
Multidomain Graph Signal Processing
Learning and Sampling

Guillermo Ortiz Jiménez

ii

Multidomain Graph Signal Processing
Learning and Sampling

thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Guillermo Ortiz Jiménez
born in Madrid, Spain

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2018 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Multidomain Graph Signal Processing” by Guillermo Ortiz Jiménez
in partial fulfillment of the requirements for the degree of Master of Science.

Dated: 23 August 2018

Chairman:
prof.dr.ir. G. Leus

Advisors:
prof.dr.ir. G. Leus

dr.ir. S.P. Chepuri

Committee Members:
dr.ir. R. Hendriks

dr.ir. D. Tax

iv

Abstract

In this era of data deluge, we are overwhelmed with massive volumes of extremely
complex datasets. Data generated today is complex because it lacks a clear geometric
structure, comes in great volumes, and it often contains information from multiple
domains. In this thesis, we address these issues and propose two theoretical frameworks
to handle such multidomain dataset.

To begin with, we extend the recently developed geometric deep learning framework
to multidomain graph signals, e.g., time-varying signals, defining a new type of con-
volutional layer that will allow us to deal with graph signals defined on top of several
domains, e.g., electroencephalograms or traffic networks. After discussing its properties
and motivating its use, we show how this operation can be efficiently implemented to
run on a GPU and demonstrate its generalization abilities on a synthetic dataset.

Next, we consider the problem of designing sparse sampling strategies for multido-
main signals, which can be represented using tensors. To keep the framework gen-
eral, we do not restrict ourselves to multidomain signals defined on irregular domains.
Nonetheless, this particularization to multidomain graph signals is also presented. To
do so, we leverage the multidomain structure of tensor signals and propose to ac-
quire samples using a Kronecker-structured sensing function, thereby circumventing
the curse of dimensionality. For designing such sensing functions, we develop several
low-complexity greedy algorithms based on submodular optimization methods that
compute near-optimal sampling sets. To validate the developed theory, we present sev-
eral numerical examples, ranging from multi-antenna communications to graph signal
processing.

v

vi

Acknowledgments

First and foremost, I would like to express my gratitude to all the people without whom
this thesis would not have been possible.

First, to my daily supervisor, Dr. Sundeep Chepuri, whose commitment and passion
to research, as well as his invaluable advice have made me reflect continuously on
what I was doing, and have immensely improved the quality of my work. Yet, I am
especially grateful to his personal guidance and mentorship, which extend far beyond
professionalism, and have been a great inspiration to aim higher in my career. Thank
you!

I would also like to thank Prof. Geert Leus, for his timely supervision, and for
having given me the freedom to always explore new ideas during my thesis. His door
has always been open, and I have greatly learnt from his constructive criticism.

Working at CAS has been a real pleasure, and that is thanks to all its members. A
special mention should go to Mario, whose collaboration has been key in the realization
of this thesis, and with whom I have greatly enjoyed working. ¡Gracias! Also, I would
like to thank Lucas and Bas, for having made all those necessary coffee breaks so
pleasant, and for having shared so many hours with me in the MSc. room.

Finally, I would like to thank the rest of my friends and family, scattered around
the world, for their love and words of encouragement. My achievements, and who I am
today would not be possible without your kind support.

Guillermo Ortiz Jiménez
Delft, The Netherlands
23 August 2018

vii

Solo el misterio nos hace
vivir. Solo el misterio.

- Federico Garćıa Lorca

Only mystery makes us live.
Only mystery.

- Federico Garćıa Lorca

viii

Contents

Abstract v

Acknowledgments vii

Nomenclature xv

1 Introduction 1

I Learning 5

2 Background 7
2.1 Deep learning . 7
2.2 Graph signal processing . 8
2.3 Geometric deep learning . 11

3 Problem modeling 17
3.1 2D-FIR graph convolutional layer . 17
3.2 Time-vertex graph convolutional layer 18

4 Implementation and numerical results 21
4.1 Tensorization and GPU implementation 21
4.2 Construction of the synthetic dataset 23
4.3 Architecture definition . 25
4.4 Performance evaluation . 26

II Sampling 29

5 Background 31
5.1 Notation . 32
5.2 Tensors . 32
5.3 Submodular optimization . 33

6 Problem modeling 37
6.1 Prior art . 39
6.2 Our contributions . 40

7 Dense core sampling 43
7.1 D-optimal greedy method . 43
7.2 Frame potential . 46
7.3 Convex alternative . 50

ix

8 Diagonal core sampling 53
8.1 Identifiability conditions . 53
8.2 Greedy method . 54
8.3 Convex alternative . 56

9 Numerical results 59
9.1 Synthetic data . 59
9.2 Sampling a dynamical point cloud . 60
9.3 Active learning for recommender systems 63
9.4 Multiuser source separation . 65

10 Conclusions 67

A Proofs of Part II 69
A.1 Proof of Theorem 7.1 . 69
A.2 Proof of Theorem 7.2 . 70
A.3 Proof of Theorem 7.3 . 71
A.4 Proof of Theorem 8.2 . 72

x

List of Figures

1.1 Different sparse sampling schemes. Black (white) dots represent selected
(unselected) measurement locations. Blue and red lines determine dif-
ferent domain directions, and a purple line means that data has a single-
domain structure. 2

2.1 Example of a convolutional neural network used to classify images.
Taken from [7]. 7

2.2 Illustration of the product between two graphs. � represents either a
Cartesian (only colored edges), a Kronecker (only gray edges) or a strong
product (all edges) between graphs. 10

2.3 Support of time-varying graph periodic signal. 11

3.1 Collection of spectral time-vertex responses of 2D-FIR graph filters with
random coefficients (K = 3 and M = 3). The horizontal direction
represents the symmetric (real coefficients) temporal frequencies, and
the vertical direction the graph frequencies. 20

4.1 Diagram representing the proposed tensorization. 22
4.2 Generative model of synthetic time-varying graph signals. 23
4.3 Time-varying graph process realization examples for each of the J = 6

classes used in our experiments. The GCNN receives the time-vertex
representation. 24

4.4 Comparison of the generalization ability of the 1D-GCNN and the TV-
GCNN for different training set sizes and noise levels. 27

5.1 Illustration of the proposed sampling scheme for a product of two graphs.
The black (white) dots represent the selected (unselected) vertices. . . . 31

5.2 Graphic representation of multilinear system of equations for R = 3.
Colors represent arbitrary values. 33

6.1 Comparison between unstructured sampling and structured sampling
(R = 2). Black (white) cells represent zero (one) entries, and colored
cells represent arbitrary numbers. 39

9.1 Performance comparison for the dense core case. Results obtained for
R = 3 with N1 = 50, N2 = 60, N3 = 70, and with K1 = 10, K2 =
20, K3 = 15. 59

9.2 Performance comparison for the diagonal core case. Results obtained for
R = 3 with N1 = 50, N2 = 60, N3 = 70, and with Kc = 20. 61

9.3 Maximum power of Xf in its temporal and graph spectral modes. The
shaded area represents the modes that are removed to arrive at (9.1). . 61

9.4 Two frames of the dancer dynamic point cloud. The blue dots correspond
to the original data and the red dots to the subsampled version. 63

xi

9.5 User and movie networks. The red (black) dots represent the observed
(unobserved) vertices. Visualization obtained using Gephi [74]. 64

9.6 MSE of symbol reconstruction. N1 = 50, N2 = 60, N3 = 100, and L = 15. 65

xii

List of Tables

4.1 List of parameters involved in the architecture of the TV-GCNN. . . . 25
4.2 List of parameters involved in the architecture of the 1D-GCNN. 26

9.1 Performance of proposed sparse tensor sampling algorithms on dancer
point cloud. 62

9.2 Performance on MovieLens 100k. Baseline scores are taken from [28]. . 64

xiii

xiv

Nomenclature

Mathematical objects

x Scalar

x Vector

X Matrix

X Tensor

X Set

G Graph

Set theory

R Set of real numbers

C Set of complex numbers

2X Power set of X , i.e., set of all subsets of X
∅ Empty set

∩ Intersection

∪ Union

⊂ Strict subset

⊆ Subset

× Cartesian product

|X | Cardinality of X
M Matroid

I Independent set

Graph signal processing

L Graph Laplacian

S Graph shift operator

� Graph Cartesian product

� General graph product

∗ Time or graph convolution (inferred from context)

∗G Graph convolution

∗T Time convolution

F Time or Graph Fourier transform (inferred from context)

FG Graph Fourier transform

FT Standard discrete time Fourier transform

xv

Linear algebra

I Identity matrix

1 All-ones vector

⊗ Kronecker product

� Khatri-Rao product

◦ Hadamard product

⊕ Kronecker sum

•n n-mode tensor-matrix product

•mn Tensor contraction between the nth mode and the mth mode of two tensors

(·)∗ Matrix conjugate, without transpose

(·)† Moore-Penrose pseudoinverse of a matrix

(·)H Matrix conjugate transpose

(·)T Matrix transpose

(·)◦n nth element-wise power of a matrix

〈·, ·〉 Inner product between elements of Euclidean space

‖·‖2 `2-norm of a vector

‖·‖F Frobenius-norm of a matrix or tensor

det {·} Determinant of a matrix

λmax{·} Maximum eigenvalue of a matrix

tr {·} Trace of a matrix

Other symbols

O(·) Big O notation

ρ(·) Point-wise nonlinearity

Tk(·) Chebyshev polynomial of order k

Conv {x} Toeplitz matrix with shifted copies of vector x on its rows

log{·} Natural logarithm

diag{x} Diagonal matrix with x in its main diagonal.

E{·} Expectation operator

� Element-wise inequality between vectors

xvi

Introduction 1
In this era of data deluge, we are submerged under massive volumes of extremely
complex dataset, such as sensor network readings, brain activity records, opinions in
social media, or high-resolution 3D point clouds. Signal processing has traditionally
been the tool we used to extract meaningful information from noisy data; but data today
is more intricate than ever: it lacks a clear physical model, comes in great volumes,
and it is often defined over multiple irregular domains.

Take, for instance, the problem of predicting the volume of traffic in a city in the
next hour, given data of the traffic evolution recorded by a sensor network scattered
across the city. It is clear that in a modern busy city the size of this dataset would
be tremendous. Furthermore, even though we might have an intuition on how traffic
evolves during a day, or a week, finding an explicit model that describes the sophisti-
cated interactions between different neighborhoods is a rather challenging task. Finally,
this data resides on two domains: a temporal one, and spatial one with an irregular
geometric structure that is best represented by a graph of street connections. Classical
signal processing techniques cannot deal with these peculiarities, so we need to find
better tools to tackle them.

The emerging fields of deep learning [1] and graph signal processing (GSP) [2] have
recently attracted a lot of attention as potential tools to overcome these challenges.
On the one hand, deep learning, a subfield of machine learning, tries to recognize
patterns in data without having access to a given model. The main difference with
machine learning being that it does so by exploiting the geometric structure of the
data support. On the other hand, GSP focuses on the extension of traditional signal
processing techniques developed for signals living on regular domains such as timelines
or images, to signals that reside on irregular domains with a network structure. The
combination of these two fields has lead to the creation of geometric deep learning [3],
a new theoretical framework for discovering patterns in graph signals. In the first part
of this thesis, we will explore an open issue in this field: how to deal with multidomain
graph signals, such as the ones in the aforementioned traffic prediction problem. We
refer to this extension as multidomain geometric deep learning.

In many engineering and scientific applications, we frequently encounter large vol-
umes of multisensor data defined over multiple domains that are complex in nature. For
example, in wireless communications, received data per user may be indexed in space,
time, and frequency. Similarly, in hyperspectral imaging, a scene measured in different
wavelengths contains information from the three-dimensional spatial domain as well as
the spectral domain. And also, when dealing with network data or point clouds, often
multidimensional time-varying signals are defined on each node in the network. To
process such multisensor datasets, higher-order tensors or multiway arrays have been
proven to be extremely useful.

In practice, however, due to limited access to sensing resources, economical con-

1

straints, or physical limitations, it is often not possible to measure such multidomain
signals using every combination of sensors related to different domains. To cope with
such issues, in the second part of this thesis, we propose sparse sampling techniques to
acquire multisensor data that can be represented using tensors.

Sparse samplers can be designed to select a subset of measurements (e.g., spatial or
temporal samples as illustrated in Fig. 1.1a) such that a desired inference performance
is achieved. This problem is referred to as sparse sampling or sensor selection [4]. An
example of this is field estimation, in which the measured field is related to the source
signal of interest through a linear model (i.e., the measured field lives in a known
subspace). To infer the source signal, a linear inverse problem is solved. In a resource-
constrained and noisy environment, since many measurements cannot be taken, it is
crucial to carefully select the best subset of measurements. The problem of choosing the
best subset of samples from a large pool of measurements is combinatorial in nature,
and extremely hard to solve, even for small-sized problems. Thus, most of the research
efforts on this topic have been focused on finding suboptimal sampling strategies that
yield good approximations of the optimal solution.

For signals defined over multiple domains, the dimensionality of the measurements
grows much faster. An illustration of this curse of dimensionality is provided in
Fig. 1.1b, wherein the measurements now have to be systematically selected from even
a larger pool of measurements. Typically used suboptimal sensor selection strategies

(a) Single domain sparse sampling

(b) Unstructured multidomain sparse sampling

(c) Kronecker-structured multidomain sparse sampling

Figure 1.1: Different sparse sampling schemes. Black (white) dots represent selected (unse-
lected) measurement locations. Blue and red lines determine different domain directions, and
a purple line means that data has a single-domain structure.

2

are not useful anymore because their complexity is too high; or simply because they
need to store very large matrices that do not fit in memory. Usually, acquiring arbitrary
samples from a multidomain signal, requires that sensors are placed densely on every
domain, which greatly increases the infrastructure costs. Hence, we propose an efficient
Kronecker-structured sparse sampling strategy for gathering multidomain signals that
overcomes the aforementioned issues. In Kronecker-structured sparse sampling, instead
of choosing a subset of measurements from all possible combined domain locations (as
in Fig. 1.1b), we propose to choose a subset of sensing locations from each domain and
then combine them to obtain multidimensional observations; see an illustration of such
a Kronecker-structured sparse sampling in Fig 1.1c. We will see later that taking this
approach will allow us to define computationally efficient design algorithms that are
useful in big data scenarios.

Research statements

In this M.Sc. thesis we answer the following two main research questions:

Learning

How to generalize graph convolutional neural networks to account for the mul-
tidomain structure in product graph signals?

Sampling

How to choose a subset of sampling locations from each domain of a multidomain
(possibly irregular) signal so that its reconstruction has minimum error?

Thesis outline

This M.Sc. thesis is structured into two parts, namely, learning and sampling. As we
saw before, the first one deals with the extension of deep learning to multidomain graph
signals, and the second one with the design of sparse samplers for inverse problems
with multidomain signals. The chapter distribution of the remainder of this thesis is
as follows:

• Part I: Learning

– Chapter 2: We briefly introduce the theory of deep learning and graph signal
processing. We also review the state-of-the-art in geometric deep learning.

– Chapter 3: We propose a new type of graph convolutional layer that exploits
correlations between the multiple graph domains.

– Chapter 4: We evaluate the performance of such a layer on a synthetic dataset
where we prove its robustness against adversarial noise and limited access to
training data.

3

• Part II: Sampling

– Chapter 5: We summarize the notation, and mathematical theory of tensor
algebra and discrete optimization that will be extensively used througout this
part.

– Chapter 6: We formally define the sparse tensor sampling problem as a dis-
crete optimization problem and review the state-of-the art in single domain
sparse sampling.

– Chapter 7: We propose two greedy algorithms based on submodular opti-
mization theory and one algorithm based on convex optimization to design
the sampling set in case the multilinear decomposition of the target tensor
signal has a dense core.

– Chapter 8: We propose two algorithms (one based on the submodularity of
the objective function, and another based on its convexity) to design the
sampling set in case the multilinear decomposition of the target tensor signal
has a hyperdiagonal core.

– Chapter 9: We evaluate the performance of the proposed algorithms for
different amounts of compression using synthetic data. We also test the
applicability of our framework to solve problems with real data in graph
signal processing, recommendation systems, and MIMO communications.

• Conclusions: We conclude the thesis summarizing the main contributions of
both parts and with a compilation of research directions that may be interesting
to pursue in the future.

Publications

The research conducted during this M.Sc. thesis has lead to the submission of the
following two publications:

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus, “Sparse Sampling
for Inverse Problems with Tensors”. Submitted to IEEE Transactions on Signal
Processing Jun. 2018. Available: https://arxiv.org/abs/1806.10976

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus, “Sampling and Re-
construction of Signals on Product Graphs”. Submitted to the 2018 6th IEEE
Global Conference on Signal and Information Processing Jun. 2018. Available:
https://arxiv.org/abs/1807.00145

4

https://arxiv.org/abs/1806.10976
https://arxiv.org/abs/1807.00145

Part I

Learning

5

Background 2
2.1 Deep learning

Deep learning [1, 5] refers to a subset of concepts and tools in machine learning that
tries to solve supervised, unsupervised, and reinforcement learning tasks using neural
networks. In contrast to classical methods, deep learning proposes solving the whole
machine learning pipeline (feature extraction, feature selection, and inference) with a
common framework of multilayer architectures and first-order optimization methods.

Convolutional neural networks (CNNs) are clearly the most popular tool among
all deep learning techniques, mainly due to their success in computer vision [6, 7] and
natural language processing [8] tasks. As most neural networks, CNNs are formed by
sequentially stacking a set of layers composed of a linear mapping and a point-wise non-
linearity as illustrated in Fig. 2.1. However, in CNNs the linear mapping generally takes
the form of a convolution operator whose kernel parameters are learnt during training.
The concatenation of many such layers, intercalated with subsampling stages referred
to as pooling, can generate a very wide class of universal function approximators that
have been shown to perform very well on many machine learning tasks. Besides, having
a multilayer architecture allows solving optimization problems using simple first-order
methods and the backpropagation algorithm [5]: an efficient way to perform gradient
descent iterations in a neural network.

The reason for the success of CNNs is still an open issue which has been especially
hard to settle due to the black box nature of most deep learning methods. The most
accepted explanation argues that the power in CNNs comes from the fact that they
leverage the stationarity and stability to local translations of the problems they try

Figure 2.1: Example of a convolutional neural network used to classify images. Taken from [7].

7

to solve [1, 5, 9]. Whereas, their fixed number of parameters, i.e., independent to the
input size, makes them amenable to train even in high dimensional scenarios. Espe-
cially, thanks to the advent of graphic processing units (GPUs) for general purpose
programming in recent years.

Due to space limitations, we will not dwell on the details of how modern deep
learning architectures work. For an in-depth description of such models, and review of
the recent developments in deep learning we refer the reader to [5].

2.2 Graph signal processing

Graph signal processing aims to extend basic concepts of classical signal processing
developed for signals defined on Euclidean domains to signals that reside on irregular
domains with a network structure [2]. Mathematically, a graph signal x ∈ RN consists
of a collection of N values that can be associated to the nodes of a known graph
G = (V , E), with a vertex set V , and an edge set E that reveals the connections between
the nodes. For the sake of exposition, we will focus on undirected graphs.

