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model in model-based reinforcement learning, specifically targeting environments with
sparse interactions. Sparse-interactive environments are a class of environments where
the state can be decomposed into meaningful components, and state transitions depend
primarily on a small subset of state components. Traditional neural networks often strug-
gle with generalization in such environments, as they consider all possible interactions
between state components, leading to overfitting and poor sample efficiency. We for-
mally define sparse-interactive environments and propose a simple yet effective modi-
fication to the standard transformer architecture that promotes sparsity in the attention
mechanism through L1 regularization and thresholding. Through extensive experiments
on the Minigrid environment, we demonstrate that our sparsity-regularized transformer
achieves higher validation transition accuracy and lower variance across random initial-
izations compared to the original transformer, particularly in low-data regimes. Our
source code is available on GitHub1.
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Chapter 1

Introduction

Reinforcement learning (RL) is hard. Unlike supervised learning, which benefits from la-
beled datasets and clear feedback signals, RL agents must learn through interaction with an
environment, navigating the exploration-exploitation trade-off while relying on delayed and
sparse rewards. This fundamental challenge has driven decades of research, from Richard
Bellman’s mathematical foundations in dynamic programming to modern deep reinforce-
ment learning approaches that have achieved remarkable feats in games, robotics, and re-
source management.

Despite these advances, reinforcement learning still faces significant obstacles towidespread
adoption in real-world applications. Sample efficiency remains a critical challenge, with
many current algorithms requiring millions of environment interactions to learn effective
policies. This becomes particularly problematic when interactions are costly, dangerous, or
time-consuming, as is often the case in physical systems.

Model-based reinforcement learning offers a promising approach to addressing these
efficiency concerns. By learning amodel of the environment’s dynamics, agents can perform
planning and simulate experiences, potentially reducing the number of actual interactions
needed. Model-based methods thus generally offer better sample efficiency compared to
model-free approaches, making themparticularly valuablewhen real interactions are limited
or expensive (Sutton 1990; Kaiser et al. 2020). Another advantage is the ability to transfer
learned knowledge to new tasks or environments, enabling agents to adapt quickly to new
situations. However, model-based methods face their own challenges, including systematic
prediction errors within the training distribution, compounding inaccuracies during multi-
step rollouts, and degraded performance on out-of-distribution states (Hafner, Lillicrap, I.
Fischer, et al. 2019; Hafner, Lillicrap, Ba, et al. 2020).

Sparse-Interactive Environments and their Relevance In this thesis, we introduce and for-
mally define ”sparse-interactive environments” - a class of environments where states are
not monolithic and individual next-state components require only information from a small
subset of the current-state components during a transition. This property creates a form of
conditional independence in the transition function andmany environments exhibit it. From
board games, where moves affect only certain pieces, to real-world physical systems, where
interactions are localized. While various forms of structure in environment dynamics have
been studied, our specific formalization provides a framework for analyzing and improving
generalization. We establish this concept in section 3.1.

Limitations of TraditionalArchitectures Traditional neural network architectures used for
world modeling, such as recurrent neural networks (RNNs) or transformers, are not explic-
itly designed to leverage this sparse interactive structure within the state to next-state predic-
tion. They tend to consider all possible interactions between state components to predict the
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1. INTRODUCTION

next-state, which can lead to overfitting and thus limited generalization to unseen states. The
transformer architecture specifically, with its self-attention mechanism, has shown remark-
able success across various domains (Vaswani et al. 2017). And while multiple variations
of the original transformer have been proposed, none of them were specifically designed to
exploit the sparsity in state transitions that we encounter in sparse-interactive environments.

OurApproach Our research introduces a sparsity-regularized transformer, or sparse trans-
former for short, specifically designed for modeling sparse-interactive environments. By en-
couraging the transformer to focus attention only on the fewest possible relevant state com-
ponents, we aim to improve generalization, sample efficiency, and interpretability. The core
innovation lies in a simple yet effective modification to the standard transformer that pro-
motes sparsity in the attention mechanism through regularization and additional attention
thresholding.

The central hypothesis of this thesis is that a sparse transformer can better generalize than
a classical transformer on sparse-interactive environments, particularly in low-data regimes.
By “better generalization,” we specifically examine whether the sparse transformer can: (1)
achieve higher validation accuracy with limited training data, (2) maintain consistent perfor-
mance across different random initializations, and (3) perform robustly when the validation
distribution differs from the training distribution.

1.1 Contribution
Our contributions include:

1. A formal definition and characterization of sparse-dependent and sparse-interactive
environments in the context of reinforcement learning

2. A novel sparsity-regularized transformer, enabled by an added auxiliary loss designed
to exploit the sparse interactive structure of these environments with additional atten-
tion thresholding

3. A systematic evaluation framework for measuring generalization in sparse-interactive
environments

4. Empirical evidence demonstrating the advantages of sparse transformers over classical
transformers and other architectures across various data regimes

1.2 Outline
The remainder of this thesis is organized as follows: chapter 2 provides the theoretical back-
groundonMarkovdecisionprocesses, reinforcement learning fundamentals, the transformer
architecture, and U-Net architecture. Chapter 3 details our methodology, including the for-
mal definition of sparse-dependent and sparse-interactive environments, our environment
selection criteria, and the evaluation framework for assessing generalization. Chapter 4
describes the implementation details of our three architectures: the classical transformer,
sparse transformer, and U-Net, including how state/action pairs are processed within them.
Chapter 5 presents our experimental results, comparingmodel performance across in-distribution
and out-of-distribution scenarios and analyzing learned attention patterns. Chapter 6 re-
views related work in sparse attention mechanisms and structured world models. Finally,
chapter 7 concludes the thesis by summarizing our key findings and contributions and chap-
ter 8 discusses promising directions for future research.
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Chapter 2

Background

This chapter provides the theoretical foundation for understanding the research presented in
this thesis. We begin by introducingMarkov decision processes (MDPs) as themathematical
framework for sequential decision-making. We then explore RL fundamentals, including
bothmodel-free andmodel-based approaches and discuss generalization in RL. We continue
with an overview of the transformer architecture, before introducing the U-Net architecture
as an alternative approach with spatial inductive bias.

2.1 Markov Decision Processes
MDPs provide the mathematical foundation for modeling sequential decision-making prob-
lems under uncertainty (Bellman 1957; Puterman 2014). An MDP is formally defined as a
tuple (S,A, P,R, γ) where:

• S is the state space, representing all possible configurations of the environment

• A is the action space, representing all possible actions an agent can take

• P : S × A × S → [0, 1] is the transition function, defining the probability P (s′|s, a) of
transitioning to state s′ when taking action a in state s

• R : S×A → R is the reward function, specifying the immediate rewardR(s, a) received
when taking action a in state s

• γ ∈ [0, 1) is the discount factor, which determines the importance of future rewards
relative to immediate ones

The defining characteristic of MDPs is the Markov property, which states that the future
state depends only on the current state and action, not on the history of previous states and
actions:

P (st+1|st, at, st−1, at−1, ..., s0, a0) = P (st+1|st, at) (2.1)

This property significantly simplifies the problem by allowing us tomake decisions based
solely on the current state without needing to maintain the entire history of interactions. Put
into words, at each time step t, an agent within the given environment observes the current
state st, selects an action at according to its policy π : S → ∆(A) (which maps states to
probability distributions over actions), and receives a reward rt = R(st, at) and the next
state st+1. The goal in an MDP is to find an optimal policy π∗ that maximizes the expected
discounted cumulative reward:

3



2. BACKGROUND

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtR(st, at)

]
(2.2)

where at ∼ π(·|st) and the expectation is taken over trajectories generated by following
policy π.

The optimal policy can be derived from the optimal value function V ∗(s) or the optimal
action-value function Q∗(s, a), which satisfy the Bellman optimality equations:

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]
(2.3)

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′) (2.4)

The Bellman equations provide a recursive relationship that underlies many reinforce-
ment learning algorithms (Sutton and Barto 2018).

In the context of our research, MDPs form the theoretical basis for the environments we
study. The transition functionP is of particular importance as it captures the dynamics of the
environment and is what our world models aim to learn. In sparse-interactive environments,
the structure of P has special properties where state transitions depend only on a subset of
the state information, which our sparse transformer architecture is designed to exploit.

2.2 Reinforcement Learning Fundamentals
Reinforcement learning (RL) provides a computational approach to solving MDPs through
trial-and-error interaction with an environment (Sutton and Barto 2018). Unlike supervised
learning, RL does not rely on labeled training data but instead learns from the rewards and
punishments received during exploration.

The RL framework consists of an agent interacting with an environment over a sequence
of discrete time steps. The agent’s objective is to learn a policy that maximizes the expected
return, defined as the sum of discounted future rewards. RL algorithms can be broadly
categorized into model-free and model-based approaches, with further distinctions within
each category.

2.2.1 Model-Free Reinforcement Learning
Model-free RL algorithms learn directly from experience without explicitly modeling the en-
vironment dynamics. These approaches can be further classified into three main categories:

1. Value-based methods learn a value function that estimates the expected return from
each state or state-action pair. Examples include Q-learning (Watkins 1989) and Deep
Q-Networks (DQN) (Mnih, Kavukcuoglu, et al. 2013). These methods typically up-
date value estimates using temporal difference learning, which adjusts the current
value estimate based on the observed reward and the estimated value of the next state.

2. Policy-based methods directly optimize the policy without explicitly maintaining a
value function. The REINFORCE algorithm (Williams 1992) is a classic example that
utilizes policy gradients to adjust the policy parameters in the direction that increases
the expected return. This approach updates the policy parameters based on the col-
lected trajectory information and the corresponding returns.
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2.2. Reinforcement Learning Fundamentals

3. Actor-criticmethods combine aspects of both approaches by learning both a policy (ac-
tor) and a value function (critic) simultaneously, which can reduce variance in policy
gradient estimates. Examples include Asynchronous Advantage Actor-Critic (A3C)
(Mnih, Badia, et al. 2016) and proximal policy optimization (PPO) (Schulman et al.
2017) algorithms.

Model-free methods are generally simpler to implement and can be effective in many
environments. However, they often require large amounts of experience to learn effective
policies, as they must infer environmental dynamics implicitly through repeated interaction.

2.2.2 Model-Based Reinforcement Learning

Model-based RL extends traditional RL approaches by incorporating an explicit model of the
environment. This model typically consists of two components, which can also be combined
into a single world model:

1. A transitionmodel P̂ (st+1|st, at) that predicts the next state given the current state and
action

2. A reward model R̂(st, at, st+1) that predicts the immediate reward

Thesemodels can be learned fromdata collected through agent-environment interactions
and then be used to:

1. Generate simulated experience for offline training, where predicted transitions and
rewards augment the dataset used to update the agent’s policy or value function (Sut-
ton 1990). The world model can be trained while also training the agent, such that new
relevant data is generated and used to improve themodel. It is also possible to perform
targeted exploration in regions with high uncertainty to learn in environments with
very sparse rewards (Pathak et al. 2017).

2. Plan ahead at decision time by performing look-ahead search to evaluate potential ac-
tion sequences and their expected outcomes before committing to an action (Silver et al.
2016).

Model-based methods generally offer better sample efficiency compared to model-free
approaches,making themparticularly valuable in environmentswhere interactions are costly
or limited (Sutton 1990; Kaiser et al. 2020). However, they face several challenges:

1. Model bias: Inaccuracies in the learned model can lead to suboptimal policies (Kaiser
et al. 2020)

2. Compounding errors: Small prediction errors can accumulate when the model is used
for multi-step planning (Hafner, Lillicrap, I. Fischer, et al. 2019; Hafner, Lillicrap, Ba,
et al. 2020)

3. Distribution shift: The model may perform poorly on states that differ from those
encountered during training. This heavily depends on themodel’s ability to generalize
to unseen states, which is a key focus of our research.

5



2. BACKGROUND

2.2.3 Generalization in Reinforcement Learning
Generalization in reinforcement learning refers to an agent’s ability to perform well in situa-
tions that differ from those encountered during training. It can be categorized into twomain
types:

1. In-Distribution (ID) Generalization: The ability to perform well on unseen states
drawn from the same distribution as the training data.

2. Out-of-Distribution (OOD) Generalization: The ability to perform well on states
drawn from a different distribution than the training data, which can involve changes
in environmental dynamics, visual appearance, or task structure.

