
discrepancies stemmed mostly from models where the length of the truss member was less than
20mm, which will be kept in mind while moving forward.

Throughout the entire process, the computational time of the NmT2 element remained much
lower than that of B22 or T2D2 elements. This increase in computational efficiency of almost 300%
in the compressive case already indicates that the neuromorphic element shows significant poten-
tial for reducing computing time. Although the trade-off between solution accuracy and computa-
tional effort will be a topic for Chapter 11, at this stage the results are very promising.

Another important aspect is that the number of iterations required by the ABAQUS solver is
far less for the NmT2 element than for traditional FEA elements. This difference in computational
efficiency is even more pronounced for the compression case when modelling the post-buckling
regime. Overall, across the entire deformation curve for a given model, the NmT2 elements require
75% fewer increments than those meshed with traditional elements. The increase in computational
efficiency for a single truss member is summarized in Table 8.4. Given that there is a distinct reduc-
tion in computational effort, all while maintaining an acceptable degree of accuracy, the capabilities
of the NmT2 are to be further investigated in another case study which ramps up the complexity of
the structure. For now, however, the three most important findings of this first case study are:

1. It is possible to embed data-driven elements in an active FEA analysis.

2. The NmT2 element shows a distinct decrease in computing time.

3. Despite some small discrepancies, the NmT2 element manages to maintain solution accuracy
relative to FEA models meshed with traditional elements.

Table 8.4: Computational efficiency of traditional FEA elements versus a singular NmT2 element for case study 1.

Average computing time [s]
Loading case T2D2 or B22 NmT2 Gain in computational efficiency [%]

Tension 39.68 24.48 62.13
Compression 85.47 22.24 284.22
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Case Study 2: V-Shaped Structure

The second case study consists of what is considered a bridging structure. This refers to a kind of
structure that builds on the first case study in a minimal form, but introduces vital components
present when analyzing more complex multi-truss structures. Such components include joints, an-
gular loading, and differential deformation. The inclusion of joints acknowledges that the structure
has multiple members connected at their extremities. Angular loading occurs when the applied load
is not coincident with the local coordinate system of a truss member and is therefore not aligned
along a truss’ axis. Finally, differential deformation arises when multiple members undergo oppo-
site kinds of deformation. For example, certain loading schemes might induce tensile deformation
in some truss members and compressive deformation in others. A V-shaped structure composed of
two truss members represents a suitable model capable of demonstrating the contribution of all of
these components.

An overview of the V-shaped structure is shown in Figure 9.1. As may be seen, the two truss
members are joined at one extremity and simply-supported at the others. Displacement loading is
applied at lower-most node inducing deformation in both truss members and therefore two reac-
tion forces: f (1)

e,int1
and f (2)

e,int1
. This chapter considers three kinds of loading:

1. Downward loading (¢Ux = 0,¢Uy < 0): both truss members will be in tension.

2. Upward loading (¢Ux = 0,¢Uy > 0): both truss members will be in compression.

3. Horizontal loading (¢Ux > 0,¢Uy = 0): one truss member will be in tension and the other in
compression.
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Figure 9.1: Case study 2: V-shaped structure of two truss members and loaded at its lower-most node.
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The neuromorphic elements should be robust enough to model all three scenarios with suffi-
cient accuracy relative to a model built with traditional FEA elements. This case study represents
a crucial step in the development process of the NmT2 elements. If deemed successful, then more
complex structures may be considered.

Regarding the analysis preparation, the same method as defined in the previous case study will
be used for the V-shaped structure. A specifically developed program will generate two input files for
the same structure, one using traditional FEA elements and the other using neuromorphic elements.
The model using neuromorphic elements will consist of two NmT2 elements, each modelling a sin-
gle truss member. The model using traditional FEA elements will possess far more depending on
the loading scheme.

9.1. Results

As before, the geometrical parameters of the truss members are randomly sampled within the bound-
aries of the parameter design space. Given the nature of the V-shaped structure, a few additional
constraints have to be addressed:

1. Theoretically the properties of each truss member are potentially subject to change. To en-
sure simplicity and provide a truly incremental approach to assessing the development of the
neuromorphic element, it is assumed that the geometrical properties of each truss member
are identical.

2. The angle between the two truss members is also a variable. If constrained to a constant de-
gree, the choice of the angle would have to investigated as well as its effect (if any) on the
results of the analysis. It could also be considered inhibitive to the development of the neu-
romorphic element since its performance would be assessed under only one angular config-
uration. Therefore, the angle between the truss members will be kept random to expose the
NmT2 elements to alternate angular joints. To permit this, the distance between the supports
will remain constant at a value of 17.5mm, regardless of the parameters of the truss members.

3. The joint between the truss members at the lower-most node is a pinned connection. This
is important to underline when meshing a structure with beam elements. The rotational de-
grees of freedom have to be disabled to compare the results with the NmT2 elements which
do not possess rotational degrees of freedom.

Two of the above constraints could be argued to be conflicting. The first constraint (constant
distance between supports) promotes the incremental development of the neuromorphic element
by forcing both truss members to have the same geometrical configurations. The second constraint
subjects the structure to a randomly defined angle between the truss members, thereby preventing
any concrete analysis of the effect of the angular separation in the joint (if any). The varying angle
is not expected to have any effect on the performance of the NmT2 elements since they are only
concerned about the axial displacement. The first constraint, however, implies vertical symmetry
which facilitates the analysis of the three loading scenarios.

9.1.1. Scenario 1: Downward loading

The first scenario consists of downward loading such that structure is vertically loaded in the neg-
ative y direction (¢Ux = 0,¢Uy < 0), which puts both truss members equally in tension. Figures
9.2a and 9.2b illustrate the undeformed and deformed structure respectively. Before proceeding, it



9.1. Results 117

is important to reiterate the boundaries that were imposed during the training process of the neu-
romorphic engine. The boundary of the axial displacement of the truss member was confined at
±50% of the length of the defective portion of the truss. In other words, ¢ae,axial 2 ±0.025Le . Since
the V-structure is loaded at an angle respective to the axis of each truss member, the maximum
displacement for scenario 1 loading is:

uy,max =°0.025Le sin
µ

1
Le

s

L2
e °

b2

4

∂
where: (b = 17.5mm) (9.1)

For the first loading scenario, meshing the traditional FEA structure with T2D2 is sufficient since
each member will undergo axial tensile deformation. Just as in the first case study, a total of 30 struc-
tural configurations were randomly generated. Each structure was then meshed with standard FEA
elements or simply 2 NmT2 elements. The only aspect of the process that changes relative to the
first case study is the need for an additional post-processing step to compare the results between the
FEA simulations. Since the performance of the neuromorphic element is assessed axially, then out-
putted results from the FEA simulation have to be transposed along its axis. Therefore, the following
post-processing steps have to be incorporated:

1. Given the angular nature of the V-shaped structure, the imposed downward displacement has
to be converted into axial stretching of one of the two truss members. In other words, the data
are extracted at the bottom-most node (where the load is applied), only ¢Ux and ¢Uy are
obtained, which has to be transformed back into ¢ae,axial. This can be achieved by adapting
Equation 9.1.

2. In addition to ¢ae,axial, the nodal reaction force at the boundary, f (1)
e,int1

or f (2)
e,int1

, must be
known. In this case, the axial reaction force corresponds to the magnitude of the reaction
forces extracted (corresponding to RF1 and RF2 in ABAQUS).

For all 30 models, the tensile deformation curves of the nodal reaction force versus the axial dis-
placement are reported and compared to one another. The lowest, highest, and average percentage
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Figure 9.2: V-shaped structure consisting of 2 truss members joined via a pin-connection with downward
vertical loading to induce tensile deformation in both members, meshed with T2D2 elements. Heat map

represents displacement magnitude.
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errors (denoted as ≤min, ≤max and ≤̄ respectively) are also computed for each specimen relative to the
traditional FEA models. Just as before, since these results are extracted from independent FEA anal-
yses, it cannot be assumed that the data quantity will match. Therefore, the errors are extrapolated
between the two closest data points. All the generated geometrical configurations, error analysis,
and differences in computational time are illustrated in Table 9.1.

The first point of focus in the error analysis is always the R2 values which are yet again consid-
erably high: R2 > 0.99 across all models. Although there is a slight decrease as the length of the
specimen increases, it is negligible. Figure 9.3 on the following page shows a selection of 8 models
from the 30 where the high degree of correlation is also visible. The absolute errors have slightly
increased from the first case study, though remain relatively low, averaging around 2.4%. Regarding
the computational time, the values have slightly increased relative to case 1 due to the presence of a
second structural element, though the neuromorphic element’s modelling capabilities still remain
far more efficient than the traditional T2D2 elements.

For the first loading scenario, the degree of correlation between the T2D2 elements and NmT2
is more than satisfactory. Additionally, the NmT2 elements reduce the computational time. They
have no problem modelling the nonlinear regions due to plasticity as may be seen in Figure 9.3, and
the oscillatory behaviour which was present in the first case study near the end of the deformation
regime has vanished. This provides a confident foundation to proceed towards the second loading
scenario.
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Table 9.1: Error and temporal analysis for loading scenario 1 between traditionally meshed models using T2D2 elements
and models using two NmT2 elements.

