An OS-level adaptive
tNread pool scheme tor
/O-heavy workloads

by

Jannes Timm

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday February 25, 2021 at 9:30 AM.

Student number: 4907191
Project duration: May 1, 2020 — February 25, 2021

Thesis committee: Dr. J.S. Rellermeyer, TU Delft, supervisor
Prof. dr. ir. D.H.J. Epema, TU Delft
Dr. A. Katsifodimos, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

| would like to thank my supervisor Jan for his constant support throughout the whole duration of this
thesis project. The weekly meetings and the freedom to research according to my ideas and interests
made for an enjoyable experience. | am also grateful to Sobhan, who joined part of the weekly meetings
and who also provided assistance personally at some points in the project. Lastly, thanks to Dick and
Asterios for being part of my thesis committee, and thanks to friends and family who also supported
me throughout the period | was working on the thesis.

Jannes Timm
Delft, February 2021

Contents

Introduction 1
1.1 Research Objectives 1
1.2 Outline e 2
Background 3
2.1 Compute-bound & I/O-bound Workloads 3
22 Taxonomy of IO ACCESS i i e e e 3
2.2.1 Synchronous vs. Asynchronous. i 3
2.2.2 Blockingvs. Non-blocking 3
2.3 LinuxKernell/Olnterfaces. e 4
2.3.1 Synchronous, Blocking Read/Write 4
2.3.2 File Descriptor Monitoring + Non-blocking Read/Write 4
2.3.3 Memory-mapped /O 5
2.3.4 AsynchronousRead/Write 5
2.4 Concurrency Models - Threading 5
2.4.1 Asynchronous I/O - Application Architecture 5
2.5 LinuxObservability e 6
2.6 Measuring Performance 6
Related Work 7
Algorithmic Approach & Solution Architecture 9
4.1 System Metrics & Throughput Correlations 9
411 Workloads. 9
4.1.2 Disk /O Throughput 10
4.1.3 Auxiliary Metrics 12
4.2 Algorithmic Approach. e 13
4.21 Assumptions and Limitations L Lo 13
4.2.2 Adapter Algorithm 14
423 Implementation. 16
4.3 Architecture & Components 16
431 Tracesets e 18
4.3.2 Scale Adapter. 19
4.3.3 Thread Pool. e 19
4.4 Overhead of Scaling Adapter 20
Workloads & Experimental Analysis 21
5.1 ModellingWorkloads e 21
5.1.1 Phases&PhaseChanges. 21
5.1.2 Saturating vs Non-saturatingPhases 22
5.2 Methodology & Experimental Setup. 22
521 Experimental Setup 22
5.2.2 Selection of Algorithm Parameters L. 22
5.3 Experimental Analysis 23
5.3.1 Adaptive Thread Pool - Single Phase 23
5.3.2 Adaptive Thread Pool-MultiPhase. 25
5.3.3 NodedS e 26
534 RocksDB 27
5.4 DISCUSSION L 29

Vi Contents
6 Algorithm Extensions & Analysis 33
6.1 Algorithm Extensions. e 33
6.1.1 DropExceptionRule 33

6.1.2 Moving Average e e 34

6.1.3 Analysis &Evaluation 34

6.2 DISCUSSION e e 35

7 Conclusions & Future Work 37
7.1 ConcClUSIONS. e e 37
7.2 Future Work. e e e 38

A Appendix 39
A1 Workloads. 39
A.1.1 Adaptive Thread Pool 39

A1.2 NodedS e 39

A1.3 RocksDB e 39

A2 Chapter6omittedresults 40
A3 Source Code 40
Bibliography 41

Introduction

With increase of CPU cores and higher demands with regards to scalability, concurrent programming
and application architecture is becoming more prevalent in the software world. Even before this trend
the C10k problem illustrated that the memory, creation and scheduling overheads of operating system
(OS) threads prohibit their excessive usage, i.e the thread-per-request model commonly used in web
servers was not scalable enough for the increasing amount of concurrent requests [16]. A solution to
the problem of overheads of too many OS threads and their repeated creation/destruction is the pooling
and reuse through the introduction of thread pools within an application [25].

Thread pools alleviate the overheads of dynamically creating and destroying threads per request,
but it is often not clear what their optimal size (amount of threads) should be. Different schemes for
dynamic adjustment of the amount of threads have been suggested and implemented. Most of these
assume general workloads, while in many applications and libraries thread pools are employed for I/O-
bound workloads only, especially disk I/0O . Many modern runtime libraries that enable asynchronous
programming architectures, such as Tokio [30], Libuv [26] and ZIO [31], use a thread pool solely for disk
I/0 and disk related blocking operations. A cause for this restricted use case has been lacking orimma-
ture asynchronous I/O interfaces for disk 1/0, whereas network I/O has better support for asynchronous
programming.

Common adaptive strategies that assume a generic workload fail to capture throughput limits of
local disk storage, resulting in the excessive creation of threads which wastes memory and may affect
throughput negatively. With the restriction of the workloads to disk I/O jobs only we are able to correlate
observable metrics such as logical disk throughput to the general throughput of the thread pool, which
enables a feedback-based algorithmic approach that relies on realtime OS metrics.

1.1. Research Objectives

In this work we focus on developing an adaptive scheme for a specialized thread pool, that solely ex-
ecutes jobs that mostly perform input/output (I/O) on local disk devices. Adaptive here means online
adaption of the amount of threads in order to increase performance. We aim to maximize the throughput
while minimizing the amount of worker threads in the thread pool. Specifically we target the Linux oper-
ating system as it is easily extendable, and we restrict ourselves to disk I/O because in asynchronous
application architectures network I/O is already often implemented in a non-blocking, poll-based model,
that make the use of a thread pool redundant, whereas disk 1/0 is commonly delegated to a thread pool.
We formulate the following research questions, which are addressed in this work:

1. Which OS metrics are useful in characterizing the performance of a disk I/O thread pool?

2. Whatis an effective approach to dynamically adapt thread pool sizes in order to increase through-
put while minimizing amount of used threads?

(a) Is the overhead of the dynamic resizing significant?

"we use term "disk 1/0” to mean I/O operations for all types of storage devices, in contrast to network 1/O

1

2 1. Introduction

(b) Can we achieve the same throughput as a fixed-size pool with optimal size for workloads
with homogeneous jobs?

(c) How does the performance w.r.t to throughput and amount of used threads compare to the
Watermark scheme 2?

(d) How does our approach perform for more dynamic workloads with heterogeneous workloads
and changing jobs submission rate?

Question 1 and 2.a are addressed in chapter 4 when we introduce our solution approach and the
remaining questions are answered in chapter 5 and 6 through experimental analysis.
Furthermore w.r.t to the implementation of our adaptive scheme we propose the following goals:

* Minimize the amount of configuration parameters, the approach should perform acceptable for all
possible disk I/O workloads when using default values (it is unavoidable that for different work-
loads different configurations achieve best performance, but as we are proposing an adaptive
scheme to avoid having to tune a fixed-size pool’s size, we feel it is an important design goal)

» Achieve throughput close to the optimal fixed-size pool for stable workloads with homogeneous
jobs (we expect the optimal size of the pool to be stable for such workloads, so there should not
be much potential to outperform the best fixed-size pool)

» Outperform the optimal fixed-size pool for workloads with stable phases of different load/jobs
(when a workload consists of multiple stable phases, it is likely that the optimal pool size is not
the same over the whole workload, so an adaptive scheme should be able to achieve higher
throughput than the optimal fixed-size pool here)

The solution approach we opt for takes advantage of the restriction to disk 1/0 only jobs through
maximizing logical disk throughput, which we show to be highly correlated with the total runtime for
such restricted disk 1/0 workloads. We compare our solution to the optimally sized fixed-size pool and
the commonly implemented Watermark scheme (e.g Java’s ThreadPoolExecutor [22] and MariaDB’s
thread pool [28]).

We believe the main contributions of this thesis are the following; firstly, we show that using OS
metrics for determining concurrency levels for workloads consisting of jobs that mainly consume a
certain type of resource is a sensible approach that can minimize the amount of threads used while
achieving good throughput. Secondly, we develop an adaptive thread pool implementation based on
live OS metrics as feedback, discuss its components and architecture, and show that the introduced
overheads by the controller are negligible. Furthermore, we compare the performance of our proposed
solution to fixed-size pools and the Watermark scheme, showing similar or better performance for
a variety of read-write workloads. We also integrate the main component of our solution, the scale
controller, into 2 existing applications, Node.js and RocksDB, making their internally used thread pools
adaptive, and experimentally evaluate the performance compared to default and tuned setups.

1.2. Outline

In chapter 2 we shortly introduce the reader to some related background about I/O interfaces, threading
models and observability in the context of the Linux OS. In chapter 3 previous research on adaptive
thread pools is discussed, while contrasting methodology and use cases with this work. The following
chapters develop and experimentally verify our solution. Chapter 4 contains an analysis on OS metrics
that are correlated with thread pool job completion throughput, a high-level description of the algorithmic
approach and the architecture of the complete proposed adaptive thread pool. In chapter 5 we introduce
a model for multi-phase workloads and evaluate our solution experimentally against a set of synthetic
and application workloads. Our implementation is integrated into two widely-used project, RocksDB
and Node.js, and benchmarked against the default thread pools in these projects. In chapter 6 we refine
the approach to deliver better results for the tested Node and RocksDB workloads and we discuss more
generally the implications for other applications. We conclude this thesis in chapter 7, summarizing the
results and contributions, and finally briefly discuss possible future work.

2the Watermark scheme keeps the pool size between a minimum and maximum number of worker threads, scaling up when
more jobs are available and terminating workers after some period of being idle

Background

2.1. Compute-bound & I/0-bound Workloads

Computing workloads can be categorized w.r.t their resource usage. A workload that predominantly
uses the CPU with only accessing data residing in cache or main memory is called compute-bound. If
in contrast the workload consists of a lot of interaction with 1/O devices such as disk and network, it is
called I/O-bound. These two types of workloads are very different in their interaction with the operating
system (OS), a compute-bound process usually make full use of the processor time it is given by the
OS, whereas an 1/0-bound process often yields the processor back through the use of blocking system
calls. For this work we are only focusing on I/O-bound workloads and their characteristics in concurrent
settings.

2.2. Taxonomy of /0O Access

In the following we discuss and classify different types of input/output (1/0O) operations. An operation
performs I/O access when it involves transfer of data between memory and an I/O device. The following
discussion is limited to interfaces of disk and network devices. In Linux the common abstraction to
interact with these devices is the file.

I/0 access on modern Operating Systems can be characterized into different categories depending
on whether it is synchronous/asynchronous and whether it is blocking/non-blocking. Which access
method is used is largely dependent on an application’s architecture and the concrete 1/0 APIs offered
by the OS. We introduce Linux-specific I/O interfaces and categorize them according to their access
properties.

2.2.1. Synchronous vs. Asynchronous

Synchronous I/O access means an application issues 1/0O operations and then waits for the results be-
fore continuing to do other work. Conversely, asynchronous I/O access is characterized by performing
of other work during the period between the issuing of an 1/0 operation and the completion of it. Figure
2.1 illustrates an example execution of a thread that first performs some system call that synchronously
returns a result and then some call that returns a result asynchronously. For synchronous access the
thread retrieves the result of the operation right after the system call returns (e.g read system call),
thus not executing any further instructions between issuing the operation and retrieving its result. For
asynchronous access the thread does not retrieve the result of the operation when the system call
returns (e.g asynchronous read through io_uring_enter system call), it then goes on to execute other
instructions before retrieving the result at some later point. This is just one example for synchronous
and asynchronous access patters, we will discuss specific interfaces in more detail below.

2.2.2. Blocking vs. Non-blocking

An operation, in our context the invocation of a system call, is blocking if it potentially results in suspen-
sion of the current thread of execution. The suspended thread is in a blocked state until the operation
is completed and the operating system reschedules the thread. Conversely, a non-blocking operation

3

4 2. Background

Synchronous Asynchronous
User wait continue execution
> > >
thread for response _ of other instructions \ T
retrieve .
result retrieve
result
issue
; command
issue buffer return 2 buffer
command
return
Kernel write result put result
/ & update readiness
v /

Figure 2.1: Synchronous and asynchronous system calls

is guaranteed to not block and therefore invocation will not result in the invoking thread to be unsched-
uled. For example in figure 2.1 the synchronous operation may be a read system call that results in
blocking the thread because the requested data is not present in cache, or it may be a read system call
in non-blocking mode that either returns the requested data if present or return an error if not.

2.3. Linux Kernel I/O Interfaces

Linux offers a variety of system calls and flags that enable different kinds of I/O operations. We offer a
short overview of the main system calls for performing I/O and some of their commonly used modes of
operation, as well as a classification according to the above taxonomy.

2.3.1. Synchronous, Blocking Read/Write

The more traditional access method is synchronous, e.g the open/write/read system calls which
date back to the original Unix system developed in the early 1970s [24]. These system calls are the
simplest way of performing I/O work on Linux and most suitably used in non-concurrent applications
or generally in synchronous application architectures. By default the read call blocks if the requested
data is not cached in the Linux page cache, the write system call may or may not block depending
on whether any read needs to be performed to realize the write operation.