Several factors influence generalization in RL:

1. State Representation: The way states are encoded can significantly impact generaliza-
tion. Good representations capture relevant features while ignoring irrelevant details
(Bengio, Courville, and Vincent 2013).

2. Model Architecture: Different neural network architectures embed different inductive
biases that affect generalization. For example, CNNs encode spatial locality, while
transformers excel at capturing long-range dependencies (Battaglia et al. 2018). Regu-
larization techniques like dropout and weight decay can also help prevent overfitting
(Srivastava et al. 2014).

3. RL Algorithm: The choice of RL algorithm can also influence generalization. Some
algorithms, like DQN, may overfit to specific training environments, while others, like
A3C, may be more robust (Mnih, Badia, et al. 2016). Model-based RL approaches can
also improve generalization by explicitly modeling the environment dynamics (Kaiser
et al. 2020).

4. Environment Diversity: Training across a diverse set of environments can help the
agent learn more robust policies (Tobin et al. 2017).

Our research addresses these generalization challenges in model-based RL by examining
how architectural innovations—specifically sparse attention mechanisms in transformers—
can improve world model generalization in sparse-interactive environments. We propose
that these architectural choices can better capture transition dynamics, reducing model bias
and improving performance on out-of-distribution states, ultimately leading to improved
sample efficiency and more robust planning strategies. We evaluate this hypothesis using
controlled variations of the Minigrid environment, testing both in-distribution and out-of-
distribution generalization scenarios as detailed in our methodology.

2.3 Transformer Architecture
Transformers, a neural network architecture initially introduced by Vaswani et al. (2017) in
their seminal paper ”Attention is All You Need”, have revolutionized sequence modeling
and natural language processing through their self-attention mechanism. Unlike recurrent
neural networks, transformers process entire sequences in parallel, enabling them to cap-
ture long-range dependencies more efficiently and effectively. First, we will provide a brief
overview of the transformer architecture’s key components. Then, wewill introduce the non-
autoregressive variant of transformers, which is particularly relevant to our world modeling
task.
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2.3. Transformer Architecture

2.3.1 Transformer Components
The transformer architecture is typically made up of a few key components, which we will
outline below.

Self-Attention and Multi-Head Attention (MHA) The core of the transformer architec-
ture is the scaled dot-product attention mechanism:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.5)

where Q (queries), K (keys), and V (values) are linear projections of the input, and
dk is the dimension of the keys. This fundamental operation computes a weighted sum of
values, where each weight is determined by the compatibility between the corresponding
query and key. It allows the model to pass information from one token to another based
on their relevance, effectively enabling the model to focus on different parts of the input
sequence when generating each output token. In self-attention, the same input serves as
queries, keys, and values.

Multi-head attention further extends this mechanism by allowing themodel to learnmul-
tiple different attention patterns in the input in one layer. The MHA mechanism splits the
input into multiple heads, each with its own set of learned projections, and computes atten-
tion independently for each head. The results are then concatenated and projected back to
the original dimension:

MultiHead(Q,K, V ) = Concat(head1, ...,headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2.6)

Where WQ
i , WK

i , and W V
i are learned projection matrices for each head, and WO is the

output projection matrix. This allows the model to capture different aspects of the input
sequence simultaneously, enhancing its representational power.

Feed Forward Networks In addition to the attention mechanism, each transformer layer
contains a position-wise feed-forward network (FFN). This component consists of two linear
transformations with a non-linear activation function in between:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.7)

The FFN typically expands the dimensionality by a factor of 4 in the hidden layer before
projecting back to the model dimension. This expansion allows the model to learn complex
non-linear transformations and has been shown to be crucial for the transformer’s expressive
power. Recent work has explored various activation functions beyond ReLU, such as GELU
and SwiGLU, which can further improve performance (Shazeer 2020).

Layer Normalization and Residual Connections To stabilize training and improve conver-
gence, transformers use layer normalization and residual connections (Vaswani et al. 2017)
afterMHA and FFN sub-layers. Layer normalization normalizes the inputs to each sub-layer,
ensuring that the mean and variance remain consistent across different layers. Residual con-
nections allow gradients to flowmore easily through the network by adding the input of each
sub-layer to its output:

LayerNorm(x+ Sublayer(x)) (2.8)

This combination helps mitigate the vanishing gradient problem and allows for deeper net-
works without suffering from degradation in performance.

7



2. BACKGROUND

Figure 2.1: Basic non-autoregressive transformer architecture. The model only consists of a
decoder stage, which predicts all output tokens in parallel. The input is processed through a
series of multi-head self-attention layers, followed by feed-forward networks and layer nor-
malization. ”PE” is short for positional encoding.

Positional Encoding Since the self-attention mechanism is permutation-invariant, trans-
formers require explicit positional information to understand the sequential nature of the
input. The original work by Vaswani et al. (2017) introduced sinusoidal positional encod-
ings. However, subsequent research has shown that learned positional embeddings often
perform equally well or better in practice (Devlin et al. 2019). Many modern transformer
variants now use learned positional embeddings as trainable parameters.

2.3.2 Non-Autoregressive Transformers (NATs)
For our world modeling task, we employ a non-autoregressive variant, which differs signifi-
cantly from the original autoregressive design presented in Vaswani et al. (2017). Instead of
predicting each output token sequentially, NATs generate all output tokens in parallel during
inference. In addition to removing the final linear projection layer, which is typically used
to map the output to a vocabulary in language tasks, NATs also do not use causal masking.
This allows all positions in the output sequence to attend to each other simultaneously, en-
abling the model to capture dependencies across the entire sequence without the constraints
of sequential generation.The architecture retains the same core components as the original
transformer, including multi-head self-attention, feed-forward networks, and layer normal-
ization, but operates in a non-autoregressivemanner. This design choice significantly speeds
up inference, making NATs particularly suitable for tasks where rapid generation of outputs
is crucial, such as in real-time applications or large-scale sequence modeling tasks. Gu et al.
(2018) used NATs for machine translation, where they demonstrated that the model could
generate translations in parallel, significantly reducing inference time compared to autore-
gressive models.

Limitations However, NATs face inherent challenges, for example, capturing complex de-
pendencies within the input sequence, as they do notmodel the sequential nature of the data
explicitly. It also requires a separate mechanism to calculate the number of output tokens,
as there is no autoregressive generation step that would naturally determine the length of
the output sequence. Gu et al. (2018) addressed this by using ’fertilities’—integers for each
input token that indicate how many output tokens it should generate. Lee, Mansimov, and
Cho (2018) instead used a separate length prediction network. Token repetition is another
challenge in generative tasks, where the model may generate the same token multiple times
in a row. This can be mitigated by using post-processing techniques, such as deduplication
(Lee, Mansimov, and Cho 2018).

Our Approach In our research, we adopt a basic version of a NAT architecture, as shown
in figure 2.1. The model only consists of a decoder stage, with no linear projection layer at

8



2.4. U-Net Architecture

Figure 2.2: U-Net architecture adapted to Minigrid 9x9 environments. The contracting path
captures context, while the expanding path enables precise localization through skip connec-
tions. Similar to Ronneberger, P. Fischer, and Brox (2015)

the end, which would typically be used to map the output to a vocabulary in language tasks.
Instead, the output of the decoder is directly used as the next state prediction in our world
modeling task. This allows us to circumvent the challenges of token repetition and length
prediction, though this is only possible because the next state is always of the same length
as the current state.

2.4 U-Net Architecture
The U-Net architecture, originally introduced by Ronneberger, P. Fischer, and Brox (2015)
for biomedical image segmentation, has become a standard approach for tasks requiring
precise spatial localization. Its distinctive U-shaped structure consists of a contracting path
(encoder) followed by an expanding path (decoder) with skip connections between corre-
sponding levels, as illustrated in figure 2.2. Due to the convolutional nature of the architec-
ture, it is particularly well-suited for tasks involving spatial data, such as images or videos.
This bias made it a natural choice for our world modeling task, as our chosen environment,
Minigrid (Chevalier-Boisvert et al. 2023), consists of 2D grid-based states. The rest of this
section explains the encoder, decoder, and skip connections in more detail.

Contracting Path (Encoder) The contracting path follows the typical architecture of a con-
volutional network, with repeated application of convolutions, activation functions, andmax
pooling operations for downsampling. This progressively reduces the spatial dimensions
while increasing the number of feature channels, capturing higher-level abstractions of the
input.

Each encoder block in the original U-Net consists of two convolution-ReLU operations
followed by max pooling:

h
(1)
l = ReLU(Conv3×3(hl−1,W

(1)
l ) + b

(1)
l )

h
(2)
l = ReLU(Conv3×3(h

(1)
l ,W

(2)
l ) + b

(2)
l )

hl = MaxPool2×2(h
(2)
l )

(2.9)

where:

9



2. BACKGROUND

• hl ∈ RCl×Hl×Wl represents the feature map at layer l, with Cl channels, height Hl, and
width Wl

• W
(i)
l ∈ RCl×Cl−1×3×3 represents the learnable convolutional weights for the i-th convo-

lution

• b
(i)
l ∈ RCl is the bias term for each output channel

• Convk×k(·,Wl) denotes a 2D convolution operation with kernel size k × k (typically
3× 3 in U-Net)

• MaxPool2×2(·) is the max pooling operation with stride 2, reducing spatial dimensions
by half

ExpandingPath (Decoder) The expanding path combines feature informationwith spatial
information through upsampling operations followed by convolutions. The skip connections
from the contracting path provide the precise spatial information lost during downsampling,
allowing the network to generate high-resolution outputs.

Each decoder block consists of an upsampling step followed by two convolution-ReLU
operations:

h
(up)
l = Up(hl−1)

h
(concat)
l = Concat(h(up)l , hl′)

h
(1)
l = ReLU(Conv3×3(h

(concat)
l ,W

(1)
l ) + b

(1)
l )

hl = ReLU(Conv3×3(h
(1)
l ,W

(2)
l ) + b

(2)
l )

(2.10)

where:

• hl−1 ∈ RCl−1×Hl−1×Wl−1 is the feature map from the previous decoder layer

• Up(·) is the upsampling operation, which can be either:

– Transposed convolution (deconvolution): Up(h) = ConvTranspose2×2(h,Wup)
with learnable weights Wup

– Bilinear interpolation followed by a 1× 1 convolution for channel adjustment

• hl′ ∈ RCl′×Hl′×Wl′ is the corresponding feature map from the contracting path at the
same resolution level

• Concat(·, ·) represents concatenation along the channel dimension, resulting in a tensor
with Cup + Cl′ channels, where Cup is the number of channels after upsampling

• W
(i)
l ∈ RCl×Cinput×3×3 are the convolutional weights, where Cinput = Cup + Cl′ for the

first convolution and Cinput = Cl for the second

• b
(i)
l ∈ RCl is the bias term

Skip Connections The skip connections are a crucial component of U-Net, preserving fine-
grained spatial information that would otherwise be lost during the downsampling process.
For each decoder layer at resolution level l, the corresponding encoder feature map hl′ from
the same resolution is concatenated with the upsampled features. This allows the network
to combine:

• High-level semantic information from the deeper layers (through hl−1)

• Fine-grained spatial details from the earlier layers (through hl′)

10



2.4. U-Net Architecture

Our Approach In our research, we adapt the U-Net architecture to function as a world
model for predicting state transitions in reinforcement learning environments. While typi-
cally, a linear projection layer would be used at the end of the decoder to map the output
to the desired number of output classes, we instead directly use the output of the decoder
as the next state prediction in our world modeling task. This provides a second baseline in
addition to the transformer with an inherent spatial inductive bias, against which we can
compare our proposed sparse transformer approach.
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Chapter 3

Methodology

This chapter presents our approach to testing whether a sparse transformer can generalize
better than a classical transformer in sparse-interactive environments. By improved general-
ization, we specifically examine if the sparse transformer can (1) achieve higher validation
accuracy with limited training data, (2) maintain consistent performance across different
random initializations, and (3) perform robustly when the validation distribution differs
from the training distribution. We begin by formally defining sparse-dependent and sparse-
interactive environments, establishing the mathematical framework for understanding how
next-state components depend on limited subsets of information. We then introduce Mini-
grid, our selected environment that exhibits this property. Finally, we outline our evaluation
framework, including sampling methodology and performance metrics.