Le [mm] re [mm] re,D [mm] ≤max [%] ≤min [%] ≤̄ [%] R2 [-] tT2D2 [s] tNmT2 [s]
11.10 1.33 1.20 7.891 0.185 1.715 0.999 48.89 27.08
11.27 1.82 1.66 10.842 0.402 2.754 0.998 50.01 26.17
12.54 1.39 1.27 10.029 0.145 1.901 0.998 51.89 27.01
12.58 0.97 0.84 8.977 0.631 1.238 0.998 48.68 27.97
13.47 0.91 0.69 11.717 0.691 3.519 0.998 47.77 25.79
13.68 1.53 1.47 17.186 0.212 2.203 0.997 48.91 26.17
14.21 1.69 1.36 18.134 0.079 2.958 0.997 42.29 24.99
14.33 1.55 1.43 18.842 0.080 2.352 0.997 48.27 28.45
15.52 0.87 0.66 11.079 0.672 3.020 0.997 52.04 26.19
15.71 0.90 0.82 11.029 0.289 2.193 0.997 49.96 28.44
15.72 1.51 1.50 15.934 0.089 1.939 0.997 48.91 25.01
15.97 1.71 1.44 17.358 0.018 2.321 0.997 49.11 26.35
18.39 1.56 0.46 12.693 0.057 2.021 0.997 48.35 27.48
19.48 1.04 0.94 6.806 0.223 1.782 0.997 47.28 28.81
20.24 1.16 1.00 16.120 0.214 2.515 0.996 50.07 25.66
21.61 1.94 1.56 4.781 0.474 2.002 0.996 49.38 29.09
21.87 1.68 1.68 13.939 0.171 2.086 0.996 48.93 27.71
22.94 1.28 1.20 18.773 0.032 2.972 0.996 47.19 25.49
23.16 1.89 1.87 15.134 0.037 2.091 0.996 46.66 25.55
24.25 1.11 0.85 5.535 1.397 2.798 0.996 49.13 25.19
25.04 1.89 1.52 5.304 0.753 2.231 0.996 50.35 23.07
25.32 1.50 1.26 3.236 0.849 1.888 0.996 50.46 26.96
26.27 2.00 1.43 9.773 0.534 3.203 0.996 51.26 26.56
26.31 1.05 0.92 11.280 0.286 2.807 0.996 49.15 24.23
26.55 1.04 0.99 14.258 0.017 2.956 0.996 47.28 26.70
26.56 1.03 0.89 8.097 0.270 2.101 0.996 49.58 23.68
27.54 1.53 1.36 11.527 0.163 1.927 0.996 47.61 25.05
28.95 1.93 1.57 4.621 0.042 2.182 0.996 48.09 28.86
29.36 0.72 0.62 9.245 0.022 2.467 0.996 47.47 26.01
29.75 1.07 1.05 14.654 0.166 2.981 0.996 49.96 24.42

Average 11.493 0.307 2.371 0.997 48.83 26.34
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(a) {Le ,re ,re,D } = [11.10mm,1.33mm,1.20mm] (b) {Le ,re ,re,D } = [12.54mm,1.39mm,1.27mm]

(c) {Le ,re ,re,D } = [13.47mm,0.91mm,0.69mm] (d) {Le ,re ,re,D } = [13.68mm,1.53mm,1.47mm]

(e) {Le ,re ,re,D } = [15.52mm,0.87mm,0.66mm] (f) {Le ,re ,re,D } = [15.72mm,1.51mm,1.50mm]

(g) {Le ,re ,re,D } = [22.94mm,1.28mm,1.20mm] (h) {Le ,re ,re,D } = [26.56mm,1.03mm,0.80mm]

Figure 9.3: Comparison between a selection of randomly generated FEA models within the prescribed
parameter design space using traditional FEA elements (T2D2), and the same models meshed with two

NmT2 elements (shown in orange) for loading scenario 1 applied to a V-shaped structure (2 truss members).
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9.1.2. Scenario 2: Upward loading

The second scenario consists of upward loading such that both truss members are in compression
(¢Ux = 0,¢Uy > 0). This will lead to both members buckling as may be seen in Figures 9.4a and
9.4b. As in the downward loading scenario, the vertical displacement loading is translated to axial
shortening (¢ae,axial) by adapting Equation 9.1. It is worth reiterating that since compression to the
point of post-buckling is investigated at this stage, the T2D2 elements are swapped for B22 elements
which promote deformation out of the axial plane. Additionally, more FEA elements are required to
ensure mesh and solution convergence; this will not be investigated here to not detract from the
overall goal of this chapter. However, mesh convergence checks were conducted in the same fash-
ion as described in the data-generation phase of the thesis in Chapter 5. Figures 9.4a and 9.4b are
simply illustrative and should not be interpreted as a reference regarding the number of B22 ele-
ments which varies among models.

Once again, the absolute errors, R2 metrics and computational times are summarized in Table
9.2, and the deformation profiles for 8 models selected from the 30 are shown in Figure 9.5. As ex-
pected, the overall errors are slightly larger than in the first scenario, though still remain quite small.
The R2 metric is again always greater than 0.99 indicating a high degree of correlation is maintained
despite the highly nonlinear nature of the post-buckling regime. The NmT2 accurately capture the
nonlinear degradation of the structure’s integrity in the post-buckling regime. The close approxi-
mation of the NmT2 elements relative to the B22 elements is remarkable.

In the case of absolute errors, they are higher, as to be expected from the decrease in R2 met-
ric. The maximum error arises from two sources. The first source is the buckling peak where the
neuromorphic elements tend to slightly overshoot as may be see in Figure 9.5c. The second source
of discrepancies occurs in the post-buckling regime, at second minor peak visible in Figures 9.5b,
9.5c, 9.5e and 9.5g, where the NmT2 either slightly over or underestimates the peak. In any case,
the absolute errors still remain quite low and average just over 3% which is more than acceptable.
Relative to the first case study, the average error is 3 times higher.
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Figure 9.4: V-shaped structure consisting of 2 truss members joined via a pin-connection with upward
loading to induce buckling in both members, meshed with B22 elements. Heat map represents

displacement magnitude.
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From a computational efficiency standpoint, the neuromorphic elements maintain a similar
efficiency as before averaging 22 seconds across all 30 models. This is starting to be substantial
when compared to the B22 elements which require almost 2 full minutes to converge to a solution.
The benefits of data-driven elements are becoming apparent as the complexity of the structure in-
creases, provided that the small deviations are acceptable. The next step is to test a loading scenario
that triggers differential loading in the truss members.

Table 9.2: Error and temporal analysis for loading scenario 2 between traditionally meshed models using B22 elements
and models using two NmT2 elements.

Le [mm] re [mm] re,D [mm] ≤max [%] ≤min [%] ≤̄ [%] R2 [-] tB22 [s] tNmT2 [s]
10.44 1.54 1.49 17.279 0.538 4.000 0.991 102.81 26.14
10.49 1.57 1.38 13.734 0.737 3.404 0.991 111.74 22.81
11.39 1.63 1.15 6.056 0.557 3.122 0.991 115.27 19.26
13.34 1.62 1.52 2.886 0.151 1.460 0.992 106.24 20.08
15.12 1.63 1.62 3.648 0.033 2.027 0.992 100.27 21.35
15.82 1.92 1.72 3.875 0.015 1.196 0.993 104.35 26.68
17.31 0.88 0.84 8.899 0.039 4.251 0.993 106.63 25.98
18.09 0.65 0.53 11.168 0.316 6.238 0.993 103.33 22.84
18.32 1.31 1.23 4.536 0.200 1.218 0.993 101.12 23.49
18.57 0.99 0.49 8.678 0.176 4.962 0.993 117.75 22.37
18.72 1.20 1.15 5.466 0.219 2.585 0.993 119.26 22.39
19.60 1.14 0.90 8.923 0.016 3.261 0.993 113.25 23.04
21.79 1.90 1.69 2.165 0.031 0.987 0.993 106.82 24.25
22.05 0.87 0.74 6.009 0.018 1.933 0.993 109.25 21.73
22.83 1.24 0.89 6.500 0.135 2.729 0.993 101.16 22.03
24.40 1.38 1.31 6.642 0.060 2.329 0.993 104.46 22.84
24.39 0.73 0.50 12.12 0.032 4.676 0.993 111.15 21.96
24.78 0.56 0.50 18.828 0.198 5.558 0.993 121.42 21.97
25.40 1.34 0.84 10.47 0.114 3.550 0.993 116.73 21.02
25.53 1.56 1.44 6.571 0.207 3.829 0.993 113.35 19.78
27.56 1.94 1.84 5.319 0.007 2.715 0.992 108.85 19.99
27.74 0.75 0.60 10.791 0.096 2.213 0.992 107.74 23.01
27.91 1.30 1.42 5.871 0.233 2.508 0.992 114.85 24.45
27.92 1.29 1.12 6.756 0.114 2.343 0.992 105.52 21.28
28.06 1.14 0.74 8.331 0.006 5.010 0.992 101.12 19.35
28.68 0.78 0.63 12.219 0.048 2.895 0.992 119.93 19.72
28.71 1.04 0.96 6.705 0.024 3.784 0.992 118.85 18.97
28.86 1.08 0.80 7.951 0.030 3.246 0.992 117.83 25.81
29.42 0.74 0.73 9.803 1.154 5.907 0.992 114.47 21.26
29.96 1.29 1.19 6.097 1.157 3.542 0.992 108.83 24.01