Using the graph structure, we can construct an adjacency matrix A ∈ RN×N

that stores the strength of the connection between nodes i and j in its (i, j)th and
(j, i)th entries, [A]i,j = [A]j,i. The degree of the ith node of a graph is defined as

di =
∑N

j=1[A]i,j. Related to the adjacency matrix, we can also define an alternative

matrix representation known as the graph Laplacian L = D − A ∈ RN×N , where
D = diag{d1, . . . , dN} ∈ RN×N . Both the adjacency matrix and the graph Laplacian
belong to the class of matrices that represent a valid graph-shift operator (GSO) [2],
i.e., a matrix S ∈ RN×N with a sparsity pattern defined by the graph connectivity.

Since for undirected graphs S is symmetric, it admits an eigenvalue decomposition

S = UΛUH = [u1 · · ·uN]diag{λ1, . . . , λN}[u1 · · ·uN]H , (2.1)

where the eigenvectors {ui}Ni=1 and the eigenvalues {λi}Ri=1 provide a notion of frequency
for the graph setting [2]. If working with directed graphs, one can simply replace (2.1)
by a Jordan decomposition S = UJU−1 [10].

The vectors {ui}Ni=1 provide a Fourier-like basis for graph signals, allowing to de-
compose any signal x into its spectral components xf = F{x} = UHx, an operation
known as the graph Fourier transform (GFT). In this sense, we say that a graph signal
x is bandlimited [2] when xf has K < N non-zero entries.

2.2.1 Graph filters

In classical signal processing, filtering refers to the process of amplifying or attenuating
different frequencies of a signal [11]. Exploiting the GFT frequency representation,
one can perform an analogous operation on graph signals [2]. Indeed, filtering a graph
signal x with a graph filter H(λ) can be done as

y = U diag{H(λ1), . . . , H(λN)}UHx = F−1 {diag{H(λ1), . . . , H(λN)}F{x}} . (2.2)

Nevertheless, opposed to what happens in classical signal processing, we do not have
a fast implementation of the GFT, yet. For this reason, filtering a signal using (2.2)

8

can be very inefficient. The most common way to circumvent this problem is designing
and implementing graph filters in the vertex domain [2], defining the finite impulse
response (FIR) version of graph filters as a linear combination of powers of the GSO
which exploit the sparsity pattern in S.

Definition 2.1 (FIR graph filter). Let x ∈ CN be a signal defined on a graph G equipped
with a GSO S ∈ CN×N , and h ∈ CK be a vector that stores the K coefficients of a
graph FIR filter. Filtering x with h in the vertex domain can be performed doing

y =
K−1∑
k=0

hkS
kx. (2.3)

The universal spectral response of such a filter is

H(λ) =
K−1∑
k=0

hkλ
k. (2.4)

As we will see, FIR graph filters can represent a vast class of graph filters which can
be implemented using a K-hop message passing distributed algorithm. Furthermore,
as we will see, they are key in the definition of efficient graph convolutional neural
networks.

2.2.2 Product graphs

Oftentimes, large scale graphs appear as a product of several smaller graphs. For
example, time series on a sensor network, can be factorized using a cycle or path graph
to represent time, and a spatial mesh to represent the network [12]. In genomics, the
graph that relates the different phenotypes of a population is a product of the graphs
that relate the different character phenotypes [13]. And, the movie ratings on a platform
like Netflix can be viewed as signals living on the product of the social network of the
users and the graph of relations among movies [14]. More formally, we say that a graph
is a product graph when its node set can be decomposed as a Cartesian product of the
nodes of two smaller factor graphs, and its edges are related with a known connection
to the edges of the factors [15].

As the number of nodes within each factor increases, the total number of nodes in the
product graph grows exponentially. When this happens, the tools that were designed to
process data on small networks start to fail. In literature, this issue is commonly known
as the curse of dimensionality. To circumvent this issue, some authors have proposed
exploiting the product structure of large graphs to parameterize graph signals with a
reduced dimensionality [16].

Let G1 = (V1, E1) and G2 = (V2, E2) be two1 undirected graphs with N1 and N2

vertices, respectively. The product graph [15], of G1 and G2 denoted with the symbol
�, is the graph given by

G� = G1 � G2 = (V�, E�),
1For the sake of exposition, we restrict ourselves to the product of two graphs. Extensions to higher-order

product graphs are possible, although they require the use of tensor product formulation. Hence, we postpone
this extension to Part II of this thesis.

9

where V� = V1 × V2 denotes the Cartesian product of the vertex sets, and E� defines
a valid edge set for V� according to the rules of the graph product. Depending on the
set of rules that determine E�, three different product graphs are usually defined: the
Cartesian product, the Kronecker product, and the strong product [cf. Fig. 2.2]. For
details of these rules we refer the reader to [15]. The eigenvalue decomposition of the
graph-shift operator of a product graph, denoted by S�, is related to the eigenvalue
decompositions of its factors through [16]

S� = U�Λ�U
H
� = (U1 ⊗U2)Λ�(U1 ⊗U2)H ,

where ⊗ denotes the Kronecker product between matrices, U1 and U2 are the eigenvec-
tors of the graph-shift operators for G1 and G2, respectively, and Λ� is some diagonal
matrix that depends on G1, G2 and the type of product.

Figure 2.2: Illustration of the product between two graphs. � represents either a Cartesian
(only colored edges), a Kronecker (only gray edges) or a strong product (all edges) between
graphs.

Example 2.1 (Graph Cartesian product). Throughout the thesis we will make special
use of the Cartesian product of graphs, denoted by the symbol �. This product is
characterized by an edge set E� that contains an edge between two vertices in the product
graph if there is an edge between the vertices in the factor graphs [cf. Fig. 2.2]; and a
GSO that satisfies S� = S1 ⊕ S2 = S1 ⊗ I2 + I1 ⊗ S2, and hence Λ� = Λ1 ⊕Λ2.

Because every node in a product graph can be indexed using a pair of vertices of
the factor graphs, we can rearrange any product graph signal x ∈ RN1N2 in a matrix
form X ∈ RN2×N1 such that [x]i+(j−1)N2 = [X]i,j. The spectral decomposition of x then
takes the form

x = F−1{xf} = (U1 ⊗U2)xf ⇐⇒ X = F−1{Xf} = U2XfU
T
1 . (2.5)

Using this formulation, we can say that a product graph signal X is bandlimited
when it is simultaneously bandlimited in both domains, i.e., with a sparse Xf ∈ RN2×N1

having K1 < N1 columns and K2 < N2 rows different than zero with known support.
In such cases, x admits a low-dimensional representation as

x = (Ũ1 ⊗ Ũ2)x̃f ⇐⇒ X = Ũ2X̃fŨ
T

1 , (2.6)

where Ũ1 and Ũ2 are obtained by removing the columns of U1 and U2 corresponding
to the indices of the rows and columns of Xf that are zero, respectively; and X̃f and x̃f

are the non-zero spectral components in Xf and xf .

10

2.2.3 Time-varying graph signal processing

With the rapid development of GSP in the past years, many researchers have shift their
focus to time-varying signals and processes that reside on graphs [12,17–19].

These works model time-varying graph signals as signals living on the Cartesian
product of an arbitrary graph G and a directed cycle graph T , that represents time.
This way, every sample of a time-varying graph process is indexed using a node of the
cycle graph [cf. Fig. 2.3].

Figure 2.3: Support of time-varying graph periodic signal.

The joint time-vertex Fourier transform of a time-varying graph signal X ∈ RN×T

is defined as the Fourier transform of the product graph signal

Xf = FG,T {X} = UH
GXU∗T ,

where UG represents the GFT eigenbase of G, and UT the GFT eigenbase of T , which
takes the form of a discrete Fourier transform (DFT) matrix.

Likewise, we can also define the Fourier transforms with respect to each particular
domain, i.e., either vertex or time, as

XfG = FG{X} = UH
GX,

XfT = FT {X} = XU∗T ,

where the underlying joint spectral structure is not exploited.

2.3 Geometric deep learning

The term geometric deep learning was recently coined in [3] to refer to the recent
developments in the deep learning field that allow the generalization of the popular
convolutional neural networks to non-Euclidean domains. This topic has attracted a
lot of attention among researchers from different fields that are now trying to mimic the
extreme success that convolutional neural networks had on the computer vision com-
munity in the past few years. Nevertheless, this heterogenous mixture of research lines
has produced a very diverse set of competing ideas on how to generalize convolutions
to graphs and manifolds.

As a consequence of the lack of shift invariance, vector space structure, or a com-
mon system of coordinates in non-Euclidean domains there is no clear way to define
a convolution operation for graphs [3]. Depending on the field of origin, different re-
searchers have come up with different analogies for this operation. In particular, most

11

of the work has been done in trying to achieve generalizations that have the following
properties (proposed in [3]):

• Locality in the vertex domain, i.e., information is combined taking into account
the neighborhood of each node.

• Fixed number of parameters with respect to the input size.

• Low computational complexity.

• Ability to generalize to different graphs using the same trained coefficients.

In the following we briefly review the different approaches that have been published
on this matter.

2.3.1 Spectral convolutional layer

The first convolutional layer definition was proposed by Bruna et al. in [20] who
translated the well-known convolution theorem to non-Euclidean domains.

Definition 2.2 (Spectral convolution [20]). Let f ∈ CN and g ∈ CN denote two signals
defined on the vertices of a graph G = (V , E), with |V| = N , then we can define a graph
convolution operator ∗G as

f ∗G g = F−1
G {f f ◦ gf} = U

(
(UHf) ◦ (UHg)

)
, (2.7)

where U denotes the matrix containing the eigenvectors of the GSO, and ◦ represents
the Hadamard, or element-wise product between vectors.

Using this definition, Bruna created the following convolutional layer:

Definition 2.3 (Spectral convolutional layer [20]). Let x(i) ∈ CN be a graph signal
defined on G = (V , E) that represents the input of the i-th layer of a graph convolutional
neural network (GCNN). We define a spectral convolutional layer as

x(i+1) = ρ
(
h ∗G x(i)

)
= ρ

(
U
(
hf ◦UHx(i)

))
, (2.8)

where hf = UHh is a set of weights to learn during training and ρ(·) a point-wise
non-linearity, e.g. sigmoid, rectified linear unit, hyperbolic tangent, etc. [5].

Even though Definition 2.2 was the breakthrough that triggered a series of very
important discoveries in the field, (2.8) does not satisfy any of the properties desired
for a convolutional layer. In particular, such a layer requires O(N) parameters, has a
high computational complexity due to the eigenvalue decomposition of the GSO (i.e.
O(N2)), is in principle non-local in the vertex domain, and does not generalize to inputs
defined on different graphs, as its parameters depend on the specific eigendecomposition
of a particular GSO.

To circumvent some of these problems, namely, the O(N) scaling of the number
of parameters and the non-locality in the vertex domain, Bruna proposed in [20] an
alternative version of (2.8) based on a cubic spline parameterization of the spectral
filters. This is, it defined a convolutional layer of the form:

12

Definition 2.4 (Smooth spectral convolutional layer [20]). Let B ∈ CN×K be a fixed
cubic spline kernel and α ∈ CK a fixed-size vector of spline coefficients to learn, we
define a smooth spectral convolutional layer as

x(i+1) = ρ
(
h ∗G x(i)

)
= ρ

(
U
(
Bα ◦UTx(i)

))
. (2.9)

Indeed, this architecture has a fixed number of K parameters. Furthermore, Bruna
claims that, in analogy with the classical Fourier transform, the Parseval identity en-
sures the spatial localization, i.e., a limited spatial support, of the graph filters due to
their smoothness in the frequency domain2. However, besides this analogy, this claim
is not supported by any proof. A GCNN with this architecture has successfully been
used to solve the community detection problem on social networks [21].

2.3.2 Spectrum-free convolutional layer

Despite the clear advantages of (2.9) over (2.8), this convolutional layer still has a great
computational complexity and it depends on a particular Laplacian. Therefore several
authors tried to overcome these issues by performing the convolution in the vertex
domain. In particular, they focused on the use of FIR vertex-domain graph filters [2]
as the framework for their definitions of convolutional layers.

This was first proposed by Deferrad et al. in [22], where they defined a convolutional
layer using FIR filtering of Chebyshev polynomials of the graph Laplacian.

Definition 2.5 (Chebyshev convolutional layer [22]). Let L be any graph Laplacian
with eigenvalues λn ∈ [0, λmax], and let Tk(λ) denote a Chebyshev polynomial basis of
order k. Then, we can define a Chebyshev convolutional layer as

x(i+1) = ρ
(
H(L̃)x(i)

)
= ρ

(
K−1∑
k=0

hkTk(L̃) x(i)

)
, (2.10)

where {hk}K−1
k=0 are K free parameters that need to be learnt during training and

L̃ =
2

λmax

L− I.

With this definition, the problems present in (2.9) are solved: On the one hand,
(2.10) does not require to compute a computationally expensive eigendecomposition of
the graph Laplacian, as filtering is performed directly on the vertex domain. And on
the other hand, the recursive nature of the Chebyshev polynomials allows for a fast
implementation of (2.10) that relies on efficient sparse matrix-vector multiplications
with complexity O(N) .

Furthermore, the fact that applying a function to a diagonalizable matrix is the
same as applying the function to each of its eigenvalues allows us to write

Tk(L̃) = UTk(Λ̃)UH = U

Tk(λ̃1) . . . 0
...

. . .
...

0 . . . Tk(λ̃N)

UH ,

2Signals parameterized by cubic splines are indeed smooth.

13

which implies that we can also write (2.10) as a universal filter on the eigenvalues of a
general graph Laplacian

H(λ) =
K−1∑
k=0

hkTk

(
2

λmax

λ− 1

)
,

thus, meaning that this type of filter generalizes to inputs of different Laplacians.
Nevertheless, in a typical neural network several convolutional layers like the one in
(2.10) would be stacked to form a deep sequence of non-linear operations, and there
is no evidence guaranteeing that the overall response of a multilayer GCNN behaves
the same way with input signals that come from different graphs. This has in fact lead
to the speculation [3] that convolutional layers of the form (2.10) might behave poorly
when used with different graphs. Anyway, Chebyshev GCNNs have successfully been
applied to tackle different problems in recommender systems [23], natural language
processing [24], and neuroscience [25].

The Chebyshev convolutional layer is not, however, the only convolutional layer
defined on the basis of an FIR graph filter. Other authors have also proposed their own
versions that, in principle, work better in different scenarios. Such is the case of the
node-varying convolutional layer defined by Gama et al. in [26], which allows to define
a different set of weights per node, therefore, approximating a more general class of
linear functions; or the first-order FIR convolution of Kipf et al. [27, 28] who claimed
that a filter order of K = 2 is enough to cope with real datasets on different tasks.

2.3.3 Spatial domain convolutional layer

The last type of convolutional layers do not make use of the spectral intuition behind
the convolution theorem [29–31]. Instead, they propose to mimic the filter matching
behavior of classic CNNs and define a local template that is passed at each point of the
domain and computing the correlation of the signal with the template. Nevertheless,
since there is no clear way to define a patch-extracting operator on graphs, many
different implementations of this idea have been proposed, most of them trying to
reduce the computational burden of extracting the domain patches, and defining a new
set of generalized coordinates that can be used across different domains. In this thesis,
however, we will not focus on this approach, and leave the generalization of this type
of convolutional layer to time-varying signals for future work.

2.3.4 Time-varying geometric deep learning

The ability to generalize GCNNs to time-varying signals is still an open area of re-
search, as it has not yet attracted a lot of attention from the geometric deep learning
community. Most of the research effort has focused on combining some type of GCNNs
with recursive neural network (RNNs) architectures [5] which nowadays are the state-
of-the-art models for natural language processing and deep learning applied to acoustic
signals.

These networks have been applied to solve problems in computer graphics [32], nat-
ural language processing [33] and traffic forecasting [34]; but lack a general architecture

14

and are far from reaching a framework consensus. In fact, to our knowledge, we are
the first to propose an extension of the convolutional layer to jointly process time-
varying graph signals which might serve as the building block for a general treatment
of time-varying graph processes.

15

16

Problem modeling 3
In this chapter, we define a natural extension of the spectrum-free graph convolutional
neural networks that allows us to generalize the theory of geometric deep learning to
product graph signals. In particular, we will define a new type of 2D-FIR graph filters
that allow to jointly filter graph signals on multiple irregular domains, and to build
localized convolutional layers that have a fixed number of training parameters and a
low computational complexity. For the case when one of the domains is time, we will
see that this new type of filters matches the most general form of the time-vertex FIR
graph filters defined by Isufi et al. [17].

3.1 2D-FIR graph convolutional layer

Let X ∈ CN2×N1 be a product graph signal defined on the product of G1 = (V1, E1)
and G2 = (V2, E2). Recall that all convolutional layers in Section 2.3 define graph
convolutions on column signals. Hence, we can extend these definitions to perform a
joint convolution on the rows and columns of X. We can filter the rows of X with a
1D-FIR filter by filtering the columns of the transpose of X as

Y =

(
M−1∑
m=0

hmSm1 XT

)T

=
M−1∑
m=0

hmXSm1 , (3.1)

where {hm}M−1
m=0 is a set of 1D-FIR coefficients. Combining a row and a column con-

volution we can jointly filter a multidomain graph signal using the following 2D-FIR
filter.

Definition 3.1 (2D-FIR graph filter). Let {hk,m} for k = 0, . . . , K − 1 and m =
0, . . . ,M −1 (H ∈ CK×M in matrix notation) be a set of 2D-FIR filter coefficients. We
can jointly filter X in its two vertex domains by computing

Y =
K−1∑
k=0

M−1∑
m=0

hk,mSk2XSm1 . (3.2)

The spectral response of such a filter is

H(λ1, λ2) =
K−1∑
k=0

M−1∑
m=0

hk,mλ
m
1 λ

k
2. (3.3)

As happened with the unidimensional FIR graph filter, the 2D-FIR graph filter is
the perfect candidate to define a multidomain graph convolutional neural network (2D-
GCNN). They are parameterized by a fixed number of K ×M parameters, regardless

17

of the number of nodes in each domain. They are local in both domains, since they
inherent the locality properties of the unidimensional graph convolutions. And they
have a universal time-vertex spectral response that is independent of the GSO.

For these reasons, we propose the following convolutional layer to process multido-
main graph signals.

Definition 3.2 (2D-GCNN). We define a multidomain graph convolutional layer as

X(i+1) = ρ

(
K−1∑
k=0

hk,mTk(L̃2)X(i)Tm(L̃1)

)
, (3.4)

where {hk,m} for k = 0, . . . , K − 1 and m = 0, . . . ,M − 1 are a set of trainable coeffi-
cients.

3.2 Time-vertex graph convolutional layer

For the special case when one of the two domains is time, our proposed 2D-FIR graph
filter is reduced to the time-vertex FIR filter proposed by Isufi et al. [17]. In particular,
their implementation takes advantage of the special structure of time to define filters
that do not require computing powers of the temporal GSO.

Let xt ∈ CN be the t-th time sample of a finite support temporal graph signal
defined on a graph G = (V , E), and let us create a matrix X ∈ CN×T that stores the T
samples of xt as

X =
[
x0 x1 . . . xT−1

]
.