With increasing demands on highly concurrent applications such as web servers the need for asyn-
chronous architectures that share threads of execution arose. To realize an asynchronous execution
model one can defer synchronous 1/O access to a dedicated thread pool, which does not require new
I/O access methods. This approach is very common for performing concurrent disk I/O and all the
workloads we use to evaluate our adaptive thread pool solution use these system calls or variations
thereof (e.g pwrite, pread).

2.3.2. File Descriptor Monitoring + Non-blocking Read/Write

The read/write system calls can be used in non-blocking mode, which instead of blocking in case
a file is not ready to be written to/read from just returns an error. This can be used in combination
with several methods of monitoring file descriptors for their readiness to implement synchronous and
asynchronous non-blocking 1/0 access.

There are several system calls - pol1, select, epoll - that allow for monitoring file descriptors for
their "readiness” to do disk I/O. A file descriptor being "ready” means that one can perform read/write
system calls which will not block the calling OS thread. So a common pattern for ensuring an applica-
tion’s 1/0O operations are non-blocking is to always wait, either busy looping or blocking the thread, for
some file descriptor to be ready, then perform 1/O on that file or the multiple files that are ready, and
then check again for more file descriptors to be ready.

This model is a more complex alternative to deferring synchronous I/O calls such as read/write to

2.4. Concurrency Models - Threading 5

a thread pool, with the same goal of achieving an asynchronous application architecture. Itis commonly
used for implementing asynchronous network I/O, but is only partly applicable to disk I/O, as this family
of polling system calls does not support disk files.

2.3.3. Memory-mapped I/O

With the mmap system call an area of a process’ memory can be mapped to a file residing on disk.
Then 1/O can be directly performed reading/writing from/to that area in memory. Using mmaped file I/O
avoids the need for making system calls, and specifically avoids the usual copying of data from user
process memory to kernel memory. As this method of I/0 access is just reading and writing to memory,
it is synchronous just like normal memory access. Depending on whether the underlying file is cached,
accessing mmaped memory may or may not be blocking.

2.3.4. Asynchronous Read/Write

While the Linux AlO asynchronous /O interface has existed for some time, it has severe limitations
and has not seen wide adoption [4]. Most notably it is restricted to direct disk access (O_DIRECT
flag) which bypasses the kernel page cache. Recently a new interface has been added to the kernel,
called io_uring. It offers functionality for fully asynchronous non-blocking disk I/O without the limitations
of AlO. Using io_uring applications can submit read/write requests in a non-blocking fashion without
having to poll for readiness and consume read/write completions in either non-blocking poll-based or
blocking fashion. We’ll have more to say about io_uring and how it relates to our work in the coming
chapters.

2.4. Concurrency Models - Threading

Concurrent applications have to choose an approach on how to use and organize OS threads to make
their architecture concurrent. On an abstract level an application (or application component) has to
process requests and produce responses. The simplest threading model is thread-per-request, where
athread is created to handle a request and destroyed after delivering the response. This approach does
not scale well for many concurrent requests and furthermore it wastes system resources through the
overhead of continuous thread creation and destruction. A thread pool with a fixed amount of threads
enables the reuse of threads and thereby avoids creation/destruction overheads. By decoupling the
request/response handling from actual processing, which is delegated to the thread pool, an application
can scale much beyond the actual amount of worker threads in the pool. As the optimal amount of
worker threads is dependent on many factors such as request load, type of requests and the available
system resources, the optimal configuration is hard to determine a priori and in most cases the optimal
amount of threads will vary during execution.

A commonly implemented and widely used approach that constitutes the next step after a fixed-
size thread pool is the "Watermark” model, which keeps the thread pool size between a minimum and
maximum amount of threads based on current load [11, 22]. When a worker thread’s idle time exceed a
certain threshold it gets destroyed, when all worker threads are busy at the time of a new job arrival and
the current amount is below the maximum, new workers get created. This scheme may work for some
cases, especially when the jobs are mainly CPU-bound and the maximum size equals the amount of
threads that the CPU can execute in parallel. However, for mainly 1/0-bound jobs this model fails to
capture the utilization of system resources such as the disk. We later experimentally verify this claim
and compare this model to our proposed solution.

2.4.1. Asynchronous l/O - Application Architecture
Applications and libraries can opt for different approaches to implement asynchronous 1/O. In the fol-
lowing we discuss two common approaches and their implications.

In the poll-based approach blocking I/O is avoided by monitoring file descriptors for readiness. Only
when files are ready to be read/written the read and write system calls are issued and as a result they
will never block. As the main thread will execute this steps continuously in a loop, this model is called
an event loop.

Another approach is to have a dedicated pool of threads which do any potentially blocking 1/0
operations. This prevents a main thread to ever block at the expense of extra system resources,
especially memory, being used up by the threads that perform the blocking 1/0.

6 2. Background

Even in event loop architectures there are still blocking 1/0O system calls that have to be performed
on an extra thread to avoid blocking the main thread. One example is the £sync system call, which
is required for flushing the page cache to disk and therefore guaranteeing that a file is durably written
to disk. So in practice even loop based systems still have a dedicated thread pool for these kind of
blocking calls.

2.5. Linux Observability

There are multiple options for obtaining metrics for a given Linux process. By default Linux already ex-
ports basic process statistics through the /proc filesystem. These are accessible without root privilege
and provide a diverse range of information about a process.

For more detailed and custom (performance) metrics about a process one has to proactively trace
a process [12, 13]. This can be achieved with various different tracing tools that make use of kernel
built-in tracing mechanisms. Multiple mechanisms such as kernel/user probes, tracepoints and function
hooks are built into the kernel and are exposed through various means to user space [27]. Different
tools such as systemtap, ftrace and perf use these interfaces in different ways. Recently a push towards
unifying the tracing infrastructure aims to develop a common user library that acts as a unified user-
space interface to the kernel-space tracing machinery [8].

These tools usually require root access, as they have the capability to trace any running process on
the system. So they are not practical to use for applications that want to use elaborate system metrics
to adapt their own behavior, such as an adaptive thread pool, as applications are commonly not run as
root for security reasons.

2.6. Measuring Performance

Performance may be quantified with different kind of metrics, typically the two most important ones are
throughput (requests completed / second) and response time (amount of time it takes from issuing a
request until receiving the response). Depending on the application it may be more important to reduce
the average response time or specifically reduce the response times of the worst percentile. While
generally aiming for a higher throughput it may also be important to keep the throughput at a steady
rate instead of a high average throughput that is very volatile over time. For the purpose of evaluation
performance of our adaptive thread pool we will use the average throughput, which is analogous to the
total runtime of a workload.

Related Work

There has been much research on making thread pools adaptive to increase their throughput or de-
crease latency. Most work focuses on thread pools that have generic workloads, jobs that are submit-
ted to be executed may be I/O-bound, compute-bound or a mix of both. Therefore the used metric for
throughput is often also generically defined to be the rate at which submitted jobs are completed and
latency is often determined by job completion times.

Previous work can be distinguished with regards to the algorithmic approach, the target metric to
be optimized and the use of auxiliary metrics obtained by monitoring or known a priori. Generally
either latency or throughput are optimized, with throughput usually being defined by the amount of jobs
completed per time. Algorithmic approaches range from manual tuning of thread pool size by system
administrators, to the optimization of complex theoretical models that factor in a variety of variables
that may not be easily observable [2]. Model-based approaches aim to directly calculate the optimal
thread pool size, whereas feedback-based approaches adjust the amount of threads based on a set
of observed metrics. Much of the feedback-based algorithms are rather simple, using some easily
obtainable OS level metrics or none at all, and adopting linear search or hillclimbing approaches [32].

Ling et al. developed a theoretical model to compute the optimal pool size based on a priori knowl-
edge such as a probability distribution over the request load and the thread creation and context switch-
ing costs [21]. Applicability of this model is restricted by the need of a good estimate of the expected
load and further assumptions like homogeneous jobs (similar /O and memory utilization) and con-
stant threading overheads. As the authors note, "[tlhe optimal size of [a] thread pool is a dynamic
performance metric that is influenced by the request activity, the system capacity and the system con-
figuration”. In contrast to their work, we make no attempt to model the request (job submission) activity
and system capacity, but rely purely on OS metrics.

One example for a feedback-based method is the implementation of the CLR (Common Language
Runtime) generic thread pool for .NET4, which uses a combined hill-climbing and rule-based approach
(called H(C?®) to dynamically adjust the pool size in order to increase the work completions per second
(throughput) [14]. While generally pursuing the same goal as our work, their work differs with regards
to scope and approach. They aim to design a thread pool for generic jobs instead of only 1/0-bound or
CPU-bound work. This is in contrast to the earlier design of the .NET 3.5 concurrency controller, which
assumed CPU-bound work. As a consequence of this change they do not use system resource metrics
such as CPU utilization. With our focus on disk 1/0-bound work only, it does make much more sense
to base the approach on system resource metrics, as the definition of throughput can be narrowed to
disk throughput. Regardless of these differences our approach is similar to the one by Hellerstein et
al. as we also assume a concave structure for the concurrency-throughput function. Furthermore the
controller states and non-collection of metrics during concurrency level changes are both inspired by
their work.

More feedback-based work with a focus on thread pools in web servers and a target metric of latency
has been done by Costa et al. [7]. They use roughly the same controller stages as the HC? controller,
with decisions to scale up or down being based on observed latency of requests (which are tracked
by another module). Chen at al. developed a linear search algorithm that uses indicators to decide
which direction to scale to [3]. The algorithm consists of 2 phases, first the pool is scaled up until the

7

8 3. Related Work

target performance metric stops increasing, then a potential downward adjustment is performed based
on previously observed maximum and average latencies.

Finally the recent work by Khorasani et al. on adapting the currency levels of Spark executors
for I/O-bound phases of data transformation was an inspiration to our work [18]. They show that the
default settings of a thread count that equals the amount of CPU cores often performs much worse than
optimal. They developed a feedback-based approach that dynamically adapts the concurrency level
for 1/0-bound phases which uses OS metrics for feedback on throughput and disk contention. Although
their approach is much in line with ours, it is specific to the 1/0 access pattern used in Spark and uses
a non-generalizable metric for determining contention (time spent blocking on the epoll_wait system
call). Furthermore their controller algorithm assumes long job execution times, which are typical for the
jobs executed by Spark executors, whereas our approach assumes jobs of a lower granularity.

Another set of prediction-based schemes that aim to adjust thread pool size according to the amount
of requests using modelling techniques based on historical data try to minimize response times by pre-
dicting the future request rates. This approach was suggested by Kim et al. [19] and further developed
by Kang et al. [15] and later Lee at al. [20]. These prediction-based schemes are all based on the as-
sumption of optimal performance (response time in their case) when the amount of requests (submitted,
not completed jobs) equals the amount of thread in the pool and they try to proactively create/destroy
threads for the next predicted amount of requests.

Most of the above mentioned research relies exclusively on simulations or synthetic workloads to
evaluate theirimplementations. While it is a good approach for iteratively developing algorithms, it may
result in a discrepancy in performance when applied in real applications. We therefore integrate our
solution in to two popular applications with workloads for specific use cases.

Another development complementary to the research on adaptive thread pools is the introduction
of io_uring to Linux [1][5]. In an ongoing effort many blocking system calls are ported to it, enabling
asynchronous programming with system calls that previously forced a synchronous programming style.
This means asynchronous application architectures do not need a thread pool anymore for blocking
disk I/O, they can be designed in a fully asynchronous manner. Recently there are many projects
exploring this space, e.g the thread-per-core runtime Glommio, which relies on io_uring to provide a
runtime for writing asynchronous code without the use of helper threads (that execute blocking code)
[6]. While promising for future applications, it requires an application to be written in an asynchronous
style, which may not be desirable due to complexity, or which may not be possible to achieve for existing
applications.

Algorithmic Approach & Solution
Architecture

In this chapter we introduce the algorithmic approach for an adaptive thread pool that minimizes runtime
and amount of worker threads used. We first discuss how we picked appropriate OS metrics that we
can use to implement a feedback-based adaptive thread pool. Based on the correlation of these metrics
with the performance of the thread pool with different fixed sizes we introduce the algorithmic solution
approach. We then show an overview of the design and components that make up the implementation,
which is split into a generic thread pool and a scaling adapter that acts as the controller. To conclude
the chapter we show experimental verification of the negligible overhead of the periodic execution of
the adapter procedures.

4.1. System Metrics & Throughput Correlations

In this section we take a look at how the pool size of a fixed thread pool affects the total runtime of some
deterministic workloads. Furthermore we investigate how the runtime over pool size function correlates
with several system metrics over pool size. As we look at whole workloads we use the term throughput
to mean the inverse of runtime, i.e the lower the runtime, the higher the throughput.

Two methods for collecting metrics are used, the /proc virtual filesystem is used to read some
metrics that are exported by default by the Linux kernel, the systemtap tracer tool is used to observe
which system calls the thread pool workers use, how often they are called and how much time is spent
within the system calls in total [17][23]. All metrics are measured as aggregates over all the worker
threads in the thread pool.

4.1.1. Workloads

For the purpose of investigation of throughput correlated system metrics and later for evaluation of our
adaptive thread pool implementation we make use of several workloads. Every used workload in this
thesis has a short description in the Appendix.