Average 8.143 0.222 3.249 0.992 110.15 22.33
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(a) {Le ,re ,re,D } = [17.31mm,0.88mm,0.84mm] (b) {Le ,re ,re,D } = [18.09mm,0.65mm,0.53mm]

(c) {Le ,re ,re,D } = [18.57mm,0.99mm,0.49mm] (d) {Le ,re ,re,D } = [21.79mm,1.90mm,1.69mm]

(e) {Le ,re ,re,D } = [22.83mm,1.24mm,0.89mm] (f) {Le ,re ,re,D } = [24.40mm,1.38mm,1.31mm]

(g) {Le ,re ,re,D } = [25.40mm,1.34mm,0.84mm] (h) {Le ,re ,re,D } = [29.96mm,1.29mm,1.19mm]

Figure 9.5: Comparison between a selection of randomly generated FEA models within the prescribed
parameter design space using traditional FEA elements (B22), and the same models meshed with two NmT2

elements (shown in orange) for loading scenario 2 applied to a V-shaped structure (2 truss members).
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9.1.3. Scenario 3: Horizontal loading

The final scenario consists of loading the structure horizontally, to the right (¢Ux > 0,¢Uy = 0). This
will induce differential loading in the truss members: the right member will be under compressive
loading whereas the other will be under tension as may be seen in Figures 9.6. The error analyses
from the previous scenarios should not overshadow the fact that the traditional FEA processes are
being matched by a data-driven element. This final loading scenario will evaluate how it performs
when used in a structure where not all structural members are loaded in the same direction.

Just as in the two previous cases, the error analysis for all 30 randomly generated models is
present in Table 9.3, and the deformation plots for 8 models selected from the 30 are displayed in
Figure 9.7. However, given that one truss member will be in tension and the other in compression,
the graphical illustrations are slightly different. As before, the magnitudes of the reaction forces at
the two boundary nodes are extracted, however instead of using just one, the results form both truss
models are plotted in Figure 9.7. Plots with a marker that has a black filling are extracted from the
boundary node whose structural member is in tension. The reason behind this differentiation is to
verify that both tensile and compressive deformation are occurring simultaneously in the structure.

The first noteworthy aspect of the deformation is that, unlike previous cases, the compression
and tension side are perfectly mirrored. Given that buckling cripples the structural integrity, the
reaction forces at both nodes are expected to be equal and opposite to balance the statically de-
terminant system. When looking at the error analysis in Table 9.3, the variation in R2 metric is
minimal and always greater than 0.98 indicating a very good degree of correlation between the B22
and NmT2 elements. This is slightly less than in the upward loading scenario where all the R2 values
were greater than 0.99. The small drop in modelling capabilities can be attributed to the differential
deformation induced by the horizontal loading. As always, the absolute errors are less indicative
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Figure 9.6: V-shaped structure consisting of 2 truss members joined via a pin-connection with horizontal
loading to induce differential loading in both members, meshed with B22 elements. Heat map represents

displacement magnitude.
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than the R2 metric, though it is noteworthy that the average error, ≤̄ remains less than 10%. Overall,
the discrepancies remain very small. The NmT2 elements manage to accurately model the struc-
tural behaviour including the nonlinear region, which can be qualitatively seen in Figure 9.7.

In addition to the nodal force response curves, there is another interesting phenomenon which
occurs in this horizontal loading scenario that was not present in the first two: the global displace-
ment of the structure. Due to the structural deformation, the bottom-most node will move to the
right in the direction of the applied load, but also upwards: visible in Figure 9.6b. The vertical tran-
sition is not imposed, but induced from the structural deformation of both truss members and is
part of the final displacement field of the FEA analysis. Up until now, the displacement fields of the
previous scenarios have not been investigated since no alternate displacement was induced due to
structural deformation.

Table 9.3: Error and temporal analysis for loading scenario 3 between traditionally meshed models using B22 elements
and models using two NmT2 elements.

Le [mm] re [mm] re,D [mm] ≤max [%] ≤min [%] ≤̄ [%] R2 [-] tB22 [s] tNmT2 [s]
11.83 0.85 0.73 14.219 0.059 3.445 0.988 142.36 23.06
14.83 1.36 1.03 8.662 0.300 3.088 0.982 139.56 22.61
15.12 1.40 1.23 8.945 0.006 2.673 0.986 129.95 24.07
15.42 0.55 0.48 10.528 0.189 6.217 0.986 150.51 25.55
16.23 0.75 0.46 11.521 0.006 4.423 0.986 149.96 20.01
17.13 0.64 0.53 19.959 0.339 7.461 0.986 135.47 19.96
17.54 1.00 0.86 8.018 0.031 1.590 0.986 137.96 27.83
18.51 0.91 0.77 11.234 0.014 1.862 0.986 151.45 20.94
19.35 1.10 0.71 10.487 0.004 2.385 0.987 148.76 22.23
19.43 0.92 0.61 19.034 0.055 6.012 0.986 144.42 24.41
20.59 0.75 0.63 16.842 0.357 8.685 0.985 149.92 26.68
21.28 1.13 0.69 10.807 0.012 2.387 0.985 140.06 24.41
21.54 1.59 1.51 17.602 0.022 1.622 0.989 129.93 20.09
21.98 1.15 0.89 16.476 0.060 2.609 0.989 132.59 27.75
22.56 1.11 1.04 19.682 0.055 2.048 0.989 133.39 28.86
22.79 1.50 1.43 20.215 0.089 1.905 0.989 139.72 26.64
22.98 1.30 1.28 20.101 0.025 1.994 0.989 152.15 22.28
24.91 1.39 1.27 21.049 0.015 2.149 0.989 140.05 23.39
25.15 0.77 0.48 16.770 0.068 5.257 0.989 144.46 20.04
25.22 0.75 0.58 16.031 0.084 4.138 0.989 128.86 26.64
25.86 0.71 0.48 26.762 0.202 4.803 0.989 129.46 19.75
26.19 1.05 1.01 36.151 0.055 3.382 0.989 130.08 26.62
27.44 0.75 0.50 23.015 0.001 3.177 0.989 144.62 23.31
27.52 1.21 0.99 20.353 0.142 3.745 0.989 143.34 26.68
27.61 0.67 0.53 26.852 0.118 4.658 0.989 139.96 24.87
27.94 0.57 0.51 30.532 0.082 6.562 0.989 133.32 23.99
28.12 1.70 1.65 21.452 0.008 2.377 0.989 150.01 24.24
28.13 1.92 1.89 25.046 0.487 3.843 0.990 147.96 23.95
28.62 0.89 0.84 27.680 0.388 4.381 0.989 148.28 27.70
29.28 1.29 1.24 24.091 0.004 2.680 0.989 142.25 24.46

Average 18.671 0.109 3.719 0.988 141.03 24.10
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(a) {Le ,re ,re,D } = [11.83mm,0.85mm,0.73mm] (b) {Le ,re ,re,D } = [15.42mm,0.55mm,0.48mm]

(c) {Le ,re ,re,D } = [18.51mm,0.91mm,0.77mm] (d) {Le ,re ,re,D } = [21.54mm,1.59mm,1.51mm]

(e) {Le ,re ,re,D } = [22.56mm,1.11mm,1.04mm] (f) {Le ,re ,re,D } = [26.19mm,1.05mm,1.01mm]

(g) {Le ,re ,re,D } = [28.13mm,1.92mm,1.89mm] (h) {Le ,re ,re,D } = [28.62mm,0.89mm,0.84mm]

Figure 9.7: Comparison between a selection of randomly generated FEA models within the prescribed
parameter design space using traditional FEA elements (B22), and the same models meshed with two NmT2

elements (shown in orange) for loading scenario 3 applied to a V-shaped structure (2 truss members).



9.1. Results 127

(a) {Le ,re ,re,D } = [11.83mm,0.85mm,0.73mm] (b) {Le ,re ,re,D } = [15.42mm,0.55mm,0.48mm]

(c) {Le ,re ,re,D } = [18.51mm,0.91mm,0.77mm] (d) {Le ,re ,re,D } = [21.54mm,1.59mm,1.51mm]

(e) {Le ,re ,re,D } = [22.56mm,1.11mm,1.04mm] (f) {Le ,re ,re,D } = [26.19mm,1.05mm,1.01mm]

(g) {Le ,re ,re,D } = [28.13mm,1.92mm,1.89mm] (h) {Le ,re ,re,D } = [28.62mm,0.89mm,0.84mm]

Figure 9.8: Displacement profiles between B22 and NmT2 elements of the structures extracted from Figure
9.7 of the bottom-most node in the V-structure showing the correlation between the horizontal and vertical

displacement (Ux and Uy ) due to the applied horizontal load.
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Figure 9.8 shows the displacement profile of the lower node on the V-shaped structure for all the
models plotted in Figure 9.7. These displacement profiles illustrate the induced vertical displace-
ment (¢Uy ) of the loaded node due to the structural deformation that occurs from the imposed hor-
izontal displacement (¢Ux ). Just as with the nodal force response curves, the correlation between
the NmT2 elements and the FEA elements is excellent for all cases. The plateau at the beginning
of the plots represents the linear elastic deformation regime of the structure during which the right
truss member has not buckled yet. When the right truss member finally buckles, the bottom node
starts to move up; i.e: ¢Uy > 0. The NmT2 elements manage to capture the full displacement of the
bottom node in addition to the transition region which is of upmost importance.