3.1 Sparse-Dependent and Sparse-Interactive Environments
The state returned by RL environments is often a high-dimensional vector, and is conven-
tionally treated as a monolithic entity by neural networks. However, in many environments,
the state can actually be decomposed into smaller components that are meaningful to the
task, which in turn often exhibit useful properties. These components can be thought of as
elements of the state vector, which can be individual cells in a grid or pieces on a board.

Sparse-dependent and sparse-interactive environments represent a class of MDPs where
individual next-state components only depend on a small subset of the available state infor-
mation. This, in turn, creates a form of conditional independence in the transition function
which can be exploited by the model to improve generalization and sample efficiency. We
define these environments formally as follows:

Sparse-dependent environments Formally, for a state swith components s = (s1, s2, ..., sn),
we define the dependency set for component i as:

D(i) ⊆ {1, 2, ..., n} where |D(i)| ≪ n (3.1)

The transition probability for component sit+1 given action at depends only on the com-
ponents indexed by D(i):

P (sit+1|st, at) = P (sit+1|s
D(i)
t , at) (3.2)

where sD(i)
t = {sjt : j ∈ D(i)}denotes the subset of state components indexed byD(i). An

example of this is depicted in figure 3.2a, where each state component sit+1 has dependencies
that are spatially localized and can be determined a priori from the component’s position.
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3. METHODOLOGY

Sparse-interactive environments are a more general class of environments where the de-
pendency structure itself also depends on the current state. In these environments, both
which components are relevant and how many are needed can vary dynamically. Formally,
we define the state-conditional dependency set as:

D(i, st) ⊆ {1, 2, ..., n} where |D(i, st)| ≪ n (3.3)

The transition probability becomes:

P (sit+1|st, at) = P (sit+1|s
D(i,st)
t , at) (3.4)

While the dependency structure is no longer fixed, the key property of information spar-
sity remains: |D(i, st)| ≪ n for all states st. This ensures that only a small fraction of the
available information is required for any given next-state component prediction, though the
specific information needed may vary.

Examples of sparse-interactive environments appear in many real-world and artificial en-
vironments:

1. Grid-based environments like Minigrid (Chevalier-Boisvert et al. 2023), where the
outcome of an action like ”move forward” depends primarily on the agent’s position
and orientation and the content of the adjacent cell, not on the entire grid state, as
illustrated in figure 3.2. This also includes games like chess and go, where the outcome
of a move depends only on the positions of relevant pieces.

2. Cellular automata like Conway’s Game of Life (Gardner 1970), where the next state of
a cell depends only on its neighbors, not on the entire grid. This also includes physi-
cal systems with localized interactions, such as fluid dynamics or mechanical systems,
where the behavior of a component is influenced primarily by its immediate surround-
ings.

3. Traffic Simulation environments, where the behavior of a vehicle depends primarily
on its immediate surroundings (e.g., nearby vehicles, traffic lights) rather than the
entire road network. This also includes robotics applications, where the state of a
robotmay depend primarily on its immediate environment (e.g., obstacles, landmarks)
rather than the entire scene.

Both sparse-interaction and sparse-dependency can be viewed as a form of structural
prior knowledge about the environment dynamics. When properly leveraged, this structure
can dramatically simplify the learning problem, as the model knows that it only needs to
focus on a small subset of state components to make accurate predictions. For the rest of
this thesis, we will focus on sparse-interactive environments, as the solution we propose is
designed to handle the more general case of sparse-interactive environments, which also
include sparse-dependent environments.

Impact Traditional neural network architectures like fully connected networks or classical
dense transformers are not explicitly designed to leverage this sparse-interactive structure.
They tend to consider all possible interactions between state components, which can lead to:

• Overfitting to spurious correlations in the training data

• Poor sample efficiency as the model must learn to ignore irrelevant interactions

• Limited generalization to unseen states that differ in irrelevant components

14



3.2. Environment Selection

Our research addresses these limitations by introducing a sparse transformer architec-
ture specifically designed to model sparse-interactive environments. By encouraging the
transformer to focus attention only on relevant state components, we aim to improve gener-
alization, sample efficiency, and interpretability.

3.2 Environment Selection
To test our hypothesis that a sparse transformer can better generalize on sparse-interactive
environments compared to a classical transformer, we needed an environment that fits this
criterion. We selected Minigrid (Chevalier-Boisvert et al. 2023), as it is simple to visualize,
small in data volume when sampled, and has been extensively used in RL research.

3.2.1 Minigrid
Minigrid is a 2D grid environment where the agent appears as a triangle-like red figure that
must navigate toward a green goal field in the most direct way to maximize reward. The en-
vironment includes walkable tiles, walls, and lava, and can be extended with objects such as
chests, keys, and doors allowing for flexibility in maze creation. Examples of two Minigrid
environments are displayed in figure 3.1. This 2D grid structure naturally exhibits spatial lo-
cality, making it an ideal testing ground for comparing architectures with different inductive
biases.

(a) MiniGrid-SimpleCrossingS9N3-v0 (b) MiniGrid-LavaCrossingS9N3-v0

Figure 3.1: Example of two Minigrid Crossing environments. The agent (red triangle) navi-
gates through a 9×9 grid to reach the green goal square while avoiding wall and lava obsta-
cles. The environments presented contain 3 randomly placed wall/lava segments that create
amaze-like structure. The agent can perform three actions: rotate left, rotate right, andmove
forward.

Crucially, Minigrid demonstrates the sparse-interactive property we aim to study, as
demonstrated in figure 3.2. A single next-state component in Minigrid depends primarily
on the components’ immediate surroundings rather than the entire grid state. For instance,
when an agent attempts to move forward, the outcome of the component with the agent in-
side depends only on whether the adjacent cell in that direction is a wall or empty space, as
well as the component itself—not on the configuration of cells across the grid. This localized
dependency structure means that an ideal model would learn to attend only to (or receive
information only from) relevant components of the state space when predicting transitions.

Additionally, Minigrid provides a convenient framework for creating controlled experi-
mental variations by adjusting parameters such as grid size, wall density, object placement,
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3. METHODOLOGY

action: forward

(a) Sparse-dependent: A single component of
the next state depends only, and always, on 5
components of the current state. The amount of
input components required to predict a specific
output component remains constant, regardless
of the current state. If we were to make an
assumption that the outside walls are always
present, the number of components required can
be reduced for the outer cells.

action: forward

(b) Sparse-interactive: A single component of
the next state depends on a variable number of
components of the current state, depending on
the current state. The amount of input compo-
nents required to predict a single output compo-
nent can vary, depending on the current state.

Figure 3.2: Example of a transition inMinigrid with action=forward. The left grid of each im-
age shows the current state, while the right grid displays the next state after executing the ac-
tion. These images illustrate why Minigrid is both sparse-dependent and sparse-interactive,
as well as how these properties differ from each other.

and goal location. This flexibility allows us to systematically test generalization across in-
creasingly difficult OOD scenarios. The environment’s discrete state space also makes it
straightforward to define precise accuracy metrics for our predictions.

3.2.2 Minigrid Specification
In Minigrid, the state is represented as a 2D grid where each cell contains a tuple of four
elements: [object, color, state, agent]:

• object: An index representing the type of object in the cell, such as ’wall’, ’lava’, or
’empty’

• color: The color of the object (e.g., ’red’ for lava, ’grey’ for walls). Colors can also serve
functional purposes, such as matching keys with corresponding doors

• state: The state of the object, which is only relevant for interactive objects like chests
and doors

• agent: A two-part representation indicating (1) the presence of an agent in the cell and
(2) the orientation of the agent. To better illustrate, these are the values this field can
have: no_agent, agent_east, agent_south, agent_west, agent_north

The action space in Minigrid is discrete, consisting of seven possible actions: left, right,
forward, pickup, drop, toggle, and done. For our experiments, we focused on Crossing envi-
ronments, more specifically on the MiniGrid-SimpleCrossingS9N3-v0 environment, shown in
figure 3.1a. These specific crossing environments create sparse maze-like structures where
the agent must navigate from one side to the other while avoiding walls. Due to the simpli-
fied nature of MiniGrid-SimpleCrossingS9N3-v0, we restricted the action space to just three
main actions: left (rotate left), right (rotate right), and forward (move one field forward in
the direction of the agent). The reward in these environments is continuous, and the next
state maintains the same dimensionality as the current state, ensuring consistency in our
world model predictions.
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3.3. Assesing Generalization

For our experiments, we assumed full observability of the environment, as this makes
the problem an MDP rather than a partially observable Markov decision process (POMDP),
which is easier to handle and analyze. This means that the agent can see the entire grid,
including cells behind walls and in areas behind the agent itself, which allows the model
to predict the next state based on the current state and action without needing to maintain
a memory of previous states. We chose this approach to avoid the complexity of memory
mechanisms that would be required for handling partial observability, as maintaining the
information of previously observed states would introduce architectural components not di-
rectly relevant to our central hypothesis about sparse dependencies.

3.3 Assesing Generalization
To properly evaluate ourmodels and assess generalization, we designed specific training and
validation datasets to measure performance on both ID and OOD scenarios. This approach
helps determine whether the sparse transformer is superior to other architectures when en-
vironments exhibit sparse dependencies.

When sampling a Minigrid environment, it is important to note that not all implementa-
tions generate unique environments upon reset. For ourmethodology, we assume the chosen
Minigrid environment canproducemultiple unique grids, like MiniGrid-SimpleCrossingS9N3-v0,
which generates a random grid each time it is reset.

3.3.1 Train/Test Split
In this subsection, we define in- and out-of-distribution contexts for Minigrid environments,
which we will refer to when discussing accuracy and generalization.

For clarity, “sampling a grid exhaustively” means placing the agent in all possible loca-
tions and orientations and executing all possible actions, while recording the current state,
next state, and reward.

In-Distribution (ID) For ID evaluation, we sample n grids exhaustively and split the sam-
ples into training and validation sets, thus training and validating on the same grids, but
different samples. This simulates a scenario where the model has seen the agent in a few
locations in a few unique grids, and now has to extrapolate agent-movement knowledge to
these same grids. It is ID because the training and validation sets are sampled from the same
distribution.

Out-of-Distribution (OOD) Using this approach, we sample n grids for training and m
grids for validation, both exhaustively. We then discard a percentage of the training samples
randomly. This simulates a scenario where the model was able to see the agent in a couple
of locations in a few unique grids, but now has to extrapolate agent-movement knowledge
to new unseen grids, as well as the general behavior of unaffected cells.

3.3.2 Evaluation Metrics
After training the models on the training set, we evaluate them on both the training and
validation datasets. Evaluation of the training set allows us to assess the model’s ability
to learn the samples it has seen, while evaluation of the validation set allows us to assess
the model’s ability to generalize to unseen data. We will first present environment-agnostic
metrics, which give a broad overview of the model’s performance, and then present more
granular metrics specific to Minigrid environments, which give an indication of where the
model is struggling.
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3. METHODOLOGY

Environment-agnostic Metrics State, reward, and transition accuracies are the primary
metrics used to evaluate the model’s performance. State accuracy measures the percentage
of samples where the predicted next state matches the actual next state. Reward accuracy
measures the percentage of samples where the predicted reward matches the actual reward.
Transition accuracymeasures the percentage of state/action pairs that are correctly predicted
by the model, meaning that both the next state and reward are predicted correctly.

Minigrid-specificMetrics To gainmore insight into themodel’s performance, we also eval-
uate it on more granular metrics that give an indication of where the model is struggling.
Because each state component in Minigrid represents a cell in the grid, we can evaluate the
model’s performance on each cell variable separately. This allows us to identify four more
metrics: object, color, state, and agent accuracies. Object accuracy measures the percentage
of total samples where the object variable of all cells was predicted correctly. The same ap-
plies to color, state, and agent accuracies. These metrics help us understand how well the
model is able to predict the different components of the state.

Additionally, we can evaluate the model by tracking the agent’s behavior in the environ-
ment. The most important metric here is ’one agent accuracy’, which measures the percent-
age of samples where only one agent was predicted, regardless of whether the agent was in
the correct position or not. This metric is important because the prediction is useless other-
wise in the context of model-based RL. Next, we can further break down the agent accuracy
by considering the action the agent was required to take. We can measure the percentage
of correctly predicted samples where the agent was required to rotate, move, or stay in the
same position due to a wall blocking the movement. These metrics help us understand how
well the model is able to predict the agent’s behavior in the environment.

