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Abstract

Computational fluid dynamics (CFD) has become an indispensable tool in research and engineer-
ing. Even though the performance of computers is increasing at unfathomable speeds, the calcula-
tion of many fluid problems remains to be challenging. With the emerging widespread use of Large
Eddy Simulation (LES), the computational cost of simulations has further increased. Nowadays,
the successful application of CFD is highly dependent on the user. A crucial factor that influences
computational performance, as well as the accuracy and reliability of the simulation results, is the
underlying spatial discretization of CFD problems. Adaptive mesh refinement has the potential to
address these issues, by automatically creating a computationally-efficient and user-independent
mesh.

The objective of this Master’s thesis is to improve the computational efficiency of LES CFD simula-
tions by developing and testing a novel more user-independent AMR error sensor. A series of novel
error sensors are proposed that are based on an error estimate, which is obtained during run-time
by comparing the results of a fine and coarse-grained simulation. A popular reference error sensor
based on the curvature of velocity magnitude is used as a comparison in three different test cases:
Mach 3 flow over a forward-facing step, flow over a two-dimensional cylinder at Re=100, and flow
over periodic hills at Re=10595.

All error sensors performed similarly for the Mach 3 flow over a forward-facing step. Essential flow
features such as the bow shock, shock reflections, and slip lines were captured and well resolved.
Differences in performance were mainly attributed to the control of the adaption routine. Aniso-
tropic refinement led to a further error reduction in the range of 10 to 15%. Performance in the
laminar two-dimensional cylinder case varied substantially. The novel error sensor based on the
percentage error in the solution performed the best, leading to up to five times the computational
savings in comparison to the reference indicator. Across all tests, anisotropic refinement was not
able to lead to any computational savings when considering the run-time of the problem. The per-
formance of all error sensors was underwhelming for the flow over periodic hills. The error sensors
failed to refine the upper wall, which, without wall-function, lead to a significant error in the solu-
tion.

The overall performance of some novel error sensors was shown to be promising. Large compu-
tational savings in a robust user-independent AMR routine were presented for the compressible
and laminar cases. However, more research is required for the successful applications in turbu-
lent flows. Arguments were presented that highlight why adaption based on a target mesh size in
conjunction with mesh coarsening is superior to regular threshold-based adaption. Directions and
possible solutions to make adaption for turbulent flows successful are given as well.
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1
Introduction

1.1. What is adaptive mesh refinement?
Computational fluid dynamics has become an indispensable tool for the prediction and calculation
of fluid flow. In CFD, equations describing the physics of fluids, such as the Navier-Stokes equa-
tions, are used. Numerical methods are employed to solve the underlying differential equations
on a computational domain. In contrast to experiments, CFD requires only enough computational
power and, of course, a suitable computer code. Therefore CFD offers a cheap alternative to labor-
intensive and resource-expensive experimental testing. Further, it provides a complete flow solu-
tion for the whole domain. Enabling unprecedented insight and understanding of fluid flow.

Since the introduction of the transistor and the integrated circuit, the computational power has
increased manifold, from 1994 to 2014, the combined computational power of the world’s fastest
supercomputers has doubled approximately every 15 months [6]. The ever-growing computational
power has allowed the computation of increasingly complex flow problems. However, challenges
exist, especially in turbulence modeling, while Reynolds-averaged Navier–Stokes (RANS) turbu-
lence models are nowadays considered industry-standard; they lack accuracy in vortex dominated
and transitional flows [7]. Since the computational cost of Direct Numerical Simulation (DNS) scales
with the power of three with the Reynolds number, reliance on turbulence modeling will be re-
quired for the foreseeable future in high Reynolds number flows [8]. Current research in turbulence
modeling focuses heavily on Large Eddy Simulations (LES), where the turbulence up to a particular
length scale is resolved, and turbulence below this scale is modeled. LES simulations are generally
considered to be superior in accuracy in comparison to RANS simulations but are computationally
much more expensive.

A discrete grid, comprised of cells, is used to solve the Navier-Stokes equations numerically. With
an increasing number of cells, the accuracy of the solution increases, but unfortunately, the com-
putational costs do as well. At a certain point, a grid-independent result is obtained, increasing
the number of cells will not lead to a significant change in the result anymore. Striving for a grid-
independent result can lead to an excessive amount of computational cost; this is especially true in
the case of LES simulations. To alleviate this problem, CFD cases have to be set up smartly so that
the computational costs are reduced as much as possible. One approach to this is a method called
adaptive mesh refinement (AMR).

Errors in CFD simulations can either be numeric or stem from deficits in the modeling of, for ex-
ample, turbulence. The numerical error depends on the size of the grid and the temporal discret-
ization. A decrease in these two scales will yield a reduction in the numerical error. Research has,

1
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however, shown that across the whole computational domain, the error contribution is not uniform,
especially when only considering an output of interest, such as the drag of an airfoil [9]. Therefore
different areas of the mesh have varying importance on the solution of the CFD simulation. The
idea of adaptive mesh refinement is to exploit this observation by only spatially and temporarily
resolving those parts of the domain that are essential for the solution. This approach allows saving
up to orders of magnitude of cells in comparison to a uniformly refined mesh [10]. To visualize this
result, a shock-dominant problem is considered, such as a blast simulation. It is apparent that for an
accurate solution the shock front has to be well resolved, regions in which no shock front is present,
however, require a much lower number of cells.

To conclude, in AMR, the mesh is refined in regions of interest or regions of importance and
coarsened in regions with little impact on the quantities of interest. However, deciding where to
refine and to coarsen and also how to refine and to coarsen is a question that can not be quickly
answered. There is no ’best’ way of accomplishing this, and different problems might require
different approaches. With the broader adoption of LES, new questions in the field of AMR arise.
LES computations are intrinsically transient, which render specific AMR methods prohibitively ex-
pensive; this is especially true for output-based methods [11]. Further, LES introduces another error
source, namely the turbulence model. The goal of this project is to improve the solution accuracy
of LES CFD simulations for a certain amount of computational cost by using user-independent,
reproducible adaptive mesh refinement.

1.2. AMR for user-independent mesh generation
Much research for AMR in the 80s and 90s was driven by the need to simulate shock-wave prob-
lems [12]. Uniform refinement of the entire domain to capture the shocks would have been way too
costly. However, another compelling argument for AMR lies in the aim of having a user-independent
CFD experience. Nowadays, meshing is mostly still done manually using meshing software, it is
therefore almost guaranteed that if one specific CFD problem is given to e.g. 10 different users,
they will all create a different mesh and thus also obtain different results. Thus AMR is not only
advantageous for creating a mesh that saves computational time but also to create a mesh that is
user-independent and thus easily reproducible by different people to get consistent results. Yet
another motivation for AMR, closely connected to the prior one, is the computation of entirely new
flow problems, thus simulations where no a priori knowledge about the solution and flow structures
is available, in that case, a manual meshing is guess-work at best. In such a case, a uniform mesh
might be the only feasible approach. This, however, might be too costly to compute. Automatic
mesh generation will also save tremendous amounts of user-time during the pre-processing stage
of a CFD problem. One should note that there are some semi-automatic mesh generation pack-
ages available, such as snappyHexMesh from OpenFOAM (https://www.openfoam.com/). With
these, it is possible to automatically create a mesh according to a configuration file. This can be
very powerful and helpful when one has to compute very similar cases over and over again, e.g., in
an optimization setting, nevertheless, this input file is again handcrafted and highly specific to a
particular problem. To conclude, AMR can not only be seen as a necessity for computational cost
savings but also as a solution to obtain automatic mesh generation.

New challenges in AMR have arisen with LES becoming more and more mainstream, at least in
the academic world. Whereas previously often steady-state problems were encountered, now every
problem becomes with LES inherently transient. This provides additional challenges. In transient
problems, adjoint-based AMR, a potent approach that can be regarded as an almost ideal candid-
ate for an AMR error-sensor1 in steady-state flow problems, becomes infeasible due to the extreme
computational cost which arises from the need to integrate the adjoint solution across all time-steps

1In case the reader is not familiar with AMR and error sensors, in particular, one should consult Chapter 2.

https://www.openfoam.com/
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back in time.

One fundamental problem that is closely connected to AMR is the question of: What is a reliable
CFD simulation? Or LES specific: What is a reliable LES simulation? Substantial research has been
done for this problem, see, e.g., [13]. The judgment of the reliability, thus, to determine how far the
result is away from the actual correct result, shares striking similarity to AMR. AMR is usually based
on mesh adaption driven by an error sensor that aims at estimating or indicating the error in the
solution. The literature study highlights some of these methods used to judge the quality of a LES
and how they could and are used for mesh adaption. Since both topics are closely related and the
question of what is a good LES simulation is still open for debate; also, the question of what is a
good AMR routine remains unsolved. So far the question whether a mesh (or simulation) is good, is
mostly answered by experience of the user and lengthy grid convergence studies.

Another aspect of AMR is the cost-accuracy trade-off in a simulation. For the user, it is often not
possible to establish, before an AMR simulation is started, how long the simulation is going to take,
or what the error is going to be. Since AMR influences these two points precisely, a good AMR
routine should be able to give information on both. However, most methods fail to make a statement
about any of these two. Within the most common AMR method, an error function threshold is
defined. The mesh is adapted until all cells drop below this threshold. Usually, a straightforward
error sensor such as the undivided difference of velocity is used. By employing such an approach, it
is neither possible to make an a priori or a posteriori statement about the accuracy of the simulation,
nor is it possible to beforehand estimate the computational cost of the simulation. One is stuck
performing multiple simulations to establish grid convergence, and computational cost establishes
itself during the simulation with the consequence that one might have to terminate the simulation
because it becomes too costly. From this discussion, it becomes clear that AMR is still a field of
many questions. The next section highlights how this thesis will add to the body of knowledge with
the ultimate goal to at some point have found answers to all of the described challenges.

1.3. Research objective and thesis outline
With the conclusions of the previous section in mind the main research objective has been defined
for this master thesis:

Improve the computational efficiency of LES CFD simulations by developing and testing a novel more
user-independent AMR error sensor.

Due to the broadness of the objective, first, a suitable research direction had to be defined. For this
purpose, an extensive literature study was performed that reviewed the current state of the art in
adaptive mesh refinement (Chapter 2). The outcome of this review laid the foundation for develop-
ing new ideas and directions to accomplish the research goal (Chapter 3). A set of research ques-
tions has been defined that is used as a red thread throughout this thesis. Since a user-independent
AMR routine has to work for a large variety of problems with different flow physics, three different
benchmark problems have been chosen. The Mach 3 flow over a forward-facing step [2], flow over
a two-dimensional cylinder at Re=100 [14], and flow over periodic hills at Re=10595 [15]. The first
problem is used to investigate the AMR routine’s behavior in compressible flow. The second and
third problem is used to verify the performance in a laminar and turbulent flow. As an extra com-
plication, both cases contain an immersed boundary. The results of all three test cases are presented
in Chapter 4, 5, and 6 respectively. Based on the outcome of the literature a popular error sensor has
been chosen as a benchmark that is used as a reference for the newly developed methodology.

A set of research questions has been defined to guide the research.

1. Are the current state of the art error sensors already able to provide a systematical approach
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to user-independent and reproducible adaptive mesh adaption?

Rationale: This question aims at assessing the current state of the art of AMR. It also
serves the purpose of establishing a foundation that will be used for the development of new
error sensors. This question will thus be answered at the end of the literature study.

2. For all three test cases and isotropic refinement, how does the resulting solution error com-
pare in terms of cell count and computational cost for the novel and reference error sensors?

3. For all three test cases and anisotropic refinement, how does the resulting solution error com-
pare in terms of cell count and computational cost for the novel and reference error sensors?
2

Rationale: One of the main goals of AMR is to save computational cost. Benchmarking the
error sensors is, therefore, crucial. Additional cost savings can often be obtained by employing
anisotropic mesh adaption in which the cells are refined in particular directions only. The
solution error is also of major importance for user-independence since user-independence
implies that an AMR routine must also lead to a correct result.

4. Should mesh adaption be performed every physical time step, or can the computational effi-
ciency be increased by performing adaption merely every N time steps. 3

Rationale: By using LES, every problem becomes inherently transient. The flow is thus
not fully developed from the onset of the simulation and might need to develop first (e.g.,
the wake behind a cylinder). Therefore, a strategy might be required that spreads adaption in
time. Some error sensors might also be dependent on a specific amount of elapsed time for
their successful working, such as described in Chapter 3.

5. Will all investigated error sensors lead to a robust adaption routine?

Rationale: Error sensors might show many unwanted behaviors, such as being extremely
sensitive to the initial grid, causing never-stopping adaptions, or adapting unwanted regions.
A well-behaving error sensor is essential for a user-independent AMR routine.

6. Should adaption be based upon the instantaneous or time-averaged state variables for the
turbulent flow?

Rationale: Due to the chaotic nature of turbulent flow, it is expected that instantaneous
flow variables might not be a good candidate to drive adaption. Averaging the state variables
is most likely going to result in a computationally more efficient mesh.

7. What is the computational overhead of the tested error sensors?

Rationale: If the actual error sensor is too expensive to compute, AMR might not lead to
any meaningful savings in computational cost.

8. What kind of qualitative adaption characteristics do the investigated error sensors show for
all three test cases?

Rationale: This question aims at describing the behavior of the error sensors. Do some
error sensors prefer to refine boundary layers, while others are much more likely to refine
wakes? Again, for user-independent mesh adaption, error sensors should capture all essential
flow phenomena in all test cases.

2Due to time constraints, it was unfortunately not possible to investigate anisotropic refinement for the flow over periodic
hills.

3This question was also answered in the context of the Richardson and ETE-type error senors presented in Chapter 3.
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The outcome of this thesis, however, is not limited to these research questions. Throughout the
thesis, generally applicable remarks and recommendations are made based on the results and ex-
periences obtained. These are summarized and Chapter 7, which also gives directions for future
research.





2
Literature Review

Even though there is extensive review literature available within the AMR community, actual intro-
ductory texts into the topic are very scarce. This literature review has the aim to briefly summar-
ize and explain the most important directions of adaptive mesh refinement with a particular focus
on error sensors for LES (Large Eddy Simulation). The outcome of this literature study will lie the
foundation for the development of the theoretical framework of this Master’s thesis. This literature
study is, therefore, an essential part for the fulfillment of the research objective.

First, an introduction into the different AMR adaption strategies is given, i.e., describing the meth-
ods that exist to modify a simulation to obtain a higher accuracy solution. Next LES specific diffi-
culties are discussed concerning AMR. A review of the three main branches of error sensors is given
afterward. Particular focus is put on their applicability for transient problems with LES modeling.
As the last part of any AMR routine, a review of flag functions is given. Finally, the findings are
summarized in a trade-off table, and a direction for future research is chosen.
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2.1. Overview of AMR adaption routines
An AMR routine consists of three parts: an adaption strategy, an error sensor, and a flag function.
In the continuing discussion, the word ’adaption’ will be used highlighting the fact that a mesh can
not only be refined but also coarsened and thus modified in both directions.

The adaption strategy determines how the mesh is altered. Common methods are H, R, and P-
adaption. In H-adaption, a mesh cell is split into smaller cells, or multiple small cells are merged
into a larger one. In R-adaption, the number of cells stays constant, and the cell connectivity is
maintained as well, but they are stretched and skewed to effectively enrich regions in need of high
refinement and coarsen regions requiring only low cell density. In P-adaption, the mesh is not
altered, but different numerical techniques with a different order of accuracy are chosen. In a Finite
Element Method (FEM) framework basis functions of different orders are selected.

The second ingredient of the AMR routine is the error sensor. An error sensor quantifies the error
that every piece of the computational grid introduces into the flow solution due to the underlying
discretization or flow model. In general, there are three big branches of error sensors. The first
branch of these is based on the idea of using physical arguments for the adaption routine. This
encompasses the tracking of flow features and structures such as shocks with, e.g., large flow gradi-
ents. The second branch takes a more rigorous mathematical approach and tries to estimate the real
error introduced by the used discretization schemes. The third branch is based on the goal-based
mesh adaption using an adjoint formulation. The idea is to have an error sensor that can provide
information about which mesh regions influence the accuracy of a particular output of interest.

The last part of an AMR routine is the flag function, while the error sensor has put a numerical value
on the error contribution of every mesh cell, the error function does not decide what do to with this
value. The flag function ultimately determines which regions to adapt and which regions should
remain unchanged.

2.2. Adaption strategies
Popular strategies for AMR are H, R, and P-adaption. The former change the mesh, whereas the
latter changes the numerical scheme. The adaption strategy was determined by the solver which
was used for this thesis: INCA (see Section 3.1) is based upon a block-structured mesh and has
H-adaption capability. For completeness, a small introduction is given into the general aspects of
H-adaption. In this strategy, the mesh is altered through the addition and removal of cells by split-
ting and merging operations. All these operations work with a fixed integer. H-adaption can be
used for isotropic and anisotropic refinement and can also be used on structured and unstructured
meshes. H-adaption is very flexible concerning its initial mesh since the total number of cells is not
intrinsically fixed. Even a poor initial mesh that might be massively over- or under-refined can be
transformed into an optimal mesh. In contrast to other methods, changes to the mesh are locally
constrained within the domain. Operations such as interpolation due to adaption happen thus only
locally. Parts of the mesh not in need of adaption thus remain unchanged. Two complications in-
herent to the H-adaption is the need for ghost cells and only an incremental change in mesh size.
The former can create substantial overhead in cell count, whereas the latter might lead to over-
or under-refinement when the error only slightly violates a certain error sensor. In general, there
are three different types, cell-based, patch-based and block-based H-adaption. In block-based H-
adaption, the domain is split into separate blocks, each with their own quantity of cells and dimen-
sions. Any adaption operation acts on the entire block and not merely on individual cells. With
this approach, it is possible to create meshes that can be effectively used for parallel computation
since only the blocks have to be distributed on different processes [16]. This approach also avoids
excessive amounts of ghost cells. In contrast to this approach sits cell-based adaption (tree-based
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adaption), every cell can be individually adapted. The lineage of every cell is often stored in a quad-
or octree. Within the cell-based framework, one has much flexibility regarding the mesh and local
features can be precisely refined resolved, leading to minimum cell count. Unfortunately, precisely
these properties can lead to very significant fragmentation and excessive quantities of ghost cells,
creating ample storage and communication overhead [17]. Patch-based adaption alleviates the ex-
cessive fragmentation and overhead caused by cell-based adaption by grouping cells in so-called
patches. A grouping algorithm collects cells of the same level flagged for adaption; it then sorts
these cells into rectangular patches and adapts the patch as a whole. Some patch-based methods
allow for stacking patches on top of each other in any orientation [18]. R-adaption is a method, in
contrast to H-adaption, where no cells are created or destroyed during adaption. Instead, the cell
count is defined a priori. The cells are shifted and warped in space. Therefore cells are accumu-
lated in regions of interest and are moved away from regions that are considered to be a small error
contributor. Apart from the advantage of aligning the mesh with features, the mesh data structure
also remains unchanged, thus solver without AMR support can easily be coupled with R-adaption
routines [19]. In P-adaption, not the mesh is changed but the order of the discretization. This means
in a FEM context varying the polynomial degree of the elements [20]. Combinations of these meth-
ods also exist and allow to combine the advantages of the respective methods [21, 22].

2.3. Error sensor
The output of the error sensor is used to determine where mesh adaption is required. In literature,
often, the terms error indicator and error estimator are used, sometimes also interchangeably. In
this literature study, the term error sensor is used as a generic term for both. Following Jasak and
Gosman [23], we define an error estimator as a method that claims to represent the actual error
between exact and discretized solution. An error indicator, in contrast, merely indicates which cells
might introduce errors, there is no claim that an error indicator either actually measures the error,
is based on rigorous mathematical foundations, or is effective. Summarizing, the error sensor is a
generic term for both error indicator and estimator.

This chapter attempts to review the major error sensors found in the literature. A particular em-
phasis is put on the applicability of standard error sensors for LES. It should be noted in advance
that all error indicators have their strengths and weaknesses. Right now, there is no single best in-
dicator. One can divide error indicators and estimators into three branches. The first branch is
based around the idea of tracking flow features and structures such as vortices and large gradients
in the domain. Numerical error functions comprise the second branch, they either try to estimate
the actual error in the solution or use numerical values such as the residual to drive adaption. The
last branch is based on the goal-based mesh adaption using an adjoint formulation. These error
sensors try to forecast which cells need to be adapted to reduce the solution error in an output of
interest or functional.

2.4. LES specific issues when using AMR
LES is distinct from DNS in that it does not only contain a numerical but also a modeling error.
Thus, an error is introduced in the turbulence model due to the discretization of the flow problem.
This is a consequence of the LES turbulence model having a filter size, which is usually dependent
on the grid size of the problem. For conceptualization, the total error in a LES computation with
respect to the true solution of the considered equations is

εLES = εnum +εSGS . (2.1)

It should be noted that εnum and εSGS are usually correlated [24]. From this equation, one can
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predict the occurrence of error cancellation. Both error terms do not necessarily have the same
sign. Therefore it is possible to obtain a low overall error while numerical and modeling error are
large [10]. Qualitative predictions for the total error can be obtained by considering the sub-filter
resolution (r):

r = h

∆
, (2.2)

where h is the mesh spacing and ∆ the filter size of the LES turbulence model. If r << 1, then the
numerical error is negligible in comparison to the modeling error. In this case, one could speak
about a grid-independent LES. When choosing r ≈ 1, more turbulence scales could be resolved
while keeping the cost of the simulation constant. Even though this reduces the modeling error,
the numerical error can become in turn substantial [25]. In practical LES applications, r is usually
chosen to be one [26]. Based on these observations, the concept of grid-independent implicit LES
is questionable. In case for r = 1 and h ⇒ 0 LES will turn into DNS. Choosing r << 1 to obtain a
LES solution with negligible numerical error and thus a ’grid independent result’ is only possible in
explicit LES.

The question of: What is a good LES solution? Is therefore subject to discussion and not answered
yet [24, 25, 27–29]. Some authors argue that the quality of a LES simulation should, therefore, be
seen in the context of the convergence of a functional [30].

2.5. Physics/Feature-based error indicators
Feature-based error sensors are one of the earliest and most straightforward methods that have
been adopted in the AMR community. This error sensor does not compute the actual error in the
solution but makes the simple assumption that regions with a large error indicator value contrib-
ute significantly towards the error [31]. Popular choices for a feature-based error sensor are, for
example, the undivided difference velocity or pressure gradient. In such a case, the assumption is
made that if a larger than average gradient in a state variable exists over a mesh cell, then this mesh
cell will contribute significantly towards the error in the flow solution. This is obviously a substan-
tial assumption, and therefore feature-based error sensors are also regarded as somewhat heuristic
since they do not calculate the error but merely indicate where an error in the flow solution might
stem from. They are also called feature-based error indicators. The possibility of separating the
large and small scale turbulence in LES has lead to the development of LES specific feature-based
error sensors.

Feature-based indicators are usually easy to understand, use and implement further; they are often
cheap to compute. They have a long track record and have been used with success in the past
for various flow problems [12]. Unfortunately, they are not universal and must be used empirically,
each flow problem requires a different error function, and the choice is very much dependent on the
flow conditions. Therefore, knowledge about the problem to be solved must be known in advance.
Further, there is neither a guarantee that the adapted areas actually contribute towards the error
nor that important regions are left out for adaption. Due to these shortcomings, it is questionable if
feature-based indicators can be user-independent. The wealth of experience provided by the CFD
user is vital to choose the proper indicator for a specific flow problem.

2.5.1. Gradient based methods and others
Probably the easiest error sensor is the simple use of the undivided difference of a variable of interest
as the error function. Classical variables are in this context, for example, pressure and velocity:

Φ= hn
∣∣∣∣∂nu

∂xn

∣∣∣∣ . (2.3)
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Where h represents the cell size of the mesh. Instead of just using the first derivatives, also the
second or higher-order derivatives can be used. Early studies using this approach are, for example,
found in Dannenhoffer, III and Baron [32], where the use of first and second differences of the state
variables for AMR refinement around an airfoil in transonic flow conditions was investigated. Gradi-
ent and curvature-based error functions are even after over 30 years the only ready to use methods
available methods in Ansys Fluent, a very generic CFD package [33]. As one could also expect, a
combination of derivatives has been used [12, 34]. Even though this family of indicators is very
simplistic, they still seem to work well across a wide range. In Hertel et al. [19], a simple gradient
of velocity was compared against LES specific indicator. It was found that the gradient of velocity
consistently delivered a lower error and thus outperformed LES specific indicators in a test case of
flow over periodic hills. Another approach is to track coherent flow structures such as in the vortex
tracking criterion by Kamkar et al. [35], Gou et al. [36, 37].

2.5.2. LES specific indicators
Section 2.4 discussed the LES specific characteristics arising when using AMR. In the feature-based
indicator group, a variety of special error functions for LES have been developed. All of them exploit
the extra SGS-scale information obtained from the filtering operation.

A classic approach to exploit the extra information obtained from the SGS is the comparison of
resolved and modeled parameters. Pope [38] gives the well-known recommendation that

Φk,r es =
〈kr es〉

〈kr es〉+〈ksg s〉
(2.4)

should be above 80% for a well-resolved LES. In the formula, 〈·〉 represents an averaging operation.
A method on how to calculate the components is presented in [19, 39]. Davidson [40] tests this
criterion for a fully developed channel flow for a Reynolds number of 4000 based upon friction ve-
locity and half channel height. It was found that even though the resolved TKE was well above 85%,
significant errors in the solution were present. A variation of this error function is

Φsg s =
〈ksg s〉

〈kr es〉+〈ksg s〉
. (2.5)

Two practical issues with this error sensor were pointed out by Hertel et al. [19]. First, Φk might be
large close to the wall (due to a large ksg s) and thus suggest adaption. This, however, can have an
impact on the validity of the wall function. Secondly, it was reported in case of the laminar limit and
coarse grids, thatΦk = 1, due to the employed method for calculating ksg s . Therefore, a modification
is proposed:

Φk,tot =
〈ksg s〉

max
Ωc

(〈kr es〉+〈ksg s〉
) (2.6)

or

Φk,c =
〈ksg s〉

〈kr es〉+〈ksg s〉+C max
Ωc

(〈kr es〉+〈ksg s〉
) , (2.7)

where C is a constant and is suggested to be 0.1. By taking the maximum total TKE in the flow do-
main instead of the local, one can alleviate the aforementioned problems. However, it introduces
the problem that the error sensor will become in large parts of the domain extremely small. There-
fore only the most dominant regions will be suggested for adaption. Weak, but important features
will be left completely out for adaption. Another interesting variation to Equation 2.4 is given by
Celik et al. [27]. In the proposed approach, the subgrid-scale TKE is obtained by Richardson extra-
polation. This also allows modeling the contribution of numerical dissipation on the TKE.

Φk,r es =
kr es

k tot , (2.8)
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where
k tot = kr es +kSGS +knum . (2.9)

knum is the so-called residual kinetic energy due to numerical dissipation. The assumption is made
that kinetic energy due to dissipation and the sub grid scale both scale with the grid spacing h and
the order of the scheme p:

k tot −kr es = kSGS +knum = ke f f _SGS = ak hp . (2.10)

The proportionality constant ak is determined by using Richardson extrapolation:

Φk,r es =
kr es

kr es + kr es
2 −kr es

1
αp−1

(
h
h2

)p , (2.11)

whereα= h1/h2. If knum and kSGS have different orders, then the index of resolution quality can be
adjusted by modeling both terms independently:

k tot −kr es = ke f f _SGS = ahp +b∆q , (2.12)

which gives the adjusted Φk,r es . In this case, three grids are required to obtain both proportionality
constants:

Φk,r es =
kr es

kr es +ahp +b∆q . (2.13)

Yet another indicator comparing resolved and SGS information is the subgrid-activity parameter
introduced by Geurts and Fröhlich [25]. It is the fraction between the turbulent dissipation and
total dissipation. Φs = 0 corresponds to a DNS and Φs = 1 corresponds to a LES at infinite Reynolds
number:

Φs = 〈εt 〉
〈εt 〉+〈εµ〉

, (2.14)

where according to the Smagorinsky turbulence model, one can express 〈εt 〉 and 〈εµ〉 as

〈εt 〉 = 〈2νt S̄i , j S̄i , j 〉 , (2.15)

〈εµ〉 = 〈2νS̄i , j S̄i , j 〉 . (2.16)

Equation 2.14 can be approximately rewritten as the ratio of turbulent viscosity to total viscosity
[27]:

Φν = 〈νt 〉
〈νt 〉+ν

= 1

1+ ν
〈νt 〉

. (2.17)

Hertel et al. [19] tested both indicators (Equation 2.14 and 2.17) in an AMR routine and found that
both methods lead to an almost identical grid. Unfortunately, using Equation 2.17 leads to very
unsatisfying adaption for flow over periodic hills. The adaption routine did not decrease the error
but, as a matter of fact, even increased it with respect to the initial grid. Celik et al. [27] criticizes
the subgrid-activity parameter on two further points. Even though the turbulent dissipation can
be calculated with the Smagorinsky model, it is difficult to separate it from numerical dissipation.
Second the argument is made that usually νt >> ν and thus Φν ≈ 1 and therefore insensitive to grid
resolution. This could give an explanation for the poor performance of this error function. Data
given by Hertel et al. [19] indeed hints at the fact thatΦν is very high and uniform across the domain.