We can write the temporal convolution of such a signal xt and a temporal FIR filter ht
of order M (h ∈ CM in vector notation) as

yt = xt ∗T ht =
M−1∑
m=0

hmxt−m. (3.5)

Assuming zero-padding, we can also write the convolution using matrix notation as

Y =
[
y0 y1 . . . yT−1

]
= X

h0 . . . hM−1 0 . . . 0
0 h0 . . . hM−1 0 . . . 0
...

.
...

...
. 0 h0 . . . hM−1

...
.

...
0 0 h0

= XH,

(3.6)
where H = Conv {h} ∈ RT×T is a Toeplitz matrix where each row is a zero-padded
shifted copy of the filter coefficients h = [h0, . . . , hM−1]T . Hence, the convolution is
performed on each row of X individually. At this point, we see that (3.6) is simply a
particularization of (3.1) where S1 is a shift matrix.

As we did in (3.2) we can combine a 1D-FIR graph filter with this formulation to
define a time-vertex FIR graph filter.

18

Definition 3.3 (Time-vertex FIR filter [17]). We can jointly filter X in the time and
vertex domain by computing

yt =
K−1∑
k=0

M−1∑
m=0

hk,mSkxt−m, (3.7)

or alternatively in matrix notation

Y =
K−1∑
k=0

SkXHk, (3.8)

where Hk = Conv {hk}, being hk = [hk,0, . . . , hk,M−1]T a set of filter coefficients for
k = 0, . . . , K − 1. The spectral response of such a filter can be obtained by taking the
joint time-vertex Fourier transform of (3.7)

H(ω, λ) =
K−1∑
k=0

M−1∑
m=0

hk,mλ
ke−jωm. (3.9)

Since in the rest of the learning part we will focus on time-varying graph signals,
we present the particularization of the 2D-GCNN to this type of signals.

Definition 3.4 (TV-GCNN). We define a time-varying graph convolutional layer as

X(i+1) = ρ

(
K−1∑
k=0

Tk(L̃)X(i)Hk

)
, (3.10)

where Hk = Conv {hk}, being hk = [hk,0, . . . , hk,M−1]T a set of trainable coefficients for
k = 0, . . . , K − 1.

Finally, to prove the versatility of this type of filters, Fig. 3.1 shows a collection
of spectral responses obtained by randomly setting the coefficients of a 2D-FIR graph
filter (K = 3 and M = 3). The diversity of spectral patterns in this picture proves that
the 2D-FIR graph filters can implement a wide range of frequency responses which can
focus on very specific bands of the spectrum.

In the next chapter, we will see how we can implement this kind of layer on a GPU.
Thus, allowing us to train very deep TV-GCNNs.

19

Figure 3.1: Collection of spectral time-vertex responses of 2D-FIR graph filters with random
coefficients (K = 3 and M = 3). The horizontal direction represents the symmetric (real
coefficients) temporal frequencies, and the vertical direction the graph frequencies.

20

Implementation and numerical
results 4
One of the greatest breakthroughs in the recent history of deep learning has been
the development of open source libraries, such as Tensorflow [35], that allow to build,
train and test complex neural network architectures using a very high-level API. In
this sense, most modern deep learning libraries have been optimized to run on GPUs:
the highly parallelizable computations needed to train a CNN can be run efficiently on
machines equipped with GPUs. As a result, computational complexity in deep learning
refers more to the suitability of implementation on a GPU using some of the standard
libraries, than to the classic theory of algorithmic complexity.

Bearing this in mind, in this section, we address the complexity of our proposed
TV-GCNN and study an efficient way to parameterize this type of layer such that it
is amenable to be implemented using deep learning libraries. In particular, since most
deep learning libraries use a computational framework based on highly parallelizable
tensor product operations1, we will propose an alternative formulation of (3.10) based
on tensor computations.

Next, we will evaluate the performance of our proposed TV-GCNN when solving
graph signal classification tasks. To do so, we will compare the classification accuracy of
two deep GCNNs; a 1D-GCNN with convolutions based on the Chebyshev convolutional
layer2 [22], and one based on our proposed time-varying graph convolutional layer (TV-
GCNN); on a synthetic dataset we built to assess the generalization abilities of such
networks, as well as their robustness against noise.

4.1 Tensorization and GPU implementation

In classical image CNNs, each layer’s input is treated as a 3D tensor made out of a set
of images (or feature maps) that contain an abstract representation of the input. In
the first layer, these feature maps correspond to the three color channels of an image,
i.e., red, green and blue. A convolutional layer, thus, takes a 3D tensor as input of
dimensions width × height × channels (W ×H×C) and outputs another 3D tensor of
size width × height × features (W ×H × F). Hence, in each layer there are F filters
of size K ×M ×C that convolve a K ×M kernel with each of the C channels and sum
the result to give one of the F feature maps. Thus, every layer has K ×M × C × F
trainable parameters that can be stored in a tensor H ∈ RK×M×C×F .

The same happens in TV-GCNNs: Each layer takes a 3D tensor X (i) ∈ RN×T×C

representing a time-varying graph signal with N vertices, T snapshots and C features,

1This is analogous to Matlab’s computational framework based on matrices rather than loops. Since matrix-
vector products are internally optimized by the Matlab interpreter, a proficient Matlab programmer would
generally exploit this data structures in its code.

2The GCNNs based on Chebyshev convolutional layers have shown to perform best on a wide range of
applications, and have the most sound theoretical foundation.

21

Figure 4.1: Diagram representing the proposed tensorization.

e.g., meteorological records consist of time variations of wind speed, humidity, and
temperature across different cities which can be connected by a graph; and outputs
another 3D tensor X (i+1) ∈ RN×T×F . Hence, each layer has a set of F parallel filters
with K ×M × C parameters that are convolved using a 2D-FIR graph filter of order
K in the vertex domain, and order M in the time domain with each of the C channels
of the input. Later, the convolved channel images are summed up to form each of the
F feature maps. Thus, every layer has K ×M ×C × F trainable parameters that can
be stored in a tensor H ∈ RK×M×C×F .

Taking this into account, we propose the following tensorization of (3.10).

Definition 4.1 (Tensor TV-GCNN). Let T ∈ RK×N×N be a tensor formed by stacking
the individual terms of a Chebyshev polynomial of order K of the graph Laplacian, such
that T (k, :, :) = Tk(L̃), and let H ∈ RK×T×T×C×F be a tensor formed by arranging the
trainable parameters H such that H(k, :, :, c, f) = Conv {H(k, :, c, f)} [cf. Fig. 4.1].
The tensorized version of the time-varying graph convolutional layer for an input with
C channels and an output of F feature maps is

X (i+1) = ρ
([
T •3

1 X (i)
]
•3,1,4

3,1,4 H
)
, (4.1)

where •nm represents the generalized tensor contraction operation [36], consisting of the
application of an inner product to the nth mode of the left hand side tensor with the mth

22

mode of the right hand side tensor. Stacked indices, represent sequential applications
of the generalized contraction.

Tensor contractions are a basic operation in most deep learning libraries3, and as
such, they are highly optimized for an efficient performance on GPUs. Since (3.10) does
mainly consist of sequential applications of this operation, we can guarantee that this
implementation of TV-GCNN can be run efficiently on most deep learning platforms.

Remark. One can also further optimize (3.10) by, instead of performing the second
tensor contraction with H corresponding to the convolution in time, using the built-in
1D convolution operator contained in most deep learning libraries. The computational
improvement that this approach might have depends on the specific platform implemen-
tation, though.

4.2 Construction of the synthetic dataset

As we mentioned in the introduction, we are interested in classifying signals that live on
a multidomain support composed of a spatial domain (graph) and a temporal domain
(cycle). Hence, our synthetic dataset consists of a set of signals that show different
types of spatio-temporal correlations. In particular, we propose to generate different
classes of time-varying graph signals using the model shown in Fig. 4.2.

Linear time-vertex filter Non-linear mapping

Figure 4.2: Generative model of synthetic time-varying graph signals.

The generative model works as follows: For a given graph G, we first filter (in the
joint time-graph spectral domain) a white Gaussian spatio-temporal signal w(t) by a
class-specific linear filter whose response is chosen to model a certain pattern of spatio-
temporal correlations. Then, we pass the resulting signal x(t) through a non-linear
point-wise mapping that spreads the energy of x(t) to different frequencies. Finally,
we add additive white Gaussian noise n(t) ∼ N (0, σ2I) to obtain the final signal y(t).
This model, allows us to generate a synthetic dataset with J classes by simply defining
J different filters {H(j)(ω, λ)}Jj=1 in the time-graph spectral domain. Hence, the target
inference task is the classification of the statistics of J types of time-varying graph
processes.

To generate the dataset in our experiments we use a community graph4 with

3For instance, tf.tensordot or tf.einsum in Tensorflow [35].
4This type of random graph is characterized by having a strong community structure with very connected

clusters and a few sparse connections between the communities. In our experiments it was generated using
PyGSP [37].

23

Ve
rt

ex

Time

Ve
rt

ex

Time

Ve
rt

ex
Time

Ve
rt

ex

Time

Ve
rt

ex

Time

Ve
rt

ex

Time

0

0

0

0

0

0

π

π

π

π

π

π

Spectral domain Time-vertex domain

Figure 4.3: Time-varying graph process realization examples for each of the J = 6 classes
used in our experiments. The GCNN receives the time-vertex representation.

24

Type of layer Layer parameters

TV-FIR (ReLU) K=3, M=3, C=1, F=8

Max-pooling Time = 4, Vertex = 2

TV-FIR (ReLU) K=3, M=3, C=8, F=16

Max-pooling Time = 4, Vertex = 2

TV-FIR (ReLU) K=3, M=3, C=16, F=32

Max-pooling Time = 4, Vertex = 2

Fully connected (softmax) F = 6

#Parameters=11,214

Table 4.1: List of parameters involved in the architecture of the TV-GCNN.

N = 100 nodes to model the spatial support of our signal and produced time-varying
realizations of T = 128 frames, i.e., each input sample has 12,800 features. We also
define J = 6 different classes of time-vertex filters [cf. Fig. 4.3], and used the hyperbolic
tangent function as point-wise non-linearity. An example of signal realizations for the
six classes in the spectral and time-vertex domains for the noiseless case is shown in
Fig. 4.3. It is important to highlight, that in the noiseless case due to the effect of the
hyperbolic tangent mapping, the maximum absolute amplitude of the signal is clamped
to 1.

4.3 Architecture definition

The architectures of the GCNNs that we compare in our experiments are described in
Tables 4.1 and 4.2. As we can see, both networks share the same overall structure: they
are composed of three graph convolutional layers, activated by a rectified linear unit
(ReLU), and one fully connected layer, activated by a softmax operation [5]. The main
differences in the architectures are the choices for the graph convolution operators and
the order of the graph filters, which is modified so that the number of parameters in
both networks is of the same order.

In both cases, the pooling layers [5] are implemented using the Graclus algorithm [38]
as proposed in [22]. However, in the TV-GCNN, a max-pooling stage is also introduced
for the temporal dimension since we also perform convolutions on this domain. Each
pooling layer is followed by a batch normalization step [5], a standard trick in deep
learning that has shown to improve the convergence speed of the training algorithms.
This is normalizing the output of each hidden layer to zero mean and unit variance
using online estimates of the mean and variance of the training set.

Training is performed by minimizing the cross entropy between the one-hot encoded
labels and the output of the fully connected layer using an Adam optimizer [39]: a
stochastic-gradient-descent-based optimization algorithm that adapts the learning rate
depending on the dynamics of the optimization. The initial learning rate is set to 10−4.

25

Type of layer Layer parameters

1D-FIR (ReLU) K=4, C=1, F=8

Max-pooling Vertex = 2

1D-FIR (ReLU) K=4, C=8, F=16

Max-pooling Vertex = 2

1D-FIR (ReLU) K=4, C=16, F=32

Max-pooling Vertex = 2

Fully connected (softmax) F = 6

#Parameters=9,734

Table 4.2: List of parameters involved in the architecture of the 1D-GCNN.

We train all experiments for 10 epochs, i.e., we perform 10 passes through the whole
training set.

All architectural design decisions are taking in order to optimize the performance of
both networks on a validation set consisting of 2,400 samples (400 samples per class).
The deep learning library used for this implementation is Tensorflow [35], and, in par-
ticular, we extend the code from [22] to implement the Chebyshev graph convolutional
layers and graph pooling layers. The code used for this part of the thesis is available in
https://gitlab.com/gortizji/tv-graph-cnn. Here, you can find an efficient imple-
mentation of the 2D-FIR graph convolutional layer using the tensorization techniques
explained in Section 4.1, as well as basic functions to build a synthetic dataset and test
it using the proposed GCNN architectures.

4.4 Performance evaluation

To compare the performance of these architectures, namely, 1D-GCNN and TV-GCNN,
we evaluate the accuracy of both networks trained on our synthetic dataset and under
different conditions.

First, we evaluate the generalization abilities of the GCNNs with respect to the
training data available. To do so, we train both networks with different numbers
of samples and test their accuracy on a new test set of 2,400 random samples per
experiment that are equally distributed among classes. The noise level is set to σ = 0.75
for all experiments. Every experiment is repeated 6 times for each training size and the
results are averaged to obtain an estimate of the generalization errors of both networks.
As we can see in Fig. 4.4a, when there is abundant training data available both networks
perform quite well, even though the 1D-GCNN scores a bit lower. However, as we
decrease the training set size we can clearly see how the performance of the 1D-GCNN is
rapidly deteriorated, while the TV-GCNN maintains its performance. The performance
gap between the two networks peaks when training with 100 samples per class reaching
an accuracy difference of more than 50 percentage points. Only when there is as little

26

https://gitlab.com/gortizji/tv-graph-cnn

as 20 samples per class for training does the TV-GCNN fail to generalize to new and
unseen data. Thus, highlighting that exploiting the joint correlations between space
and time in a structured manner leads to much better generalization abilities.

TV-GCNN

1D-GCNN100% 100% 100%
96%

87%

20%
17%

35%

53%

77%
83%

91%

12,000 5,400 4,200 1,200 600 120

(a) Test accuracy vs training set size.

97%
100%

76%

49%

31%

24%

99%
97%

85%

70%

0.5 1.0 1.5 2.0 2.5

TV-GCNN

1D-GCNN

(b) Test accuracy vs noise level.

51%

-10% -30% -50% -75% -90%

TV-GCNN

1D-GCNN94%

51%

95%

46%

88%

79%

41%

64%

43%

(c) Test accuracy vs missing data.

Figure 4.4: Comparison of the generalization ability of the 1D-GCNN and the TV-GCNN for
different training set sizes and noise levels.

In the second round of experiments, we test the robustness of both networks to
noisy data. For this reason, we fix the training set size to 12,000 and train both
GCNNs for different values of σ. Again, we repeated every experiment 6 times for each
value of σ and averaged the results to estimate the test accuracy of both architectures.
In Fig. 4.4b, we see how the TV-GCNN is much more robust against additive noise
than the 1D-GCNN. Even for very negative SNRs (recall that signals are clamped
between ±1 after the hyperbolic tangent) we can see that the TV-GCNN is able to
classify the statistics of the time-varying signals with very high accuracy. The maximum
performance gap between the two networks, achieved when the SNR is very low, reaches
again the 50 percentage points.

Finally, in the third round of experiments, we test the robustness of both networks
against missing data. To do so, we fix the training set size to 1,200 and σ to 0.75 and
train and evaluate both networks randomly setting a percentage of the sample entries

27

to 0. Fig. 4.4c shows the results of these experiments (averaged from 6 different runs).
In this case, even for very small percentages of removed entries the TV-GCNN doubles
the accuracy of the 1D-GCNN, achieving very good performance even when removing
more than half of the sample entries.

In light of these results, and reminding that the only difference between both net-
works is the choice of the convolutional layer, we can claim that the use of the TV-
GCNN has the potential to extend the success of GCNNs to time-varying graph signals.

28

Part II

Sampling

29

Background 5
In Part II, we focus on the reconstruction of graph signals that reside on the vertices of a
product graph by just observing a small subset of its vertices. In particular, we propose
using a structured sampling scheme with which we select a sparse subset of nodes from
each factor, thereby observing the signal at a few specific nodes of the product graph.
This approach contrasts with traditional graph signal processing methods which do not
take into account any underlying graph factorization when designing the sampling set
[40–45]. When the underlying graph factorization is not accounted for, the complexity
of designing the sampling set scales with the total number of vertices in the graph, and
therefore, the applicability of such methods to large graphs is very limited.

Our proposed scheme circumvents this issue by reducing the original product search
space into the union of two much smaller spaces. Hence, avoiding the curse of dimen-
sionality. An illustration of this is shown in Fig. 5.1, where we see that selecting nodes
from the factors reduces the possible candidate locations from 20 to 9. In essence, the
aim is to reconstruct a signal on the product graph (rightmost in Fig. 5.1) by observing
a subset of nodes of the factor graphs (on the left of Fig. 5.1) that generate the product
graph.

Figure 5.1: Illustration of the proposed sampling scheme for a product of two graphs. The
black (white) dots represent the selected (unselected) vertices.

Nevertheless, we will not restrict ourselves only to multidomain signals defined on
irregular domains, since, as we will see, the multidomain sparse sensing framework can
be kept more general. Nonetheless, this particularization to multidomain graph signals
will also be presented in Chapter 9 when we showcase our framework on some real
dataset. In general, we will consider multidomain signals which can be represented
using tensors and a multilinear system model.

In this chapter, we introduce the notation that will be used throughout Part II, as
well as some preliminary notions of tensor algebra, multilinear systems and submodular
optimization.

31

5.1 Notation

In Part II, we will denote product of variables/sets using a tilde superscript, i.e., Ñ =∏R
i=1Ni, or Ñi = N1 × · · · × NR; and drop the tilde to denote sums (unions) of the

same variables/sets, i.e., N =
∑R

i=1Ni, or N =
⋃R
i=1Ni.

Some properties of the Kronecker, and the Khatri-Rao products that will appear
throughout the chapters are (see [46] for their derivations):

• (A⊗B)(C⊗D) = AC⊗BD

• (A⊗B)(C�D) = AC�BD

• (A�B)H(A�B) = AHA ◦BHB

• (A⊗B)† = A† ⊗B†

• (A�B)† = (AHA ◦BHB)†(A�B)H .

5.2 Tensors

A tensor X ∈ CN1×···×NR of order R can be viewed as a discretized multidomain signal,
with each of its entries indexed over R different domains.

Using multilinear algebra two tensors X ∈ CN1×···×NR and G ∈ CK1×···×KR may be
related by a multilinear system of equations whenever they have a linear relationship
between each of its corresponding domains, as depicted in Fig. 5.2a. That is,

X = G •1 U1 •2 · · · •R UR, (5.1)

where {Ui ∈ CNi×Ki}Ri=1 represents a set of matrices that capture the relationship
between the ith domain of X and the so-called core tensor G, and •i represents the
ith mode product between a tensor and a matrix [47].