η Metrics Finally, we can add additional metrics for the sparse transformer to measure the
impact of the sparsity regularization. As illustrated in figure 3.2b, wewould like to encourage
the model to only attend to the relevant components of the state when predicting the next
state. To measure this, we track the distribution of attention connections in the η attention
maps by counting how many tokens attend to each other across all validation samples. For
our 9 × 9 Minigrid environment with 82 total tokens (81 grid cells + 1 reward token), the
ideal sparsity would result in exactly 82 connections for rotation actions (tokens attending
only to themselves) and 84 connections for forward actions (self-attention plus bidirectional
information exchange between agent and forward cells). We can furthermore group the
samples into two categories: rotation and forward actions, and measure the average number
of connections for each category. This allows us to see how well the model is able to learn
the sparse dependencies in the environment.
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Chapter 4

Implementation

In this chapter, we will present the implementation details of our three different architec-
tures: the classical transformer, sparse transformer, and U-Net. We first describe the dis-
cretization of the Minigrid state, which is necessary for all models, after which we will go
into detail about the architecture and training setup for eachmodel. The classical transformer
and sparse transformer share the same hyperparameters and training setup, while the U-Net
has its own set of hyperparameters. The hyperparameters used for each model are summa-
rized in table A.1 and table A.2.

4.1 Discretizing the Minigrid State

To be able to use the sampled environment data for training our neural networks, we need
to discretize and one-hot encode the state space. The Minigrid environment returns a 2D
grid as its state, with grid_height×grid_width cells, where each cell specifies the object (e.g.,
wall, door, key), the color (e.g., red, green, blue), the state (e.g. open, close), and the agent
(e.g. no-agent, agent looking up/down/...). After discretization, one-hot encoding, and con-
catenation of all variables, each cell can be represented by a vector with 24 dimensions. The
discretization process is illustrated in figure 4.1.

[4]

wall
grey
open

no-agent

2
5
0
0

discretized

0 0 1 0 0���

object

0 0 1���

color

01 0

state

01 0 0 0

agent

Tone-hot encoded

[24]

Figure 4.1: Discretization of Minigrid state. Each cell is represented by a vector with 24
dimensions.
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4. IMPLEMENTATION

Figure 4.2: Classical transformer architecture. The model reshapes the observation and ac-
tion into an input sequence of tokens. Afterward, they are processed throughmultiple layers
of self-attention and feedforward networks and reshaped into the next-state and reward.

4.2 Classical Transformer

This section will describe how the classical transformer architecture is implemented and
trained. The transformer is a non-autoregressive transformer (NAT), meaning it returns a
sequence of tokens directly instead of one token at a time. We implemented a basic decoder-
only transformer architecture, which has already been presented in section 2.3, where fig-
ure 4.2 further illustrates how the Mingrid state/action pair is fed through the transformer.
The transformer is trained to predict the next-state and reward from the current-state and
action. The upcoming paragraphs describe how the state/action pair is transformed into a
sequence of tokens, and how the output tokens are reshaped into the next-state and reward.

The Hyperparameters used for the transformer are shown in table A.1. The hyperparam-
eters were chosen based on hyperparameter optimization sweeps, which we conducted to
find the best-performing configuration. The hyperparameters were kept the same for the
sparse transformer, which we will describe in the next subsection.

State/Action to Token Embedding After discretization of the Minigrid state, as explained
in section 4.1, the state is flattened into a sequence of tokens, where each token corresponds
to a cell in the grid. Each token has a dimension of 24 (for the object, color, state, and agent)
and is concatenated with the action (which can take on the state of rotate left, rotate right,
forward), resulting in a token dimension of 27 after one-hot encoding.

These tokens are then projected to dmodel dimensions using a linear layer. Next, a learn-
able “reward token” of size dmodel is added at the last position, totaling the sequence length
to grid_height×grid_width+1 tokens. The reward token is initialized randomly andwill be
used to predict the reward of the next state, and allows the transformer to pass information
to it. Finally, the positional embeddings are added to each token embedding, after which it
is passed through the transformer layers.

Non-Autoregressive Transformer (NAT) The resulting sequence was processed by the
NAT, which feeds the input through three identical decoder layers. We furthermore em-
ployed a dropout rate of 0.15 after both the MHA and feedforward network.

Token Embedding to Next-State/Reward The output of the transformer is a sequence of
tokens of size grid_height× grid_width+1, where the majority of tokens correspond to the
next-state and the last token corresponds to the reward. The next-state tokens are reshaped
into a grid of size grid_height × grid_width, which is then passed through a linear layer to
reduce the dimensionality to 24. This results in a grid of size grid_height× grid_width× 24.
The reward token is passed through a linear layer to reduce the dimensionality to a scalar
value, which represents the predicted reward for the next state.
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4.3. Sparse Transformer

Loss Function The loss function used for training the classical transformer was a combi-
nation of two components: a cross-entropy loss for the next-state prediction and a mean
squared error (MSE) loss for the reward prediction. The cross-entropy loss used is actually
an adaptation called focal loss, introduced by Lin et al. (2017)—a variant that introduces a
modulating factor to focus more on hard-to-classify examples. This is particularly effective
for imbalanced datasets and has shown during our hyperparameter optimization sweeps to
outperform classical cross-entropy (CE) loss. To apply focal loss, we first split the next-state
prediction into its four variables (object, color, state, and agent) and applied the loss function
to each variable separately. To predict the reward, we made use of the MSE loss, as it is a
continuous value. The final loss was a weighted combination of the two losses, with weights
of 0.8 for the next-state loss and 0.2 for the reward loss, again chosen based on the results of
the hyperparameter optimization sweeps.

The focal loss implementation can be expressed mathematically as follows:

FocalLoss(predictions, targets) = 1

N

N∑
i=1

(1− pt)
γ · CEi (4.1)

where CEi is the cross-entropy loss for the i-th example, pt is the predicted probability
for the correct class, γ = 2.0 is the focusing parameter, and N is the number of examples.

4.3 Sparse Transformer
The sparse transformer is a modified version of the classical transformer, designed to exploit
the sparse structure of the state transitions in sparse-interactive environments. It was kept
as similar as possible to the classical transformer to ensure a fair comparison while introduc-
ing modifications that promote sparsity in the attention mechanism. The only differences
are the addition of an auxiliary loss that encourages sparsity in the attention maps and the
introduction of a thresholding mechanism to ensure that the information exchange is sparse
between tokens. As the sparse transformer is mostly identical to the classical transformer,
we will not repeat the details of the architecture here but rather focus on the differences and
additional components for the rest of this section.

The sparse transformer uses the same hyperparameters and training setup as the classical
transformer with three additional sparsity-related parameters (Asum loss function,Asum loss
weight and attention threshold), as shown in table A.1. We did perform hyperparameter
sweeps to find the best-performing configuration for the sparse transformer specifically but
found that the addition of the auxiliary loss and thresholding did not change the optimal
hyperparameter values.

L1 Attention Loss To be able to encourage sparsity, we need to modify the classical trans-
former to return the attention maps from the MHA module. This is done by modifying the
MHA module to return the attention weight matrix Al,h = Attention(Ql,Kl, Vl) for each
layer l and head h. This matrix has a size of grid_width×grid_width and contains the atten-
tion weight for each token in the sequence. This change does not affect the model’s output
directly yet. These attention maps are summed across all heads and layers, resulting in a
single attention weight matrix Asum.

We want to use L1-Loss on this matrix, which encourages the model to reduce the atten-
tion weights. However, due to the softmax operation within the MHA module, the matrix
sums to a constant, making L1-Loss ineffective. There are multiple ways to address this,
but through experimentation, we found that the most effective way is to exclude token self-
attention (the diagonal of the attention matrix) from the loss calculation. This shifts un-
necessary attention towards the diagonal, which decreases the overall information exchange
between tokens.
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This auxiliary loss is added to the main loss with a weight of 0.01 and can be expressed
mathematically as:

Asum =
L∑
l=1

H∑
h=1

Al,h (4.2)

Lossaux = Asum ⊙ (1− I) (4.3)
where Al,h is the attention weight matrix Attention(Ql,Kl, Vl) in layer l and head h, I is

the identity matrix and ⊙ is the element-wise multiplication.

Attention Thresholding Additionally, to ensure that low attention weights are not ampli-
fied in later layers, we add a threshold to the attention weight matrix. This is implemented
as an adjustable hyperparameter part of the transformer. Any attention weights below this
threshold in an attention head are set to 0 in the ScaledDotProduct module. Mathematically,
this can be expressed as:

Amod l,h = Al,h ⊙ 1Al,h>T (4.4)
where T = 0.1 is the threshold and 1 is the indicator function. To prevent instability dur-

ing training, we save the original attentionmatrixAl,h which is used to calculate the auxiliary
loss and use the modified attention matrix Amod l,h for the forward pass (and prediction).

Attention Interpretability For interpretability and analysis in a later chapter, we also track
which tokens attend to which other tokens through a binary mask η, which is initialized as
an identity matrix and updated across layers:

ηl = ηl−1 ·
H∑

h=1

Al,h (4.5)

where ηl is the attention mask for layer l, and η0 is initialized as an identity matrix. The
final mask η = ηL (where L is the number of layers) allows us to visualize the flow of in-
formation between tokens for specific transitions and analyze the learned attention patterns,
providing valuable insights into how the model makes decisions.

4.4 U-Net
Similar to the transformer section, this section will mainly focus on the work done to adapt
the U-Net architecture for the Minigrid environment, as the general U-Net architecture has
already been presented in section 2.4.

We chose the hyperparameters outlined in table A.2, which were found to work well
during hyperparameter optimization sweeps.

State/Action to InputGrid Like the transformermodels, theU-Net requires first discretiza-
tion of theMinigrid state, as explained in section 4.1. This results in a grid of size grid_height
× grid_widthwith 24 channels. Afterward, the action is concatenated to every cell in the grid,
resulting in an input tensor of size grid_height × grid_width × 27 (24 for the state and 3 for
the action).

U-Net This input was processed through a U-Net architecture with three downsampling
stages usingMaxPool2D and DoubleConvmodules, reducing the spatial dimensions to 2×2.
The network then used three upsampling stages with skip connections from the correspond-
ing downsampling stages.
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Figure 4.3: U-Net implementation. The model concatenates the action to every cell in the
current-state grid and then processes the input through multiple downsampling and up-
sampling stages with skip connections. The output is a grid of the same size as the input,
representing the next state. The reward is predicted separately using a linear layer.

Output Grid to Next-State/Reward The U-Net returns an output grid of the same size
as the input but with only 24 channels, representing the next state. The reward is predicted
separately using a linear layer by flattening the output grid and passing it through two linear
layers with ReLU activation (grid_height× grid_width× 24 → 256 → 1).

Loss Function Similar to the transformer models, the loss function was a weighted com-
bination of the next-state loss and reward loss. While the classical and sparse transformers
used a combination of cross-entropy loss (focal loss) andMSE loss, the U-Net used a custom
loss function called rebalanced focal loss for the state, which is a variant of focal loss that in-
corporates classweighting to address the class imbalance in the training data. We tried to use
the same focal loss as the transformer models but found that it significantly underperformed
compared to the rebalanced focal loss. The final loss was a combination of the next-state loss
(rebalanced focal loss) and reward loss (MSE Loss), weighted 0.8 and 0.2 respectively.

The rebalanced focal loss extends focal loss by incorporating class weighting:

weightc =
{max(class_counts)

class_countsc if class_countsc > 0

0 otherwise
(4.6)

where class_counts is the number of samples for each class in the training data. The rebal-
anced focal loss can then be expressed as:

RebalancedFocalLoss(predictions, targets) = 1

N

N∑
i=1

(1− pt)
γ ·weightci · CEi (4.7)
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Chapter 5

Experiments and Results

This chapter presents a comprehensive evaluation of our sparse transformer architecture
compared to classical transformers and U-Net models. We conducted experiments across
multiple training configurations to test our central hypothesis: that sparse transformers can
achieve better generalization than classical transformers in sparse-interactive environments
and specifically Minigrid. Our evaluation encompasses both In-Distribution (ID) and Out-
of-Distribution (OOD) scenarios, with detailed error analysis and ablation studies to under-
stand the mechanisms behind model performance.