For the Smagorinsky model the subgrid shear stress can be calculated as:

τmod
12 =−νt

(
∂ū

∂y
+ ∂v̄

∂x

)
. (2.18)
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Based upon this, Hertel et al. [19] proposes an error function comparing modeled to total shear
stress:

Φτ =
〈τmod

12 〉
|〈τmod

12 〉|+ |〈ū ′′ v̄ ′′〉| . (2.19)

The absolute terms are taken for the denominator to avoid cancellation of the terms in case of dif-
ferent signs. It was reported that this error sensor proved to be more robust and not susceptible to
erroneous adaption as it was the case withΦk .

In Hertel et al. [19] Φν, Φτ, Φk,C , Φk,tot are compared in an R-refinement strategy for a flow over
periodic hill against the simple undivided difference of velocity error function. For predicting the
averaged streamwise velocity at different stations, the undivided velocity difference turned out to
be the best criterion. Φτ, Φk,C and Φk,tot were also able to improve the solution but turned out
to be inferior for predicting the correct velocity profile. Adaption based upon Φν even lead to a
worse result in comparison to the baseline mesh. The velocity error function also proved to be very
competitive for predicting the Reynolds shear stress at different locations. It was, however, beaten
by Φτ, which is not very surprising. Φk,C , Φk,tot again lead to an improved solution but still were
not competitive. Φν once again leads to worse results. Concluding, one can say that, for this case,
a LES-specific criterion does not lead to a significantly better result in contrast to a simple generic
velocity error function.

Celik et al. [27] proposes a quality index for LES. This concept is based upon the subgrid activity
parameter by Geurts and Fröhlich [25]. The aim is to derive specific mesh requirements that are
representative of a ’good’ LES. In a similar fashion to the subgrid activity parameter, a quality index
based upon the Kolmogorov scale is proposed:

LES_IQη = 1

1+αη
(

h
ηk

)m . (2.20)

Another index is based on the subgrid-scale viscosity:

LES_IQν = 1

1+αν
( 〈νt ,e f f 〉

ν

)n . (2.21)

The parameters αη,αν,m,n are determined using the following set of assumptions. For a DNS it is
assumed that h ≈ 1ηk and 〈νt ,e f f 〉/ν = 1. Further, for LES the assumption is made that h ≈ 25ηk

and 〈νt ,e f f 〉/ν= 20. The thresholds for the quality index are set to be 80% for LES and 95% for DNS.
Solving Equation 2.21 for the constants leads to: m ≈ 0.5,αet a ≈ 0.05,n ≈ 0.53,αν ≈ 0.05. These
values are valid for Re = 1200. Equations to derive these constants for any Reynolds number are
given in Celik et al. [27]. The argument that h ≈ 25ηk is obviously a very strong limitation. It is
again derived by the aim to resolve 80% of the turbulent kinetic energy at a given Reynolds number.
According to Pope [38] this is the case when L/∆≈ 12 for the sharp cutoff filter and L/∆≈ 17 for the
Gaussian filter. Celik et al. [27] simply assumes an average value of both.

The original motivation for the LES_IQ criterion was the need for a solution verification tool for LES.
The classical question is whether the LES solution is well and sufficiently resolved. In that frame-
work, it has, for example, been used by di Mare et al. [29] to investigate LES flow in a combustion
engine flow. LES_IQ was compared against the classical criterion of resolved to total TKE. Both
methods performed similarly in rating the ’goodness’ of different flow regions in the domain. The
LES_IQ criterion translates itself naturally into an error function for AMR. Especially for LES_IQη

the direct link between error function value and grid spacing can be seen as advantageous. Unfor-
tunately, no reference was found where this criterion was used as an error function for AMR, even
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though, as mentioned, this application seems obvious. As stated before, the performance of the
subgrid-activity parameter is poor. Therefore the effectiveness of LES_IQν might be questioned.

Further criticism can be expressed in the ’arbitrariness’ and robustness of the derived equations. At
the heart of the required tuning parameters is the assumption that a good LES must resolve 80% of
all TKE, whereas a DNS should resolve 95%. The recommendation stems from Pope [38] and has
already shown to provide insufficient adaption. Another rather heuristic approach is to take a mean
value for the physical integral length scale to filter width ratio. Further, a constant ratio of L/l is
derived. According to Gamard and George [41], this is only true for very high Reynolds numbers.
The Reynolds number dependency of L/l from Gamard and George [41] could be implemented as
an improvement. For the derivation of LES_IQν, an even larger variety of assumptions is made.
The Smagorinsky constant is assumed to be a fixed values, but depending on the flow type, this
is an insufficient assumption, e.g., in shear flows. Also, a model for the numerical dissipation was
introduced but without much evidence on its correctness. Last but not least, the recommendation
that h

ηk
≈ 25 is extremely conservative and would lead to unfeasible large grids, even though it has

been pointed out that h
ηk

is a function of the Reynolds number.

Gant [42] reviews two techniques in which the required filter size of the LES simulation is derived
from a prior RANS computation. The idea is to derive the turbulent length scale from the RANS
simulation and relate it via ’best practice’ to the filter size. One can write the turbulent length scale
as:

l I = k3/2

ε
. (2.22)

The coefficients, for example, can be obtained from a standard k − ε turbulence model. Following
Pope [38] it is proposed that l I /∆> 12 for a sharp cut-off filter. In case of a Gaussian filter the limit
changes to l I /∆> 17. The approach is, therefore, similar to the one from Celik et al. [27] and again
assumes that 80% of the TKE should be resolved. The second proposed method is to calculate the
Kolmogorov scale from the prior RANS and then use the results of Celik et al. [27] to calculate the
grid size of the LES simulation:

η=
(
ν3

ε

)1/4

, (2.23)

where∆/η< 25 for good LES resolution Celik et al. [27], which, as discussed before, is extremely con-
servative. In general, the approach to derive the LES mesh from the RANS solution has to be seen
with skepticism. Both indicators could also be calculated on the fly from the corresponding LES
simulation. The from RANS derived mesh size is practically only valid in a statistically stationary
flow. Under-resolving unsteady effects not captured by the RANS-suggested adaption areas might
introduce significant errors in the simulation. The proposed approach, however, has the merit to
supply a LES problem with an initial optimized mesh. This could be used for bootstrapping error
sensors, which are dependent on a not too coarse initial mesh. Additionally, one could estimate
the required cell count for an expensive LES via a cheap RANS computation. Since the computa-
tional cost for RANS is much smaller than for LES, the proposed method can deliver ’quasi-a-priori’
information on how many cells are required for a well-resolved LES.

An error function based upon the idea that LES resolves turbulent production and models turbulent
dissipation was presented by Hertel et al. [19]:

ΦPk =−∑
i , j

〈ū ′′
i ū

′′
j 〉
∂〈ūi 〉
∂x j

. (2.24)

This criterion can be further motivated by the observation that the gradient of streamwise velocity
and the shear stress were able to provide beneficial adaption for the periodic hill case in Hertel et al.
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[19]. This criterion effectively combines them. Accurate results were obtained for the velocity and
shear stress distribution. The error sensor was compared against other LES specific error sensor
(Φν,Φτ,Φk,C ,Φk,tot ). ΦPk outperformed all of them by a great margin.

Toosi and Larsson [10] introduces a directional energy indicator measuring the small-scale energies
in the flow. The small scale velocity (ū∗

i ) in direction n can be approximately obtained by:

ū∗,(n)
i ≡ ūi − ˆ̄u(n) ≈−∆

2
n

4
nT (∇∇T ūi )n , (2.25)

where ūi is the unfiltered velocity. The energy in that direction is then measured by:

Φ= A(n) =
√〈

ū∗,(n)
i ū∗,(n)

i

〉
, (2.26)

where 〈〉 is a suitable averaging operator such as time- or phase-average. The main result is, there-
fore, that the Hessian or curvature of the velocity can be related to the small scale energies in LES.
An interesting result that shows why using a simple second derivative of velocity can be justified by
LES specific arguments.

Another successful AMR application was presented by Daviller et al. [43], an adaption routine based
on resolved and unresolved viscous dissipation in a LES framework was used to predict the pressure
loss in a swirl injector. First, the transport equation for the kinetic energy was inspected. It was de-
duced that the viscous dissipation controls part of the total pressure and thus pressure loss. Based
upon this observation, it is suggested to use the viscous dissipation as the error function. Specific-
ally, it is decided to use the time-averaged sum of resolved φ and unresolved viscous dissipation
ϕ.

Hindi et al. [44] presents a LES specific AMR criterion for sprays based upon the Stokes number. For
St >> 1 it can be assumed that the eddies will not affect the motion of the droplets. The aim is to
resolve all eddies that are capable of dispersing the droplets of the flow.

2.6. Numerical error estimators
Numerical error estimators aim at estimating the actual error within the solution. This is differ-
ent from error indicators, which merely hint towards regions with a significant error. It, however,
could be argued that every error indicator is also an error estimator, just one which gives poor
error estimates and is not based upon a rigorous mathematical formulation. Sources for numer-
ical errors are: modeling error, round-off error, iterative convergence error, statistical sampling er-
ror, user/programming error and discretization error [45, 46]. Often the discretization error is the
largest, and some consider it also the most difficult to compute [47]. The discretization error has
two components, one which is locally-generated and one that is transported throughout the com-
putational domain. Unfortunately, error estimation for hyperbolic partial differential equation sys-
tems is not straightforward. In contrast, for elliptic problems, a wealth of literature and methods
have been developed [1]. Examples can be found in Zienkiewicz and Zhu [48] and Verfürth [49].
This section focuses on the three popular methods of Richardson-, Tau-extrapolation and the error
transport equation approach. Other numerical error estimates include the moment error estimate
by Haworth et al. [50] and the element residual error estimate by Jasak [31].

2.6.1. Richardson-extrapolation
Richardson-extrapolation is a technique that can be used to estimate the discretization error in a
flow solution. The idea of the Richardson-extrapolation is to calculate a flow solution on a fine and
a coarse grid. With the known order of the solver, one can infer the error with respect to the exact
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solution. One can derive [18]

Φε = |U −UH | = |UH −Uh |(
hH
hh

)p −1
, (2.27)

where possible choices for h can be, for example, the ratio of cell volume and surface area [51]:

h = dV∑
f |S|

, (2.28)

and U being the state vector. In the most straightforward application of Richardson-extrapolation,
the solution is calculated on two different sized grids. However, the same technique can also be
used to estimate the error due to the temporal discretization. In this case, three solutions are re-
quired, one coarse solution, a solution on a finer grid and temporally finer one. Instead of different
sized grids, one can alternatively also use numerical methods of different orders (P-refinement)
[47]. A necessary condition for the success of the Richardson extrapolation is that both simulations
lie within the asymptotic range [52]. This is a requirement that is probably never satisfied in LES.
Further, from the inspection of the equations, it can also be seen that the order of the discretization
scheme has to be known, in practical applications, the order of magnitude of the numerical scheme
is however not always known and can depend on the flow conditions and the types of boundary
conditions used. If the order of the discretization is not known, it can be calculated by using an
additional simulation.

In the context of AMR, Richardson-extrapolation was first used by Berger and Colella [18], Berger
and Oliger [53]. Other applications include work by Jasak and Gosman [23]. Its principal advantages
are that it is a quite generic and problem-independent error sensor. Depending on the application,
the implementation is also rather lightweight. Further, it is not dependent on the flow solver. Roy
[47] is a good introductory text for Richardson extrapolation.

The application of Richardson-extrapolation in a LES framework is challenging due to the additional
contribution of the modeling error introduced by the low-pass filtering. Mitran [54] attempted to
use Richardson-extrapolation in a LES simulation. However, it was found that the AMR routine
would become unbound and would always converge towards a DNS simulation. Unfortunately,
no specific information is given on how exactly the routine was implemented. Another elaborate
discussion about Richardson-extrapolation used in conjunction with LES is given by Klein [24]. Due
to the additional modeling error, an algorithm is presented in which three simulations are used to
separate the numerical and the modeling error. A fine grid solution, a coarse grid solution (half the
mesh size) and a solution in which the model term is reduced (by 50%) are required. The derivation
of the error is analogous to the standard case:

2(U2 −U1) = cmhm , (2.29)

U3 −U1

1−2n = (cn + cm)hn m = n , (2.30)

(U3 −U1)−2(U2 −U1)(1−2m)

1−2n = cnhn m 6= n , (2.31)

where n is the order of magnitude of the numerical scheme and m is the order of magnitude of the
turbulence model. In the research of Klein [24] a Smagorinsky model was used, which was assumed
to have second-order dissipation. According to Klein [24] it is difficult to produce three simulations
in which all lie in the asymptotic range. Further, the presented method fails to work when implicit
LES filtering is used because then modeling and numerical error interact and are hard to distin-
guish. Brandt [52] used the approach from Klein [24] with the same SGS model in a fully-developed
turbulent channel flow at Re ≈ 6800. It was found that the Richardson extrapolation assumption
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of an asymptotic region was not sustained across all y+ values, but only fulfilled partially. For ex-
ample, the model error was asymptotic in the log layer. This lead to a large discrepancy between
true total error obtained from comparing the solution with a DNS reference solution and the error
estimation by Richardson extrapolation. The results, therefore, confirm the experience from Klein
[24] regarding the problems of obtaining a solution lying the asymptotic range.

2.6.2. Tau-extrapolation
τ-extrapolation is a variant of Richardson-extrapolation that does not require an entirely new solu-
tion on a different sized grid. Instead, a rough grid solution is constructed from the value on the fine
grid. It exploits the fact that a solution obtained from a fine grid will usually lead to higher residuals
on the coarse grid [55, 56]. For a general problem of the form

R(U ) = 0 (2.32)

the residual will be zero for the exact solution U . If the exact solution is substituted into the discret-
ized problem Rh() with mesh spacing h, the LTE (local truncation error) is obtained:

LT EH = Rh(I hU )

hd
, (2.33)

where d is the dimension of the problem and I h the operator that restricts the exact solution U on
the grid h. The local truncation error is then the quantity used for mesh adaption. Problematic is,
however, that the exact solution has to be known, which is obviously, for a practical problem, never
the case. Therefore, one uses the fact that for a converged discrete solution, the residual on the
discrete domain is usually zero:

Rh(Uh) = 0. (2.34)

Further, the assumption is made that Uh ≈ U . Restricting the fine solution on the coarse-grained
mesh gives the approximate LTE analogous to Equation 2.33:

LT EH = RH (I H
h Uh)

hd
H

. (2.35)

Since the LTE decreases with the order of numerical method according to

|LT E | ≤C hp , (2.36)

where C is a constant, one can see that for smaller mesh sizes, the LTE will tend toward zero. As
for Richardson extrapolation, the error needs to lie in the asymptotic range. Otherwise, no reliable
error estimate is obtained. The advantage of τ-extrapolation is that the restriction operation and
subsequent evaluation of the residual are very cheap to compute. It, therefore, provides cost savings
over regular Richardson-extrapolation. However, the argument can be made that a coarse-grained
problem is so cheap in comparison to the primal problem, that the cost savings are not significant.
Application of τ-extrapolation for AMR can be e.g. found in Aftosmis and Berger [1]. Unfortunately,
no resource was found that compared τ and Richardson-extrapolation explicitly against each other.
Therefore, no conclusion can be drawn on their relative performance. However, Fraysse et al. [57]
compares τ-extrapolation against output-based and feature-based adaption for a variety of tran-
sonic airfoil flows. It was found that in terms of error versus cell count, τ-based adaption performs
slightly worse than adjoint output-based adaption but better than feature-based adaption. Syrakos
et al. [58] found that a more efficient error function is obtained when the truncation error is multi-
plied with the volume of the cell.



18 2. Literature Review

2.6.3. Error transport equation (ETE)
An equation can be derived that describes the transport of the discretization error throughout the
computational domain. By, e.g., considering the incompressible Navier-Stokes equations:

∂ui

∂t
+u j

∂ui

x j
=− 1

ρ

∂p

∂xi
+ν ∂2ui

∂x j x j
, (2.37)

one can define the exact solution as the sum of the solution of the discrete problem and an error:

u = uh +ε , p = ph +εp . (2.38)

Substituting this yields:

∂εi

∂t
+ (uh) j

∂εi

x j
+ 1

ρ

∂εp

∂xi
−ν ∂2εi

∂x j x j
+ε j

∂(uh)i

x j
+ε j

∂εi

x j
=−R(Uh) , (2.39)

where R(Uh) is the differential residual, which arises since the discrete solution Uh does not satisfy
the continuous problem exactly. One can see that the equations for the ETE are the same as for the
primal problem but with an additional source term. In the case of a Dirichlet boundary condition
of the primal problem, the error is set to zero for the ETE problem. The Neumann boundary con-
ditions are treated the same as in the primal problem. Since the differential residual contains the
continuous operator R(), it cannot be computed directly. The key is to find a proper approximation
for it. Options are, for example, a higher-order discrete operator or a higher-order reconstruction
operator [46, 59].

By solving the ETE, one obtains the discretization error ε, similar to the Richardson-extrapolation
approach. For an unsteady simulation, the primal problem and the ETE can both be advanced
simultaneously. Where simultaneously means that the ETE lags a certain number of time steps
behind the primal problem so that the time derivative can be evaluated. The ETE can also be solved
sequentially after the primal problem has been solved. This, however, does not make much sense
when using AMR during the simulation, and additionally, the entire solution history must be saved,
which would require a tremendous amount of storage or memory.

2.7. Goal-oriented error indicators/estimators
The third big family of AMR error functions is built around the idea of goal-based adaption. Instead
of reducing the error in the entire domain, only the part of the mesh is refined, which contributes to
the actual error in a quantity of interest (functional). In a flow problem like

R(U ,α) = 0 (2.40)

and a functional J dependent on the mesh which is denoted by α

d J

dα
= ∂J

∂U

dU

dα
+ ∂J

∂α
(2.41)

one can formulate the adjoint problem as[
∂R

∂U

]T

Ψ=
[
∂J

∂U

]T

, (2.42)

here d J/dα denotes the total derivative. Instead of the highly inefficient approach to adopt a mesh
cell (α) and evaluate ∂U /∂α, which requires the recomputation of the entire problem, the adjoint
approach allows to efficiently calculate the influence of any α on one functional. Using the adjoint,
however, means that a change in the functional will always require the solution of a new adjoint
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problem. Since there are more cells in the domain than quantities of interest an engineer would
like to investigate, solving an adjoint problem is very advantageous. Solving a problem with AMR
can require a couple of subsequent mesh adaption steps. The adjoint equation has, therefore, to
be solved multiple times, which is very expensive. Ding [60] shows an approach where the com-
putational cost is drastically decreased by smartly reusing parts of the old adjoint solution. Other
acceleration techniques have e.g., been proposed by Tyson et al. [61]. An influential method of ad-
aptive mesh refinement using the adjoint approach was introduced by Venditti and Darmofal [9]
based on the works of Pierce and Giles [62]. This paper demonstrates a practical implementation of
goal-based adaptive mesh refinement.

By considering the objective J on a coarse and fine mesh one can show that the difference in a
functional between both meshes is the adjoint-weighted residual:

Jh(U H
h )− Jh(Uh) ≈ (ΨH

h )T Rh(U H
h )︸ ︷︷ ︸

Computable correction

+ [
RΨ

h (ΨH
h )

]T
(Uh −U H

h )︸ ︷︷ ︸
Error in computable correction

(2.43)

with RΨ
h being

RΨ
h =

[
∂Rh

∂Uh

∣∣∣∣
U H

h

]T

ΨH
h −

(
∂Jh

∂Uh

∣∣∣∣
U H

h

)T

. (2.44)

Another advantage is the defect correction, which is obtained ’for free’ after the adjoint problem has
been solved. With the defect correction, the error in the functional can be decreased [63]:

J̃h(UH ) = Jh(U H
h )− (ΨH

h )T Rh(U H
h ) . (2.45)

For a transient simulation, the adjoint equation changes slightly [11]. To derive the unsteady set of
adjoint equations, we consider the unsteady residual

¯R(U ) ≡ M
dU

d t
+R(U ) = 0 (2.46)

and the unsteady functional

J̄ ≡
∫ T

0
J (U (t ), t )d t + JT (U (t )) , (2.47)

one can obtain

M
δΨ

δτ
+

[
∂R

∂U

]T

Ψ+
[
∂J

∂U

]T

= 0, (2.48)

where τ= T − t , and M is the mass matrix. The transient adjoint problem is, in principle, the steady
adjoint problem plus another term accounting for unsteady effects. One can see that the adjoint
has to be solved backward in time. This is a critical property of the adjoint in unsteady problems.
As stated in the previous section, it is very costly to solve the adjoint equations. Whereas before, the
adjoint equation is only solved when required for a mesh adaption, now the adjoint equation has
to be solved every single time step, even if one is merely interested in adaption occasionally. Since
it must be solved backward in time, the solution of all time steps must be stored as well. The high
computational cost in a transient setting makes this approach unsuitable for LES. For steady-state
problems, e.g., RANS, goal-based adaption can, however, be seen as a compelling method and can
be potentially considered to be the best approach to calculate the error sensor. Other approaches
found in the literature of using adjoint for AMR include the combined ETE-adjoint approach by
Tyson et al. [61], the entropy-based adjoint problem of Fidkowski and Roe [64] and the goal-oriented
dissipation-based error function from Dwight [65, 66].
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2.8. Flag functions
In case one has an ’ideal’ error estimate at his disposal, one still has to decide on how to adapt the
mesh. The flag function takes the error and other information such as the cell size as the input and
outputs the adaption action, i.e., for an H-refinement routine if a cell should be refined, coarsened,
or kept in its original size. The equidistribution principle by de Boor [67] is a popular approach used
in the AMR world. The aim is to create a mesh in which every cell has the same error sensor value.
The assumption is thus made that all individual errors in the computational domain are equally cru-
cial for the simulation. Depending on the goal of the simulation, this can be over-conservative e.g.,
when only the accuracy of a functional is considered. For H-refinement, in contrast to R-refinement,
one has only discrete adaption steps, and thus equidistribution cannot be achieved precisely.

A flag function can be constructed to use the raw values of the error sensor to flag cells for adaption.
This is, however, not necessarily a smart choice because error sensors are often dimensional. There-
fore a common approach is to non-dimensionalize the output from the error function by rescaling
it between zero and one [43]:

Ψ∗ = Ψ−Ψmin

Ψmax −Ψmin
. (2.49)

Other approaches are presented by Hertel et al. [19]. Rescaling also has drawbacks. In case of a
large difference between the smallest and largest error indicator value e.g., due to an outlier, such a
rescaling operation will compress the bulk of the error indicators. Thus rescaling improves the pre-
dictability of the error values but can also introduce new problems. Another popular flag function
is the fixed fraction approach. Instead of determining fixed error bounds, one merely specifies that
every adaption step a fixed fraction of cells, e.g., with the highest error, is flagged for refinement [68].
Dannenhoffer, III and Baron [32] proposes to automatically select the fixed fraction threshold based
upon a knee point in the error sensor histogram.

Instead of changing the mesh level by incremental steps (in H-adaption), multilevel adaption aims
at changing the mesh size by more than one step per adaption iteration. When the rate of conver-
gence ω of the underlying discretization is known a priori or was determined by e.g., Richardson-
extrapolation, one can derive the target mesh size in a simple way [9]:

hH = hh

(
ε

ε0

)p

, (2.50)

where hH is the mesh size before adaption and hh the mesh size after an adaption, ε is the error
level, and ε0 the target error level. It is the author’s opinion that a good flag function has the same
order of importance as the error sensor itself. While there are some good works available that treat
the flag function such as Aftosmis and Berger [1], Nemec et al. [69], there was no literature found
that rigorously reviewed and investigated this aspect. Perhaps also because a clear demarcation
between the error sensor and flag function is not always possible since both are very much inter-
connected. Nevertheless, an adaption routine comprised of an ’ideal’ error sensor, but a ’bad’ flag
function cannot yield good mesh adaption. With the more and more widespread use of CFD, it can
not be assumed that every CFD user is a CFD-expert. Therefore, it would not only be important
to see which flag function can theoretically lead to the best result but also to investigate which flag
function in the hands of an (inexperienced) user leads to the best practical result. One can conclude
that the flag function is an integral part of a user-independent AMR routine and thus overall CFD
experience.

2.9. Synthesis and chosen direction
One primary outcome of this literature study was the realization that it is tough to compare different
approaches with each other. This is mainly due to unstandardized approaches within the literature.
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Sometimes merely the output of the error sensor is compared to e.g., the exact error, while in other
instances, more practical applications are shown [19, 31]. Therefore, it is not very easy to judge
from literature which approaches lend itself the most for achieving user-independent AMR. Since
this thesis also has the aim to test novel error sensors, the question naturally arises which of the
three families of error sensors should be used and developed further. To make this decision some-
what systematic, a list of properties has been developed that entails properties that describe, to the
author’s opinion, an ideal error sensor. This list is partly influenced by [31].

An ideal error sensor should

1. be order(s) of magnitude cheaper to compute than the primal solution, irrespective of
whether the simulation is steady-state or transient.

2. be independent of the flow problem at hand. Work for a wide range of very different CFD
cases.

3. require virtually no input from the CFD user.

4. be able to quantify the spatial, temporal, and modeling error reliably. Rather over-estimate
than under-estimate the error. 1

5. be based on a rigorous mathematical basis and not heuristic in nature.

6. be independent of the underlying solver or the numerical techniques used. Implementation
should not be prohibitively complicated.

7. work equally well for refinement and coarsening.

8. be numerically robust and stable.

9. give an a priori estimate on the required CPU time to obtain a certain error level.

10. be able to either target the error of a functional or the error of the entire flow field.

11. give reliable results also on coarse meshes.

12. lead to a computationally efficient mesh.

With these criteria used as a metric, Table 2.1 was created. In this table, the general properties
of feature, numerical, and output-based error functions are given. The information was compiled
from the findings of this literature study. Novel ideas and improvements to these error functions
might, therefore, change their respective properties.

From the table, it becomes clear that there is no single best error sensor. Instead, every group has
their respective strengths and weaknesses. Feature-based indicators are usually easy to implement,
cheap to compute, and can, when carefully chosen, lead to excellent adaption. However, their suc-
cessful application is very much dependent on the correct choice for a particular flow problem. A
requirement that can usually only be fulfilled when a wealth of a priori knowledge is available and
thus makes this method unsuitable for user-independent refinement.

Error estimators are, in this respect, much more independent of the problem. Their property of es-
tablishing a thorough mathematical link with the actual error is an important point when fielding
such an error sensor. An AMR routine can be justified much better, e.g., in an engineering context,
when it is based upon a thorough mathematical foundation than in comparison to a completely

1Even though an ideal error estimator would always report the exact error, this is in practice not achievable. A slight over-
estimation in the error value is, in such a case, advantageous. It will lead to more conservative adapted mesh i.e., with
more cells than necessary, however this way, it can be guaranteed that the problem is not underresolved.
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Table 2.1: Summary of the properties of feature-based, numerical and output-based error functions. The results are based
on the findings from the literature study.

Property Feature-based Numerical Output-based

1 Cheap in all cases From cheap to expens-
ive, the latter especially
for LES

Expensive, same order as
primal problem, prohib-
itively expensive for tran-
sient cases

2 Usually highly specific to
the problem at hand

Can be completely prob-
lem independent

Only functional is prob-
lem specific

3 Specific error sensor
must be selected.

Mostly only error
thresholds

Functional must be se-
lected a priori

4 Only heuristic indica-
tions

Can provide for all a re-
liable estimate, difficult
for LES

Spatial and temporal

5 Usually heuristic, some
based on problem spe-
cific derivations

Rigorous mathematical
foundation if the mesh is
already very fine

Rigorous mathematical
foundation

6 Independent Substantial amount of
FEM specific methods

Independent to specific

7 No information No information No information

8 Robust and stable No information Adjoint problem can
pose challenges

9 Possible precomputation
with RANS

No No

10 Only entire flow field Only entire flow field Functional and flow field

11 No problems reported in
literature, seem to work
also on coarse meshes

Richardson-like meth-
ods: needs asymptotic
range

Coarse mesh might lead
to erroneous results, es-
pecially in defect correc-
tion

12 Mesh quality depends on
a specific error sensor for
a specific problem

There is indication that
the resulting mesh effi-
ciency can lie between
feature-based and
output-based adaption
[57]

Can lead to very a effi-
cient mesh

heuristic error indicator that seems to work okay but without proper explanation why it is doing so.
A potential challenge, however, is the need for Richardson and τ−extrapolation to have at least two
solutions located within the asymptotic range. The question is thus how these methods will perform
in complex industrial flow applications. There is literature that treats Richardson-extrapolation in
a LES application, but it cannot be regarded as plentiful. As a matter of fact, for τ-extrapolation, no
literature was found at all that also used LES. A question for LES is also how to forecast the modeling
error, while Richardson-extrapolation can potentially achieve this for explicitly filtered LES it always
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comes with the considerable drawback of an additional problem computation on an equal-sized
grid, thus significantly increasing the computational cost. Concluding, even though error functions
are more thoroughly formulated, the application to LES does not seem to be trouble-free. They
might, however, be a competitive candidate for a user-independent adaption routine. Their com-
putational cost is not negligible, especially for ETE type error sensors.