An alternative representation of (5.1) can be obtained by vectorizing (5.1), yielding

x = (U1 ⊗ · · · ⊗UR) g, (5.2)

with x = vec(X) = X (:) ∈ CÑ ; Ñ =
∏R

i=1Ni, and g = vec(G) ∈ CK̃ ; K̃ =
∏R

i=1Ki.
When the core tensor G ∈ CKc×···×Kc is hyperdiagonal (as depicted in Fig. 5.2b),

(5.2) simplifies to
x = (U1 � · · · �UR) g (5.3)

with g collecting the main diagonal entries of G. Note that g has different meanings
in (5.2) and (5.3), which can always be inferred from the context.

Such a multilinear system is commonly seen with R = 2 and X = G •1 U1 •2

U2 = U2GUT
1 , for instance, in image processing when relating an image to its 2-

dimensional Fourier transform with G being the spatial Fourier transform of X , and
U1 and U2 being inverse Fourier matrices related to the row and column spaces of the
image, respectively. When dealing with Fourier matrices (more generally, Vandermonde
matrices) with U1 = U2 and a diagonal tensor core, X will be a Toeplitz covariance
matrix, for which the sampling sets may be designed using sparse covariance sensing [48,
49].

32

(a) Dense core

(b) Diagonal core

Figure 5.2: Graphic representation of multilinear system of equations for R = 3. Colors
represent arbitrary values.

5.3 Submodular optimization

Submodularity is a notion based on the law of diminishing returns that is useful to
obtain heuristic algorithms with near-optimality guarantees for cardinality-constrained
discrete optimization problems. More precisely, submodularity is formally defined as
follows.

Definition 5.1 (Submodular function). A set function f : 2N → R defined over the
subsets of N is submodular if it satisfies that for every X ⊆ N , and x, y ∈ N \ X we
have

f(X ∪ {x})− f(X) ≥ f(X ∪ {x, y})− f(X ∪ {y}).
A function f is said to be supermodular if −f is a submodular function.

Besides submodularity, many near-optimality theorems in discrete optimization re-
quire that functions are also monotone non-decreasing, and normalized.

Definition 5.2 (Monotonicity). A set function f : 2N → R is monotone non-decreasing
if for every X ⊆ N

f(X ∪ {x}) ≥ f(X) ∀x ∈ N \ X
Definition 5.3 (Normalization). A set function f : 2N → R is normalized if f(∅) = 0.

When a set function f is submodular, monotone non-decreasing, and normalized,
then one can claim that the solution of a greedy maximization algorithm (summarized
in Algorithm 1) has a multiplicative near-optimality guarantee for the cardinality-
constrained maximization problem

maximize
X⊆N

f(X) subject to |X | = K. (5.4)

33

Algorithm 1 Greedy maximization algorithm

Require: X = ∅, K
1: for k ← 1 to K
2: s∗ ← arg maxs/∈X f(X ∪ {s})
3: X ← X ∪ {s∗}
4: end
5: return X

In particular, Neumhauser [50] proved the following theorem.

Theorem 5.1 (Near-optimal maximization of submodular function subject to a car-
dinality constraint [50]). Let f : 2N → R be a monotone non-decreasing, normalized,
submodular function, and let f(X ∗) denote the optimal solution of (5.4). Furthermore,
let Xgreedy be the solution obtained by Algorithm 1. Then

f(Xgreedy) ≥
(

1− 1

e

)
f(X ∗),

where e is Euler’s number.

Many discrete optimization problems can be formulated using (5.4) and meet the
conditions of Theorem 5.1. These include most greedy methods used in single domain
sparse sampling [51–53], and the D-optimal formulation of the sparse tensor sensing
problem. Nevertheless, as we will see later, many other problems, such as the frame-
potential-based sparse tensor sensing problem cannot be formulated as (5.4), since they
require imposing extra constraints on top of the restriction on the total cardinality.

In submodular optimization, matroids are generally used to impose constraints on
an optimization, since they define a class of problems that we can efficiently solve near-
optimally. A matroid is a mathematical structure that generalizes the concept of linear
independence in algebra to sets and can be used to define many types of constraints [54],
e.g. the ones in (6.10). Formally, a matroid is defined as follows.

Definition 5.4 (Matroid). A finite matroidM is a pair (N , I), where N is a finite set
(also called the ground set) and I is a family of subsets of N (called the independent
sets) that satisfies the following properties:

1. The empty set is independent, i.e., ∅ ∈ I.

2. For every X ⊆ Y ⊆ N , if Y ∈ I, then X ∈ I.

3. For every X ,Y ⊆ N such that |Y| > |X | and X ,Y ∈ I there exists one x ∈ Y \X
such that X ∪ {x} ∈ I.

In this thesis, we will deal with the following types of matroids.

Example 5.1 (Uniform matroid). The subsets of N with at most K elements form a
uniform matroid Mu = (N , Iu) with Iu = {X ⊆ N : |X | ≤ K}.

34

Algorithm 2 Greedy maximization subject to T matroid constraints

Require: X = ∅, K, {Ii}Ti=1

1: for k ← 1 to K
2: s∗ = arg maxs/∈X {f(X ∪ {s}) : X ∪ {s} ∈

⋂T
i=1 Ii}

3: X ← X ∪ {s∗}
4: end
5: return X

Example 5.2 (Partition matroid). If {Ni}Ri=1 form a disjoint partition of N =
⋃R
i=1Ni

then Mp = (N , Ip) with Ip = {X ⊆ N : |X ∩ Ni| ≤ Ki i = 1, . . . , R} defines a
partition matroid.

Example 5.3 (Partition-truncated matroid). The intersection of a uniform matroid
Mu = (N , Iu) and a partition matroid Mp = (N , Ip) defines a partition-truncated
matroid Mt = (N , Ip ∩ Iu).

As happened with the cardinality-constrained submodular optimization problem,
the matroid constrained submodular optimization problem

maximize
X⊆N

f(X) subject to X ∈
T⋂
i=1

Ii (5.5)

can also be solved near-optimally using Algorithm 2. This result is formally stated in
the following theorem.

Theorem 5.2 (Near-optimal maximization of submodular function subject to a ma-
troid constraint [55]). Let f : 2N → R be a monotone non-decreasing, normalized,
submodular set function, and {Mi = (N , Ii)}Ti=1 be a set of matroids defined over
N . Furthermore, let f(X ∗) denote the optimal solution of (5.5), and let Xgreedy be the
solution obtained by Algorithm 2. Then

f(Xgreedy) ≥
1

T + 1
f(X ∗).

35

36

Problem modeling 6
We are concerned with the design of optimal sampling strategies for an Rth order tensor
signal X ∈ CN1×···×NR , which admits a multilinear parameterization in terms of a core
tensor G ∈ CK1×···×KR (dense or diagonal) of smaller dimensionality. We assume that
the set of system matrices {Ui}Ri=1 are perfectly known, and that each of them is tall,
i.e., Ni > Ki for i = 1, . . . , R, and has full column rank.

Sparse sampling a tensor X is equivalent to selecting entries of x = vec(X). Let
Ñ denote the set of indices of x. Then, a particular sample selection is determined by
a subset of selected indices Lun ⊆ Ñ such that |Lun| = Lun (subscript “un” denotes
unstructured). This way, we can denote the process of sampling X as a multiplication

of x by a selection matrix Θ(Lun) ∈ {0, 1}Lun×Ñ such that

y = Θ(Lun)x = Θ(Lun)(U1 ⊗ · · · ⊗UR)g, (6.1)

for a dense core [cf. (5.2)], and

y = Θ(Lun)x = Θ(Lun)(U1 � · · · �UR)g, (6.2)

for a diagonal core [cf. (5.3)]. Here, y is a vector containing the Lun selected entries of
x indexed by the set Lun.

For each case, if Θ(Lun)(U1⊗· · ·⊗UR) and Θ(Lun)(U1�· · ·�UR) have full column
rank, then knowing y allows to retrieve a unique least squares solution, ĝ, as

ĝ = [Θ(Lun)(U1 ⊗ · · · ⊗UR)]† y, (6.3)

or
ĝ = [Θ(Lun)(U1 � · · · �UR)]† y, (6.4)

depending on whether G is dense or hyperdiagonal. Next, we estimate X using either
(5.2) or (5.3).

In many applications, such as transmitter-receiver placement in multiple input mul-
tiple output (MIMO) radar, it is not possible to perform sparse sampling in an un-
structured manner by ignoring the underlying domains. For these applications, some
unstructured sparse sample selections generally require using a dense sensor selection in
each domain (as shown in Fig. 1.1b), which produces a significant increase in hardware
cost. Also, there is no particular structure in (6.3) and (6.4) that may be exploited
to compute the pseudo-inverses, thus leading to a high computational cost to estimate
x. Finally, in the multidomain case, the dimensionality grows rather fast making it
difficult to store the matrix (U1 ⊗ · · · ⊗UR) or (U1 � · · · �UR) to perform row sub-
set selection. For all these reasons, we will constrain ourselves to the case where the
sampling matrix has a compatible Kronecker structure. In particular, we define a new
sampling matrix

Φ(L) := Φ1(L1)⊗ · · · ⊗ΦR(LR), (6.5)

37

where each Φi(Li) represents a selection matrix for the ith factor of X , Li ⊆ Ni is the

set of selected row indices from the matrix Ui for i = 1, . . . , R, and L =
⋃R
i=1 Li and

Li ∩ Lj = ∅ for i 6= j.

We will use the notation |Li| = Li and |L| =
∑R

i=1 Li = L to denote the number
of selected sensors per domain and the total number of selected sensors, respectively;
whereas L̃ = L1×· · ·×LR and L̃ = |L̃| =

∏R
i=1 Li denote the set of sample indices and

the total number of samples acquired with the above Kronecker-structured sampler.
In order to simplify the notation, whenever it will be clear, we will drop the explicit
dependency of Φi(Li) on the set of selected rows Li, from now on, and simply use Φi.

Imposing a Kronecker structure on the sampling scheme means that sampling can
be performed independently for each domain. In the dense core tensor case [cf. (5.2)],
we have

y = (Φ1 ⊗ · · · ⊗ΦR) (U1 ⊗ · · · ⊗UR) g

= (Φ1U1 ⊗ · · · ⊗ΦRUR) g = Ψ(L)g, (6.6)

whereas in the diagonal core tensor case [cf. (5.3)], we have

y = (Φ1 ⊗ · · · ⊗ΦR) (U1 � · · · �UR) g

= (Φ1U1 � · · · �ΦRUR) g = Ψ(L)g. (6.7)

As in the unstructured case, whenever (6.6) or (6.7) are overdetermined, using least
squares, we can estimate the core ĝ = Ψ†(L)y as

ĝ =
[
(Φ1U1)† ⊗ · · · ⊗ (ΦRUR)†

]
y, (6.8)

or

ĝ =
[
(Φ1U1)H (Φ1U1) ◦ · · · ◦ (ΦRUR)H (ΦRUR)

]† [
(Φ1U1)H � · · · � (ΦRUR)H

]
y,

(6.9)

and then reconstruct x̂ using (5.2) or (5.3), respectively. Comparing (6.8) and (6.9)
to (6.3) and (6.4) we can see that leveraging the Kronecker structure of the proposed
sampling scheme allows to greatly reduce the computational complexity of the least-
squares problem, as the pseudoinverses in (6.8) and (6.9) are taken on matrices of a
much smaller dimensionality than in (6.3) and (6.4). An illustration of the comparison
between unstructured sparse sensing and Kronecker-structured sparse sensing is shown
in Fig. 6.1 for R = 2.

Suppose the measurements collected in y are perturbed by zero-mean white Gaus-
sian noise with unit variance, then the least-squares solution has the inverse error co-
variance or the Fisher information matrix T(L) = E{(g− ĝ)(g− ĝ)H} = ΨH(L)Ψ(L)
that determines the quality of the estimators ĝ. Therefore, we can use scalar functions
of T(L) as a figure of merit to propose the sparse tensor sampling problem

optimize
L1,...,LR

f {T(L)} subject to
R∑
i=1

|Li| = L, L =
R⋃
i=1

Li, (6.10)

38

Figure 6.1: Comparison between unstructured sampling and structured sampling (R = 2).
Black (white) cells represent zero (one) entries, and colored cells represent arbitrary numbers.

where with “optimize” we mean either “maximize” or “minimize” depending on the
choice of the scalar function f{·}. Solving (6.10) is not trivial due to the cardinality
constraints. Therefore, in the following, we will propose tight surrogates for typically
used scalar performance metrics f{·} in design of experiments with which the above
discrete optimization problem can be solved efficiently and near optimally.

Note that the cardinality constraint in (6.10) restricts the total number of selected
sensors to L, without imposing any constraint on the total number of gathered samples
L̃. Although the maximum number of samples can be constrained using the constraint∑R

i=1 log |Li| ≤ L̃, the resulting near-optimal solvers are computationally intense with a
complexity of about O(N5) [56,57]. Such heuristics are not suitable for the large-scale
scenarios of interest.

6.1 Prior art

Choosing the best subset of (spatial or temporal) measurements from a large set of
candidate sensing locations has received a lot of attention, particularly for R = 1,
usually under the name of sensor selection/placement, which also is more generally
referred to as sparse sampling [4].

Typically sparse sampling design is posed as a discrete optimization problem that
that tries to find the best subset of rows of a system matrix that optimizes an adequate
statistical criterion on T(L). Some of the popular choices for the performance measure
f{·} are:

• A-optimality or mean squared error (MSE): f {T(L)} := tr
{
T−1

}
(minimize)

• E-optimality: f {T(L)} := λmin{T} (maximize)

39

• D-optimality: f {T(L)} := log det {T} (maximize)

• Frame potential: f {T(L)} := tr
{
THT

}
(minimize).

In this work, we will focus on the D-optimality and frame potential criteria as we
will show later that these performance metrics lead to very efficient sampler designs.

Depending on the strategy used to solve the optimization problem (6.10) we can
classify the prior art in two categories: solvers based on convex optimization, and greedy
methods that leverage submodularity.

In the former category, Joshi et al. [58] and Chepuri et al. [59] propose several
convex relaxations of the sparse sampling problem for different optimality criteria for
inverse problems with linear and non-linear models, respectively. In particular, due to
the Boolean nature of the sensor selection problem (i.e., a sensor is either selected or
not), its related optimization problem is not convex. Hence, the Boolean constraints
are relaxed with box constraints. This way, once the relaxed convex problem is solved
a thresholding heuristic (deterministc or randomized) is used to recover a Boolean
solution. Despite its good performance, the complexity of convex optimization solvers
is rather high (cubic with the dimensionality of the signal). Therefore, the use of convex
optimization approaches to solve the sparse sampling problem in large-scale scenarios,
such as the sparse tensor sampling problem of interest, gets even more computationally
intense.

For high-dimensional scenarios, greedy methods (algorithms that select one sensor
at a time) are more useful. A greedy algorithm scales linearly with the number of
sensors, and if one can prove submodularity of the objective function, its solutions
has a multiplicative near-optimal guarantee [50]. Several authors have followed this
strategy and have proved submodularity of different optimality criteria such as D-
optimality [51], mutual information [52], or frame potential [53]. All of them for the
case R = 1.

Besides parameter estimation, sparse sampling has also been studied for other com-
mon signal processing tasks, like detection [60,61] or filtering [62,63]. Nevertheless, to
our knowledge, the sparse sampling framework has never been extended for multido-
main signals, and this is the focus of this work.

In a different context, the extension of Compressed Sensing (CS) to multidomain
signals has been extensively studied [64–67]. CS is many times seen as a complementary
sampling framework to sparse sampling [4], where in CS the focus is on recovering a
sparse signal rather than designing a sparse measurement space. Furthermore, most of
the work in CS deals with the design of reconstruction algorithms rather than on the
sampling scheme (sampling is mostly dense and random in CS).

6.2 Our contributions

In this thesis, we extend the sparse sampling framework to multilinear inverse problems.
We refer to it as “sparse tensor sampling”. We also propose efficient algorithms to solve
the sparse tensor sampling with theoretical guarantees. We focus on two particular
cases, depending on the structure of the core tensor G:

40

• Dense core: Whenever the core tensor is non-diagonal, sampling can be performed
based on (6.6). We will see that to ensure identifiability of the system, we need
to select more entries in each domain than the rank of its corresponding system
matrix, i.e., as a necessary condition we require L ≥

∑R
i=1Ki = K sensors. We

provide two greedy algorithms based on the D-optimality and frame potential
criteria to compute a near-optimal subsampling set.

• Diagonal core: Whenever the core tensor is diagonal, sampling can be performed
based on (6.7). The use of the Khatri-Rao product allows for higher compression.
In particular, under mild conditions on the entries of the factor matrices we can
guarantee identifiability of the sampled equations using L ≥ Kc + R − 1 sensors.
We propose a greedy method, again based on the frame potential, to compute a
near-optimal sampling set.

41

42

Dense core sampling 7
In this chapter, we focus on the most general situation when G is an unstructured
dense tensor. Our objective is to design the sampling sets {Li}Ri=1 by solving the
discrete optimization problem (6.10).

To begin with, we will focus on the D-optimality criterion for the sparse tensor
sampling problem. We will show that the Kronecker structure of the sampling matrix
can be exploited to alleviate the curse of dimensionality, as it decomposes the objective
function into a sum of small single domain terms. Furthermore, we will propose an
efficient and near-optimal greedy algorithm to solve this problem.

After this, we work on the formulation of the sparse tensor sampling problem using
the frame potential as a performance measure. Following the same rationale as in [53],
but for multidomain signals, we will argue that the frame potential is a tight surrogate
of the MSE. By doing so, we will see that when we impose a Kronecker structure on
the sampling scheme, as in (6.5), the frame potential of Ψ can be factorized in terms
of the frame potential of the different domain factors. This allows us to propose a low
complexity algorithm for sampling tensor data.

Both the methods have their benefits and disadvantages, and depending on the
situation, one might be more useful than the other. For this reason, we will finish each
subsection by mentioning some practical considerations that need to be addressed when
deciding on which method to use for a particular situation.

7.1 D-optimal greedy method

In D-optimal experiment design one is concerned with minimizing the volume of the
confidence ellipsoid of the parameters to be estimated, which can be shown to be
equivalent to maximizing log det {T}. In the Kronecker-structured case, this function
can be decomposed as a sum of contributions in each domain.

Recall that Ni denotes the set of row indices of Ui and Li ⊆ Ni denotes the set of
indices of the selected rows of Ui for i = 1, . . . , R. Furthermore, recall the definitions
of N =

⋃R
i=1Ni and L =

⋃R
i=1 Li with |N | = N , |L| = L, |Ni| = Ni, and |Li| = Li for

i = 1, . . . , R. Using these, let us define

Ψi(Li) := Φi(Li)Ui, (7.1a)

Ψ(L) := Ψ1(L1)⊗ · · · ⊗ΨR(LR), (7.1b)

and the respective Grammian matrices

Ti(Li) := ΨH
i (Li)Ψi(Li), (7.2a)

T(L) := ΨH(L)Ψ(L) = Ti(Li)⊗ · · · ⊗TR(LR). (7.2b)

43

Leveraging (7.2b), the D-optimal criterion becomes

log det{T(L)} = log det {T1 ⊗ · · · ⊗TR} .
Furthermore, since for A ∈ CKA×KA , B ∈ CKB×KB and C ∈ CKC×KC

det {A⊗B⊗C} = det {A}KBKC det {B}KAKC det {C}KAKB ,

the determinant of T can be expanded as

det {T1 ⊗ · · · ⊗TR} =
R∏
i=1

det {Ti}K̃−i ,

where K̃−i =
∏

j 6=iKj is used to simplify the notation.
Taking the logarithm of this expression we arrive at

log det {T1 ⊗ · · · ⊗TR} =
R∑
i=1

K̃−i log det{Ti}, (7.3)

where we see that using a Kronecker-structured sampler allows to express the volume
of the multidomain confidence ellipsoid as a weighted sum of the volumes of the single
domain ellipsoids.

