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by Steven Bos 
 

Abstract 
 

This thesis describes how multimodal sensor data from a 3D sensor and microphone array 
can be processed with deep neural networks such that its fusion, the trained neural network, 
is a) more robust to noise, b) outperforms unimodal recognition and c) enhances unimodal 
recognition in absence of multimodal data. We built a framework for a complete workflow to 
experiment with multimodal sensor data ranging from recording (with Kinect 3D sensor), 
labeling, 3D signal processing, analysing and replaying. We also built three custom 
recognizers (automatic speech recognizer, 3D object recognizer and 3D gesture recognizer) 
to convert the raw sensor streams to decisions and feed this to the neural network using a 
late fusion strategy. We recorded 25 particpants performing 27 unique verbal and gestural 
interactions (intents) with objects and trained the neural network using a supervised 
strategy. We proved that the framework works by building a deep neural networks assisted 
speech recognizer that performs approximately 5% better with multimodal data at 20 dB SnR 
up to 61% better with multimodal data at -5 dB SnR while performing identical to the 
individual recognizer when fed a unimodal datastream. Analysis shows that performance gain 
in low acoustic noise is due to true fusion of classifer results while gain at high acoustic noise 
is due to absence of speech results as it cannot detect speech events anymore, while the 
gesture recognizer is not affected. 
 
The impact of this thesis is significant for computational linguists and computer vision 
researchers as it describes how practical issues with (real and) real-time data can be solved 
such as dealing with sensor noise, GPU offloading for computational performance, 3D object 
and hand tracking. The speech-, object- and gesture recognizers are not state-of-the-art and 
the small vocabulary with 27 unique phrases and 9 objects can be considered a preliminary 
experiment. 
 
The main contributions of this thesis project are a) validated multimodal fusion framework 
and workflow for embodied natural language understanding named MASU, b) 600GB, 2,5 
hour labelled multimodal database with synchronous multi channel audio and 3D video,  c) 
algorithm for 3D hand-object detection and tracking, d) recipe to train a deep neural network 
model for multimodal fusion and e) demontrate MASU in practical real-time scenario. 
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1 
1 Introduction 

 

“Meaning is use and structure emerges from use”. These two aphorisms come from 
(Tomasello, 2008) after relentlessly studying young children and primates. Use involves 
actions, so to understand this world we need to sense and interact with it. The capabilities for 
sensing and interacting are bound to our body, thus limiting what we can perceive, process 
and achieve – and thus understand. This philosophical position is the embodied theory of 
mind, the human body defines how it understands the world. Through sensing and 
interacting it learns new knowledge that is always grounded in bodily experience. For 
example, we cannot understand the meaning of the word “yellow” without seeing the color 
and form a direct association between the language concept and the sensory-motor 
experience of the body. These experiences contain what the body sensed at that time– what 
it heard, saw, felt, thought. (Roy, 2003) proposed four stages of embodied learning, showing 
that each concept we can think of, no matter its abstraction, must eventually be placed in 
one or more “boxes”, whom in turn are  always grounded in sensory-motor experiences.  
 
Most trained models and machines do not follow the principles of embodied learning and are 
ungrounded. This affects its generalization to other tasks and domains as it will not be able to 
crossover since there is no common basis or shared building blocks. Thus the amount of 
knowledge that can be captured and the way to communicate is fixed. The recent popularity 
of machine learning and especially deep learning (LeCun, Bengio, & Hinton, 2015) show that 
deep learning systems can generalize surprisingly good with enough data and without 
changing the system architecture (eg. in Automatic Speech Recognition (Sutskever, Vinyals, & 
Le, 2014)  and for various Computer Vision tasks (Oquab, Bottou, & Laptev, 2014).  However, 
as the majority of these systems are ungrounded, they require human domain experts to 
preprocess the input data and interpret the results. Moreover, no current system can 
generalize their knowledge to use in completely unrelated domains and for other tasks. In 
the field of Artificial Intelligence, creating a system that can generalize knowledge over 
unrelated domains is an ambitious goal stated as general artificial intelligence, more or less a 
simulation of the human brain. Embodied learning in combination with deep learning 
algorithms is an exciting approach towards this goal.  
 

 
Fig 1-1 Our multimodal Automatic Speech Understanding(ASU) framework approach to solve 
the cocktail party problem using embodied learning (fusing what it hears and sees) 
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This thesis dives into a subset of embodied learning, grounded language learning (Mavridis & 
Roy, 2006; Reckman, Orkin, & Roy, 2010; Gorniak & Roy, 2003). It introduces a new 
computational framework (see Fig 1-1) to process multimodal (stereo audio and 3D video) 
data in real time and demonstrates its application in a practical and challenging use case – 
the cocktail party problem. In this problem, background noise affects speech signals thus 
hindering the cognitive ability to understand speech. Humans are able to cancel out sources 
of noise and infer speech signal based on visual context and discourse. Most automatic 
speech recognizers (ASR) have no such abilities and recognition performance of audio only 
ASRs degrade fast in noisy conditions.  We are not the first to use multimodal data fusion or 
use 3D data to improve ASRs in noisy conditions eg. (Mroueh, Marcharet, & Goel, 2015) but 
to our knowledge are the first to do so using audio, object and gestures cues captured from 
stereo audio and 3D video in combination with deep learning for multimodal fusion.  
 
Advances in grounded language learning have many implications for society in the short and 
long term. Research by (Ruan, Wobbrock, Liou, Ng, & Landay, 2016) show speech input 
outperforms type input three times over. In the short term chatbots like Microsoft’s Cortana, 
Google Now or Apple’s Siri that are integrated in smartphones could be improved by using 
both the microphone and camera(‘s) to analyse both the surrounding as well as the user. 
Such modern personal assistants can profile your behavioral patterns, assist and fill in your 
knowledge gaps. Ideally, it can not only answer, but also explain how it got to that answer  
(Knight, 2016), how confident the assistant is in its inference and how reliable its sources are. 
In the longer term, cars such as Tesla’s could improve their autonomous driving experience 
through better scene prediction. By simply subscribing to various weather and social 
mediastreams a car can be aware of and peek into the future - it can learn correlations 
between a scene description such as “people walking on the highway”  or a photo geotagged 
in Amsterdam with snow and a probable future scene with appropriate car behavior. 

1.1 Problem Definition 
 

This thesis investigates if we can improve an off-the-shelf automatic speech recognizer (ASR) 
by recognizing speech, objects and gestures in two modalities: stereo audio and 3D color 
vision. This leads to the following research question: 
 

“Can multimodal fusion of stereo audio and 3D video improve ASR performance ” 
 
Automatic Speech Recognition 
Automatic speech recognizers have become a prevalent technology to be found in virtually 
all modern smartphones and modern web browsers. It is embedded in personal assistants or 
chatbots  mentioned  before and form the core of the system. Without proper speech-to-text 
conversion (the goal and scope of ASRs), no question or intent from the user can be distilled 
and no intelligent response can be given - the principle of garbage in, garbage out. The 
applications of ASR go well beyond personal assistants. For humans, one-way communcation 
through sound already develops during pregnancy. Having a robust ASR enables an 
interaction paradigm with any device or system that is natural, convenient and expressive. 
Compared to other input paradigm such as gaze, touch, keyboard and mouse input,  speech 
relieves the eyes and hands for other tasks while providing input at huge speeds and 
expressiveness as seen in human-human communication. 
 
Automatic speech recognition is considered a computationally hard problem for decades, 
with minor improvements in recognition rate each year. With the recent advent of deep 
neural networks major breakthroughs have been achieved. Microsoft Research (Xiong, et al., 
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2016) has recently shown an ASR that performed on par with the gold standard, with an 
error rate of less than 5%. Although they show that we can create ASR's at the same 
performance level as humans in a range of practical scenarios, the problem is still largely 
unsolved. Variation in speech patterns (e.g. accents and child directed speech which is slower 
and high pitched), unknown words like uncommon names and vocabulary size in general,  
speaker independence (no training phase), spontaneous speech (in contrast with well 
pronounced, isolated speech) and most important any adverse condition such as noise, 
degrade the ASR performance.  
 
Channel noise 
For this thesis we focus on one adverse condition that affects ASR performance: background 
noise , strictly defined as channel noise (see Fig. 1-2). Channel noise is interesting because it 
is inevitable noise in most use cases. This thesis uses a Gaussian white noise source at various 
Signal to Noise Ratios (SnR), to validate our system. ASR performance under noisy conditions 
is measured for an audio only baseline and compared against the proposed multimodal ASU 
using the industry standard Word Error Rate (WER) metric. 
 

 
 
Fig 1-2  Basic model of communication with noise effects possible in every stage 
 

Embodied Automatic Speech Understanding with Computer Vision 
The scope of ASR is limited to converting raw speech to strings of words, which in limited 
domains and certain conditions is solved. The next frontier (Zweig, 2016) is automatic speech 
understanding (ASU) or Natural Language Understanding (NLU), which extends ASR’s scope 
from words to a meaning representation1. Typically this process is modelled as a syntax-
driven semantic analysis pipeline (Jurafsky & Martin, 2000) as  in Fig 1.3, which  assumes 
compositionality (the meaning of a sentence can be composed from the meaning of its 
parts).  

 
  
Fig 1-3  A syntax-driven Automatic Speech Understanding (ASU) pipeline 
 
While the computational linguistic approach in Fig 1-3 is worthwhile exploring, it goes against 
the principle of embodiment discussed earlier. To understand meaning requires a wholistic 
approach rather than a focussed approach. One approach would be to introduce more 
(temporally aligned) data sources such that strongly correlated audio-visual events can be 
learned. (Roy, 2003) empirically shows that children do this similarly. They learn and correctly 
use words for the first time by being exposed to them in specific contexts.   

                                                 
1 with the definition of meaning discussed in the introduction. For a more elaborate discussion on this 

topic see [Bos, 2012] 
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Using more and temporally aligned data also addresses the confusability problem in 
statistical ASR systems ie. when multiple outcomes share similar probabilities other 
modalities can be checked for finding evidence that supports these outcomes. Research by 
(Feldman J. , 2006) shows that humans rely on vision more than other senses. Or, as 
professor Fei Fei Li mentions, “if we want our machines to think we need to teach them to 
see2”, making computer vision (CV) the modality of choice next to audio for this thesis.  
 
Advances in sensor technology and machine learning solve many traditionally hard CV 
problems. Cheap 3D sensors such as the Microsoft Kinect, Leap Motion and Scanse Sweep 
LIDAR allow milimeter resolution depth sensing while a specific type of deep neural networks, 
convolutional neural networks allow for breaktroughs in image classifcation, gesture 
recognition and other CV tasks. 
 

Multimodal fusion 
With isolated ASR and CV systems independent streams of outcomes are produced. To reach 
a single outcome or conclusion, multimodal fusion is required. This is a non-trivial task as two 
or more independent systems can generate opposing outcomes. With a large number of 
independent systems simple averaging could work due to the Law of Large Numbers, 
however if one or more sources hold more truth or are less sensitive for noise, their 
outcomes get absorbed. A typical multimodal architecture is presented by (Galatas, 
Potamianos, & Makedon, 2012) and is adapted for this thesis in Fig. 1-4.  
 

 
 

 
Fig 1-4. General multimodal framework fusing audio and video streams into an ordered list of 
outcomes 
 

To summarize, a working hypothesis (H0) can be formulated from our research question:  
 
"Fusing classified objects and gestures from a 3D camera with speech have a beneficial effect 
on the WER performance of an Automatic Speech Recognizer under increasing Gaussian white 
noise condition from 20 dB up to -5 dB SnR compared to speech only." 
 
The architecture, results, discussion and conclusion will appeal to researchers and engineers 
in the field of robotics, computional linguistics, computer vision and human computer 
interaction. 