The big advantage of output-based AMR methods has to be seen in their ability only to adapt re-
gions of the mesh, which are absolutely necessary for the error of the functional, a property that can
neither be found in feature-based nor numerical error sensors. At first glance, it, therefore, seems to
be the ideal pick for an error function, especially because it usually comes with a free and powerful
defect correction that can significantly enhance the accuracy of the functional. Also, output-based
error functions can be considered to be problem independent in the sense that very little knowledge
is needed about the fluid conditions in the flow problem. The engineer must merely know what the
functional should be. However, with the high cost in transient problems, the original goal, namely
saving CPU time and memory can be described as optimistic.

Based on the gathered literature, it was decided to continue with numerical error estimators. Coarse
meshes might impose a challenge for these groups of error sensors, but they are the only ones that,
at the same time, can combine user-independence with affordability. Output-based error sensor
have the potential to be the ideal error sensor. However, for LES, the memory requirements are un-
fortunately just way too high. Feature-based indicators are perhaps the best practical error sensors
for specific problems. But exactly due to this property, they exclude themselves due to the goal of
user-independence. Generic LES specific error indicators, such as resolved to total TKE, were not
further considered due to their apparent poor performance.
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Theoretical framework

In this chapter, the theoretical framework is laid out. First, an introduction into the CFD code INCA
is given. Subsequently, the H-adaption approach, the error sensors, and the flag function, which are
used within this thesis, are discussed. Last but not least the prolongation and restriction operators
are treated.
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3.1. INCA solver
For this thesis, the INCA (http://www.inca-cfd.com/) CFD code is used, a general-purpose CFD
solver for LES and DNS. It can solve the compressible and incompressible Navier-Stokes equations
on collocated and staggered Cartesian structured grids. It contains numerous advanced features
such as combustion and cavitation modeling. Within the scope of this thesis, the compressible
Euler equations have been solved for the Mach 3 shock over a forward-facing step in Chapter 4. The
incompressible Navier-Stokes equations were solved for the flow over the two-dimensional cylinder
and the flow over periodic hills in Chapter 5 and 6 respectively. For the compressible simulation,
a collocated grid with AMR refinement factor 2 was used, whereas, for incompressible simulations,
a staggered grid was employed with refinement factor 3. For the discretization in space, the ALDM
(Adaptive Local Deconvolution method) presented in Hickel et al. [70] was used. The time-stepping
is performed with a third-order Runge-Kutta TVD scheme as described in Gottlieb and Shu [71].
The Poisson-equation arising in the incompressible cases is solved using the BiCGSTAB method
[72] with a SIP pre-conditioner [73]. The method used to solve the compressible case is described
in Hickel et al. [74].

3.2. INCA’s block-structured mesh
The INCA solver is built around a block-structured mesh and supports H-adaption. INCA’s mesh
is strictly block-structured, meaning that every block is perfectly placed along the boundaries of its
neighboring blocks. INCA’s block connectivity is explicitly stored within every block’s data type and
is, for example, not implicitly derived by an oct-tree. With the H-adaption routine, it is possible to
refine, coarsen, split, and merge blocks. The mesh of every block can be described by a level. An un-
altered block has, by definition, a level of 0, every single refinement step incrementally increases the
level. INCA supports anisotropic meshes as well. In that case, every block can have a different level
in all of its three principal directions. Since INCA uses a structured mesh, it cannot conform directly
to any arbitrarily shaped wall in the fluid domain (apart for any rectangular geometry aligned with
the mesh’s principal directions and block boundaries). A second-order conservative immersed in-
terface method is used to circumvent this limitation. An elaborate discussion can be found in Meyer
et al. [5].

3.3. Auxiliary adaption criteria
While a good solution-based adaption criterion is essential for any successful deployment of AMR
in a CFD code, an additional aspect is the necessity for ’auxiliary’ criteria, which are solely needed
for practical purposes. Despite their heuristic nature, they are crucial for the working of INCA’s
adaption routine. In the following, the auxiliary criteria used in this thesis are presented.

3.3.1. Alternating block splitting and refining criterion
Even though INCA supports meshes that have jumps in the level of more than one between two
adjacent blocks, for INCA’s adaptive mesh refinement, the maximum difference in block level is set
to one. This requirement is born due to practical reasons. Since, in a block-structured mesh, all
adaption actions can only act on the entire block, an effective H-adaption routine must entail block
splitting. Otherwise, especially when there is only one starting block, all adaptive mesh refinement
would be equivalent to just uniform refinement action on the entire domain. One necessity for
block-splitting is, however, that there are enough cells within a block. It is trivial to see that in the
limit case of a block merely containing only one single cell, every splitting attempt is futile. There-
fore, in INCA an alternating approach is chosen where after every mesh refinement a splitting action
must follow.

http://www.inca-cfd.com/
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3.3.2. Cut-cell criterion
The cut-cell adaption method identifies all cells which contain an immersed boundary and sub-
sequently flags them for refinement when their cell size is above a specific limit. It thus represents a
refinement criterion based upon geometric considerations. Even though this criterion is not based
upon any mathematical foundation, it purely exists due to practical reasons. When an initial mesh
is created with a starting cell size much larger than the characteristic length of the geometry, e.g.,
the diameter of a cylinder, then the immersed boundary approach fails. Therefore, a geometry must
be resolved by at least a couple of cells before more sophisticated refinement criteria can be used.

3.3.3. Balance criterion
The balance criterion ensures that a block has along either of its boundary surfaces only neighbor-
ing blocks of the same mesh level. A violation of this criterion is visualized in Figure 3.1. A large
block is shown in (A). Along its right boundary, it has two neighboring blocks of different mesh sizes
(B and C). Such a mesh is not allowed in INCA since it only supports ghost cells with a constant
normal mesh size along a block boundary. The balance criterion will, therefore, flag the large coarse
block (A) to be split and thus ensures that all ghost cells have a constant normal size along every
boundary of a block.

A

B

C D

B

C

A

Figure 3.1: Visualization of a mesh violating the balance condition. Left before balance criterion, right after balance
criterion has been invoked.

3.4. The H-adaption pipeline
The H-adaption pipeline entails all the procedures which are required for a successful AMR step. It
is shown in Figure 3.2 and Algorithm 1. When using error estimates, the setup is as follows: Two sim-
ulations, a coarse and a fine one, are computed simultaneously. Both are separated by exactly one
mesh level. Advancement in time is done with the same time step τ. This ensures that no interpol-
ation in time is required when the error estimate, e.g. Equation 3.5, has to be computed. Due to the
synchronization, the coarse simulation is advanced with a smaller CFL number. Theoretically, this
means that the spatial and temporal error cannot be separated distinctively. However, practically it
is assumed that the discretization error in space is more significant than the temporal error. For all
test cases, a CFL number of one is used for the fine simulation. Temporal errors should, therefore,
generally be rather small. After an elapsed time of τAMR, the adaption procedure is invoked. Due
to the discretization in time, adaption does not happen exactly at τAMR but rather at the first time
step that has surpassed the time τAMR. After the execution of the adaption procedure outlined in Al-
gorithm 1, the time step τ and the fine state vector are sent to the coarse simulation. This resets the
coarse simulation to the state of the fine one, any misalignments in the solution that happened dur-
ing the time τAMR are that way eradicated. Finally, the same block splitting and refinement action
is performed on the coarse and fine mesh. In the case of turbulent flow, the procedure mentioned
above is slightly altered. Error sensor evaluation and solution exchange still take place every τAMR,
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but adaption does not. That way, error sensor samples are taken, and a mean can be calculated.
This is important for turbulent flow since it is too chaotic to obtain a smooth error sensor distribu-
tion, see Chapter 6. Adaption happens as usual after N error sensor samples have been taken. For
the evaluation of the reference error sensor, the coarse simulation is not required. The remaining
part of the adaption pipelines remains unchanged.

Algorithm 1 shows all tasks that are performed during an AMR call. During the very first AMR call,
the cut-cell criterion is invoked to guarantee a minimum mesh resolution of the immersed bound-
ary. Otherwise, the first step is the calculation of the error sensor. Subsequently, the flag function
will calculate an adaption action based upon the error sensor output. The adaption action is then
checked against the ’alternating refinement-split criterion’ and, if necessary, changed accordingly
to ensure alternating block splitting and refining. Now the block is either split or refined. In the end,
the ’balance criterion’ checks the mesh and can also call for a refinement and split action to ensure
proper grid connectivity. The entire adaption pipeline is traversed twice. This ensures that a bad
block will definitely be refined. If the pipeline is only traversed once, then a block might have been
identified for refinement, but due to the ’alternating refinement-split criterion’ is split first. Thus, a
second pass will capture this block again and then subsequently refine it.
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Figure 3.2: Overview of the overall adaption routine for error estimate based adaption.

Algorithm 1 H-adaption procedure.

1: for after every τAMR do
2: for all blocks do
3: if first ever AMR call then
4: cut-cell criterion
5: end if
6: calculate error sensor
7: calculate flag function
8: invoke alternating criterion
9: perform block split or block refine

10: invoke balance criterion and if necessary adapt the mesh
11: reset coarse simulation and send adaption action
12: end for
13: end for

3.5. Error sensor
For this thesis, error sensors based on error estimates are used. First, the classical ’Richardson-
extrapolation’ error estimate is presented. Subsequently, new formulations for an error estimate
based upon the error transport equation are described.
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3.5.1. Richardson-extrapolation
Using the approach of Richardson-extrapolation, an estimate of the actual error of the solution can
be obtained:

ε≈ ∣∣UH −Uh |Hh
∣∣ . (3.1)

Where Uh |Hh is the restriction of the fine solution on the coarse mesh. In this thesis, the velocity
magnitude has been used for U . This error estimate is not only used for the Richardson-type error
sensor but also for the ETE terms and therefore constitutes an essential ingredient. For practical
reasons, the output of this error estimate was set to zero when an immersed boundary intersected
a coarse grid cell. The reason being that corresponding fine mesh cells may lie outside, on the or
in the immersed boundary. The choice of an appropriate restriction operator becomes then non-
trivial and would otherwise lead to erroneously high errors:

φ= ∣∣uH −uh |Hh
∣∣ . (3.2)

While this estimate is helpful for a particular simulation, it is probably not handy when considering
a variety of different problems. The magnitude of this error estimate deviates based upon which
state variable is used e.g., pressure or velocity. Further, the magnitude also deviates based upon
the problem at hand, such as low versus high Reynolds number flow. Next to this, errors, in re-
gions where the magnitudes of the state variables are significant, will usually be more substantial
than in regions of low magnitude. Thus, errors in small scale structures are rendered unimportant.
Therefore, the aim should be to non-dimensionalize the error estimate to make it independent of
the problem. A simple approach is to calculate the relative error:

φ=
∣∣uH −uh |Hh

∣∣∣∣uh |Hh
∣∣ . (3.3)

While this approach provides an effective non-dimensionalization, it comes with the danger of
causing singularities in regions where the state variable is zero. An obvious example is the flow ve-
locity close to a wall. In these regions, unrealistically large error estimates are produced. To remedy
this issue, the relative error equation is adjusted to:

φ=
∣∣uH −uh |Hh

∣∣
max

(∣∣uh |Hh
∣∣ , 0.1|uref|

) . (3.4)

This is a typical approach that is also shown in other references, such as in Hertel et al. [19]. Altern-
atively one can also merely use the reference velocity:

φ=
∣∣uH −uh |Hh

∣∣
uref

, (3.5)

yielding an non-dimensional absolute error estimate. Last but not least, an error sensor is proposed,
which multiplies the error in velocity magnitude with the cell size. With the finite volume method
in mind, the idea is that an error in a tiny cell might only have a minor impact on the solution.
However, this approach might also lead to erroneous results, e.g., when the bad cell is located in a
boundary layer or when there is a large cluster of cells with a high error that is artificially reduced by
the cell volume of each individual cell. The error sensor thus becomes:

φ= ∣∣uH −uh |Hh
∣∣dV . (3.6)

Similarly Equation 3.6 can be non-dimensionalized as:

φ=
∣∣uH −uh |Hh

∣∣dV

urefL3
ref

. (3.7)
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3.5.2. Error transport equation
A set of novel error sensors is proposed based on the individual terms of the Error transport equation
depicted in Equation 3.8. Instead of solving the ETE directly to obtain the error estimate ε, the
aim is to use the individual terms as an error sensor. The hope is to highlight regions with high
error transport and production and see what kind of influence these regions have on the solution
accuracy. The ETE is

∂εi

∂t
+ (uh) j

∂εi

x j
+ 1

ρ

∂εp

∂xi
−ν ∂2εi

∂x j x j
+ε j

∂(uh)i

x j
+ε j

∂εi

x j
=−R(Uh) = 0. (3.8)

When the size of the grid becomes smaller, the discrete solution uh will move towards the exact
solution u, and thus the error vanishes. The discrete solution, however, can only approach the exact
solution when, in the limit case, all terms involving the error in the momentum equation vanish.
The three chosen terms stem from the advection term of the Navier-Stokes equations. They are:

φ=
3∑

i=1

∣∣∣∣ε j
∂εi

x j

∣∣∣∣ , (3.9)

φ=
3∑

i=1

∣∣∣∣ε j
∂(uh)i

x j

∣∣∣∣ , (3.10)

φ=
3∑

i=1

∣∣∣∣(uh) j
∂εi

x j

∣∣∣∣ . (3.11)

Equation 3.9 and 3.10 can be considered to be production terms while Equation 3.11 is an advection
term. Since Equation 3.9 contains the multiplication of two errors, it remains to be seen if this term
is negligibly small. Absolute values are used to avoid error cancellation. The error ε in the respective
terms is computed using the Richardson-extrapolation approach. The error in the state variables
can be approximated as:

εi ≈ uH ,i −uh,i |Hh . (3.12)

The derivatives were calculated with a simple second-order central finite difference scheme. The
dimension of this error sensor is:

[φ] = L

T 2 , (3.13)

where L and T are the length and time dimensions, respectively. A straightforward non-
dimensionalization of this error estimate comprises the reference values uref and Lref:

φ̂= φ

u2
ref

Lr e f

. (3.14)

3.5.3. Reference error indicator
The aim of this thesis is not only to show that a particular error sensor can be used to obtain a
solution that is computational more efficient than simple uniform refinement. It is also to show
that the proposed error sensors hopefully perform better than a typical reference error sensor. Since
INCA is second-order accurate, the first derivative of the state variables should be exact. Therefore,
the second undivided difference in velocity magnitude has been chosen (see Section 2.5.1):

φ= max

(
∂2ui

∂x2
i

(hi )2

)
. (3.15)

The derivative was calculated using a simple second-order central finite difference scheme. The er-
ror indicator was calculated for x and y-direction, respectively, and then passed to the flag function.
No non-dimensionalization has been implemented.
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3.6. Flag function
The task of the flag function is to use the error sensor output of every cell and convert it into a mesh
adaption action. This happens according to two different criteria, one based upon considerations
regarding the block-based mesh approach and one purely based upon the error sensor.

Four main operations can be performed on a block: merging, splitting, refining, and coarsening.
Since coarsening is not considered for this thesis, the flag function has the authority to decide
whether a block should stay as it is, be split or refined. Block splitting is essential to reduce the
number of cells in a block prior to a possible mesh refinement action.

Algorithm 2 Refine when exceeding threshold.

1: for all blocks do
2: if (φ >= threshold) .and. (was last time split) then
3: flag block for refinement
4: else if (φ >= threshold) .and. (was last time refined) then
5: flag block for splitting
6: else
7: leave block unchanged
8: end if
9: end for

The easiest way of flagging a cell for refinement is by checking if it violates a simple error threshold
(Algorithm 2). This approach comes, however, with the drawback that even a minute violation of
the threshold from a single cell can lead to the refinement of a potentially huge block. Even though
one can argue that the error in a single cell might numerically pollute the entire fluid domain, for
practical reasons, it is desirable to filter out these cells. This is especially true when the error in the
cell is not present for the entire solution time but only at single time steps. Therefore, the follow-
ing algorithm is proposed, where a block is only flagged for refinement when a certain percentage
of cells within the block violates the error threshold. There are instances, however, where this ap-
proach can lead to problems. If a block merely clips a region if interest e.g., an immersed boundary,
adaption might be prevented. Another example would be a block that encompasses larges regions
of the fluid domain, including a wall with a boundary layer. The number of cells in the boundary
layer might be very small in comparison to the total cells in the block.

Algorithm 3 Refine when enough cells exceed threshold.

1: for all blocks do
2: calculate fraction of cells having: (ε >= threshold)
3: if (fraction >= fraction threshold) .and. (was last time split) then
4: flag block for refinement
5: else if (fraction >= fraction threshold) .and. (was last time refined) then
6: flag block for splitting
7: else
8: leave block unchanged
9: end if

10: end for

Directionality is straight forward to implement in the flag function when this information is already
contained in the error sensor. This is e.g., the case for the reference error sensor whose second
derivatives can be calculated in all three principal directions. For the Richardson and ETE error
estimates, this directional information is not available and must, therefore, be deduced from an-
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other source. The proposed approach is to use the directional information from the reference error
sensor.

Algorithm 4 Directionality algorithm for the flag function.

1: for all blocks do
2: calculate: φ1 = ux1x1∆x2

1 , φ2 = ux2x2∆x2
2 , φ3 = ux3x3∆x2

3
3: if 1D then
4: refine or split when allowed in direction of max(φ1, φ2, φ3)
5: else if 2D then
6: refine or split when allowed in direction of max(φ1, φ2, φ3)
7: refine or split when allowed in direction of second_max(φ1, φ2, φ3)
8: else
9: refine or split when allowed in all directions

10: end if
11: end for

Another strategy employed by the flag function is to limit the amount of refinement for every AMR
iteration. A similar strategy to the one outlined in Aftosmis and Berger [1] is followed. A mesh
adaption routine that refines all cells which have been flagged for refinement will lead to rapid error
reduction. However, this reduction does not act ’uniform’ on the error distribution in space. This
is illustrated in Figure 3.3, which shows a histogram of all error sensor values for a generic flow
problem. When refinement acts on all cells that exceed the refinement threshold, all of these errors
will reduce and thus eventually, after a couple of refinement actions, fall below the error threshold.
However, the figure shows that the cells with the most significant error will be the latest to fall below
the threshold. This means that the error is aggressively reduced in the low-error regimes of the
domain, but the high-error regimes are only tackled conservatively. The practical consequence is
that the cell-count in the domain will have inflated very quickly without having pushed the largest
errors below the threshold. The alternative approach is to target the highest error-regimes first while
neglecting low-error cells specifically. This strategy is depicted in Figure 3.4. Aftosmis and Berger
[1] suggests using a decreasing refinement threshold. The initial threshold is set quite high, thus
leading to refinement of only the worst cells. When the set of cells violating the threshold drops to
zero, the threshold is adjusted to target the next set of cells. In this thesis, a similar approach is used:
A fixed percentage of bad cells is refined every iteration step [64]. The exact workings are outlined
in Algorithm 5. First, all blocks that exceed the error threshold will be sorted according to their error
estimate. Subsequently, the worst blocks are chosen, selection stops when the total number of cells
contained in the blocks exceed a certain percentage threshold with respect to the cell count in the
blocks that contain bad cells. For every chosen block the refinement will happen as determined
from the previous parts of the flag function, for every non-chosen block the refinement action will
be overwritten and denied.

3.7. Restriction operators and ’destaggering’
For the calculation of the error estimate in, for example, Equation 3.5, the restriction of the fine
solution on the coarse grid is required. This is realized by the restriction operator I H

h :

Uh |Hh = I H
h Uh . (3.16)

For this task, a straightforward restriction operator has been chosen. The mean of all fine cells is
computed, which are encompassed by the corresponding coarse cell:

Uh |Hh =
∑N

i=1 Uh,i

N
. (3.17)
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Figure 3.3: Common flag strategy that does not give priority to the cells with the highest error. Figure from Aftosmis and
Berger [1].

Figure 3.4: Flag strategy in which the largest errors are tackled first. Figure from Aftosmis and Berger [1].

Algorithm 5 Ordered importance refinement for the flag function.

1: sort: all blocks that exceed the error threshold in decreasing order of their error estimate
2: pick: blocks from the top of the list until 10% of all bad cells are chosen
3: for all blocks do
4: if chosen then
5: block will be refined
6: else
7: refinement is denied
8: end if
9: end for

This method can be directly used when the corresponding values are cell-centered. For the incom-
pressible cases, a staggered mesh is employed, which means that the velocities are edge-based. A
’destaggering’ method has been used to transform the edge-based velocities to cell-centered ones.
The reasoning behind this was first based upon programming considerations and secondly on the
thought that this operation would also slightly smooth out the error and thus avoid error spikes,
which might lead to erroneous adaption. For the x-velocity the ’destaggering’ operation is:

ui , j ,k =
ui− 1

2 , j ,k +ui+ 1
2 , j ,k

2
. (3.18)
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Due to reasons of how the staggered mesh is implemented within INCA, the method changes at the
first index of all principle directions to:

u1, j ,k =
3u1+ 1

2 , j ,k −u1+ 3
2 , j ,k

2
. (3.19)

The method works analogously for the y- and z-direction. A graphical representation of the index
definitions is shown in Figure 3.5.

ui , j ,k ,vi , j ,k

ui+ 1
2 , j ,kui− 1

2 , j ,k

vi , j+ 1
2 ,k

vi , j− 1
2 ,k

Figure 3.5: Visualization of the ’destaggering’ method used to bring edge/face-based velocities to the cell center. Three-
dimensional sketch is analogous.

Every time the H-adaption pipeline is executed, also when ultimately no adaption happens, the
fine solution state vector is copied to the coarse simulation. There it replaces the old state vector
and thus resets the coarse simulation to the fine state. For all cell-centered variables, this happens
according to Equation 3.17. In the case of edge-based velocities, a different approach is used to
maintain the conservation of mass. The restriction operator works by taking the mean of the edge-
based velocities that coincide with the boundary of a coarse cell. An example is given for the x-
velocity in a two-dimensional mesh. The other operations are analogous for y and z-direction, as
well as when considering three dimensions. For the left intersecting boundary

uH ,i− 1
2 , j ,k =

uh,i− 3
2 , j−1,k +uh,i− 3

2 , j ,k +uh,i− 3
2 , j+1,k

3
(3.20)

is employed, while for the right intersecting boundary

uH ,i+ 1
2 , j ,k =

uh,i+ 3
2 , j−1,k +uh,i+ 3

2 , j ,k +uh,i+ 3
2 , j+1,k

3
(3.21)

was used. A visualization of the notation is given in Figure 3.6. The indices i , j ,k either belong to the
fine or the coarse mesh depending on whether subscript h or H is used.
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Figure 3.6: Visualization of the restriction operator used to map the edge/face-based fine solution onto the coarse grid.
Top coarse mesh cell, bottom corresponding fine mesh cells in two-dimensions.





4
Mach 3 shock over a forward-facing step

As the first test case, the Mach 3 shock over a forward-facing step, initially presented in Woodward
and Colella [2], is chosen. Compressible flows were one of the earliest problems solved with AMR,
allowing to predict structures such as shock waves with previously unobtainable accuracy. Research
has shown that even simple error sensors can be used with success for compressible flows [12]. This
test problem, therefore, covers the vital branch of compressible flow as well as resembling a first
gentle test case for all error sensors that should not pose too many difficulties, while providing many
exciting features such as shock(reflections), slip lines, and expansion fans.

First, a description of the case setup is given. Since this test case is cheap to compute, subsequently,
all investigated error sensors are computed on increasingly resolved uniform meshes, allowing for
a detailed study of their performance in capturing different flow structures and their sensitivity on
fine and coarse-grained meshes. Finally, actual results in the form of generated meshes and global
error level are given for isotropic and anisotropic refinement.
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4.1. Case setup
In this case, the compressible Euler equations have been solved for an ideal gas with γ = 1.4. The
top and bottom boundaries are equipped with a slip boundary condition. Since this case is two-
dimensional, a periodic boundary condition has been used for the front and rear boundary of the
problem. A Riemann inflow boundary condition is used at the left boundary and an outflow con-
dition at the right boundary. The flow entering the domain has a Mach number of 3. The domain’s
initial velocity is zero. The domain size and boundary conditions of the test case are shown in Fig-
ure 4.1. The domain is discretized with three blocks. This way, the slip boundary condition can be
directly applied to the block boundaries with the consequence that no immersed boundary method
is required. The starting mesh size for both the master and the slave simulation of all three blocks
is given in Table 4.1. It was chosen in such a way that the resulting mesh has equal cell sizes across
all blocks and that the cells have a width to height ratio of almost unity. Further, to avoid blocks
with very few cells, the coarse mesh needed to have at least two cells per direction for the cases in
which actual AMR was performed. The step corner received no special boundary condition, as it,
for example, was done in Woodward and Colella [2]. Therefore an erroneous production in entropy
is expected to take place at this point.
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Figure 4.1: Boundary conditions and geometry for the Mach 3 shock over a forward-facing step. Periodic boundary con-
ditions are applied in z-direction.

Table 4.1: Initial coarse and fine mesh for the Mach 3 shock over a forward-facing step.

(a) Master simulation

nx ny nz

Block 1 master 16 4 1
Block 2 master 16 16 1
Block 3 master 64 32 1

(b) Slave simulation

nx ny nz

Block 1 slave 8 2 1
Block 2 slave 8 8 1
Block 3 slave 32 16 1

4.2. Uniform mesh refinement with feature-based and novel error sensors
Since the test case is computationally cheap, first, the effectiveness of the error sensors was evalu-
ated on increasingly fine uniform meshes. Simulations were performed on mesh levels 0 to 4, where
0 corresponds to half the cells of the coarse starting mesh described above. Even though this leads
to blocks with as little as four cells, and would clearly not be used in any practical case, it was justi-
fied, so that the error sensor behavior can still be mapped on the smallest uniform mesh possible.
As stated in Chapter 2, an error sensor might need a certain minimum mesh resolution to be of any
use. Since the test case is compressible, a collocated mesh was chosen with an associated refine-
ment ratio of 2. All simulations were run until 12 seconds of simulated time, and subsequently, the
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error sensor distribution was extracted as a contour plot. An exponential color legend was chosen
to avoid the plots saturating too quickly due to the wide range of error estimates within the same
simulation. Table 4.2 shows the testing matrix of all computational experiments. The state variable
that was used within all error sensors is velocity. For compressible problems of this kind, it might
worth investigating the choice of, for example, density and temperature also.

Table 4.2: Test matrix of the investigated error sensors on increasingly fine uniform meshes.

Identifier Error sensor Figure τAMR (s)

M3EF-001 Eq. 3.4 with |U | 4.3 0.25
M3EF-002 Eq. 3.9 4.4 0.25
M3EF-003 Eq. 3.10 4.5 0.25
M3EF-004 Eq. 3.11 4.6 0.25
M3EF-005 Eq. 3.5 with |U | 4.7 0.25
M3EF-006 Eq. 2.3 with |U | 4.9 0.25
M3EF-007 Eq. 3.7 with |U | 4.8 0.25

When scanning through the results of all simulations, which are depicted in Figure 4.3 to 4.8, results
appear to be similar. At the initial refinement level, as expected, one can see that large parts of the
entire domain contain significant error sensor values, which at the same time are also very washed
out. With increasing mesh levels, the error areas become more spatially defined, and significant
values can only be found in either the shock regions, at the Kelvin-Helmholtz instability (slip line),
or the entropy layer. At the same time, qualitative differences between all error sensors start to
vanish more and more until they become very comparably at mesh level 4. On closer inspection,
some differences are revealed, which are discussed in the following paragraphs.

Bow shock: At refinement level 0, the bow shock is already so strong that it is marked as an area
of large error across all simulations. The error is smeared out, but the shape is recognizable. Some
error sensors are, however, clearer than others. The curvature criterion provides here the most re-
fined indication (Figure 4.9). The Richardson error senors, shown in Figure 4.3 and 4.3) perform also
reasonably well at this level. When going from level 1 to 4, the bow shock becomes more spatially
defined, and subsequently, the error senors merely concentrate on this area as well. The ETE-based
error senors slightly lag behind the others in terms of how crisp the error senor distribution ap-
pears, but these differences vanish quickly with increasing levels. What however remains is a slight
difference in the regions, with the ETE having the thickest "error band" at level 4. One could explain
this behavior from the origin of the ETE terms, which stems from the advection term (see e.g., Eq.
3.11). Thus the ETE terms, as their name says, show an error transport. Another behavior only to
be found in the Richardson- and ETE-type sensors are two aliases of the bow shock located slightly
downstream. The importance of these two additional error regions is not easy to judge and should
be further investigated.

Shock reflections: The shock reflections originating from the top and bottom walls are captured
similarly by the error sensors. Again the structures are washed-out at level 0 and become more and
more refined with a finer mesh. Important for the effectiveness of the error sensors is not only that
the regions of interest are captured but also that regions unimportant for the simulation are not
captured. For example, inspecting Figure 4.4d one can see how there is virtually no error indicated
between the shocks. This does not hold for Figure 4.5 and 4.6 which show traces of error emanating
from the shocks. From the qualitative observations, one can also here conclude that all error sensors
perform similarly.