5.1 Experimental Setup
Our source code is available on GitHub1 and the models were implemented using PyTorch.
All experiments were conducted on a system with the following specifications:

• Operating System: NixOS 25.04

• CPU: AMD Ryzen 7 2700X (16) @ 3.700GHz

• GPU: AMD Radeon RX 7900 XTX (24GB)

• Memory: 32GB

We evaluated the three architectures—classical transformer, sparse transformer, and U-
Net—across multiple distinct training datasets, by varying both the number of training en-
vironments and the percentage of training samples used. Each configuration was run with
10 different random seeds to ensure statistical reliability. Evaluating the model on multi-
ple configurations allows us to systematically assess how each architecture performs as data
availability increases.

We validated the models on two different datasets: one for ID evaluation and one for
OOD evaluation. The ID validation set consists of the held-out samples from the training en-
vironments, while the OOD validation set consists of 10 new unique, exhaustively sampled,
environments. This setup allows us to assess howwell the models generalize to unseen envi-
ronments and how they performondata that is similar to the training data. The experimental
design follows section 3.3.1.

5.2 Training Convergence
All models achieved 100% training transition accuracy across all configurations, which is ex-
pected given the deterministic nature of the Minigrid environment and the absence of noise

1https://github.com/justanotherariel/SparseTransformerWorldModel

25

https://github.com/justanotherariel/SparseTransformerWorldModel


5. EXPERIMENTS AND RESULTS

(a) 1 Environment (b) 2 Environments

Figure 5.1: ID Validation transition accuracy for the U-Net, classical transformer, and sparse
transformer models. Each bar represents the average transition accuracy across 10 random
seeds, with error bars showing standard deviation. Asterisks denote statistical significance
when comparing the performance to the sparse transformer. This data can be found in ap-
pendix A.2 in tabular form.

in the data. This perfect training accuracy serves as a prerequisite for evaluating general-
ization capabilities rather than an indication of overfitting. Interestingly, we observed that
validation performance continued to improve significantly after achieving perfect training
accuracy. Typically, 100% training accuracy was achieved after approximately 1,000 epochs,
while validation accuracy converged after about 3,000 epochs, indicating that the models
continued to learn generalization patterns even after perfectly fitting the training data. We
thus set the training epochs to 4,000, which was sufficient for all models to stabilize.

5.3 ID Model Comparison

We first compare the U-Net, classical transformer, and sparse transformer models on ID gen-
eralization, where the training and validation data are drawn from the same distribution.
For this, we exhaustively sample n environments and split these samples into training and
validation sets, where a ’Training Data Percentage’ parameter specifies the percentage how
many samples are included in the training data set (see section 3.3.1). Training the models
on 1 and 2 environments, we observe (in figure 5.1) that the classical and sparse transformer
models achieve similar performance, while the U-Net performs significantly worse, catching
up only when trained on 4 or more environments. This leads us to conclude, that ID gener-
alization performance does not significantly benefit from sparsity regularization and more
challenging environments might be required to see the benefits of the sparse transformer.

5.4 OODModel Comparison

We now compare the three models on OOD data generalization performance, where the
training and validation data are drawn from different distributions. For this, we exhaus-
tively sample n train environments as well as 10 validation environments. From the train
environment samples, only a percentage is used for training, which we refer to as ’Training
Data Percentage’.

Figure 5.2 shows the OOD validation transition accuracy for the three models across
varying training datasets, increasing the available data with each configuration. No model
achieved above 1% transition accuracy on the OOD validation set when trained on only 1
environment, which is why we do not show this configuration in figure 5.2. In the OOD
scenario, each model exhibits distinct strengths:
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5.4. OOD Model Comparison

(a) 2 Environments (b) 4 Environments

(c) 8 Environments (d) 16 Environments

Figure 5.2: Comparison ofmodel performance across different data percentages and environ-
ment counts. Each bar (and the number on top) represents the average validation transition
accuracy across 10 random seeds, with error bars showing standard deviation. The sparse
transformer (green) consistently and significantly outperforms other architectures with lim-
ited data, while the U-Net (blue) excels with more abundant data. The classical transformer
(red) shows moderate performance across all configurations. Asterisks denote statistical
significance when comparing the performance to the sparse transformer. The asterisk is red
when themodel is better than the sparse transformer. This data can be found in appendixA.2
in tabular form.

• The classical transformer performs reasonablywell overall, showingdecent performance
with limited data and approaching perfect accuracy with more data.

• The U-Net exhibits the best performance with abundant data, achieving near-perfect
accuracy. However, it struggles with limited data, particularly in the 4-environment
configuration, where it performs poorly.

• The sparse transformer outperforms the classical transformer with limited data but is
eventually matched or surpassed by both the classical transformer and U-Net as data
volume increases. This supports our hypothesis that the sparsity constraint improves
generalization in low-data regimes.

Standard Deviation A notable finding is that the sparse transformer not only achieves
higher average validation accuracy with limited data but also demonstrates significantly
lower standard deviation across different random seeds. For example, when training on
4 environments with 20% of the data, the classical transformer reaches an average accuracy
of 0.6876 ± 0.1042, while the sparse transformer achieves 0.7998 ± 0.0286. The sparse trans-
former’s standard deviation is approximately one-fourth of the classical transformer’s vari-
ability. This pattern holds across most configurations, indicating that the sparse transformer
consistently finds better solutions regardless of initialization parameters.

Train Envs: 4, Train Data: 20% Figure 5.3 illustrates this convergence behavior for a single
experimental configuration (4 environments, 20% data). After approximately 2,750 epochs,
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5. EXPERIMENTS AND RESULTS

Figure 5.3: Transition accuracy over training epochs for Classical Transformer, Sparse Trans-
former, and U-Net with 4 Train Environments and 20% Train Data. Shaded areas represent
the standard deviation across 10 random seeds. Note how the sparse transformer starts to
converge to a consistent solution with minimal variance after approximately 1,750 epochs.

all seeds of the sparse transformer converge to a similar solution, while the classical trans-
former and U-Net continue to show high variability. This suggests that the sparse trans-
former effectively reduces the solution space, leading to more consistent and reliable perfor-
mance.

5.5 OOD Error Analysis
In this section, we analyze the errors made by the models on the OOD validation set. We
first qualitatively analyze the common failure patterns observed across the models, followed
by a quantitative analysis of these error types.

5.5.1 Qualitative Analysis
Our qualitative analysis revealed several common failure patterns across the models:

1. Agent Inconsistencies: The agents’ position is not consistently predicted in the next
state, leading to incorrect predictions of the agent’s location. We observed, for example,
that the agent sometimes appears in thewrong cell, is not predicted at all or is predicted
multiple times in the next state.

2. Grid Modification: The transformer models specifically sometimes modify cells unre-
lated to the agent’s position, indicating overfitting to specific training grids.

3. Incorrect Rotation: In some cases, the agent rotates in the wrong direction.

5.5.2 Quantitative Analysis
Wenow quantitatively analyze the errors made by themodels on the OOD validation set and
focus on models trained on 2 environments with 20% of the available data, as this configu-
ration highlights the differences in generalization capabilities most clearly. The results for
other training configurations can be found in appendix A.2.
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5.6. Sparse Transformer: η Attention Pattern Analysis

• Action-dependent Performance: Categorizing the evaluated samples by action type
(forward, and rotation) shows that the transformer models struggle most with the for-
ward action, which requires more complex reasoning about the agent’s position and
the state of the forward cell. Still, the sparse transformer outperforms the classical
transformer in both action types, achieving 0.2825 (± 0.0470) OOD validation transi-
tion accuracy for forward actions and 0.8 (± 0.1338) for rotation actions, compared to
the classical transformer’s 0.0876 (± 0.0374) and 0.3334 (± 0.1877), respectively.

• Object Accuracy: One of the reasons for this significant increase in transition accu-
racy of the sparse transformer is its ability to predict the object type of all cells in the
next state accurately. The sparse transformer achieves an object accuracy of 0.9334 (±
0.1163), while the classical transformer achieves only 0.3805 (± 0.1937). This difference
is statistically significant (t = 7.73, p < 0.001, Cohen’s d = 3.46). The U-Net claims the
lowest object accuracy of 0.2375 (± 0.0672). This indicates that due to the sparsity reg-
ularization, the sparse transformer learns that during a transition, most cell variables
should remain unchanged, and only the agent’s position needs to be updated.

• Agent Accuracy: Considering only the agents’ positional predictions, disregarding
any errors made regarding cell types, we find that the sparse transformer achieves an
agent accuracy of 0.6683 (± 0.0511), while the classical transformer achieves 0.6173 (±
0.0433). This difference is also statistically significant (t = 4.64, p < 0.001, Cohen’s d =
2.07). The U-Net again achieves the lowest agent accuracy of 0.1689 (± 0.0364). This
means that the sparse transformer not only was able to learn that most cells should
remain unchanged during a transition, but also was able to better generalize the move-
ment of the agent to new unseen environments.

• Reward Prediction Difficulty: All models struggle with correctly predicting positive
rewards, which are highly underrepresented in the training data (most rewards are 0),
making this task particularly prone to overfitting. Nevertheless, the sparse transformer
was able to achieve a 0.5818 (± 0.2307) reward prediction accuracy, neither the classical
transformer nor the U-Net were able to correctly predict a single positive reward.

These results indicate that the sparsity regularization term, and the added thresholding,
allows the transformer to generalize more effectively on multiple levels, altough only in low-
data regimes. As training data becomes more abundant, the classical transformer and U-Net
eventually catch up to the sparse transformer’s performance.

5.6 Sparse Transformer: η Attention Pattern Analysis
The sparse attention mechanism allows us to analyze and interpret how information flows
through the network by examining the η attentionmap presented in section 4.3. By analyzing
the attention patterns, we can gain insights into how themodel learns to process information
and make predictions. In this section, we will present some illustrative examples of the η
attention maps learned by the sparse transformer. For real examples generated by the sparse
transformer, see appendix A.4.

5.6.1 Qualitative Analysis
Our qualitative analysis identified several distinct attention patterns. For brevity, we will
name the cell containing the agent as the agent cell, and the cell in front of the agent as the
forward cell. The attention patterns are as follows:
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5. EXPERIMENTS AND RESULTS

(a) OOD validation agent accuracy over train-
ing epochs. Agent accuracy is defined as the
percentage of samples where the agent’s posi-
tion is correctly predicted.

(b)OODvalidation object accuracy over train-
ing epochs. Object accuracy is defined as the
percentage of samples where the object type
of all cells is correctly predicted.

Figure 5.4: Performance comparison of Classical Transformer, Sparse Transformer, and U-
Net with 4 Train Environments and 20% Train Data. Shaded areas represent the standard
deviation across 10 random seeds.

Rotation Actions Rotation actions (turn left/right) are straightforward, and, considering
the rotation OOD validation transition accuracy, easily learned by the model. Thus only the
ideal pattern is observed in the η attention maps, where tokens only attend to themselves.
This is due to the fact that rotation only affects the agent’s orientation within its agent cell,
and no other cells change. An example of this pattern is shown in figure 5.5a.

Forward Action The forward action is more complex, as it requires the model to consider
the agent’s position and the state of the forward cell. We observed three main patterns in the
η attention maps for forward actions:

• Ideal Pattern: Most tokens attend only to themselves, except for the agent cell and the
forward cell, which exchange information with each other. An example of this pattern
is shown in figure 5.5b.

• Agent Overfit Pattern: The agent cell receives no information from the forward cell.
This indicates that the model has learned that the agent can alwaysmove forward from
this position, neglecting to check whether the forward cell is a wall or empty space. An
example of this pattern is shown in figure 5.5c.

• Multiple Agent Pattern: A random output token receives information from the agent
cell, potentially causing an additional agent to appear in the prediction. An example
of this pattern is shown in figure 5.5d.

In all scenarios, we occasionally observed random information exchange between tokens
unrelated to the agent’s position, usually with no effect on the prediction.

5.6.2 Quantitative Analysis
Quantitatively, we analyzed the prevalence of these patterns in our trained models. First, we
examined the distribution of the number of tokens attending to each other in the η attention
maps by asking the question: ”How often do exactly x tokens attend to each other across all
validation samples?” This analysis provides insights into how well our sparsity regulariza-
tion helps the model to focus on the minimal necessary information for making predictions.
Figure 5.6 shows the distribution of the number of tokens attending to each other in the η
attention maps for the sparse transformer trained on 4 environments with 20% of the data.
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(a) Action: Rotate. Shows the ideal pattern
when rotating the agent. All tokens attend to
themselves, as rotation only affects the agent cell
and it does not require any other information.
All other cells remain unchanged.
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(b) Action: Forward. Shows the ideal pattern
when walking towards an empty field. All to-
kens attend to themselves, except for the agent
cell and the forward cell, which exchange infor-
mation with each other.
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(c) Action: Forward. Shows the agent overfit
pattern, where the forward cell did not attend
to the agent cell, indicating that the model has
learned that the agent can always move forward
from this position, neglecting to check whether
the forward cell is a wall or empty space.
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(d) Action: Forward. Example of a spurious
agent. Themodel predicts two agents in the next
state, due to the fact that a random output token
receives information from the agent cell.