We wrote a few deterministic workloads that consist of homogeneous jobs, which perform disk 1/0O
through the write/read system call interface. They differ in the size of files read and written, whether
reads/writes are buffered, and how files are synced to disk (using the £sync system call). Our mutex-
based thread pool with fixed size is used to execute the jobs, we run the same workload for pool sizes
ranging from 1 to 64.

Furthermore we picked two popular open-source projects that make use of thread pools to execute
disk I/O operations that can serve as good real-world examples. The first is NodeJS (from here onward
just called Node), a Javascript runtime that makes use of a thread pool that is responsible for execution
of all disk-related I/O work [29]. This thread pool and additional components are provided by the libuv
project [26]. We implemented a few workloads that perform disk I/O by reading and writing files in bulk.

The second project is RocksDB, a key-value store that is heavily used as the core storage-engine by
many other Database projects [10]. This project includes an extensive benchmarking suite with many
workloads that capture a variety of usage patters [9]. RocksDB makes use of multiple thread pools, we

9

10 4. Algorithmic Approach & Solution Architecture

concentrate on the "flush” pool, which is responsible for guaranteeing that internal database files are
durably written to disk. In the following we show that for a write-heavy workload the size of this flush
pool is having a significant impact on throughput.

4.1.2. Disk /O Throughput

The Linux kernel reports per-thread I/O statistics through the /proc/<tid>/io files [17]. There are
two different metrics for disk I/O throughput, rchar/wcharand read bytes/write bytes. Rchar
and wchar are the amount of bytes a process has requested to be read/written from/to the disk-backed
filesystem since its creation. Read bytes and write bytes are the amount of bytes that were
actually caused to be read/written from/to the disk medium. These values may be different due to
various factors such as the Linux page cache, read prefetch and other mechanisms.

The more appropriate pair to quantify disk I/O throughput from the application’s perspective are the
rchar and wchar values. While there are workloads that mostly do writes and only read uncached files
and therefore the two sets of metrics are not differing by much, more commonly these metrics would be
different. For example a read-heavy workload may have most reads be served directly from the page
cache, resulting in no actual disk reads, so the read_bytes metric does not capture application intent
and actual performance, in contrast to the rchar metric. Thus, we focus on the rchar/wchar metricin
the following, which we abbreviate as rwchar from here on. The rchar and wchar values are summed
and aggregated over all worker threads and divided by the total runtime in seconds. The resulting value
denotes the amount of read and written bytes per second for the whole thread pool, we call it the rwechar
rate, which indicates the logical disk throughput. We define the rwchar rate (abbreviated R) over an
interval [tq, t,] to be:

B (ZWEW(rchar‘,vyt2 + wchary,;,) — (rchar, . +wchar,;))
(tz —t1)
where W is the set of workers in the pool at t, and rchar,,, and wchar,,, are the reported rchar

and wchar values respectively for the worker thread w at time t (if the worker thread w does not exists
yet at t, then rchar, , = wchar,,; = 0).

R

rwchar rate - runtime/#threads correlation Figure 4.1 shows both the runtime and rwchar rate
over the amount of workers for 4 different workloads. The left y-axis shows the runtime in milliseconds,
the right y-axis depicts the rwchar rate in bytes per second. The logical disk throughputs are highly
correlated with the runtimes of the workloads, which is to be expected, since the these workloads
purely perform either write or read operations to the disk. Runtime generally decreases with increasing
amounts of worker threads up to a certain threshold where it stagnates and for some workloads runtime
increases again with a high amount of workers. This is common behavior as noted in previous research
[32]. The goal is to dynamically adapt the pool size to always be around the stagnation threshold, where
a decrease in threads would decrease throughput, but a further increase would not improve throughput
and put further load on the system.

As this optimal amount of threads is subject to change dynamically because of a change in the rate
of job arrival, a change in job characteristic (e.g read vs write-heavy) or a change in system load due to
external factors a thread pool should dynamically rescale according the the circumstances. Regardless
of the algorithm used to optimize the pool size, the more stable and reliable the metrics used in the
decision making, the better the performance.

rwchar behavior at runtime - increasing pool size In order to gain insight into the behavior of
the rwehar rate during execution we used a thread pool that increases in size with a steady rate of 1
extra worker thread per 2 seconds. The spawning of an extra thread is performed by the first worker
that completes a job after the timeout has passed. The aggregated rwchar value over all workers is
measured every 200ms. Instead of using the /proc interface to observe and aggregate the rwchar
values we used a modified kernel with an added interface, a traceset, that can capture different metrics
about a set of target threads. This interface is discussed in more detail later. While the rwchar metric
is already exposed through /proc, there are more metrics we investigated that are not collected and
exposed in the standard Linux kernel (in the next section we will have a look at these).

Figure 4.2 shows the rwchar/sec rate over time in red (left y-axis) and the pool size over time in
blue (right y-axis). The green line shows the averaged rwchar/sec rate for the last 2000ms. We use the

4.1. System Metrics & Throughput Correlations 11

read_2mb_oneshot rw_2mb_oneshot
400/
600
350
5001
" 300
5400' % /
300 2501
200 200
0 10 20 30 40 50 60 0 10 20 30 40 50 60
rw_sync_10mb-ssd fillseq_disable_wal
200 200+
1801
180/
o 2160
£160 £
140
140/
120
120
0 10 20 30 40 50 60 0 10 20 30 40 50 60

num_io num_io

Figure 4.1: Runtimes and read/write throughput for various workloads

previously shown 2 workloads that read and write 2Mb files, the first workload’s jobs just read single
file into memory, the second workload’s jobs read a single file into memory, then write the contents to
a new file on disk and then synchronize it with the fsync system call. For the following sections we will
refer to them as the read and the read-write workload. The workloads were run once and all jobs were
submitted at the beginning, for the read workload X files are read, for the read-write workload it is X
files.

Both workloads at first show an increase in rwchar rate as pool size is increased and reach a point
of stagnation at some point. Furthermore, short peaks/drops of the rwechar rate that last a single interval
can be observed for both workloads.

For the read workload logical disk throughput increases rapidly up to a pool size of 3 where it
stagnates with small fluctuations and regular performance drops for a single interval. The averaged
rwchar rate depicts a more stable view, with only small oscillations after a pool size of 3.

rwcharjsec read2mb10k b 18 rvicharisec rsync2mbsk

runtime inseconds

Figure 4.2: rwchars/sec over time, pool size over time

12 4. Algorithmic Approach & Solution Architecture

rvicharisec read2mb10k 10 rvicharisec rsync2mbsk

i

" Il Vv* Iy y w' \ ,”’.' v““\“ A;'“(,l /

,,,,,,,,,,,,,,,,,,,

Figure 4.3: rwchars/sec over time - fixed pool

For the read-write workload logical disk throughput rises slowly but steady up to a pool size of 15
where it suddenly doubles and peaks for about 6 seconds. Then at a pool size of 18 it drops again
to a slightly higher level than before the peak and keeps slowly rising up to a pool size of about 25.
The rwehar rate then stagnates and begins to fluctuate more with a prolonged drop of about 5 seconds
starting at pool size 35.

Both experiments were repeated 3 times and while for the read workload behavior was consistent,
the read-write workload showed prolonged peaks and drops in rwchar rate at different points in time
for the different repetitions. However, the general trend of slow increase up to a point of stagnation and
then an increase in variability was the same.

rwchar behavior at runtime - fixed pool size We did a second experiment with a fixed-size thread
pool to confirm that the prolonged intervals of performance drops are inherent in the read-write workload
and not directly triggered by the previous increase in pool size. Figure 4.3 shows the same workloads
and their rwchar rate over time.

Surprisingly, the read workload’s rwehar rate does increase in the first 30 seconds until it finally hits
the peak at 500Mb/sec equivalent to the peak rate of the previous experiment. We are unsure why the
rate is not constant around peak performance right from the beginning.

For the read-write workload the rwechar rate is peaking almost right from the start and two prolonged
drops occur at around 45 and 75 seconds, just like for the previous experiment. It seems that at those
moments the disk performance suddenly deteriorates significantly and then recovers after a while. This
behavior complicates any approach that is based on maximizing the rwchar rate in order to achieve an
optimal pool size, so we also investigated alternative metrics.

4.1.3. Auxiliary Metrics

Apart from disk throughput we also investigated additional metrics that show a correlation with the
thread count over runtime function. For the mentioned workloads in the previous section the major
system calls associated with disk operations are the read, write and fsync system calls. We call
these the 1/0 syscalls, and the amount of 1/O syscalls issued per second the I/O syscall rate. The I/O
syscall rate exhibits a similar correlation to total runtime w.r.t to the amount of threads in the thread pool.
Figure 4.4 shows the 1/O syscalls rate and total runtime w.r.t to the pool size for the same 4 workloads
from the previous section. Just like the rwechar throughput the 1/0 syscalls rate over pool size function
is negatively correlated with the runtime over pool size function.

Just as in the previous section we use a steadily increasing thread pool to investigate the behavior
of the 1/0 syscall rate during execution of two read-write workloads. Figure 4.5 depicts the I/O syscall
rate over time and figure 4.6 shows the average execution time of /O system calls over time.

The workloads are the same as in the previous section, figure 4.5 shows the amount of I/O syscalls
per second on the y-axis in red, figure 4.6 shows the average time in milliseconds spent per 1/0 syscall
in the respective interval on the y-axis in red. For both workloads the behavior of the I/O system call
rate is almost identical to the rwehar rate with no significant difference.

As seen earlier the read workload’s 1/0 system call rate exhibits more stable behavior as the pool

4.2. Algorithmic Approach 13

read_2mb_oneshot rw_2mb_oneshot
400
600
350
5001
" 300
54007 p /’
300 250
200 200
0 10 20 30 40 50 60 0 10 20 30 40 50 60
rw_sync_10mb-ssd fillseq_disable_wal
200 200
180
180/
o 2160
£160 5
140
140/
120
120
0 10 20 30 40 50 60 0 10 20 30 40 50 60

num_io num_io

Figure 4.4: Runtimes and iosyscalls rate for various workloads

size increases. The average call time sharply drops to a minimum after the pool size is increased to 2
and then slowly rises with increasing pool size. Small peaks at the same times when the rwchar rate
drops shortly are observed. For the read-write workload’s period of dropped logical disk throughput
the amount of 1/0 syscalls per second also sharply drops and the average execution time conversely
peaks at around 7 times the previous value.

Overall the I/O system call rate does not offer any advantage over the rwehar as the target metric to
maximize. Other metrics and combinations of metrics were investigated without any showing a similar
correlation to total runtime as well as being more stable during workload execution. Therefore our
solution is based solely on maximization of the rwechar rate.

4.2. Algorithmic Approach

As we have shown in the previous section, the rwchar rate is highly correlated with general throughput
for IO-heavy workloads. Therefore we base the algorithmic approach on the general goal of maximiz-
ing rwchar rate. The thread pool controller can continuously monitor its value for short intervals and
dynamically adjust the pool size to maximize it. This is done in a hillclimbing fashion, when the adapter
decides to start a scaling phase, the pool size is continuously adjusted upwards or downwards until no
better throughput is observed. As the rwchar rate is prone to fluctuation, especially when the pool size
changes, we selectively filter out the intervals around the pool size adaption times. Additional phases
besides the scaling phase are introduced to continue to react to the observed throughput.

In the following we discuss some assumptions we base the algorithm on and the resulting limitations.
Then we introduce the general approach and the detailed implementation.

4.2.1. Assumptions and Limitations
Our method is based on some basic assumptions and is limited to certain use cases, which we shortly
discuss here before discussing our approach.

Our approach is based on hillclimbing and feedback through OS metrics, which requires the work-
load to consist of relatively stable periods of similar work to be performed by the thread pool, adapting to

14 4. Algorithmic Approach & Solution Architecture

josyscallsisec read2mb10k-b fosyscallsisec rwsync2mbsk

Figure 4.5: 1/0 syscall rate and pool size over time

fosyscalls avg callime read2mb1ok-b 18 fosyscalls avg calltime rwsync2mbsk

E)) 5 % £

Figure 4.6: 1/0 syscall avg time/call and pool size over time

new circumstances takes at least several seconds. So our approach is effectively limited to these kind
of scenarios and will underperform in highly variable and fast changing workloads. For our experimental
analysis we thus limit ourselves to this use case.

Furthermore we assume that for a given deterministic workload (a precise definition follows in the
next chapter) the runtime/pool size function is approximately convex downward, whereas the function
disk throughput/pool size is approximately concave upward. This assumption roughly holds from the
perspective of total runtime for different thread pool sizes as shown in figure 4.1. When sampling the
throughput during runtime, just like the controller would do, the throughput curve is clearly not convex
due to intervals of fluctuation. However, we found that in practice our solution still performed well even
though the assumption is violated in many cases.

4.2.2. Adapter Algorithm

The controller switches between different states depending on the rwechar rate it observes, attempting
to maximize the throughput while keeping the pool size low. Generally it will be either in a phase of
scaling the thread pool down/up, settled on a fixed size or exploring smaller/bigger pool sizes. The
controller state is reevaluated at fixed intervals, according to the rwchar rate over the respective last
interval. Figure 4.7 illustrates the whole state machine that defines states and state changes of the
controller.