Step corner and entropy layer: While every error sensor predicts an error around the step corner,
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the highest errors are usually placed at the prominent regions of the bow shock and the shock re-
flection point on the lower wall. The sharp corner, introduces an error into the simulation, leading
to the creation of a spurious entropy layer [2]. Due to the pressure gradient, this layer separates and
leads to the separation bubble found at the shock reflection point on the lower wall. With this in
mind, the behavior of the error sensors can be considered to be somewhat disappointing since the
erroneous effects in the separation bubble are a direct consequence of the error introduction at the
step corner. One could argue that an ideal error sensor should omit the erroneous separation point
and create substantial errors solely at the corner so that the user gets notified that an even finer
mesh is required to obtain a correct solution. The error sensors from Figure 4.3a, 4.7a and 4.9a do
not only suggest the separation bubble for refinement but also large parts of the entire lower wall.
The ETE-based error sensors perform in this regard qualitatively better since they only show high
errors at the separation bubble itself.

Kelvin-Helmholtz instability: The Kelvin-Helmholtz instability is the last flow feature, which is
qualitatively analyzed. In levels 0 and 1, this structure cannot be spotted in any error sensor. In some
Figures such as in 4.4b a refinement is suggested at the top wall, which vanishes with increasing
levels. Figure 4.4b can be regarded as an exception which already highlights the correct area from
level 1 onward. When level 2 is reached, the Kelvin-Helmholtz instability becomes visible across all
error sensors.

To conclude the qualitative analysis, looking at the results shown in Figure 4.3 to 4.8 one can say that
in general, all error sensors show behavior that makes them suitable for this test case. Every error
sensor highlights the areas with shock presence. Parts of little significance, e.g., in front of the initial
shock, are given a low error and thus will not be suggested for adaption. Overall a surprising result
considering the substantial differences in the deployed approaches. It is also pleasing to see how
all error sensors work well within the four discussed regions. These have different kind of dominant
physics and the fact that the error sensors perform well, highlights their diversity, especially when
considering that they are as simple as the second derivative of a state variable.
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Figure 4.2: Maximum value of error sensors listed in Table 4.2. Simulations have been performed for mesh level 0 to 4.

Looking at the quantitative side of things, a careful inspection of the error sensor contour plots re-
veals that the areas containing high errors shrink in size with an increasing level, but the magnitude
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within the error regions does not reduce. Figure 4.2 shows the maximum error sensor value of the
entire domain for all simulations at all levels. It becomes clear that as a matter of fact, the values
not only stagnate but even increase. The curvature and error sensor from Equation 3.7 are an ex-
ception, which stems from the fact that they both contain the mesh size within their method. When
considering the problem at hand, this behavior is actually not surprising. Since this type of prob-
lem is solved with the Euler equations, there are no finite shock thicknesses. With increasing mesh
level, this discontinuity becomes more and more spatially defined, which leads to higher gradients
and error gradients in the flow. For the ETE-based sensors this is especially true since they contain a
multiplication of two factors which are becoming large at the shock locations. In the case of an Euler
simulation, this is a undesired behavior since refinement would never stop. The pragmatic solution
to this, which is also used throughout this thesis, is to define a maximum mesh level, thus avoiding
over-refinement. Apart from, of course, developing a better error sensor, one other way to alleviate
this problem would be to introduce an adaptive threshold that changes with an increasing mesh
level. Yet another method could be to merely refine the worst cells until a target total cell count has
been reached. However, for this strategy, mesh coarsening is crucial. As noted before, coarsening
was not considered within this thesis. Otherwise, the transient setting would also lead to refine-
ment of uninteresting areas e.g., when a shock has not completely developed yet. Another practical
problem introduced by the increasing error is the definition of an appropriate error threshold. One
cannot necessarily specify a target error threshold right from the beginning. It simply might be too
high to get the initial adaption starting but might be entirely appropriate once it has started. On the
flip side, an error threshold that might be appropriate at the beginning of the adaption cycle might
simply be too low later on, leading to excessive over-refinement.
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(a) Level 0 - M3EF-001

(b) Level 1 - M3EF-001

(c) Level 2 - M3EF-001

(d) Level 3 - M3EF-001

(e) Level 4 - M3EF-001

(f) Legend - M3EF-001

Figure 4.3: Contour plots of error sensor Equation 3.4 with
velocity magnitude.

(a) Level 0 - M3EF-002

(b) Level 1 - M3EF-002

(c) Level 2 - M3EF-002

(d) Level 3 - M3EF-002

(e) Level 4 - M3EF-002

(f) Legend - M3EF-002

Figure 4.4: Contour plots of error sensor Equation 3.9.
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(a) Level 0 - M3EF-003

(b) Level 1 - M3EF-003

(c) Level 2 - M3EF-003

(d) Level 3 - M3EF-003

(e) Level 4 - M3EF-003

(f) Legend - M3EF-003

Figure 4.5: Contour plots of error sensor Equation 3.10.

(a) Level 0 - M3EF-004

(b) Level 1 - M3EF-004

(c) Level 2 - M3EF-004

(d) Level 3 - M3EF-004

(e) Level 4 - M3EF-004

(f) Legend - M3EF-004

Figure 4.6: Contour plots of error sensor Equation 3.11.
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(a) Level 0 - M3EF-005

(b) Level 1 - M3EF-005

(c) Level 2 - M3EF-005

(d) Level 3 - M3EF-005

(e) Level 4 - M3EF-005

(f) Legend - M3EF-005

Figure 4.7: Contour plots of error sensor Equation 3.5 with
velocity magnitude.

(a) Level 0 - M3EF-007

(b) Level 1 - M3EF-007

(c) Level 2 - M3EF-007

(d) Level 3 - M3EF-007

(e) Level 4 - M3EF-007

(f) Legend - M3EF-007

Figure 4.8: Contour plots of error sensor Equation 3.5 with
velocity magnitude.
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(a) Level 0 - x-direction - M3EF-006 (b) Level 0 - y-direction - M3EF-006

(c) Level 1 - x-direction - M3EF-006 (d) Level 1 - y-direction - M3EF-006

(e) Level 2 - x-direction - M3EF-006 (f) Level 2 - y-direction - M3EF-006

(g) Level 3 - x-direction - M3EF-006 (h) Level 3 - y-direction - M3EF-006

(i) Level 4 - x-direction - M3EF-006 (j) Level 4 - y-direction - M3EF-006

(k) Legend - M3EF-006

Figure 4.9: Contour plots of error sensor Equation 2.3 with velocity magnitude.
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4.3. Isotropic refinement
In this part, the performance of the error sensors is investigated during actual adaption. Every error
sensor mentioned above will be tested with three different error thresholds. The initial threshold
is the maximum error at level 0 from Figure 4.2. The threshold is thus chosen in such a way that
the adaption can barely start. In every subsequent simulation, the error threshold is reduced by a
factor of two (for M3AMR-007, a factor of 10 is chosen). For every test, a contour plot of the mesh
levels and the error sensor is shown. In both, a Mach number line plot is given in the background
as a reference to show the flow solution. The thresholds are the same as in Woodward and Colella
[2]. For convenience, the reference solution of density and Mach number from literature is given in
Figure 4.10. The testing matrix of all computational experiments is given in Table 4.3. It contains all
relevant configuration parameters of the AMR routine. Since in this thesis, no coarsening was con-
sidered, the simulation was run until 6 seconds without adaption on a mesh level of 0. At that point,
a new simulation was started with the full adaption routine activated. The reasoning behind this
choice is already to preposition the formed shocks in their approximate final location. Without this
initialization, the adaption routine would essentially refine all areas behind the initial bow shock,
since the shocks heavily change position at the beginning of the simulated time.

(a) Mach number, 30 contours from −0.9184 to 2.856 (b) Density, 30 contours from 0.2568 to 6.067

Figure 4.10: Baseline results from Woodward and Colella [2] at t = 4s (corresponds to t = 12s for the non-
dimensionlization used within INCA).

Table 4.3: Testing matrix for Mach 3 shock over a forward-facing step using an adapted mesh.

Identifier max lvl εAMR FlagF τAMR Dim Error sensor

M3AMR-001 4 0.1594 Alg. 2 0.25 none Eq. 3.4 with |U |
M3AMR-002 4 0.8644 Alg. 2 0.25 none Eq. 3.9
M3AMR-003 4 4.6150 Alg. 2 0.25 none Eq. 3.10
M3AMR-004 4 5.4465 Alg. 2 0.25 none Eq. 3.11
M3AMR-005 4 0.1862 Alg. 2 0.25 none Eq. 3.5 with |U |
M3AMR-006 4 0.9000 Alg. 2 0.25 none Eq. 2.3 with |U |
M3AMR-007 4 3.49E-4 Alg. 2 0.25 none Eq. 3.7 with |U |

When looking at the effect of the refinement threshold for experiment ’M3AMR-007’ (Figure 4.18) in
comparison to e.g., ’M3AMR-002’ (Figure 4.13) a clear difference in the created meshes across the
levels is visible. For the former, one can rather precisely control the overall adaption of the mesh,
i.e., there is an obvious difference in mesh size between the highest and the lowest threshold. The
control of the latter is much more restricted since already the first refinement thresholds will lead
to an adaption in large parts of the domain. In terms of control, one can say that the simulations
with the mesh size included provide the greatest control (M3AMR-6 and -7) followed by the "pure"
Richardson simulations (M3AMR-5 and -1) whereas the ETE-based simulations perform the worst
in this regard (M3AMR-2, -3, -4). An area where all approaches work almost identical, is the treat-
ment of the bow shock. A castellated mesh is created following the shape of the shock nicely. No
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pointless, and thus spurious fine blocks can be found in front of the shock. The mesh directly after
the bow shock is also very comparable across all simulations. Also here a castellated structure is
formed which adheres nicely to the shape of the bow shock, the simulations in Figure 4.15e and
4.18e seem a bit more generous with the cells in this area, but this can probably be attributed to
the error threshold being just a bit too low for this simulation thus leading to excessive refinement.
Traversing further through the regions to the slip line and its Kelvin-Helmholtz instability, one again
can speak about a very comparable situation. The entire slip line gets refined to the highest mesh
level. The area encircled by the slip line and the shock reflections also sees refinement. While this
area actually contains almost no error, the adaption that happens here can be attributed to the fact
that the balance criterion must be enforced and that the blocks are still quite large in size, thus
reaching from the shocks into the encircled area. This problem could, therefore, potentially profit
from splitting block three into multiple initial blocks. In the qualitative analysis, simulations ’M3EF-
001, -004, -006, -007’ were found to indicate an error across the entire lower wall. Looking now at
the actual adaption that took place, then indeed, the AMR routine in simulations ’M3AMR-001, -
004, -007’ lead to such a mesh. This was, however, not the case for the curvature criterion. A last
observation can be made when considering how far the flow has developed. The simulations in Fig-
ure 4.12e, 4.16e and 4.18c have reached a solution comparable to the uniform simulations such as
shown in Figure 4.3e. Examining the other simulations, then it can be seen that there is a difference
in the height of the transition from the bow shock to the normal shock, and also in the position
of the separation bubble. These different flow structures indeed belong to a lower simulated time.
These adaption routines, therefore, create a temporal error that makes the simulations lag behind!

10,000 100,000

0.01

0.02

0.03

Number of cells

G
lo

b
al

er
ro

r
∫ |u

h
−u

H
|d

V

M3AMR-001
M3AMR-002
M3AMR-003
M3AMR-004
M3AMR-005
M3AMR-006
M3AMR-007
fit, fit±10%

Figure 4.11: Global error vs cell count for all methods.

To obtain a quantitative measure of the effectiveness of the error sensors, a global error has been
computed for all simulations as well. Equation 3.7 was used as the error measure. The results can
be found in Figure 4.11. The graphs underline the results obtained so far. All error sensors did give
sensible refinement suggestions in the qualitative analysis. This similarity can also be found in the
behavior of the graphs. They can all considered to have the same slope, i.e., an increase in cell count
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leads to the same global error reduction for all methods. The Richardson-type and curvature-based
error sensors show a large span in error for the examined error thresholds. The ETE-based error
sensors all operate within a narrow band, highlighting that it is difficult with them to fine-tune the
exact mesh resolution of the problem since their error does increase with continuing refinement.
For better visualization, a fitted curve resembling the average error versus cell count was plotted
together with a curve resembling a 5% lower and higher error. It can be seen that all simulations
lie within this band. Especially ’M3AMR-007’ looks like a strong candidate, producing the lowest
error for the lowest cell count across a wide range. Such an error sensor, therefore, allows for two
approaches, either one wants to have a certain cell count and obtain the best error, or one wants
to have a certain error and obtain the best cell count. In both examples ’M3AMR-007’ performs the
strongest across the entire range.

(a) Mesh level - εAMR = 0.1594 (b) Error sensor - εAMR = 0.1594

(c) Mesh level - εAMR = 0.0797 (d) Error sensor - εAMR = 0.0797

(e) Mesh level - εAMR = 0.0399 (f) Error sensor - εAMR = 0.0399

Figure 4.12: Mesh levels (left) and error sensor values (right) for simulation M3AMR-001 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.3.
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(a) Mesh level - εAMR = 0.8644 (b) Error sensor - εAMR = 0.8644

(c) Mesh level - εAMR = 0.4322 (d) Error sensor - εAMR = 0.4322

(e) Mesh level - εAMR = 0.2161 (f) Error sensor - εAMR = 0.2161

Figure 4.13: Mesh levels (left) and error sensor values (right) for simulation M3AMR-002 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.4.

(a) Mesh level - εAMR = 4.6150 (b) Error sensor - εAMR = 4.6150

(c) Mesh level - εAMR = 2.3075 (d) Error sensor - εAMR = 2.3075

(e) Mesh level - εAMR = 1.1538 (f) Error sensor - εAMR = 1.1538

Figure 4.14: Mesh levels (left) and error sensor values (right) for simulation M3AMR-003 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.5.
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(a) Mesh level - εAMR = 5.4465 (b) Error sensor - εAMR = 5.4465

(c) Mesh level - εAMR = 2.7233 (d) Error sensor - εAMR = 2.7233

(e) Mesh level - εAMR = 1.3616 (f) Error sensor - εAMR = 1.3616

Figure 4.15: Mesh levels (left) and error sensor values (right) for simulation M3AMR-004 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.6.

(a) Mesh level - εAMR = 0.1862 (b) Error sensor - εAMR = 0.1862

(c) Mesh level - εAMR = 0.0931 (d) Error sensor - εAMR = 0.0931

(e) Mesh level - εAMR = 0.0466 (f) Error sensor - εAMR = 0.0466

Figure 4.16: Mesh levels (left) and error sensor values (right) for simulation M3AMR-005 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.7.
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(a) Mesh level - εAMR = 0.9000 (b) Error sensor - εAMR = 0.9000

(c) Mesh level - εAMR = 0.4500 (d) Error sensor - εAMR = 0.4500

(e) Mesh level - εAMR = 0.2250 (f) Error sensor - εAMR = 0.2250

Figure 4.17: Mesh levels (left) and error sensor values (right) for simulation M3AMR-006 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.9.

(a) Mesh level - εAMR = 3.4912E −4 (b) Error sensor - εAMR = 3.4912E −4

(c) Mesh level - εAMR = 3.4912E −5 (d) Error sensor - εAMR = 3.4912E −5

(e) Mesh level - εAMR = 3.4912E −6 (f) Error sensor - εAMR = 3.4912E −6

Figure 4.18: Mesh levels (left) and error sensor values (right) for simulation M3AMR-007 with Mach contours of -0.9184
to 2.856 in 30 increments. Mesh legend: Level 1, Level 2, Level 3, Level 4. Error sensor legend according to Figure 4.8.
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4.4. Anisotropic refinement
For the anisotropic refinement study, all simulations have been recomputed, but this time with a dir-
ectionality criterion (Algorithm 4) for the error sensor. For the Richardson and ETE-based sensors,
the undivided curvature was used to assess the refinement direction. An overview of all simulations
is given in Table 4.4. All other settings have been kept the same as in the simulations of Table 4.3.

Table 4.4: Testing matrix for Mach 3 shock over a forward-facing step using anisotropic refinement.

Identifier max lvl εAMR FlagF τAMR Error sensor

M3AMR-001-ANISO 4 0.1594 Alg. 2 0.25 Eq. 3.4 with |U |
M3AMR-002-ANISO 4 0.8644 Alg. 2 0.25 Eq. 3.9
M3AMR-003-ANISO 4 4.6150 Alg. 2 0.25 Eq. 3.10
M3AMR-004-ANISO 4 5.4465 Alg. 2 0.25 Eq. 3.11
M3AMR-005-ANISO 4 0.1862 Alg. 2 0.25 Eq. 3.5 with |U |
M3AMR-006-ANISO 4 0.9000 Alg. 2 0.25 Eq. 2.3 with |U |
M3AMR-007-ANISO 4 3.49E-4 Alg. 2 0.25 Eq. 3.7 with |U |
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Figure 4.19: Global error vs cell count for isotropic and anisotropic refinement.

While shocks are usually a good candidate for anisotropic refinement, this case can be regarded as
difficult for the block-structured mesh used in this thesis. Most of the shocks within this problem are
oblique shocks, thus are not aligned with either of the two principal directions. Since H-refinement
is used, adaption must happen in both directions to properly resolve an oblique shock. Figure 4.19
shows the global errors of the anisotropic simulations in comparison to the uniform ones. The
regressed error lines from the uniform AMR simulations of Figure 4.11 show that anisotropic re-
finement leads to an error-cell count efficiency that is roughly 10 to 15% higher. This increase is
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constant across all simulations. Merely the first error threshold of ’M3AMR-007-ANISO’ produces
an error that is above the respective one from the uniform simulation. It is important to talk here
specifically about efficiency since, for some simulations, such as ’M3AMR-004-ANISO’, anisotropic
refinement leads to a higher error but at a significantly lower cell count. For some simulations,
however, such as ’M3AMR-001-ANISO’, the efficiency increase is purely created by an error reduc-
tion while keeping the overall cell count constant. Finally, the error-cell range has approximately
stayed constant, meaning that the same control over the extent of the adaption is giving.

Figure 4.20 and 4.21 show the mesh refinement level in x and y-direction respectively for simulations
’M3AMR-001-ANSIO’ and ’M3AMR-005-ANSIO’. In both simulations, as one can expect, the curved
parts of the bow shock see uniform refinement in both directions. The straight part of the bow shock
just before the step does get refined up to the maximum level in x-direction but only to level one in
the y-direction. Whereas in the isotropic simulations, no spurious refinement was found in front
of the bow shock, now in anisotropic refinement, there are some apparently spurious refinements
in the y-direction, as shown in Figure 4.20b and 4.21b. They are, however, created by the ’Balance
criterion’ to satisfy mesh consistency. A situation is found at the bow shock that matches the one
from Figure 3.1. Due to the ’alternating block splitting and refinement criterion’, first, a refinement
action happens, followed by a splitting action to resolve the conflict. The refinement of the slip
line is anisotropically, with the mesh level being higher in y-direction than in x-direction. The same
behavior can be seen on the lower wall, which, in both simulations, sees mainly refinement in the
y-direction. In general, the refinement of the y-direction resembles the refinement of the uniform
case. Therefore the main savings in cell count stem from savings in the x-direction. This is also in
line with the results from Figure 4.9i and 4.9j where it is visible that the undivided curvature is much
higher in y-direction than in x-direction.

(a) Mesh level - x-dir - εAMR = 0.1594 (b) Mesh level - y-dir - εAMR = 0.1594

(c) Mesh level - x-dir - εAMR = 0.0797 (d) Mesh level - y-dir - εAMR = 0.0797

(e) Mesh level - x-dir - εAMR = 0.0399 (f) Mesh level - y-dir - εAMR = 0.0399

Figure 4.20: Mesh levels for simulation M3AMR-001-ANISO with Mach contours of -0.9184 to 2.856 in 30 increments.
Mesh legend: Level 1, Level 2, Level 3, Level 4.
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(a) Mesh level - x-dir - εAMR = 0.1862 (b) Mesh level - y-dir - εAMR = 0.1862

(c) Mesh level - x-dir - εAMR = 0.0931 (d) Mesh level - y-dir - εAMR = 0.0931

(e) Mesh level - x-dir - εAMR = 0.0466 (f) Mesh level - y-dir - εAMR = 0.0466

Figure 4.21: Mesh levels for simulation M3AMR-005-ANISO with Mach contours of -0.9184 to 2.856 in 30 increments.
Mesh legend: Level 1, Level 2, Level 3, Level 4.

4.5. Conclusion
To conclude, all the investigated refinement criteria perform very comparably, the most significant
differences among them can be found in the error magnitude evolution during adaption. A rising er-
ror leads to difficulties in choosing the correct threshold and automatically leads to poor controllab-
ility regarding the mesh size. Due to the discontinuities created by solving the Euler equations, there
will be no reduction in error at these points when looking at the difference between fine and coarse-
grained solution. Using the relative error is, therefore, less suitable. Methods using the mesh size
were able to solve this problem and led to the most favorable results. Nevertheless, and probably
especially due to the discontinuities, this case is very usable for adaption since the discontinuities
resemble the areas of interest, and all investigated methods did not have problems catching them.
One could also argue that this is the reason why AMR has been used with such success for compress-
ible flows so far (see Löhner [12] for numerous applications). The potential mesh savings are signi-
ficant, and capturing the areas of interest proves to be easy. Even though this computational case
is not ideal for anisotropic refinement when using a block-structured mesh, a measurable and con-
sistent reduction in global error level was recorded in comparison to isotropic refinement. Within
either isotropic or anisotropic refinement, the quantitative differences in error are small among the
error sensors. However, it appears that when looking at the entire cell count range, the Richardson
and ETE-based error sensors perform slightly better than the classic curvature error sensor. Never-
theless, all results lie within a range of ±10% in error and therefore any quantitative results should
be taken merely as an indication and could potentially change from case to case.



5
Flow around a two-dimensional circular

cylinder at Re=100

The second test-case that is used to benchmark the various error sensors is the flow over a two-
dimensional cylinder at Re=100. The two-dimensional and laminar setting makes it a good intro-
ductory problem for incompressible flow. Further, the presence of an immersed boundary to model
the cylinder wall gives this problem more relevance concerning industrial flows. The test case allows
to investigate the effect of the AMR routine on a quantity of interest, i.e., lift coefficient and Strouhal
number, as well as examining the behavior close to a wall and in the Kármán-vortex street.

The chapter starts by outlining the case setup and a reference solution that is used to rate the res-
ults of the different AMR simulations. Next, simulations with the AMR reference error sensors are
presented. Subsequently, the newly-developed error sensors are tested in isotropic and anisotropic
refinement and compared to the results from the reference error sensor. Two specific aspects are
discussed at the end of the chapter. The influence of the adaption time step on the performance of
the error sensors and the overhead that is created by using AMR within the simulation.
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5.1. Case setup
Table 5.1 shows a selected summary of publications that have studied this case. It becomes obvious
that even though the test case is simple, the spread of reported values for drag and lift is large.
Therefore the decision was made to compute a reference solution on a completely uniform mesh,
which will be used for assessing the performance of the AMR routines. This approach is deemed
sufficient since, for this assessment, merely the grid converged solution of INCA is important rather
than the true solution.

Table 5.1: Summary of results for flow around a two-dimensional cylinder at Reynolds number of 100. Taken from Meyer
et al. [5].

Study Cd Cl ,max St Type

Fey et al. [75] - - 0.165 Experiment
Kim et al. [14] 1.33 0.32 0.165 Simulation
Dröge and Verstappen [76] 1.24 0.3 0.165 Simulation
Meyer et al. [5] 1.26 0.34 0.165 Simulation

For all cases, the reference solution and the AMR calculations the same domain size is chosen. It
is shown in Figure 5.1. The domain size for the two-dimensional case is 20 cylinder diameters in
height and 40 diameters in length. The center of the cylinder is placed at 10 diameter height and
length. The boundaries on the top and bottom of the domain are set to free-slip, the front and rear
boundary to periodic. The inlet boundary has a velocity inflow, and the outlet boundary a pressure
outlet condition.
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Figure 5.1: Case setup for flow over a circular cylinder at Re = 100.

Table 5.2 shows the computed values for the uniform reference solution. In total, four simulations
were performed from level two to five. No computation below level two could be performed due
to divergence caused by the rough mesh resolution at the immersed boundary. Only computations
up to level five were possible due to the enormous cell count of almost 10 million. For all practical
calculations within this thesis, level five has been used as the reference solution. Otherwise, the
required computational resources would have exceeded the scope and time frame of this thesis.

Table 5.3 shows the initial mesh parameters of the coupled AMR solution. The number of cells was
chosen in such a way that the coarse simulation would just not diverge. The mesh of the master and
slave simulation after the cut-cell criterion has been used is given in Figure 5.2. Therefore one finds
1.35 and 4.05 cells across the diameter for the slave and master solution, respectively. Enough so that
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Table 5.2: Reference solution computed with uniform mesh for 2D cylinder.

Mesh level Cl ,max St NX NY Cells

2 0.0420 0.17241 162 81 13,122
3 0.3058 0.16828 486 243 118,341
4 0.3831 0.16850 1,458 729 1,062,882
5 0.3466 0.16919 4,374 2,187 9,565,938

the geometry is just being captured on the slave simulation by the immersed boundary approach.

Table 5.3: Initial mesh for flow over two-dimensional cylinder at Re=100.

Master Slave

Cells x-dir 18 6
Cells y-dir 9 3
Cells z-dir 1 1
Cut-cell level 2 2
Number of initial blocks 1 1

(a) Slave simulation (b) Master simulation

Figure 5.2: Mesh for flow over two-dimensional cylinder at Re=100 after cut-cell criterion. Mesh levels: Level 1, Level 2,
Level 3, Level 4, Level 5.

5.2. Reference curvature refinement
The undivided difference of curvature of velocity was chosen as the baseline error sensor. For all
simulations, the maximum cell level was incrementally increased from 2 to 5. Every computation
was initialized with the results from the previous level to save computational cost. No meaning-
ful differences in mesh, and results were observed when the computations were performed from a
clean slate. A total of five series of computations were performed to obtain a suitable Pareto front.
The case setup of these simulations is summarized in Table 5.4. No results are shown for the level
2 computation since, for that mesh, no vortex street could be observed. It should, however, be no-
ticed that the absence had no influence on the adaption routine, and the error sensor was still able
to suggest refinement so that the simulation traversed to higher mesh levels.

Figure 5.4 shows the error in the maximum lift coefficient, and Strouhal number for the curvature
adapted simulation. Two sets of graphs have been created. First, the errors were computed by using
the uniform level 5 simulation as the exact solution. Secondly, the relative error was computed with
the uniform solution of the maximum respective AMR mesh level as the reference. This was based
on the argument that the ’correct’ result of an AMR simulation fixed to a maximum mesh level is the
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Table 5.4: Simulation settings for curvature refinement of 2D-cylinder.

Legend Identifier Levels εAMR τAMR (s) tsim (s) Error sensor

REF-0001 3-4-5 0.01 0.25 70 Eq. 2.3 with |U |
REF-0002 3-4-5 0.02 0.25 70 Eq. 2.3 with |U |
REF-0004 3-4-5 0.04 0.25 70 Eq. 2.3 with |U |
REF-0010 3-4-5 0.10 0.25 70 Eq. 2.3 with |U |
REF-0025 3-4-5 0.25 0.25 70 Eq. 2.3 with |U |

one from the uniform mesh of the same level. Or said differently, when an adapted mesh leads to a
solution that is closer to the true solution (e.g., obtained from a DNS, or a higher mesh level) than
the uniform mesh, then this is the result of erroneous error cancellation within the domain. With
the assumption that no error sensor studied in this thesis has any obvious properties that lead to
beneficial error cancellation, the above-described methodology is justified.

Figure 5.4a and 5.4b show the error in lift coefficient in comparison to the results from the uniform
level 5 computation. The error is plotted against the cell count and computational cost. A new
Poisson-timestep-cell (PTC) metric was introduced in Appendix B to represent computational cost.
The metric is based on the argument that the number of Poisson solver iterations, the cell count,
and the number of time steps have the largest impact on the wall-clock time of an incompressible
simulation in INCA.

At levels 3 and 5, the results are as one would expect, the lower the error threshold, the lower the
actual error in the lift. This pattern is only broken at level 4, where the errors of the simulation with
the highest threshold are the lowest. When, however, looking at Figure 5.4c and 5.4d, this anom-
aly does not take place, and a lower threshold leads to a lower intra-level error. Interestingly, there
is an increase in inter-level error when using the relative comparison. This is a good example of
highlighting the problems of defining a fair reference when performing AMR. While the simulations
from level 3 to 5 span a cell count of approximately one order of magnitude, they span up to four
orders of magnitude for the PTC count. This nicely highlights that the surge in computational cost
from increasing the cell level does not necessarily stem from the higher cell count, but rather by the
need to compute more iterations to not exceed a particular CFL number and to cope with a worse
conditioned Poisson matrix. The error in Strouhal number behaves differently. In both compar-
isons, the error decreases with increasing mesh level. At level 3, the errors across all refinement
thresholds are almost identical. This changes slightly at level 4, with the simulation ’REF-0025’ fall-
ing behind slightly. When reaching level 5, there is a clear difference across all simulations, with
expected results: A lower error threshold leads to a lower error.