  

                                                 
2
 http://www.wired.com/2015/04/fei-fei-li-want-machines-think-need-teach 
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1.2 Research Goals 
 
We have broken down our research question in the following actions and research goals, 
formulated in table 1.1: 

Table 1-1 Actions and goals of our research 

Action Goal 

1.1 Literature research in ASR, MM systems, DNN Learn about the state-of-the-art 

1.2 Engineer 3D video recorder and replayer Create a multimodal database  

1.3 Train ASR for English spontaneous speech Create an ASR baseline 

1.4 Train gesture & object recognizer with 3D data Create a Computer Vision (CV) baseline 

1.5 Train multimodal semantic analyser using DNN Prove that ASR+CV is better than ASR in isolation (H0) 

1.6 Engineer framework for real-time processing Create real-time system w/ multi core & gpu offloading 

 

1.2.1 Literature research 
 
Automatic Speech Recognition 
A great body of literature has been written on ASR. For this section we aimed for a brief 
introduction about the principles of ASR, its models, mathematical foundation and how deep 
neural networks have changed ASR research completely. 
 
Multimodal Systems 
The problem of multimodal fusion itself is not trivial. For this section we aimed for a brief 
introduction on existing multimodal systems fusing audio and video and how multiple 
approaches exist to do raw feature fusion, decision fusion or hybrid fusion. 
 
Automatic Speech Understanding 
Key part of this thesis is using deep neural networks to perform semantic analysis on the 
multimodal data, in other words trying to understand speech.  For this section we aimed  to 
give a brief introduction on the principles of ASU, its models and to describe a brief history of 
existing ASU systems. 

1.2.2 Engineer a multimodal database 
 

As this is novel research, we developed our own multimodal database to train our semantic 
analyser. Existing multimodal databases, even those recorded with RGBD sensors such as the 
Kinect often aim on gesture and object data, see (Firman, 2016) for an  overview. No dataset 
was found with RGBD data that also recorded the correlating audio nor recorded a real 
human actor interacting with objects using speech and gestures. Recording this data was 
challenging as the default Kinect V1 studio software did not provide software for 
simultaneous audio and rgbd-video recording and replaying, thus custom software for both 
recording and replaying was developed. The collected dataset is available for the research 
community. 
 

1.2.3 Train automatic speech, gesture and object recognizers 
 
Our research questions required a framework where speech, gesture and object recognizers 
operate on synchronised audio and video data. No such (open source) framework was found 
in the research community. For the individual recognizers, we used one pre-trained model 
(Microsoft Speech Platform v11 English acoustic model trained for the Kinect sensor) while all 
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other models were designed and trained for this thesis. As 3D image recognition is still novel, 
a significant part of this research will focus on designing a 3D image preprocessor for object 
recognition. The framework is designed in such a manner that any recognizer can be replaced 
with another one to compare performances. 

1.2.4 Train a multimodal deep neural network for semantic 

analysis task under noise conditions 
 
The most important contribution of this thesis is centered on training a multimodal deep 
neural network and therefore proving our hypothesis to be correct. We achieved it by 
engineering an audio noise generator, experiment with various deep neural network 
architectures and perform hyperparameter optimization to discover a performing trained 
model.  

1.3 Thesis Outline 

Chapter 2 summerizes related work by other researchers, covering multimodal audiovisual 
ASR and ASU systems, multimodal fusion strategies and key concepts of deep neural 
networks including convolutional and recurrent neural networks. 

Next, in chapter 3 our research methodology is discussed with exact descriptions on how our 
experiment was executed. Performance metrics for our baseline and solution, our measured 
variables, the collected data and our analysis pipeline is all discussed.  

For both engineers and scientists the most interesting part will be chapter 4, where we 
present and discuss both our implementation and results.  

Finally, in chapter 5 conclusion, we will revisit our working hypothesis and discuss our 
contributions and propose exciting directions for future work.  
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2 
2 Related work  

 

This chapter describes the state-of-the-art in ASR research with a brief history on the pre- 
statistical modelling era and current era with Deep Neural Networks. A list of related work on 
multimodal systems and multimodal fusion in general is discussed next. Prior work in deep 
learning relevant for this thesis (convolutional neural networks) is covered next. Finally, a 
brief review of ASU research is provided, connecting above topics into one application. 
 

2.1 Automatic Speech Recognition 

2.1.1 Introduction 
 
Before we dive in a brief history on speech recognition, it is best to start with some context 
and semantics. Our working definition for ASR: 
 

"ASR is the process of automatically converting spoken language (speech) to language 
symbols (eg. words, sentence)" 

 
This process is found in literature under various names such as speech recognition (SR) and 
speech-to-text (STT).  ASR systems are useful in isolation or as part of a larger system. In 
isolation, ASR systems are great for data entry such as dictation applications or using your 
voice for command and control applications (e.g. piloting a swarm of robots). As part of a 
larger system, ASR systems are more than just a natural interface between humans and 
computer devices. For instance, when part of an ASU system (eg. an intelligent agent or 
chatbot) the output of ASR systems are processed beyond language symbols to a richer 
representation. This representation can be anything, such as human intents, a series of fitting 
responses or, as in this thesis, a corrected or more complete string of language symbols. 
 
Characteristics for ASR systems 
There are many variables that make the process of converting speech-to-text difficult. They 
include phonological variations like dialect, individual differences such as the anatomy of the 
voice box or socio-linguistic factors or real-world issues like made-up or new words (see 
(Glass J. , 2007) for more variables). 
 
With many variables, many characteristics can be identified to classify ASR systems ( (Jurafsky 
& Martin, 2000) (Glass J. , 2007): 
 
Table 2-1 ASR Characteristics 
 
Vocabulary size small (<20 words) to large (>50000) 
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Perplexity low (<10 possibilities for each word) or high (>247) 

Speaking mode isolated word or continuous speech 

Speaking style read speech or spontanuous speech 

Enrollment speaker dependent or speaker independent 

Adverse conditions distance, noise, type of microphone 

 
Summed up, the holy grail are large vocabulary, speaker independent, spontaneous and 
continuous ASR systems that perform well in noisy (low signal-to-noise ratio) environments. 
When discussing ASR systems in this thesis we mean large vocabulary continuous speech 
recognizers (LVCSR), the term used often in speech recognition literature,  unless stated 
otherwise. 
 
Modelling ASR systems 
The automatic speech recognition problem is traditionally modelled as Shannon's 
Information Theory problem using the noisy channel model, an insight from Jelinek and Bahl 
in 1975 (Jelinek, 2009)  see figure 2-1. In short, the model assumes that noise deforms the 
clean source signal and the receiver has to estimate the source signal from the noisy signal. 
This model simplifies the communication model of 1.2 by treating all noise as channel noise. 
 

 
 

Fig 2-1. The original noisy channel model modelled for statistical ASR (Jelinek, 2009) 
 
Implementation of the noisy channel model require solutions to three problems (Jurafsky & 
Martin, 2000), a metric for the best match between noisy speech and speech and an 
algorithm to efficiently search in all possible words. Thirdly, the implementation requires one 
or more knowledge representations of the speech signal such that it can be used for 
computations. Modern ASR systems (Glass J. , 2007) exploit constraints by modelling them 
(eg. the word "xab" doesn't exist in English) and use these models to assist the search 
algorithm. Typical constraints are phonemes3 in acoustic models, pronounced words in lexical 
models and sentences in language models, see figure 2-2. 
 

 
Fig 2-2. Main components of ASR systems (Glass J. , 2007) 

                                                 
3
 a phoneme is a perceptually distinct unit of sound in a language , eg. the letter x in English is 

phoneme /ks/ or /gz/ 
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2.1.2 A brief review: from single digits to large vocabularies 
 
Template-matching ASR systems 
The first ASR systems used pattern matching techniques to recognize isolated digits in the 
speech signal of a single speaker (Davis, Biddulph, & Balashek, 1952). Two decaded later 
(Itakura, 1975) (Martin, 1970) and (White & Neely, 1975) created ASR systems capable of 
recognizing 30-200 words of a single speaker with 99% accuracy in continuous speech. These 
systems only performed well under ideal circumstances - no background noise, a known 
(trained) speaker, clear articulation. The work of (Reddy, 1976), (Juang & Rabiner, 2004), 
(Jurafsky & Martin, 2000) and (Jelinek, 2009) provides a great technical overview of the 
period from 1950-1976. They remark the dominance of the dynamic time warping, 
handwritten rule-based and template-matching techniques in  that era: a deterministic, 
white-box pattern recognition approach. 
 
Probabilistic ASR systems 
Already in the late '50 statistics were introducted to build a phoneme recognizer  (Fry & 
Denes, 1959). However, the wide spread adoption of probability theory in speech recognition  
was discouraged until the late '70 (Liberman, 2010) (Jurafsky & Martin, 2000) in part due to 
the influential linguist Chomsky's arguments that probabilities can generate grammatically 
correct English sentences that do not occur in the English discourse. It was not untill 1976 
that the work of (Baker, 1975) and (Jelinek, 1976) paved the way for modern speech 
recognizers (Huang & Deng, 2010) based on probabilistic noisy channel implementation (see 
figure 2-3) and Hidden Markov Models HMM) for acoustic models and intermediate 
knowledge representation for decoding. 
 
 
 
 
 
 
 
 
 
 
Fig 2-3. Noisy channel model with probabilistic model of source and channel 
 
 
This probablistic noisy channel model inf Fig 2.3 is mathematically formalized as  
 
 

                                                      = arg                (1) 
 
 
   = the approximated spoken sentence 

  = actual spoken sentence 

    = the language containing all possible spoken sentences 

    = observed (noisy) spoken sentence  

       = probability of seeing the correct spoken sentence given that we observe some noisy speech 

 
It translates to “what is the most likely sentence (consisting of words W) out of all possible 
sentences in the language L given some observed acoustic input O”.  
 

speech 

 
noisy speech 

 

P(speech) 
source model 

 

approximated original speech from source 

 

channel source receiver 

P(noisy speech | speech) 
channel model 
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With the help of Bayes' Rule we can decompose the P(W|O) term to  
 

                                                      = arg       
          

    
  (2) 

 
And finally to (3) as the term P(O) is the same for each candidate in spoken sentence W 
 

                                                      = arg                   (3) 
 
Interestingly, now the part P(W) can be considered a language model, the probability of 
seeing a spoken sentence in the language L. The other part, P(O|W) can be considered an 
acoustic model, the probability of observing noisy spoken speech given some spoken 
sentence.  A typical implementation is depicted in figure 2-4 (Jurafsky & Martin, 2000).  
 

 
 
Fig 2-4  Typical statistical architecture of a modern Automatic Speech Recognizer (ASR) 
 
Deep neural network ASR systems 
ASR implementations such as in figure 2-4 have been using HMM's and N-grams for their 
acoustic and language model for the last fourty years (Huang, Baker, & Reddy, 2014). 
However, since 2010 with the popularization (eg. (Schmidhuber, 2015), (LeCun, Bengio, & 
Hinton, 2015) and application of deep neural networks for speech recognition (eg. (Seide, Li, 
& Yu, 2011) ) major breakthroughs were achieved. The current state-of-the-art ASR systems 
of Microsoft Research (Xiong, et al., 2016) and IBM (Saon, Sercu, Rennie, & Kuo, 2016) 
perform around the gold standard (human performance) of about 4.1% - 9.6% (Xiong, et al., 
2016). They use the same noisy channel model approach except substituted the HMM and N-
gram techniques for deep neural networks such as Convolutional Neural Networks (CNN) or 
Recurrent Neural Networks (RNN).  The decoding part is still done with the classical HMM 
intermediate knowledge representation only generalized as Weighted Finite State 
Transducers (WFST, see (Mohri, Pereira, & Riley, 2008)). The state-of-the-art ASR systems use 
an upgraded decoding algorithm of the classical  (Viterbi, 1967) to a parallel version (Mendis, 
Droppo, Maleki, Mytkowicz, & Zweig, 2016).  