When first initialized, the controller is in Startup state, where it increases the pool size by 1 and
then changes its state to the Scaling state with step size 2. The thread pool should start with a size of
1, which is thus unconditionally increased to 2. At startup it is necessary to unconditionally scale up
the pool in order to have two different intervals with different pool sizes to compare to each other. An
alternative strategy may be to start with a high thread count and adjust downwards, but it introduces
another configuration parameter and was therefore not further explored.

During the Scaling phase the controller compares the average rwchar rate over a fixed interval to

4.2. Algorithmic Approach 15

Exploring if no significant
Up performance gain\
if significant
if significant performance gain, after
performance gain, step size 1 timeout
increment step size

Scaling
(step size)

if no significant
performance gain

step size — 2
if performance

gain,
step size — 1

Exploring
Down

if performance
loss

if no
performance loss

Figure 4.7: States of the controller

the previous interval and keeps increasing the thread pool size until no significant performance gain is
observed anymore. When in the Scaling phase the controller continues to adjust to thread pool size
upwards or downwards depending on the scale direction. In order to find the optimal pool size more
quickly, the amount of threads added/removed (step_size) increases at every additional Scaling phase
(up to some limit). When no significant performance gain is observed, the controller switches to the
Settled state.

Once Settled, after a timeout, the controller explores the opposite direction w.r.t the last Scaling
phase or the last exploration move, depending on which of the two is more recent. When in the Exploring
state the controller adjusts the thread pool size by 1 down or up.

For both explore directions the controller switches to the Scaling state in case of significant per-
formance gain in order to more quickly adjust towards that direction. If exploring downwards and no
performance loss is observed, the controller will continue to explore downwards, reducing the pool size
by 1 and remaining in the same state. The reasoning here is that while performance remains stable
the pool size should be minimized as much as possible, without risking too much performance loss by
reducing the pool size too much.

The factor (stability factor) determining what difference is significant is a core parameter to the
algorithm and was chosen after experimentation for a variety of different workloads. The other impor-
tant parameter is the interval length, which determines the time frame over which the rwchar rate is
determined and also the frequency of potential adjustments to the thread pool size. Below we list the
parameters that were chosen experimentally by testing different combinations for most of the workloads
mentioned in this thesis.

« stability factor (tested values ranging from 0.85 to 0.97)
+ interval length (tested values from 500ms to 3000ms)

« starting step size, step sized increase, step size limit: (tested values from 1to 2, 1to2 and 2 to
8)

16 4. Algorithmic Approach & Solution Architecture

We further describe the process of parameter selection in section 5.2.2.

4.2.3. Implementation
The controller algorithm and state are implemented as part of a stateful adapter module, which is
discussed in the following section. The behavior is encapsulated in a procedure that needs to be
called periodically by any of the worker threads in the thread pool and returns the amount of threads
that should be added or removed. Algorithm 1 shows pseudocode for this procedure. Metrics are
recorded over smaller intervals (subintervals) to facilitate filtering of the first short interval after pool
size has changed. The metrics are then averaged over the configurable scale interval in the routine
that updates the interval history. If the configured scale interval has passed, the specific subroutine
corresponding to the current state is called, otherwise the adapter advises no change to the workers.
Algorithm 2, 3 and 4 show the procedures that implement the control mechanism for each of the
Scaling, Settled and Exploring state.

Output: Amount of threads to add/remove
1 if subinterval passed then

\ update subinterval history
end
else

| return 0
end
if interval passed then
update interval history
switch state do
case Startup do

state « Scaling(2)
return 1

end
case Scaling(step_size) do

| return getAdviceScaling (step_size)
end
case Settled(timeout, direction) do
if timeout has passed then

| return getAdviceSettled (direction)
end
else

| return 0
end
end
case Exploring(direction) do

‘ return getAdviceExploring (direction)
end
end
end
else

| return 0
end

© 0o N O g b ODN

N N NN o 2 = = a = =2 a a =
W N = O ¢ 0 N O g & W N -~ O

N NN
o a b

N N
© N

w W N
- O ©

w
N

Algorithm 1: get scaling advice

4.3. Architecture & Components

In this section we briefly discuss the concrete implementation of the scaling adapter and its integration
into a thread pool to make it adaptive. The implementation of the adaptive 1/O thread pool consists of
multiple components. The logic that determines whether the pool should adjust its size is contained in

4.3. Architecture & Components 17

Input: step_size

Output: Amount of threads to add/remove
if perf significantly higher then
state « Scaling (step_size + 1)
return step_size + 1

else if perf significantly lower then
state « Settled(direction)
return step_size

else

state « Settled(direction)
return 0

end

© 0o N o a b W0 N =

-
o

Algorithm 2: get scaling advice - Scaling

Input: Last direction explored/scaled: last_direction
Output: Amount of threads to add/remove
if perf significantly higher then
| new_direction « UP
else if perf significantly lower OR significantly more fluctuating then
| new_direction < DOWN
else
\ new_direction « opposite of last_direction
end
if new_direction js UP then
state « EXPLORING_UP
return 1
end
else
state « EXPLORING_DOWN
return —1
end

© 0O N O G A WN =

A A =S A A
A W N = O

-
a

Algorithm 3: get scaling advice - Settled

Input: Direction explored: direction
Output: Amount of threads to add/remove
if direction is UP then
| step_size < 1
end
else
| step_size « —1
end
if perf significantly higher then
state « Scaling(step_size)
return step_size
else if direction is UP OR (direction is DOWN AND perf lower) then
timeout « getTimeout ()
state « Settled(timeout, direction)
return -step_size
else
| return step_size
end

© 0o N O o b O N =

- = o =
w N = ©

e]
o a b

Algorithm 4: get scaling advice - Exploring

18 4. Algorithmic Approach & Solution Architecture

Userspace

Kernelspace
library P
register traceset—»| start kernel worker—>»
create / ; el
destroy allocate memory update periodically
<>
read

metrics mmap

User file descriptor AN
return file descriptor. Tracee metrics

' 1
: !
v Tracee metrics .
' :
' 1
! 1

Figure 4.8: Architecture of Traceset

an adapter module which can be added with little friction to an existing static thread pool. It isolates
the control algorithm from the specifics of the thread pool implementation, so it is agnostic of the syn-
chronization mechanism and job queue details. The adapter exposes methods to register workers to
be traced and a single method to obtain advice on whether to scale the pool size.

System metrics are obtained through the use of a traceset, which defines a mutable set of threads
whose metrics are collected and their respective values, which are being updated continuously. The
scaling adapter adjusts the set of traced threads and uses the metrics for the control algorithm. The
traceset functionality resides mostly in the kernel, with a small user space wrapper library.

We implemented two thread pools with different synchronization mechanisms, one based on spin-
locks, one based on mutexes. Furthermore we integrated the scale adapter into two existing applica-
tions that use thread pools for purely disk I/O tasks.

4.3.1. Tracesets

In order to efficiently collect information regarding disk usage and system call information on a per-
thread basis, a small library consisting of some kernel modifications including the addition of 2 system
calls and some user space wrappers was developed. While the rwchar metric could be collected by
using the /proc interface, other metrics such as system call information have to be actively traced.
Figure 4.8 shows a diagram illustrating the interface and implementation of the traceset functionality.

Kernel Space To provide the user program the means to register/deregister threads to be traced two
system calls traceset register and traceset deregister were added to the Linux kernel.
This interface enables a process to start/end tracing of any of its child threads and provides access to
the gathered statistics trough shared memory. The conditional tracing is achieved through additional
fields in the task struct for saving the information and checks whether a process and system call is
traced in the generic system call handler that dispatches requests to the respective system call handler.
The data regarding system call usage and disk usage present in each task struct serves as the
source for the shared memory that is accessible from user space. As long as there are some processes
being traced a recurring update handler is run to keep them in sync. It is implemented with the event
workqueue and a single updater function that reschedules itself.

4.3. Architecture & Components 19

Adaptive Thread Pool

Y
get scale advice——»| Scale adapter
push clone/ter:minate commands
Worker o
Workqueue
pull job >»
Y
IF terminate —» terminate self
AE&——IF clone ———> spawn extra worker

IF job

Figure 4.9: Architecture of Thread pool

User Space To simplify usage of tracesets in user programs the system calls are wrapped with more
user-friendly functions which are written in C. On top of these an object-oriented interface is imple-
mented in Rust.

4.3.2. Scale Adapter

The scale adapter is the core component that encapsulates the behavior and state needed to make
the decision how to adjust the thread pool size in order to increase throughput. It saves the history
of relevant OS metrics, manages the traceset associated with the worker threads in the thread pool
and provides the interface to obtain advice on how to scale the pool. A thread pool that integrates the
scale adapter and bases pool size adaption actions on it must periodically call the scale adapter to let it
update its internal state and return advice on the amount of threads that should be added or removed.
Furthermore, the pool’'s worker threads must register with the adapter as a traceset target on startup
and deregister on termination.

4.3.3. Thread Pool

We implemented two versions of a basic thread pool leveraging the scale adapter to automatically
adjust the amount of worker threads to the current workload. The two versions differ solely in the use
of synchronization mechanism, one version uses mutexes and condition variables, whereas the other
one uses spinlocks. As most implementations are mutex-based, including the ones from the example
applications investigated, for all experimental analysis the mutex-based version is used.

Work items are user-supplied functions or scaling commands. The items are queued in a synchro-
nized queue, which is consumed by the worker threads. Workers execute a loop, continuously pulling
new work from the queue and executing it. Every iteration they query the scaling adapter for potential
readjustment of the pool size. If the scaling adapter advises to scale up or down, the worker that re-
ceived the advice pushes the appropriate amount of clone/terminate commands to the front of the work
queue. The loop and the different components are illustrated in figure 4.9.

This design imposes a restriction on the nature of the jobs that are executed, they should not take
much longer than the chosen adapter advice interval. If the execution of the jobs takes longer, the
scaling advice procedure may only be called after much longer intervals as all workers are busy exe-
cuting a job. Furthermore, when in a phase of scaling down with a large step size it may take a long
time from the moment that the scale down advice is given until the requested amount of workers has
terminated. This can only possibly be avoided if jobs are allowed to be interrupted and continued by
different workers.

For one of our example applications, RocksDB, in the workloads we have investigated the flush

20 4. Algorithmic Approach & Solution Architecture

Runtimes without/with adapter

m— vithout
= with

wakb300k wbuf2mb2k read2mb30k w2mb-nosync20k

Figure 4.10: Overhead of adapter

pool does execute long running jobs, which forced us to adopt a different design when integrating the
adapter into the pool. An extra thread is used to periodically trigger the scaling advice procedure and to
spawn new threads and instruct workers to terminate. We will discuss the two different implementations
in more detail in section 5.3.4.

4.4. Overhead of Scaling Adapter

One issue with feedback-based approaches is the potential overhead that the controller may introduce.
In order for our implementation to be effective, regardless of how accurate the adapter is in controlling
the pool size to be close to optimal, the addition of the adapter should introduce very little overhead.
Specifically the execution time of the scale advice method should be kept as short as possible. Ad-
ditionally the recurring execution of the kernel thread that updates the traceset data should be take
up little processing time to avoid influencing the amount of processing time given to the thread pool
workers.

In the following we compare the runtime of the normal fixed size thread pool with a modified version
that calls the scale advice method in the same fashion as the adaptive pool. The extra work performed
by this modified version corresponds almost exactly to the extra work of the controller activities in the
adaptive pool, only the insertion and parsing of scaling commands are missing.

We use 5 different workloads of reading/writing files of different sizes and with different ways of
performing the reads/write (buffered/non-buffered and synced/not synced). For all workloads the whole
set of jobs is submitted upfront to the thread pool and they terminate once all jobs have been processed.
The thread pool size is fixed to 16 for 2 of the workloads and 32 for the others. Each experiment was
repeated for 10 times.

Figure 4.10 shows the results for all the workloads, the y-axis depicts the total runtime for the
different workloads on the x-axis. Barplots are used to show the average runtime over the 10 runs, the
error-bars depict the standard deviation. The fixed pool without the adapter is visualized with the blue
bars, the fixed pool with the adapter is orange.

For none of the workloads there is a significant difference in runtime, whether using the scale adapter
or not. The workloads with higher standard deviation show slight differences, which are so small (in
contrast to the standard deviations) to be statistically insignificant. The two workloads with almost no
variance (read-only and read-write without sync) do not show any difference between the two thread
pool versions.

It can be concluded that with the proposed implementation of the scaling adapter the goal of no
significant overhead is achieved.

Workloads & Experimental Analysis

In this chapter we first define a descriptive model for workloads that captures workloads with multiple
phases and characterizes phases and phase changes. This model is used to characterize the different
workloads used for experimental evaluation of the adaptive pool performances, as well as to define
potential upper bounds on performance. We then introduce the experimental setup and shortly discuss
our methodology for the analysis and picking of adapter parameters.

The experimental analysis is split into different sections for synthetic workloads that were executed
on our own adaptive pool implementation, and the workloads for the modified Node / RocksDB applica-
tions. We distinguish between single-phase and multi-phase workloads as defined in the first section
and analyze total runtimes, average pool size and the scaling behavior of the adaptive pool implemen-
tations. For the workloads that test our adaptive pool implementation we compare the runtime and pool
size with the optimal fixed-size pool and the Watermark model pool, for the application workloads we
compare with the default fixed-size pool and the optimal fixed-size pool.

