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Abstract 

The nearshore zone is an active zone that can be quite inhospitable to humans due to violent 

wave breaking and strong rip currents. Rip currents are shore normal jet-like currents that 

typically extend from near the shoreline out past the line of breaking waves. Observations have 

concluded that a rip current system generally consists of 4 parts. Part 1 is the shoreward mass 

transport due to the waves carrying water through the breaker zone in the direction of wave 

propagation. Part 2 is the movement of this water mass parallel to the coast known as a 

longshore current. Part 3 is the rip current itself, a seaward flow of water through a narrow rip 

channel. And part 4 is an alongshore movement outside the breaker zone of the expanding rip 

head. 

With the use of the numerical model XBeach, in which a non-hydrostatic model based upon the 

numerical scheme as  developed by Stelling and Zijlema (2003)was implemented, the fluid 

motions in the nearshore zone are simulated. The method of Stelling and Zijlema utilizes an edge 

based compact difference scheme for the approximation of the vertical gradient of the non-

hydrostatic pressure. This ensures accurate wave breaking and dispersion characteristics, which 

is important for an accurate simulation of the nearshore hydrodynamics.  

Two test cases are used to verify the model for replication of the hydrodynamics in the 

nearshore zone. The first case consists of irregular wave breaking in a laboratory barred surf 

zone. The second case is a wave induced and bathymetry driven rip current in a directional wave 

basin.  

The numerical model is further developed with the addition of an eddy viscosity model and a 

non-reflecting boundary condition. With these additions the depth averaged model gave very 

satisfactorily results for both cases.  

The XBeach model is an accurate and efficient simulation package for the dynamics in the 

nearshore zone. This study shows that application to real world situations should give realistic 

and accurate results. Therefore the model could be applied in coastal engineering applications 

and in the research for energy extraction methods from wave induced currents. 
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1 Introduction 

The nearshore zone is an active zone that can be quite inhospitable to humans due to violent 

wave breaking and strong rip currents. The strength and dynamics of rip currents are usually 

underestimated and not understood by many people who encounter these currents. In saying 

this, rip currents account for more than 80% of lifeguard rescue efforts, and are the number one 

natural hazard in the state of Florida, USA. More people fall victim to rip currents in Florida, than 

to lightning, hurricanes, and tornadoes (Lascody, 1998; Luschine, 1991). Also in Australia, with 

its vast coastline, rip currents are found to form a major threat to bathers around the country, 

where they are responsible for more than 90% of all surf rescues and most drownings (Short, 

1999). It is therefore important to not only better understand this phenomenon but to also be 

able to predict their occurrence and strength.  

The study of nearshore dynamics is also important for coastline development, harbors and inlets 

as the nearshore zone processes have a dominant influence on navigation and accessibility 

which in turn have a significant impact on the economic and environmental interests of our 

society. In general, the coastal engineer is concerned with the fluid motions in the nearshore 

zone that interact with structures, boats and the coastline. It is therefore of importance for the 

coastal engineer to be able to predict these fluid motions in the nearshore zone. 

Nearshore dynamics are very complex. Due to this complexity and the non-linearity of the 

mathematical equations associated, a principal tool used for the simulation of nearshore 

dynamics are numerical models. A popular way to model rip currents is to use the extended 

Boussinesq equations (Chen et al., 1999; Madsen et al., 1997a; Wei et al., 1995). Fully coupled 

wave/current interaction is taken into account by the Boussinesq equations. However, a well 

known drawback of Boussinesq-type modelling is the assumption of an irrotational and inviscid 

flow. The consequence of this is that neither the interaction of waves with rotational currents 

nor the effects of viscosity on the wave motion can be simulated.  

An alternative method to model these incompressible turbulent fluid flows involving gravity 

waves is based on the time-dependent three-dimensional Navier-Stokes equations. This is the 

method of choice for this thesis which is incorporated into the XBeach program (Roelvink et al., 

2009). 