Figure 5.3 shows the resulting mesh of all five error thresholds at levels 4 and 5. The curvature error
sensor leads to sensible refinement in the vicinity of the cylinder. At level 5, in simulations ’REF-
0025’ to ’REF-0004’, only the first half of the cylinder gets refined, whereas the backface does not see
any refinement. It is also very apparent that substantial refinement of the far-field wake takes place.
The fan shape of the refinement wake can be explained by the fact that the vortex street diffuses in
y-direction when traveling downstream. Small spikes in curvature lead to speckles of refinement
zones in the far-field wake. Since a block was refined even if only a single cell violated the error
threshold, there is some inherent vulnerability to these speckles. Judging the result so far, then one
can be quite pleased with the results. The curvature criterion has shown that it can create a mesh
that leads to sensible results on the one hand but also reduces the overall cell count significantly on
the other. The ease of implementation adds on top.
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(a) REF-0025 - Level 4 (b) REF-0025 - Level 5

(c) REF-0010 - Level 4 (d) REF-0010 - Level 5

(e) REF-0004 - Level 4 (f) REF-0004 - Level 5

(g) REF-0002 - Level 4 (h) REF-0002 - Level 5

(i) REF-0001 - Level 4 (j) REF-0001 - Level 5

Figure 5.3: Mesh levels created by the reference curvature error sensor. Mesh levels: Level 1, Level 2, Level 3, Level 4, Level
5.
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(c) w.r.t uniform mesh of corresponding level
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(d) w.r.t uniform mesh of corresponding level
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(e) w.r.t uniform level 5 mesh
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(f) w.r.t uniform level 5 mesh
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(g) w.r.t uniform mesh of corresponding level
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Figure 5.4: Errors in maximum lift coefficient and Strouhal number for curvature error sensor. REF-0004 ( ), REF-0010
( ), REF-0025 ( ), REF-0002 ( ), REF-0001 ( ).
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5.3. Error sensors in isotropic adaption
First, the performance of the Richardson and ETE-type error sensors is mapped out for an isotrop-
ically refined mesh. The simulation parameters are shown in Table 5.5. The same error sensors were
investigated as for the Mach 3 shock case. For every error sensor, the goal was to obtain three series
of computations, all traversing from levels 2 to 5. Every series was performed with one particular
error threshold. The thresholds were determined, such that approximately the same cell range was
spanned as for the curvature error sensor discussed in the previous section. This required a con-
siderable amount of trial and error. This aspect will be discussed further in the conclusion of this
chapter. For simulation IS-004, it was only possible to perform one simulation. This was because
the error would increase with progressing refinement i.e., the same behavior as shown in Figure 4.2.
This led to excessively fine meshes and thus unfeasible long wall clock time.

Table 5.5: Testing matrix for two-dimensional circular cylinder at Re = 100 using isotropic refinement.

Legend Identifier Levels εAMR τAMR tsim(s) Error sensor Figure

IS-001-0004 3-4-5 0.04 0.25 70 Eq. 3.4 with |U | 5.5
IS-001-0010 3-4-5 0.10 0.25 70 Eq. 3.4 with |U | 5.5
IS-001-0025 3-4-5 0.25 0.25 70 Eq. 3.4 with |U | 5.5
IS-002-0001 3-4-5 0.01 0.25 70 Eq. 3.9 5.6
IS-002-0003 3-4-5 0.03 0.25 70 Eq. 3.9 5.6
IS-002-0004 3-4-5 0.04 0.25 70 Eq. 3.9 5.6
IS-003-0004 3-4-5 0.04 0.25 70 Eq. 3.10 5.6
IS-003-0006 3-4-5 0.06 0.25 70 Eq. 3.10 5.6
IS-003-0010 3-4-5 0.10 0.25 70 Eq. 3.10 5.6
IS-004-0075 3-4-5 0.75 0.25 70 Eq. 3.11 5.7
IS-005-0002 3-4-5 0.02 0.25 70 Eq. 3.5 with |U | 5.5
IS-005-0004 3-4-5 0.04 0.25 70 Eq. 3.5 with |U | 5.5
IS-005-0005 3-4-5 0.05 0.25 70 Eq. 3.5 with |U | 5.5
IS-007-000001 3-4-5 0.0001 0.25 70 Eq. 3.7 with |U | 5.7
IS-007-000002 3-4-5 0.0002 0.25 70 Eq. 3.7 with |U | 5.7
IS-007-000004 3-4-5 0.0004 0.25 70 Eq. 3.7 with |U | 5.7

The results, i.e., the errors in maximum lift coefficient and Strouhal number can be found in Figure
5.5 to 5.7. The results were split up into three sets of graphs to keep them readable. The resulting
meshes for level 5 are shown in Figure 5.8. For comparison, the Pareto front of the reference solution
was included in all figures. From a first glance, the results are very different across the error sensors,
as opposed to the Mach 3 forward-facing step flow, where the results were very similar. However, all
error sensors lead to a consistent reduction in absolute error for the lift coefficient and the Strouhal
number with increasing mesh level. Continuing with the analysis, for levels 3 and 4, the main differ-
ences in the solution are either the cell count or the PTC, while the actual error stays fairly constant
across every level. Thus, both quantity of interests do not seem to be affected considerably by the
actual mesh. This can be attributed to the fact that the errors created at the cylinder are dominat-
ing while any differences in wake refinement are only of minor importance. The situation changes
at the subsequent level. The general error has dropped in both metrics drops by up to one order
of magnitude, and now distinct performance differences can be spotted. At this level, some sim-
ulations reach an error of approximately 1% for the lift coefficient and approximately 0.5% for the
Strouhal number. At this stage, the influence of the refinement of the wake becomes more promin-
ent on the lift coefficient and Strouhal number and leads to measurable differences. When looking
at the relative error in the lift coefficient and Strouhal number, then the effects of the dominant
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immersed boundary get filtered out, and differences in error magnitude can be spotted for levels 3
and 4. Nevertheless, they remain much closer to each other than for the level 5 computations. The
relative error also has two other interesting properties. While there is a steady reduction in error for
the Strouhal number with increasing mesh level, the lift coefficient only shows this reduction when
going from level 3 to 4. From level 4 to 5 the error actually grows, so far that it actually exceeds the
ones from level 3.

Figure 5.5 contains the results of simulations ’IS-001’ and ’IS-005’. ’IS-001’ uses the relative error
in velocity magnitude as the error sensor, while ’IS-005’ uses the absolute error of the same. All
’IS-001’ simulations show a better computational efficiency in relative and absolute error for the lift
coefficient than the reference solution. Except for εAMR = 0.25, the same also holds for the Strouhal
number. For the same error threshold, one should also note the very low error in the lift coefficient
for the level 5 simulation. This can probably be attributed as a lucky circumstance due to favorable
error cancellation. The quantitative results look promising when comparing to the reference error
sensor. At level 5, ’IS-001-0010’ has approximately four times higher computational efficiency for
the lift coefficient than the reference. This number only drops slightly to 3.3 for ’IS-001-0004’. The
savings are more moderate for the Strouhal number. Here savings in cells and PTC of around 1.2
to 2.1 can be achieved. Interestingly, for εAMR = 0.25, one can observe a drastic influence of an ill-
conditioned Poisson matrix when looking at Figure 5.5f. This stems most likely from the fragmented
mesh, as shown in Figure 5.8a. No consistent refinement around the cylinder takes place. Speckles
of level 5 refinement zones are being placed randomly around the cylinder and in the near wake.
Leading to a very unsymmetrical and chaotic mesh. However, when the error threshold is lowered
to εAMR = 0.10, an almost symmetric mesh is formed, which merely refines the immersed boundary
and the near wake up to x = 12 with the highest refinement level. Lowering the threshold even
further to εAMR = 0.04 extends the near wake refinement until approximately x = 13. Larger changes
happen in the level 3 zone which gets extended from x = 17 to x = 27. The mesh also loses its near-
perfect symmetry.

The IS-005 simulations cannot keep up with the excellent performance of the IS-001 ones. Con-
cerning the cell count, the IS-005 series can still produce higher computational efficiency in the lift
coefficient and Strouhal number than the reference indicator. The exception being ’IS-005-0002’
at level 5, which requires about double the cell count than the reference simulation. The picture
changes when the PTC count is used. For levels 3 and 4, the computational efficiency is still higher,
but when going down to level 5, the performance deteriorates to just about equal or worse than
the reference error sensor. In contrast to ’IS-001’, ’IS-005’ puts more emphasis on the refinement of
the wake. At εAMR = 0.05, one can already start to see that the refinement zone around the cylinder
is wider. At this threshold, still, a reasonably symmetric mesh is generated. Further, the only area
which is getting refined with a level 5 mesh is the front half of the cylinder. With a decreasing error
threshold, the wake is getting refined more and more, until at εAMR = 0.02 two level-4-trains are ex-
tending until almost the end of the domain. Both trains are covered with level 5 refinement speckles.
The level 5 refinement of the immersed boundary covers the entire cylinder but can be considered
as very uneven. In general, the empirical quality of the mesh cannot be considered as good, as for
’IS-001’. The results of ’IS-001’ and ’IS-005’ are very interesting since they, at least for this test case,
can answer the question on whether one should refine areas of large absolute error, as the IS-005
simulations do, or refine areas of large relative error. Since the latter is more successful, one can
deduce that errors in ’weak features’ within a solution can have a more significant impact on the
global result than the large absolute errors of the strong features. An argument also supported by
Löhner [12] for compressible cases.

The results of error sensors ’IS-002’ and ’IS-003’ are depicted in Figure 5.6. At level 3, all ’IS-002’ sim-
ulations pretty much lie on the reference Pareto front. For the Strouhal number, the front is even
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getting exceeded. Simulation ’-0003’ and ’-0004’ suddenly start to perform much better at level 4.
Here we can observe meshes with half the cell count for the same error in comparison to the ref-
erence. The same performance gains can also be found when looking at the PTC count. At level
5, ’-0003’ and ’-0004’ can still lead to cell savings in the order of 30 to 40%. Unfortunately, when
looking at the PTC count, the performance of ’-0004’ deteriorates significantly and now lies on the
Pareto front. The computational efficiency of ’-0001’ for the lift coefficient error is comparable to
the reference and sometimes even slightly worse. When looking at the Strouhal number, then the
performance is slightly better at level 4 but completely crumbles at level 5. The mesh generated by
’IS-002’ is again fairly wake-dominant. At εAMR = 0.04, only the front half of the cylinder is refined
with the maximum level. Stepping to the next threshold leads to a mesh covering the entire im-
mersed boundary with a level 5 mesh. At this point again, two level-4-refinement-zone-trains start
to form. At the lowest threshold, also the near wake is refined with a level 5 mesh. Unfortunately,
the mesh is again not very symmetric and contains many speckles. Both wake trains now also reach
the end of the domain.

In comparison to ’IS-002’ ’IS-003’ shows a weaker performance. At level 3, all simulations have
passed the Pareto front of the reference for the lift coefficient. The situation is similar to the Strouhal
number. The exception being ’-0006’, which can stay ahead of the reference performance. The
computational efficiency of the error sensors increases slightly at level 4. Simulation ’-0010’ can
even save around 50% of cells in comparison to the reference when looking at the lift coefficient and
even slightly more when looking at the Strouhal number. When using the PTC metric, these gains
increase to about 60%. The two other computed error levels show roughly identical performance for
the lift coefficient in comparison to the reference computation. However, for the Strouhal number,
they can perform up to 25% better. At level 5, the overall performance worsens again. While ’-0010’
is still a good contender, leading to savings in cells of about 35% and 20% in PTC, ’-0006’ and ’-0004’
perform either worse or equal to the reference throughout all metric. A tiny exception being ’-0004’,
which can save about 25% cells for the lift coefficient. Unfortunately, these gains do not translate
to PTC savings also. At the highest threshold, only the front face is refined with a level 5 mesh, and
the immersed boundary already sees a substantial amount of lateral refinement at the bottom and
top of the cylinder. At the lowest threshold, the mesh shares some resemblance with the one from
’IS-001-0004’. The near wake sees equal level 5 refinement up to approximately the same x-location,
even though the mesh can not be considered as being as uniform. Further, the entire wake is also
refined, but only with a level 3 mesh.

Figure 5.7 shows the last two error sensors. Unfortunately for ’IS-004’, only one simulation series was
performed. The error sensor was so sensitive to the exact refinement threshold that either almost no
refinement took place or that so much refinement happened that a mesh of at least 1 million cells
was obtained. Nevertheless, some interesting observations can be made. At level 3, the performance
is about equal to the reference error sensor. At level 4, however, the lowest error in the lift coefficient
of all simulations is obtained, while maintaining a cell count of only 50,000. The error is so low that
the reference error sensor is only able to achieve it with a level 5 mesh. When looking at the relative
error, one can spot that it is surprisingly large. The conclusion is thus that the low error stems from
favorable error cancellation. It is also interesting to see that the error in the lift coefficient stays
constant when going from level 4 to 5. At the latter level, the error sensor penetrated the Pareto
front for both metrics. The resulting mesh is also noteworthy. The front face of the cylinder sees
level 5 refinement, while the back face stays at level 4. However, further downstream, two large
blobs of level 5 refinement are formed. Additionally, some level 5 refinement speckles can also be
found in the far-wake.

At level 3, the simulations of ’IS-007’ perform equal or worse than the reference error sensor. Step-
ping up to level 4, some savings can be found. Simulations ’-000002’ and ’-000004’ give around 10 to
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15% savings in cells and PTC for the lift coefficient error. The same error in the Strouhal number can
be realized for about 40% fewer cells and PTC in simulation ’-000004’. Simulation ’-000002’ can still
deliver 15% savings in cell count but performs as good as the reference when using PTC count. At
level 5, all error sensors again perform equal or worse than the reference. Noteworthy is simulation
’-000002’, which performs as good as the reference for the cell count, but when using PTC as the
benchmark, it takes about twice the time to compute. The effects of an ill-conditioned Poisson mat-
rix are thus clearly visible. When looking at the mesh, one can see that the error sensor puts, when
compared to all other error sensors, the most emphasis on wake refinement. Refinement at the im-
mersed boundary is only taking place at the front face and the sides. At the highest threshold, there
is no level 5 refinement, whereas large parts of the domain after the cylinder are already refined with
level 3. At εAMR = 0.0001 still, only the front and sides of the cylinder see a level 5 refinement, but
almost the entire domain is already refined with a level 3 mesh, and also the extent of the level 4
mesh wake refinement is considerable.
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Figure 5.5: Errors in maximum lift coefficient and Strouhal number for isotropic refinement. REF ( ), IS-001-0004
( ), IS-001-0010 ( ), IS-001-0025 ( ), IS-005-0002 ( ), IS-005-0004 ( ), IS-005-0005 ( ).
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Figure 5.6: Errors in maximum lift coefficient and Strouhal number for isotropic refinement. REF ( ), IS-002-0001
( ), IS-002-0003 ( ), IS-002-0004 ( ), IS-003-0004 ( ), IS-003-0006 ( ), IS-003-0010 ( ).
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Figure 5.7: Errors in maximum lift coefficient and Strouhal number for isotropic refinement. REF ( ), IS-004-0075
( ), IS-007-000001 ( ), IS-007-000002 ( ), IS-007-000004 ( ).



68 5. Flow around a two-dimensional circular cylinder at Re=100

(a) IS-001-0025 - Level 5 (b) IS-005-0005 - Level 5

(c) IS-001-0010 - Level 5 (d) IS-005-0004 - Level 5

(e) IS-001-0004 - Level 5 (f) IS-005-0002 - Level 5

(g) IS-002-0004 - Level 5 (h) IS-003-0010 - Level 5

(i) IS-002-0003 - Level 5 (j) IS-003-0006 - Level 5

Figure 5.8: Mesh levels created by isotropic refinement part 1. Mesh levels: Level 1, Level 2, Level 3, Level 4, Level 5.
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(a) IS-002-0001 - Level 5 (b) IS-003-0004 - Level 5

(c) IS-004-0075 - Level 5 (d) IS-007-000004 - Level 5

(e) IS-007-000002 - Level 5 (f) IS-007-000001 - Level 5

Figure 5.9: Mesh levels created by isotropic refinement part 2. Mesh levels: Level 1, Level 2, Level 3, Level 4, Level 5.
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5.4. Error sensors in anisotropic adaption
The 2D cylinder case is potentially a good candidate for anisotropic refinement. The wake of the
cylinder, when statistically averaged, contains flow structures mainly in the lateral direction. Re-
finement focused on y-direction could, therefore, lead to meaningful savings in computational re-
sources. Table 5.6 shows the list of computational experiments used for this investigation. Two error
sensors have been recomputed with anisotropic refinement (Algorithm 4). This includes all simu-
lations of the reference error sensor with and the two lowest error thresholds of the relative error
Richardson sensor. The latter was chosen since it showed the best overall performance for isotropic
refinement. The errors in Strouhal and maximum lift coefficient are shown in Figure 5.11. The mesh
for the maximum refinement level 5 is depicted for the x and y-direction in Figure 5.10.

Table 5.6: Testing matrix for two-dimensional circular cylinder at Re = 100 using anisotropic refinement.

Legend Identifier Levels εAMR τAMR tsim(s) Error sensor

AS-001-0004 3-4-5 0.04 0.25 70 Eq. 3.4 with |U |
AS-001-0010 3-4-5 0.10 0.25 70 Eq. 3.4 with |U |
REF-ANSIO 3-4-5 0.01,0.02,0.04,0.10,0.25 0.25 70 Eq. 2.3 with |U |

The isotropic reference simulations led to a rather monotonic Pareto front, the results of the aniso-
tropic refinement are, however, more erratic. Often different levels overlap, or error reduction stag-
nates on either level 4 of 5. This means that unlike the isotropic refinement where a lower threshold
leads to more computational cost but also a lower error, the anisotropic refinement is much more
sensitive on the particular error threshold. Considering merely the cells as the performance metric,
one can find about equal performance between the isotropic and anisotropic error sensor at level
3. Large cell savings can be observed at levels 4 and 5. At level 4, the cell count is cut in half while
still maintaining the same error in the lift coefficient and Strouhal number. At level 5, one can also
find savings of up to 50% for the Strouhal number for the higher error thresholds. At the lowest
threshold, savings of only up to 15% can be found. The result at level 5 for the lift coefficient can
be regarded as somewhat peculiar. On the highest threshold, an error is obtained, which lies in the
region of a level 3 simulation. When going to the next lower threshold, one finds that the cell count
has actually decreased, which is also counter-intuitive. Reducing the error threshold even further,
the actual error in the lift coefficient moves sideways with only a very slight error reduction with in-
creasing mesh size. The error is now on the level of the isotropic error sensor. Unfortunately, when
one uses the PTC count to determine the computational cost, the situation changes, and all gains
are largely negated. On level 4, we can find in both the quantities of interest savings of up to 25 to
50%. However, there are also error thresholds where the anisotropic error sensor performs equal or
even worse than the isotropic one. At level 5, the tide turns completely against the anisotropic error
sensor, which then, in turn, requires up to 50% more PTC than its isotropic brother. The results for
the Richardson error sensor (IS-001) are even less convincing. For threshold ’-0010’, one finds sav-
ings in cells for the Strouhal number, but an increase in cell counts for the lift coefficient. ’-0004’,
on the other hand, can lead to savings for both quantities of interest. Here one can find savings of
about 30% at level 5. Yet again, when looking at the PTC count, the results become much worse. At
levels 4 and 5, the anisotropic simulations require more PTC than their isotropic counterpart. This
is especially the case for the level 4 simulation, e.g., the anisotropic simulation of ’-0010’ requires
about five times more PTC.

Figure 5.10 shows the anisotropic mesh. The isotropic counterparts can be found in Figure 5.3 and
5.8 respectively. Scanning the resulting figures shows that the y-direction meshes share the largest
similarity with the isotropic ones. Thus, the error sensors indeed suggest mainly refinement in the
y-direction, as predicted in the introduction to this section. While in the y-direction, the meshes
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can be regarded as rather symmetric; this is clearly not the case for the x-direction. The anisotropic
meshes are much more irregular than their isotropic counterparts. Looking at the simulations sep-
arately: The reference error sensor refines the front face of the cylinder in x-direction while the
lateral parts of the cylinder are refined in the y-direction with a level 5 mesh. Even though there
is x-refinement in the wake also, one can say that the refinement in the y-direction is significantly
more prominent. One would expect that at least in one direction, the wake refinement zones have
the same extent as their isotropic sibling. This is, however, not the case, in both principal directions,
the wake is refined to a much lower degree. The exception here is the lateral level 5 refinement
mentioned before. Additionally, one can observe that the ’refinement speckles’ have vanished as
well. The situation is exactly the opposite in the region in front of the immersed boundary. Here
the mesh in y-direction extends forward up to the inlet face of the flow domain, something that
does not happen for the isotropic simulation. The latter is also an observation that can be made
for Richardson-type simulation. The situation is different for the wake, e.g., in case ’*-001-0010’,
the wake extends in y-direction up to x ≈ 17 for the isotropic simulation but up to x ≈ 25 for the
anisotropic one. The y-direction wake thus grows, as opposed to the shrinking as it was happening
for the reference case. With respect to the near field wake and immersed boundary refinement, the
anisotropy at the maximum mesh level is much lower for the Richardson simulations. Especially
the wake directly behind the cylinder gets refined almost isotropically. The far-field wake is again
dominated by y-refinement. Last but not least, as in the reference case, the mesh is rather irregular
in x-direction.



72 5. Flow around a two-dimensional circular cylinder at Re=100

(a) Level 5 - x-dir - REF-0004-ANISO (b) Level 5 - y-dir - REF-0004-ANISO

(c) Level 5 - x-dir - AS-001-0004 (d) Level 5 - y-dir - AS-001-0004

(e) Level 5 - x-dir - AS-001-0010 (f) Level 5 - y-dir - AS-001-0010

Figure 5.10: Mesh levels created by error sensors using anisotropic refinement. Mesh levels: Level 1, Level 2, Level 3, Level
4, Level 5.
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(g) w.r.t uniform mesh of corresponding level
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(h) w.r.t uniform mesh of corresponding level

Figure 5.11: Errors in maximum lift coefficient and Strouhal number for anisotropic refinement of 2D-cylinder. REF
( ), IS-001-0004 ( ), IS-001-0010 ( ), REF-ANISO ( ), AS-001-0004 ( ), AS-001-0010 ( ).
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5.5. Effect of adaption time step
The mesh adaption time step (τAMR) used for the algorithm has a potentially big impact on the
mesh, and thus error that is going to be obtained. If the time step is too large, then the master
and slave simulation might ’run apart’ so that in the limit case, most of the domain will be refined,
resulting in poor computational efficiency. On the flip side, if the time step is too small, then there
might not be enough difference in both simulations to start adaption. A series of tests have been
performed to investigate this effect. The standard Richardson relative-error from Equation 3.4 was
used for this investigation. Two variables were varied, the time step with values of 0.01, 0.08, 0.25,
and 0.75 seconds and two error threshold of 0.04 and 0.1 respectively. Table 5.7 summarizes all
simulation parameters. The results of all simulations are shown in Figure 5.12, the corresponding
mesh of level 5 is shown in Figure 5.13.

Table 5.7: Simulation settings for time step investigation of 2D-cylinder.

Legend Identifier Levels εAMR τAMR tsim(s) Error sensor

TIME-001-0004-01 3-4-5 0.04 0.01 70 Eq. 3.4 with |U |
TIME-001-0004-08 3-4-5 0.04 0.08 70 Eq. 3.4 with |U |
TIME-001-0004-25 3-4-5 0.04 0.25 70 Eq. 3.4 with |U |
TIME-001-0004-75 3-4-5 0.04 0.75 70 Eq. 3.4 with |U |
TIME-001-0010-01 3-4-5 0.10 0.01 70 Eq. 3.4 with |U |
TIME-001-0010-08 3-4-5 0.10 0.08 70 Eq. 3.4 with |U |
TIME-001-0010-25 3-4-5 0.10 0.25 70 Eq. 3.4 with |U |
TIME-001-0010-75 3-4-5 0.10 0.75 70 Eq. 3.4 with |U |

For the simulations of εAMR = 0.04, there is very little difference in error for both Strouhal number
and lift coefficient at levels 3 and 4. The exception is simulation τAMR = 0.75, which requires about
double the PTC count for achieving the same error level. Nevertheless, even then, the performance
of the reference error sensor can be matched or exceeded. For simulations τAMR = 0.01 to τAMR =
0.25, at level 5, the error in Strouhal number and lift coefficient is gradually decreasing, but at τAMR =
0.75 the error suddenly spikes and even exceeds the one from τAMR = 0.01 for the lift coefficient. The
Pareto front of the reference error sensor gets also exceeded for the error in Strouhal number. The
error spike is a peculiar behavior since a finer mesh should lead to a more accurate result. A careful
inspection of the time series of the results showed that the maximum lift coefficient was constant
across the shedding cycles. Thus poor post-processing can not be the reason for this behavior. One
has to conclude that either advantageous error canceling takes place for the lower τAMR or that a
more refined mesh can indeed lead to higher errors. In terms of error at level 5, the first three AMR
time steps lead to savings of up to 5 times the PTC count for the lift coefficient and 3.5 times for the
Strouhal number. The measurable differences in lift coefficient error and Strouhal number for the
lowest two τAMR are also interesting considering the very similar meshes as shown, e.g., in Figure
5.13a and 5.13c. One could also argue that the results are already within some noise band. There is
only a difference of one block between both simulations, but this already has a measurable influence
on the obtained error.

Considering the simulations of εAMR = 0.10, again, very similar results are obtained at level 3 and 4
for the error in lift coefficient and Strouhal number. At level 5 τAMR = 0.75 performs, as previously,
erratically. While the error in the lift coefficient is again higher, now suddenly, the by far lowest
error is obtained for the Strouhal number. The results for τAMR = 0.01 to τAMR = 0.25 are this time
even closer to each other. The reasoning for this can be seen in the virtually identical meshes. Only
simulation τAMR = 0.25 has one extra refined block. In terms of computational efficiency savings
of about four times can be achieved for the lift coefficient while savings of about two times in PTC
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count can be achieved for the Strouhal number when comparing to the reference error sensor.

It is apparent that the influence of τAMR grows with a decreasing error threshold of εAMR. While
at εAMR = 0.10 the results for τAMR = 0.01 to τAMR = 0.25 are close to each other, the differences
grow with εAMR = 0.04. In general, these three τAMR perform very similar in terms of computational
efficiency. τAMR = 0.25 can however lead to the lowest error in both metric for εAMR = 0.04. Based
on the results, the decision was made to use τAMR = 0.25 for all (previous) investigations of the 2D
cylinder problem. Obviously, this entire analysis was performed for one particular error sensor only,
a full analysis for all examined error sensors is, unfortunately, not within the scope of this thesis. The
main conclusion from this investigation should, however, be that the performance of the Equation
3.4 is very robust against any changes in the AMR time step. The investigated range spans almost
two orders of magnitude, and only one case performed worse in the Strouhal metric in comparison
to the reference error sensor. While the Richardson-type error sensor requires the extra parameter
τAMR, one can conclude that it does not detrimentally affect the user-independence. At least for
laminar flow, it must not be tuned very well to obtain an effective adaption.
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(a) absolute - εAMR = 0.04
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(b) absolute - εAMR = 0.1
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(c) absolute - εAMR = 0.04
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(d) absolute - εAMR = 0.1
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(e) relative - εAMR = 0.04
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(f) relative - εAMR = 0.1
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(g) relative - εAMR = 0.04
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(h) relative - εAMR = 0.1

Figure 5.12: Errors in maximum lift coefficient and Strouhal number for simulations of τAMR investigation. TIME-
001-0004-01 ( ), TIME-001-0004-08 ( ), TIME-001-0004-25 ( ), TIME-001-0004-75 ( ), TIME-001-0010-01
( ), TIME-001-0010-08 ( ), TIME-001-0010-25 ( ), TIME-001-0010-75 ( ), REF ( ).
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(a) TIME-001-0004-01 - τAMR = 0.01 - εAMR = 0.04 (b) TIME-001-0010-01 - τAMR = 0.01 - εAMR = 0.10

(c) TIME-001-0004-08 - τAMR = 0.08 - εAMR = 0.04 (d) TIME-001-0010-08 - τAMR = 0.08 - εAMR = 0.10

(e) TIME-001-0004-25 - τAMR = 0.25 - εAMR = 0.04 (f) TIME-001-0010-25 - τAMR = 0.25 - εAMR = 0.10

(g) TIME-001-0004-75 - τAMR = 0.75 - εAMR = 0.04 (h) TIME-001-0010-75 - τAMR = 0.75 - εAMR = 0.10

Figure 5.13: Mesh created by simulations of τAMR investigation. Mesh levels: Level 1, Level 2, Level 3, Level 4, Level 5.
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5.6. Overhead created by the master-slave approach
If the entire AMR routine is too expensive, then any advantages in speed up due to cell count sav-
ings will be negated. For the Richardson-type simulations, there are two potential sources for ex-
cessive computational cost, the need for a second simulation, and the routine itself. To investigate
the former, the number of cells, the time steps, and average Poisson iterations for one time step
have been recorded for the last shedding cycle. Table 5.8 summarizes these results. First, as one
expects, the number of cells for the master simulation is nine times higher than for the slave simu-
lation. However, every computed time step needs for the master simulation 193.3 Poisson iterations,
whereas the slave simulation only requires 78.65. A difference in mesh level, thus, adds cells to not
only the bill of computational cost but also results in a worse conditioned Poisson matrix. This high-
lights why the total computation cost should not only be measured in cell count but why rather a
metric such as PTC can be advantageous. Using the PTC-metric, one obtains a total computational
cost factor of 22.11 between master and slave. The extra 4.5% of overhead is measurable but can be
regarded as more than acceptable especially when looking at the computational savings that AMR
provides in the first place in comparison to a uniform simulation.