9.2. Closure

The purpose of case study 2 was to test the capabilities of the neuromorphic element in an incre-
mental manner and introduce multi-element interaction in an active FEA analysis. It is therefore
important to reiterate some of the significant observations of this second case study:

1. It is indeed possible to build multiple data-driven elements in a live FEA setting.

2. The computational efficiency of neuromorphic elements is consistently higher than that of
traditional FEA elements, especially in the case of nonlinear phenomena such as multi-member
buckling or differential loading.

3. Neuromorphic elements also circumvent the need for an eigenvalue analysis on the structure,
which traditional FEA methods require to model post-buckling.

Overall, case study 2 can be considered positive as it demonstrated that the neuromorphic ele-
ments remained robust against ramping-up the structural complexity, and maintained a far greater
computational efficiency than traditional methods. The key gains in computational efficiency are
summarized in Table 9.4. As shown throughout all three loading scenarios, the gains in computa-
tional efficiency cannot be neglected, and is the biggest strength of the neuromorphic elements.

It should also be noted that computational efficiency is measured in terms of the computing
time required for an FEA model to converge. However, with this second case study, there is an addi-
tional source of computational gain which is provided through the neuromorphic element, which
is the time required to build the FEA model. This was not a problem in the first case study since a
single horizontal truss member is relatively simple to build in ABAQUS. However, throughout case
study 2, it took far longer to build the FEA model with traditional elements, whether it be through
an input file or the GUI. Naturally, this metric is not as concrete as the computing time metric since
it depends on the user’s experience. But it shows that using NmT2 elements benefits from an accel-
erated computing time while also avoiding the build time of the FEA model.

Table 9.4: Computational efficiency measured in terms of computing/processing time of traditional FEA elements
versus two NmT2 elements for case study 2.

Average computing time [s]
Loading case T2D2 or B22 NmT2 Gain in computational efficiency [%]

Scenario 1 48.83 26.34 85.38
Scenario 2 110.15 22.33 393.28
Scenario 3 141.03 24.10 485.19
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Case Study 3: Howrah Structure

The third and final case study is required to ramp-up the complexity of the overall structure to
test more advanced capabilities of the neuromorphic element. The previous two case studies have
shown that the NmT2 element is capable of modelling tensile and compressive deformation with
highly nonlinear phenomena in a live FEA setting, and is not hindered by multi-element interac-
tion. There is an evident gain in computational efficiency, especially for nonlinear deformation
which occurs when a truss member is loaded under compression. The main requirements of the
third case study are such that they should increase the overall complexity to the point where the
structure is no longer verifiable by hand, meaning that it can be considered a validation study. The
arrangement of truss members should also be such that differential loading always occurs, in every
truss member. With these criteria in mind, the Howrah bridge was chosen as a source of inspiration.

Bridges are a wonderful example of multi-truss structures which facilitate day-to-day lives. Per-
haps one of the most impressive is the Howrah bridge located in Kolkata, India. Commissioned in
1943, the Howrah bridge is made of pure steel and spans 700m over the Hooghly river in West Ben-
gal shown in Figure 10.1. The sixth largest multi-truss bridge in the world supports over 100,000
vehicles and 150,000 pedestrians each day, which is 4 times the volume it carried when it opened
in 1946. The structural loads are so significant that the bridge has started to sag over the years to
the point where it is now illegal to slow down slightly or to stop on the bridge to take a picture. The
multi-truss pattern used throughout is not fully repetitive, but changes as it nears the extremities of
the bridge. There is however a distinct repetitive unit in the middle portion of the bridge, which is a

Figure 10.1: The Howrah bridge in Kolkata, spanning over the Hooghly river [97].

129
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triangular unit composed of 13 truss members shown highlighted in red in Figure 10.1. This is the
chosen structural configuration for the third case study.

In Chapter 4, the chosen context for the neuromorphic element was biomimicry for small steel
structures that could be 3D printed as a singular unit. Using a component from a bridge introduces
more complexity, an order of magnitude higher. However, this does not detract from the initial goal
as such a structure could just as easily arise in a small structure organic lattice. The Howrah bridge
is simply an example found in real-life which helps us connect the abstract development of the
NmT2 element to a real-world structure. The final application for the neuromorphic element has
not changed.

An idealized diagram of the structure for the purposes of this case study is shown in Figure 10.2.
It is pinned at node 1 and simply supported at node 5. A downward displacement load is applied
at node 3, which is representative of the loads facing the entire bridge. The remaining nodes and
elements are numbered 1 through 8 and 1 through 13 respectively, and the lengths and radii are
bounded by symmetry (L1 = L3,L2 = L4,L5 = L8, ...). Furthermore, the structure is such that the
outer members possess the same radii; i.e.: r1 = r2 = r3 = r4 and r5 = r6 = r7 = r8. Just as before,
structural defects in terms of defect radii Re,D can be applied to each member. The aforementioned
geometric boundaries are such that the structure can retain some simplicity and avoid large radial
differences between adjacent structural members in line with one another. From here, two scenar-
ios will be investigated:

1. No defect seeding. To ensure the model behaves correctly with the NmT2 elements, it is first
tested with no radial defects (meaning that re,D = re ).

2. Random defect seeding. In reality, structural defects do not occur symmetrically throughout
the structure. They are randomly distributed throughout the structural components. This
will be the most complex configuration to which the NmT2 element will be subjected, and
this configuration concludes the case study series of this thesis.
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Figure 10.2: Overview of the Howrah structure consisting of 13 truss members. The structure is pinned at node 1 and
simply supported at node 5. A downwards displacement load (¢Uy ) is applied at node 3. Throughout this case study,

load-displacement curves are built by plotting the reaction force at node 1, fe,int1 , versus ¢Uy .
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10.1. Results

Given the complexity of the Howrah structure, a detailed analysis will not be conducted on 30 ran-
domly generated models, but rather only 3. Regarding the random selection of the geometry, given
the symmetry boundary, only L1, L2 and L3 are required which will by extension define the lengths
of all the other truss members. A check is performed on all the lengths of a randomly generated
model such that they all lie within the prescribed parameter design space on which the NmT2 ele-
ment was trained. Concerning the radii, they are randomly sampled within their respective domain
taking into account the applied radial constraints. Once the model is constructed, it is loaded down-
ward at node 3 through Uy . As explained previously, it is first important to make sure the FEA model
and NmT2 element behave properly, which is why the defect is left out for the first scenario, thereby
reducing the complexity of the structure.

Figure 10.3: Example of a meshed Howrah structure in ABAQUS using B22 elements. Node labels were left out for clarity.

The Howrah structure is configured in such a way that differential loading is inevitable and
will greatly be influenced by the geometrical parameters. The entire FEA structure is consequently
meshed with B22 elements. With 13 truss members, the complexity of the FEA input file while in-
cluding the possibility for material defects is extensive as shown in Figure 10.3 displaying an exam-
ple of a meshed Howrah structure in ABAQUS. In contrast, the model meshed with only 13 NmT2
elements is quick to build. With regard to the analysis, the downward loading will induce a reaction
force at the boundary in node 1. Note that unlike the previous cases, the displacement due to load-
ing is not translated to ¢ae,axial for the truss member at the boundary due to the multi-truss nature
of the Howrah structure. Additionally, final displacement profiles are compared. This was intro-
duced in scenario three of the previous case study. The downward loading on the Howrah structure
will induce horizontal and vertical displacements in all nodes. However, only 8 of them can be com-
pared between the NmT2 and B22 elements since the neuromorphic FEA model only requires 13
elements whereas the standard model requires well over 100.

10.1.1. Scenario 1: No defect seeding

In the first scenario, the Howrah structure is evaluated with no defect seeding (Figure 10.4). In terms
of error analysis, the same error metrics which were presented before will remain in this section, and
the displacement error ≤̄disp will be computed relative to the standard FEA model and averaged over
all 8 nodes. In addition to the usual error metrics, it is also indicated which truss member buckles
first thereby causing a drop in overall structural integrity. The computing time between the model
meshed with B22 elements and the model meshed with NmT2 elements is also compared. The error
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Figure 10.4: Example of a rendered Howrah structured in ABAQUS with no defect seeding.

analysis for all 3 randomly generated models may be found in Table 10.1.

Although 3 randomly generated models is relatively few compared to the previous two case stud-
ies, it is still enough to display some variation in the failure scheme. For instance, the first member
to buckle in model 1 is the member 2 which is a horizontal component when referring back to Fig-
ure 10.2. In contrast, in model 2, the first member to buckle is member 11. This confirms that the
geometrical selection does influence the point where structural integrity is first lost. However, when
referring to the load profiles in Figure 10.2, there is no sharp decrease into the post buckling regime
which was seen in the previous two case studies. This is thanks to the integrity of the Howrah struc-
ture. In the three generated models, as soon as one truss member begins to buckle, it is supported
by the remainder of the structure. Although there is a decrease in the structural integrity, there is no
sharp decrease. In addition, the imposed displacements are relatively small. If the structure were
pushed further, then the sharp decrease in structural integrity would occur. This, however, would
be outside the modelling domain of the NmT2 element.