5.1. Modelling Workloads

In the following we introduce a simple model of workloads consist of one or more intervals (phases)
where each interval is stable w.r.t to load and I/O access patterns. First and foremost a workload is
defined by an ordered list of job and submission time tuples, where jobs are ordered by increasing job
submission times. A job is just a tuple of a procedure without return value and its input arguments.
When modelling and describing workloads in the following sections we simplify the definition of a job
to be given solely by the procedure run (job type). A workload consists of one or more consecutive
phases, where each phase has a start and end time corresponding to the submission times of two jobs.

5.1.1. Phases & Phase Changes
We characterize a phase by the following 3 characteristics that are fixed during the whole duration of
the phase:

+ Job submission rate (amount of jobs submitted per second)
+ Job type
» Background system load

With this restricted model we aim to capture the main scenarios where an adaptive thread pool
should adjust its pool size in order to adapt to changed demands. For each phase an optimal pool
size exists as the environment is stable, and for each new phase this optimal size may change. We
can experimentally determine the optimal pool sizes and check if the adaptive pool correctly identifies
these and how quick this happens.

This phase-based model for workloads is a simplification to aid the analysis of the adaptive thread
pool, but we also think that in order to achieve acceptable performance that reliably outperforms default
fixed-size configurations, workloads have to roughly conform to this model of relatively stable phases

21

22 5. Workloads & Experimental Analysis

that last at least a few seconds. Especially for batch data transformation workloads that persist data to
disk in between the different transformation phases, we believe the phase-based model to be a suitable
characterization. With the synthetic read-write workloads used in the experimental analysis we aim to
model such data transformation workloads in a simplified manner.

For more unstable and highly variable workloads our feedback-based approach may not be very
effective. Generally we are not convinced a generalizable adaptive scheme for such workloads can
perform well if no prior knowledge about the characteristics (job types / submission rates) are known.

5.1.2. Saturating vs Non-saturating Phases

We distinguish between saturating and non-saturating phases, in a saturating phase the queue size
of the thread pool is constantly rising as an upper limit of the rate of processed jobs is reached. In
a non-saturating phase the queue size is either shrinking or staying around 0 constantly, the disk is
not necessarily fully utilized and the optimal amount of worker threads is equal to the amount that is
needed to process all jobs in time.

For the non-saturating case our adaptive pool should perform similarly to the Watermark model and
offer no advantage over it. Therefore we mostly concentrate on workloads with saturating phases in the
following analysis. We also show on example of a multi-phase workload with a non-saturating phase,
where the adaptive pool performs similar to the Watermark model.

5.2. Methodology & Experimental Setup

In our experimental analysis we analyze various workloads that were developed to experimentally guide
and evaluate the scaling adapter implementation. We use the average runtime for a single workload
as a performance grade. The adaptive pool implementation is compared against the non-adaptive
fixed-size version of a thread pool with exactly the same architecture (sharing much of the code). For
stable load workloads with homogeneous jobs the runtime of the best performing static size thread pool
version serves as a theoretical lower-bound for the same workload using an adaptive thread pool.

In order to evaluate the performance of our solution approach, we experimentally test the scale
adapter in 3 different contexts. We use file read/write workloads for our adaptive thread pool imple-
mentation and for Node with the scale adapter integrated into the Libuv thread pool, and write-heavy
insertion/update workloads for RocksDB with a modified flush thread pool.

For our own adaptive thread pool implementation we also implemented a version that uses the
Watermark adaption scheme. So for all the workloads tested on our thread pool implementation we
contrast our adaptive scheme with the Watermark scheme. Furthermore, for all analyzed workloads
over the 3 different applications we experimentally determined the optimal pool size when using a fixed-
size pool. Here optimal means lowest pool size while having a total runtime of maximum 3 percent
higher than the fastest pool size configuration. For single-phase workloads the fixed-size pool with
optimal configuration is expected to execute the workload the fastest, therefore serving as an upper
limit in terms of throughput.

5.2.1. Experimental Setup
Total runtime and average pool size over the whole execution are investigated, as these constitute the
two target metrics we optimize for. To determine runtimes every workload is executed 3 times and
mean and standard deviation are shown in the graphs. Average pool size is inferred for fixed-size and
Watermark pool, for our adaptive pool an execution trace is used to compute it.

All experiments were run on a machine with an Intel i5-6500 CPU with 4 cores at 3.2GHz clock rate
and a 6MB cache, 16GB DDR4 memory and an SSD.

5.2.2. Selection of Algorithm Parameters

To iteratively evaluate our adapter implementation during development we built a set of scripts that
runs new versions / new parameter combinations over the whole set of developed benchmarks. In
order to pick the best parameter values for the adapter algorithm different combinations of stability
factor and interval length were tested with this setup, stability factors ranging from 0.85 to 0.98 and
interval lengths ranging from 500ms to 3000ms were tried. For each adaptive pool implementation the
parameter combination that resulted in lowest runtime for the respective workloads was picked. Other
constant factors used in the algorithm were not extensively tested, but chosen during development

5.3. Experimental Analysis 23

according to just a few test runs. In the beginning of the sections for our own adaptive pool, Node and
RocksDB we state the specific values of these parameters.

Since the best parameter values differ for different workloads we think one approach to improving
average performance over a wide range of workloads would be to dynamically choose and adapt these
parameters. Particularly the interval length may be chosen according to current average execution time
of single jobs. Further research on this is deferred to future work.

5.3. Experimental Analysis

In the following the analyze the performance of our adaptive thread pool implementation and the scal-
ing adapter integrations into the Libuv thread pool used in Node and the RocksDB flush thread pool.
We begin the discussion of the experimental results with our own thread pool implementation before
continuing to the modified applications.

5.3.1. Adaptive Thread Pool - Single Phase

We first take a look at 3 workloads that read/write files of 2Mb size from/to disk. All workloads consist
of a single phase of homogeneous jobs that are submitted all in one batch upfront, so they are over-
saturating. Two workloads were previously used to illustrate the correlation of runtime with OS metrics,
figure 4.1 shows the performance of the fixed size pool for different pool sizes.

1. read_2mb: read a 2mb file from disk

2. rw_sync_2mb: read a 2mb file from disk fully, then write content to new file fully before calling
fsync on it

3. rw_buf_sync_2mb: read 4kb from 2mb file into buffer, then write 4kb buffer to second file and call
fsync, repeat until whole file has been written

For all these workloads and the multi-phase workloads in the following section the adaptive pool is
instantiated with a 800ms scale interval and a stability factor of 0.97.

Figure 5.1 shows a comparison of fixed pool (blue), Watermark pool (orange) and adaptive pool
(green). The Watermark pool was configured with a maximum size of 64 threads. The first graph
depicts the mean runtimes for the 3 workloads, standard deviations are shown with the black error
bars.

For the first workload, rw_sync_2mb, we can see that the adaptive pool performs almost identi-
cal to the optimal fixed-size pool, with statistically insignificant lower runtime and more variance. The
Watermark pool’s runtime is almost twice as high, which confirms the trend of sharp increase in run-
time that was already shown in previous chapter’s figure 4.1. The buffered version of this workload,
rw_buf_sync_2mb, shows different behavior, the Watermark pool performs just marginally worse than
the optimal fixed-pool, whereas the adaptive pool’s average execution time is about 25% higher than
the optimal fixed-pool. The picture is similar for the last workload, read_2mb, however, the adaptive
pool performs only about 10% slower than the optimal fixed pool here.

The second graph compares the average pool size over the whole execution for the fixed pool
(blue), Watermark pool (orange) and adaptive pool (green). As the workloads are all saturating, the
Watermark pool immediately scales up to the maximum amount of threads and continues to use all
workers to execute jobs. Here we see that for the first and last workload, as the adaptive pool manages
to scale the pool to near optimal size, it also performs as well or relatively close to the best possible. For
the buffered read-write workload the adaptive pool uses too few worker threads to approach optimal
performance.

Overall, these workloads confirm that the Watermark model is too simplistic for the purpose of disk
I/0O only job execution. When the optimal pool size is overshot, in the worst case throughput takes a
large hit, in the best case still a lot of memory is wasted through excessive use of threads.

Finally we take a look at the scaling behavior of the adaptive pool during the execution of the 2 read-
write workloads. Figure 5.2 shows both the pool size (in blue) and the rwechar rate (in red) over the
whole execution of the workloads. The buffered read-write workload is shown on the top, the unbuffered
one on the bottom. The reported value of the rwchar rate r; at a certain point in time t; describes the
rate over the interval since the point in time ¢t;_; of the last reported value ;_;.

24 5. Workloads & Experimental Analysis

Comparison optimal fixed size / / adaptive
700 -

mm fixed

- watermark
600 Em adaptive

500

I
1<)
=)

w
=3
=3

Runtime in seconds

200

ssd-rw_2mb_oneshot-20000 ssd-rw_buf_2mb_oneshot-2000 ssd-read_2mb_oneshot-30000

Comparison optimal fixed size / / adaptive

mm fixed
- watermark
B adaptive

60

50

IS
S

w
S

Average pool size

20

10

ssd-rw_2mb_oneshot-20000 ssd-rw_buf_2mb_oneshot-2000 ssd-read_2mb_oneshot-30000

Figure 5.1: Comparison of optimal fixed size, Watermark, adaptive pool

le7
—— pool size
35
—— rwchar rate 6
30
5
?
25 5
g
g 2
220 2
H &
2 3%
[
15 £
H
2
10
1
5
0
50 100 150 200
time in seconds
les
—— pool sjze
12 rrate |°
10 4y
&
o 8
g 3
w8 35
g ¢
a .
6 2
2%
4
/A_\ /J_/_\ 1
2 /' /\ N
0 20 40 60 80 100 120 140

time in seconds

Figure 5.2: Adaptive thread pool runtime behavior

5.3. Experimental Analysis 25

Buffered read-write Within the first 50 seconds the rwchar rate steadily increases and the adapter
continuously scales up the thread pool up to a size of around 36 threads. The next interval is much
longer, all worker threads are busy executing their jobs and no new scale action is triggered for more
than 10 seconds, once the next scale action is triggered the rwchar rate dropped substantially, resulting
in an explore downwards move. This pattern of rwchar rate drops that cause long intervals without the
scale actions repeats for the remainder of the execution, interleaved with stable peak performance and
shorter intervals. In general however, even for the stable periods, the minimum interval length is much
longer than the actual desired interval of 800ms, due to the jobs taking a longer amount to execute. As
we noted before, this is a fundamental restriction with the architecture of the worker threads triggering
scale actions themselves.

Unbuffered read-write The unbuffered read-write jobs are executed within the desired 800ms inter-
vals, so the thread pool is scaled up quickly to 13 threads within the first 5 seconds. Due to the rwchar
rate not decreasing on exploring downwards moves, the pool is scaled back to a size of 4 and later
3, staying settled around these sizes. After around 45 seconds the first major drop in rwchar occurs
for the length of 2 intervals, the pool is scaled down and then scaled back up as rwchar rate recovers.
This pattern repeats over much of the remainder of the execution.

From the behavior of the adaptive pool throughout these 2 workloads we conclude there are 2 sig-
nificant problems that negatively impact the scaling behavior. The first one is jobs with longer execution
time, which is just a problem for some workloads, the second one are occasional large drops in the
target metric.

5.3.2. Adaptive Thread Pool - Multi Phase

For single-phase workloads the adaptive thread pool should theoretically not outperform the best fixed-
size pool, but for multi-phase workloads this may be different. If the optimal pool size differs for the
different phases, with an adaptive approach the optimal pool sizes for each phase can possibly be
reached by rescaling, whereas the fixed size pool will perform suboptimal for some or all phases.

Unbuffered-buffered We combine the two read-write workloads from the previous section to a multi-
phase workload, where the phases are distinguished by the different job types. This workload has 3
phases, phase 1 and 3 consist of unbuffered read-write jobs, during phase 2 the read-write jobs are
buffered, we call it rw_rwbuf_rw-2mb.

The left graph in figure 5.3 shows a comparison of total runtime for the different optimal sized fixed
pools (size 16: optimal for unbuffered read-write, size 64: optimal for buffered read-write, size 32:
optimal for combined multi-phase workload) with the adaptive thread pool. The adaptive pool performs
better than the fixed-size pool with optimal sizes for phase 1 & 3 and phase 2 respectively, but it
outperformed by the optimal (w.r.t to the whole workload) fixed-size pool. The right graph of figure 5.3
shows the pool size and rwchar rate over time for the adaptive pool executing the rw_rwbuf_rw-2mb
workload. The 3 phases are evident from the much lower average rwchar rate from around 120-270
seconds, which is marks phase 2 where the buffered read-write jobs are executed. For that phase the
pool size ranges from 25 to 30, the scale adapter fails to scale the pool size to the optimal value around
64 threads, this causes the overall runtime to be higher than the optimal fixed-size pool. While the pool
size in phase 1 and 3 does not stabilize around the optimal of 16, the pool is not overscaled to a size
over 35 and only at the beginning of phase 1 and shortly after again falls below 10 threads. In chapter
4 figure 4.1 it has been shown that between 10 and 35 threads the runtime is roughly the same and
close to optimal for the unbuffered read-write jobs, so the adaptive pool behavior for phase 1 and 3
does not affect runtime negatively.

Overall for this multi-phase workload the adaptive pool performs relatively close to the optimal fixed-
size pool, but it fails to correctly adapt to phase 2. The potential to outperform the optimal fixed-size
pool is therefore not reached.