 
The term deep learning in relation to neural networks, often refers to amount of hidden 
layers of a neural network (NN) topology. The exact amount of layers that define NN as deep 
(as opposed to shallow) is an area of discussion for DL researchers (Schmidhuber, 2015). 
Schmidhuber, being one of the DL pioneers, defines any NN with 10 or more layers as "very 
deep". Yann Le Cun, another DL pioneer defines "deep" if it the network has more than one 
stage of non-linear feature transformation  (Cun, 2016)) . Surprisingly, the field of deep 
learning in neural networks date back to approximately the invention of the first artifical 
neural networks, the Perceptron (Rosenblatt, 1957). Already in 1965 (Ivakhnenko & Lapa, 
1965) published about a deep  (feedforward) multilayer perceptron, but it took until 2000 
until the label deep learning was explicitly introduced in the context of hidden layers in 
Neural Networks  (Aizenberg, Aizenberg, & Vandewalle, 2000). 
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Progress in the field of deep neural networks is tightly linked to ASR systems and for each 
new NN one or more ASR implementations has been devised and been published. We briefly 
present three types of Deep Neural Nets that influenced or is in use by the current state-of-
the-art ASR sytems. 
 
Multi Layer Perceptrons (MLP) 
With the (re)introduction of hidden layers and backpropgation to train these layers 
(Rumelhart, Hinton, & Williams, 1986) MLP's overcame the limitations stated by Minksy and 
Papert in 19694, and were able to approximate any given continuous function. These MLP's, 
essentially deep neural networks, achieved moderate success in acoustic modelling (Bourlard 
& Morgan, 1994), (Tebelskis, 1995) for ASR systems. Its potential compared to HMM 
approaches is greater with less assumptions (Tebelskis, 1995). 
 
MLP network are a class of feedforward neural networks (fig 2-5) that map input data to 
outputs, with outputs being useful for tasks like regression analysis, classification, decision 
support, motor control etc. The core idea of training feedforward neural networks (with 
backpropagation) is controlled adjustments of the weights in the nodes such that input data 
result in desired output data. This is done by comparing outputs with desired outputs and 
distribute the error (the difference) back over the network such that the weights of the 
nodes are adjusted. Various forms of error distribution can be chosen (per node, layer or 
whole networks) as well as parameters for adjusting the weights (learning rate, forgetting 
rate, momentum, etc). Feedforward networks are acyclyc graphs and train well on static data 
such as images. One of the more popular feedforward networks, and proven to be very 
suitable for speech recognition, are convolutional neural networks (CNN) (fig. 2-6).  The 
principle of convoluting two input signals is great for transforming the speech signal to 
images (Dai, 2016) and finding local correlations.  These networks are also used in the 
winning solutions for both image recognition benchmarks (He, Zhang, Ren, & Sun, 2016) and 
is used for both acoustic and language modelling   (Arisoy, Sainath, Kingsbury, & 
Ramabhadran, 2012) in the current state-of-the-art ASR system (Xiong, et al., 2016).  

 
Fig 2-5  Feedforward NN            Recurrent NN               Residual NN  
 
 

 
Fig 2-6  Convolutional neural networks, a deep learning architecture for image recognition  
Recurrent Neural Networks (RNN) 

                                                 
4
 The AI Winter, see: https://en.wikipedia.org/wiki/History_of_artificial_intelligence#The_first_AI_winter_1974.E2.80.931980  
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To model sequential or temporal (time-series) and parallel data, information needs to be 
learned that go beyond a static state in a feedforward network. By knowing context, or the 
preceeding and expected values of a state,  the network can calculate the most likely path 
and outcome. RNN's are the deepest type of NN that can be trained, as this network is a 
cyclic graph and can process inputs of arbitrary lengths. 
 
The cyclic property makes it useful for sequential data, but at the same time are difficult to 
train, suffering from the so called fundamental deep learning problem or vanishing or 
exploding gradients problem (Hochreiter, 1991). This also applies to DNN like the MLP's 
discussed earlier. Various solutions to this problem have been invented to address the 
problem like rectified linear unit (ReLU) instead of sigmoids or hyperbolic tangent activation 
functions (Gloror, Bordes, & Bengio, 2011), residual networks (Veit, Wilber, & Belongie, 
2016), multi-level hierarchy (Schmidhuber, 1992), Batch normalization (Dai, 2016)  and LSTM 
networks (Hochreiter & Schmidhuber, 1997). 
 
In relation to ASR systems, the DNN approach based on RNN's outperformed the probabilistic 
approach based on Gaussian Mixture Model(GMM)-HMM's for the first time in 2013 (Graves, 
Mohamed, & Hinton, 2013).  LSTM networks, a variant of RNN that use memory cells for long 
range interdependencies, are currently used in all state-of-the-art ASR sytems eg. (Xiong, et 
al., 2016) and (Saon, Sercu, Rennie, & Kuo, 2016).  Most recently, RNN Grammars (Dyer, 
Kuncoro, Ballesteros, & Smith, 2016) show that RNN's are also useful for learning state-of-
the-art language models.  
 
AutoEncoders 
A major difficulty in machine learning is the preprocessing of data to speed up or improve 
learning. This is often a time consuming (costly), manual labor. Tasks involve labelling, 
cleaning and transforming (feature extraction) of data. NN’s that are trained using human 
preprocessed data are classified as supervised learning NN’s. The holy grail of machine 
learning  is the other extreme, unsupervised learning, where NN detect patterns such as 
anomalities in data without any human intervention (al-Dosari, 2016), or document similarity 
(Salakhutdinov & Hinton, 2009). 
 
Between the extremes is semi-supervised learning where NN’s are trained on largely 
unlabeled data (and minimal labeled data) or with human intervention during the training 
process. One type of neural network that excel in unsupervised and semi-supervised learning 
are autoencoders (Heck, Konig, Kemal Sönmez, & Weintraub, 2000) and (Hinton, Osindero, & 
Teh, 2006). These networks try to extract abstract features automatically (Bengio, Courville, 
& Vincent, 2014) and represent the input data in a lower dimension. This is done by imposing 
constaints on the networks such as fewer neurons in the hidden layers than in the input 
layers, on the activation function like in sparse autoencoders (Ng, 2011) or by introducing 
random noise in the input layer like in denoising autoencoders. Classical autoencoders aim to 
reconstruct the input data from that abstract representation, i.e. learn the identitiy function 
that transforms the input to the same output.  However, if the goal is not reconstruction but 
generalization, autoencoders can become useful for many other problem domains. When 
stacked, the network can activate low level features and high level features, enabling robust 
classification. Or, as way to simplify training, extend a classical unsupervised autoencoder 
topology after training with a standard MLP. When training on a small labeled training 
dataset, a correlation between robust features and labels can be formed, thus creating  a 
robust classifier (Hinton, Osindero, & Teh, 2006). In relation to ASR systems, autoencoders 
have been proven useful for speaker recognition (Heck, Konig, Kemal Sönmez, & Weintraub, 
2000) and acoustic modelling (Feng, Zhang, & Glass, 2014). 
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Reinforcement Learning NN 
To conclude the general four types of machine learning is reinforcement learning (RL) or 
learning to act by trial and error. RL requires a fitness/reward function such that it can 
maximize the total reward it receives over time. In essence devising the reward function can 
be seen as creating a generic labeler, because each unlabeled outcome result in an outcome 
that is scored (eg. good, neutral, bad).  Various strategies have been created to implement RL 
in NN, such as ones that adapt its topology using the principles of evolution (Stanley & 
Miikkulainen, 2002) or its weights (Bing-Qiang, Guang-Yi, & Min, 2005) and (Coulom, 2002). 
 
Training NN’s using RL is tricky, in part due to finding a suitable reward function but also 
because in many situations a single input sample might not contain all the information to get 
the highest reward.  For example, N-gram language models use the n-previous samples (a 
history) to reduce the possible search space and increase the likelihood for the remaining 
possiblities. Using RNN’s this issue can be addressed, eg. for dialogue generation (Li, Monroe, 
Ritter, Galley, Gao, & Jurafsky, 2016). Still, RL in real-time dialogue systems can cause 
unexpected effects such as the Microsoft’s Tay chatbot fail (Phrasee.co, 2016). 
 
Current limitations of the state-of-the-art 
With the state -of-the-art ASR systems having reached human parity and the continued effort 
of major research labs to improve Word-Error-Rate, achieving performance beyond 
human parity (< 4%) is on the near horizon. However for these ASR systems to perform more 
similar to humans the Switchboard and  NIST dataset need to be replaced with more 
challenging datasets. These new dataset should relax constraints inherent to the previous 
datasets by addressing adverse conditions in which humans experience far less recognition 
issues such having a conversation with multiple speakers, regular and irregular 
backround noise, very near and remote audio speakers, heavily compressed speech signals, 
new words and names and finally generalize performance over to other languages than 
English.  
 
The review of (Huang, Baker, & Reddy, 2014) mention six fundamental unsolved problems, 
not always specifically for the field of ASR: 
  

 More data. Current systems are not nearly exposed to the same kind of sampling 
people routinely experience, ie. more speech, environments and modalities. 

 Computing infrastructure. The use of GPU's is a significant advancement in recent 
years, but is not nearly enough compared to the capabilities of the brain. 

 Portability and generalizability. Porting trained models for different languages or 
adapt a model (eg. to a speaker accent) with few data is still not possible, although 
the area of Machine Translation is very active. 

 Unsupervised learning. The issue of knowing when something is learned and how the 
learned knowledge can be added to existing knowledge without any human 
intervention. This issue was also mentioned at one of the most important 
conferences for Machine Learning, NIPS 2016 (Cun, 2016). 

 Having Socrates' wisdom. Being able to know when the system doesnt' know 
something. Related to this is when a result doesn't make sense while still being 
grammatically correct (eg. have a form of common knowledge).  

 Dealing with uncertainties. The speech signal can be warped by background noise, 
room reverberation, multiple speakers, speaker quirks and technical factors like 
compression when using VOIP and many more.  
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2.2 Multimodal systems 

2.2.1 Introduction 
 
Humans have three common modalities or single independent sensory channels to perceive 
computer system output: visual, auditory and haptic (Wechsung, Engelbrecht, Kühnel, 
Möller, & Weiss, 2012) Other, more uncommon modalities are  gustation, olfaction, and 
many more such as thermoception, magnetoception, hunger, thirst, time and pain. 
Multimodal systems combine one or more modalities. Six levels of cooperation between 
modalities can be defined (Grifioni, 2009). 
 
Table 2-2 Six levels of cooperation 
 

Equivalence Information is presented in multiple ways and interpreted as same information 

Redundancy The same information is presented in multiple ways 

Concurrency  Multiple modalities take in separate information that is not merged 

Complimentary Multiple modalities take in separate information that is merged 

Specialisation Specific information is always processed by a specific modality 

Transfer Information produced by modality A is consumed by modality B 

 
In ASR research a number of multimodal systems have been published about that exploit 
multimodal information to combat the issues mentioned earlier such as noise, speaker 
identification and large vocabularies. In this thesis we explore two kinds of unimodal sources 
(audio and video) and three kinds of input (speech, objects and gestures) so the following 
selection is limited to multimodal Audio-Visual (AV) systems possessing two or more of these 
inputs. 
 
Audio Video ASR systems 
Combining speech with video of the movement of the speakers's mouth has been proven to 

significantly improve ASR performance (Potamianos, Neti, Gravier, Garg, & Senior, 2003). For 
example (Bregler & Konig, 1994) already demonstrate a WER score of 46% using its Delta-Lips 
system versus 67.3% using the audio only system. The work of (Tamura, Iwano, & Furui, 
2005) hint that this improvement does not apply to English solemnly, but can also be found 
in Japanese, again for a similar goal as ours: practical robust speech recognition in the 
presence of additive noise ("the cocktail party effect"). Fusing more modalities such as 3D 
facial depth information using a Microsoft Kinect sensor result in further improvement over 
audio only or audio+video ASR recognition (Galatas, Potamianos, & Makedon, 2012). 