7.1.1 Submodularity of log det{T}

Shamaiah et al. [51] showed that in the single domain case log det{T(L) + εI}, with
small ε, is a normalized, monotone, submodular function. Here, we extend this result
to the tensor case. To do so, we modify (7.3) to

LD(L) =
R∑
i=1

K̃−i log det{Ti(Li) + εI} −RK̃ log ε. (7.4)

For very small values of ε > 0 (7.3) and (7.4) are almost equivalent. Thus maximizing
(7.4) is approximately the same as maximizing (7.3). However, LD(L) satisfies the
conditions of the near-optimality theorems.

Theorem 7.1. The set function LD(L) with ε > 0 defined in (7.4) is a normalized,

monotone non-decreasing, submodular function for all subsets of N =
⋃R
i=1Ni.

Proof. See Appendix A.1. �

In virtue of Theorem 7.1, we define the following submodular optimization problem
to find the D-optimal sensor placement

maximize
L⊆N

LD(L)

subject to |L| = L, L =
R⋃
i=1

Li.
(7.5)

Problem (7.5) is a particularization of (6.10), and is in the form of (5.4). Hence,
it satisfies the conditions of Theorem 5.1, and we can guarantee the near-optimality of
the greedy solution.

44

Corollary 7.1. The solution Lgreedy to (7.5) obtained using the greedy Algorithm 1 is
(1− 1/e)-near-optimal, i.e.

LD(Lgreedy) ≥
(

1− 1

e

)
LD(L∗).

7.1.2 Computational complexity

A näıve application of Algorithm 1 to solve (7.5) yields a high computational com-
plexity due to the unnecesary function evaluations that can be avoided by leveraging
the structure in (7.3). In particular, one can improve the complexity of evaluating
LD(L ∪ {s}) by keeping in memory the value of every summand in (7.4) in the last
iteration and evaluating only the term where s is added. Thus, in very iteration, Al-
gorithm 1 performs R single-domain maximization steps. Hence, the complexity of
the iterations is governed by the domain with the highest dimensionality. Further, the
time complexity of the single-domain maximization can be optimized using rank-one
updates with complexity O(K2

iNiL) as shown in [51]. Hence, using Algorithm 1 to
solve (7.5) has a computational complexity O(K2

maxNmaxL), with Kmax = maxiKi and
Nmax = maxiNi.

The particularization of Algorithm 1 to solve (7.5) is given in Algorithm 3.

Algorithm 3 Greedy maximization of log det{T(L)}

Require: {Ui}Ri=1, L, ε > 0, and L = ∅.
1: for k ← 1 to L
2: for i← 1 to R
3: s∗i ← arg maxsi /∈Li log det {Ti(Li ∪ {si}) + εI}
4: end
5: i∗ ← arg max1≤i≤R LD(L ∪ {s∗i })
6: L ← L ∪ {s∗i∗}
7: end
8: return L

7.1.3 Practical considerations

The greedy method has some peculiarities that need to be considered when used in
practice. In particular, as the greedy algorithm adds elements from the ground set,
the first iterations of the algorithm do not ensure identifiability of the solution. In
fact, until the solution reaches the point where Li ≥ Ki for i = 1, . . . , R, all previous
sensor selections render a singular system of equations. Indeed, the rank of Ψ follows
rank(Ψ) =

∏R
i=1 rank(Ψi). Therefore, to ensure rank(Ψ) = K̃, we require rank(Ψi) =

Ki for i = 1, . . . , R.
Nevertheless, the necessary identifiability condition Li ≥ Ki for i = 1, . . . , R is not

a proper matroid constraint. Any matroid M = (N , I) requires that ∅ ∈ I, and the
independent set I = {L ⊆ N : |Li| ≥ Ki} does not contain ∅. This means that
these constraints cannot be placed in the optimization if one is interested in having
near-optimality guarantees.

45

The lack of identifiability constraints means that for some models the solution ob-
tained by running the greedy method cannot be used. This situation, for instance,
occurs for tensors with an unbalanced dimensionality, i.e. wide spread in the elements
of {Ni}Ri=1 and {Ki}Ri=1. For those signals, the greedy method tends to produce singular
solutions. This is due to the tendency of this algorithm to select elements from each
domain in a round-robin fashion, i.e. domains are chosen in a circular manner. Every
iteration an element is added to the domain with the smallest contribution (as this
maximizes the sum of logarithms), and that gravitates the algorithm towards rotating
domains in every step. In this sense, when the elements of {Ki}Ri=1 are very spread
it can happen that the algorithm reaches the maximum number of iterations without
guaranteeing identifiability in the domains with the largest Ki. Besides, this tendency
to alternate domains in the selection of elements yields in general solutions that require
a higher number of measurements L̃ than other algorithms, as we will also demonstrate
in the simulations.

In practice, however, whenever we are dealing with tensors with a well-ballanced
dimensionality, greddy maximization of LD(L) usually gives the best performance for
a given compression. Not only regarding D-optimality, but also regarding MSE.

7.2 Frame potential

An alternative to the D-optimality criterion is the frame potential performance mea-
sure. Recall that the frame potential [68] of the matrix Ψ is defined as the trace of the
Grammian matrix

FP (Ψ) := tr
{
THT

}
,

with T = ΨHΨ.
In [53], they showed that the frame potential can be related to the theoretical

mean squared error (MSE) of the least-squares estimator in presence of additive white
Gaussian noise [68], expressed as

MSE(Ψ(L)) = tr
{
T−1(L)

}
, (7.6)

using the bound

c1

FP (Ψ(L))

λ2
max{T(L)}

≤ MSE(Ψ(L)) ≤ c2

FP (Ψ(L))

λ2
min{T(L)}

, (7.7)

where c1, and c2 are constants that depend on the characteristics of the system equa-
tions.

From the bound above, it is clear that by minimizing the frame potential of Ψ one
can minimize the MSE, which is otherwise difficult to minimize as it is neither convex,
nor submodular.

The frame potential of the matrix in (7.1b) can be expressed as the frame potential
of its factors using (7.2b)

FP (Ψ(L)) = tr
{
TH(L)T(L)

}
= tr

{
(Ti ⊗ · · · ⊗TR)H(Ti ⊗ · · · ⊗TR)

}
= tr

{
TH

1 T1 ⊗ · · · ⊗TH
RTR

}
. (7.8)

46

Now, using the fact that for any two matrices A ∈ CKA×KA and B ∈ CKB×KB we have
tr {A⊗B} = tr {A} tr {B}, we can expand (7.8) as

FP (Ψ(L)) =
R∏
i=1

tr
{
TH
i Ti

}
=

R∏
i=1

FP (Ψi(Li)) .

For brevity, we will write the above expression alternatively as an explicit function of
the selection sets Li:

F (L) := FP (Ψ(L)) =
R∏
i=1

Fi(Li) :=
R∏
i=1

FP (Ψi(Li)) (7.9)

Expression (7.9) shows again the advantage of working with a Kronecker-structured
sampler: instead of computing every cross-product between the columns of Ψ to com-
pute the frame potential, we can arrive to the same value using the frame potential of
{Ψi}Ri=1.

7.2.1 Submodularity of F (L)

Function F (L) as defined in (7.9) does not directly meet the conditions required for
near-optimality of the greedy methods [cf. Theorem 5.1 and Theorem 5.2], but it can
be modified slightly to satisfy them. In this sense, we define the function G : 2N → R
on the subsets of N as

G(S) := F (N)− F (N \ S) =
R∏
i=1

Fi(Ni)−
R∏
i=1

Fi(Ni \ Si), (7.10)

where

S =
R⋃
i=1

Si, Si ∩ Sj = ∅ for i 6= j

and therefore {Si}Ri=1 form a partition of S.
It is clear that if we make the change of variables from L to S maximizing G

over S is the same as minimizing the frame potential over L. However, working with
the complement set results in a set function that is submodular and monotone non-
decreasing, as shown in the next theorem. Consequently, G satisfies the conditions of
the near-optimality theorems.

Theorem 7.2. The set function G(S) defined in (7.10) is a normalized, monotone

non-decreasing, submodular function for all subsets of N =
⋃R
i=1Ni.

Proof. See Appendix A.2. �

With this result we can now claim near-optimality of the greedy algorithm that
solves the cardinality constrained maximization of G(S). However, as we said, min-
imizing the frame potential only makes sense as long as (7.7) is tight. In particular,

47

whenever T(L) is singular we know that the MSE is infinity, and hence (7.7) is mean-
ingless. For this reason, next to the cardinality constraint in (6.10) that limits the total
number of sensors, we need to ensure that Ψ(L) has full column rank, i.e., Li ≥ Ki for
i = 1, . . . , R. In terms of S, this is equivalent to

|Si| = |Ni \ Li| ≤ Ni −Ki i = 1, . . . , R, (7.11)

where this set of constraints forms a partition matroidMp = (N , Ip) (cf. Example 5.2
from Definition 5.4). Hence, we can introduce the following submodular optimization
problem as surrogate for the minimization of the frame potential

maximize
S⊆N

G(S) (7.12)

subject to S ∈ I I = Iu ∩ Ip
Iu = {A ⊆ N : |A| ≤ N − L}
Ip = {A ⊆ N : |A ∩ Ni| ≤ Ni −Ki i = 1, . . . , R}.

Theorem 5.2 gives, therefore, all the ingredients to assess the near-optimality of
Algorithm 2 applied on (7.12), for which the results are particularized as the following
corollary.

Corollary 7.2. The solution Sgreedy to (7.12) obtained using the greedy Algorithm 2)
is 1/2-near-optimal. That is,

G(Sgreedy) ≥
1

2
G(S∗).

Proof. From Theorem 5.2, we know that greedy maximization of a normalized, mono-
tone non-decreasing, submodular function subject to T matroid constraints has a
1/(T + 1)-near-optimality guarantee. In this case, (7.12) has only one matroid con-
straint (in the form of a truncated matroid), i.e., T = 1. �

So far, we have seen that we can define a submodular surrogate for the minimization
of the frame potential, and that this has a 1/2-guarantee. However, we still need to
compute an explicit bound with respect to the frame potential of Ψ which is the
objective function we really want to minimize. This bound is given in the following
theorem.

Theorem 7.3. The solution Lgreedy to (7.12) obtained using the greedy Algorithm 2 is
near-optimal with respect to the frame potential as

F (Lgreedy) ≤ γF (L∗)

with γ =
1

2

(
K

L2
min

∏R
i=1 Fi(Ni) + 1

)
, and Lmin = mini∈L ‖ui‖2

2, being ui the ith row of

(U1 ⊗ · · · ⊗UR).

Proof. See Appendix A.3. �

As happens with the near-optimal guarantee for the single-domain greedy algorithm
[53], γ is heavily influenced by the frame potential of the unsampled system matrix:
The lower F (N) is or the smaller the core is, the tighter the approximation.

48

7.2.2 Computational complexity

The running time of Algorithm 2 applied to solve (7.12) can greatly be reduced if
one precomputes the inner products between the rows of every Ui before starting the
iterations. This has a complexity of O(N2

i Ki) for each domain. Once these inner
products are computed, in each iteration we just need to find R times the maximum
over O(Ni) elements. Because we run N −L iterations, the complexity of all iterations
is O(N2

max), with Nmax = maxiNi. Therefore the total computational complexity of
the greedy method is O(N2

maxKmax), being Kmax = maxiKi.
The particularization of Algorithm 2 to solve (7.12) is given in Algorithm 4.

Algorithm 4 Greedy maximization of G

Require: {Ui}Ri=1, L, S = ∅ and D = {1, . . . , R}.
1: for k ← 1 to N − L
2: for i ∈ D
3: s∗i ← arg minsi /∈Si Fi(Ni \ Si ∪ {si})
4: end
5: i∗ ← arg mini∈D

{
Fi(Ni \ Si ∪ {s∗i })

∏
j 6=i Fj(Nj \ Sj)

}
6: S ← S ∪ {s∗i∗}
7: if |S ∩ Ni∗ | = Ni∗ −Ki∗ then
8: D ← D \ i∗
9: end

10: end
11: return L = N \ S

7.2.3 Practical considerations

Despite the near-optimality guarantees of the greedy method, there is one point in which
this algorithm needs improvement. Namely, due to the characteristics of the greedy
iterations, the algorithm tends to give solutions with a very unbalanced cardinality
(as opposed to the method based on D-optimality that tends to balance the number
of sensors selected in each domain). In particular, for most situations, the algorithm
chooses one of the domains in the first few iterations and empties that set till it hits
the identifiability constraint of that domain. Then, it proceeds to another domain and
empties it as well. These steps are followed until the algorithm reaches the specified
number of iterations.

The reason for this behavior is due to the definition of the objective function as a
multiplication of smaller objectives. Indeed, if we are asked to minimize a multiplication
of two elements by substracting a value from them, it is generally better to substract
from the smallest element. Hence, if this minimization is performed multiple times we
will tend to remove always from the same element.

The consequences of this behavior are twofold. On the one hand, this greedy method
tends to give a sensor placement that yields a very small number of samples L̃, as we will
also see in the simulations. Therefore, when comparing this method to other sensor
selection schemes that produce solutions with a larger L̃ it generally ranks worse in

49

MSE for a given L. On the other hand, the solution of this scheme tends to be tight on
the identifiability constraints for most of the domains, thus hampering the performance
on those domains. This implication, however, has a simple solution. By introducing a
small slack variable αi > 0 to the constraints, we can obtain a sensor selection which
is not tight on the constraints. This amounts to solving the problem

maximize
S⊆N

G(S) (7.13)

subject to |S| = N − L
|S ∩ Ni| ≤ Ni −Ki − αi i = 1, . . . , R.

Tuning {αi}Ri=1 allows to regularize the tradeoff between compression and accuracy
of the greedy solution.

7.3 Convex alternative

As mentioned before, the unidimensional sampling problem has also been addressed
from a convex optimization point of view. In the unidimensional case, the Gram matrix
can also be expressed as

T(L) = (Φ(L)U)H(Φ(L)U) = UHΦ(L)HΦ(L)U = UHdiag{w}U, (7.14)

where w ∈ {0, 1}N is a selection vector such that

wi =

{
1 i ∈ L
0 i /∈ L

for i = 1, . . . , N. (7.15)

Using this alternative notation, we can define a suboptimal sampling problem as

maximize
w

log det
{
UHdiag(w)U

}
(7.16)

subject to 1Tw = L

wi ∈ {0, 1}.

This problem is non-convex due to the last Boolean constraint. However, one can
relax this problem to obtain the following convex proxy

maximize
w

log det{UHdiag(w)U} (7.17)

subject to 1Tw = L

0 � w � 1.

To generalize (7.16) to the multidomain case, we can use the fact that the T can be
factorized as a Kronecker product and define a suboptimal tensor sampling problem in

50

terms of a convex optimization problem

maximize
{wi}Ri=1

R∑
i=1

K̃−i log det{UH
i diag{wi}Ui} (7.18)

subject to
R∑
i=1

1Twi = L

0 � wi � 1 i = 1, . . . , R.

As proposed in [58] and [59], we can always recover a discrete solution by thresh-
olding the result of (7.18).

Being a natural extension of the method in [58] it is to be expected that using (7.18)
would yield well performing samplers. However, as happened with its unidimensional
problem, the complexity of the convex optimization is too high to be used in large-scale
problems.

51

52

Diagonal core sampling 8
So far, we have focused on the case when G has no particular structure, and is, in
principle, a dense tensor. In that case, we have seen that we require at least

∑R
i=1 Ki

sensors to recover our signal with a finite MSE. Nevertheless, in many cases of interest,
we can assume that G has a structure. In particular, in this chapter, we investigate the
case when G is a diagonal tensor. We will show that when this happens, and assuming
some mild conditions on the values of {U}Ri=1, we can leverage the structure of G to
further increase the compression. We will also propose an efficient and near-optimal
greedy algorithm based on minimizing the frame potential to design the sampling set.

Remark. Note that for the diagonal core we do not propose a greedy method to solve
the D-optimal sparse tensor sampling problem. The reason for this is that the Kathri-
Rao product in (6.7) yields a Grammian matrix whose log det cannot be transformed
into a submodular function as done in Section 7.1. Indeed, we numerically tested Def-
inition 5.1 on such function, and found out that in many ocassions the submodular
inequality is violated

8.1 Identifiability conditions

In contrast to the dense core case, the number of unknowns in a multilinear system
of equations with a diagonal core does not increase with the tensor order, whereas for
a dense core it grows exponentially. This means that when sampling signals with a
diagonal core decomposition, one can allow for a stronger compression. In this sense,
Bro and Sidiropoulos [69] showed that the rank of a Khatri-Rao product is always larger
than the rank of its factors. More formally, they proved:

Theorem 8.1 (Rank of Khatri-Rao product [69]). Let A ∈ CN×K and B ∈ CM×K be
two matrices with no all-zero column. Then,

rank(A�B) ≥ max{rank(A), rank(B)}.

In virtue of this theorem, we can give the following sufficient conditions for identi-
fiability of the solution to (6.10) when G is diagonal.

Corollary 8.1. Let {zi}Ri=1 denote the maximum number of zero entries in any column
of {Ui}Ri=1. If for every Ψi(Li) we have |Li| > zi, and there is at least one Ψj with
rank(Ψj) = Kc then Ψ(L) has full column rank.

Proof. Selecting Li > zi rows from each Ui ensures that no Ψi will have an all-zero
column. Then, if for at least one Ψj we have rank(Ψj) = Kc, then due to Theorem 8.1
we have

rank(Ψ(L)) ≥ max
i=1,...,R

{rank(Ψi)} = max

{
rank(Ψj),max

i 6=j
{rank(Ψj)}

}
= Kc. �

53

This way, we know that in order to guarantee identifiability we can select Lj ≥
max{Kc, zj +1} rows from any factor matrix j, and Li ≥ max{1, zi+1} from the other
factors with i 6= j. In many real scenarios we will have {zi = 0}Ri=1 since no entry
in {Ui}Ri=1 will exactly be zero. In those situations we will require to select at least

L =
∑R

i=1 Li ≥ Kc +R− 1 elements.

8.2 Greedy method

We here propose an efficient greedy algorithm to select the rows of {Ui}Ri=1 with near-
optimality guarantees with respect to the frame potential. As we did for the case with
a dense core, we start by finding an expression for the frame potential of a Khatri-Rao
product in terms of its factors.