Unsaturated-saturated The second type of phase change, besides a change in job type, is a change
in the job submission rate. We devised a workload that consists of a first phase of medium load that
does not saturate the thread pool’s job queue and a second phase of instant submission of a big batch
of jobs which saturate the thread pool’s job queue. The job type is the same for phase, it's the non

26 5. Workloads & Experimental Analysis

Comparison optimal fixed size / watermark / adaptive le8

mm fixed 16 —— pool size
mm fixed 64 —— rwchar rate

mm fixed 32
mmm adaptive

w
[

500

w
S
—

~

400

N
a

an

w

rwchar rate bytes/sec

N
S)

300

Runtime in seconds
pool size

-
a
N

200

=
5

100

—

ssd-rw_rwbuf_rw_2mb_oneshot-15000 0 50 100 150 200 250 300 350 400
time in seconds

Figure 5.3: Multi-phase unbuffered-buffered performance/behavior

les
25 =

: e

200

15

[

150

Runtime in seconds
pool size
rwchar rate bytes/sec

10

mm fixed 10 /L\Ay t

mm fixed 16
mm fixed 24 ——|/pool size
B adaptive —— " rwchar rate

N}

50

0 50 100 150 200 250
time in seconds

ssd-rw2mb_30ms_oneshot-10000

Figure 5.4: Multi-phase unsaturated-saturated performance/behavior

buffered read-write job from the previous section. In the first phase 5000 jobs are submitted with a
frequency of 30 milliseconds, after which 5000 jobs are submitted immediately to mark the start of the
second phase.

The optimal fixed-size pools for the respective phases and the whole multiphase workloads are 10
(for the unsaturated phase), 16 (for the saturated phase) and 24 (for whole workload). The runtimes
are compared with the runtime of the adaptive pool in the left graph of figure 5.4. The adaptive pool
achieves a runtime as low as the optimal fixed-size pool (24 threads). The right graph of figure 5.4 again
shows the scale behavior of the adaptive pool during the execution of the workloads. From the rwchar
rate one can distinguish the 2 phases of the workload, with the disk throughput being mostly constant
throughput the first phase (first 150 seconds). During this time the pool is first scaled up to about 25
threads and then continuously scaled down, as the throughput stays constant. Once the extra batch
of jobs is submitted to start the second phase, the throughput peaks for longer periods and fluctuates
more. The pool is scaled back up again, reaching a size of around 25 at the end of execution.

5.3.3. NodeJS

Implementation We use Node version 14.5.1. Node uses a fixed size thread pool implemented by
the Libuv project to run disk 1/O related operations [26]. The pool size can be set at startup through the
UV_THREADPOOL SIZE environment variable and is by default set to 4. The thread pool architecture
is similar to the adaptive pool we implemented, so we could integrate the scale adapter in the same
fashion as described in the previous chapter. The worker threads always trigger the scale advice

5.3. Experimental Analysis 27

method before consuming the next job from the work queue and in case of a non-zero scale advice,
terminate or clone commands are pushed to the front of the work queue to be consumed by the next
workers that are ready.

Single-phase Workload Experiments In the following we take a look at the experimental results
for the previously shown workload rw_sync_10mb-node and a second read-write workload that does
not perform manual £sync on the written file (rw_nosync_2mb-node). We compare total runtimes and
average pool size for the default fixed-size pool, the optimal fixed-size pool and adaptive pool. The
scale adapter was initialized with an interval length of 1500ms and a stability factor of 0.9.

Figure 5.5 shows a comparison of average runtimes and average pool sizes of the 3 different thread
pools for the 2 read-write workloads. The optimal fixed-size pool is shown by the blue barplots, the
default fixed-size pool by the orange ones and the adaptive pool by the green ones. In the top graph
we see that for both workloads the default fixed-size pool does only perform slightly worse than the
optimal fixed-size pool, being about up to 10% slower. The adaptive pool is up to 25% slower than the
default pool. In the bottom graph we see a first indicator why the adaptive pool fails to beat even the
default pool, its average pool size is lower than the default pools 4 for both workloads.

In order to understand this behavior we investigate the adaptive pool behavior during the execution
of both workloads. Figure 5.6 shows the rwchar rate and pool size over time. The top graph shows
the workload with 10Mb manually synced files, the bottom graph shows the workload with 2Mb files
not manually synced. For both workloads the initial scaling behavior is very similar, the adapter scales
up the pool to a size of 9-10, then almost as rapidly scales the pool down back to a size of 1. For the
synced workload the pool size oscillates between 1 and 2 from then on, before increasing up to 6 in
the last 30 seconds of execution. During the non-synced workload the pool size fluctuates between 2
and 5 with a 40 second period of consistent pool size 1 in the middle of execution.

The rwchar rate fluctuates heavily with regular interleaved peaks at roughly every second interval.
This behavior persists throughput the whole execution of both workloads, with the synced workload
showing peaks that more than double the rwchar rate of the previous interval and the other workload
showing peaks with usually about 30% increases of rwchar compared to the previous interval.

The regular pattern of significant interleaves increase and decrease in rwchar rate causes the scale
adapter to fail to correctly adapt the pool size. As the feedback is restricted to only the previous interval,
the algorithm has no mechanism to avoid erroneously reacting to the fluctuations. In the next chapter
we introduce adjustments to the algorithm that partly alleviate the influence of these kind of regular
flucutations on overall scaling behavior.

5.3.4. RocksDB

We use RocksDB version 6.7.3. RocksDB uses a thread pool solely for synchronizing data files to the
disk in order to guarantee durability, which is called the flush pool. The flush pool uses the Watermark
scheme with a minimum pool size of 1 and a recommended maximum pool size of 2 !. Instead of
rewriting the pool completely to match our proposed architecture, we make use of the already existing
functionality that can change the maximum pool size at runtime.

Implementation - No-manager Worker threads trigger a scale advice before consuming the next job
from the work queue and on receiving a non-zero scale advice they directly change the maximum pool
size to match the scaling advice. Then the existing method to spawn/terminate workers based on the
current maximum pool size is called before the worker moves on to the actual job.

As we will show in figure 5.8, due to the job execution times being much longer than the scale
advice intervals, the scale advice method is only triggered much less frequently than desired when just
called from the worker threads. In order to regularly trigger the adaption procedure we implemented
an alternative integration of the scaling adapter into the RocksDB thread pool.

Alternative Implementation - Manager Thread In this architecture an extra thread that takes the
sole responsibility of regularly calling the scale advice method and adjusting the pool size accordingly
is spawned. This manager thread just sleeps for the specified interval length, then obtains scale advice
and in case of non-zero advice triggers a rescaling through the already existing mechanism that spawns

"https://github.com/facebook/rocksdb/wiki/Setup-Options-and-Basic-Tuning

28 5. Workloads & Experimental Analysis

3001 oy optimal fixed

m default fixed
B adaptive

250

200

150

Runtime in seconds

100

50

ssd-rw_sync_10mb-node-2000 ssd-rw_nosync_2mb-node-20000

50
B optimal fixed

mm default fixed
B adaptive

40

Average pool size
w
]

N
S}

10

ssd-rw_sync_10mb-node-2000 ssd-rw_nosync_2mb-node-20000

Figure 5.5: Node - Comparison of default and optimal fixed size, adaptive pool

Sync 10Mb le8 o
()
— pool size 0
7.5 —— rwcharra 7'5§
N 5.08
1’ o
5 5.0 E
o 25 —
2.5 o
(&)
0.0z
0 20 40 60 80 100 120 140
time in seconds
Nosync 2Mb le8
100 "' 0| ize g
MAWAL AL (4a
v 7.5 r“ [V ehyyTete g
N o)
@ I3
S 5.0 24@
Q' —_
PO, :
o
02
0 50 100 150 200 250

time in seconds

Figure 5.6: Node - Adaptive pool behavior during execution

5.4. Discussion 29

new workers or instructs existing workers to terminate. As busy workers can not reasonably terminated
during job execution, scale down actions take considerably longer than scale up actions

Single-phase Workload Experiments We compare both implementations with the recommended
default fixed-size flush pool and the experimentally determined optimal fixed-size pool. The adapter
algorithm was instantiated with a interval length of 1000ms and a stability factor of 0.9, which was
determined to perform better than other tested parameters. Both workloads are write-heavy batch
insertion workloads. Figure 5.7 shows a runtime comparison in the top graph and a comparison of
average pool sizes for the 4 different configurations.

The default configuration of a flush pool with maximum size 2 performs the worst, but the optimal
fixed-size configuration with 12 threads significantly outperforms the two adaptive implementations for
both workloads.

Fillseq The no-manager implementation’s runtime is more than 20% slower, the manager implemen-
tation’s runtime is about 15% slower. Just looking at the average pool size itis clear that the no-manager
implementation underscales the pool size by a large margin. The manager implementation’s average
pool size close to the optimal fixed size, but it still performs much worse. When inspecting the runtime
behavior we see that while the manager implementation may have a good pool size on average, it does
vary too much during the execution.

Bulkload The two adaptive implementations achieve the same runtime, with the manager implemen-
tation having a lower average pool size, which presumably causes it not to outperform the no-manager
implementation.

Figure 5.8 shows the pool size and rwchar rate over time when using the adaptive pool for the fillseq
workload. The top graph shows the no-manager implementation, the bottom graph shows the manager
implementation. First of all, it is clear that through deferring the responsibility to get scale advice to a
manager thread the intervals between scale actions can be shortened. However, this does not hold for
some intervals that follow a scale down action, it may take a long time for any worker to complete its job
and is able to perform a scale down by terminating itself. The adapter does not obtain new scale advice
until the scale actions have been performed as it would introduce even larger lag between issuing and
performing of scale actions when scaling down. The full effect of a previous rescaling of the pool size
should be observed before determining new scale actions, otherwise the associated effect of an action
on the target metric is not captured. So even with the manager approach long job execution times
remain problematic.

The manager implementation does scale up the pool significantly more for this workload, a peak
size of 20 is reached, whereas the no-manager implementation peaks at a pool size of 8.

5.4. Discussion

The most challenging and crucial aspect of an OS-feedback based pool size adaption scheme is the OS
metric or the OS metrics that are used as performance indicators. For workloads restricted to specific
jobs, such as the disk I/O-bound workloads we investigated, it is possible to use the rwchar rate that is
highly correlated with overall throughput. However, a highly correlated metric such as the rwchar rate
may still be fluctuating heavily. This is problematic for a controller-based approach, which is intrinsically
sensitive to fluctuations in the target metric.

Overall we see that the adaptive thread pool can approach optimal performance for single-phase
workloads when the target performance metric is relatively stable, i.e does not fluctuate heavily. As
soon as the rwehar rate shows significant and steady fluctuation, the scaling adapter fails to correctly
scale the pool towards an optimal size, as can be seen in the Node experiments. In the following
chapter we show how we adjusted the scaling algorithm to partially compensate for heavy fluctuations
and improve the scale behavior.

For the tested multi-phase workloads on our adaptive pool implementation the total runtimes are
similar to the optimal fixed-pool case, but did not reach the possible lower bound. The cause for this
also lies in the periods of instability of the rwchar rate, these are the periods during which the pool
scales down too much.

30 5. Workloads & Experimental Analysis

200

150

100

Runtime in seconds

Ul
o

fillseq

bulkload_nocompact

N
o

B optimal fixed

I default fixed

Il adaptive-nomanager
Bl adaptive-manager

=
(S}

12.73

Average pool size
=
o

ul

fillseq bulkload_nocompact

Figure 5.7: RocksDB workloads - performance comparison

no manager le8 o
. 1.54L
—— pool size 9
o4 +—
—— rwchar rate >
B 1 Oﬁ
9 ©
P 0.5
(o]
S
0 25 50 75 100 125 150 175 2
time in seconds
with manager 1e8 _ @
15 20
—— pool size g
Q =
Nig T rwchar rate 2
© 12
(]
85 =
©
<
ov
0 20 40 60 80 100 120 140 2

time in seconds

Figure 5.8: Fillseq - adaptive pool behavior during execution

5.4. Discussion 31

A second issue besides an instable target metric arises when the job execution times exceed
the interval parameter for the scale adapter. This is more problematic with the proposed architec-
ture of worker threads themselves being responsible for regularly obtaining scale advice and issuing
scale/terminate commands. The alternative to this, an extra manager thread, was introduced for the
RocksDB integration in the previous section and alleviates this problem to some extent.

In the next chapter we introduce two extensions to the algorithm that aim to reduce the impact of
fluctuations in the target metric on the scaling behavior. We'll also discuss the results and limitations
of our approach on a more fundamental level.

Algorithm Extensions & Analysis

In this chapter we propose some extensions to the adapter algorithm that address the instability of the
rwchar rate that occurs for some workloads. Specifically we focused on improving the performance
of the adaptive pool for the Node workloads, where we found the heavy fluctuations to impact scale
behavior the most. We introduce two extensions to the algorithm that mitigated the impact of the
fluctuating rwehar rate to some extent. The extensions and their motivation are first described, then
their performance is again experimentally evaluated for the Node and RocksDB workloads. In the last
section we then summarize the performance of these extensions for all other workloads from the last
chapter and discuss the extension’s applicability and limitations to a wider range of workloads.