Figure 5.5: Illustrative examples of η attention patterns learned by the sparse transformer.
η attention matrices are binary masks, a black dot indicates that the output token receives
information from the input token. The green and red shades indicate the agent cell and
forward cell, respectively. For full-size examples, see appendix A.4.

31



5. EXPERIMENTS AND RESULTS

Figure 5.6: η Attention Map Sparsity on OOD validation data when training the model on
4 Mingrid 9 × 9 environments and keeping 20 % of the data. The plot shows the number
of validation samples for which a specific number of tokens attend to each other. The ideal
pattern would be a bar at 82 (9 × 9 + 1, only tokens attending to themselves, for rotation
action), and 84 (tokens attending to themselves plus information exchange between agent
cell and forward cell, for forward action).

The plot shows that the L1 loss encourages sparsity in the η attention maps, but most
samples attend to more components than necessary, with a peak at around 84 and a long
tail towards 123+. Considering that the ideal pattern for rotation actions would be a bar
at 82 (only tokens attending to themselves, for rotation action), and 84 (tokens attending
to themselves plus information exchange between agent cell and forward cell, for forward
action), this is suboptimal. We tried to increase the weight of the sparsity regularization
term in the loss function to encourage the model to learn even sparser attention, but while
this did lead to a stronger peak at 82 and the OOD validation transition accuracy increased
when trained on very little data—achieving 0.7096% (±0.0448) OOD validation transition
accuracy—model performance plateaued at around 85% accuracy even when training on 16
environments with 60% of the data.

Categorizing the samples into a group based on the action taken, we found that the rota-
tion action has stronger peaks at 82 and 84, while the forward action has a peak at around 90.
This divergence is unsurprising, as the forward action requires more information exchange
cells. The sparse transformer thus correctly learns that to predict a single next-state compo-
nent, less information from other components is needed for rotation actions than for forward
actions.

Overall, we can conclude that the sparse transformer does learn to focus on fewer com-
ponents and thus our method works, but it does not achieve perfect sparsity in the attention
maps. Nevertheless, even with the suboptimal attention maps, we can still observe a signif-
icant improvement in OOD validation transition accuracy compared to the classical trans-
former, indicating that the sparsity regularization does help the model to generalize better.

5.7 Additional Experiments

To better understand the robustness and mechanisms underlying our sparse transformer ap-
proach, we conducted two additional experiments that examined different aspects of the
model’s behavior.
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5.7. Additional Experiments

Figure 5.7: Example of mapping next-state components to another representation. The cur-
rent state is unchanged, but each next state component is mapped to a different deterministic
representation.

5.7.1 Next-State Component Mapping
We investigated whether the sparse transformer’s improved generalization stems from learn-
ing to preserve unchanged state components or from a more fundamental understanding of
sparse dependencies. To test this, we trained the sparse transformer on a modified dataset
where each next-state component was mapped to a different representation using a deter-
ministic function while keeping the current state unchanged. This transformation ensures
that all cells change after a transition, as illustrated in figure 5.7.

The results showed no significant change in validation transition accuracy for both ID and
OOD evaluation, indicating that the model’s improved generalization stems from learning
appropriate sparse dependencies rather than simply preserving unchanged components.

5.7.2 Separate Action Token Architecture
We explored an alternative architecture where the action is represented as a separate token
rather than concatenated to every state component. In this ”SepAction” variant, the action
token attends to the current state independently, which we hypothesized might provide a
more natural modeling of the action-state relationship.

However, thismodification significantly decreased validation transition accuracy for both
ID and OOD evaluation across both sparse and classical transformers. This result suggests
that the direct integration of action information with each state component significantly en-
hances the transformers’ ability to generalize and separating them requires the model to
learn complex cross-modal relationships from scratch.

Despite the overall performance decrease, the SepAction sparse transformer still outper-
formed the SepAction classical transformer on OOD validation metrics, particularly object
accuracy. This confirms that sparsity regularization provides consistent benefits across dif-
ferent architectural choices. The complete results for the SepAction variants are presented
in table A.10.
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Chapter 6

Related Work

Our research builds upon several established areas of study in the field of reinforcement
learning and transformer architectures. This chapter contextualizes ourwork on sparse trans-
formers for model-based reinforcement learning by reviewing relevant literature on sparse
attention mechanisms and structured world models in reinforcement learning. We highlight
existing approaches and identify the gaps our research aims to address, particularly in im-
proving generalization in environments with sparse interactions.

6.1 Sparse Attention Mechanisms
The development of sparse attention mechanisms represents a significant research direction
in transformer architectures. Child et al. (2019) introduced the Sparse Transformer, which
uses fixed and strided sparse attention patterns to reduce the quadratic complexity of atten-
tion, enabling processing of longer sequences. They showed that this approach delivered
competitive performance on image classification tasks compared to dense attention, while
significantly reducing memory and computation costs.

Building on this idea, Tay et al. (2020) proposed Sparse Sinkhorn Attention, which em-
ploys differentiable sorting of internal representations and learns to generate latent permuta-
tions over sequences. This approach allows for computing quasi-global attention with only
local windows, improving memory efficiency.

Correia, Niculae, andMartins (2019) introduced the adaptively sparse Transformer, which
replaces the standard softmaxwith α-entmax, a differentiable generalization that allows low-
scoring words to receive precisely zero weight. Their approach enables attention heads to
have flexible, context-dependent sparsity patterns.

Unlike these approaches that focus primarily on computational efficiency, our work ex-
plores how sparsity can serve as an inductive bias that improves generalization in reinforce-
ment learning environments with sparse interactions. While prior sparse attention mecha-
nisms often employ fixed patterns or complex sorting networks, our approach uses a simple
L1 regularization and thresholding mechanism that encourages the model to learn which
connections are most important based on the environment’s structure.

6.2 Structured World Models in Reinforcement Learning
Model-based reinforcement learning has seen renewed interest due to its sample efficiency
advantages. Hafner, Lillicrap, I. Fischer, et al. (2019) introduced PlaNet, a purely model-
based agent that learns the environment dynamics from images and plans through a la-
tent space. Building on this, Hafner, Lillicrap, Ba, et al. (2020) presented Dreamer, which
efficiently learns behaviors by propagating analytic gradients of learned state values back
through trajectories imagined in the compact state space of a learned world model.
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6. RELATED WORK

Particularly relevant to our work is research that incorporates structural priors into world
models. Our approach differs by focusing specifically on environments with sparse interac-
tions, where state transitions depend primarily on a small subset of the state space. Rather
than imposing a fixed relational structure, our sparse transformer learns which state compo-
nents are relevant for prediction through attention mechanisms, potentially offering greater
flexibility across different environment types.

6.3 Distinctiveness of Our Approach
Our work synthesizes ideas from sparse attention mechanisms and structured world models
but with a unique focus on leveraging sparsity as an inductive bias for generalization in
environments with sparse interactions.

The key distinctions of our approach include:

1. A focus on generalization rather than computational efficiency as the primary motiva-
tion for sparse attention

2. A simple regularization and thresholding approach that encourages the transformer to
learn which connections are important, rather than imposing fixed attention patterns

3. A systematic evaluation methodology specifically designed to test generalization in
environments with sparse interactions

4. A direct comparison with models that have different inductive biases (standard trans-
formers and U-Net), providing insights into which architectural choices are most effec-
tive for different data regimes

By demonstrating that sparse transformers can generalize better than classical transform-
ers in sparse-interactive environments, especially in low-data regimes, our work contributes
to the ongoing effort to develop more efficient and robust reinforcement learning algorithms
through the incorporation of appropriate inductive biases.
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Chapter 7

Conclusion

This thesis has investigated the hypothesis that sparse transformers can better generalize
than classical transformers in sparse-interactive environments, particularly in low-data regimes.
Through systematic experimentation and analysis, we have demonstrated several key find-
ings that support this hypothesis.

Generalization Improvements Ourproposed sparsity-regularized transformer consistently
outperformed the classical transformer and U-Net when evaluating them on OOD data and
training them on limited data. This advantage was most pronounced when the training
dataset consisted of only 2 or 4 unique environments with 20-40% of the available samples.
Here, the sparse transformer achieved up to 41% higher average validation transition ac-
curacy, a statistically significant improvement (p < 0.001, Cohen’s d = 2.07, 95% CI: [0.22,
0.60]). The performance gain diminished as the amount of training data increased, with all
architectures eventually converging to near-perfect accuracy with sufficient data. The U-Net
architecture specifically, which has a strong spatial inductive bias well-suited to grid-based
environments, outperformed both transformer variants with abundant data, highlighting
the trade-offs between different inductive biases.

Perhaps more significantly, our sparse transformer demonstrated remarkably lower vari-
ance across random initializations compared to the classical transformer. This consistency—
with standard deviations often one-fourth that of the classical transformer—suggests that
the sparsity constraint guides the model toward more stable solutions, reducing sensitivity
to initialization and leading to more reliable performance across training runs.

Learned Attention Patterns Qualitative analysis of the learned attention patterns revealed
that the sparse transformer successfully captured theminimal information exchange between
components of the environment. For rotation actions, it learned to keep information local,
while for forward actions, it learned to exchange information primarily between the agent’s
current position and the forward cell. Nevertheless, the sparse transformer also often in-
cluded some irrelevant cells in its attention, indicating that it did not achieve perfect sparsity.
Further increasing the weight of the sparsity regularization term made the model more con-
servative, but also led to a drop in performance, suggesting a trade-off between sparsity and
expressiveness.

Broader Implications We demonstrate that incorporating appropriate inductive biases, in
this case, sparsity in attention patterns, can significantly improve model performance with-
out requiring complex architectural changes. This simplicity is a strength, as it suggests the
possibility of applying similar principles to a wide range of reinforcement learning problems
with sparse dependency structures.
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7. CONCLUSION

In conclusion, our research provides empirical evidence that sparse transformers can in-
deed generalize better than classical transformers in sparse-dependent environments, partic-
ularlywhen training data is limited. By encouraging themodel to focus only on relevant state
components, we effectively reduce overfitting and improve sample efficiency. These findings
contribute to the broader goal of developing more efficient and robust reinforcement learn-
ing algorithms through the incorporation of appropriate inductive biases, opening avenues
for future research in this promising direction.
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Chapter 8

Future Work

While our research demonstrates the effectiveness of sparse transformers in improving gen-
eralization for sparse-interactive environments, several promising avenues remain for future
investigation. These directions could further validate our findings, extend the applicability
of our approach, and address current limitations.

Positional Encoding One particularly intriguing direction involves investigating the im-
pact of positional encoding choices on model performance. Our preliminary experiments
with sinusoidal positional embeddings showed potential improvements in generalization
compared to learned embeddings, especially using 2D sinusoidal embeddings in grid-based
environments. However, evaluating this further was beyond the scope of our current work.
Future research could systematically explore various positional encoding strategies, includ-
ing learned embeddings, sinusoidal encodings, and even hybrid approaches that combine
both. This could help identify the most effective encoding for different types of sparse-
interactive environments and provide deeper insights into how positional information in-
fluences model performance.

Handling Partial Observability Another important limitation of our current implementa-
tion is its inability to handle partially observable Markov decision processes (POMDPs), as
our proposed transformer implementation processes only single state-action pairs without
maintaining information from previous observations. Extending our sparse transformer to
handle partial observability would significantly broaden its applicability to real-world sce-
narios where agents rarely have access to complete state information. This could involve in-
corporatingmemorymechanisms such as recurrent connections or attention over past states,
or alternatively, modifying the architecture to process sequences of state-action pairs simul-
taneously. Such extensions would need to preserve the sparse attention properties while
enabling the model to maintain and selectively access relevant historical information.