With respect to the error analysis, the overall performance of the NmT2 elements versus tradi-
tional B22 elements is exceptional. All R2 values are greater than 0.97 indicating a high degree of cor-
relation shown in Figures 10.5 through 10.7. The final displacement profiles are also well matched
with average error deviations no greater than 0.1mm, all while decreasing the computing time by
nearly an order of magnitude. However it is important to reiterate that no defects are included at
this point; they will be introduced shortly. It is important to note that the displacement profiles do
not capture the full deformation of the structure. Theoretically, the displacements of all the nodes in
the mesh shown in Figure 10.3 can be extracted, which would illustrate which truss members buckle
and how much deformation out of the axial plane is occurring. However, the NmT2 elements only
possess nodes at the ends of each truss member and are unable to show the displacement of the
axial plane for the entirety of the truss member. Therefore, only the displacements from the nodes
at the ends of the truss members are compared between the NmT2 and B22 elements.

Table 10.1: Error and temporal analysis across three models with no defect seeding.

Model ≤max [%] ≤min [%] ≤̄ [%] R2 [-] ≤̄disp [mm] tB22 [s] tNmT2 [s] First buckle
1 21.827 0.054 3.654 0.974 0.074 385.68 31.75 Member 2
2 6.183 0.028 3.906 0.978 0.016 378.12 30.11 Member 11
3 8.014 0.808 2.414 0.993 0.053 390.94 29.83 Member 1

Average 12.008 0.297 3.325 0.982 0.047 384.91 30.56
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(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.5: Comparison of converged results from model 1 between traditional FEA elements (B22) and NmT2 elements
due to a downward displacement Uy at node 3. Geometrical parameters: {L1,L2,L3} = [12.85mm,13.60mm,29.71mm]

and {r1,r8,r9,r10,r11} = [0.59mm,1.01mm,1.44mm,0.86mm,1.07mm]. No defect seeding.

(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.6: Comparison of converged results from model 2 between traditional FEA elements (B22) and NmT2 elements
due to a downward displacement Uy at node 3. Geometrical parameters: {L1,L2,L3} = [18.69mm,18.41mm,27.89mm]

and {r1,r8,r9,r10,r11} = [1.28mm,1.47mm,1.50mm,0.98mm,1.24mm]. No defect seeding.

(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.7: Comparison of converged results from model 3 between traditional FEA elements (B22) and NmT2 elements
due to a downward displacement Uy at node 3. Geometrical parameters: {L1,L2,L3} = [23.26mm,19.95mm,28.37mm]

and {r1,r8,r9,r10,r11} = [1.33mm,1.59mm,1.42mm,1.75mm,1.77mm]. No defect seeding.
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10.1.2. Scenario 2: Including defect seeding

For the second scenario, random defect seeding is included to represent material defects. To draw
yet again from a real-world example, the Howrah bridge has experienced considerable structural
corrosion over the years caused by bird feces. This coupled with the constant high loads, are mainly
responsible for the sagging of the bridge in some regions.

Embedding random defects in a conventional FEA model is no simple task. Partitions have to
be defined and specified sections of reduced radius also have to be included. The process has not
changed throughout any of the case studies. The only difference for the Howrah structure is that
the defects have to be included in 13 structural elements. Building this model takes a considerable
amount of time, and programming it through an automated input file process is no faster. The fact
that the NmT2 elements have defect-modelling capabilities built into them is a major time-saving
feature.

Figures 10.8 and 10.9 show an example of the final structural geometry while including material
defects. As may be seen, the radial defects are randomly distributed throughout the structure and
will greatly influence the point at which buckling of a truss member occurs. In this particular case,
the presence of defects had the most effect on truss member 5 since it buckles first in Figure 10.9.

Figure 10.8: Example of a rendered Howrah structured in ABAQUS with defect seeding.

Figure 10.9: Example of a loaded Howrah structured in ABAQUS with defect seeding, which buckles in truss member 5
due to structural defects.
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Just as before, 3 models were randomly generated, and the error analysis is shown in Table 10.2.
Their corresponding load-displacement curves and global displacement profiles are shown in Fig-
ures 10.10 through 10.12. The overall errors have slightly increased as expected due to the increased
difficulty of modelling structural deformation with defects, though remain closely correlated with
the B22 elements. The presence of radial defects throughout the Howrah structure does compro-
mise its structural integrity, which can be seen through the load-displacement curves. They show
a higher degree of curvature indicating that certain structural members are starting to buckle. The
most notable observation, however, concerns Figure 10.11.

Figure 10.11 corresponds to the Howrah structure shown in Figure 10.9. Here we notice a transi-
tion to the post-buckling regime that is more violent than the other cases, and similar to those seen
in the past two case studies. In this particular case, the first member to buckle is truss member 5 due
to the structural defect. There is no support from other truss members or from the boundary con-
dition at node 5 (which is simply supported), to support the structural member as it buckles. The
buckling of this truss member completely cripples the structural integrity, manifested by the sharp
load drop in Figure 10.11. Despite this, the NmT2 elements manage to model the entire buckling ef-
fect and how it propagates throughout the structure, as well as match the final global displacements.

Over these three models, the NmT2 elements manage to maintain a high degree of correlation
with the traditional B22 elements with an average R2 = 0.956. The average absolute error, ≤̄ is also
maintained below 10%. The most exciting aspect is without a doubt the computing time. While
maintaining a high degree of accuracy, the neuromorphic elements average roughly 30 seconds per
model whereas the models meshed with B22 elements take more than seven minutes to converge.

Table 10.2: Error and temporal analysis across three models with random defect seeding.

Model ≤max [%] ≤min [%] ≤̄ [%] R2 [-] ≤̄disp [mm] tB22 [s] tNmT2 [s] First buckle
1 14.929 0.301 5.624 0.967 0.037 415.27 30.95 Member 11
2 27.748 0.639 7.151 0.982 0.058 495.11 31.23 Member 5
3 30.088 0.421 7.857 0.919 0.035 403.04 33.07 Member 7

Average 24.255 0.453 6.883 0.956 0.043 437.81 31.75
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(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.10: Comparison of converged results from model 1 between traditional FEA elements (B22) and NmT2
elements due to a downward displacement Uy at node 3. Geometrical parameters:

{L1,L2,L3} = [21.41mm,17.86mm,24.85mm] and {r1,r8,r9,r10,r11} = [0.92mm,1.42mm,1.39mm,0.57mm,1.08mm].
Random defect seeding.

(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.11: Comparison of converged results from model 2 between traditional FEA elements (B22) and NmT2
elements due to a downward displacement Uy at node 3. Geometrical parameters:

{L1,L2,L3} = [24.64mm,20.02mm,27.07mm] and {r1,r8,r9,r10,r11} = [1.98mm,1.87mm,0.99mm,1.77mm,0.81mm].
Random defect seeding.

(a) Nodal reaction force at node 1. (b) Displacement profiles.

Figure 10.12: Comparison of converged results from model 3 between traditional FEA elements (B22) and NmT2
elements due to a downward displacement Uy at node 3. Geometrical parameters:

{L1,L2,L3} = [25.82mm,19.96mm,26.36mm] and {r1,r8,r9,r10,r11} = [1.46mm,1.66mm,1.78mm,0.80mm,1.72mm].
Random defect seeding.
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10.2. Closure

The Howrah bridge proved to be an interesting inspiration for a multi-truss structure. The goal of
this final case study was to push the capabilities of the neuromorphic element even further and put
them in a scenario where differential loading was inevitable. Additionally, the structural complexity
had to be high enough such that it is not possible to validate it by hand, which is immediately the
case when considering the random radial defect seeding and buckling scenario. The most impor-
tant observations throughout this final study are:

1. The NmT2 elements remain robust even when deployed on more complex multi-truss struc-
tures; and are able to accurately capture the nodal reaction forces regardless of the degree of
nonlinearity of the deformation.

2. In addition to the nodal forces, the NmT2 elements also accurately capture the displacement
profile of the structure.

3. The gain in the time required to build the FEA model with NmT2 elements is substantial when
compared to the time it takes to construct a traditional model with B22 elements.

4. The NmT2 elements managed to reduce the overall computing time by more than 1,000%.

From a model development standpoint, the NmT2 elements are far easier to work with since an
entire structural member can be directly replaced by a singular NmT2 element. This is not the case
when dealing with traditional B22 elements where each structural member has to be partitioned
and meshed to correctly introduce the radial defect, all while ensuring solution convergence. This
can easily lead to FEA models with more than 150 B22 elements. Given that NmT2 elements already
have defect modelling capabilities built-into them, they are far easier to work with. Case 2 similarly
showed the ease of using the NmT2 elements compared to the traditional FEA elements. Although
there, the effort to build the FEA model was much less than that required for Case 3, due to Case
3’s greater number of structural members. Throughout all three case studies, the amount of time
spent building the FEA models was not discussed since it depends on the user’s experience. The
time required to build the FEA model will be reconsidered in the final discussion.