6.1. Algorithm Extensions
6.1.1. Drop Exception Rule

We introduce a simple heuristic rule that aims at reducing interference of large fluctuations in the logical
disk throughput. When the scaling adapter is in one of the Settled, Exploring or Scaling states and the
rwchar rate suddenly drops by at least 70%, the current state is unchanged and no scale actions are
issued. This factor of 70% was chosen to capture the drops as observed for the Node workloads,
further testing of different factors was out of scope for our purpose. With this heuristic we can prevent
single downward fluctuations to interrupt the Settled, Exploring and Scaling phases, effectively allowing
the adapter to ignore single intervals with large throughput drops. The heuristic aims to stabilize the
scaling behavior and facilitate scaling the pool to a sufficiently large size.

In table 6.1 we compare the extended algorithm’s performance to default and optimal fixed-size as
well as the unmodified algorithm. For the Node workloads an interval length of 800ms with a stability
factor of 0.97 was used, for the RocksDB workloads as interval length of 1000ms and a stability factor of
0.9 was used. The table reports average total runtimes and average pool sizes in parentheses. Stan-
dard deviations of runtime were omitted, they were lower for the extended algorithm compared to the
unmodified version without exception. Column "Drop. Ex” reports the performance for the drop excep-
tion extension and "Mov. Avg.” reports the performance for the moving average extension introduced
next.

With the drop exception extension total runtimes for all workloads could be reduced significantly,
average pool sizes are larger except for the RocksDB Fillseq workload. However, for the Node work-
loads the default configuration with 4 worker threads still outperforms the adaptive pool. The extended

Workload | Default fixed Optimal fixed Adaptive Drop Ex. Mov. Avg.

RW-sync | 108.4s(4) 101.5s (48) 120.3s (2.9) 114.7s (6.2) 116.8s (8.1)
RW-nosync | 225.3s(4) 203.6s (48) 255.0s (3.8) 246.7s (5.7) 229.2s (14.3)
Fillseq 190.2s (2) 129.5s (12) 148.4s (12.7) 130.8s (6.9) 137.6s (12.3)
Bulkload | 212.5s(2) 131.4s(20) 171.1s(3.6) 141.6s(7.5) 137.5s (21.2)

Table 6.1: Comparison avg. runtimes and avg. pool sizes - Node/RocksDB

33

34 6. Algorithm Extensions & Analysis

Drop Exception le8
I ‘ ' %
(0]
¢ 10 "l ‘ " M] ‘ | " L‘“ 42
«» I [1 o
8 5 m ‘ 20
l ppol size S
i char rate i i J i i 'S
f I 0 ;
0 50 100 150 200 250

time in seconds
Moving Average le8
—— pool size 43
20| — rwchar fs §
g g
o)
§10 2?
©
e
(9]
0

0 50 100 150 200
time in seconds

Figure 6.1: Adapter behavior - rw_nosync_2mb-node

adaptive pool performs better for the RocksDB workloads, approaching optimal performance with a
10% margin for the Bulkload workload and less than 1% slower than optimal for the Fillseq workload.

6.1.2. Moving Average

Another approach to reducing the fluctuations of rwchar rate from one interval to the next is to extend the
interval lengths. However with the previous algorithm the interval length also determines the frequency
of scaling actions, extending it would make the scaling process much slower. Therefore we introduced
an extra parameter (averaging_duration) to decouple the interval length over which the rwchar rate
is computed and the interval length that determines frequency of scaling actions (scale_interval). By
choosing an averaging duration larger than the scale interval we hope to smoothen the rwchar rate
curve over time while keeping the frequency of scaling actions high. For the Node workloads a scale
interval of 1000ms with a stability factor of 0.95 and an averaging duration of 5000ms was used, for
the RocksDB workloads a scale interval of 1000ms a stability factor of 0.9 and an averaging duration
of 5000ms was used.

The results are also reported in the table 6.1 in the last column. Compared to the drop excep-
tion extension, the moving average extension performs significantly better only for the Node Nosync
workload, for other workloads total runtime is maximum 5% larger or smaller. Average pool sizes are
significantly larger for all pool workloads, but don’t significantly exceed the optimal pool sizes for any
workload. Regardless of fluctuations in pool size, the adapter underscales the thread pool for both
Node workloads with any variation on the adapter algorithm.

6.1.3. Analysis & Evaluation
Figure 6.1 shows the adapter scaling behavior for both extensions for the Nosync Node workload. With
the drop exception extension the adapter repeatedly scales the pool up and down alternating roughly
between pool size from 10 to 3. The moving average extension shows completely different behavior,
the pool scaled up quickly around 30 seconds and 140 seconds into the execution. The remainder of
the time the pool size is relatively stable, resulting roughly 3 periods of stable pool sizes.

Figure 6.2 shows the adapter scaling behavior for both extensions for the Fillseq RocksDB workload.
With the drop exception extension the adapter continuously scales up the pool throughput the workload,
reaching a pool size of around 60 at the end. With the moving average extension the adapter first quickly

6.2. Discussion 35

Drop Exception 1e8

: 0
—— pool size 29
60| rwchar rat EJ
g £
240 o
2 1t
<20 ©
e
(9]
0 0z
0 20 40 60 80 100 120
time in seconds
Moving Average le8 o
. 20
301 — pool size %}
(%)
o |) g
NoQ 2
hl 19
S o
210 .
©
e
(o]
0 02
0 20 40 60 80 100 120
time in seconds
Figure 6.2: Adapter behavior - fillseq
Workload Watermark Optimal fixed Adaptive Drop Ex. Mov. Avg.
read_2mb 130.1s (64) 128.2s (4) 140.7s (4.5) 138.6s (5.6) 130.1s (12.1)
rw_2mb 625.7s (64) 330.8s(16) 324.7s (16.6) 362.4s (18.0) 377.5s(16.3)
rw_buf 2mb 163.4s (64) 156.6s (64) 194.7s(31.4) 219.6s (36.6) 258.1s(23.0)
rw_rwbuf rw_2mb 500.0s (64) 371.2s(32) 387.5s(25.3) 431.0s(22.3) 507.3s(16.5)
rw2mb_30ms_oneshot | 297.8s (?) 227.9s (24) 228.2s(12.5) 233.8s(7.7) 248.1s(27.0)

Table 6.2: Comparison avg. runtimes and avg. pool sizes - Adaptive Thread Pool

scales the pool to about 15 threads and then over the next minute continuously scales down the pool.
The the pool is scaled up to around 30 threads over almost the whole remainder of execution.

We also evaluated the two algorithm extensions for our own adaptive thread pool implementation
and the more ’ideal’ workloads (short jobs, more stable rwchar rate). The results are shown in table 6.2,
which again reports average runtimes and average pool sizes in parentheses. The unmodified adaptive
pool is instantiated with a 800ms scale interval and a stability factor of 0.97. The drop exception adapter
with 1500ms scale interval and 0.95 stability factor was used. The moving average adapter with 1500ms
scale interval, 0.95 stability factor and 3000ms averaging duration was used.

With the exception of the read_2mb workload, where both extended versions of the algorithm
achieve a lower runtime, the modified algorithms perform consistently worse than the original version.
This shows that the extensions are an over-optimization for the Node and RocksDB workloads and
not generalizable. This is not entirely surprising as they are aiming to reduce downward scale actions
for some specific workloads to counteract fluctuations. A better approach would be to develop a more
sophisticated target metric as we discuss in the next section.

6.2. Discussion

The two introduced algorithm extensions do improve performance overall for the workloads tested for
Node and RocksDB at the cost of higher average thread pool sizes. However, as we have shown in
figure 6.1 and figure 6.2 the scaling behavior of both variations is quite instable, the pool size is changed
significantly throughput the whole workloads, as opposed to settling on some size once and then only

36 6. Algorithm Extensions & Analysis

adapting it slightly from time to time as observed in the synthetic read-write workloads (figure 5.2).
We think this is an intrinsic limitation of the chosen target metric, more sophisticated target metrics to
maximize need to be developed to fundamentally solve this issue. Apart from this, jobs submitted to
the thread pool that take too long to execute are problematic regardless of the used target metric, they
interfere with the ability of the scale adapter to timely react to changes in the target metric.

A more effective target metric than the rwchar rate, which captures current throughput, would be
predictive of expected throughput and possible contention, so the controller can reduce pool size pre-
emptively to avoid throughput drops as a result of disk contention. Alternatively a second metric that
captures contention may be used to detect the onset thereof, triggering the controller to scale down
once a specific threshold is reached. We did experiment with some metrics related to system call
times and disk blocking times (iowait) to implement the second approach, but ultimately did not find a
sufficiently generalizable metric within time.

Conclusions & Future Work

In this chapter we summarize our contributions and discuss the results of this research w.r.t to the initial
research questions. Furthermore, we reflect on the limitations of our proposed solution and propose
directions for future research that may address them.

7.1. Conclusions

First of all, in chapter 4 we have shown that there is an obvious OS metric that shows high correlation
with total runtime of disk I/O workloads, namely the logical disk throughput as represented by the
rwchar rate, addressing our research question 1. Some investigation into alternative or additional
metrics were made, like the 1/O syscall rate reported in section 4.1.3 and others that were omitted.
In the end we concentrated just on the rwchar rate for our adaptive thread pool implementation with
good results for the tested workloads, but we believe this is not the only OS metric that can be used
for a similar feedback-based adaptive algorithm and it may be of benefit to combine multiple metrics to
lessen the impact of instability in a single metric (more on this in the coming section 7.2).

We introduced our algorithmic approach that is based on maximizing the rwchar rate through an
extended hillclimbing approach which is encapsulated in a controller module, the scale adapter. The
scale adapter makes use of 3 principal internal states; Scaling, Settled and Exploring to continuously
adapt the thread pool size. We discussed the architecture of our implementation; the mechanism
for tracing metrics (traceset), the controller module (scale adapter) and the integration thereof into
a thread pool. Finally we addressed our research question 2a by testing the overhead created of
regularly calling the adapter’s scale advice method. We found the overhead to be unobservable w.r.t
total runtime and thus negligible.

In chapter 5 we defined a simple model to classify the workloads that were used in the following
experimental analysis and we argued that our approach is most suitable for the kinds of workloads
that are characterized by relatively stable phases. We showed that for read-write workloads that fit this
criteria our adaptive thread pool implementation shows good performance w.r.t the goal of minimizing
both total runtime and the average amount of threads used. The results in comparison to the respec-
tive optimally sized fixed pools support the conclusion that for single-phase workloads the proposed
adaptive solution can approach near-optimal performance, thus answering our research question 2b.

In order to address research question 2c¢ our solution was also compared to the common Water-
mark scheme, which we could demonstrate to perform significantly worse w.r.t total runtime for some
workloads and significantly worse w.r.t amount of threads used for the other workloads while having
comparable total runtimes.

We tested the ability of the scale adapter to detect and readjust pool size for 2 dynamic multi-phase
workloads. While performing close to the optimally sized fixed-size pool and scaling the pool differently
in the different phases, the adaptive solution clearly did not outperform it, failing to reach potential
optimal performance. Thus w.r.t research question 2d we could not fully realize the original intended
goal.

The scale adapter was also integrated into two applications, Node and RocksDB, with the exper-
imental analysis revealing two limitations of the proposed solution. Firstly, the rwchar rate proved to

37

38 7. Conclusions & Future Work

be too instable for the 2 read-write workloads that were tested, resulting in poor performance due to
the scale adapter’s constant switching of states because of the heavy, regular fluctuations. Secondly,
for the write-heavy RocksDB workloads the internal flush pool was assigned jobs with long execution
times, that made regular scale action impossible and thus reduced the ability of the scale adapter to
quickly adapt pool size.

In chapter 6 we introduced two extensions to the core scaling algorithm. These extensions improved
performance for the Node and RocksDB workloads, but do not completely alleviate the issue of a
fluctuating rwechar rate and long job execution times. Instead we conclude that more sophisticated
target metrics are needed that are predictive of resource contention instead of descriptive only.

Overall our work serves as an exploration of the solution space for feedback-based thread pool size
adaption schemes that use OS metrics as opposed to system-agnostic metrics such as job completion
rates. We believe to have shown this alternative approach to be feasible in the context of restricted
workloads that mainly use one kind of system resource such as disk /O bandwidth. Further testing in
different kind of application contexts and exploration of more OS metrics are needed and in the next
section we argue that a global (system-wide) approach should be considered.

7.2. Future Work

First of all we think that our approach could be improved through making use of additional metrics that
the OS provides, such as metrics exposed by the disk devices, and metrics that have to be obtaining
through tracing, such as call durations and frequencies of system calls. The benefits of a more so-
phisticated target metric to maximize may be an improvement in stability which in turn makes simple
hillclimbing more effective. Furthermore, through the addition of a complementary metric predicting
disk contention (instead of observing it through a throughput metric) the scale adapter could avoid
frequent suboptimal rescaling due to fluctuating throughputs in periods of contention.

As we have pointed out earlier, there are currently many asynchronous runtimes that use thread
pools for disk 1/0 only workloads where our approach could be further tested and refined. It is not clear
if it is possible to develop a general adaption algorithm that performs well for a majority of integrations
into different applications, our results suggest that the same adapter algorithm’s performance can vary
significantly for different application’s workloads.