The Grammian matrix T(L) of a diagonal core tensor decomposition has the form

T = ΨHΨ = (Ψ1 � · · · �ΨR)H (Ψ1 � · · · �ΨR)

= ΨH
1 Ψ1 ◦ · · · ◦ΨH

RΨR = T1 ◦ · · · ◦TR.

Using this expression, the frame potential of a Khatri-Rao product becomes

FP (Ψ) = tr
{
THT

}
= ‖T‖2

F = ‖T1 ◦ · · · ◦TR‖2
F . (8.1)

For brevity, we will denote the frame potential as an explicit function of the selected
set as

P (L) := FP (Ψ(L)) = ‖T1(L1) ◦ · · · ◦TR(LR)‖2
F . (8.2)

Unlike in the dense core case, the frame potential of a Khatri-Rao product cannot
be separated in terms of the frame potential of its factors. Instead, (8.1) decomposes
the frame potential using the Hadamard product of the Grammian of the factors.

8.2.1 Submodularity of P (L)

Since P (L) does not directly satisfy the submodular near-optimality conditions, we
propose using the following set function Q : 2N → R as a submodular surrogate for the
frame potential

Q(S) := P (N)− P (N \ S)

= ‖T1(N1) ◦ · · · ◦Tr(Nr)‖2
F − ‖T1(N1 \ S1) ◦ · · · ◦TR(NR \ SR)‖2

F . (8.3)

We can show that this function satisfies the conditions required for near-optimality
of the greedy methods.

Theorem 8.2. The set function Q(S) defined in (8.3) is a normalized, monotone non-

decreasing, submodular function for all subsets of N =
⋃R
i=1Ni.

Proof. See Appendix A.4. �

54

Using Q and imposing the identifiability constraints defined in Section 8.1 we can
write the related optimization problem for the minimization of the frame potential as

maximize
S⊆N

Q(S) (8.4)

subject to S ∈ I I = Iu ∩ Ip
Iu = {A ⊆ N : |S| ≤ N − L}
Ip = {A ⊆ N : |A ∩ Ni| ≤ βi i = 1, . . . , R}
βj = Nj −max{Kc, zj}
βi = Ni −max{1, zi + 1} for i 6= j,

where the choice of j is arbitrary, and can be set depending on the application. For
example, with some space-time signals it is more costly to sample space than time.
Hence, in those cases, j would generally be the temporal domain.

This is a submodular maximization problem with a truncated partition matroid
constraint [cf. Example 5.2 from Definition 5.4]. Thus, from Theorem 5.2, we know
that greedy maximization of (8.4) using Algorithm 2 has a multiplicative near-optimal
guarantee.

Corollary 8.2. The solution Sgreedy to (8.4) Sgreedy obtained using the greedy Algo-
rithm 2 is 1/2-near-optimal. That is

Q(Sgreedy) ≥
1

2
Q(S∗).

As for the dense core case, we can also provide a bound on the near-optimality of
of the greedy solution with respect to the frame potential.

Theorem 8.3. The solution set Lgreedy to (8.4) obtained using the greedy Algorithm 2
is near-optimal with regards to the frame potential as

P (Lgreedy) ≤ γP (L∗), (8.5)

with γ =
1

2

(
‖T1(N1) ◦ · · · ◦Tr(Nr)‖2

F

K

L2
min

+ 1

)
.

Proof. The proof is analogous to the one of Theorem 7.3 but uses (8.1) instead of (7.9)
in the derivation. �

8.2.2 Computational complexity

The computational complexity of the greedy method is now governed by the complexity
of computing the Grammian matrices Ti. This can greatly be improved if before
starting the iterations, one precomputes all the outer products in {Ti}Ri=1. Doing this
has a computational complexity of O(NmaxK

2
c). Then, in every iteration, the evaluation

of P (L) would only cost O(RK2
c) operations. Further, because in every iteration we

need to query O(Ni) elements on each domain, and we run the algorithm for N − L
iterations, the total time complexity of the iterations is O(RN2

maxK
2
c). This term

dominates over the complexity of the precomputations, and thus can be treated as the
worst case complexity of the greedy method.

The particularization of Algorithm 2 to solve (8.4) is given in Algorithm 5.

55

Algorithm 5 Greedy maximization of Q

Require: {Ui}Ri=1, {βi}Ri=1, L, S = ∅ and D = {1, . . . , R}.
1: for k ← 1 to N − L
2: for i ∈ D
3: s∗i ← arg minsi /∈Si ||Ti(Ni \ Si ∪ {si}) ◦

∏
j 6=i ◦Tj(Nj \ Sj)||2F

4: end
5: i∗ ← arg mini∈D ||Ti(Ni \ Si ∪ {s∗i }) ◦

∏
j 6=i ◦Tj(Nj \ Sj)||2F

6: S ← S ∪ {s∗i∗}
7: if |S ∩ Ni∗ | = Ni∗ − βi∗ then
8: D ← D \ i∗
9: end

10: end
11: return L = N \ S

8.2.3 Practical considerations

The proposed scheme suffers from the same issues as the greedy minimization of the
frame potential in the dense core case. Namely, it tends to empty the domains se-
quentially, thus producing solutions which are tight on the identifiability constraints.
Nevertheless, as we indicated for the dense core, the drop in performance associated
with the proximity of the solutions to the constraints can be reduced by giving some
slack to the constraints.

8.3 Convex alternative

Finding a convex alternative for the diagonal case is more involved than in the non-
diagonal case, since the log det of a Hadamard product cannot be decomposed in terms
of the log det of its factors. Indeed, in this case

log det{T} = log det
{
UH

(
ΦH

1 Φ⊗ . . .ΦH
RΦR

)
U
}

= log det
{
UH (diag(w1)⊗ diag(wR)) U

}
= log det

{
UHdiag(w1 ⊗ · · · ⊗wR)U

}
, (8.6)

and it is clear that the Khatri-Rao product that forms U does not allow for further
simplification. This means that even if we relax the Boolean constraints on the selection
vectors, the relaxed suboptimal sampling problem

maximize
{wi}Ri=1

log det
{
UHdiag(w)U

}
(8.7)

subject to
R∑
i=1

1Twi ≤ L

0 � w � 1

w = w1 ⊗ · · · ⊗wR

is not convex due to the non-linearity of the last constraint.

56

A possible convex relaxation for this problem can be obtained by relaxing the Kro-
necker structure of the optimization variable and optimizing

maximize
w

log det
{
UHdiag(w)U

}
(8.8)

subject to 1Tw ≤ L′

0 � w � 1,

where L′ is a heuristic regularization constant introduced to indirectly control the
number of selected sensors.

The Kronecker structure can later be recovered by finding a good sparse approxi-
mation of w in terms of a Kronecker product

minimize
{wi}Ri=1

‖w −w1 ⊗ · · · ⊗wR‖2
2 + λ

R∑
i=1

Ri(wi) (8.9)

subject to 0 � wi � 1 i = 1, . . . , R,

where the Ri(wi) are sparsity promoting regularizer terms for the vectors {wi}.
Alternatively, one can restructure w into a tensor W , such that vec(W) = w giving

minimize
{wi}Ri=1

‖W − 1 •1 w1 •2 · · · •R wR‖2
F + λ

R∑
i=1

Ri(wi) (8.10)

subject to 0 � wi � 1 i = 1, . . . , R.

This alternative formulation suggests that solving (8.9) is equivalent to finding a
rank-one decomposition of W given by sparse factors. For the general case with R > 2
there is not much literature addressing this problem. Nevertheless, for the R = 2 case
one can rewrite (8.10) as

minimize
w1,w2

∥∥W −w1w
T
2

∥∥2

F
+ λR1(w1) + λR2(w2) (8.11)

subject to 0 � wi � 1 i = 1, 2.

This last problem is very similar to the sparse Singular Value Decomposition intro-
duced by Lee et al. in [70]. In fact, their formulation of this problem only differs from
(8.11) in the last constraint, which defines a subset of the original constraint

minimize
w1,w2

∥∥W −w1w
T
2

∥∥2

F
+ λR1(w1) + λR2(w2) (8.12)

subject to ‖wi‖2 = 1 i = 1, 2.

In their paper [70], Lee et al. propose an efficient solution to the sparse SVD problem
in terms of an alternative minimization of (8.12) for fixed w1, first, and w2, second.
Thus, as a heuristic method, one could try to approximate (8.7) by first solving (8.8),
and then solving (8.12) using the sparse SVD algorithm to obtain a rank-1 solution.
Finally, in order to recover a discrete solution one would need to threshold the obtained
results.

57

It is important to highlight though, that taking this approach does not guarantee the
solution to be optimal, nor feasible. It could very well be the case that the solution to
(8.12) does not satisfy the 1Tw ≤ L′ constraint of the original problem. Furthermore,
this method has many extra levels of complexity compared to the proposed greedy
optimization using Algorithm 5, and thus it is not suitable for large scale problems.
Moreover, for R > 2, there is not even a convex optimization alternative to the proposed
algorithm.

58

Numerical results 9
In this chapter we will illustrate the applicability of the proposed framework through
a series of examples. First, we will show some results obtained on a series of synthetic
dataset to compare the performance of the different near-optimal algorithm. Then, we
will focus on a few real dataset of higher dimensionality to show the benefits of the
developed framework1.

9.1 Synthetic data

9.1.1 Dense core

60 80 100 120 140 160 180
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
S
E

Figure 9.1: Performance comparison for the dense core case. Results obtained for R = 3 with
N1 = 50, N2 = 60, N3 = 70, and with K1 = 10,K2 = 20,K3 = 15.

We compare the performance in terms of the theoretical MSE in (7.6) of both greedy
algorithms developed for the dense core case (Algorithm 3 and Algorithm 4) to a random
sampling scheme based on randomly selecting rows of Ui such that the resulting subset
of samples is Kronecker-structured. Only those selections that satisfy the identifiability
constraints in (7.11) are treated as valid. We note that the time complexity of evaluating
M times the MSE for a Kronecker-structured sampler is O(MN2

maxKmax). For this
reason, using random sampling with a large M to guess a good sparse sampler is
computationally intense.

To perform this comparison, we draw 100 realization of three random Gaussian
matrices {Ui ∈ RNi×Ki}R=3

i=1 with different dimensionalities. For each of these models
we obtain the solution of (7.5) and (7.12) for different number of sensors L using
Algorithm 3 and Algorithm 4, respectively. We also compute M = 100 realizations of
random sampling for each L. Fig. 9.1 shows the results of these experiments. The plot

1The code to reproduce the results presented in this chapter can be found at https://gitlab.com/

gortizji/sparse_tensor_sensing.

59

https://gitlab.com/gortizji/sparse_tensor_sensing
https://gitlab.com/gortizji/sparse_tensor_sensing

on the left shows the average performance over the different models against number
of sensors and the blue shaded area represents the 10-90 percentile average interval of
the random sampling scheme. We underline that the absolute values in these plots do
not mean anything. Only the relative differences in orders of magnitude among the
different sampling methods should be taken into account. Furthermore, because the
estimation performance is heavily influenced by its related number of samples L̃, and
noting the fact that a value of L may lead to different L̃, we also present the performance
comparison for one model realization against the relative number of samples L̃/Ñ so
that differences in the informative quality of the selections are highlighted.

In light of these results, it is clear that both proposed methods outperform a näıve
random selection of rows. As expected, the differences in performance get reduced
when we increase the number of sensors. Moreover, we see that the greedy algorithm
based on D-optimality shows the best performance with regards to MSE. Whereas,
optimizing the frame potential, seems to perform slightly worse, especially for the lower
compression rates. The algorithm based on frame potential ranks consistently on par
with the best realizations of random sampling as shown in the right plot.

The plots in Fig. 9.1 also illustrate some important features of the proposed sparse
sampling methods. As seen from the plot on the right, greedy maximization of
log det T(L) produces solutions with less compression, i.e. the red points in the right
side of the plot are more dense. On the other hand, greedy minimization of the frame
potential achieves lower rates of compression with the same number of sensors. Besides,
the D-optimal algorithm has a continuous and smooth improvement in performance
for increasing number of sensors, the algorithm based on frame potential shows three
bumps (note R = 3) in the performance curve. This is a consequence of the behaviour
described in Chapter 7, where we mentioned the tendency of Algorithm 4 to meet the
identifiability constraints with equality. As we increase L the solutions of Algorithm 4
increase in cardinality by adding more elements to a single domain until this is full, and
then continue to the next domain. The bumps in Fig. 9.1 correspond precisely to those
moments, when the cardinality of one domain becomes maximum and the cardinality
of another domain starts to increase.

9.1.2 Diagonal core

We perform the same experiment for the diagonal core case, but now only for the
algorithm based on frame potential and random sampling. The results are shown in
Fig. 9.2. Again we see that the proposed algorithm outperforms a random selection of
rows, especially when collecting just a few samples. Furthermore, as happened in the
dense core case, the performance curve of Algorithm 5 follows a stairway shape.

9.2 Sampling a dynamical point cloud

We move now to study the applicability of the sparse tensor sampling framework to some
real dataset with very high dimensionality. First, we test our sensor selection algorithms
for a dense core decomposition on a three-dimensional dynamic point cloud composed
of N1 = 1502 points and N2 = 573 frames, i.e. a 3rd-order tensor X ∈ R1502×573×3 with

60

20 40 60 80 100 120 140 160 180
10

-4

10
-2

10
0

10
2

10
4

10
6

M
S
E

Figure 9.2: Performance comparison for the diagonal core case. Results obtained for R = 3
with N1 = 50, N2 = 60, N3 = 70, and with Kc = 20.

more than Ñ = 2.5 million entries, that represents the movement of a dancer. At this
point, we highlight the need for our framework, since it is obvious that designing an
unstructered sampling set with 2.5 million candidate locations is unfeasible with our
current computing resources.

A model of X in the form of (5.1) can be obtained by regarding X as a graph signal.
To represent the data as a graph signal we build a spatial 5-nearest-neighbor graph with
the time-averaged position of the N2 markers as suggested in [12]; and consider time
as a cycle graph with N1 vertices. The resulting product graph consists of more than
850, 000 nodes that serve as support for a vector-valued graph signal that represents
the movement of the dancer.

In this context, X can be decomposed as

X = Xf •1 UG •2 UT .

Here, UG ∈ CN1×N1 and UT ∈ CN2×N2 are the eigenbasis of the Laplacians of the
spatial and temporal graphs, respectively [cf. Section 2.2.3]; and Xf ∈ CN1×N2×N3 is
the graph spectrum of X , whose first and second modes correspond to the spatial and
temporal frequencies, respectively.

Figure 9.3: Maximum power of Xf in its temporal and graph spectral modes. The shaded
area represents the modes that are removed to arrive at (9.1).

61

Method Number of sensors L̃/Ñ Error

Frame potential 600 4.57% 3.47%

D-optimality 6002 4.57% 3.61%

Table 9.1: Performance of proposed sparse tensor sampling algorithms on dancer point cloud.

Fig. 9.3 shows the maximum energy of Xf along the spatial and temporal frequen-
cies. A visual inspection of the spectral decomposition of these signals shows that
most of the energy is confined in the first few eigenmodes of the temporal and spatial
graphs. In particular, in our simulations we limit the support of the signals to the first
K1 = 500 and K2 = 70 spatial and temporal frequencies, respectively. Considering the
dramatic drop in signal energy for K1 = 500 and K2 = 70 (more than 60 dB), a good
approximation of X can be obtained using

X ≈ G •1 U1 •2 U2 •3 U3 (9.1)

with G = Xf (1 : K1, 1 : K2, :), U1 = UG(:, 1 : K1), U2 = UT (:, 1 : K2),and U3 = I3.
Using this decomposition, we obtain different sampling sets running our both near-

optimal algorithms with L = 600 and keeping the third domain unsampled. We also run
1000 realizations of random sampling with the same L. To compare the performance
of all methdos, we compute the error in the estimation of X as

Error =

∥∥∥X − X̂
∥∥∥
F

‖X‖F
.

With these parameters, however, only the method based on the frame potential is able
to obtain a non-singular solution. In the case of the D-optimal method, due to the
significant differences in the dimensionalities of U1 and U2 Algorithm 3 does not give
a sampling set that produces a Ψ1(L1) with full-column rank. For random sampling
also, the selection of rows is so poor that none of its subset candidates results in an
identifiable system after subsampling.

An illustration of the quality of the results of Algorithm 4 for two different frames
of the point cloud video is shown in Fig. 9.4. Even with this amount of compression
on such a highly dimensional signal the reconstruction is very accurate. The point
cloud’s shape is hardly distorted and the point deviations are very small. Furthermore,
the magnitude of the relative error, as shown in Table 9.1 is also negligible. For the
sake of completeness, and to have something to compare the results of Algorithm 4
with, we run Algorithm 3 for U1 and U2 separately, specifying the resulting L1 and L2

from the solution to the frame potential minimization as dimensionalities beforehand.
This amounts to computing twice a single-domain subsampling set using the method
proposed in [51]. Despite the good performance of this approach, we highlight that in
many situations one might not know the desired L1 and L2 and would like the algorithm

2This is set by fixing the dimensions of the single domain sparse samplers using the results from the frame
potential optimization (L1 = 75 and L2 = 525). This is therefore the solution to a different problem than
(6.10).

62

Figure 9.4: Two frames of the dancer dynamic point cloud. The blue dots correspond to the
original data and the red dots to the subsampled version.

to compute these internally. In particular, if one is interested in solving (6.10) swaping
the objective function and the cardinality constraints, i.e. minimizing number of sensors
subject to a specified performance, separately solving the single-domain optimizations
would yield a suboptimal sensor distribution.

9.3 Active learning for recommender systems

Current recommendation algorithms seek solving an estimation problem of the form:
given the past recorded preferences of a set of users, what is the rating that these would
give to a set of products? In this thesis, in contrast, we focus on the data acquisition
phase of the recommender system, which is also referred to as active learning/sampling.
In particular, we claim that by carefully designing which users to poll and on which
items, we can obtain an estimation performance on par with the state-of-the-art meth-
ods, but using only a fraction of the data that current methods require, and using a
simple least-squares estimator.

We showcase this idea on the MovieLens 100k dataset [71] that contains partial
ratings of N1 = 943 users over N2 = 1682 movies which are stored in a second-order
tensor X ∈ RN1×N2 . A model of X in the form of (5.1) can be obtained by viewing
X as a signal that lives on a graph. In particular, the first two modes of X can
be viewed as a signal defined on the Cartesian product of a user and movie graph,
respectively. These two graphs, shown in Fig. 9.5, are provided in the dataset and are
two 10-nearest-neighbors graphs created based on the user and movie features.

The bandlimitidness of X ∈ RN1×N2 has already been exploited to impute its missing
entries [72, 73]. In our experiments, we use K1 = K2 = 20. Using this representation,
we run our greedy algorithm with L = 100, resulting in a selection of L1 = 25 user
and L2 = 75 movie vertices, i.e., 1875 vertices in the product graph. Fig. 9.5, shows
the sampled users and movies, i.e., users to be probed for movie ratings. The user
graph [cf. Fig. 9.5a] is made out of small clusters connected in a chain-like structure,
resulting in a uniformly spread distribution of observed vertices. On the other hand,
the movies graph [cf. Fig. 9.5b] is made out of a few big and small clusters. Hence, the

63

(a) User graph (b) Movie graph

Figure 9.5: User and movie networks. The red (black) dots represent the observed (unob-
served) vertices. Visualization obtained using Gephi [74].

proposed active querying scheme assigns more observations to the bigger clusters and
fewer observations to the smaller ones.