Table 5.8: Cells at last time step and overall PTC count for master and slave simulation of IS-001-0010 level 5.

Time steps Cells avg. poisson iterations PTC

Master 2852 67554 193.3 3.724E10
Slave 2852 7506 78.65 1.684E9

Fraction 1 9 2.46 22.11

Neither the number of cells nor a metric such as PTC take into account the overhead, which is cre-
ated by the AMR criterion itself. In the case of an adjoint simulation, the overhead of the AMR
criterion can be of the same order of magnitude as the primary problem [57]. This highlights that
for a successful AMR adaption, not only an efficient mesh needs to be created, but the methodo-
logy used to obtain it in the first place needs to be efficient as well. Using INCA’s internal profiler,
the wall clock time of the AMR routine was recorded. Table 5.9 shows the measurements for one
set of cases from Section 5.5 with τAMR of 0.01, 0.08, 0.25 and 0.75. Further, the average number
of solver time steps between adaptions is given as well. Adaptions are defined here as: Every time
the error sensor is used to query the results for possible mesh changes, including the latter. Before
going into the analysis, the output in terms of wall-clock time is given as a percentage of the total
computation time. The total computational time includes everything, the time required to write
results to the hard drive, but also the time that was spent at MPI_WAIT commands. Further, the
output comes only from the rank 0 process. Since the case was parallelized with multiple ranks and
no perfect load balancing was achieved throughout the computation, the results should be taken
merely as an indication of the order of magnitude of the cost that the AMR criterion requires. Since
τAMR spans almost two orders of magnitude, a good overview is obtained. When the AMR criterion
is called every 0.01 seconds, thus every 5th solver iteration, a computational cost of under 5% is ob-
tained. This reduces to less than 0.4% at τAMR = 0.75. Since, in this thesis, it is avoided to call the
AMR criterion after every single time step, as often done in the classical Richardson-type adaptions,
the computational overhead can be considered as almost negligible. Especially considering that in
Section 5.5 and optimum τAMR of 0.25 seconds was found, which still produces less than 0.5% ex-
tra computational overhead. Considering that during the implementation of the adaption routine,
not too much attention was paid in computational optimization, improvements in these should
definitely still be possible, reducing the overhead even more. From the discussion so far, one can
conclude that the significant part of the computation overhead of the Richardson-type AMR criteria
is produced by the slave computation and not the error sensor computation and adaption itself.
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Table 5.9: Runtime of AMR of Richardson-based adaption for 2D cylinder case.

Identifier % of runtime τAMR (s) timesteps between call

TIME-001-0010-01 3.56 0.01 5
TIME-001-0010-08 0.91 0.08 39
TIME-001-0010-25 0.47 0.25 120
TIME-001-0010-75 0.36 0.75 359
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Figure 5.14: Convergence plot for IS-001-0010. Absolute error of master simulation ( ), absolute error of slave simu-
lation ( ), difference between master and slave simulation ( ).

Scientific simulations usually call for a grid convergence study. One could regard the extra coarse
simulation, which is necessary for the Richardson approach, part of this. In such a case, there is
no overhead, since a coarse simulation would have been computed anyway. Figure 5.14 shows two
plots for the Strouhal number and the lift coefficient, respectively. This entails the error of the mas-
ter and slave simulation with respect to the level 5 solution from the uniform grid as well as the
difference in solution between the master and slave simulation. The hope is to deduct from the dif-
ference between the master and slave coefficients, a measure for the grid convergence of the entire
problem. For the lift coefficient, this works quite well. Both, the lines for the true error of the master
simulation and the estimate obtained from the master and slave computation agree closely for level
4 and 5. The results are worse for the error for the Strouhal number. Here close agreement can only
be found for level 4. However, the trends are still matching, meaning that the actual and estimated
error becomes smaller with increasing level. This means that the results of the master and slave
simulation are converging towards each other. To conclude, this simple study shows that at least
for this problem, one can estimate the convergence and overall error level using this approach. Last
but not least, the peculiar results of the slave simulation should also be highlighted. The true error
is lower than that of the master for the lift coefficient, even though the mesh is nine times smaller.
Since the slave runs operate at a lower CFL number due to the time step synchronization, a tem-
poral error was suspected for causing the results. However, repeating the simulation with a master
CFL number of 0.5 led to virtually identical results. The reason for this behavior thus remains to be
unknown and requires additional attention.

5.7. Conclusion
In general, this chapter provided encouraging results showing an effective reduction in the required
computational resources. Already the curvature reference error sensor leads to significant perform-
ance improvements. Considering its trivial implementation, one could say that an easy AMR is still
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better than no AMR at all. In isotropic refinement, the relative error in velocity magnitude proved
to be by far the most successful one, leading to savings of up to 4 times in comparison to the refer-
ence error sensor. Additionally, it performed better than adaption based on absolute error in velo-
city magnitude, which can be considered the second most successful criterion investigated within
this chapter. The error sensors based on the error transport equation were especially at the lower
thresholds able to outperform the reference error sensor. However, they also sometimes lead to
just equal or even worse computational efficiency. Considering that the error sensor from ’IS-001’
performed significantly better for every metric and threshold, the success of the ETE-error sensors
can only be described as modest. Very disappointing was the performance of simulations ’IS-007’.
Combining the absolute error in the velocity magnitude with the mesh size does not seem to be a
good idea. Very little attention was given to refinement around the immersed boundary, but instead,
wake dominant meshes were created. The problem is that the output of the error sensors gets arti-
ficially decreased by the mesh size. This becomes erroneous when the error does not significantly
decrease after adaption.

For this problem, the so-called PTC count metric was introduced with the motivation to provide a
better estimate of the actual wall-clock time of the problem. The performance of the error sensors
could sometimes be described as similar for cell and PTC savings. However, there were also simu-
lations where significant discrepancies could be spotted, especially for anisotropic adaption. When
referring to the mesh quality, one should, therefore, not only talk about the error reduction in the
flow field or a quantity of interest but also the conditioning of the problem’s Poisson matrix. The
effect should be further investigated, for example, by making some by-hand adjustments to the
AMR meshes to increase homogeneity and thus remove refinement speckles. Additionally, using
the PTC count revealed another aspect of an error sensor and flag function combination. Ideally,
there should be some trade-off between the gain in accuracy by introducing a finer mesh level, and
the increase of computational cost, e.g., due to the need for more time-steps. Instead of achieving
the error reduction be a finer level, the algorithm might also decide to reduce the error by adding
more cells of the current maximum level. Another aspect of this is the leveling-off of the error re-
duction with decreasing error threshold. E.g., from the Pareto front of the reference error sensor,
one can see that at some point, the effect of reducing the error threshold saturated and subsequent
improvements can only be obtained by increasing the maximum mesh level. This is yet another
aspect which needs to be properly addressed to achieve user-independent mesh adaption.

Due to the lateral dominance of flow structures in the wake of the cylinder, anisotropic adaption
seems to be an effective method of decreasing the computational expenditure even further. The
recomputation of the reference error sensor revealed that, indeed, savings up to 50% are possible.
Unfortunately, the Pareto fronts were not as monotonic in comparison to the isotropic case. Unfor-
tunately, when also considering the PTC count, then the gains were largely negated, and perform-
ance was often only equal or worse in comparison to the isotropic reference indicator. The ’IS-001’
simulations were also recomputed with anisotropic adaption. Here things looked even worse. In
terms of cell count, some simulations performed worse and some better than in comparison to their
isotropic counterpart. Again when using the PTC count, the performance deteriorated significantly
and partially lead to inferior performance, sometimes even worse than the isotropic reference er-
ror sensor. The results can, therefore, be regarded as encouraging with regard to a reduction in cell
count, but the translation into actual wall-clock time savings does not happen.

Another encouraging conclusion from this investigation includes that all error sensors were resilient
to the initial under-refinement of the problem. The same observation was made for compressible
Mach 3 shock flow problem in the previous chapter. The error sensors were able to successfully tra-
verse through the level 2 mesh even though at this point, vortex shedding was present only heavily
damped. In this regard, the investigated error sensors are suitable for a user-independent AMR ap-
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proach were the initial mesh should be considered to be very rough e.g., when an immersed bound-
ary is resolved with only a couple of cells.

The timestep used between adaption has a small but measurable impact on the performance, at
least for the tested error sensor (’IS-001’). However, one should also keep in mind that the results
are reasonably close to each other, considering that a time step sweep of almost two orders of mag-
nitudes has been performed. The error sensor from Equation 3.4 can, therefore, be regarded as
rather insensitive to the adaption time step, at least for laminar flow. Next to this, the overhead of
the Richardson approach (and also the ETE approach) can be regarded as insignificant, the compu-
tation of the slave problem merely required 4.5% of the PTC count of the master simulation. Further,
the overhead of the error sensor computation itself, including mesh adaption, required interpola-
tion, etc. ranged between 0.36 and 3.56% depending on the adaption frequency. All in all the used
approach can be described as very lightweight.

This case also provided valuable user-feedback on the approach taken with the flag function. The er-
ror is usually equidistributed in space when refinement and coarsening are used and merely pushed
below a certain threshold when only refinement is considered, as was done in this thesis. While at
first glance, this approach seems appealing since one can control the resulting error a priori, assum-
ing that one has a ’perfect’ error sensor, it comes with the problem that the final mesh size is not
controlled. In Section 5.3, the aim was to select three error thresholds for every error sensor so that
a mesh size of about 50,00 to 150,000 was spanned. In practice, this required multiple runs until
suitable thresholds were found. Runs either had too few or too many cells. Especially, the latter
creates user-problems. Usually an engineer or scientists have only a limited amount of computa-
tional resources available, e.g., on his personal workstation. Alternatively, he might have to select
a priori how much hardware he wants to allocate when, for example, using a large computational
cluster with a resource manager. Further, either wall-clock time constraints are imposed, or simply
a deadline has to be met. Submitting runs to then eventually notice that they will never finish in
the desired time creates significant overhead on the user side. The same holds when a run ends
shortly after submission because the error threshold was chosen too large, and one could have eas-
ily obtained an even more accurate result. This becomes even more annoying when one has to wait
days or perhaps even weeks until one has cleared a cluster queue to then essentially throw away the
waiting time. In a more development based environment, one also often encounters the practice
of starting multiple computations, which will then run over the weekend and are expected to fin-
ish on Monday. These examples highlight user-experiences that should not be encountered in any
user-independent AMR routine. Since it is impossible, at least currently, to know the required com-
putational resources and resulting error before a computation is started, the author is of the opin-
ion that the best approach is to consider the flag function solely from a computational cost point of
view. Meaning one defines a specific mesh size or PTC count at the onset of the simulation. It is not
erroneous to assume that a user will be able to sufficiently estimate the wall-clock time of his case
from either of these two numbers, especially when he is familiar with the hardware infrastructure at
his disposal. One could argue that an inaccurate completed simulation is as useless as an accurate
unfinished simulation. Perhaps one could even argue that the latter is even better since it can be
continued. However, the author thinks that in practice, the engineer or scientist is resource-limited.
Either because of not having enough hardware at his disposal or because the problem is still too
advanced for the current hardware available on the market. Therefore a complete simulation is as
good as it gets, and the engineer just has to work with the results even when they are not very ac-
curate. An approach using a target mesh size requires coarsening. This is necessary since, in such a
setting, one does not define an error threshold. The flag function can refine cells until the allocated
cell count has been reached. For problems that evolve in time, for example, with a developing wake,
as encountered in this 2D cylinder case, the approach would lead to excessive over-refinement at
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the onset of the simulation. Coarsening is required to redistribute the cells throughout the domain
when areas in need of refinement appear after a particular simulated time. Alternatively, one could
also use the approach taken in this thesis to refine only X% of cells during every adaption cycle to
limit the rate of mesh growth. During the previous arguments, it was indirectly implied that a per-
fect error sensor exists that can accurately predict the error within the domain. Since such a sensor
does not exist yet, the situation becomes even worse. At the beginning of the simulation, one has to
choose a certain threshold, but without a direct and reliable relationship between actual error and
error sensor, it is challenging even to guess the numerical magnitude.



6
Flow over periodic hills at Re=10595

The periodic hill problem is a classic test case for examining the accuracy of turbulence models and
RANS codes in particular. Notably, the correct prediction of the recirculation bubble poses majors
challenges on the turbulence modeling. The two test problems that have been considered so far had
distinct flow features such as shocks and vortex streets but did not contain any turbulence. It is reas-
onable to assume that the chaotic and unpredictable nature of turbulence might pose a significant
challenge to the error sensors and flag function. Since a substantial part of industrial flow problems
is inherently turbulent, this test case is crucial on establishing whether user-independent mesh ad-
aption can be achieved with the, in this thesis presented, error sensors and flag functions. To limit
the scope, only the reference error sensor from Equation 3.15 and the best performing Richardson-
type error sensor from Equation 3.4 are investigated. Further, no analysis is performed on aniso-
tropic refinement.

This chapter starts by describing the case setup. Subsequently, a series of tests are performed to
establish how long the error sensor needs to be statistically averaged to be suitable as the driver for
adaption in a turbulent flow. An extra strategy is presented to make the error sensor more robust
against outliers. Next, the novel and reference error sensor are benchmarked against each other to
establish which one can create the best mesh for this particular test case. Last but not least the error
reduction and mesh growth during adaption is studied in more detail.
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6.1. Case setup
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Figure 6.1: Boundary conditions and geometry for the flow over periodic hills at Re=10595. Spanwise extent is 4.5h.
Periodic boundary conditions are applied in spanwise (front and rear face). Mathematical representation of immersed
boundary is given in Appendix C.

The geometry and boundary conditions for this flow problem are given in Figure 6.1. A series of
periodic hills are placed in a channel with the dimensions of 9 hill heights (h) long, 3.035h high, and
4.5h deep. To reduce the size of the problem, the typical approach of using cyclic boundary con-
ditions at the inflow and outflow faces to the left and right of the domain was employed. The flow
leaving the boundary on the right is used as the new inlet condition ad the left of the domain. A
pressure gradient in x-direction was added to the momentum equation to drive the flow. To satisfy
the correct mass flow and thus the bulk velocity of this problem, the pressure gradient was con-
trolled by a PI-controller, which was evaluated at every time step. The controller was tuned in such
a way that the fluctuations between target bulk velocity and actual bulk velocity usually stayed well
below 0.1%. For the discussion of this chapter, only the statistical averaged x and y-velocity were
considered. For these, the error due to the fluctuations averages out with statistical sampling and
therefore, should not falsify any results. This is in contrast to the Reynolds stresses whose accuracy
would be negatively affected by control errors of the PI-controller. The top and bottom of the chan-
nel were equipped with a wall boundary condition, whereas the front and rear face of the domain
were connected with a periodic boundary condition. The hill geometry was modeled again with the
previously used immersed boundary method. Appendix C gives the exact mathematical represent-
ation that has been used to model the hills. Data acquisition for statistical averaging started after 23
flow-through times and lasted 55 flow-through times long, which are the same values used in Fröh-
lich et al. [15]. Sampling took place every 15 solver iterations, and the results were homogenized in
z-direction so that one 2D field was obtained. Krank et al. [3] and Gómez [77] have shown that a
total of 78 flow-through times is not sufficient to obtain statistically converged solutions. Unfortu-
nately, there were not enough computational resources to take these findings into account, and the
used values for data acquisition stemming from Fröhlich et al. [15] represented the best comprom-
ise between accuracy and computational effort.

Figure 6.2 shows the starting mesh that has been used for all AMR runs of this test case. All sim-
ulations were started with three initial blocks, each block having 9x9x45 and 3x3x15 cells for the
fine and coarse simulation, respectively. Three blocks were chosen so that every block was almost
square in the x and y-direction. This meant that also all subsequently created blocks had this very
same shape.

Again a reference solution was computed with INCA to establish a baseline that all adapted meshes
have to compare to so that their computational efficiency can be judged. Based upon the starting
mesh, a maximum refinement level of 3 was considered to be the sweet spot. A level 2 mesh would
have resulted in only two different cell sizes, and anything over level 3 is too expensive to compute.
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(a) Coarse simulation, 3x3x15 in 3 blocks (b) Fine simulation, 9x9x45 in 3 blocks

Figure 6.2: Starting mesh of flow over periodic hills at Re=10595. 15 cells in z-direction for coarse simulation. 45 cells in
z-direction for fine simulation.
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Figure 6.3: Results of uniform level 3 simulation in comparison to solutions from literature. INCA LVL3 ( ), KKW
( ) [3], Breuer LESOCC ( ) [4].

To further reduce the complexity and necessary computational resources, the z-direction was only
resolved with 45 cells in the master and 15 in the slave simulation. Adaption commenced only
in x and y-direction, whereas the cell count in z-direction always stayed constant. This led to a
final mesh size of 729x243x45, with a grand total of 7,971,615 cells. Figure 6.3 shows the results
of this simulation in conjunction with two reference solutions from the literature. The results of
the homogenized y-velocity can be described as ’line converged’ with almost no differences visible
across all three simulations. As expected, more differences can be spotted for the homogenized u-
velocity. In the region y/h > 2, the velocity is consistently over-predicted in comparison to reference
literature, while for y/h < 2 precisely the opposite statement can be made. Close to the top and
bottom wall, all three results start to reach ’line convergence’ again. For this thesis, the results can
be considered to be acceptable. They resemble the original results close enough, so that statements
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about the effectiveness of the different error sensors and flag functions can be made.

6.2. Required averaging period of error sensor
Using instantaneous error sensor outputs might lead to erroneous mesh adaption for fully turbulent
flow. The inherent nature of turbulence is creating random flow structures that can either misalign
during the time τAMR or cannot be resolved on the coarse mesh but are present on the fine one.
’Chaotic’ error sensor output could be the result, which in turn might lead to the adaption of large
or unimportant parts of the domain. To shed more light into this issue, the periodic hill simulation
has been performed on a uniform level 2 mesh with the error sensor activated (81x243x45 cells). No
adaption was performed, but the error sensor was recorded and averaged during the simulation, as
explained in Section 3.4. Two different error sensors were considered, the so-far successful relative
error from Equation 3.4 and, of course, the reference error sensor from Equation 3.15. Figure 6.4
shows five contour plots of the relative error averaged for different flow-through times, starting from
an instantaneous reading. Averaging was stopped at 2 flow-through times since this amounts to
already 18 seconds of simulated time. Even though it is desirable to have a perfectly averaged error
sensor, it is evident that numerous adaption cycles have to be performed to develop the mesh fully.
Very long required averaging times are thus clearly not practical.

(a) 1 sample - 0.0278 flow through times (b) 18 samples - 0.5 flow through times

(c) 36 samples - 1.0 flow through times (d) 54 samples - 1.5 flow through times

(e) 72 samples - 2.0 flow through times (f) Error legend

Figure 6.4: Error sensor output of Equation 3.4 (relative error) for τAMR = 0.25 up to 2 flow through times.

For the one instantaneous sample, the error sensor suggests refinement in sensible areas for the
periodic hill problem, but it also becomes clear that random error sensor structures are formed.
They manifest themselves as disconnected error blobs scattered throughout the entire domain.
Already at 0.5 flow-through times, or 18 samples, it is visible that the flow above the hills (y/h > 1)
has been significantly smoothed out, and structures in the error sensors can only be seen very
faintly. With an increasing number of samples, the error distribution in this area becomes more and
more uniform. Diminishing returns reveal themselves for this area when averaging past one flow-
through time. In the area between the hill crests (y/h < 1), the effects of averaging the error sensor
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are much more significant. Again the error sensor structures smooth out significantly between one
sample and one flow-through time. This time, however, additional sampling noticeably adds to the
quality of the average. It is apparent that two flow-through times are not enough to obtain an en-
tirely smooth distribution, and distinct structures remain visible. In a smoother error sensor field,
large error peaks vanish. For example, the maximum error that can be found in the instantaneous
field is about 0.91, whereas at one flow-through time, the maximum error has reduced to about 0.41.
Thus, the averaging period has, just as τAMR (shown in Section 5.5), an effect on the maximum error
magnitude. Therefore, the same threshold can lead to different adaptions dependent on the chosen
averaging time for the error sensor. The requirement of defining a problem-dependent averaging
time for the error sensor does certainly not contribute positively to the user-independence of the
methodology. The direct connection of error magnitude with the averaging time complicates this
matter further. Another example of why adaption solely based on a target mesh count might be
favorable.

The second variable that might influence the error sensor field is the number of samples taken dur-
ing one flow-through time. Therefore, a second simulation has been performed in which the same
averaging time has been used, but τAMR was reduced to 0.05 seconds. This lead to a fivefold in-
crease in the number of samples. The results are shown in Figure 6.5. The instantaneous error field
does not match the one from Figure 6.4 since a new computation has been performed. Differences
between τAMR 0.25 and 0.05 can indeed be spotted. The flow in the region (y/h > 1) is noticeably
smoother. Whereas for τAMR 0.25 still cubical patterns can be spotted at 0.5 flow-through times, they
have already vanished at that time instance for τAMR 0.05. In the region of (y/h < 1), there seems
to be a more substantial reduction in error sensor magnitude for τAMR 0.05 when considering the
step from 0.5 to 1 FTT. For the following flow-through times, the changes in the error field due to
averaging are approximately on the same level. Based on these results, it has been decided to use
τAMR = 0.05 and a sample time of 1 FTT. Comparing the results to the ones from the laminar flow
case, one can see that even though the problem is very different, τAMR still remains to be in the same
ballpark. This underlines the previous findings, namely that the influence of τAMR is measurable but
at the same time of only moderate importance to the entire adaption routine.

The requirement of determining a problem-dependent averaging period is not ideal, especially con-
cerning user-independence. However, this problem is not only inherent to the Richardson error
sensor but also to the regular feature-based adaption. Feature-based error sensors are computed
directly from the flow field by simple relations. Thus, when their input stems from instantaneous
flow data, they will also contain random error sensor structures. A third simulation has been per-
formed to highlight this point, but this time with the curvature reference error sensor. The output
is shown in Figure 6.6. The ’chaotic nature’ in the error sensor is clearly visible when only one
sample has been taken. Just as for the Richardson-type error sensor, averaging to 0.5 FTT smooths
out the region (y/h > 1) considerably. Nevertheless, checkerboard patterns can still be seen even
at 2 flow-through times. The region (y/h < 1) profits from averaging times above 1 FTT as well.
One can conclude that the Richardson-type error sensor requires less care in choosing the right
averaging strategy than the reference one and therefore comes with an actual improvement of user-
independence. Nevertheless, the results should be taken with a grain of salt, since they might be the
result of statistical effects.

On the last note: The current strategy of obtaining an error sensor output for turbulent flow is only
applicable for statistically steady problems. How to deal with turbulence in statistically unsteady
problems is a question that the current work can unfortunately not answer.
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(a) 1 sample - 0.0278 flow through times (b) 90 samples - 0.5 flow through times

(c) 180 samples - 1.0 flow through times (d) 270 samples - 1.5 flow through times

(e) 360 samples - 2.0 flow through times (f) Error legend

Figure 6.5: Error sensor output of Equation 3.4 (relative error) for τAMR = 0.05 up to 2 flow through times.
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(a) x-dir - 1 sample - 0.0278 FTT (b) y-dir - 1 sample - 0.0278 FTT

(c) x-dir - 18 sample - 0.5 FTT (d) y-dir - 18 sample - 0.5 FTT

(e) x-dir - 36 sample - 1.0 FTT (f) y-dir - 36 sample - 1.0 FTT

(g) x-dir - 54 sample - 1.5 FTT (h) y-dir - 54 sample - 1.5 FTT

(i) x-dir - 72 sample - 2.0 FTT (j) y-dir - 72 sample - 2.0 FTT

(k) Error legend

Figure 6.6: Error sensor output of Equation 3.15 (reference error sensor) for τAMR = 0.25 up to 2 flow through times.
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6.3. Isotropic refinement
Based upon the results of Chapter 5 and to limit the scope of this thesis, it has been decided to re-
strict the investigation to only the Richardson-type error sensor of Equation 3.4 and of course the
curvature reference error sensor from Equation 3.15. Before starting with the results of the actual
adaption, first, the error sensor plots from Figure 6.4 to 6.6 are analyzed in more detail. Figure
6.4 shows that the relative velocity error is the largest for (y/h < 1), whereas the error is small for
(y/h > 1). From an adaption point of view, this indeed seems to be reasonable, since the prediction
of the recirculation bubble is the main difficulty within this problem. Nevertheless, the result can
also be regarded as somewhat surprising since also the channel region (y/h > 1) contains significant
turbulence, which in this case is not leading to a large error between the master and slave simula-
tion. The instantaneous error sensor output shows error blobs in this region, which are, however,
of significantly lower magnitude in comparison to the region between the hill crests (y/h < 1). The
relative error sensor also lights up the top wall of the channel. The error has a smaller magnitude
than in the region (y/h < 1), and the natural question arises on whether the adaption of the top
wall might be shadowed by the higher error magnitudes in the region (y/h < 1). The reference error
sensor is shown in Figure 6.6 and consists of one output in x and y-direction. In general, one can say
that the magnitude is the lowest for the x and the highest for the y-direction except for the windward
side of the hill flank, where both perform fairly similar. The y-direction locates a high error at the
of the inflow boundary. Further, the upper wall is also suggested for refinement. Finally, in both,
x and y-direction the recirculation bubble can be seen, but it is equipped with a much lower error
magnitude than the other discussed areas.

6.3.1. Additional filtering of error sensor
During initial simulation trials, it was noticed that many blocks only contained a limited amount of
bad cells, usually in the range below 1%, when flagged for adaption. These threshold violations can
either be genuine or the result of the limited sample period (1FFT) of the error sensor. Therefore,
an investigation was started to see if it can be advantageous to exclude blocks with less than 1% of
bad cells. The run list of this investigation is given in Table 6.1 and the respective results in Figure
6.7 and 6.8.

Table 6.1: Settings of simulations for periodic hill with relative error sensor (Equation 3.4).τAMR = 0.05, 23 FTT settling,
55 FTT statistical sampling, 1 FTT AMR sampling.

Legend Identifier Cells εAMR Flag function Flag threshold

PHILL-01-35 1002375 0.35 Algo. 3 1%
PHILL-01-40 535815 0.40 Algo. 3 1%
PHILL-01-45 331695 0.45 Algo. 3 1%
PHILL-02-40 1002375 0.40 Algo. 2 -
PHILL-02-45 739935 0.45 Algo. 2 -
PHILL-02-55 244215 0.55 Algo. 2 -

Figure 6.7 contains 6 plots, the first two contain the in z-direction homogenized x- and y-velocities
at different x-stations. Subsequently, the integrated error of the line plots is graphed against the
usual metrics of cell and PTC count. Integrating the line plots gives an approximate global error
with respect to the uniform level 3 simulation. It is approximate, since only the standard discrete
locations reported in literature are used (x/h = 0.05,0.5,2,4,6,8) [15]. The results show that for the
x and y-velocity and both performance metrics, the error is lower for simulations ’01-45’ and ’01-
40’ in comparison to the simulations without extra filtering. The pattern is only broken by ’01-35’,
which has a significantly higher error than its counterpart. The natural question arises why ’01-35’
performs so badly. When carefully inspecting the u-velocity line plot of Figure 6.7, one can see that
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the error for ’01-35’ is larger close to the hillcrest at the domain entrance. This error continues to
spread into the recirculation region. ’02-40’ does not seem to face this problem since the level 2
refinement zone in the recirculation region extends up to the second hillcrest, as can be seen in
Figure 6.8a. Even though ’02-40 shows superior performance, the overall results still hint at the
positive effects of mild filtering. When inspecting Figure 6.8, it is, however, difficult to understand
why these savings in computational efficiency occur, since the meshes between both strategies look
fairly similar. Comparing the mesh of ’01-40’ and ’02-45’, it appears that the most important feature
is the level 2 mesh refinement region, which is identical between both cases. The additional level 3
refinement does not lead to a better mesh and even increases the error.

’Solution artifacts’ can be spotted in the statistically averaged line plots in Figure 6.7 and 6.10. Their
location coincides with block boundaries of different refinement levels. This can be nicely seen
for, e.g., the line plot of ’01-35’ at x/H = 2, y/H = 2, and the respective mesh shown in Figure 6.8.
The root cause analysis is still in progress while completing this thesis. The interpolation method
presented in Hickel [78] was used for the interpolation of the block solutions at their respective
boundary in case of non-matching mesh levels. In general, this is clearly an undesirable behavior.
This is an example that shows that in practical applications, AMR cannot only increase but also
negatively affect the accuracy of the solution. The same problem might explain the findings of, e.g.,
Chapter 5, which has shown a larger error for a finer but irregular mesh.