For loading scenario 1, which omitted radial defect seeding, the results from the NmT2 elements
were in perfect coherence with those using B22 elements, both in terms of boundary reaction force
and the displacement profiles, and at a fraction of the computational effort. This was the same out-
come for the scenario 2 with random defect seeding. In one model of scenario 2, a truss member
on the edge of the structure was the first to buckle and did so abruptly, quickly reducing the overall
structural integrity. The neuromorphic elements were capable of accurately modelling the struc-
tural behaviour, despite the nonlinearity of the deformation regime or the presence of defects. In
addition, the NmT2 elements were substantially more efficient in terms of computing time, which
is summarized in Table 10.3. In both scenarios, the NmT2 reduced the computing time by over
1,000%. This affirms the potential of data-driven elements in multi-truss structures and concludes
the case study series of this thesis.

Table 10.3: Computational efficiency of traditional FEA elements versus 13 NmT2 elements for case study 3.

Average computing time [s]
Defect seeding B22 NmT2 Gain in computational efficiency [%]

No defects 384.91 30.56 1,159.59
Random 437.81 31.75 1,278.93
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��
Discussion

The purpose of this thesis is to investigate whether it is possible to embed a trained neural network
into an active FEA simulation to reduce its computational expense without compromising solution
accuracy. Computational expense is referred to as the amount of time required for an FEA model to
converge to a solution. Fast computing hardware or cloud-based resources can boost CPU perfor-
mance in a brute-force manner. However, these can quickly become very expensive, and they are
not always readily available, especially when conducting offline FEA simulations from a personal
computer for example. Therefore, alternate methods which improve computational efficiency while
bypassing the need for elaborate computing systems are highly desirable.

The neuromorphic element (designated as NmT2) was developed as a custom finite element
that can be easily imported within ABAQUS and used to model planar multi-truss structures. At the
core of the subroutine, the NmT2 element has a trained neural network (called the neuromorphic
engine), which computes the internal nodal forces at the element’s extremities based on the nodal
displacements and the truss member’s geometry. This circumvents the traditional FEA method of
computing the internal nodal force vector by using a data-driven framework. The neuromorphic
engine itself was trained on over half a million datasets and accounted for factors such as material
plasticity, a post-buckling regime, and the presence of simulated structural defects at the centre of
the truss member. The approach accommodated the deformation regimes of beam elements (such
as deformation out of the axial plane), as well as the constraints of truss elements (only axial load-
ing/deformation is permitted).

The final discussion of this thesis is divided into two parts: the first part concerns the devel-
opment of the neural network, and the second part focuses on the practical applications of the
data-driven, NmT2 finite element.

11.1. The neuromorphic engine: Bypassing the trial-and-error approach

The creation of the neuromorphic engine was prompted by the desire to reduce the scope for hu-
man error during the development phase. A neural network’s settings (or hyperparameters), cou-
pled with the application and data at hand, define its modelling capabilities. Given there are no
explicit boundaries on any of the hyperparameters, this creates a theoretically infinite number of
neural network configurations. A trial-and-error approach is typically adopted to define the best
combination of hyperparameters, however this means that only a very small number of neural ar-
chitectures can be tested, and does not guarantee that the final choice is the best possible network.

139
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It also ironically defeats the purpose of creating an intelligent computing framework by adopting an
unintelligent approach. Unless the application at hand can be related to an example in literature,
then a trial-and-error approach should not be used when building a neural network.

The neuromorphic engine does not use trial and error to build a network. It chooses its own
setting without any human interference. The multi-objective optimization algorithm that is devel-
oped randomly samples the hyperparameter space, and tests the network on a randomly sampled
portion of the overall dataset using Latin Hypercube sampling. The network is then trained for 100
epochs or less if the network’s performance saturated. Once completed, the performance metrics
are stored and another network is developed and tested. Once the algorithm reaches a state of di-
minishing returns indicated by 5 consecutive models showing no performance improvement, the
optimization scheme is halted and the best configuration in the tested selection is saved and de-
ployed on the entire data repository. In total, 5,824 network configurations are tested out of the
400,000 permutations in the hyperparameter design space, meaning that less than 1.5% were tested
before determining that the algorithm had already selected an adequate configuration.

Table 11.1 summarizes the global hyperparameters of the selected network. Overall, the net-
work architecture is relatively simple compared to the problem at hand. For such a complicated
regression problem, a deeper neural network might have been expected. This shows that the multi-
objective optimization approach does work and managed to produce an efficient network with a
high-fidelity modelling capability manifested by the 0.999 R2 metric. The total computational time
required to determine a suitable architecture once the algorithm was initiated was roughly 42 hours.
This is substantially less than the expected time it would have taken to find a suitable configuration
using the trial-and-error approach.

Table 11.1: Final global hyperparameters of the neuromorphic engine.

Final network shape Brick configuration
Number of hidden layers 5
Number of nodes per layer 100
Activation function in hidden layers Rectified linear unit (ReLU)
Activation function in output layer Hyperbolic tangent (Tanh)
Attainable R2 metric in 500 epochs 0.9999

Once the final neural network was built, it was trained on the full data repository of over half
a million datasets and managed to model the full deformation field of a truss member, which in-
cluded material plasticity, post-buckling, and the presence of manufacturing defects in the struc-
ture. The success of the neuromorphic engine’s modelling capabilities can be largely attributed to
the data normalization process which segregated tensile and compressive displacement by flipping
the normalization domain. This allowed the network to distinguish between axial tension and com-
pression, and learn the deformation domain accordingly. Once finalized, the neuromorphic engine
was built into the user-element subroutine and the NmT2 element could be deployed in an FEA
setting.

11.2. Assessing the practical application of the NmT2 element

To assess the practical application of the NmT2 element, three case studies were defined and were
constructed to incrementally test the capabilities of the neuromorphic element. The first case study
represented a single horizontal truss member that was axially loaded with simply-supported bound-
ary conditions (shown in Figure 11.1). This corresponded exactly to the type of model that was built
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during the data generation phase used to train the neuromorphic engine. The purpose of the first
case study was to provide a first-order verification of the neuromorphic element. During the de-
velopment of the neuromorphic engine, the network was able to model the data with correlation
of R2 = 0.999 across the board. The only difference between the first case study and the models
that the neuromorphic engine was trained on, is that the geometry of the truss member in case
study one is randomly selected, and therefore not present in the data repository. Some very small
discrepancies were observable, but the NmT2 remained robust and accurately modelled the entire
deformation domain of 30 randomly generated truss members when compared to models meshed
with traditional FEA elements (T2D2 in the case of tension and B22 in the case of compression). In
addition to the maintained accuracy, the neuromorphic element already showed improvements in
computational efficiency: it required on average 23 seconds for a simulation to reach completion.
In contrast, the models meshed with traditional FEA elements required 40 seconds on average in the
case of tension and 85 seconds in the case of compression. It is also worth noting that the time re-
quired to build the model was much faster with the NmT2 element. This is because the entire truss
member could be meshed with a single NmT2 element. The traditional FEA models, on the other
hand, required far more time due to the possible presence of a radial defect and the need to ensure
solution convergence (which was very important in the case of post-buckling). The performance
gains both in terms of modelling speed and reduction in computational time without compromis-
ing solution accuracy confirmed the potential of the NmT2 element and prompted the development
of a second case study.
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Figure 11.1: Case study 1: simply-supported beam with displacement loading (in this case, the structure is loaded in
tension).

The second case study aimed to build on the first in an incremental fashion by introducing
multi-element interaction. This lead to a structure consisting of two truss members, joined at
the bottom forming a V-shape (shown in Figure 11.2). The joint between the two truss members
was a pinned connection since the neuromorphic elements were not trained to model nodal ro-
tations. Structural defects could again be included in both truss members. To ensure an incre-
mental testing scheme relative to the first case study, it was assumed that both truss member pos-
sess the same geometrical parameters: the overall structure was therefore symmetric. From here,
three loading scenarios were devised. The first scenario loaded the structure downward at the bot-
tom node inducing tensile deformation in both members (¢Ux = 0,¢Uy < 0). The second scenario
loaded the structure in the opposite direction (upward), such that both members would simulta-
neously buckle (¢Ux = 0,¢Uy > 0). It should be noted that having both members buckle at the
exact same time is unrealistic, even if they both have the exact same geometry. In reality, one truss
member would buckle before the other due to minor structural defects. The third and final sce-
nario loaded the structure towards the right inducing differential deformation in both truss mem-
bers (¢Ux > 0,¢Uy = 0). The left truss member would be in tension, whereas the right truss mem-
ber would be in compression and would eventually buckle. A total of 30 configurations were ran-
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Figure 11.2: Case study 2: V-shaped structure of two truss members and loaded at its lower-most node.

domly generated for each loading scenario and the NmT2 elements showed an excellent coherence
throughout all of them when compared to the models meshed with traditional FEA elements. This
showed that the NmT2 elements were capable of multi-element interaction within an active FEA
simulation, and maintained a low computational cost. The computational cost started to increase
for the models meshed with traditional FEA elements. In addition, the difference in build time be-
tween the models meshed with neuromorphic elements and those meshed T2D2 or B22 elements
was considerable. Because the NmT2 elements allow the user to directly replace an entire truss
member with a single element, building the model can be done very quickly. The success of the sec-
ond case study motivated the development of a third and final case study of even greater complexity.