To evaluate the performance of our algorithm, we compute the RMSE of the esti-
mated data using the test mask provided by the dataset. Nevertheless, since our active
query method requires access to ground truth data (i.e., we need access to the samples
at locations suggested by the greedy algorithm) which is not provided in the dataset,
we use GRALS [75] to complete the matrix, and use its estimates when required. A
comparison of our algorithm to the performance of the state-of-the-art methods run
on the same dataset is shown in Table 9.2. In light of these results, it is clear that a
proper design of the sampling set allows to obtain top performance with significantly
fewer ratings, i.e., about an order of magnitude, and using a much simpler non-iterative
estimator.

Method Number of samples RMSE

GMC [73] 80,000 0.996

GRALS [75] 80,000 0.945

sRGCNN [23] 80,000 0.929

GC-MC [28] 80,000 0.905

Our method 1,875 0.9347

Table 9.2: Performance on MovieLens 100k. Baseline scores are taken from [28].

64

9.4 Multiuser source separation

In multiple-input multiple-output (MIMO) communications [76], the use of rectangular
arrays [77] allows to separate signals coming from different azimuth and elevation angles,
and it is common that users transmit data using different spreading codes to reduce
the interference from other sources. Reducing hardware complexity by minimizing the
number of antennas and samples to be processed is an important concern in the design
of MIMO receivers. This design can be seen as a particular instance of sparse tensor
sampling.

We consider a scenario with Kc users located at different angles of azimuth (φ) and
elevation (θ) transmitting using unique spreading sequences of length N3. The receiver
consists of a uniform rectangular array (URA) with antennas located on a N1 × N2

grid. Each time instant, every antenna receives [77]

x(r, l,m, n) =
Kc∑
k=1

sk(r)ck(l)e
j2πn∆x sin θkej2πm∆y sinφk + w(r, l,m, n),

where sk(r) the symbol transmitted by user k in the rth symbol period; ck(l) the lth
sample of the spreading sequence of the kth user; ∆x and ∆y the antenna separations
in wavelengths of the URA in the x and y dimensions, respectively; and φk and θk
the azimuth and elevation coordinates of user k, respectively; and where w(r, l,m, n)
represents an additive white Gaussian noise term with zero mean and variance σ2.
For the r-th symbol period, all these signals can be collected in a 3rd-order tensor
X (r) ∈ CN1×N2×N3 that can be decomposed as

X (r) = S(r) •1 U1 •2 U2 •3 U3 + W(r)

where U1 ∈ CN1×Kc and U2 ∈ CN2×Kc are the array responses for the x and y directions,
respectively; U3 ∈ CN3×Kc contains the spreading sequences of all users in its columns;
and S(r) ∈ CKc×Kc×Kc is a diagonal tensor that stores the symbols of all users for the
rth symbol period on its diagonal.

We simulate this setup using Kc = 10 users that transmit BPSK symbols with
different random powers and that are equispaced in azimuth and elevation. We use

M
S

E
 (

d
B

)

SNR (dB)

20

40

0

-20

-40

-60

-80
20100-20 -10-30-40-50

Figure 9.6: MSE of symbol reconstruction. N1 = 50, N2 = 60, N3 = 100, and L = 15.

65

a rectangular array with N1 = 50 and N2 = 60 for the ground set locations of the
antennas, and binary random spreading sequences of length N3 = 100. With these
parameters, each X (r) has 300, 000 entries. We generate many realizations of these
signals for different levels of signal-to-noise ratio (SNR) and sample the resulting tensors
using the greedy algorithm for the diagonal core case with L = 15, resulting in a relative
number of samples of 0.048%. The results are depicted in Fig. 9.6, where the blue
shaded area represents the MSE obtained with the best and worst random samplers.
As expected, the MSE of the reconstruction decreases exponentially with the SNR.
For a given MSE, achieving maximum compression requires transmitting with a higher
SNR of about 30dB than the one needed for no compression. Besides, we see that our
proposed greedy algorithm consistently performs as well as the best random sampling
scheme.

66

Conclusions 10
Multidomain graph data is becoming more common every day, and with the advent
of this type of signals, classical signal processing techniques need to be reinvented. In
this thesis, we have made two contributions to the processing and understanding of
multidomain graph signals, which have lead to the proposition of two new frameworks
that generalize tools from machine learning and signal processing to multidomain data
with an irregular support.

In Part I, we have proposed an extension of the geometric deep learning framework
to handle multidomain graph datasets. We refer to it as multidomain geometric deep
learning. We have defined a new type of graph convolutional layer that can exploit
correlations among multiple graph domains, and particularize it to time-varying graph
signals. This layer has a fixed number of parameters, it is localized in space and time,
can be written in terms of a universal graph filter and runs efficiently on a GPU.
Furthermore, the experiments performed on a synthetic dataset have shown that 2D-
GCNNs generalize better and are more robust than 1D-GCNNs.

In Part II, we have focused on the design of sparse samplers for multidomain graph
signals, also leading to a new theory of sparse sampling for linear inverse problems with
tensors. We refer to this extension as sparse tensor sampling. We have seen that by
using samplers with a Kronecker structure we can overcome the curse of dimensionality,
and design efficient subsampling schemes that guarantee a good performance for the
reconstruction of tensor signals. In this sense, we have worked under two different
assumptions: that signals can be decomposed using a multilinear model with a dense
core, or with a diagonal core. For both cases, we have provided several near-optimal
greedy algorithms to design the sampling sets, and provided bounds on their resulting
performance. We have extensively evaluated these algorithms, as well as shown their
applicability to real life problems.

Future directions

We summarize a list of ideas that could lead to future extensions of the work presented
in this thesis:

• Validation of TV-GCNNs on real data

In Chapter 4 of Part I, we compared the performance of the TV-GCNNs to the
de facto standard 1D-GCNNs on a controllable synthetic dataset. Nevertheless,
the assessment of the performance of the TV-GCNN with real data needs still to
be performed. In this sense, we propose targeting three different applications in
which exploiting the space-time interactions of the graph data might lead to an
improvement of the current state-of-the-art. They are:

67

– EEG decoding : A hot topic in neuroscience is the classification of brain signals
for the development of brain computer interfaces (BCI) [78]. In this context,
EEG signals can be viewed as time-varying graph processes where the spatial
domain is represented by a graph of electrodes that are placed on the human
skull.

– Traffic prediction: As mentioned in the introduction, monitoring traffic in
a city is a major concern for local governments. TV-GCNNs could be a
potential tool for traffic prediction.

– Characterization of epidemics : One of the main issues in epidemiology is
the statistical characterization of the dynamics of a disease outbreak given
the recorded time variations of the disease state around the world [79]. To
tackle this problem, epidemiologists rely on complicated systems of coupled
non-linear differential equations that are governed by a few characteristic
parameters, i.e., probability of contagion, illness duration, or death rate. In
this context, TV-GCNNs could be used as powerful regressors to infer these
parameters from data.

• 2D-GCNNs with other filter types

In this thesis, we have only focused on the extension of FIR graph convolutional
layers to multidomain graph signals. However, many other types of filters have
also been proposed in the literature, e.g. ARMA graph filters [18] and node
and edge-varying filters [80, 81]. A possible extension of this work would be the
definition of new types of multidomain graph CNNs using these alternative filter
paradigms.

• Sparse tensor sampling with smoothness prior

In Part II, we always assumed that the support of the tensor signals was perfectly
known. However, in many real scenarios, this prior knowledge is not available.
An alternative assumption is the smoothness prior [82], i.e. ‖D(x)‖ ≤ ρ for some
invertible operator D such as the differential operator or the total-variation opera-
tor. The formulation of the sparse tensor sampling problem under this assumption
is still an open problem.

• Robust sparse tensor sampling

Working with single domain signals, Joshi and Boyd [58] showed that it is possible
to design sampling schemes that are robust against bounded model misspecifica-
tions, i.e. with an unknown system matrix Ψ, but knowing that this belongs to
a set of possible system matrices S = {Ψ = Ψ0 + ∆ : ‖∆‖2 ≤ ε}. Extending
this result to the multidomain case, where Ψ has a Kronecker, or Khatri-Rao
structure, could be another possible extension of this thesis.

• Sparse tensor sampling for detection or filtering

In this thesis, we have only focused on the design of sparse samplers for the esti-
mation of tensor signals. Nevertheless, the sparse tensor sampling framework can
also be extended to address different inference tasks such as filtering or detection,
and hence generalize the results of the single domain theory.

68

Proofs of Part II A
A.1 Proof of Theorem 7.1

Let us start by proving normalization. Indeed

LD(∅) =
R∑
i=1

K̃−i log det{εI} −RK̃ log ε =
R∑
i=1

K̃−i log εKi −RK̃ log ε

=
R∑
i=1

K̃ log ε−RK̃ log ε = 0.

Let LDi : 2Ni → R be of the form of the single-domain function which is opti-
mized in [51] to obtain a near-optimal sensor selection with respect to D-optimality,
i.e. LDi(Li) = log det{Ti(Li) + εI}. In terms of these functions, LD can be expressed
as

LD(L) =
R∑
i=1

K̃−iLD(L ∩Ni)−RK̃ log ε,

where we see that LD(L) is a non-negative linear combination of LDi(L∩Ni). There-
fore, since the class of monotone non-decreasing submodular functions is closed under
non-negative linear combinations, to prove submodularity and monotonicity of LD it is
sufficient to prove that all LDi(L∩Ni) are monotone non-decreasing and submodular.

We know that LDi are submodular, and monotone non-decreasing functions for the
subsets of Ni with i = 1, . . . , R [51]. We need to prove that their extension to the

subsets of N =
⋃R
i=1Ni defined as LDe

i (L) = LDi(L ∩ Ni) for L ⊆ N is monotone
non-decreasing and submodular.

Monotonicity of LDe
i requires that for any X ⊆ Y ⊆ N

LDe
i (X) ≤ LDe

i (Y).

Substituting the definition of LDe
i , this becomes

LDi(X ∩Ni) ≤ LDi(Y ∩Ni). (A.1)

Since X ∩ Ni ⊆ Y ∩ Ni ⊆ Ni, we know that (A.1) is always satisfied. Hence, LDe
i is

monotone non-decreasing.
For LDe

i to be submodular we require that for any x, y ∈ N \ L the following
inequality is satisfied

LDe
i (L ∪ {x})− LDe

i (L) ≥ LDe
i (L ∪ {x, y})− LDe

i (L ∪ {y}). (A.2)

69

Nevertheless, depending on wether x, y belong to Ni, their addition to L may not
have any effect in the value of LDe

i . This way, when both elements belong to Ni, LDe
i

is virtually the same function as LDi. Hence, it satisfies (A.2). On the other hand,
when at least one of the elements does not belong to Ni, both sides of (A.2) take the
same value. Therefore, proving submodularity for the remaining cases.

For these reasons, we know that LD is a normalized, monotone non-decreasing
submodular function. �

A.2 Proof of Theorem 7.2

In order to simplify the derivations, let us introduce the notation

F̄i(Si) = Fi(Ni \ Si)

so that G(S) can also be written

G(S) :=
R∏
i=1

Fi(Ni)−
R∏
i=1

F̄i(Si), (A.3)

From (A.3) it is clear that G(∅) = 0. Thus, proving that G is normalized. To
prove monotonicity, recall that the single domain frame potential terms Fi(Li) are non-
negative, monotone non-decreasing functions for all Li ⊆ Ni [53]. Therefore F̄i(Si) =
Fi(N \ Si) will be non-negative, but monotone non-increasing. Then, let S ⊆ N and
x ∈ N \ S. Without loss of generality, let us assume x ∈ Ni. We have

G(S ∪ {x}) =
∏
i=1

Fi(Ni)− F̄i(Si ∪ {x})
∏
j 6=i

F̄j(Sj),

G(S) =
∏
i=1

Fi(Ni)− F̄i(Si)
∏
j 6=i

F̄j(Sj).

Now, since F̄i(Si) ≥ F̄i(Si ∪ {x}), we know that

G(S ∪ {x}) ≥ G(S).

Hence, G(S) is monotone non-decreasing.
To prove submodularity recall that every Fi(Li) is supermodular [53]. As taking the

complement preserves (super)submodularity, F̄i(Li) = Fi(Ni\Li) is also supermodular.

Let S =
⋃R
i=1Ai, with Ai ⊆ Ni for i = 1, . . . , R, such that {Ai}Ri=1, forms a

partition of S. Now, recall from Definition 5.1 that for G to be submodular we require
that ∀x, y ∈ N \ S

G(S ∪ {x})−G(S) ≥ G(S ∪ {x, y})−G(S ∪ {y}). (A.4)

As the ground set is now partitioned into the union of several ground sets, there are
two possible ways the elements x and y can be selected: Either they both belong to
the same domain, or they belong to different domains. We prove that (A.4) is satisfied
for both cases.

70

1. If x, y ∈ Ni, then (A.4) can be developed as

F̄i(Ai)
∏
j 6=i

F̄j(Aj)− F̄i(Ai ∪ {x})
∏
j 6=i

F̄j(Aj)

≥ F̄i(Ai ∪ {y})
∏
j 6=i

F̄j(Aj)− F̄i(Ai ∪ {i, j})
∏
j 6=i

F̄j(Aj),

and simplifying

F̄i(Ai)− F̄i(Ai ∪ {x}) ≥ F̄i(Ai ∪ {y})− F̄i(Ai ∪ {x, y}).

Multiplying both sides of the inequality by −1 we get

F̄i(Ai ∪ {x})− F̄i(Ai) ≤ F̄i(Ai ∪ {x, y})− F̄i(Ai ∪ {y})

which is always satisfied since F̄i is supermodular.
2. If x ∈ Ni and y ∈ Nj with i 6= j, then (A.4) can be developed as∏

k 6=i,j

F̄k(Ak)
[
F̄i(Ai)F̄j(Aj)− F̄i(Ai ∪ {x})F̄j(Aj)

]
≥
∏
k 6=i,j

F̄k(Ak)
[
F̄i(Ai)F̄j(Aj ∪ {y})− F̄i(Ai ∪ {x})F̄j(Aj ∪ {y})

]
.

Extracting the common factors[
F̄i(Ai)− F̄i(Ai ∪ {x})

] [
F̄j(Aj)− F̄j(Aj ∪ {y})

]
≥ 0. (A.5)

Since F̄i and F̄j are non-increasing

F̄i(Ai)− F̄i(Ai ∪ {x}) ≥ 0

F̄j(Aj)− F̄j(A ∪ {y}) ≥ 0.

Thus, (A.5) is always satisfied, thus proving that (A.4) is satisfied for any S ⊆ N and
x, y ∈ N \ S and therefore G is submodular. �

A.3 Proof of Theorem 7.3

From Corollary 7.2 we know that G(Sgreedy) ≥ 1
2
G(S∗). Therefore,

F (N \ Sgreedy) ≤
1

2
[F (N) + F (N \ S∗)] .

Introducing the change of variable Lgreedy = N \Sgreedy and L∗ = N \S∗, this inequality
becomes

F (Lgreedy)) ≤
1

2
[F (N) + F (L∗)] =

1

2

(
F (N)

F (L∗)
+ 1

)
F (L∗).

71

Now, if we recall that the frame potential of a tight frame [53] is equal to L2
opt/K with

Lopt =
∑

i∈L∗ ‖ui‖
2
2, and that this is minimum with respect to the frame potential of

any other frame of the same size, we can bound the previous equation as

F (Lgreedy) ≤
1

2

(
K

L2
opt

F (N) + 1

)
F (L∗).

Finally, knowing that Lopt ≥ Lmin = minL
∑

i∈L ‖ui‖
2
2 we get

F (Lgreedy) ≤
1

2

(
K

L2
min

R∏
i=1

Fi(Ni) + 1

)
F (L∗). �

A.4 Proof of Theorem 8.2

We will divide the proof in two parts. First, we will introduce some new notation, and
derive some properties of the involved operations that are useful to simplify the proof.
Then, we will use this to derive the proof.

Preliminaries

First, note that the single-domain Grammian matrices satisfy the following lemma.

Lemma A.1 (Grammian of disjoint sunion). Let X ,Y ⊆ Ni with X ∩ Y = ∅. Then
the Grammian of X ∪ Y satisfies

Ti(X ∪ Y) = Ti(X) + Ti(Y).

Proof. Let ui,j denote the jth row of Ti. Then

Ti(X ∪ Y) =
∑

j∈L1∪L2

‖ui,j‖2
2 =

∑
j∈L1

‖ui,j‖2
2 +

∑
j∈L2

‖ui,j‖2
2 . �

Let us introduce the complement Grammian matrix

T̄i(Si) := Ti(Ni \ Si) = Ti(Ni)−Ti(Si), (A.6)

which satisfies the following lemma.

Lemma A.2 (Complement Grammian of disjoint union). Let X ,Y ⊆ Ni with X ∩Y =
∅. Then

T̄i(X ∪ Y) = T̄i(X)−Ti(Y).

Proof. From (A.6) and Lemma A.1 we have

T̄i(X ∪ Y) = Ti(Ni)− [Ti(X) + Ti(Y)] = T̄i(X)−Ti(Y). �

72

Now, let us introduce an operator to compress the writing of the multidomain
Hadamard product

T(L) := T1(L1) ◦ · · · ◦TR(LR),

or alternatively for the complement Grammian

T̄(S) := T̄1(S1) ◦ · · · ◦ T̄R(SR).

Furthermore, we will write the Hadamard multiplication of all Ti with i = 1, . . . , R,
but j as

T−j(L) := T(L) ◦Tj(Lj)◦−1,

where A◦n denotes the element-wise nth power of A. Analogously for the complement
Grammians, we will use T̄−i(S).

The following theorem guarantees that these matrices are all positive semidefinite.

Theorem A.1 (Schur product theorem). The Hadamard product of two positive
semidefinite matrices A,B ∈ CN×N is always positive semidefinite.

We will also make use of the following property of the Hadamard product.

Property A.1. Let A,B ∈ CN×N . Then

‖A ◦B‖2
F = tr

{
A◦2

(
B◦2
)T}

=
〈
A◦2,B◦2

〉
.

Since we will work a lot with the element-wise 2nd powers of the Grammians, let
us introduce the notation

Hi(S) := T◦2i (S) and H̄i(S) := T̄
◦2
i (S), (A.7)

which satisfies the following lemma.

Lemma A.3 (Hi of disjoint union). Let X ,Y ⊆ Ni with X ∩ Y = ∅. Then

Hi(X ∪ Y) = T◦2i (X ∪ Y) = (Ti(X) + Ti(Y))◦2 = Hi(X) + Hi(Y) + 2Ti(X) ◦Ti(Y).

and

H̄i(X ∪ Y) = T̄
◦2
i (X ∪ Y) =

(
T̄i(X)−Ti(Y)

)◦2
= H̄i(X) + Hi(Y)− 2T̄i(X) ◦Ti(Y).