 
Various solutions have been addresss for the asynchrounously problem (see (Estellers & 
Thiran, 2010) and (Gravier, Potamianos, & Neti, 2007) as visual speech activity precedes the 
audio signal by as much as 120 ms example (Bregler & Konig, 1994). The current state-of-the-
art in lipreading ASR system, LipNet  (Assael, Shillingford, Whiteson, & Freitas, 2017) uses 
spatiotemporal CNN's and bidirectional GRU (type of RNN) to overcome this problem. LipNet 
achieves 95.2% accuracy on the GRID corpus, outperforming hearing-impaired lipreaders 
(52.3%) and the previous record (86.4%) by (Gergen, Zeiler, Abdelaziz, Nickel, & Kolossa, 
2016). 

 
Exploiting the video modality to aid a speech recognizer is not exclusive to the domain of lip 
reading ASR systems. For example, by recognizing action events in video, (Fleischman & Roy, 
2008)ASRs can be primed in its recognition (increase likelihood for certain words) and 
demonstrate improved automatic video transcription of particular sports events over audio 
only. (Roy & Mukherjee, 2003) demonstrate that simple and more complex natural language 
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phrases such as "the red block" or "the left most large one" can be jointly learned with the 
object of interest's visual features such as shape and color. They also show an eight person 
average WER improvement of 7.6% over audio only for simple sentences. For complex 
sentences this was 10,1%. Both were achieved with an early fusion strategy of visual context 
in the speech recognition process.  

 
Intent (action) classifying ASR system 
Using computer vision many features can be extracted from the video modality, especially 
when using 3D sensors. Skeleton tracking (Shotton, et al., 2011) and hand tracking (Sharp, et 
al., 2015) invariant of lighting conditions enable accurate tracking of human interaction with 
objects. (Chol Song & Kautz, 2012) show that extracted language and gesture features can be 
fused to create a model for activity recognition. They trained the model by demonstrating 
activities such as making tea, but did not use a speech recognizer to convert text-to-speech.  

 
(Rossiter, 2011) did use a speech recognizer, as well as a gesture recognizer and fused both 
using a MLP type neural network. In their "Wizard of Oz" experiment they captured  speech 
and 3D gestures from particpants that were tasked to guide an AIBO robot along a path as 
natural as possible. Their goal was similar to ours - train a fused model that has better 
recognition capabilites than the individual modalities. As speech and gestures are not as 
tightly coupled as other modalities (such as speech and lip movement) they used a late 
(decision based) fusion approach.  
 
With the launch of the Microsoft Kinect 1.0 released in november 2010 an affordable 3D 
sensor with microphone array was released. This led to new 3D gesture research (Nguyen-
Duc-Thanh, Stonier, Lee, & Kim, 2011) speech-gesture (eg. (Song, Kautz, Lee, & Luo, 2012) as 
well as this thesis with feature speech, gesture and object modalities. 
 
In literature other modalities have proven to be succesful in improving speech recognizers, 
notably  geolocation based ASRs. For instance, use location information to prime the 
language model for nearby places (Chelba, Zhang, & Hall, 2015)or use location information to 
prime the acoustic model for certain accents (Ye, Liu, & Gong, 2016). 
 

2.2.2 Multimodal fusion issues and strategies 
 
Fusing modalities is not trivial, even if the level of cooperation between modalities is clear. 
(Atrey, Hossain, El Saddik, & Kankanhalli, 2010) in their comprehensive overview on 
multimodal fusion state the following practical and theoretical issues with multimodal fusion:  
 

 Multiple media formats and rates (eg. frame rate). The fusion strategy needs to 
address this with some asynchronous solution. 

 Processing time of media streams migth be dissimilar (eg. 4K video over mono audio).  
The fusion strategy needs to address this with some asynchronous solution. 

 Modalities might be corrrelated or independent (eg. speech and lip movement). The 
fusion strategy needs to be designed such that it exploits these correlations.  

 Modality fusion might be context or task dependent (eg. rely on audio in darkness or 
extract cry emotion from audio over video). The fusion strategy needs to analyse and 
weight modalities dynamically. When relying on the wrong modality, fusion can go 
"catastrophicaly wrong" (Movellan & Mineiro, 1998). 

 Capture and processing media streams might involve costs (eg. best modality migth be 
too costly or not always available). The fusion strategy needs to have a contingency 
plan for unavailability or alternative sensor fusion. 
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Multimodal fusion strategies 
The multimodal systems discussed in 2.1 use various fusion strategies to solve the issues 
mentioned above. In general these are all related to the question "when, how and what to 
fuse". Key parameters in these strategies all are: 
 

 Fusion architecture (ie. level of abstraction and cooperation) 

 Multimodal learning scenario (ie. when and what to fuse) 

 Fusion method (ie. how to fuse) 
 

Fusion  architectures 
One of the earliest considerations when fusing multiple modalities is considering the fusion 
architecture (Pradeep, 2010). Three variants exist, with additional mixture of the three: 
 

 Early  fusion (feature fusion, fig 2-7). This architecture is the most widely used and 
fuses modalities at the input level as features, hence the name early or feature 
fusion. It is the most naive approach, although with careful feature engineering 
strong multimodal systems can be devised (as mentioned in section 2.1). Also, 
although it is easier to learn with a single combined feature vector early on, it is 
harder to do the synchronisation when modalities are out-of-sync. 

 Late fusion (decision fusion, fig. 2-8). This architecture fuses modalities in the 
semantic space by first processing the features into a score or decision, often with a 
confidence value. This type of architecture has disadvantage that it might miss the 
correlations between modalities as they are abstracted by the decision analyser. On 
the other hand the representation of the decision analysers are often equal (in 
contrast to the many formats at the feature level), simplifying fusion and improving 
inference transparancy. 

 Interactive fusion (fig 2-9) . In this architecture fusion takes place on intermediate 
results,  dynamically. This type of archicture's main advantage is enabling context or 
task dependent fusion by  first analysing the features or decision. Analysing content 
and generating a model for dynamic classifcation is not trivial, hence the limited 
availability of interactive fusion systems.  

 Hybrid fusion. This type of fusion combines all three architectures in one model. 
Theoretically it could benefit from all early and late advantages at the price of added 
complexity. 

 
 
 
 
 
 
Fig 2-7  Early fusion                                                                   Fig 2-9  Interactive fusion 
 
 
 
 
     

 

Fig 2-8  Late fusion 
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Multimodal learning scenario 
Multimodal learning is the process of correlating information from multiple sources (Ngiam, 
Khosla, Kim, Nam, Lee, & Ng, 2011). This process involves three typical machine learning 
phases: feature learning, model training and model evaluation. Traditionally in multimodal 
fusion, all sources are available at all three phases. For completion we enlist some other 
variants described in literature in Fig 2-10. Next to multimodal fusion, shared representation 
learning is very interesting for building better ASR systems as the video signal is only present 
during training and can be omitted during evalation (like in a telephone call).  
 
In this thesis we use grounded learning which is a form of multimodal fusion. We will learn a 
joint model of language and perception somewhat similar to (Roy & Mukherjee, 2003) and 
(Matuszek, Fitzgerald, Zettlemoyer, Bo, & Fox, 2012) as decribed in detail in chapter 3. 
 

 
 
Fig 2-10  Multimodal learning scenario's                 Fig 2-11  Fusion methods 
 
Fusion Methods 
Many fusion methods have been proposed, see (Atrey, Hossain, El Saddik, & Kankanhalli, 
2010) for an extensive overview. The fusion methods can be divided in three classes (see Fig. 
2-11): 
 

 Rule-based 

 Classification-based 

 Estimation-based 

This thesis will only explore the (deep) neural network, a classification-based fusion method. 

 

2.3 Automatic Speech Understanding 

2.3.1 Introduction 
Natural Language Understanding (NLU), a subfield of Natural Language Processing (NLP),  is a 
relative new field for computer scientists with only about 50 years of active research, dating 
back to the early ASR research. The field can be approached from many different angles such 
as linguistics, (evolutionairy) biology, psychology, neurology, philosophy, pedagogy and 
computer science - making it a true interdisciplinairy field. Within computer science literature 
NLU is labelled as Automatic Speech Understanding (ASU), a term we prefer as it expands the 
goal of ASR and distinguishes from Computational Semantics (CS), a term from the linguistics 
field. Prior to this thesis we published an elaborate survey on the components involved in 
artificial NLU systems (Bos, 2012). This section picks few parts from that paper, although 
some updated to 2016 insights. 
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Our working definition for ASU: 
 

"ASU is the process of automatically converting spoken language (speech) to meaning 
structures (eg. grounded words, reponses that make sense in relation to queries)" 

 
Compared to ASR system, ASU systems focusses on making sense beyond the syntactic level, 
both in isolation (one-shot Q&A) and in dialogue (continuous Q&A). This semantic dimension 
can be approached by knowledge representation (MacCartney & Potts, 2016)(Fig 2-12) or by 
knowledge level (Fig 2-13) (Allen, 1987). Traditionally ASR focuses on the top four while ASU 
focuses on the bottom four. The divide-and-conquer approach of 8 levels is still relevant 
today (eg. NLU in Healthcare) (Iroju & Olaleke, 2015) (Cambria & White, 2014) prefers to stop 
at the pragmatics level by including discourse and common sense analysis within that level 
and roughly divide NLU in three develoment stages (Fig 2-14). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2-12 NLU organisation in representations                          
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig 2-13 NLU organisation in levels                     Fig 2-14 NLU development stages and timeline                      
 

 
Characteristics for ASU systems 
There are many issues that make the process of converting speech-to-semantic-text hard, all 
related to how language encapsulates meaning using symbols (words) and how the brain 
processes it to an interpretation. Each of the NLU levels mentioned above have its challenges 
to solve. Some of these issues are (for more see (Bos, 2012). 
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Table 2-3 ASU Characteristics 

Modelling Multimodal context Problem about what part of the world needs to be included in a 
knowledge representation and how to structure it 

Learning Semantic units Problem of learning that the relation between Form and Meaning, eg. 
two words, can express one or more new meanings when combined. 

Generalizability Problem of limited or no links to previously learned knowledge when 
switching to new domains.  

Modelling Embodiment Problem of modelling human sensing, processing and actuating. Time 
constraints for parsing, sensor sensitivity of the ears, nose, etc and 
parallel processing of form and meaning concurrently in the brain and 
acutator states of the hand and legs yield unique parses of speech-to-
semantic text. 

 
Modelling ASU systems 
ASU systems usually processes natural language input to some knowledge structure output, 
ie. speech-to-semantic-text. Fig 2-15 displays how this process is usally modelled. A semantic 
theory is not visable in the model but is affecting both the interaction flows (making the flow 
not neccesarily serial and hierarchical) as well as the actual processing (parser, inference, 
etc). 

 

Fig. 2-15 General NLU architecture 

 

This conversion process often includes the following components: 

 Lexicon. The dictionary, a collection of words/symbols that can exist in a language.  

 Grammar. Rules (patterns) to break the sentence into an internal representation. 
Parser.  Procedure (often called search strategy) to segment the sentence, such that 
all possible structures that can be derived from the input sentence are found.  

 Logical Inference.  While the parser is basically a dumb pattern recognizer or pattern 
search and matching mechanism, the inference engine is the actual “intelligent” 
mechanism. Its design is based on the semantic theory. A good engine would have 
two functions:  

o Disambiguation (pattern selection). Make a choice (disambigue) between 
intermediate structures (if there are multiple structures)  

o Pattern finding and learning. The learning creates new grammar rules for the 
grammar and symbols for the  lexicon  

 Knowledge representation. The intermediate or internal representation (analogous to 
human thoughts) such as semantic web, frames, graphs and many others.  