One could argue that the percentage thresholds for bad blocks should be further increased to push
the error threshold εAMR to the magnitudes of the previous two benchmark problems. The counter-
argument is proposed that even more filtering might negatively influence the solution, when an area
of interest is merely clipping a block, e.g., a small part of an immersed boundary, or a wall-boundary
condition. A high threshold of, for example, 20% can make an adaption of these blocks impossible.
Nevertheless, some adaption would still happen due to the balance criterion.

A crucial observation is that the line plots of Figure 6.7 show a significant error at the top wall. As
already depicted in Figure 6.4, the Richardson error sensor outputs only a small error magnitude
close to the top wall, which is completely dwarfed by the high error in the recirculation bubble.
Therefore, no refinement took place close to the wall leading to an insufficiently resolved boundary
layer. The over-prediction of the x-velocity close to the top wall leads to an under-prediction in the
region y/h < 1.5. When recalling Equation 3.4, a constant of 0.1 is found within the equation to
prevent singularities in regions with low velocity. One could argue that this constant is the origin
of the poor refinement close to the wall. However, tests showed that varying this threshold did not
lead to any meaningful change in mesh at the top wall. One must conclude that the Richardson-type
error sensor performs well in capturing wakes in laminar (Chapter 5) and turbulent flow, but seems
to have difficulties with under-resolved boundary layers in regions with little streamwise pressure
gradient.
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Figure 6.7: Line plots of homogeneous x- and y-velocity of periodic hill case adapted with relative error. Total error line
plots of simulations from Table 6.1. Results for line plots have been scaled by a factor of two to improve readability. INCA
LVL3 ( ), PHILL-01-35 ( ), PHILL-02-40 ( ).
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(a) PHILL-02-40 (b) PHILL-01-35

(c) PHILL-02-45 (d) PHILL-01-40

(e) PHILL-02-55 (f) PHILL-01-45

Figure 6.8: Meshes of periodic hill runs from Table 6.1. Mesh levels: Level 1, Level 2, Level 3.

(a) PHILL-REF-40 (b) PHILL-REF-50

(c) PHILL-REF-60

Figure 6.9: Meshes of reference error sensor simulations for flow over periodic hills from Table 6.2. Mesh levels: Level 1,
Level 2, Level 3.
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6.3.2. Benchmarking against reference error sensor
Three simulations have been performed with the reference error sensor. As was done for the
Richardson-type error sensor, a 1% threshold has been chosen in Algorithm 2. All experiments are
tabulated in Table 6.2. The results of the simulations in comparison to the previous ones are shown
in Figure 6.10.

Table 6.2: Settings of simulations for periodic hill case with reference error sensor.τAMR = 0.05, 23 FTT settling, 55 FTT
statistical sampling, 1 FTT AMR sampling.

Legend Identifier Cells εAMR Flag function Flag threshold

PHILL-REF-40 652455 0.40 Algo. 2 1%
PHILL-REF-50 564975 0.45 Algo. 2 1%
PHILL-REF-60 448335 0.55 Algo. 2 1%

From Figure 6.10, one can see that the global error level of the reference error sensor calculated
from the line plots is significantly lower for the x-velocity in comparison to the Richardson-type er-
ror sensor. For the y-velocity, the error levels are, however, on par. The simulations adapted by the
reference error sensor suffer from inefficiencies when considering the PTC count. This is especially
clear to see for the x-velocity error. In terms of computational efficiency, the reference error sensor
performs better for the x-velocity but shows worse performance for the y-velocity. For the latter, the
same error level is reached but only at a higher cell and especially PTC count. When looking at the
mesh in Figure 6.9, it is apparent that the refinement strategy of the reference error sensor is differ-
ent. Adaption is mainly focused on the windward side of the hill. Further, some refinement is visible
on the hillcrest which also spreads out to the top of the channel wall. Two line plots are shown for
simulation P23 and P31. The reference error sensors matches the results from the uniform level 3
refinement nicely at x/h = 0.05 and x/h = 0.5. This can be seen as the result of the level 2 refine-
ment, which extends at the inflow boundary from the hill crest up to the top wall of the channel.
Additional refinement is given to the hillcrest with level 3 blocks. The results are, however, deterior-
ating quickly. At x/h = 2, y/h ≈ 1.5, there is already a significantly higher error than in comparison
to the Richardson-type error sensor. The same holds for the lower wall, where the influence of the
low mesh level of merely 1 becomes apparent as well. Traveling further downstream at x/h = 2 and
x/h = 4, also the error in the top boundary layer grows again to values that are in the same ballpark
as the one from the error estimate. Also, the error below y/h < 2 has further increased. At x/h = 8
the results again match closely the ones from the uniform level 3 mesh. While for the reference error
sensor, the overall error for the x-velocity error is lower than for the Richardson-type error sensor,
the quality of adaption can be regarded as somewhat underwhelming. The good performance at the
initial parts of the channel stems from the refinement of the hillcrest and the top wall. Especially
the localized refinement of the boundary layer at the beginning of the domain helps with matching
the results of the uniform level 3 mesh. Further downstream, the reference error sensor, however,
fails to completely resolve either the top wall or the recirculation area, which then, in turn, leads to
high error production. The consequences are apparent. The error in the boundary layer is steadily
growing while moving further downstream. In contrast, the refinement of the Richardson-type er-
ror sensor in the recirculation bubble seems to be reasonable and advantageous, leading to an error,
that even with the pollution from the under-resolved boundary layer, can match the results of the
uniform level 3 mesh, especially further downstream, better than the reference error sensor. From
the observations, one can conclude that the Richardson-type sensor actually performed solid, if it
would not wholly fail to capture the top wall for refinement. The curvature error sensor is in this
regard somewhat better but also not satisfactory. It would be interesting to see what the effects of
a wall function might be when applied to the top wall, as was done in Fröhlich et al. [15]. Such an
approach might alleviate the problems seen with the Richardson-type error sensor.
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Figure 6.10: Line plots of homogeneous x- and y-velocity of periodic hill case adapted with relative error and reference
error sensor. Total error line plots of reference error sensor from 6.2. INCA LVL3 ( ), PHILL-01-40 ( ), PHILL-REF-
50 ( ).
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6.4. Error evolution during adaption
One aspect that has not been treated in detail is in-time behavior for the AMR-routine. For that pur-
pose, a series of four plots (Figure 6.11) is created, showing the evolution of the mesh size and estim-
ated global error. Results are shown for simulation ’PHILL-01-40’ and ’PHILL-02-40’ from Table 6.1.
All data are given for the first 23 FTT of the simulation since during the statistical sampling period
of 55 FTT no mesh adaption is performed.
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Figure 6.11: Cell and error evolution during adaption with Richardson-typ error sensor for flow over periodic hills. PHILL-
01-40 ( ), PHILL-02-40 ( ).

Figure 6.11a shows the growth in mesh as adaption commences. The first observation that can
be made is that the mesh growth can be significant per adaption cycle. The 10% threshold from
Algorithm 5 merely states that 10% of bad cells should be targeted for refinement. Since every ad-
aption action is performed on a per-block-basis, the actual quantity of refined mesh cells is much
larger. Additional refinement is performed by the ’Balance Criterion’, which ensures a proper grid
topology. Nevertheless, it is visible how the mesh is built up gradually. While the mesh size increase
for simulation ’PHILL-01-40’ begins to stagnate from 75 seconds onward, ’PHILL-02-40’ continues
to steadily grow until the end of the 23 FTT long settling period.

Figure 6.11c shows the fraction of cells exceeding the error threshold. As the simulation starts, the
fraction is steadily increasing until, after the first adaption, it drops sharply. This happens at around
25 seconds of simulated time. The mesh is still coarse at that point resulting in a time step that
exceeds τAMR. The sampling time thus actually exceeds the target of 1 FTT at the very onset of
the simulation. From around 50 seconds onwards, a steady saw-tooth pattern develops in the bad
cell fraction. At the beginning of every AMR sampling period, many cells exceed the threshold. As
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sampling continues, fewer cells violate the error threshold. While it is clear that there is no complete
convergence yet after 1 FFT, it is apparent that the fraction of bad cells starts to level off sharply. This
finding is in agreement with the results from Section 6.2. In the future, this metric might resemble
a more mathematical thorough way of deriving the appropriate AMR sampling time than the semi-
qualitative approach presented before. After 75 seconds of simulated time, one can see that the
fraction of bad cells drops to almost zero after every saw-tooth cycle. Adaption is thus driven by
only a tiny amount of bad cells. Also, at precisely 75 seconds of simulated time, a knee-point can be
found in Figure 6.11d, which shows the estimated global error in the simulation calculated from the
master and slave simulation according to Equation 3.7 integrated over the entire domain. Beyond
this time point, the global error stays constant, and any commencing adaption seems to have no
effect on any further error reduction. Last but not least, at 75 seconds also, the mesh growth of both
simulations runs apart, as shown in Figure 6.11a. One can conclude this that any refinement past
75 seconds is not advantageous and that applying a small filter to the error sensor does indeed help
to mitigate useless adaption.

These observations shed some new light into the previous analysis from Section 6.3.1. First, adap-
tion without filtering is driven by only a tiny amount of cells leading to an evergrowing mesh. These
small cells also do not contribute significantly towards the estimated global error, causing a com-
putationally inefficient mesh, which can be seen by the fact that the global error evolution of both
simulations is almost identical even though ’PHILL-02-40’ contains about double the cell count.
Based on the results, it seems that a higher threshold could improve the mesh by, e.g., allowing the
user to reduce the error threshold while maintaining a moderate mesh size. This could lead to re-
finement of regions with a smaller error magnitude but larger amounts of cells violating the error
threshold. An example of such a weak feature might be the top boundary layer. The time series of
the global error estimate could also be used as an additional feature to control refinement. Instead
of adapting until all cells are pushed below a certain threshold, adaption could be performed until
the global error is converged, thus avoiding over-refinement.

6.5. Conclusion
The turbulent flow over periodic hills indeed posed the greatest challenge among all test cases high-
lighting that AMR in fully turbulent flows remains to be challenging. The proposed method of aver-
aging the error sensor prior to adaption was successful but is only viable for statistically steady flows.
Defining an error sensor sampling period does not add to the user-independence, but two strategies
have been presented on how this parameter can be derived systematically. Future research might
include using the fraction of bad cells as an automatic way of determining the appropriate sampling
period. Sanitization of the error sensor output, by only refining blocks, when a certain percentage of
cells exceeds the error threshold, has been successfully applied. This led to a more efficient adaption
by avoiding cells that do not contribute to the actual error within the solution. Both the reference
and the Richardson-type error sensor from Equation 3.4 did not perform satisfactorily. The adap-
tion of the reference error sensor focused primarily on the wind-ward and crest of the hill, while it
neglected large parts of the top wall and the entire recirculation region. The Richardson-type error
sensor performed in this regard much better, by refining the hill and a sensible part of the recircu-
lation region. While it was able to spot the top wall as a potential error source, the estimated error
was not of sufficient magnitude to lead to adaption. The under-refinement of the boundary layer
led to error production, which polluted the solution in the entire domain, leading to a higher global
error than the reference error sensor. More research is required to find ways of making the novel
error sensor more sensitive to error production for near-wall flows with little pressure gradient. A
possible ansatz is a more in-depth investigation of the influence of the filtering percentage of the
error sensor.





7
Conclusion and recommendations

The objective of this master’s thesis has been to:

Improve the computational efficiency of LES CFD simulations by developing and testing a novel more
user-independent AMR error sensor.

Based on the finding from the literature study, a series of novel error sensors have been developed
that estimate the local error in the solution of a fluid problem by comparing two simultaneously
computed simulations on a fine and coarse grid. Their efficient implementation in the block-
structured CFD code INCA has been presented. Message Passage Interface (MPI) was used to
couple INCA against itself using, allowing for the computation of the error sensors with minimum
interference in the codebase. A series of three test cases have been chosen to demonstrate the
workings of the novel error sensors for a wide range of flow problems. For a better performance
comparison of the differently adapted simulations, the PTC metric has been introduced that aims
at giving a computer system and code overhead independent measure for the simulation run-time.
At the onset of this thesis, a set of research questions has been developed which are answered in
the following:

The research questions from Chapter 2 are:

1. Are the current state of the art error sensors already able to provide a systematical approach
to user-independent and reproducible adaptive mesh adaption?

Answer: Based on the literature study, one has to say that it is highly problem dependent.
Since some error sensors can be tailored fairly well to the underlying problem, mesh genera-
tion can indeed be user-independent if only a subset of problems is considered. For practical
applications in industry, this might be sufficient when similar flow problems are solved on
a repetitive basis. User-independent AMR in a broader sense concerning a wide variety of
problems does not seem to be in reach yet. Output-based adaption might be a suitable can-
didate but, at least in their pure form, are still too expensive to compute for transient LES
problems. Numerical estimators seem to be the best candidate for problem-independent ad-
aption, especially because the performance of generic LES-specific error indicators seems to
be underwhelming.

2. For all three test cases and isotropic refinement, how does the resulting solution error com-
pare in terms of cell count and PTC for the novel and reference error sensors?

3. For all three test cases and anisotropic refinement, how does the resulting solution error com-
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pare in terms of cell count and PTC for the novel and reference error sensors?

Answer to 2. and 3.: Even though the reference error sensor is primitive, it still performed
decently. Especially for the compressible and laminar test case. For the compressible test
case, all examined error sensors performed almost identical. The main issues were mainly
in the controllability, i.e., how well suitable error thresholds can determine the size of the
mesh. Nevertheless, this behavior is also in close connection to the chosen flag function. With
anisotropic refinement, it was possible to increase the computational efficiency by around
10 to 15% concerning the cell size. The laminar test case showed auspicious results for the
Richardson-type error sensors, which were able to lead to savings of roughly 4 to 5 times in
PTC and cell count in comparison to the reference error sensor. The performance of the ETE-
based error sensors was acceptable, sometimes outperforming the reference error sensor but
sometimes also performing worse. A large disappointment has to be seen in the anisotropic
refinement. While anisotropic lead to a consistent reduction in cell count for the same error, a
less well-conditioned Poisson matrix led to a higher number of required iterations to reach the
target residual, thus completely negating any gains and often leading to worse performance
than isotropic refinement. Due to time constraints, no anisotropic adaption was performed
for the turbulent test case. For the latter, the reference error sensor was able to outperform
the Richardson-type error sensor from Equation 3.4 consistently for the error in x-velocity.
Nevertheless, this is a pure consequence of the limited refinement of the top boundary layer
by the reference error sensor. In contrast, the novel error sensor failed to refine the entire top
boundary layer at all. The mesh created by the reference error sensor in all other regions of
the domain must, however, be regarded as suboptimal, with the novel error sensor doing a
much better job.

4. Should mesh adaption be performed every physical time step, or can the computational effi-
ciency be increased by performing adaption merely every N time steps.

Answer: Tracing the AMR routine has shown that the entire AMR routine, including adap-
tion, is very cheap to compute. The cell savings heavily outweigh the little overhead created
by the routine. When adaption was performed every five physical time steps, an overhead
of about 3.5% was recorded. For the Richardson-type error sensor from Equation 3.4, it was
shown that a too-small AMR time step could lead to worse computational performance. One
should, therefore, conclude that it is best to perform adaption not every time step. The exact
quantity is problem-dependent. However, it was also found that for both the laminar and the
turbulent test case, the adaption routine was quite robust to any change in the AMR time step,
adding significantly to the user-independence.

5. Will all investigated error sensors lead to a robust adaption routine?

Answer: In terms of initial mesh size, this question can be answered with yes. It was pos-
sible to start the simulations on very coarse meshes, often merely limited by a minimum cell
requirement in the block itself. All error sensors were able to deal with a heavily under-refined
initial mesh and lead to sensible adaption. To the author’s opinion, the immersed boundary
method, in conjunction with the block-structured mesh employed within INCA, was crucial
for this property. With the immersed boundary method, it was possible to resolve a geometry
by as little as two initial cells, e.g., for the periodic hill problem, and still get the simulation
started. In terms of error sensor reduction, the question should be answered with no. In the
vicinity of discontinuities, the error sensor output will steadily grow, thus leading to never
stopping adaption. However, for reasonable smooth flow fields, also close to an immersed
boundary, the error would steadily reduce with increasing adaption. Nevertheless, it was still
necessary to bound the maximum refinement level of every simulation with the rationale that
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otherwise locally microscopic mesh cells would have been created that had led to an excess-
ively small time step. Thus letting the PTC count skyrocket.

6. Should adaption be based upon the instantaneous or time-averaged state variables for the
turbulent flow?

Answer: It has been shown that for turbulent flow, chaotic error sensor structures ex-
ist. With increasing averaging periods, these structures started to vanish, which can be seen
qualitatively be examining the error sensor field, or by, e.g., looking at the number of cells
violating the error threshold. Unfortunately, time averaging is only applicable to statistically
steady problems.

7. What is the computational overhead of the tested error sensors?

Answer: The computational overhead is a compound of the time required to calculate the
error sensor and to perform the adaption. For the error estimates, a second coarse simulation
is required. The computational overhead for the error sensor itself is given in Answer 4. The
second simulation, for the laminar test case, led to an extra 11% in extra cells and 4.5% in PTC
count.

8. What kind of qualitative adaption characteristics do the investigated error sensors show for
all three test cases?

Answer: For the compressible flow case, all investigated error sensors performed very
similarly. They were all able to capture the most important flow features such as shock waves,
slip lines, and error introduction from the step corner singularity. The behavior was more
diverse for the laminar flow case. The reference error sensor focused itself mostly on the front
half of the cylinder and led to the refinement of vast parts of the wake up to the end of the
domain. The Richardson-type error sensors led to a more balanced refinement of the cylinder
between front and rear half while creating a fine mesh in the near wake and coarse refinement
in a narrow band in the far wake. The behavior of the ETE-based error sensors was similar to
the reference one but did put more focus on the near-wake refinement. For the turbulent
test case, the reference error sensor was able to spot all interesting flow regions, the top-wall
boundary layer, the hill, and the recirculation region. Unfortunately, the magnitudes of the
output where completely shifted towards the hill leading to poor refinement of the rest of the
domain. The Richardson-type error sensor from Equation 3.4, on the other hand, was able
to lead to good refinement in the recirculation region but completely failed to resolve the top
boundary layer.

Overall it is the author’s opinion that the objective has been met. Especially the novel error sensor
based on Equation 3.4 performs measurably better than the chosen reference error sensor. An as-
pect already criticized within the literature study is the difficulty of comparing different approaches
with respect to each other. Every study uses different test cases, methodologies, and metrics. A large
quantity of research has been done in the field of AMR, but it is still challenging to determine what
the current ’gold standard’ is. The results of this master’s thesis can thus only put into relation with
the rather simplistic reference error sensor.

As discussed in Section 5.7, an aspect that is, according to the author’s opinion, often overlooked is
the question on what to do when one has found a (near) perfect error estimate. Deciding how to
adapt, i.e., refine and coarsen, is even then not straight forward. AMR is thus not only dependent on
an excellent error sensor, but also on a powerful flag function. Very little literature has been found
concerning the last aspect, a surprising outcome.

In the literature study, a list of twelve properties has been defined that could describe an (almost)
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ideal error sensor. In Table 7.1 the attempt is made to describe the reference and error sensor from
Equation 3.4 according to the properties. While one can not claim that this list is perfect, it still leads
to better comparability between different error sensors.

Table 7.1: Summary of characteristics of reference error sensor and Richardson-type error sensor from Equation 3.4.

Property Reference error sensor Equation 3.4 error sensor

1 Very cheap Cheap

2 Low error for compressible and lam-
inar flow

Low error for compressible and lam-
inar flow. Encouraging results for tur-
bulent flow.

3 Averaging period for turbulent flow. τAMR, averaging period for turbulent
flow.1

4 Can only indicate errors Estimates the error due to the spatial
discretization, seems usable for grid
convergence study

5 Mostly heuristic in nature Based on mathematical arguements

6 Independent of solver, implementa-
tion is trivial

Independent of solver, implementa-
tion is straight forward but requires
some work

7 Not tested Not tested

8 Discontinuities require attention Discontinuities require attention

9 No No

10 Only flow field Only flow field

11 Works well on coarse meshes Works well on coarse meshes

12 Acceptable computational efficiency Good computational efficiency

Based on the outcome of this thesis a couple of recommendations and directions for future research
can be stated:

First, it would be interesting to test the error sensors and especially the one from Equation 3.4 in
a more industrial type of problem with the aim of gaining more insights into the limitations of the
error sensor. This also includes the extension to adaption in all three principal directions. Addition-
ally, some research should be done on how to increase its sensitivity in flows with boundary layers
and other strong flow features. A possible solution might lie in the constant in Algorithm 3. For the
laminar test problem, anisotropic refinement has shown some encouraging results in terms of mesh
size savings. Unfortunately, the conditioning of the Poisson matrix deteriorated. The introduction
of coarsening is essential not only for problems that are not statistically steady but also to allow for
refinement with a target mesh size instead of an error threshold. This should significantly enhance
the user-independence of the presented AMR routine, as discussed in Section 5.7.

1Settings such as εAMR are a setting of the flag function.



A
Code implementation

In this chapter, the Fortran code implementation of the theoretical framework is explained. Partic-
ular focus is laid on INCA’s block-structured architecture, which uses MPI to exchange information
between blocks on different processors. First, the general approach is described that has been used
to implement the various error sensors and flag functions within INCA. Next, the placement of the
entire AMR routine within INCA is described, highlighting how it interacts with other parts of the
codebase. Last but not least, a detailed description of the implemented framework is given. Essen-
tial, thesis specific, subroutines are discussed in detail.
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A.1. Code implementation
For the implementation of the new error-estimate criteria, two implementation strategies were con-
sidered upfront. Within the first approach, INCA would have been extended to intrinsically support
the simultaneous calculation of a problem on a fine and coarse-grained mesh. The significant draw-
backs of this method are the deep interventions within the code that would have been necessary,
which not only resemble a formidable programming task but also would have required the extensive
study of large parts of INCA’s codebase. The idea of the second approach was to couple INCA with
itself and therefore run two instances of the code simultaneously, one computing the fine prob-
lem and one computing the coarse problem. This approach is much more accessible since large
parts of INCA’s code can stay unchanged, and only a couple of subroutines are necessary that, at
the correct time, establish communication between the two launched instances of the code. Since
INCA already uses MPI (Message Passing Interface), the extension was straightforward. The second
approach, therefore, resembled a much slicker method on achieving the same goal which in the
retrospective proved to be true since the implementation happened without any big issues.

A.2. AMR framework integration within INCA
Algorithm 6 shows a rough sketch of the main structure of INCA and the placement of the AMR
routine within. Apart from the necessary steps at the beginning and end of a CFD program instance,
such as memory allocation and deallocation, the main part of INCA consists of a task routine hand-
ling the time stepping of the transient simulation. Within this task routine, two important AMR spe-
cific tasks are executed every single iteration. First, the synchronization of the simulation time step.
INCA uses adaptive time-stepping based upon a target CFL number. Since this number is mesh de-
pendent, a coarse and fine-grained mesh would produce different time steps and thus, without time
synchronization between the master and slave simulation, they would advance at different rates in
time. While this could be used to speed up the slave computation, provided that at some point
in time synchronization happens, it was decided for simplicity to perform synchronization every
single time step. As a result of this, the CFL number of the slave simulation is lower than the one of
the master. No direct investigation has been performed on the influence of this on time-dependent
errors such as dispersion and phase lag. However, as will be explained in Section A.3 also a solution
synchronization takes place, which effectively resets both of these errors after mesh adaption oc-
curred. The algorithm shows how the time step syncing works. The time step is exchanged between
the root ranks of the master and slave simulation. Subsequently, the slave root then broadcasts this
time step to all other slave ranks. Secondly, the AMR call itself, which, however, only happens when
a certain amount of elapsed simulated time has passed.

Algorithm 6 AMR framework integration within INCA.

1: setup simulation . Communicate block-rank assignment to other process
2: ...
3: while final time has not been reached yet do
4: ...
5: if master then
6: calculate time step
7: if root then
8: send time step to slave root
9: end if

10: else if slave then
11: if root then
12: receive time step from master root
13: end if
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14: broadcast timestep in slave group
15: end if
16: ...
17: perform time stepping
18: ...
19: if τAMR seconds of simulated time elapsed then
20: call AMR FRAMEWORK (see sec. A.3)
21: end if
22: ...
23: do post-processing
24: end while
25: write final results
26: exit gracefully

A.3. Main structure and subroutines of AMR framework
Algorithm 7 shows the flow chart of the implemented AMR routine. The first time the AMR routine
is called, usually at the very first iteration, the cut-cell auxiliary criterion is invoked. This happens
within a while loop for all blocks and happens until all immersed boundaries are resolved to a target
mesh level. The reason for this is that in INCA, every mesh adaption can happen only sequentially
i.e., the subroutine that refines a block must be called multiple times when the mesh level is sup-
posed to be increased by more than one. After the cut-cell criterion does not change the mesh
anymore, it is never executed again for the remainder of the entire simulation.

Algorithm 7 Top-level adaption routine.

1: if first ever AMR call then
2: for all blocks do
3: while until mesh does not change anymore do
4: call CUT-CELL CRITERION (see sec. 3.3.2) .Only one level at a time
5: perform block splitting and refinement
6: end while
7: end for
8: end if
9: for i = 1:2 do

10: call START SERVER (see sec. A.3.1) . Communicate block-rank assignment to other process
11: for all blocks do
12: call MULTI CRITERION (see sec. A.3.2) .Wrapper for error sensor calculation
13: retrieve and compute QOI e.g. velocity magnitude
14: call RICHARDSON (see sec. A.3.3) . Routine that calculates error estimate
15: send the QOI from coarse to fine grid via MPI
16: restrict the h-grid solution to the H-grid
17: calculate error according to methods from Section 3.5.1 and pass it to flag function
18: end call
19: call BLOCK FLAG FUNCTION (see sec. A.3.4) . Should a block be refined or split
20: end call
21: end for
22: call GLOBAL FLAG FUNCTION (see sec. A.3.5) . Filter decision from 19:
23: copy the fine grid state variables to the coarse grid
24: call STOP SERVER (see sec. A.3.1) . Clear block-rank assignment for new adaption cycle
25: perform block splitting and refinement
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26: end for

The first step is to start a server on both the master and the slave process of the simulation. The mas-
ter process contains the fine grid simulation, whereas the slave process contains the coarse-grained
simulation. The naming stems from the fact that all mesh adaption decisions are made within the
master simulation and the slave then subsequently follows them. The server provides a list on which
MPI ranks the blocks of INCA’s block-structured grid can be found for either the slave or master sim-
ulation. Afterward, a wrapper subroutine (MULTI CRITERION) is called sequentially for every block
on all ranks. This wrapper routine provides easy access to all variables of interest, e.g., velocity mag-
nitude, and feeds them into an error sensor pipeline, which is explained more in-depth in Section
A.3.2. The error estimate, which is produced from this pipeline, is fed into the BLOCK FLAG FUNC-
TION. This flag function incorporates algorithms 2, 3 and 4. It is apparent that all these algorithms
run independently, thus do not require any communication with other blocks. The output of all the
flag functions is collected within the GLOBAL FLAG FUNCTION, which resembles the implement-
ation of Algorithm 5. Last but not least, the master solution is given to the slave ranks, the mesh is
adapted and the server stopped. At this point, the simulation commences as usual until the next
τAMR seconds have passed.

A.3.1. Start server / Stop server
Every process of INCA contains a processor table that associates block location to process rank.
This table is used for the exchange of block information between different processes when INCA
is launched with more than one rank. This catalog is the same for all ranks within one instance of
INCA. Coupling INCA with itself, however, means that this catalog has to be exchanged between all
ranks of the master and slave instance so that communication can be established. This is the pur-
pose of the server, whose workings are shown in Figure A.1. First, the processor tables are exchanged
between the root ranks of the master and slave simulation. Subsequently, they are broadcast to all
non-root ranks in their respective group. Every time a mesh change takes place, these tables change
and have to be updated. This happens by deallocating the processor tables (stop the server) and
reinitializing the table exchange (start the server).

Master simulation

Root ranks:

Non-root ranks:

0

1 N...

Broadcast table

Slave simulation

0

1 N...

Broadcast table

Exchange processor table

Figure A.1: Server start: Exchange of processor table via MPI.

A.3.2. Multi criterion and quantity of interest pipeline
Lots of indicators and error-estimates can be found within AMR literature, together with the fact that
different error-estimates are tested within this thesis, it was desired to have a streamlined approach
of implementing these. A requirement was that a new criterion should be ideally implementable
without having to recompile the code, and in case of recompilation, the implementation should be
very fast. To achieve this, a ’multi-criterion’ was developed, which serves as a wrapper subroutine
for all error-estimates and indicators used throughout this thesis. Important for the implementa-
tion is the realization that most error functions are obtained by simple operations from the state
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variables, such as taking the derivative, calculating the difference, or multiplying them with the cell
length. As a solution to fulfill the aforementioned needs every of these operations was put in a
separate function within INCA, the following table lists all of these functions, while most of these
functions are trivial, the Richardson function is discussed in more detail in Section A.3.3 due to its
communication architecture between master and slave solution.

• uvar: This function delivers a state variable or a combination thereof. E.g. the pressure but
also the magnitude can be queried. The function also translates any staggered variables into
a cell-centered frame.