Moreover, as we did with the Grammian matrices we introduce the notation

H(L) := H1(L1) ◦ · · · ◦HR(LR),

and
H−j(L) := H(L) ◦Hj(Lj)◦−1,

with its analagous H̄, and H̄−j. In virtue of the Schur product theorem, all these are
also positive semidefinite.

Finally, note that with the new notation we can simplify the definition of Q to

Q(S) := ‖T(N)‖2
F −

∥∥T̄(S)
∥∥2

F
. (A.8)

73

Derivation

Normalization is trivially derived from the fact that T̄i(∅) = Ti(N). To prove mono-
tonicity, let S ⊆ N and x ∈ N \ S. Without loss of generality, assume x ∈ Ni. We
have

Q(S ∪ {x}) = ‖T(N)‖2
F −

∥∥T̄i(Si ∪ {x}) ◦ T̄−i(S)
∥∥2

F
,

Q(S) = ‖T(N)‖2
F −

∥∥T̄i(Si) ◦ T̄−i(S)
∥∥2

F
.

Monotonicity requires

Q(S) ≤ Q(S ∪ {x}),
−
∥∥T̄i(Si) ◦ T̄−i(S)

∥∥2

F
≤ −

∥∥T̄i(Si ∪ {x}) ◦ T̄−i(S)
∥∥2

F
.

Using Property A.1, we get〈
T̄i(Si), T̄−i(S)

〉
≥
〈
T̄i(Si ∪ {x}), T̄−i(S)

〉
.

Expanding the unions using Lemma A.2 and due to the linearity of the inner product
this becomes

0 ≤
〈
Ti(Si ∪ {x}), T̄−i(S)

〉
,

which is always satisfied because the inner product between two positive semidefinite
matrices is always greater or equal than zero.

To prove submodularity, let again S =
⋃R
i=1Ai, with Ai ⊆ Ni for i = 1, . . . , R

such that {Ai}Ri=1, forms a partition of S. For Q to be submodular we require that
∀x, y ∈ N \ S

Q(S ∪ {x})−Q(S) ≥ Q(S ∪ {x, y})−Q(S ∪ {y}). (A.9)

Again, we have two different cases:
1. If x, y ∈ Ni, then (A.9) can be developed as∥∥T̄(A)

∥∥2

F
−
∥∥T̄i(Ai ∪ {x}) ◦ T̄−i(A)

∥∥2

F

≥
∥∥T̄i(Ai ∪ {y}) ◦ T̄−i(A)

∥∥2

F
−
∥∥T̄i(Ai ∪ {x, y}) ◦ T̄−i(A)

∥∥2

F
.

Rewriting this expression using Property A.1 we can express the left hand side as〈
H̄i(Ai), H̄−i(A)

〉
−
〈
H̄i(Ai ∪ {x}), H̄−i(A)

〉
,

and the right hand side as〈
H̄i(Ai ∪ {y}), H̄−i(A)

〉
−
〈
H̄i(Ai ∪ {x, y}), H̄−i(A)

〉
Leveraging the linearity of the inner product we arrive at

〈H̄i(Ai)− H̄i(Ai ∪ {x}), H̄−i(A)〉 ≥
〈
H̄i(Ai ∪ {y})− H̄i(Ai ∪ {x, y}), H̄−i(A)

〉
.

(A.10)

74

Developing the matrices using Lemma A.3, we can operate on both sides of this
expression giving, for the left hand side〈

−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄−i(A)
〉
,

and for the right hand side〈
−Hi({x}) + 2T̄i(Ai ∪ {y}) ◦Ti({x}), H̄−i(A)

〉
.

Substituting back in (A.10), we get〈
T̄i(Ai) ◦Ti({x}), H̄−i(A)

〉
≥
〈
T̄i(Ai ∪ {y}) ◦Ti({x}), H̄−i(A)

〉
Operating using Lemma A.2 we finally arrive at〈

Ti({y}) ◦Ti({x}), H̄−i(A)
〉
≥ 0, (A.11)

which is always satisfied because the inner product of positive semidefinite matrices is
always non-negative.

2. If x ∈ Ni and y ∈ Nj with i 6= j, then (A.9) can be rewritten as〈
H̄i(Ai)− H̄i(Ai ∪ {x}), H̄−i(A)

〉
≥
〈
H̄i(Ai)− H̄i(Ai ∪ {x}), H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉
.

Using once again Lemma A.3 we can further develop this expression into〈
−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄−i(A)

〉
≥
〈
−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉
.

Leveraging the linearity of the inner product this can be simplified as〈
−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄−i(A)− H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉
≥ 0 (A.12)

Here, we can factorize the left entry of the inner product as

−Hi({x}) + 2T̄i(Ai) ◦Ti({x}) = Ti({x}) ◦
[
2T̄i(Ai)−Ti({x})

]
= Ti({x}) ◦

[
T̄i(Ai) + T̄i(Ai ∪ {x})

]
(A.13)

which is positive semidefinite thanks to Schur product theorem and the fact that the
set of positive semidefinite matrices is closed under matrix addition.

Similarly, the right entry of the inner product in (A.12) can be factorized as

H̄−i(A)−
(
H̄j(Aj) + Hj({y})− 2T̄j(Aj) ◦Tj({y})

)
◦ H̄−(i,j)(A)

=
(
−Hj({y}) + 2T̄j(Aj) ◦Tj({y})

)
◦ H̄−(i,j)(A).

The expression inside the parenthesis is analagous to that in (A.13). Hence, the re-
sulting matrix is then positive semidefinite, and thus (A.12) is always satisfied, proving
submodularity of Q for all cases. �

75

76

Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
p. 436, 2015.

[2] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst,
“Graph Signal Processing: Overview, Challenges, and Applications,” Proc. IEEE,
vol. 106, no. 5, pp. 808–828, May 2018.

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geo-
metric deep learning going beyond euclidean data,” IEEE Signal Process. Mag.,
vol. 34, no. 4, pp. 18–42, 2017.

[4] S. P. Chepuri and G. Leus, “Sparse sensing for statistical inference,” Foundations
and Trends in Signal Processing, vol. 9, no. 3-4, pp. 233–368, 2016.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May
2017.

[7] S. Liu and W. Deng, “Very deep convolutional neural network based image clas-
sification using small training sample size,” in Proc. IAPR Asian Conf. Pattern
Recognition, Nov 2015, pp. 730–734.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE
Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

[9] S. Mallat, “Understanding deep convolutional networks,” Philos. Trans. A. Math.
Phys. Eng. Sci., vol. 374, no. 2065, p. 20150203, 2016.

[10] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Fre-
quency analysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042–3054, Jun
2014.

[11] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[12] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A Time-Vertex Signal Pro-
cessing Framework: Scalable Processing and Meaningful Representations for Time-
Series on Graphs,” IEEE Trans. Signal Process., vol. 66, no. 33, pp. 817–829, Feb
2018.

[13] G. P. Wagner and P. F. Stadler, “Quasi-Independence, Homology and the Unity
of Type: A Topological Theory of Characters,” J. Theor. Biol., vol. 220, no. 4, pp.
505 – 527, Feb 2003.

77

[14] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems with
social regularization,” in Proc. ACM Int. Conf. Web Search and Data Mining,
2011, pp. 287–296.

[15] W. Imrich, S. Klavzar, and D. Rall, Topics in graph theory: Graphs and their
Cartesian product. A K Peters Ltd, 2008.

[16] A. Sandryhaila and J. M. F. Moura, “Big Data Analysis with Signal Processing
on Graphs: Representation and processing of massive data sets with irregular
structure,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.

[17] E. Isufi, G. Leus, and P. Banelli, “2-Dimensional finite impulse response graph-
temporal filters,” in Proc. IEEE Global Conf. Signal Inf. Process., pp. 405–409.

[18] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive Moving Average
Graph Filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 274–288, Jan
2017.

[19] ——, “Filtering random graph processes over random time-varying graphs,” IEEE
Transactions on Signal Processing, vol. 65, no. 16, pp. 4406–4421, Aug 2017.

[20] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally
connected networks on graphs,” Banff, Canada, April 2014.

[21] J. Bruna and X. Li, “Community detection with graph neural networks,” ArXiv
e-prints, vol. 1705, p. arXiv:1705.08415, 2017.

[22] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Proc. Advances Neural Inf.
Process. Systems, Montreal, Canada, Dec 2016.

[23] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion with recur-
rent multi-graph neural networks,” in Proc. Advances Neural Inf. Process. Systems,
Montreal, Canada, Dec 2017, pp. 3700–3710.

[24] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence
modeling with graph convolutional recurrent networks,” ArXiv e-prints, vol. 1612,
p. arXiv:1612.07659, 2016.

[25] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueck-
ert, “Distance metric learning using graph convolutional networks: Application to
functional brain networks,” ArXiv e-prints, vol. 1703, p. arXiv:1703.02161, 2017.

[26] F. Gama, G. Leus, A. Garcia Marques, and A. Ribeiro, “Convolutional neu-
ral networks via node-varying graph filters,” ArXiv e-prints, vol. 1710, p.
arXiv:1710.10355, 2017.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” ArXiv e-prints, vol. 1609, p. arXiv:1609.02907, 2016.

78

[28] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix comple-
tion,” arXiv:1706.02263, 2017.

[29] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic Con-
volutional Neural Networks on Riemannian Manifolds,” in Proc. IEEE Int Conf.
Computer Vision Workshop, Dec 2015, pp. 832–840.

[30] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape correspon-
dence with anisotropic convolutional neural networks,” in Proc. Advances in Neural
Inf. Process. Systems, Montreal, Dec 2016, pp. 3189–3197.

[31] F. Monti, D. Boscaini, J. Masci, E. RodolÃ , J. Svoboda, and M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model cnns,”
ArXiv e-prints, 2016.

[32] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-RNN: Deep learn-
ing on spatio-temporal graphs,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2016, pp. 5308–5317.

[33] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured se-
quence modeling with graph convolutional recurrent networks,” arXiv preprint
arXiv:1612.07659, 2016.

[34] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learning Represen-
tations, Vancouver,Canada, Apr. 2018.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.
[Online]. Available: https://www.tensorflow.org/

[36] K. Naskovska, M. Haardt, and A. L. F. de Almeida, “Generalized tensor con-
traction with application to khatri-rao coded mimo ofdm systems,” in IEEE Int.
Workshop Computational Advances Multi-Sensor Adaptive Process., Dec 2017, pp.
1–5.

[37] M. Defferrard, L. Martin, R. Pena, and N. Perraudin, “PyGSP: Graph
Signal Processing in Python,” Oct. 2017. [Online]. Available: https:
//doi.org/10.5281/zenodo.1003158

[38] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted Graph Cuts without Eigenvectors
A Multilevel Approach,,” IEEE Trans. Pattern Anal. Mach. Intell.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.
3rd Int. Conf. Learning Representations, Banff, Canada, Apr 2014.

79

https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.1003158
https://doi.org/10.5281/zenodo.1003158

[40] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty
principle and sampling,” IEEE Trans. Signal Process., vol. 64, no. 18, pp. 4845–
4860, Sep.

[41] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Kyoto, Japan, March 2012, pp.
3921–3924.

[42] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals
on arbitrary graphs,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Florence, Italy, May 2014, pp. 3864–3868.

[43] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete Signal Processing
on Graphs: Sampling Theory,” IEEE Trans. Signal Process., vol. 63, no. 24, pp.
6510–6523, Dec 2015.

[44] S. Chepuri, Y. Eldar, and G. Leus, “Graph Sampling With and Without Input Pri-
ors,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Calgari, Canada,
April 2018, pp. 4564–4568.

[45] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of graph
signals,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 764–778, Feb.

[46] S. Liu and G. Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix
products,” Int. J. Inf. Syst. Sci, vol. 4, no. 1, pp. 160–177, 2008.

[47] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.
Phan, “Tensor Decompositions for Signal Processing Applications: From two-way
to multiway component analysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp.
145–163, Mar 2015.

[48] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compressive covariance sens-
ing: Structure-based compressive sensing beyond sparsity,” IEEE Signal Process.
Mag., vol. 33, no. 1, pp. 78–93, Jan 2016.

[49] S. P. Chepuri and G. Leus, “Graph Sampling for Covariance Estimation,” IEEE
Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 451–466, Sept 2017.

[50] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations
for maximizing submodular set functions—I,” Math. Program., vol. 14, no. 1, pp.
265–294, Dec 1978.

[51] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection: Leveraging
submodularity,” in Proc. 49th IEEE Conf. Decis. Control, Atlanta, GA, USA, Dec
2010, pp. 2572–2577.

[52] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaus-
sian processes: Theory, efficient algorithms and empirical studies,” J. Mach. Learn.
Res., vol. 9, pp. 235–284, Feb 2008.

80

[53] J. Rainieri, A. Chebira, and M. Vetterli, “Near-Optimal Sensor Placement for
Linear Inverse Problems,” IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1135–
1146, March 2014.

[54] R. G. Parker and R. L. Rardin, “Polynomial Algorithms–Matroids,” in Discrete
Optimization, ser. Computer Science and Scientific Computing, R. G. Parker and
R. L. Rardin, Eds. San Diego: Academic Press, 1988, pp. 57–106.

[55] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of approxima-
tions for maximizing submodular set functions—II,” in Polyhedral combinatorics.
Springer, Dec 1978, pp. 73–87.

[56] R. K. Iyer and J. A. Bilmes, “Submodular optimization with submodular cover
and submodular knapsack constraints,” in Proc. Advances in Neural Inf. Process.
Systems, Montreal, Canada, Dec 2013, pp. 2436–2444.

[57] M. Sviridenko, “A note on maximizing a submodular set function subject to a
knapsack constraint,” Oper. Res. Lett., vol. 32, no. 1, pp. 41 – 43, Jan 2004.

[58] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans.
Signal Process., vol. 57, no. 2, pp. 451–462, Feb 2009.

[59] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection for non-linear
measurement models,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 684–698,
Feb 2015.

[60] ——, “Sparse sensing for distributed detection,” IEEE Trans. Signal Process.,
vol. 64, no. 6, pp. 1446–1460, Mar 2016.

[61] C.-T. Yu and P. K. Varshney, “Sampling design for Gaussian detection problems,”
IEEE Trans. Signal Process., vol. 45, no. 9, pp. 2328–2337, Sep 1997.

[62] S. P. Chepuri and G. Leus, “Sparsity-promoting adaptive sensor selection for non-
linear filtering,” in Proc. of IEEE Int. Conf. Acoust., Speech, Signal Process.,
Florence, Italy, May 2014, pp. 5080–5084.

[63] E. Masazade, M. Fardad, and P. K. Varshney, “Sparsity-promoting extended
Kalman filtering for target tracking in wireless sensor networks,” IEEE Signal
Process. Lett., vol. 19, no. 12, pp. 845–848, Dec 2012.

[64] M. F. Duarte and R. G. Baraniuk, “Kronecker Compressive Sensing,” IEEE Trans.
Image Process., vol. 21, no. 2, pp. 494–504, Feb 2012.

[65] C. F. Caiafa and A. Cichocki, “Computing Sparse Representations of Multidimen-
sional Signals Using Kronecker Bases,” Neural Computation, vol. 25, no. 1, pp.
186–220, Jan 2013.

[66] C. Caiafa and A. Cichocki, “Multidimensional compressed sensing and their appli-
cations,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 3, no. 6, pp. 355–380, Oct 2013.

81

[67] Y. Yu, J. Jin, F. Liu, and S. Crozier, “Multidimensional Compressed Sensing MRI
Using Tensor Decomposition-Based Sparsifying Transform,” PLoS ONE, vol. 9,
no. 6, p. e98441, Jun 2014.

[68] M. Fickus, D. G. Mixon, and M. J. Poteet, “Frame completions for optimally
robust reconstruction,” in Wavelets and Sparsity XIV, vol. 8138. Int. Society for
Optics and Photonics, Sep, p. 81380Q.

[69] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decomposition
of n-way arrays,” J. Chemom., vol. 14, no. 3, pp. 229–239, Jun 2000.

[70] M. Lee, H. Shen, J. Z. Huang, and J. S. Marron, “Biclustering via Sparse Singular
Value Decomposition,” Biometrics, vol. 66, no. 4, pp. 1087–1095, 2010.

[71] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”
ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, p. 19, Jan 2016.

[72] W. Huang, A. G. Marques, and A. Ribeiro, “Collaborative filtering via graph
signal processing,” in Proc. Eur. Signal Process. Conf., Kos, Greece, Aug 2017,
pp. 1094–1098.

[73] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, “Matrix comple-
tion on graphs,” in Proc. Neural Inf. Process. Systems, Workshop ”Out of the Box:
Robustness in High Dimension”, Montreal, Canada, Dec 2014.

[74] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for
exploring and manipulating networks,” in Int. AAAI Conf. Weblogs and Social
Media, San Jose, CA, USA, May 2009.

[75] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon, “Collaborative filtering
with graph information: Consistency and scalable methods,” in Proc. Neural Inf.
Process. Systems,, Montreal, Canada, Dec 2015, pp. 2107–2115.

[76] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and
F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large
arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan 2013.

[77] P. Larsson, “Lattice array receiver and sender for spatially orthonormal MIMO
communication,” in Proc. IEEE Veh. Technol. Conf., vol. 1, Stockholm, Sweden,
May 2005, pp. 192–196.

[78] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball, “Deep
learning with convolutional neural networks for eeg decoding and visualization,”
Hum Brain Mapp, vol. 38, no. 11, pp. 5391–5420, 2017.

[79] R. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control,
ser. Dynamics and Control. OUP Oxford, 1992.

82

[80] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal Graph-Filter Design and Ap-
plications to Distributed Linear Network Operators,” IEEE Trans. Signal Process.,
vol. 65, no. 15, pp. 4117–4131, Aug 2017.

[81] M. Coutino, E. Isufi, and G. Leus, “Distributed edge-variant graph filters,” in
2017 IEEE 7th Int. Work. Comput. Adv. Multi-Sensor Adapt. Process. IEEE,
Dec 2017, pp. 1–5.

[82] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cambridge Uni-
versity Press, 2015.

83

	Abstract
	Acknowledgments
	Nomenclature
	Introduction
	I Learning
	Background
	Deep learning
	Graph signal processing
	Geometric deep learning

	Problem modeling
	2D-FIR graph convolutional layer
	Time-vertex graph convolutional layer

	Implementation and numerical results
	Tensorization and GPU implementation
	Construction of the synthetic dataset
	Architecture definition
	Performance evaluation

	II Sampling
	Background
	Notation
	Tensors
	Submodular optimization

	Problem modeling
	Prior art
	Our contributions

	Dense core sampling
	D-optimal greedy method
	Frame potential
	Convex alternative

	Diagonal core sampling
	Identifiability conditions
	Greedy method
	Convex alternative

	Numerical results
	Synthetic data
	Sampling a dynamical point cloud
	Active learning for recommender systems
	Multiuser source separation

	Conclusions
	Proofs of Part II
	Proof of Theorem 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Proof of Theorem 8.2