 Semantic Theory. Theory on how the knowledge such as the grammar and lexicon are 
acquired, structured  and used  
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2.3.2 A brief review: from Machine Translation to Intelligent 
Assistant 
 

The earliest NLU research was done in the early 1950's and focussed on Machine Translation 
(MT) from Russian to English. The journal Mechanical Translation, ancestor of Computational 
Linguistics began publication in 1954 (Sparck Jones, 2001). Possibly one of the earliest 
succesful NLU systems was Weizenbaum's Question&Answer (Q&A) system “Eliza” 
(Weizenbaum, 1966). The technology behind it was simple, basic scripting (template 
matching) and some rules for the rewriting of questions like a Rogerian psychotherapist 
(open ended questions) – “I don’t feel well” becomes “Can you elaborate on not feeling 
well?”. The system was a shocking success, some people chatting with it for more then half 
an hour without noticing it was a computer program. Another famous program was SHRDLU 
(Winograd, 1975) possibly the first embodied NLU system. It was able to have a conversation 
in a restricted domain, the "block world" and was able to move blocks and reason about 
them. It was able to process instructions like "put the green block on the red block" and 
questions like "did you pick up anything before the green block?". Since then (over 50 years 
ago, see (Cambria & White, 2014) for a thorough overview) much progress has been made in 
the fields of phonetics, morphology and syntactics, the domain of ASR systems. The rise of 
the WWW and availability of large amounts of text data, combined with a demand for insight 
caused much innovation in the syntactics domain. Word co-occurance models (often 
performed on keywords such as nouns or verbs)  and semantic similarity and topical similarity 
operate on the lexical level (Ferreira Junior, 2013). 
 
In comparison, until 2010 little progress has been made in the fields of (compositional) 
semantics, pragmatics, discourse and world knowledge. The development of ASU systems 
roughly follow the same technology timeline as with ASR systems. First, rule-based (template 
matching) and first-order logic systems, then probabilistic systems and currently neural 
network based systems. In the last six years, with the advent of deep neural networks and 
focus on big data and machine learning in general, simple Q&A systems evolved to 
sophisticated architectures. In 2011 IBM's Watson (fig. 2-16) caused the first NLU 
breakthrough in decades, when it bested the top two human players in a game of Jeopardy!, 
which requires deep understanding of the question as well as respond with a high confidence 
aswer in under 3 seconds (Ferrucci, et al., 2010). Unfortunately no speech recognizer was 
used at the time as the question was fed as plain text. The huge amount (100+) of machine 
learning algorithms used were rule-based and probabilistic. Feature engineering was key part 
of its success, as one of its researchers mentions: "...the vast majority of the work that was 
done on the Watson project focuses on techniques for finding candidate answers and 
computing feature values for those candidate answers".5 
 

                                                 
5
 https://www.quora.com/Is-IBMs-Watson-an-Expert-System 
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Fig. 2-16 Watson's DeepQA Architecture 

 
2011 also marked the rise of intelligent assistants such as Apple's Siri, Microsoft's Cortana, 
Google Now and Amazon's Alexa. These NLU systems track both question and context such 
as location, time, user preference and usage history. Furthermore they respond with helpful 
actions such as setting alarms and look up information. The conversations possible are still 
limited (domain specific) and shallow (follow up questions are hard), as the dialogue and 
semantic dimension in these evolved Q&A systems is limited and often unimodal (fully text 
based). With curated resources such as WolframAlpha and Wikipedia these systems can 
answer questions in more domains but lengthy and insightful conversations are currently not 
possible. 
 
The current most advanced conversationional bot or "chatbot" is “Mitsuku” from Steve 
Worswick winning the 2016 Loebner Prize. The Loebner Prize is an annual contest where 
several judges need to be convinced their chat partner is human and not a computer 
program – the famous Turing Test (Turing, 1950). It should be noted that winning the Turing 
Test – which is essentially a mimicing game – is only the starting point of good NLU systems 
and intelligent systems, since it is a one-sided test. The techniques fully exploit the 
expectations humans have when chatting. When the chatbot is pretending to be a child with 
English as its second language, odd responses are more common. Also, facial and body  
language and contextual audio (eg. walking outside, breathing heavily) is not transmitted 
which are important cues in real life. The inventor of the term AI, John McCarthy mentions on 
his website6, that passing the test “does not really test whether a machine or computer 
program is intelligent, only that it is able to fool a human” (paraphrase) – something that Eliza 
did without much effort, if the human is caught off guard. McCarthy also mentions that AI 
reaching human level intelligence requires new paradigms and new approaches to escape 
the current “in-the-box-thinking”. The current widely popular “more data” approach is the 
easy approach, however human intelligence is not about quantity – humans are not 
omnipotent - but about qualitative usage of data.   

                                                 
6
 http://www-formal.stanford.edu/jmc/whatisai/node1.html, last visited Januari 2017 

http://www-formal.stanford.edu/jmc/whatisai/node1.html
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3 
3  Methodology 

 
With an introduction to all the relevant components for our ASU system and multimodal 
fusion in general  we discuss how we set up our experiment to collect and analyse data using 
this system.   
 

3.1 Introduction 
 
"Research is about making knowledge"7. For this thesis we choose a quantitative research 
methodology to achieve this knowledge. Specifically, we follow the classical experimental 
design process shown in Fig. 3-1 and use a deductive reasoning approach starting from our 
working hypothesis: 
 
"Fusing classified objects and gestures from a 3D camera with speech have a beneficial effect 
on the WER performance of an Automatic Speech Recognizer under increasing Gaussian white 
noise condition from 20 dB up to -5 dB SnR compared to speech only.  
 

 
 
Fig 3-1 Experimental design process supported by proposed multimodal ASU framework 
 
To test this hypothesis we designed an experiment and methodology to collect and analyse 
data, described in chapter 3.2 and 3.3. The framework to support and process the data is 
described in chapter 4.2.  
 

3.2 Experiment 
 
To train the components in our multimodal architecture such as the neural network, we need 
to collect a large amount of data. We devised an experiment and developed a framework for 
synchronous multimodal data recording and labeling data. In total 25 particpants were 
recorded, aged between aged 23-53 years, predominantly non-English native speakers and 
about 1:3 female to male ratio. All recordings took place at the Geodan Amsterdam Research 
Lab, The Netherlands.  

                                                 
7
 Quote from Ivan Hofsajer from his EdX MOOC  "Research Methods: An Engineering Approach" 
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We chose this grounded language learning experiment as it simulates a human teacher-
learner setting. The particpant demonstrates the opposite (learning) party word usage in 
physical context as realistic as possible, so with adult-directed speech and unconstrained 
gestures (eg. some participants use a pull gesture for grabbing occasionaly). We strategically 
placed the camera closeby and in front of the particpant such that we can capture relatively 
clean data with few occlusion or noise due to distance while participant focusses on teaching 
words and gestures to the screen in front of the particpant on eye level. 
 
Grounded language learning experiments with blocks have been done before, eg. (Winograd, 
1975) as have experiments with learning by example (Roy, 2002). 
  

3.2.1 Setup 
 
The experiment took place in an office workspace. The equipment in section 3.2.2 were 
placed on the table as shown in Fig. 3-2 and 3-3. The setup is designed to have a direct line of 
sight with the hands to approximately detect the grabbing and releasing of an object. 
 

 

 

 

 

 

 

 

 

 
Figure 3-2 Render of the experimental setup  
 

 
 
Figure 3-3  Actual setup at the Geodan Research Lab in Amsterdam 
 
Engineering the recording software of the experiment proved to be tricky as the raw Kinect 
sensor streams saturate the 60 MB/s (480 Mbit/s) USB 2.0 bus: 
 

(30 Hz) * (640 * 480 pixels) * (4 bytes per color pixel) = 36,9 MB/s + 
(30 Hz) * (640 * 480 pixels) * (2 bytes per depth pixel) = 18,4 MB/s + 
(16000 Hz) * (4 channels) * (3 bytes per audio sample) = 0,2 MB/s 
 
= 55.5 MB/s, leaving just 4.5 MB/s for overhead 

 
With such small margin for error, the recording software is required to capture audio and 
video frames, copy it to memory and release the lock on the sensor as soon as possible, in 
order to prevent frame drops. With no compression, the recording software then needs to 
sustainly write memory to a physical disk (magnetic or SSD) with a capability of writing 
speeds of at least 60 MB/s in order to prevent buffer overflows.  
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3.2.2 Task, Variables, Instruments and Measurements 
 
Task 
Each participant is instructed to execute a single task:  
 

"teach the virtual person (in adult directed speech) across the table the action on the screen 
by performing the gesture while simultaneously saying it. " 

 
An instruction is phrased like “say and do the following" followed up with another screen 
stating "I grab the red block”. All instructions are short (a single, one handed gesture) and 
involve only one object. One session involves the performance of 54 actions, with an 
additional 9 miscellaneous gesture-object-speech actions used for future research. 
 
Objects 
We modeled three 3D objects (block, ball, cup) using the open 
source modelling tool Blender. The models were printed in three 
colors (red, green, blue) on a Felix 3.0 3D printer using PLA filament. 
We used 40% infill to give the model some weight. Each model has a 
square base of 6.5cm and average height of 7.5cm. For the first 10 
experiments we used three objects of similar shape and dimension, 
coated in blue paper as our blue filament was unavailable. 
 
Variables 
Our working hypothesis has two independent variables that are manipulated  
 

 Modality: audio only, video only, multimodal (fused audio+video) 

 Noise level: 20, 10, 5, -5 dB SnR (for audio) 

and one dependent variable that is observed: 
 

 WER performance: in scale 0-100% error 
 

Instruments 
The primary instrument to record both 3D video data and audio was the Microsoft Kinect 
version 1 (Fig. 3-4) . This sensor is capable of providing both color + depth videoframes and 
multi channel audio data.  Next to raw audio and video streams its Software Development Kit 
(SDK) offers low performance cost feature streams like player identification and 3D skeleton 
tracking. The skeleton tracking stream is able to a track human joints in 3D space and is used 
as the input stream for our gesture recognizer. The raw output of sensor can be seen in Fig. 
3-5. 
 

  
 
Figure 3-4  Sensors in the Kinect V1    Figure 3-5  Raw data (RGB+skeleton left, Depth right) 
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The computer used to process the Kinect sensor and the recording framework was a custom 
build quad core i7 4770K CPU with 32 GB of RAM, 1 TB SSD and a GTX Titan GPU. The 
machine ran Windows 8.1 Professional using the .Net 4.5 framework and Visual Studio 2015 
Enterprise.  
 
Measurements 
From each particpant the following data was recorded: 
 

 Voice data in 32 bit PCM encoded format and sampled at 16Hz 

 Skeletal data of the joints at 30Hz 

 Color frames in VGA (640x480) resolution in RGBA (red, green, blue, alpha) format at 
30hz 

 Depth frames in VGA resolution in 16 bit (13 for depth, 3 for player identification) at 
30hz. 
 

3.2.3 Procedure 
 
The general flow of a single experiment session is shown in Fig. 3.2-6. We tested this 
workflow and optimized our software settings using a small pilot study with 3 participants not 
in our list of 25 participants. 
 

 
 
Figure 3-6 Experiment stages             
 
Welcome (1 minute) 
Participants were welcomed and seated in the particpant chair in a private room. Next, a 
small briefing about the experiment was given. In this briefing we disclosed an estimated 
duration, the purpose of the drawings on the table and kindly asked to switch off their 
smartphone and follow the video instructies carefully. The administrator then closed the door 
(making the room silent to external noise) and started the video instructions.  
 
Video instructions  (1 minute) 
The video instructions demonstrate a recorded example of a gesture and speech action in 
sync performed by a participant. Right after the instructions, the main experiment started. 
The participant was requested to carefully execute the actions shown on the monitor.  
 
Main experiment (5 minutes) 
The main experiment was divided in a fixed three “color” stage order (red -> green -> blue).  
Each color stage contained 9 actions (see Table 3.1). First the participant was asked to grab 
three objects from the same color and place them on the marked area in front of the 
participant in random order. Then 9 actions were requested one at a time. Unknown to the 
subject, they determined the pace and as soon as the action was performed the next 
instruction was given with no pauses. Only after 9 actions a small 10 second break was given. 
The same 9 actions were requested but in a different order, followed by a request to return 
the three objects to the colored region outside the workspace. This was repeated for the 
other 2 colors, although in the first 10 experiments the blue object interactions was limited to 
9 instead of 18.  
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Table 3.1      Overview of all 27 actions, with 9 actions for each color stage 
 

 Red Green Blue 

Block Grab/Push/Pull Grab/Push/Pull Grab/Push/Pull 

Ball Grab/Push/Pull Grab/Push/Pull Grab/Push/Pull 

Cup Grab/Push/Pull Grab/Push/Pull Grab/Push/Pull 

 
Side experiment (1 minute) 
During the test run of the experiment it became apparent that 54 actions in 5 minutes 
resulted in bad task execution, most likely due to the repetitive character and simplicity of the 
gesture-object-speech actions. Ten second breaks were introduced between 9 interactions as 
well as two side experiments to take the particpants mind of the main task as well as record 
data for future experiments. The first side experiment, between the first and second color 
stage, requested to say and do contradictory things, in increasing complexity. The second side 
experiment was performed after the last color stage and requested the player to do novel and 
unexpected gestures like pointing at a block not in the workspace or stacking objects. 
 