Integration intoModel-Based RL Frameworks Perhaps themost critical next step involves
integrating our sparse transformer into a completemodel-based reinforcement learning frame-
work. While we have demonstrated superior generalization in supervised learning settings,
the ultimate test lies in whether these improvements translate to better policy learning when
the sparse transformer serves as a world model. Integration with established frameworks
like PlaNet (Hafner, Lillicrap, I. Fischer, et al. 2019) or Dreamer (Hafner, Lillicrap, Ba, et al.
2020) would allow us to evaluate whether the improved sample efficiency and generaliza-
tion we observed lead to faster convergence, better asymptotic performance, or improved
robustness in online reinforcement learning settings. This integration would also reveal any
challenges that arise when using sparse transformers for multi-step planning or when the
model must handle the distribution shift that occurs as the policy improves during training.
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8. FUTURE WORK

These future directions collectively aim to transform our promising initial results into
a practical tool for improving sample efficiency in reinforcement learning. By addressing
current limitations and validating our approach in more challenging settings, we can work
toward realizing the full potential of sparse transformers as world models in reinforcement
learning applications.
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Appendix A

Complementary Material

In this appendix, we provide additional data and results that complement the findings pre-
sented in the main text.

A.1 Hyperparameters
In this section, we present the hyperparameters used for training the classical transformer,
sparse transformer, and U-Net models. These hyperparameters were chosen based on hyper-
parameter optimization sweeps and are consistent across all runs to ensure comparability
unless indicated otherwise.

Table A.1: Transformer and Sparse Transformer Hyperparameters

Parameter Transformer Sparse Transformer
Training

Epochs 4000 4000
Batch size 2048 2048
Optimizer Adafactor Adafactor
Learning rate 0.01 0.01

Model
Number of heads 4 4
Number of layers 3 3
dmodel 128 128
dff 128 128
Dropout probability 0.15 0.15
Attention threshold – 0.1

Loss
State loss function FocalLoss FocalLoss
State loss weight 0.8 0.8
Reward loss function MSELoss MSELoss
Reward loss weight 0.2 0.2
Asum loss function – L1Loss (excl. diagonal)
Asum loss weight – 0.01

A.2 OOD Validation Accuracies
This section presents the validation accuracies for the different configurations of the clas-
sical transformer, sparse transformer, and U-Net models in tabular form. Each table lists
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Table A.2: U-Net Hyperparameters

Parameter Value
Training

Epochs 4000
Batch size 2048
Optimizer AdamW
Learning rate 0.005
Scheduler StepLRScheduler
Scheduler decay time 150
Scheduler decay rate 0.7

Model
Hidden channels [48, 96, 192]

Loss
State loss function RebalancedFocalLoss
State loss weight 0.8
Reward loss function MSELoss
Reward loss weight 0.2

the mean and standard deviation across the 10 runs with different initialization seeds for
each configuration. A configuration is defined by the number of environments and the keep
probability. For example, the configuration ”envs: 4, keep: 0.2” indicates that the training
dataset consisted of 4 unique environments that were exhaustively sampled after which 20%
of the samples were randomly chosen to be kept. The remaining 80% of the samples were
discarded. The OOD validation dataset consists of 10 other unique environments, which
were exhaustively sampled and evaluated on in their entirety.

1. Validation Transition Accuracy: The accuracy of the model in predicting the complete
next state and reward correctly given the current state and action is shown in table A.3.

2. Validation Transition Accuracy (Forward): Grouping the samples together by the ac-
tion taken, the accuracy of the model in predicting the complete next state and reward
correctly when the action is ’forward’ is shown in table A.4.

3. Validation Transition Accuracy (Rotate): Similarly, table A.5 shows the accuracy of
the model in predicting the complete next state and reward correctly when the action
is ’rotate left/right’.

4. Validation One Agent Samples Accuracy: This accuracy represents the percentage of
predicted samples where the next-state contains only one agent, irrespective wheter
this agent is in the correct position. Other errors, such as predicting the wrong object
or color of cells, are also not taken into account. This accuracy is shown in table A.6.

5. ValidationAgent Accuracy: This accuracy focuses on a single variable of the next-state,
the agent and measures the percentage of samples where the agent is predicted in the
correct position. This accuracy does not take into account the reward or any prediction
about the action/state of any cell. The results are shown in table A.7.

6. Validation Object Accuracy: Similarly, this accuracy focuses on the object variable of
the next-state and measures the percentage of samples where the object is predicted in
the correct position. The results are shown in table A.8.
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A.3. OOD Validation Accuracy: SepAction Transformer Variant

Configuration Classical Sparse U-Net
envs: 1, keep: 0.2 0.0001 (± 0.0002) 0.0018 (± 0.0053) 0.0000 (± 0.0000)
envs: 1, keep: 0.4 0.0000 (± 0.0000) 0.0194 (± 0.0279) 0.0000 (± 0.0000)
envs: 1, keep: 0.6 0.0000 (± 0.0000) 0.0472 (± 0.0810) 0.0000 (± 0.0001)
envs: 2, keep: 0.2 0.2514 (± 0.1346) 0.6275 (± 0.0978) 0.0384 (± 0.0120)
envs: 2, keep: 0.4 0.3146 (± 0.2468) 0.7271 (± 0.1352) 0.0641 (± 0.0355)
envs: 2, keep: 0.6 0.4635 (± 0.2928) 0.8256 (± 0.0853) 0.0848 (± 0.0412)
envs: 4, keep: 0.2 0.6876 (± 0.1042) 0.7998 (± 0.0286) 0.2380 (± 0.0455)
envs: 4, keep: 0.4 0.7239 (± 0.1573) 0.8522 (± 0.0351) 0.5056 (± 0.1233)
envs: 4, keep: 0.6 0.8004 (± 0.1663) 0.9050 (± 0.0158) 0.6778 (± 0.1014)
envs: 8, keep: 0.2 0.7807 (± 0.1086) 0.8521 (± 0.0194) 0.6392 (± 0.0694)
envs: 8, keep: 0.4 0.8193 (± 0.1126) 0.8861 (± 0.0696) 0.8382 (± 0.0672)
envs: 8, keep: 0.6 0.8640 (± 0.1155) 0.9407 (± 0.0125) 0.8999 (± 0.0383)
envs: 12, keep: 0.2 0.7674 (± 0.1119) 0.8627 (± 0.0240) 0.8003 (± 0.0583)
envs: 12, keep: 0.4 0.8372 (± 0.1313) 0.9213 (± 0.0204) 0.9148 (± 0.0250)
envs: 12, keep: 0.6 0.8977 (± 0.1088) 0.9598 (± 0.0110) 0.9743 (± 0.0108)
envs: 16, keep: 0.2 0.9164 (± 0.0120) 0.8879 (± 0.0261) 0.8886 (± 0.0373)
envs: 16, keep: 0.4 0.9703 (± 0.0109) 0.9570 (± 0.0239) 0.9808 (± 0.0053)
envs: 16, keep: 0.6 0.9855 (± 0.0063) 0.9815 (± 0.0097) 0.9906 (± 0.0022)

Table A.3: OOD Validation/Transition Accuracy - Across Configurations (mean ± standard
deviation)

A.3 OOD Validation Accuracy: SepAction Transformer Variant
Table A.10 shows the OOD validation transition accuracy of the SepAction Transformer vari-
ant, which does not encode the agent’s action in the state representation. Instead, it uses
adds a separate token to the input sequence that indicates the action to be executed.
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Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.0000 (± 0.0000) 0.0000 (± 0.0000) 0.0000 (± 0.0000)
envs: 1, keep: 0.4 0.0000 (± 0.0000) 0.0049 (± 0.0146) 0.0000 (± 0.0000)
envs: 1, keep: 0.6 0.0000 (± 0.0000) 0.0393 (± 0.0947) 0.0000 (± 0.0000)
envs: 2, keep: 0.2 0.0876 (± 0.0374) 0.2825 (± 0.0470) 0.0268 (± 0.0140)
envs: 2, keep: 0.4 0.1694 (± 0.1608) 0.4170 (± 0.0786) 0.0502 (± 0.0250)
envs: 2, keep: 0.6 0.3184 (± 0.2361) 0.5919 (± 0.0739) 0.0808 (± 0.0329)
envs: 4, keep: 0.2 N/A 0.4269 (± 0.0874) N/A
envs: 4, keep: 0.4 N/A 0.6034 (± 0.0741) N/A
envs: 4, keep: 0.6 N/A 0.7268 (± 0.0457) N/A
envs: 8, keep: 0.2 N/A 0.5623 (± 0.0544) N/A
envs: 8, keep: 0.4 N/A 0.7197 (± 0.0836) N/A
envs: 8, keep: 0.6 N/A 0.8223 (± 0.0372) N/A
envs: 12, keep: 0.2 N/A 0.5891 (± 0.0722) N/A
envs: 12, keep: 0.4 N/A 0.7642 (± 0.0610) N/A
envs: 12, keep: 0.6 N/A 0.8793 (± 0.0330) N/A
envs: 16, keep: 0.2 N/A 0.6652 (± 0.0754) N/A
envs: 16, keep: 0.4 N/A 0.8709 (± 0.0716) N/A
envs: 16, keep: 0.6 N/A 0.9445 (± 0.0291) N/A

Table A.4: OOD Validation/Transition Accuracy (Forward) - Across Configurations (mean
± standard deviation)

Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.0001 (± 0.0003) 0.0027 (± 0.0080) 0.0000 (± 0.0000)
envs: 1, keep: 0.4 0.0000 (± 0.0000) 0.0267 (± 0.0369) 0.0000 (± 0.0000)
envs: 1, keep: 0.6 0.0000 (± 0.0000) 0.0511 (± 0.0768) 0.0000 (± 0.0001)
envs: 2, keep: 0.2 0.3334 (± 0.1877) 0.8000 (± 0.1338) 0.0442 (± 0.0151)
envs: 2, keep: 0.4 0.3872 (± 0.2958) 0.8822 (± 0.1836) 0.0710 (± 0.0435)
envs: 2, keep: 0.6 0.5360 (± 0.3341) 0.9425 (± 0.1029) 0.0867 (± 0.0573)
envs: 4, keep: 0.2 N/A 0.9862 (± 0.0121) N/A
envs: 4, keep: 0.4 N/A 0.9766 (± 0.0375) N/A
envs: 4, keep: 0.6 N/A 0.9941 (± 0.0146) N/A
envs: 8, keep: 0.2 N/A 0.9971 (± 0.0029) N/A
envs: 8, keep: 0.4 N/A 0.9693 (± 0.0854) N/A
envs: 8, keep: 0.6 N/A 0.9999 (± 0.0002) N/A
envs: 12, keep: 0.2 N/A 0.9995 (± 0.0011) N/A
envs: 12, keep: 0.4 N/A 0.9998 (± 0.0004) N/A
envs: 12, keep: 0.6 N/A 1.0000 (± 0.0000) N/A
envs: 16, keep: 0.2 N/A 0.9993 (± 0.0016) N/A
envs: 16, keep: 0.4 N/A 1.0000 (± 0.0000) N/A
envs: 16, keep: 0.6 N/A 1.0000 (± 0.0000) N/A

Table A.5: OOD Validation/Transition Accuracy (Rotate) - Across Configurations (mean ±
standard deviation)
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A.3. OOD Validation Accuracy: SepAction Transformer Variant

Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.7793 (± 0.1178) 0.7924 (± 0.0727) 0.3636 (± 0.1147)
envs: 1, keep: 0.4 0.8151 (± 0.0377) 0.8294 (± 0.0517) 0.2789 (± 0.1012)
envs: 1, keep: 0.6 0.8304 (± 0.0679) 0.8855 (± 0.0374) 0.3125 (± 0.1215)
envs: 2, keep: 0.2 0.8608 (± 0.0171) 0.8620 (± 0.0266) 0.3907 (± 0.0838)
envs: 2, keep: 0.4 0.8869 (± 0.0195) 0.8964 (± 0.0154) 0.4868 (± 0.1173)
envs: 2, keep: 0.6 0.9149 (± 0.0185) 0.9164 (± 0.0159) 0.6966 (± 0.0566)
envs: 4, keep: 0.2 0.8912 (± 0.0253) 0.8769 (± 0.0256) 0.5612 (± 0.0893)
envs: 4, keep: 0.4 0.9343 (± 0.0097) 0.9073 (± 0.0243) 0.7579 (± 0.1279)
envs: 4, keep: 0.6 0.9643 (± 0.0101) 0.9430 (± 0.0135) 0.9024 (± 0.0173)
envs: 8, keep: 0.2 0.9295 (± 0.0136) 0.9137 (± 0.0122) 0.7419 (± 0.0601)
envs: 8, keep: 0.4 0.9581 (± 0.0165) 0.9415 (± 0.0261) 0.8959 (± 0.0444)
envs: 8, keep: 0.6 0.9739 (± 0.0103) 0.9606 (± 0.0113) 0.9401 (± 0.0251)
envs: 12, keep: 0.2 0.9404 (± 0.0115) 0.9139 (± 0.0199) 0.8467 (± 0.0474)
envs: 12, keep: 0.4 0.9697 (± 0.0101) 0.9406 (± 0.0172) 0.9481 (± 0.0142)
envs: 12, keep: 0.6 0.9797 (± 0.0122) 0.9700 (± 0.0106) 0.9878 (± 0.0068)
envs: 16, keep: 0.2 0.9527 (± 0.0165) 0.9245 (± 0.0210) 0.8993 (± 0.0333)
envs: 16, keep: 0.4 0.9831 (± 0.0116) 0.9680 (± 0.0213) 0.9833 (± 0.0050)
envs: 16, keep: 0.6 0.9924 (± 0.0047) 0.9867 (± 0.0079) 0.9922 (± 0.0018)