From a broader perspective, we believe that a adaptive approach to determine concurrency levels
of applications should ultimately be globally performed within the kernel, as scheduling of jobs and
adjustment of concurrency levels can be performed according to resource usage of a job and current
resource utilization if done within the kernel. The scale adapter would have the most complete knowl-
edge over system-wide outstanding jobs and system resources to make these decisions. Instead of
one or more thread pools per application, an in-kernel implementation could be split in one thread pool
per resource, such as CPU, disk device and network device. Jobs at the granularity of single system
calls can be executed on the specific resource pool according to the characteristic resource usage of
the system call. Using in-kernel global thread pools instead of per-application pools should addition-
ally be beneficial for performance isolation between multiple concurrent applications and provide better
control over QoS (Quality of Service) requirements.

The recently introduced io_uring interface to Linux offers a mechanism for submission of asyn-
chronous system calls and collection of results, so there is already infrastructure in place for a kernel-
side implementation that is exposed to the user at a system call granularity [1, 5]. lo_uring is already
used in concurrency libraries such as Glommio to replace dedicated I/O thread pools, shifting the re-
sponsibility of concurrent execution to the kernel, where an adaptive scheme to determine concurrency
levels would benefit all user applications [6]. With the proliferation of asynchronous programming and
asynchronous system architectures lies the opportunity to completely relieve the application program-
mer of the burden to make explicit use of or to have to tune thread pools. Nevertheless, concurrency
still has to be managed within the kernel, where we believe an adaptive scheme to be very appropriate.

Appendix

A.1. Workloads

In the following we list all the workloads that were used for experimental analysis along with a short
description of them.

A.1.1. Adaptive Thread Pool
» read_2mb: One job consists of reading an uncached 2Mb file from disk. All jobs are submitted at
once at the start.

* rw_2mb: One job consists of reading an uncached 2Mb file from disk fully into memory and then
writing the contents to a new file on disk. The file is then synchronized with the £sync system
call before being removed. All jobs are submitted at once at the start.

» rw_buf_2mb: One jobs consists of reading an uncached 2Mb file from disk in chunks of 4Kb and
writing the contents chunk per chunk to a new file. After every completed write of a chunk the file
is synchronized with the £sync system call. When the whole file has been written it is removed.
All jobs are submitted at once at the start.

* rw2mb_30ms_oneshot: The jobs are the same as in the rw_2mb workload. In the first phase jobs
are submitted at a rate of one job every 30ms. In the second phase a batch of jobs is submitted
all at once.

* rw_rwbuf_rw_2mb: A first set of jobs from the rw_2mb workload is submitted, a second set of
jobs from the rw_buf _2mb workload is submitted, a third set of jobs from the rw_2mb workload
is submitted. All jobs are submitted at once at the start. The jobs are executed in order of
submission, so the whole execution is effectively split in 3 different phases.

A.1.2. NodeJS
The workloads are regular Node scripts that execute functions in parallel through the Promise.all
function. The functions are executed in batches of 100.

* rw_sync_10mb: The function consists of reading an uncached 10Mb file from disk fully into mem-
ory and then writing the contents to a new file on disk. The file is then synchronized with the fsync
system call before being removed.

* rw_nosync_2mb: The function consists of reading an uncached 2Mb file from disk fully into mem-
ory and then writing the contents to a new file on disk. The file is then removed.

A.1.3. RocksDB
Both workloads are write-heavy workloads that write new objects to the key-value store. The jobs
executed by the flush thread pool are batches of fsync operations on sets of data files.

39

40 A. Appendix
« fillseq: writes N values in sequential key order, no reads are performed
* bulkload: writes N values in random key order, no reads are performed
A.2. Chapter 6 omitted results
Workload | Default fixed Optimal fixed Adaptive Drop Ex. Mov. Avg.
RW-sync 0.6 0.3 6.0 3.3 4.8
RW-nosync 6.2 0.7 8.9 5.0 24
Fillseq 7.3 134 14.6 7.5 10.9
Bulkload 55 53 23.0 1.8 3.7
Table A.1: Comparison runtime standard deviations - Node/RocksDB
Workload Watermark Optimal fixed Adaptive Drop Ex. Mov. Avg.
read_2mb 0.1 0.5 8.8 7.3 0.1
rw_2mb 53.7 29.8 47.9 35.1 30.9
rw_buf 2mb 14.9 10.1 25.4 25.1 25.8
rw_rwbuf_rw_2mb 56.2 27.8 6.1 5.3 43.4
rw2mb_30ms_oneshot 17.8 6.2 3.7 7.2 12.6

Table A.2: Comparison runtime standard deviations - Adaptive Thread Pool

A.3. Source Code

The source code for the implementation of the scaling adapter and the modified applications, as well
as scripts used for benchmarking can be found on the following Github profile: https://github.

com/jannes-thesis.

https://github.com/jannes-thesis
https://github.com/jannes-thesis

Bibliography

[1] Jens Axboe. Efficient io with io_uring, 2019. URL https://kernel.dk/io uring.pdf. [On-
line; accessed 3. Feb. 2021].

[2] John Calcote. Thread pools and server performance-as john points out here, thread pools provide
one way of improving server performance. Dr Dobb’s Journal-Software Tools for the Professional
Programmer, 22(7):60-65, 1997.

[3] Ning-jiang Chen and Pan Lin. A dynamic adjustment mechanism with heuristic for thread pool in
middleware. In 2010 Third International Joint Conference on Computational Science and Opti-
mization, volume 1, pages 369-372. IEEE, 2010.

[4] Jonathan Corbet. Toward non-blocking asynchronous I/O [LWN.net], 2017. URL https://1lwn.
net/Articles/724198. [Online; accessed 8. Feb. 2021].

[5] Jonathon Corbet. The rapid growth of io_uring [lwn.net], 2020. URL https://lwn.net/
Articles/810414. [Online; accessed 3. Feb. 2021].

[6] Glauber Costa. Glommio, 2020. URL https://github.com/DataDog/glommio. [Online;
accessed 9. Dec. 2020].

[7]1 Nilushan Costa, Malith Jayasinghey, Ajantha Atukoralez, Supun Abeysinghex, Srinath Perera, and
Isuru Pererak. Adapt-t: An adaptive algorithm for auto-tuning worker thread pool size in application
servers. In 2019 IEEE Symposium on Computers and Communications (ISCC), pages 1-6. IEEE,
2019.

[8] Jake Edge. Unifying kernel tracing [LWN.net], 2019. URL https://lwn.net/Articles/
803347. [Online; accessed 22. Oct. 2020].

[9] Facebook. RocksDB benchmarking tools, Jan 2021. URL https://github.com/facebook/
rocksdb/wiki/Benchmarking-tools. [Online; accessed 15. Jan. 2021].

[10] Facebook. RocksDB, 2021. URL https://github.com/facebook/rocksdb. [Online; ac-
cessed 4. Jan. 2021].

[11] Brian Goetz, Tim Peierls, Doug Lea, Joshua Bloch, Joseph Bowbeer, and David Holmes. Java
concurrency in practice. Pearson Education, 2006.

[12] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson Education, 2014.

[13] Brendan Gregg. Choosing a Linux Tracer (2015), Jul 2015. URL http://www.brendangregg.
com/blog/2015-07-08/choosing-a-linux-tracer.html. [Online; accessed 22. Oct.
2020].

[14] Joseph L Hellerstein, Vance Morrison, and Eric Eilebrecht. Optimizing concurrency levels in the.
net threadpool: A case study of controller design and implementation. Feedback Control Imple-
mentation and Design in Computing Systems and Networks, 2008.

[15] DongHyun Kang, Saeyoung Han, SeoHee Yoo, and Sungyong Park. Prediction-based dynamic
thread pool scheme for efficient resource usage. In 2008 IEEE 8th International Conference on
Computer and Information Technology Workshops, pages 159-164. IEEE, 2008.

[16] Dan Kegel. The c10k problem, 2006.

[17] Michael Kerrisk. proc(5) - Linux manual page, Dec 2020. URL https://man7.org/linux/
man-pages/man5/proc.5.html. [Online; accessed 4. Jan. 2021].

41

https://kernel.dk/io_uring.pdf
https://lwn.net/Articles/724198
https://lwn.net/Articles/724198
https://lwn.net/Articles/810414
https://lwn.net/Articles/810414
https://github.com/DataDog/glommio
https://lwn.net/Articles/803347
https://lwn.net/Articles/803347
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb
http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

42 Bibliography

[18] Sobhan Omranian Khorasani, Jan S Rellermeyer, and Dick Epema. Self-adaptive executors for
big data processing. In Proceedings of the 20th International Middleware Conference, pages
176-188, 2019.

[19] Ji Hoon Kim, Seungwok Han, Hyun Ko, and Hee Yong Youn. Prediction-based dynamic thread
pool management of agent platform for ubiquitous computing. In International Conference on
Ubiquitous Intelligence and Computing, pages 1098-1107. Springer, 2007.

[20] Kang-Lyul Lee, Hong Nhat Pham, Hee-seong Kim, Hee Yong Youn, and Ohyoung Song. A novel
predictive and self—adaptive dynamic thread pool management. In 2011 IEEE Ninth International
Symposium on Parallel and Distributed Processing with Applications, pages 93-98. IEEE, 2011.

[21] Yibei Ling, Tracy Mullen, and Xiaola Lin. Analysis of optimal thread pool size. ACM SIGOPS
Operating Systems Review, 34(2):42-55, 2000.

[22] Oracle. ThreadPoolExecutor (Java Platform SE 8), Jul 2020. URL https://docs.oracle.
com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html. [On-
line; accessed 23. Nov. 2020].

[23] Vara Prasad, William Cohen, FC Eigler, Martin Hunt, Jim Keniston, and Brad Chen. Locating
system problems using dynamic instrumentation. In 2005 Ottawa Linux Symposium, pages 49—
64. Citeseer, 2005.

[24] Dennis M Ritchie and Ken Thompson. The unix time-sharing system. Bell System Technical
Journal, 57(6):1905-1929, 1978.

[25] Douglas C Schmidt. Evaluating architectures for multithreaded object request brokers. Commu-
nications of the ACM, 41(10):54—60, 1998.

[26] The Libuv maintainers. Libuv, 2020. URL https://github.com/libuv/libuv. [Online;
accessed 7. Dec. 2020].

[27] The Linux maintainers. Linux Tracing Technologies - The Linux Kernel documentation, 2021. URL
https://www.kernel.org/doc/html/latest/trace. [Online; accessed 4. Feb. 2021].

[28] The MariaDB maintainers. Thread Pool in MariaDB, 2021. URL https://mariadb.com/
kb/en/thread-pool-in-mariadb/#thread-pool-internals. [Online; accessed 4. Feb.
2021].

[29] The Node.js maintainers. Node.js, 2021. URL https://github.com/nodejs/node. [Online;
accessed 4. Jan. 2021].

[30] The Tokio maintainers. Tokio, 2020. URL https://github.com/tokio-rs/tokio. [Online;
accessed 7. Dec. 2020].

[31] The ZIO maintainers. ZIO, 2020. URL https://github.com/zio/zio. [Online; accessed 7.
Dec. 2020].

[32] Dongping Xu. Performance study and dynamic optimization design for thread pool systems. Tech-
nical report, Ames Lab., Ames, IA (United States), 2004.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://github.com/libuv/libuv
https://www.kernel.org/doc/html/latest/trace
https://mariadb.com/kb/en/thread-pool-in-mariadb/#thread-pool-internals
https://mariadb.com/kb/en/thread-pool-in-mariadb/#thread-pool-internals
https://github.com/nodejs/node
https://github.com/tokio-rs/tokio
https://github.com/zio/zio

	Introduction
	Research Objectives
	Outline

	Background
	Compute-bound & I/O-bound Workloads
	Taxonomy of I/O Access
	Synchronous vs. Asynchronous
	Blocking vs. Non-blocking

	Linux Kernel I/O Interfaces
	Synchronous, Blocking Read/Write
	File Descriptor Monitoring + Non-blocking Read/Write
	Memory-mapped I/O
	Asynchronous Read/Write

	Concurrency Models - Threading
	Asynchronous I/O - Application Architecture

	Linux Observability
	Measuring Performance

	Related Work
	Algorithmic Approach & Solution Architecture
	System Metrics & Throughput Correlations
	Workloads
	Disk I/O Throughput
	Auxiliary Metrics

	Algorithmic Approach
	Assumptions and Limitations
	Adapter Algorithm
	Implementation

	Architecture & Components
	Tracesets
	Scale Adapter
	Thread Pool

	Overhead of Scaling Adapter

	Workloads & Experimental Analysis
	Modelling Workloads
	Phases & Phase Changes
	Saturating vs Non-saturating Phases

	Methodology & Experimental Setup
	Experimental Setup
	Selection of Algorithm Parameters

	Experimental Analysis
	Adaptive Thread Pool - Single Phase
	Adaptive Thread Pool - Multi Phase
	NodeJS
	RocksDB

	Discussion

	Algorithm Extensions & Analysis
	Algorithm Extensions
	Drop Exception Rule
	Moving Average
	Analysis & Evaluation

	Discussion

	Conclusions & Future Work
	Conclusions
	Future Work

	Appendix
	Workloads
	Adaptive Thread Pool
	NodeJS
	RocksDB

	Chapter 6 omitted results
	Source Code

	Bibliography