Questionnaire (2 minutes) 
After the experiment a short questionnaire was held, consisting of 12 questions: 6 
demographic questions about individual characteristics (name, age, gender, educational 
background, color blindness, native tongue(s)) and 6 subjective questions about their 
estimated command over English pronunciation and questions about the performed tasks.  
 

3.3 Data analysis 
 
For this quantitative study all recorded 25 sessions were postprocessed using custom tools, 
analysed using the WER metric and compared to the audio-only baseline. This subsection 
describes how this was done. 
 

 
 

Figure 3-7      Tool for labelling groundtruth 
 
 

eg.  “I grab the red block”  
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Postprocessing: Labelling the groundtruth and generating Gaussian white noise 
The recorded dataset was labelled manually to obtain the ground truth. All of the 54 samples 
of every session was labelled with information on Tstart, Tend and Tag using tools (see Fig. 3-
7) designed specifically for this experiment. Wrong samples, those with a mismatch in 
gesture-object and speech (eg. grab a red cup when saying “I grab a red block” ) were not 
labelled and discarded. However samples with a mismatch in asked action vs executed action 
(with gesture-object-speech in sync) were labelled accordingly as the experiment was not 
about measuring task execution, but about collecting data in a way that gave a more or less 
uniform distribution across all 27 classes for training our models. 

 
To measure ASR performance on 4 SnR levels, raw sensor data was postprocessed with a 
custom Gaussian white noise generator. Each audio frame of ~130ms got analysed in real-
time with noise added to the frame before sending it to the speech recognizer using the 
formula: 
 
 

[1]                    
       

      
  

 
 
With P as average power and both signal and noise representing amplitudes in 16 bit (signed 
short) bandwidth. When average power is written as root mean square amplitude or simply 
the mean of that signal the formula becomes 
 
Metrics 
To evaluate ASR performance, the industry standard Word Error Rate (WER) and Word 
Accuracy (WA) is used as wel as Precision/Recall (F1-score) and Confusion Matrix. 
 
WER 
WER computes the minimum edit distance or effort that need to be done to convert the input 
(recognized) sentence to the (correct) reference (groundtruth) sentence. With effort is meant 
the basic transformations substitutions, deletions and insertions. The WER is thus calculated 
for each sample as 
 
 

[2]        
     

 
 

 
 
Where S = #substitutions, D = #deletions, I = #insertions, N = #words in reference sentence 
 
The average WER for all three modality levels (audio only, video only, multimodal) is 

computed over the validation set of  
 

 
 of 25 particpants, such that no training samples of that 

participant are provided to test the recognizers. Furthermore, the average WER for each 
modality is computed for each of the five (20,10,5,0,-5) noise levels.  
 
 

[3]              
                  

     

 
 
 

 
     

 
 

 
 
Where   p                 and s                                            
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The WER scores are finally converted to a more intuitive representation (low percentage 
equals low performance) using the industry standard (Jurafsky & Martin, 2000)Word Accuracy 
(WA) metric for ASR performance using the formula  
 
 
[4]               
 
 
Precicion/Recall  
To measure system performance we use an evaluation measure often used in information 
retrieval. By calculting precision and recall we can measure the exactness (quality) and 
completeness (quantity) of the system. They are defines as: 
 
 

[5]              
                                 

                       
 

 
 

[6]           
                                 

                     
 

 
 
Formula [6] can be rewritten in terms of Word Accuracy when I = 0 (no insertions, as is the 
case due to our DNN returning one of 27 fixed sentences) as 
 
 

[7]         
       

 
 

 

[8]         
     

 
 

 
Confusion Matrices 
Finally we use confusion matrices to plot and analyse the performance of our semantic 
analyser.  These form the heart of our analysis in optimizing our recognizers. We define our 
27x27 classification confusion matrix: 
 

 27 actual classes 

 27 predicted classes 
 

WER scoring process 
 
Scoring the ASU system can be done in various ways. Since we use asynchronous data we use 
sliding windows to buffer events before sending it to the detection stream to compare to the 
groundtruth, as can be seen in figure 3-8. For each groundtruth we also use a small sliding 
window buffer as we are working with real data and events can occur just before and after.  
Note that if we score neural network performance, each detected interaction event is 
instantly processed by the deep neural network such that that timing is identical to without. 
We guarantee this behaviour since we process all interaction events in an offline phase (real-
time processing of the neural network takes 1+ seconds). Using this scoring method makes 
sure we never miss our groundtruth. Since the goal was not to optimize for false positives, we 
ignore overactive recognizers. 
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Figure 3-8      WER scoring process 
 
Benchmarks 
Although much benchmarks have been published on ASR (audio only), CV (gesture and/or 
object tracking) and multimodal ASR systems using the lip visual feature, no benchmark exist 
for ASR performance fused with gesture and object tracking, which is the prime reasons we 
collected our own data. As mentionded earlier in this chapter, we didn’t choose nor 
developed state-of-the-art recognizers, hence comparing them to the state-of-the-art would 
make little sense as no results have been published with our data. The measured audio only 
and video only baselines provide reference to our specific multimodal ASR system as we train 
it with our data. 
 
Multimodal ASR benchmarks by (Galatas, Potamianos, & Makedon, 2012) and (Gravier, 
Axelrod, Potamianos, & Neti, 2002) and (Papandreou, Katsamanis, Pitsikalis, & Maragos, 
2008) (fig 3-9) show that significant performance improvements can be achieved when fusing 
modalities, which is what this thesis pursuits.  We accept our working hypothesis when we 
can prove that the multimodal approach is around 5 dB or better compared to audio only.  
 
 
 
 
 
 
 
 
Fig 3-9. Improvements due to MM fusion      Fig 3-10.    Ideal system  performance (purple line) 
 
This thesis aims to replicate a performance plot such as shown in Fig. 3-10 (Papandreou, 
Katsamanis, Pitsikalis, & Maragos, 2008) where multimodal sources are always equal or 
better than unimodal sources under noisy conditions.  
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4 
4 Results  

4.1 Dataset 
 
The recorded and labelled audio-video dataset has the following characteristics: 
 
General 

 Size: 600 GB 

 Duration 2,5 Hours 

Modalities  

 3D video (2.5D RGB pointcloud) 

 Multichannel audio (single speaker speech) 

 3D Skeleton (joints of upper body) 

Groundtruth 

 Speakers: 25 

 Total categories: 27 

 Average samples per speaker: 44 

 Total samples: 1206 

 Sample distribution over categories:  

 Red 
block 

Red cup Red ball Green 
block 

Green 
cup 

Green 
ball 

Blue 
block 

Blue cup Blue ball 

Grab 43 49 47 47 49 48 39 41 40 
Push 46 50 48 47 51 50 37 39 42 
Pull 42 49 50 47 48 48 36 36 37 

 
The questionairres resulted in following speaker characteristics: 
 
Objective 

 Average age: 33,5 (range 23-53) 

 Males: 17 

 Females: 8 

 English as native (first) language: 0 

 Color blind: 0 
Subjective 

 Command over English (expert, advanced, beginner): 24%, 64%, 12% 

 Quality of instructions (clear, somewhat, not clear): 92%, 8%, 0% 

 Difficulty of experiment (too easy, somewhat, too difficult): 8% /  92% / 0% 

 Duration of experiment (fine, somewhat too long, too long): 88%, 12%, 0% 
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4.2 Multimodal ASU Framework 
 
To accommodate multimodal data and deal with the multimodal fusion issues we propose 
the multimodal automatic speech understanding (MASU) framework (Fig. 4-1).  The scope of 
this framework extends beyond ASR by trying to understand speech using the correlation 
between audio (eg. words) and other contexts such as video (eg. objects, gestures, events ), 
hence the name ASU. 
 

 
 
Fig 4-1 Proposed multimodal ASU Framework 
 
Multimodal fusion 

All multimodal fusion issues mentioned in chapter 2.2 are addressed in the MASU 
framework:  

 Early fusion, fusion at the feature level, is used when there is clear correlation 
between data streams suchs as skeleton data (gestures) are correlated with 3D video 
data (objects) 

 Late fusion, fusion at decision level, is done in all other cases often with confidence 
scores 

 Synchronisation is done using a temporal buffer (a sliding window) and is inspired by 
how children learn and use words. According to (Tomasello, 2008) children have a 
small window where events can take place before and after the associated 
utterance.  

 Modality fusion is done by processing the fused vector of decisions in the Semantic 
Analyser component using a deep neural network 

The framework is classified as a hybrid fusion framework due to its mixture of early and late 
fusion. A thresholding strategy can be used in each component to reduce false positives.  

Implementation 

We constructed a workflow and an implementation (fig 4-2) using the framework to 
record/replay data, analyse and label data as well as train and test models. The framework is  
modular with API's for each component. It is designed to prototype and playtest simple 
Automatic Speech Understanding applications by swapping the recognizers for a new version 
or different type. After training with multimodal data, a joint audio-visual model of language 
is build such that new applications that dont have video input can still benefit from it. The 
multi-threaded framework is written in the C# .NET programming language using a WPF 
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(XAML) user interface. The only model that was not trained in the framework (but is tested 
in) were the deep learning models using the CNTK machine learning framework (Agarwal, et 
al., 2014) .At the time of writing only c++ and Python binding were available to train models, 
so a Python workflow was created to train our object recognizer model and semantic 
analyser model. The framework has further dependencies to other state-of-the-art machine 
learning libraries such as OpenCV (EMGU CV) and Accord.NET. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4-2 Implementation of the multimodal ASU Framework 
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4.3 Automatic Speech Recognition 
 
Implementation 
In chapter 2.1 we mentioned the components of modern ASR systems, specifically an 
acoustic and language model need to learned. We took an off-the-shelf acoustic model and 
speech engine (Microsoft Speech Platform v.11) for English US because it was optimized 
for the Kinect sensor. An additional benefit , due to the small vocabulary, was that the model 
didnt require a training phase per speaker. We couldn't confirm the used algorithm for the 
speech engine but we suspect a GMM-HMM variant. The recognized sequence words are 
provided with a confidence score and list of other utterance possibilities (with confidence 
score).   
 
We experimented with a large vocabulary ("dictation mode") by implementing the 
system.speech API and routing it from to the Kinect. Unfortunately performance was very 
bad and required lenghty training of the acoustic model. With a small vocabulary and the 
above mentioned Kinect optimized acoustic model, we generated a language model 
consisting of 3 verbs (grab,push,pull) , 3 adjectives (red,blue,green) and 3 nouns (block, ball 
cup). Concatenating these in full utterances resulted in 27 variants. We splitted the training 
set in 80% training (20 particpants) and 20% test (5 participants), with each sample of the 
213 test samples being modified with added Gaussian white noise before sending to the ASR. 
 
Model evaluation 
 

 
                                                                                               TABLE 4-1 ASR Baseline 

 
 

 
 

 
 

 
 
 
 
Fig 4-3  An active ASR, showing the result in a speech bubble 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4-4 ASR Results 

SnR (dB) WER (%) Accuracy (%) 

20 12.36 87.64 

10 10.49 89.51 

5 22.38 77.62 

-5 95.62 4.38 
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Fig 4.3-1 Speech recognizer baseline w/ boxplot 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 4-5 Confusion matrix 20 dB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4-6 Confusion matrix -5 dB  
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4.4 Object Recognition 
 
Implementation 
We wrote a custom object recognizer pipeline (see fig. 4-7) that exploits depth information 
for both accurate detection and recognition of our data. With depth information, segmenting 
objects from the background becomes trivial. Also, with depth information normal vector 
calculations can be performed for accurate surface (eg. a table) and edge (the edges of an 
object) detection.  
 