The third case study was aimed to test the NmT2 element in a more complex multi-truss struc-
ture. The Howrah structure is a repeated unit from the Howrah bridge in Kolkata, India, and consists
of 13 truss members in a triangular arrangement (shown in Figure 11.3). The structure is simply
supported at its extremities and loaded downwards at the middle intersection point. The models
were designed such that the radii and lengths of each truss-member were randomly generated, but
constrained such that the structure would remain symmetric. The defects were then introduced.
Two scenarios were considered: one with no structural defects and another with randomly seeded
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Figure 11.3: Case study 3: Howrah structure consisting of 13 truss members. The structure is pinned at node 1 and
simply supported at node 5. A downwards displacement load (¢Uy ) is applied at node 3.
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defects. This is intuitively a very complex structure since, regardless of the geometry of the truss
members, some will be in tension and others in compression. Differential deformation is therefore
unavoidable. Given that the geometries are randomly assigned, it is impossible to predict which
truss members will buckle first. Case study three thus presents an opportune environment to more
comprehensively test the capabilities of the NmT2 elements. Only three models were designed for
each configuration since the modelling and computing times are substantially higher when using
traditional FEA elements. The neuromorphic elements remained robust and modelled the load-
displacement curves as well as the global displacement profiles of the Howrah structure with the
same accuracy as in the previous two case studies. The increase in computational efficiency from
the NmT2 elements is over an order of magnitude (> 1,000%) relative to the models meshed with
traditional FEA elements.

Table 11.2: Overview of key metrics between all three case studies. Absolute errors and R2 metrics refer to the amount of
deviation between FEA models meshed with NmT2 elements relative to FEA models meshed with traditional elements
(T2D2/B22). The gain in efficiency and loss in accuracy relative to FEA models meshed with traditional elements (rows

in red) are averaged over all scenarios for a given case study.

Entity
Case study 1

Single member
Case study 2
V-structure

Case study 3
Howrah structure

Number of truss
members

1 2 13

Number of NmT2
elements

1 2 13

Number of FEA
elements (T2B2 or B22)

= 3 T2D2 (Tension)
º 10 B22 (Compression)

= 6 T2D2 (Scenario 1)
º 20 B22 (Scenario 2)
º 20 B22 (Scenario 3)

º 175 B22 (No defects)
º 175 B22 (Defects)

Modelling time
NmT2 elements

< 5 min < 10 min < 20 min

Modelling time FEA
elements (T2D2/B22)

º 20 min º 45 min º 90 min

NmT2 increase in
modelling efficiency

º 300 % º 350 % º 350 %

Computing time
NmT2 elements

º 0.4 min (Tension)
º 0.4 min (Compression)

º 0.4 min (Scenario 1)
º 0.4 min (Scenario 2)
º 0.4 min (Scenario 3)

º 0.5 min (No defects)
º 0.5 min (Defects)

Computing time FEA
elements (T2D2/B22)

º 0.7 min (Tension)
º 1.4 min (Compression)

º 0.8 min (Scenario 1)
º 1.8 min (Scenario 2)
º 2.4 min (Scenario 3)

º 6.4 min (No defects)
º 7.3 min (Defects)

NmT2 increase in
computing efficiency

º 160 % º 320 % º 1,300 %

Average absolute error
relative to FEA model

º 1.09 % (Tension)
º 6.05 % (Compression)

º 2.37 % (Scenario 1)
º 3.25% (Scenario 2)
º 3.72% (Scenario 3)

º 3.33 % (No defects)
º 6.88 % (Defects)

Average attainable R2

relative to FEA model
º 0.99 (Tension)
º 0.95 (Compression)

º 0.99 (Scenario 1)
º 0.99 (Scenario 2)
º 0.99 (Scenario 3)

º 0.98 (No defects)
º 0.96 (Defects)

Loss in accuracy º 4 % º 3 % º 5 %
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The results from all three case studies confirm that the developed neuromorphic element is able
to accurately model planar multi-truss structure while reducing the computing and modelling time,
thereby improving the overall computational efficiency. Incorporating material plasticity, post-
buckling deformation, and structural defects were no problem at all for the neuromorphic element.
The average results for all three case studies are summarized in Table 11.2.

A final point of reflection concerns the chosen application which was designated as multi-truss
structures resulting from biomimicry optimizers which could then be 3D-printed. For all three case
studies, the nodes at the extremities of the truss members were pinned or simply supported, thereby
allowing rotational degrees of freedom. This is self-explanatory for the first case study since only a
single truss member was considered. For the second and third case studies, caution had to be ex-
ercised when meshing the structure with beam (B22) elements. Beam elements possess rotational
degrees of freedom. This allows them to bend or and deform out of the axial plane, which makes
them suited for post-buckling analyses. If the entire structure were to be designed and meshed as
a whole within ABAQUS, then the joints between truss members would no longer be pinned. The
joined truss members would share their rotational degrees of freedom with one another, which does
not correspond to a pinned joint for which the NmT2 element was trained. Therefore, when mesh-
ing a multi-truss structure with B22 elements, the rotational degrees of freedom at the joints had to
be disabled such that the joints correspond to pinned connections.

A multi-truss structure with pinned connections does not correspond to a 3D-printed structure
at this stage of development. 3D-printed structures are produced as a single product, therefore, the
multitude of truss members within the product are not joined with pinned connections, but are
instead fused together. With this in mind, the neuromorphic element is not well suited for such
3D-printed structures. In order to adapt it for 3D-printed organic structure, the user would have to
incorporate the shared rotational degrees of freedom at the joints between truss members. This
will be discussed in the following chapter. For now, the NmT2 element is only suited to model
multi-truss structures with pinned connections between truss members. Rather than seeing this as
a limitation in that the NmT2 does not accurately represent the deformation of 3D-printed organic
structures, it should be considered an opportunity opening up new applications such as modelling
human bone joints.

11.3. Final summary: Addressing the initial research questions

At the beginning of the thesis, a series of research questions were formulated to help guide the over-
all project and break down the guiding research objective. Now is the time to address these ques-
tions.

RQ1. Is it possible to develop an intelligent framework for neural network design such that the
user does not need to manually select and test all parameters to create a high-fidelity model?

Yes it is possible. The multi-objective algorithm created to develop the neuromorphic engine es-
sentially removes the human element from the development phase of a neural network. As a result,
the intelligent framework decides on the best set of hyperparameters and builds the final network
entirely on its own. This is achieved by building a series of neural networks and testing them on a
randomly sampled portion of the overall data. The algorithm does not test every network configura-
tion, since this would be just as inefficient if not moreso as the traditional trial-and-error approach.
Instead, only a series of networks are tested within the hyperparameter design space. Once the al-
gorithm reaches a state of diminishing returns in terms of observed network performance, it then
terminates assuming that a satisfactory configuration has been found. This results in less than 20%
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of the total configurations being tested, providing the end user with an efficient and high-fidelity
neural network.

RQ2. Is it feasible to embed a trained neural network into an active finite element analysis?
Furthermore, can the neural network-based elements work together without disrupting the rest
of the FEA environment?

Absolutely. The neuromorphic engine was embedded in the user-subroutine of a custom fi-
nite element to compute the internal nodal force vector as a function of the nodal displacements
and truss member’s geometry. When deployed in ABAQUS, it was shown that an entire multi-truss
structure could be meshed with multiple neuromorphic elements, and the active FEA simulation
proceeded as per usual, undisrupted.

RQ3. Can a neural network-based finite element accurately capture highly nonlinear
phenomena such as plasticity and post-buckling that would otherwise require complex FEA
models?

Yes it can, provided that sufficient training data are available to capture the nonlinear phenom-
ena. A single NmT2 element is capable for capturing the post-buckling deformation domain and
includes material plasticity. Additionally, the capabilities were pushed even further by allowing the
user to include structural defects in the truss member. This introduces a significant amount of non-
linear phenomena, which the NmT2 element was able to accurately capture. Specifically, nonlin-
ear phenomena such as plasticity and post-buckling regimes were addressed through training the
NmT2 element to distinguish between tension and compression. The most attractive part is that
the neuromorphic element is designed to replace a single truss member in a multi-truss structure.
If post-buckling deformation were to be captured using traditional FEA elements, then multiple
beam elements (B22 for example) would have to be used for a single truss member, resulting in
more complex mesh discretization schemes. Also, including a structural defect is not trivial in an
FEA model. The neuromorphic element circumvents this complexity entirely, providing a simple
element that can easily be "plugged in". Additionally, the data-driven element does not require
expensive computing equipment and can be used in an offline setting: even from a personal laptop.

RQ4. If the previous question is answered positively, does the change in computational expense
justify the development of complex neural network-based systems for FEA modelling?

This is an interesting question since the development cost of the neuromorphic element has
not been discussed up until now. Building a data-driven element is not a trivial endeavour and the
time required to develop it is substantial. Table 11.3 summarizes the various phases in the develop-
ment of a data-driven element and shows my estimate of their respective cost in terms of number
of weeks, assuming that no learning curve is required (which was not the case for this thesis). This
means that the engineer developing the new tool is accustomed to machine learning programming,
clearly understands the intricacies of FEA user-subroutines and where the neural network can be
embedded within the user-subroutine. It also assumed that the user is well-versed in FORTRAN.
The result is roughly an eight week (or two month) development cost in terms of required time:
building the data repository and the neuromorphic engine are the most expensive tasks. Once de-
ployed, however, the NmT2 element accelerates computational efficiency both in terms of the com-
puting time for an FEA simulation, and the time required to build the FEA model (shown in Table
11.2). Building an FEA model with NmT2 elements is very fast and usually takes less than 20 min-
utes, regardless of the complexity of the multi-truss model. Using traditional elements, this takes
far longer when building the model through the GUI and even longer if only an input file is built.
Although this depends on the user’s proficiency with the software, it would be wise to budget at least
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Table 11.3: Estimated development cost of the NmT2 element assuming no learning curve is required.