• gradient: This function calculates the gradient of its input using a central second-order finite
difference scheme.

• curvature: This function calculates the second gradient of its input using a central second-
order finite difference scheme.

• cell lengths: This function is used to multiply the input by the respective cell length to e.g.
produce an undivided difference.

• richardson: Calculate the difference in a variable between a fine and coarse-grained simula-
tion.

Using these functions the implementation of most error indicators and estimators is very easy. For
e.g. calculating the undivided difference of the velocity magnitude, a popular indicator in literature,
as discussed in Section A, one simply has to call ’uvar’, ’gradient’ and ’cell lengths’ sequentially.

A.3.3. Richardson
The Richardson function (Figure A.2) is used to calculate the error between the coarse and fine-
grained simulation as shown in Equation 3.5, 3.3 and 3.4. As shown in Algorithm 6, the function
is called for every block separately. Using the catalog from the ’Server’-subroutine, the master and
slave ranks holding the respective block can establish direct rank-to-rank communication. For the
calculation of the error, the slave has to send its array of the quantity of interest, the grid size and
the wall distance to the master simulation. The coarsening method, as described in Section 3.7,
is used to restrict the master simulation on the slave grid. Subsequently, the error estimate of the
quantity of interest can be produced. Directly at the interface of an immersed boundary, this error
estimate is not well-defined, since it is not obvious how to consistently restrict the solution at this
location. Due to the higher resolution of the fine mesh, the immersed boundary cuts only some
cells and thus usually leaves some cells within the geometries, whereby definition e.g., the velocity
is zero. Leaving this issue unattended causes erroneously high error estimates, which would always
flag blocks for refinement that contain and IB. To circumvent this problem, it was decided to filter
the error estimate by the wall distance, all cells which either have a negative wall distance (lie within
a geometry) or zero wall distance (lie on an IB) will have zero error. As shown later in Section 5, this
ad hoc fix works very well, since the error of the cells close to the IB can still grow sufficiently large
to cause adaption, while also effectively decreasing when adaption commences. As a final step, the
error estimate is prolonged to the fine mesh so that additional operations can be easily performed
on it within the master simulation, such as the calculation of the error transport equation shown in
Equation 3.8.

A.3.4. Block flag function
The block flag function contains the implementation of algorithms 2, 3 and 4. Since these blocks
are calculated locally for every single block, the implementation is trivial and thus does not require
any specific documentation. At the end of the block flag function, the alternating block splitting and
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Figure A.2: Richardson function calculating the difference in a fine and coarse primary variable.

refining criterion (Section 3.3.1) is invoked, which checks if a block that violates an error threshold
should either be refined or split.

A.3.5. Global flag function
While the theory of Algorithm 5 is straightforward, the actual implementation is more advanced.
The reason for that is INCA’s block-structured mesh, in which all operations are independently per-
formed on every block. The communication between the blocks is realized by copying values from
neighboring blocks into the ghost layers. Since the blocks are scattered throughout the different
ranks of an INCA instance, the global flag function criterion of Algorithm 5 must use information
that is collected from all blocks of the master INCA instance. The first step is, therefore, that the root
rank of the master simulation gathers an array containing the error-estimate and number of cells of
the blocks from all ranks. Further, all the mesh-actions calculated by the local flag function are col-
lected as well. From this, all blocks can be sorted according to their maximum error. Subsequently,
the total number of ’bad cells’ is calculated, i.e., the number of cells contained in the blocks flagged
for refinement. The next step is to sequentially select blocks, starting from the block with the highest
error in descending order, until a certain target percentage of bad cells has been selected. The last
step is to use the selected blocks to filter the mesh-actions. That means, all blocks that were flagged
for refinement from the local flag function, but not selected from the global flag function, will not
be refined. On the contrary, any splitting action will simply be passed-through and not changed by
the global flag function. During the final MPI communication, the modified mesh-action will be
broadcast from the root rank to all other ranks within the master simulation. The master root rank
also sends the mesh-action to the root rank of the slave simulation, which then broadcasts it to all
other ranks within its INCA instance.
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Sort all blocks according to maximum error
Calculate number of cells that are flagged for refinement

Choose blocks until X% of bad cells has been selected
All blocks that should be split will be split

0

1 ... N

Collect for all blocks εH |h , block size and local split and refinement action

Broadcast refinement and split action

Figure A.3: Schematics of global flag function.





B
Poisson-timestep-cell performance metric

A natural approach to indicate the performance improvements associated with a certain AMR
method is to report the cell count savings. The main drawback of this approach is the assumption
that cell count directly relates to the time it takes to solve a case. It is obvious that a case with
more cells takes longer to compute. However, it also neglects effects that potentially have a much
more substantial impact. In the case of a transient simulation with a target CFL number, refining
just one single block by another level can increase the wall-clock time by almost an order of
magnitude (considering INCA’s staggered mesh and a standard refinement ratio of 3) due to a
smaller τ. Another observation made during this thesis is that usually the amount of Poisson solver
iterations increases when the mesh becomes finer. An obvious solution would be to report the
wall-clock time or the core hours of the simulation, as well as the hardware which was used for
the computation. This metric, however, also lacks practicality or gets polluted by various external
factors. Using a core hour metric means that cases must be computed on the same hardware to
ensure compatibility. Depending on the available resources, this is not always practical since one
might have to compute its cases on different nodes/workstations. Load balancing is an additional
source of large uncertainty, depending on how often load balancing is used, and of course, based
upon which load-balancing method is employed, the load between the different CPUs is usually not
uniformly distributed, meaning that some cores might idle whereas other cores run at 100% load.
Even if all these problems might be avoided, also entirely random external influences can pollute
the results. Depending on e.g., the cluster architecture, all users might have to write to the same
storage server. This can lead to bottlenecks if various simulations have to write-out simulation
results at the same time. To the author’s opinion, one is usually interested in the maximum
theoretical performance improvement, which can result from an AMR routine instead of the actual
improvements, especially because early implementations of new algorithms have not yet reached
a high level of maturity and optimization. As a remedy, but surely not a perfect one, the following
metric PTC (Poisson-timestep-cell-iterations) is proposed for incompressible cases:

PTC =
N T end∑
N T start

cells∗poisson solver iterations. (B.1)

It assumes that the largest wall clock time contributor of a transient incompressible CFD simulation
stem from the number of cells, the number of Poisson-solver iterations and the number of time-
steps.
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C
Mathematical description of periodic hill

geometry

The geometry of the left hill can be described by the following set of splines. For the right hill, the
coordinates simply have to be mirrored. The definition of the splines stems from ERCOFTAC [79].

Between x=0. and x=0.3214h:

h(x) = min(1,1+0x +2.420E−04x2 −7.588E−05x3) (C.1)

Between x=0.3214h. and x=0.5h:

h(x) = 0.8955+3.484EE−02x −3.629E−03x2 +6.749E−05x3 (C.2)

Between x=0.5h and x=0.7143h:

h(x) = 0.9213+2.931E−02x −3.234E−03x2 +5.809E−05x3 (C.3)

Between x=0.7143h and x=1.071h:

h(x) = 1.445−4.927E−02x +6.950E−04x2 −7.394E−06x3 (C.4)

Between x=1.071h and x=1.429h:

h(x) = 0.6401+3.123E−02x −1.988E−03x2 +2.242E−05x3 (C.5)

Between x=1.429h and x=1.929h:

h(x) = max(0,2.0139−7.180E−02x +5.875E−04x2 +9.553E−07x3) (C.6)

113





Bibliography

[1] M. Aftosmis and M. Berger, Multilevel Error Estimation and Adaptive h-Refinement for
Cartesian Meshes with Embedded Boundaries, in 40th AIAA Aerospace Sciences Meeting & Ex-
hibit, Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, 2002).

[2] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong
shocks, Journal of Computational Physics 54, 115 (1984).

[3] B. Krank, M. Kronbichler, and W. A. Wall, Direct Numerical Simulation of Flow over Periodic
Hills up to Re H= 10 , 595, Flow, Turbulence and Combustion 101, 521 (2018).

[4] M. Breuer, N. Peller, C. Rapp, and M. Manhart, Flow over periodic hills - Numerical and exper-
imental study in a wide range of Reynolds numbers, Computers and Fluids 38, 433 (2009).

[5] M. Meyer, A. Devesa, S. Hickel, X. Y. Hu, and N. A. Adams, A conservative immersed interface
method for Large-Eddy Simulation of incompressible flows, Journal of Computational Physics
229, 6300 (2010).

[6] Top500, Performance development, (2018), https://www.top500.org/statistics/

perfdevel/, Accessed: 06.11.2018.

[7] A. Jameson, Computational fluid dynamics past, present and future, Presentation at NASA Ad-
vanced Modeling & Simulation Seminar Series (2012), http://aero-comlab.stanford.edu/
Papers/NASA_Presentation_20121030.pdf, Accessed: 06.11.2018.

[8] F. T. Nieuwstadt, B. J. Boersma, and J. Westerweel, Turbulence: Introduction to Theory and
Applications of Turbulent Flows (Springer International Publishing, 2016) pp. 1–284.

[9] D. A. Venditti and D. L. Darmofal, Grid Adaptation for Functional Outputs: Application to Two-
Dimensional Inviscid Flows, Journal of Computational Physics 176, 40 (2002).

[10] S. Toosi and J. Larsson, Anisotropic grid-adaptation in large eddy simulations, Computers and
Fluids 156, 146 (2017).

[11] K. J. Fidkowski, Output-based space–time mesh optimization for unsteady flows using
continuous-in-time adjoints, Journal of Computational Physics 341, 258 (2017).

[12] R. Löhner, Applied CFD Techniques: An Introduction based on Finite Element Methods, 2nd ed.
(John Wiley & Sons, 2008) p. 519.

[13] J. Meyers, Quality and Reliability of Large-Eddy Simulations, edited by B. Geurts, ERCOFTAC
series ; 12 (Springer, 2008) first QLES meeting on Quality and Reliability of Large-Eddy Simula-
tion, held October 22–24, 2007 in Leuven (QLES07).

[14] J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method for simulations of
flow in complex geometries, Journal of Computational Physics 171, 132 (2001).

[15] J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner, Highly resolved large-
eddy simulation of separated flow in a channel with streamwise periodic constrictions, Journal
of Fluid Mechanics 526, 19 (2005).

115

http://dx.doi.org/10.2514/6.2002-863
http://dx.doi.org/10.2514/6.2002-863
http://dx.doi.org/https://doi.org/10.1016/0021-9991(84)90142-6
http://dx.doi.org/ 10.1007/s10494-018-9941-3
http://dx.doi.org/ 10.1016/j.compfluid.2008.05.002
http://dx.doi.org/ 10.1016/j.jcp.2010.04.040
http://dx.doi.org/ 10.1016/j.jcp.2010.04.040
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://dx.doi.org/10.1007/978-3-319-31599-7
http://dx.doi.org/10.1007/978-3-319-31599-7
http://dx.doi.org/10.1006/jcph.2001.6967
http://dx.doi.org/ 10.1016/j.compfluid.2017.07.006
http://dx.doi.org/ 10.1016/j.compfluid.2017.07.006
http://dx.doi.org/10.1016/j.jcp.2017.04.005
http://dx.doi.org/10.1007/978-1-4020-8578-9
http://dx.doi.org/ https://doi.org/10.1006/jcph.2001.6778
http://dx.doi.org/10.1017/S0022112004002812
http://dx.doi.org/10.1017/S0022112004002812


116 Bibliography

[16] F. Schornbaum and U. Rüde, Extreme-Scale Block-Structured Adaptive Mesh Refinement, SIAM
Journal on Scientific Computing 40, C358 (2018).

[17] L. Diachin, R. Hornung, P. Plassmann, and A. Wissink, Parallel Adaptive Mesh Refinement, in
Parallel Processing For Scientific Computing, edited by M. A. Heroux, P. Raghavan, and H. D.
Simon (Society for Industrial and Applied Mathematics, 2006) Chap. 8.

[18] M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of
Computational Physics 82, 64 (1989).

[19] C. Hertel, M. Schümichen, S. Löbig, J. Fröhlich, and J. Lang, Adaptive large eddy simulation
with moving grids, Theoretical and Computational Fluid Dynamics 27, 817 (2013).

[20] I. Babuška and M. Suri, The p and h - p Versions of the Finite Element Method, Basic Principles
and Properties, SIAM Review 36, 578 (1994).

[21] P. A. Zegeling, r-refinement for evolutionary PDEs with finite elements or finite differences, Ap-
plied Numerical Mathematics 26, 97 (1998).

[22] M. Ceze and K. J. Fidkowski, Anisotropic hp-Adaptation Framework for Functional Prediction,
AIAA Journal 51, 492 (2013).

[23] H. Jasak and A. D. Gosman, Element residual error estimate for the finite volume method, Com-
puters and Fluids 32, 223 (2003).

[24] M. Klein, An Attempt to Assess the Quality of Large Eddy Simulations in the Context of Implicit
Filtering, Flow, Turbulence and Combustion 75, 131 (2005).

[25] B. J. Geurts and J. Fröhlich, A framework for predicting accuracy limitations in large-eddy sim-
ulation, Physics of Fluids 14, L41 (2002).

[26] B. J. Geurts, Interacting errors in large-eddy simulation: a review of recent developments, Journal
of Turbulence 7, N55 (2006).

[27] I. B. Celik, Z. N. Cehreli, and I. Yavuz, Index of Resolution Quality for Large Eddy Simulations,
Journal of Fluids Engineering 127, 949 (2005).

[28] M. Klein, J. Meyers, and B. J. Geurts, Assessment of LES Quality Measures Using the Error Land-
scape Approach, in Quality and Reliability of Large-Eddy Simulations (Springer Netherlands,
Dordrecht, 2008) pp. 131–142.

[29] F. di Mare, R. Knappstein, and M. Baumann, Application of LES-quality criteria to internal
combustion engine flows, Computers & Fluids 89, 200 (2014).

[30] J. Larsson, Grid-adaptation for chaotic multi-scale simulations as a verification-driven inverse
problem, in 2018 AIAA Aerospace Sciences Meeting, January (American Institute of Aeronautics
and Astronautics, Reston, Virginia, 2018).

[31] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid
flows., Ph.D. thesis, Imperial College London (1996).

[32] J. Dannenhoffer, III and J. Baron, Grid adaptation for the 2-D Euler equations, in 23rd Aerospace
Sciences Meeting (American Institute of Aeronautics and Astronautics, Reston, Virigina, 1985).

[33] Ansys Inc, Ansys fluent user’s guide release 13.0, (2010).

http://dx.doi.org/10.1137/17M1128411
http://dx.doi.org/10.1137/17M1128411
http://dx.doi.org/10.1137/1.9780898718133
http://dx.doi.org/ 10.1016/0021-9991(89)90035-1
http://dx.doi.org/ 10.1016/0021-9991(89)90035-1
http://dx.doi.org/ 10.1007/s00162-012-0280-z
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1016/S0168-9274(97)00086-X
http://dx.doi.org/10.1016/S0168-9274(97)00086-X
http://dx.doi.org/ 10.2514/1.J051845
http://dx.doi.org/ 10.1016/S0045-7930(02)00004-X
http://dx.doi.org/ 10.1016/S0045-7930(02)00004-X
http://dx.doi.org/10.1007/s10494-005-8581-6
http://dx.doi.org/10.1063/1.1480830
http://dx.doi.org/10.1080/14685240600796507
http://dx.doi.org/10.1080/14685240600796507
http://dx.doi.org/10.1115/1.1990201
http://dx.doi.org/ 10.1007/978-1-4020-8578-9_11
http://dx.doi.org/ 10.1016/j.compfluid.2013.11.003
http://dx.doi.org/10.2514/6.2018-0371
http://dx.doi.org/ 10.2514/6.1985-484
http://dx.doi.org/ 10.2514/6.1985-484


Bibliography 117

[34] B. Re, C. Dobrzynski, and A. Guardone, Assessment of grid adaptation criteria for steady, two-
dimensional, inviscid flows in non-ideal compressible fluids, Applied Mathematics and Com-
putation 319, 337 (2018).

[35] S. Kamkar, A. Wissink, V. Sankaran, and A. Jameson, Feature-driven Cartesian adaptive mesh
refinement for vortex-dominated flows, Journal of Computational Physics 230, 6271 (2011).

[36] J. Gou, X. Yuan, and X. Su, A high-order element based adaptive mesh refinement strategy for
three-dimensional unstructured grid, International Journal for Numerical Methods in Fluids
85, 538 (2017).

[37] J. Gou, X. Yuan, and X. Su, Adaptive mesh refinement method based investigation of the interac-
tion between shock wave, boundary layer, and tip vortex in a transonic compressor, Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, 694
(2018).

[38] S. Pope, Turbulent Flows (Cambridge University Press, 2000).

[39] L. Berselli, T. Iliescu, and W. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows,
Scientific Computation (Springer, 2006).

[40] L. Davidson, Large Eddy Simulations: How to evaluate resolution, International Journal of Heat
and Fluid Flow 30, 1016 (2009).

[41] S. Gamard and W. K. George, Reynolds number dependence of energy spectra in the verlap region
of isotropic turbulence, Flow, Turbulence and Combustion 63, 443 (2000).

[42] S. E. Gant, Reliability issues of LES-related approaches in an industrial context, Flow, Turbu-
lence and Combustion 84, 325 (2010).

[43] G. Daviller, M. Brebion, P. Xavier, G. Staffelbach, J. D. Müller, and T. Poinsot, A Mesh Adaptation
Strategy to Predict Pressure Losses in LES of Swirled Flows, Flow, Turbulence and Combustion
99, 93 (2017).

[44] G. Hindi, E. Paladino, and A. A. M. de Oliviera, Effect of mesh refinement and model parameters
on LES simulation of diesel sprays, International Journal of Heat and Fluid Flow 71, 246 (2018).

[45] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing (Cambridge
University Press, Cambridge, 2010) pp. 1–767, arXiv:arXiv:1011.1669v3 .

[46] A. Hay and M. Visonneau, Error estimation using the error transport equation for finite-volume
methods and arbitrary meshes, International Journal of Computational Fluid Dynamics 20, 463
(2006).

[47] C. Roy, Review of Discretization Error Estimators in Scientific Computing, in 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Janu-
ary (American Institute of Aeronautics and Astronautics, Reston, Virigina, 2010) pp. 1–29.

[48] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical en-
gineerng analysis, International Journal for Numerical Methods in Engineering 24, 337 (1987).

[49] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Journal of
Computational and Applied Mathematics 50, 67 (1994).

http://dx.doi.org/ 10.1016/j.jcp.2011.04.024
http://dx.doi.org/10.1002/fld.4397
http://dx.doi.org/10.1002/fld.4397
http://dx.doi.org/ 10.1177/0954410016687142
http://dx.doi.org/ 10.1177/0954410016687142
http://dx.doi.org/ 10.1177/0954410016687142
https://books.google.de/books?id=HZsTw9SMx-0C
https://books.google.nl/books?id=5Hkj6TLnSD0C
http://dx.doi.org/ 10.1016/j.ijheatfluidflow.2009.06.006
http://dx.doi.org/ 10.1016/j.ijheatfluidflow.2009.06.006
http://dx.doi.org/10.1023/A:1009988321057
http://dx.doi.org/ 10.1007/s10494-009-9237-8
http://dx.doi.org/ 10.1007/s10494-009-9237-8
http://dx.doi.org/ 10.1007/s10494-017-9808-z
http://dx.doi.org/ 10.1007/s10494-017-9808-z
http://dx.doi.org/10.1016/j.ijheatfluidflow.2018.04.001
http://dx.doi.org/10.1017/CBO9780511760396
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1080/10618560600835934
http://dx.doi.org/10.1080/10618560600835934
http://dx.doi.org/10.2514/6.2010-126
http://dx.doi.org/10.2514/6.2010-126
http://dx.doi.org/10.1002/nme.1620240206
http://dx.doi.org/10.1016/0377-0427(94)90290-9
http://dx.doi.org/10.1016/0377-0427(94)90290-9


118 Bibliography

[50] D. Haworth, S. El Tahry, and M. Huebler, A global approach to error estimation and physical
diagnostics in multidimensional computational fluid dynamics, International Journal for Nu-
merical Methods in Fluids 17, 75 (1993).

[51] F. Juretic, Error Analysis in Finite Volume CFD, Ph.D. thesis, Imperial College London (2004).

[52] T. Brandt, Doctoral Dissertation, Ph.D. thesis, Helsinki University of Technology Department
(2007).

[53] M. J. Berger and J. Oliger, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equa-
tions, Journal of Computational Physics 53, 484 (1984).

[54] S. M. Mitran, A Comparison of Adaptive Mesh Refinement Approaches for Large Eddy Simula-
tion, in Third AFOSR International Conference on DNS/LES (Arlington, TX, 2001).

[55] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid (Elsevier, 2000).

[56] A. Syrakos and A. Goulas, Estimate of the truncation error of finite volume discretization of
the Navier-Stokes equations on colocated grids, International Journal for Numerical Methods
in Fluids 50, 103 (2006).

[57] F. Fraysse, E. Valero, and J. Ponsín, Comparison of Mesh Adaptation Using the Adjoint Method-
ology and Truncation Error Estimates, AIAA Journal 50, 1920 (2012).

[58] A. Syrakos, G. Efthimiou, J. G. Bartzis, and A. Goulas, Numerical experiments on the efficiency
of local grid refinement based on truncation error estimates, Journal of Computational Physics
231, 6725 (2012).

[59] N. Currier and K. Franko, A Discrete Error Transport Equation Source Model for Mesh Adapta-
tion, in 52nd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics,
Reston, Virginia, 2014) pp. 1–11.

[60] K. Ding, Efficient Output-Based Adaptation Mechanics for High-Order Computational Fluid
Dynamics Methods, Ph.D. thesis, University of Michigan (2018).

[61] W. C. Tyson, K. Swirydowicz, J. M. Derlaga, C. J. Roy, and E. de Sturler, Improved Functional-
Based Error Estimation and Adaptation without Adjoints, in 46th AIAA Fluid Dynamics Con-
ference, June (American Institute of Aeronautics and Astronautics, Reston, Virginia, 2016) pp.
1–18.

[62] N. A. Pierce and M. B. Giles, Adjoint Recovery of Superconvergent Functionals from PDE Approx-
imations, SIAM Review 42, 247 (2000).

[63] N. Pierce and M. Giles, Adjoint and Defect Error Bounding and Correction for Functional Estim-
ates, in 16th AIAA Computational Fluid Dynamics Conference (American Institute of Aeronaut-
ics and Astronautics, Reston, Virigina, 2003).

[64] K. J. Fidkowski and P. L. Roe, An Entropy Adjoint Approach to Mesh Refinement, SIAM Journal
on Scientific Computing 32, 1261 (2010).

[65] R. Dwight, Goal-Oriented Mesh Adaptation using a Dissipation-Based Error Indicator, in 18th
AIAA Computational Fluid Dynamics Conference, June (American Institute of Aeronautics and
Astronautics, Reston, Virigina, 2007) pp. 25–28.

[66] R. P. Dwight, Heuristic a posteriori estimation of error due to dissipation in finite volume schemes
and application to mesh adaptation, Journal of Computational Physics 227, 2845 (2008).

http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1002/fld.1038
http://dx.doi.org/10.1002/fld.1038
http://dx.doi.org/10.2514/1.J051450
http://dx.doi.org/10.1016/j.jcp.2012.06.023
http://dx.doi.org/10.1016/j.jcp.2012.06.023
http://dx.doi.org/ 10.2514/6.2014-1431
http://dx.doi.org/10.2514/6.2016-3809
http://dx.doi.org/10.2514/6.2016-3809
http://dx.doi.org/ 10.1080/00221341808983837
http://dx.doi.org/ 10.2514/6.2003-3846
http://dx.doi.org/10.1137/090759057
http://dx.doi.org/10.1137/090759057
http://dx.doi.org/10.2514/6.2007-4093
http://dx.doi.org/10.2514/6.2007-4093
http://dx.doi.org/ 10.1016/j.jcp.2007.11.020


Bibliography 119

[67] C. de Boor, Good Approximation by Splines with Variable Knots, in Spline Functions and Ap-
proximation Theory (Edmonton, 1972) pp. 57–72.

[68] K. J. Fidkowski and D. L. Darmofal, Review of Output-Based Error Estimation and Mesh Adapt-
ation in Computational Fluid Dynamics, AIAA Journal 49, 673 (2011).

[69] M. Nemec, M. Aftosmis, and M. Wintzer, Adjoint-Based Adaptive Mesh Refinement for Complex
Geometries, in 46th AIAA Aerospace Sciences Meeting and Exhibit, January (American Institute
of Aeronautics and Astronautics, Reston, Virigina, 2008) pp. 1–23.

[70] S. Hickel, N. A. Adams, and J. A. Domaradzki, An adaptive local deconvolution method for
implicit LES, Journal of Computational Physics 213, 413 (2006).

[71] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of
Computation of the American Mathematical Society 67, 73 (1998).

[72] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solu-
tion of Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing 13,
631 (1992).

[73] H. L. Stone, Iterative Solution of Implicit Approximations of Multidimensional Partial Differen-
tial Equations, SIAM Journal on Numerical Analysis 5, 530 (1968).

[74] S. Hickel, C. P. Egerer, and J. Larsson, Subgrid-scale modeling for implicit large eddy simulation
of compressible flows and shock-turbulence interaction, Physics of Fluids 26, 106101 (2014).

[75] U. Fey, M. König, and H. Eckelmann, A new Strouhal–Reynolds-number relationship for
the circular cylinder in the range 47 < Re < 2x105, Physics of Fluids 10, 1547 (1998), ht-
tps://doi.org/10.1063/1.869675 .

[76] M. Dröge and R. Verstappen, A new symmetry-preserving cartesian-grid method for computing
flow past arbitrarily shaped objects, International Journal for Numerical Methods in Fluids 47,
979 (2005), https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.924 .

[77] J. F. Gómez, Multi-fidelity co-kriging optimization using hybrid injected RANS and LES, (2018).

[78] S. Hickel, Implicit Turbulence Modeling for Large-Eddy Simulation, Ph.D. thesis, Technische
Universität München (2008).

[79] ERCOFTAC, The ERCOFTAC Knowledge Base Wiki Home Page - UFR 3-30 Test Case,
(2017), https://www.kbwiki.ercoftac.org/w/index.php?title=UFR_3-30_Test_Case,
Accessed: 15.12.2019.

http://dx.doi.org/ 10.1007/978-3-0348-5979-0_3
http://dx.doi.org/ 10.1007/978-3-0348-5979-0_3
http://dx.doi.org/10.2514/1.J050073
http://dx.doi.org/ 10.2514/6.2008-725
http://dx.doi.org/ 10.1016/j.jcp.2005.08.017
http://dx.doi.org/ 10.1090/S0025-5718-98-00913-2
http://dx.doi.org/ 10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0705044
http://dx.doi.org/10.1063/1.4898641
http://dx.doi.org/10.1063/1.869675
http://arxiv.org/abs/https://doi.org/10.1063/1.869675
http://arxiv.org/abs/https://doi.org/10.1063/1.869675
http://dx.doi.org/10.1002/fld.924
http://dx.doi.org/10.1002/fld.924
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.924
https://www.kbwiki.ercoftac.org/w/index.php?title=UFR_3-30_Test_Case

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	What is adaptive mesh refinement?
	AMR for user-independent mesh generation
	Research objective and thesis outline

	Literature Review
	Overview of AMR adaption routines
	Adaption strategies
	Error sensor
	LES specific issues when using AMR
	Physics/Feature-based error indicators
	Gradient based methods and others
	LES specific indicators

	Numerical error estimators
	Richardson-extrapolation
	Tau-extrapolation
	Error transport equation (ETE)

	Goal-oriented error indicators/estimators
	Flag functions
	Synthesis and chosen direction

	Theoretical framework
	INCA solver
	INCA's block-structured mesh
	Auxiliary adaption criteria
	Alternating block splitting and refining criterion
	Cut-cell criterion
	Balance criterion

	The H-adaption pipeline
	Error sensor
	Richardson-extrapolation
	Error transport equation
	Reference error indicator

	Flag function
	Restriction operators and 'destaggering'

	Mach 3 shock over a forward-facing step
	Case setup
	Uniform mesh refinement with feature-based and novel error sensors
	Isotropic refinement
	Anisotropic refinement
	Conclusion

	Flow around a two-dimensional circular cylinder at Re=100
	Case setup
	Reference curvature refinement
	Error sensors in isotropic adaption
	Error sensors in anisotropic adaption
	Effect of adaption time step
	Overhead created by the master-slave approach
	Conclusion

	Flow over periodic hills at Re=10595
	Case setup
	Required averaging period of error sensor
	Isotropic refinement
	Additional filtering of error sensor
	Benchmarking against reference error sensor

	Error evolution during adaption
	Conclusion

	Conclusion and recommendations
	Code implementation
	Code implementation
	AMR framework integration within INCA
	Main structure and subroutines of AMR framework
	Start server / Stop server
	Multi criterion and quantity of interest pipeline
	Richardson
	Block flag function
	Global flag function


	Poisson-timestep-cell performance metric
	Mathematical description of periodic hill geometry
	Bibliography