The detector algorithm is designed for our dataset and works in isolation, scanning the whole 
image for 3D blobs at 30 Hz. One of its features is to detect and track objects without prior 
marking (no supervision required). We use this feature to train the color models 
unsupervised. 

 
 

Fig 4-7 Object recognizer pipeline 
 
Algorithm 
 
Phase1: For each frame, initialize two canvasses, one all black for recognizer and one 
transparent for UI 
 
Phase2: For each pixel check if within interaction volume, if yes paint RGB pixel on UI canvas 
and white pixel on recognizer canvas. Smoothen both RGB and Depth values on canvasses 
using a direct nearest neighbour search to fill 1pixel gaps that are inherent to the Kinect 
sensor. 
  
 
 
 
 
 
 
 
 
Fig 4-8 Phase1:  Input (color+depth)                        Fig 4-9 Phase2:  Depth Segmentation 
 
Phase3: Calculate the normal vector for each pixel and remove all upwards facing pixel 
(removing the table and segmenting the objects). 
 
Phase4: Use the OpenCV erode function on the recognition canvas to create blobs. Detect 
the blobs using  the OpenCV contour estimator. 
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Fig 4-10 Phase3: Floor removal                Fig 4-11  Phase4:  Detection 
 
Phase 5:  Foreach object candidate (contour) test for shape using three rule-based 
recognizers  and determine color using a color histogram distance function. 
 
Phase 6: Foreach recognized object add object to tracking memory and add to tracking 
history when position is < positionDeltaThreshold . When tracked multiple times change flag 
to "isTracked". 
 
 
 
 
 
 
 
 
 
 
Fig 4-12 Phase5: Recognition                Fig 4-13 Phase6: Tracking   
 
Model training 
 
Color 
For building a color model we used a 360 bin histogram representation and sampled each 
object for a total of 1000 frames and then normalized.  We use the "histogram intersection" 
distance measure to compare two color histogram.  
 
Shape 
We used three trivial rule based recognizers to recognize the shapes: 

 Blocks:  object blob area < threshold (the block is the smallest object) 

 Ball: circle approximation and distance measure towards the best matching circle 

 Cup: height/width ratio as the cup has a larger height then width 

Model evaluation 
 

TABLE 4-2 OR Baseline 
 

SnR(dB) WER (%) Accuracy (%) 

n/a 26.06 73.94 
 

TABLE 4-3 Precision/Recall 
 

SnR(dB) Precision (%) Recall (%) 

n/a 423/627= 67.46 423/633= 66.82 
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Fig 4-14 OR baseline 
 

 
 

Fig 4-15 Confusion matrix 
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4.5 Gesture Recognition 
Implementation 
We wrote a custom gesture recognizer pipeline (see fig. 4-16) that exploits depth information 
to detect both object-hand interaction and recognize the type of gesture. In 2D, depth 
estimation by area size is common, however with 3D depth information, better predication 
(and thus tracking) is possible as the system can now predict an occluder and occludee. Our 
system only uses depth information to detect if and which hand of the participant interacts 
with a moving object. 
 
The skeleton stream of the Kinect was very jittery. We used Holt Double Exponential 
Smoothing8 to prevent jitter, but this did not prevent accurate readings when a hand was 
occluded by the object. The gesture recognizer performs its gesture detection algorithm 
(explained below) on a tracked object and uses the most frequently found object recognition 
results as the object of interest for a detected hand-object interaction.  
 

 
  

Fig 4-16 Gesture recognition pipeline 
 
Algorithm 
 
Phase0: Initialize two empty hands at start 
 
Phase1: Foreach skeleton frame update hand position and keep history of positions 
 
Phase2: Foreach tracked object detect if it moves by averaging the last 10 positions and 
check if the absolute sum is true of either (X > 5 cm and Y > 5 cm) or (X > 5 and Z > 5 cm) or (Y 
>5 and Z > 5)  
 

  
 
Fig 4-17 Phase1:  Input (skeleton+tracked objects)    Fig 4-18 Phase2:  Detection of movement 

                                                 
8
 http://msdn.microsoft.com/en-us/library/jj131024.aspx 
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Phase3: For each moving object and tracked object, detect if hand of participants correlates 
with object movement by computing the correlation in X, Y and Z direction of maximum 30 
frames (minimum 5). We check correlation on the sign of the delta's (either positive or 
negative). 
 
Phase4: For each correlated hand-object, recognize gesture using the model below by 
computing the position delta of the object away from the base position. We know the base 
position of Y and Z but not in X since some participants switch objects during the 
experiment). Compute final gesture result by averaging all gesture results and fire an event 
when correlation with hand-object correlation stops. 
 
 

 
 
 
Fig 4-19 Phase3: object-hand correlation                   Fig 4-20 Phase4:  Recognition 
 
 

 
 
 

Fig 4-21 Final result 
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Model training  
 
Gesture 
For building a gesture model we used a trivial rule based detector (see fig 4-22).   
 
 

 
 

Fig 4-22Rule based gesture detector with 2 angles 

 
 
 
 
Model evaluation 
 

TABLE 4-4 GR Baseline 
 

SnR(dB) WER (%) Accuracy (%) 

n/a 43.31 58.69 
 
 
 

 

 
Fig 4-23 GR baseline 
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Fig 4-24Confusion matrix GR 
 
 

TABLE 4-5 GR+OR Baseline 
 

SnR(dB) WER (%) Accuracy (%) 

n/a 36.62 63.38 
 

 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 

 
 
 
 
 

Fig 4-25 GR+OR baseline 
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Fig 4-26 Confusion matrix OR+GR  
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4.6 Deep Neural Network Fusion  
 
Implementation 
 
We used the CNTK framework to train our deep neural network. We prepared our input 
vector in multi label one hot vectors (e.g. grab red block  = [1 0 0 1 0 0 1 0 0] ). We trained 
our model in Python and evaluated the WER performance in the MASU framework (c#) as 
training with CNTK is not yet available for C#.  
 
Model training  
 
We trained our model in 80%-20% fasion,  with 3890 samples and tested the result with 852 
unseen samples. We created an architecture as seen in fig 4-27 and used the following 
parameters: 
 

 Randomized input for training 

 Loss function: Binary cross entropy 

 Error function: average epoch error function of all values (the error rate) 

 Learning rate w/ momentum: 0.0003 

 Learner: ADAM SGD  

 Activation function Hidden layer 1: Leaky ReLU 

 Activation function Hidden layer 2: Sigmoid 
 

 
 

Fig 4-27 Neural network architecture 
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This resulted in the training plot in Fig 4-28, showing a clear convergence in both loss 
function and error. 

 
Fig 4-28 Training plot 

 

Model evaluation 
 

TABLE 4-6 SR+GR+OR+DNN  
 
 

 
 

 

 

 

 
   

Fig 4-29 SR+OR+GR+DNN performance 

SnR (dB) WER (%) Accuracy (%) 

20 7.67 92.33 

10 7.52 92.48 

5 14.87 85.13 

-5 40.69 59,31 
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Fig 4-30 Final overview of all recognizers 
 

 
 

Fig 4-31 Confusion matrix SR+GR+OR+DNN at 20 dB SnR 
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Fig 4-32 Confusion matrix SR+GR+OR+DNN at -5 dB SnR 
 

TABLE 4-7 SR+GR+OR+DNN with ideal detector 
 
 

 
 

 
 
 

 
 

Fig 4-33 Confusion matrix SR+GR+OR+DNN with ideal detector 

SnR (dB) WER (%) Accuracy (%) 

20 7.36 92.64 

10 6.89 93.11 

5 14.24 85.76 

-5 34.43 65.57 
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4.7 Discussion 
 
Data 
We discarded about 2% of our training data (82 of 3972 samples) as no event was generated 
by either speech nor gesture recognizer, which resulted in all zero,  one hot vectors.  We 
deliberately choose not to make both recognizers produce false positives (eg output events 
every second) to mimic a real situation. We did not discard the 4% (34/852 samples) of our 
test data. This means that our baselines will always underperform by at least 4% compared to 
an ideal event detector. We show in fig 4-31 that it really is worth improving our detectors. 
Another solution would be to include more datasources. 
  
All session were annotated with a start and end mark, but sometimes due to frame lag, 
judging the start and end mark was difficult. In several occasions the particpants made error 
in the execution of the task, resulting in a total of 2% (29/1235) discarded groundtruth labels.  
  
Automatic Speech Recognition 
We generated  Gausian white noise over the entire signal instead of only the speech part of 
the signal. This means that the signal-to-noise ratio is calculated on a part where there is a 
mix of speech and silence, which result in speech getting a lower noise as it is distributed.  
 
The ASR occasionally generated false positives. These were not calculated in the WER score 
although one could interpret these false positives as 3 deletions (as there are always three 
words).  We did not implement a weight for each word category. Weighing words makes 
sense for practical systems, where some words might have more importance.  
 
The confusion matrices show that at low SnR levels few speech events are generated, 
contributing to the majority of the WER error. Humans have the ability to recognize speech 
under these noisy conditions with audio input only, confirming the large gap in Robust ASR 

performance in literature, e.g. (Delcroix & Watanabe, 2016). 
 
Object Recognition 
The OR consists of two recognizers for shape and color. Although the color recognizer 
approached near 100% precision, it is not light invariant (e.g. shadow, other light sources), 
making it unusable for practical systems. The shape recognizers performed poorly, as can be 
seen in the decision matrix and was optimized for the data set. A better solution would be to 
train a convolutional neural network which are proven to be good at this task. The benefit of 
this system was performance, as it is able to recognize and track at 30 Hz (the maximum of 
the Kinect v1) which is crucial for the detector of the gesture recognizer. This performance 
was not possbile with the current DNN implementation. 
 
The experiment was designed such that the particpants did not occlude the objects too 
much, however in practice occlusion is very common. We did prevent a lot of sensor noise by 
preprocessing the signal extensively using both depth and color smoothing filters. The Kinect 
streams have many visual artifacts that prevent clean blob detection as well as variations in 
depth readings (average of 1.5cm with occasional extremes of 6cm were measured). As the 
Kinect v1 heavily depends on infrared light, using the system near windows in broad daylight 
or outdoors is not possible. 
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Gesture Recognition 
The experiment requested to perform the gestures as natural as possible. Interestingly, some 
particpants used both hands to perfrom the task, while others did not.  The duration of the 
task ranged from 1.4 seconds to approximately 6 seconds, especially for the first gesture of 
the experiment. The quality of the skeleton data from the Kinect was quite poor, especially 
around the extremities (hands). Although the Kinect support inferred and recognized joints, 
both were jittery and resulted in unstable depth readings. This problem increased when 
interacting with objects as the hand pixels were further minimized. The smoothing filter did 
prevent some jitter but was not nearly enough. There are also some interesting 
undocumented implementation "gotcha's"  in the Kinect SDK like a reversed label for left and 
right hand, and cloned data when no new skeleton data is available in time. 
 
The correlation between object and hand was hard due to the unstable behavior, resulting in 
poor gesture recognition and tracking performance. The confusion matrix show that the 
chosen implemention of the recognition algorithm also performed below average. Recurrent 
Neural Networks excel in finding non-linear decision boundaries in sequential data such as 
this, making it interesting to investigate. Gesture recognition might be just as hard as speech 
recognition as the variations are similarly large. 
 
Multimodal fusion with DNN 
Finding the right parameters, architecture and components is the magic part in training 
neural network. With CNTK playing and testing various options is easy although analysing 
results proved cumbersome. The week before this thesis was due  CNTK released support for 
TensorBoard making visual analysis possible, a crucial time-saving tool.  Our network 
converged fast, with a limit of about 11% error in training and 7% in testing.  
 