Task Estimated time required [weeks]
Defining the parameter design space 1
Building the data repository 3
Developing the neuromorphic engine 2
Interfacing the neural network in a user-element subroutine 1
Testing & verifying the NmT2 element 1
Total 8

90 minutes for developing the FEA model. Once the model is submitted for analysis, the neuromor-
phic elements always converge to a solution in less than 40 seconds, whereas the computing time of
the model using traditional FEA elements can quickly become very long: up to 10 minutes for com-
plex planar multi-truss structures. Although the computational efficiency and thus time spent will
depend on the hardware of the user’s computer and its interactions with cloud-based input/output,
the neural network is expected to retain a relative advantage over traditional FEA methods.

If a data-driven approach is not adopted, then the initial development time could be spent
building and running a traditional FEA model. Eight weeks is sufficient to build and run such a
model for the desired application, and even iterate it a few times. Despite the computational gains
of the neuromorphic element when deployed, the development cost is substantial and could be
argued to offset any computing gains when deployed. However, the true strength of the neuromor-
phic element lies in its flexibility, which cannot be matched by any traditional FEA elements. What
this means is the NmT2 element is built to adapt to a wide range of geometrical configurations,
and allows manufacturing defects to be included. It also allows for very simple mesh discretization
schemes. When combining these aspects of the NmT2 element with the accelerated computing
time, it is a powerful tool in any engineering optimization problem, especially when working in
teams where the structural conditions or boundaries of design projects might change very quickly.
In such cases, the models can be easily adapted and a new set of results can be obtained on the spot.
This cannot be achieved with traditional FEA elements.

Therefore, because of the flexibility provided by data-driven elements and gains in computa-
tional efficiency, their additional cost in development time should not discourage their develop-
ment. They should be seen as an extra tool an engineering group can use to tackle complex prob-
lems, as opposed to a replacement for traditional FEA methods. The above research questions were
established to guide the driving research objective which is reiterated below:

The objective within the time-span of the thesis is to reduce the computational expense of a finite
element analysis – without compromising its accuracy – by embedding neural networks trained on

an element level into an active mesh.

The research has shown that the computational expense of a finite element analysis can be re-
duced using a neural network embedded at the element level. A new type of element with an em-
bedded neural network was built: the neuromorphic element. This new element reduces the com-
puting time and modelling time of multi-truss FEA problems while also reducing potential human
error. Moreover, the introduction of a neuromorphic element provides reliability comparable to
traditional FEA models, using standard statistical tests. These results affirm the potential of neu-
ral networks within active FEA simulations in the field of data-driven computational mechanics as
a means to define complex nonlinear element formulations. The subsequent chapter focuses on
potential future work that builds on the contents of this thesis.
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Future Research

The current work showed that neural networks could be embedded into an active FEA simulation
at the element level. The data-driven element managed to reduce computing time when analyzing
multi-truss structures without any significant deviations in the final results, thereby providing the
confidence and foundation to pursue the development of neuromorphic elements. This chapter
contains a selection of potential future work which builds on the contents of this thesis. The work is
divided into two categories: that pertinent to the development of the neuromorphic engine and by
extension, neural networks in general; and that related to the usage of data-driven finite elements.

12.1. Neural network development

1. Reduce amount of required training data: With over a half a million datasets, the amount of
data generated to train the neuromorphic engine was significant and time consuming. The
data-generation phase in a machine learning project should never be underestimated, and it
is where the most amount of time can be gained (or lost). Investigating the minimum amount
of data required to train a neural network for finite element applications would be very use-
ful for future work since it would reduce the number of FEA simulations required to build
the data-repository. It would also help guide data gathering efforts where real-life conditions
could provide additional information.

2. Simplify network optimization: The one aspect which the multi-objective optimization al-
gorithm fails to consider in the development of the neuromorphic engine is the importance
of training time (number of epochs) versus the hyperparameter selection. Chapter 2 men-
tions that a neural network with two hidden layers, each containing less than 50 neurons is
sufficient to model the most complex regression problems. Testing this theory would simplify
the design of the neural network considerably since no optimization algorithms or intensive
trial-and-error approaches would be required. Only the activation functions, optimizer, loss
function, and number of epochs the networks are trained for would have to be considered.
This would greatly reduce the amount of time spent on the development of the neural net-
work making it more efficient than other configurations, provided the final accuracy can be
maintained.

3. Empirical data generation: Network training and element development would both benefit
from datasets to help train networks or validate results. Monitoring of real-time information
in a dynamic setting is becoming more routine in experimental and commercial aerospace
settings (for example: aircraft engine performance monitoring, structural monitoring in launch

147



148 12. Future Research

systems, etc.) As such monitoring is costly, AI developers should be working in concert with
such monitoring efforts to ensure data acquisition is done cost efficiently.

12.2. Neuromorphic element development

1. Scaling-up to 3D space: Given that the current thesis focuses on 2D spatial applications of
the neuromorphic element, a logical extension would be to build up the NmT2 element to
3D space (NmT3). This could be achieved with minimal effort since the data generation pro-
cess and neuromorphic engine would remain exactly the same. Only the NmT2 user-element
subroutine would have to be altered to account for 3D applications. The transformation ma-
trix, force and position vectors would simply have to be slightly changed to account for the
additional dimension. Scaling-up to 3D space would change the neuromorphic element’s
designation to NmT3 and would permit a data-driven analysis of more complex multi-truss
structures.

2. Adding rotational degrees-of-freedom: The NmT2 element was not considered suitable to
model organic 3D-printed multi-truss structures since the element assumes that truss mem-
bers joined via pinned connections. One way of overcoming this is to incorporate the rota-
tional degrees-of-freedom in the neuromorphic element. This would require an entire new
suite of FEA models for the element to learn how truss-members interact at rigid joints.

3. Dynamic behaviour: The NmT2 element could be applied to dynamic structural problems
and compared to current FEA methods. Dynamic scaling is typically regarded as more com-
plex than scaling to add a physical dimension using conventional modelling techniques. It
may be that an NmT2 element could achieve similar efficiency improvements in a dynamic
environment as it has demonstrated in a static environment.

4. Alternate materials: The NmT2 was trained on isotropic steel material data. Given the wide
usage of composite structures in the aerospace industry, it would be a logical next step to
attempt to apply the NmT2 element to such materials. If this is pushed to the extreme, the
material parameter can also be extended as a user input into the neuromorphic element. This
would mean that the NmT2 could adapt to steel, titanium, aluminum or composite materials.
Although possible, it should be noted that the training domain to build a neural network that
can adapt to multiple materials would be very large.

5. Shell elements: The truss represents one of the simpler FEA element configurations, however,
the entire development process could also be applied to elements with higher degrees of free-
dom such as shell elements. The increase in degree-of-freedom would however, drastically
increase the parameter design space of the neural network, making it more difficult to define
the properties of the neuromorphic element.



��
Closing Remarks

Throughout this thesis and literature review, it has become apparent that neural networks applied
to structural engineering are not taking advantage of all the available advancements in machine
learning. The reason for this stems from a gap between the fields of computer science and engi-
neering. Computer scientists continue to publish new advancements in neural network design, but
their findings appear to be only applied to Big Data. This notion was reinforced during the AI & Big
Data Expo 2019 in Amsterdam where out of the hundreds of companies present, only one was an
engineering firm which specialized in designing machine learning algorithms to monitor anomaly
occurrence in production lines.

Given the stringent safety and manufacturing tolerances in engineering, engineers are more re-
luctant to implement machine learning models that are essentially black boxes which they do not
fully understand. The result is a disjointed state of research between the fields of machine learning
and engineering where engineers are roughly 20 years behind when it comes to designing a neural
network. Interestingly enough, engineering is not the sole industry averse to data-driven systems.
The medical industry especially within the context of surgery and patient diagnosis also tends to
resist the use of intelligent systems for similar reasons that engineers do.

The best way to mend this gap is to encourage collaborative research between practical and
theoretical fields, which extends to industry. The problem should also be addressed from an educa-
tional standpoint: machine learning should not be exclusively taught to computer scientists, but to
everyone. The modeling capabilities of machine learning algorithms have limitless potential across
all fields ranging from architectural design, to engineering, and to marketing among others. Given
that society is increasingly becoming data-driven it is only logical that this should be reflected in the
education sector.

Although it might be a strange notion to grasp, data as a commodity is now considered very valu-
able. Wasting and neglecting data will be equated to wasting water before the end of the decade. Ma-
chine learning systems and intelligent algorithms possess computing potential which many choose
to dismiss or undermine. However, if subjected to an appropriate course of training and properly
formatted data, then such systems will be able to model the most volatile, nonlinear, and perhaps
even chaotic phenomena in the world, including within society. For this to happen, researchers, en-
gineers, and those in a position of developing data-driven systems, must embrace its potential and
never lose sight of the value of data coupled with a continuous learning process. This is a marathon,
not a sprint, and we all need to be in it together over the long term.
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