Table A.6: OOD Validation/One Agent Samples Accuracy - Across Configurations (mean ±
standard deviation)

Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.3923 (± 0.0667) 0.4184 (± 0.0734) 0.1366 (± 0.0421)
envs: 1, keep: 0.4 0.6819 (± 0.0281) 0.7079 (± 0.0568) 0.1627 (± 0.0767)
envs: 1, keep: 0.6 0.7382 (± 0.0696) 0.7932 (± 0.0431) 0.2396 (± 0.1017)
envs: 2, keep: 0.2 0.6173 (± 0.0433) 0.6683 (± 0.0511) 0.1689 (± 0.0364)
envs: 2, keep: 0.4 0.8139 (± 0.0130) 0.8264 (± 0.0115) 0.3434 (± 0.0906)
envs: 2, keep: 0.6 0.8587 (± 0.0145) 0.8698 (± 0.0196) 0.6638 (± 0.0629)
envs: 4, keep: 0.2 0.8023 (± 0.0198) 0.8019 (± 0.0286) 0.3525 (± 0.0822)
envs: 4, keep: 0.4 0.8805 (± 0.0041) 0.8595 (± 0.0278) 0.7324 (± 0.1522)
envs: 4, keep: 0.6 0.9268 (± 0.0074) 0.9093 (± 0.0154) 0.9003 (± 0.0182)
envs: 8, keep: 0.2 0.8627 (± 0.0083) 0.8528 (± 0.0191) 0.7015 (± 0.0747)
envs: 8, keep: 0.4 0.9217 (± 0.0132) 0.9078 (± 0.0269) 0.8950 (± 0.0453)
envs: 8, keep: 0.6 0.9536 (± 0.0085) 0.9409 (± 0.0126) 0.9398 (± 0.0254)
envs: 12, keep: 0.2 0.8827 (± 0.0054) 0.8633 (± 0.0242) 0.8402 (± 0.0523)
envs: 12, keep: 0.4 0.9480 (± 0.0082) 0.9216 (± 0.0199) 0.9479 (± 0.0143)
envs: 12, keep: 0.6 0.9680 (± 0.0110) 0.9602 (± 0.0111) 0.9876 (± 0.0068)
envs: 16, keep: 0.2 0.9165 (± 0.0121) 0.8887 (± 0.0262) 0.8968 (± 0.0366)
envs: 16, keep: 0.4 0.9703 (± 0.0109) 0.9571 (± 0.0238) 0.9829 (± 0.0050)
envs: 16, keep: 0.6 0.9855 (± 0.0063) 0.9815 (± 0.0097) 0.9919 (± 0.0018)

Table A.7: OOD Validation/Agent Accuracy - Across Configurations (mean ± standard de-
viation)
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A. COMPLEMENTARY MATERIAL

Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.0001 (± 0.0003) 0.0036 (± 0.0106) 0.0001 (± 0.0004)
envs: 1, keep: 0.4 0.0000 (± 0.0000) 0.0230 (± 0.0322) 0.0000 (± 0.0001)
envs: 1, keep: 0.6 0.0000 (± 0.0000) 0.0579 (± 0.0960) 0.0001 (± 0.0001)
envs: 2, keep: 0.2 0.3805 (± 0.1937) 0.9334 (± 0.1163) 0.2375 (± 0.0672)
envs: 2, keep: 0.4 0.3788 (± 0.3091) 0.8836 (± 0.1542) 0.1987 (± 0.1063)
envs: 2, keep: 0.6 0.5299 (± 0.3377) 0.9478 (± 0.0989) 0.1576 (± 0.0701)
envs: 4, keep: 0.2 0.8358 (± 0.1399) 0.9989 (± 0.0020) 0.6718 (± 0.1055)
envs: 4, keep: 0.4 0.8134 (± 0.1860) 0.9957 (± 0.0110) 0.7099 (± 0.1102)
envs: 4, keep: 0.6 0.8592 (± 0.1829) 0.9960 (± 0.0106) 0.7860 (± 0.1131)
envs: 8, keep: 0.2 0.9021 (± 0.1315) 0.9995 (± 0.0010) 0.9190 (± 0.0449)
envs: 8, keep: 0.4 0.8846 (± 0.1251) 0.9773 (± 0.0676) 0.9398 (± 0.0403)
envs: 8, keep: 0.6 0.9045 (± 0.1237) 0.9999 (± 0.0002) 0.9661 (± 0.0287)
envs: 12, keep: 0.2 0.8711 (± 0.1249) 1.0000 (± 0.0000) 0.9653 (± 0.0300)
envs: 12, keep: 0.4 0.8823 (± 0.1430) 1.0000 (± 0.0000) 0.9753 (± 0.0223)
envs: 12, keep: 0.6 0.9263 (± 0.1140) 1.0000 (± 0.0000) 0.9903 (± 0.0087)
envs: 16, keep: 0.2 1.0000 (± 0.0000) 1.0000 (± 0.0000) 0.9951 (± 0.0039)
envs: 16, keep: 0.4 1.0000 (± 0.0000) 1.0000 (± 0.0000) 0.9995 (± 0.0005)
envs: 16, keep: 0.6 1.0000 (± 0.0000) 1.0000 (± 0.0000) 0.9997 (± 0.0004)

Table A.8: OOD Validation/Object Accuracy - Across Configurations (mean ± standard de-
viation)

Configuration Classic Comb Sparse Comb U-Net
envs: 1, keep: 0.2 0.0000 (± 0.0000) 0.0000 (± 0.0000) 0.0000 (± 0.0000)
envs: 1, keep: 0.4 0.0000 (± 0.0000) 0.0000 (± 0.0000) 0.0000 (± 0.0000)
envs: 1, keep: 0.6 0.0000 (± 0.0000) 0.0000 (± 0.0000) 0.0000 (± 0.0000)
envs: 2, keep: 0.2 0.0000 (± 0.0000) 0.5818 (± 0.2307) 0.0000 (± 0.0000)
envs: 2, keep: 0.4 0.0000 (± 0.0000) 0.5727 (± 0.2508) 0.0000 (± 0.0000)
envs: 2, keep: 0.6 0.2727 (± 0.0000) 0.6545 (± 0.2182) 0.1818 (± 0.0704)
envs: 4, keep: 0.2 0.5750 (± 0.0250) 0.4833 (± 0.2034) 0.0250 (± 0.0382)
envs: 4, keep: 0.4 0.5833 (± 0.0000) 0.4333 (± 0.2380) 0.0333 (± 0.0408)
envs: 4, keep: 0.6 0.5833 (± 0.0000) 0.5833 (± 0.0000) 0.0167 (± 0.0333)
envs: 8, keep: 0.2 0.5000 (± 0.0000) 0.4667 (± 0.1000) 0.2250 (± 0.1493)
envs: 8, keep: 0.4 0.9833 (± 0.0500) 0.9833 (± 0.0333) 0.4583 (± 0.0932)
envs: 8, keep: 0.6 0.9833 (± 0.0500) 0.9417 (± 0.1493) 0.3750 (± 0.1193)
envs: 12, keep: 0.2 0.8769 (± 0.1584) 0.8846 (± 0.1796) 0.3385 (± 0.1727)
envs: 12, keep: 0.4 1.0000 (± 0.0000) 0.8769 (± 0.3003) 0.4385 (± 0.2177)
envs: 12, keep: 0.6 1.0000 (± 0.0000) 0.8385 (± 0.2077) 0.6000 (± 0.3187)
envs: 16, keep: 0.2 0.9500 (± 0.1247) 0.7833 (± 0.2640) 0.2417 (± 0.1417)
envs: 16, keep: 0.4 1.0000 (± 0.0000) 0.9667 (± 0.1000) 0.6417 (± 0.2765)
envs: 16, keep: 0.6 1.0000 (± 0.0000) 1.0000 (± 0.0000) 0.8333 (± 0.1394)

Table A.9: OODValidation/Reward Positive Accuracy - Across Configurations (mean± stan-
dard deviation)
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A.4. Eta Attention Maps

Configuration Classic Sep Sparse Sep
envs: 4, keep: 0.2 0.6053 (± 0.1717) 0.7500 (± 0.0654)
envs: 4, keep: 0.4 0.7307 (± 0.1385) 0.8596 (± 0.0262)
envs: 4, keep: 0.6 0.7493 (± 0.1372) 0.9144 (± 0.0078)
envs: 8, keep: 0.2 0.8273 (± 0.0856) 0.8363 (± 0.0306)
envs: 8, keep: 0.4 0.8967 (± 0.0696) 0.9042 (± 0.0096)
envs: 8, keep: 0.6 0.9188 (± 0.0826) 0.9268 (± 0.0251)
envs: 12, keep: 0.2 0.8876 (± 0.0204) 0.8781 (± 0.0135)
envs: 12, keep: 0.4 0.9513 (± 0.0082) 0.9149 (± 0.0389)
envs: 12, keep: 0.6 0.9161 (± 0.1108) 0.9614 (± 0.0116)
envs: 16, keep: 0.2 0.9276 (± 0.0115) 0.9001 (± 0.0178)
envs: 16, keep: 0.4 0.9718 (± 0.0086) 0.9499 (± 0.0299)
envs: 16, keep: 0.6 0.9872 (± 0.0038) 0.9810 (± 0.0086)

Table A.10: Comparison of OOD Validation Accuracy of the SepAction Transformer Variant.
(mean ± standard deviation)

A.4 Eta Attention Maps
This appendix section provides real examples of the eta attention maps created by the sparse
transformer. This is only qualitative evidence, but we tried to choose examples that are rep-
resentative of the behavior of the model. Each figure has two parts, the top which gives
information about the input/output of the model, and the bottom which shows the η atten-
tion map. The top part has, from left to right, the input state, the input action, an arrow
(green indicating that the prediction was correct, red indicating that the prediction was in-
correct), information about the reward (target, prediction), the expected next-state, and the
predicted next-state. The attention maps follow the same structure as the illustrative exam-
ples in figure 5.5 and are explained in section 5.6.1. We only show samples where the action
was tomove forward, as incorrect rotations were very infrequent and thus not representative
of the model’s behavior.
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A. COMPLEMENTARY MATERIAL

Figure A.11: η attention map example of a sample where the agent disappeared. The cell
with the agent correctly received information about the cell in front of the agent (empty),
thus removing the agent from that cell. The cell in front of the agent did not, however, receive
information about the agent, which is why this cell was not updated to add an agent to it.
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A.4. Eta Attention Maps

Figure A.12: η attention map example of a sample where no information was passed to any
cell. This would have been the correct behavior if the action was to rotate, but the action was
to move forward. Thus, no cells were updated, and the agent did not move. Most likely, the
model overfit to the training data and learned on that position it can never move forward,
thus not ’requesting’ any additional information.
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A. COMPLEMENTARY MATERIAL

Figure A.13: η attention map example of a sample where a random agent was added to
the grid. Even though the movement of the original agent was correct, the model passed
information about the agents’ location to another cell, thus inducing a spurious agent in the
grid.
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A.4. Eta Attention Maps

Figure A.14: η attention map example of a sample where the agent moved forward, but the
cell in front of the agent was skipped, not only in the final prediction but also in the attention
maps.
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