Part of this limit is due to the chosen error function which was not identical to an edit 
distance metric such as WER. Suprisingly, the network already trained towards our target 
result, hinting for improvement when we do choose for an edit distance error function. 
 
We missed training our network in C#, as some work needed be done double such as data 
preparation and data visualisation. Training in Python was fast though and in combination 
with GPU-offloading, implementing a DNN for a practical system was a breeze. 
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5 
5 Conclusions 

 

This chapter revisits our research question and working hypothesis. We will present our 
findings using a deductive reasoning approach, discuss limitations on the current work and 
implications for possible future directions.  
 
The research question posed in the introduction was as follows: 
  

 Can multimodal fusion of stereo audio and 3D video improve ASR performance?  

 We made this question more specific and measurable with our working hypothesis:  
   

 Fusing classified objects and gestures from a 3D camera with speech have a 
beneficial effect on the WER performance of an Automatic Speech Recognizer under 
increasing Gaussian white noise condition from 20 dB up to -5 dB SnR compared to 
speech only. 

Our results confirm that multimodal fusion of classified object, gestures and speech results 
under various Gaussian white noise conditions increase ASR performance significantly.The 
benefit of multimodal fusion using a deep neural network compared to both audio and video 
baselines is +5% accuracy at 20 dB SnR up to  +61% accuracy at -5 dB SnR. The system uses 
the deep neural network to fuse classifer results, weighing results per word  to reach a final 
outcome. It outperforms the naïve approach of selecting a whole modality above a certain 
threshold. Early results show that if detection rate is improved of the ASR component, the 
ASU system could benefit strongly from scenarios with audio only input (eg. when it is dark or 
with occlusion) as it can use the learned fused distribution.  

 

5.1 Contributions 
 

5.1.1 Multimodal Automatic Speech Understanding (MASU) 
framework 
 
We presented a validated workflow to record, analyse and playback multimodal data, the 
MASU framework. The framework uses API’s to communicate with the framework such that 
we could swap and test various recognizers. The multi-threaded design and performance of 
the framework enables data processing in real-time, with two buffers to deal with 
asynchronous nature of multimodal data and unpredictable availability of classifer output. 
This allows for building multimodal fusion application for early, interactive and late fusion 
strategies.  
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The framework is programmed in C#, potentially limiting its performance compared to 
unmanaged languages such as C++. Also, the C# wrapped library of the popular OpenCV is 
not robust, making debugging troublesome.  The neural network library CNTK currently only 
supports CPU and GPU based model evaluation only. We used Python to train our neural 
network.  

5.1.2 Annotated multimodal AV Corpus for 3D scene and intent 

recognition 
 
Synchronous multimodal corpora are rare, especially speech in a 3D scene with actor-object 
interactions. There is a clear need for these datasets as deep learning algorithms and 
multimodal fusion algorithms in general (curse of dimensionality) requires incredible 
amounts of data to train. The multimodal corpus was recorded with a Kinect camera and 
microphone array and offers synchronous speech, depth and 3D skeleton data. According to 
the classification scheme in (Firman, 2016) it is rated: 

 Realism:  Type 2 (out of 3). Real environment and objects but scene was simplified 
for experiment  

 3D Completeness: Type 1  (out of 5). Only one 3D camera with single point of view 
(resulting in 2,5D data). 

 
The labelled dataset of 25 particpants, 1206 samples per noise level is available for the 
research community and contains limited miscellaneous data such as pointing, stacking and 
contradicting speech-gesture intentions.  

5.1.3 Algorithm for 3D hand-object detection and tracking 
 
We describe an algorithm for 3D hand-object detection and tracking exploiting the depth 
sensing capabilities of 3D sensors to segment objects from the background and use the 
temporal motion vector correlation between actor hand and moving object to determine 
object which is controlled by the actor.  
 
The algorithm, especially the detector part, works good for this experiment but is still under 
development for application on other datasets.  The algorithm depends on quality skeleton 
data, which the Kinect with minimal signal processing cannot really deliver. Especially when 
occlusion occurs as the actor’s hand wraps the object.  Tracking is also lost when occlusion 
occurs for extended duration as the current object recognizer assumes that objects appear in 
roughly the same neighbour as where it dissappeard. This problem is mitigated when using 
large objects such that the object recognizers have at least some bits to continously track. 
Future versions of the algorithmn will experiment with Kinect 2 skeleton data and better 
object recognizers for handling occlusion and tracking problems.  

5.1.4 Recipe to train deep neural network for multimodal fusion 
 
To train the multimodal fusion classifer we used a late fusion strategy with a non-weighted 
concatination of classifier output. Each classifier outputs in onehot vector format, which after 
concatination becomes a multi label input (and output). We played with various settings 
using the CNTK framework such as various activation function (eg. leaky ReLU), various SGD 
approaches (eg. ADAM), various training settings and patterns (eg. high learning rate at first 
epochs, low later). We managed to train a two  (dense) layer DNN with 20% of our dataset, 
with a total of only 852 samples (213 per noise level), which is considered few for deep 
neural networks. When samples have been seen 1.000.000 times by the network , the 
network stabilizes at around 11% training error and 7%  test error. Interestingly enough, 
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further decrease of both training and test error (cross-entropy with softmax metric) increases 
the actual test error (WER metric). We didn’t investigate this further.   
 

5.1.5 Improved Robust AV Automatic Speech Recognizer using 
Deep Neural Network 
 
We used an off-the-shelf speech recognizer, optimized for the Kinect sensor properties such 
that the microphone array could reliably recognize from a small distance. The constructed 
language model of 27 utterances can be consided small compared to the state-of-the-art 
large vocabulary ASRs, which made recognition much easier. We used an American-English 
acoustic model which worked well with the Dutch-English speaking particpants when 
background noise was little but degraded quickly when the signal reached below 5 dB SnR.  
 
The largest problem with our ASR was its ability to detect speech when noise was added, 
resulting in most of the performance degradation, the quality of prediction was second by a 
large distance. We also measured the confidence values of our ASR system and noted that 
these drop when noise increases. We will test cross-particpant reliability in future research as 
adding confidence values should help the DNN in its decision to fuse modalities. A better ASR 
with better speech detection based on confidence values can teach the semantic analyser a 
limited form of Socrates' Wisdom, as it will know when too few evidence was found to emit a 
likely answer. 
 
Improving our speech recognizer by introducing more modalities and using a deep neural 
networks worked really well for our data set, confirming our biologically inspired intuition 
how human process increase understanding with more evidence (data) and with more data 
sources.  The proof-of-concept is currently not be able to deal with contradicting speech-
gesture input or with data outside of the learned domain. For this technology to be adopted 
in practical scenario’s,  most of the work needs to be done in engineering better ASR and GR 
detection. Since we use the WER metric, performance in penalized per word and the DNN is 
able to realibly recognize objects from the OR stream, which is 66% of the result in our 
experiment.  
 

5.2 Recommendations for Future work 
 
During the research and development of the MASU framework and POC, a series of research 
directions arose which were cut short due to time constraints, they are described below. We 
also faced quite a few impediments that resulted in little time to optimize training the 
network so we are hopeful to squeeze out more performance  in the near future. The main 
and pragmatic focus remains solving the cocktail problem using an embodied, usage-based 
approach while at the same time simplify prototyping ASU applications. 
 
We trained the semantic analyser using a late fusion strategy. Related work described in 
chapter 2 show that early fusion is also a viable strategy. This way, the system can learn 
unsupervised or semisupervised which features to track from raw data and learn patterns, 
correlations and causalities between modalities that are otherwise lost when only 
considering confidence values.   
 
For this thesis three modalities were chosen. Learning richer joint audio-visual 
representations would enable a host of new ASU applications. With face tracking we can 
visually distinguish which person is talking to whom and with lip reading we can aid the 
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speech recognizers as is done in mentioned literature. Mouth tracking would further enable a 
better estimate (detector) when speech starts and ends, predict speech behavior (eg. 
children, elderly) and possibly esitmate emotions from both speech and face/mouth.  
 
The structure of the joint multimodal (knowledge) representation is a topic of heavy 
research. In this thesis we use the connectionist approach by using a deep neural network to 
model knowledge. Current limitations are sharing knowledge, extending knowledge across 
domains and the black box nature of neural networks. It would be interesting to use other 
structures to capture patterns as described in (Bos, 2012). We are keen on implementing and 
testing more principles of the Neural Theory of Language (Feldman J. , 2006) such as 
Embodied Construction Grammars (Bergen & Chang, 2003).  
 
Humans are great at reading intentions when speech and body language contradict and 
selecting the most probable one given the prior behavior of the speaker, context and other 
factors. The humans brain uses inference and attention mechanisms to evaluate the weights 
of each input modality. To better deal with contradicting intents, our future system needs to 
track the physical context and speaker behavior through time and form a dialogue structure. 
This dialogue can be queried for hypothesis and truth assesment such as in IBM Watsons 
architecture which enables a form of inference.  

 
During the development we demonstrated the use and performace of the framework with a 
POC - a limited language model, limited data and limited tools to profile results and models 
such as the neural networks. Scaling up the experiment with more data, such as more 
vantage points, (Firman, 2016) 3D completeness: type 2 or 3) and more actor-object 
interactions. More data and better tooling will directly and indirectly lead to increased WER 
performance. 
 
Key part of this thesis was testing the robustness of the system under Gaussian white noise. 
Practical usability of the system involves robustness to more adverse conditions such as non-
stationary white noise, audio compression, range and many types of low quality 
microphones. In this thesis we only tested audio noise, but robustness against various types 
of video noise such as occlusion, video compression, motion blur and bad lighting would 
make the system leaps more interesting. Finally, other types of robustness of the system 
would be interesting to investigate such as dynamic network topologies to temporarily filter 
noise in a particular situation. ResNets (deep residual neural networks) (He, Zhang, Ren, & 
Sun, 2016) are a new form of deep neural networks that feature "skip nodes" that allow 
removing (or disabling) whole hidden layers with only a few percentage of performance loss. 
We hypothesize that an interactive fusion strategy, ie. dynamically disabling layers that 
contain features that are sensitive to certain noise could actually increase performance.  

Beyond Automatic Speech Recognition, towards Automatic Speech Understanding 
Progress along these directions would  bring us a few steps closer towards a grander vision 
with wide social and commercial impact: Affective, Robust Automatic Speech Understanding 
(*ASU:  any ASU).  
 

 Affective. Early *ASU systems will not be flawless in its speech-to-semantic-text 
conversion, but to get social acceptance its output should be predicatable and 
correctable such that identical mistakes are rare - similar to current word completion 
solutions. User profiling with emotion recognition, contextual awareness and 
personalisation options with possibly emotive personalities are all required for the 
system to be practical in many situations and forgivable when mistakes happen 
(Karray, Alemzadeh, Abou Saleh, & Nours Arab, 2008). 
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. 

 Robust. *ASU systems should achieve a level of performance that at least equals the 
human gold standard as use cases can be diverse and unpredictable. This means that 
we require  to solve various speech signal degradation issues with larger distances 
(Delcroix & Watanabe, 2016) and (Barker, Vincent, Ma, Christensen, & Green, 2012) 
and others9, multi-speaker background noise and compression artifacts such as in 
VOIP solutions. Also, as much research is focussed on the English language spoken by 
first-language users, more research in (international) dialects and child (directed) 
speech is required for it to be internationally viable. 

 ASU. Understanding words beyond lexical and syntactic structures (symbols and 
grammar) requires learning word origins (etymology) - where and when are they 
used and why. This requires new grounded learning approaches with more 
modalities as words are always learned in some physical, emotional and affording 
context. Grounded learning in turn requires deeper multimodal fusion as words have 
limited meaning in a single modality but vast richness when combined (see table 
2.2.1 six levels of cooperation). Finally, to truly understand language goes beyond 
training data and requires creative generation of new forms of usage - but within the 
limits of a language community. Models for language generation (eg. names, valid 
poetry) and common sense as well as capabilities for (biologically-inspired) inference 
are still areas of active research. 

 

 

  

                                                 
9
 http://www.cs.cmu.edu/afs/cs/user/robust/www/papers.html 
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