1.1 Objective 

With the use of the numerical model XBeach, in which a non-hydrostatic model based upon the 

numerical scheme as  developed by Stelling and Zijlema (2003) was implemented, the objective 

is to accurately simulate the fluid motions in the nearshore zone. Two test cases will be used to 

verify the model for replication of the dynamics in the nearshore zone. The first case consists of 

irregular wave breaking in a laboratory barred surf zone. The second case is a wave induced and 

bathymetry driven rip current.  
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1.2 Readers guide 

The outline of this thesis is organized as follows: In Chapter 2 a literature review is carried out 

briefly highlighting the nearshore zone dynamics that play a role in a rip current system, and an 

investigation of the dynamics of a rip current system is undertaken. Chapter 3 is dedicated for 

the literature review of numerical models that are currently or have been of importance for 

simulations of fluid dynamics in the nearshore zone.  

Subsequently the numerical model that is used for the research in this thesis is presented in 

Chapter 4.  In Chapter 5 the model is validated and verified for the nearshore dynamics using the 

two cases as outlined above in the objectives. Chapter 6 will present the conclusions and 

recommendations resulting from this study. 

In Appendix A the model is applied to cases for energy generation from the ocean in the 

nearshore zone. In this Appendix a number of ideas that transform wave energy into a current 

and utilize this current for electricity generation will be discussed. Results of the numerical 

model for these particular cases will be presented and used as material for discussion.  

In Appendix B the derivation of the governing equations of the numerical model from 

fundamental equations is presented, and in Appendix C the discretisation technique used in the 

numerical model XBeach is presented. 
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2 Nearshore Hydrodynamics 

2.1 Introduction 

The nearshore hydrodynamics include the transformation of wind-generated deep water waves 

into shallow water waves and then, due to breaking, into motions of different types and scales. 

The shallow water waves transform into small-scale turbulence, larger-scale coherent vortical 

motions, low-frequency waves, and steady flows. The hydrodynamics only include the fluid 

motions and not the processes of sediment transport and morphological evolution. For short-

term fluid computations it is allowed to ignore these processes because the transported 

sediment only has a weak influence on the hydrodynamics.   

The wave dynamics in the nearshore environment are only briefly described. If the reader 

wishes a more comprehensive introduction into nearshore dynamics and more specifically wave 

dynamics one is referred to the work of Battjes (1988), Holthuijsen (2007), and Dingemans 

(1997).  The nearshore circulation system, also known as a rip current system, will be more 

thoroughly described.  

2.2 Nearshore zone 

The nearshore zone consists of four defined regions where the nearshore zone processes take 

place. In the Figure 2-1 these regions are highlighted. 

 

Figure 2-1: The nearshore zone (*) 

The shoaling zone is the region where a wave passes from deep into shallow water. In this zone 

the water depth is less than half the wavelength. The vertical orientation of the wave changes as 

it begins to feel the effect of the bottom. As the wave nears the shore, its steepness increases and 

the wave eventually breaks. 

The point where the wave begins to break is known as the breaking point. This is not to say that 

all waves begin to break in the same location. This location is dependent on wave height 
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variation. The breaker zone is where the majority of waves reach their steepness limit for a 

given wave spectrum. After the wave begins to break, it enters the surf zone where water is 

transported toward the beach in the form of smaller, broken waves known as bores. These bores 

can be thought of as continuously breaking waves. As bores reach the beach, water particles are 

pushed onshore and then retreat seaward. This area of run-up and backwash of water is known 

as the swash zone. 

2.3 Wave propagation 

Once a wave with a certain frequency and amplitude is generated it will propagate with a certain 

speed and direction. These properties will remain the same over a very long distance as long as 

the properties of the medium in which the wave travels will remain the same. However, if the 

wave with a certain wave length encounters a sloping seabed with decreasing depth, and the 

wavelength is of the same order as the depth, the amplitude and direction will be affected by the 

limited water depth. The propagation of a wave is thereby affected and the wave will start to 

deform. This effect can be described by the linear wave theory. The equations derived from the 

linear theory are applicable for waves with relatively low amplitude. When waves grow and 

steepen, they become nonlinear and the linear theory is not applicable anymore. However, in 

case the linear theory no longer holds, nonlinear theories are available such as the Stokes wave 

theory, cnoidal wave theory, and the stream-function theory. If the reader wishes more 

explanation on these theories, the book of Holthuijsen (2007) is a good starting point for further 

exploration. 

The phenomenon of waves changing in longitudinal direction (i.e. in the direction of 

propagation) due to variation in the group velocity in that direction is called shoaling, and the 

result is either an increase or decrease in wave amplitude. If the phase speed is changed along 

the wave crest because of a variable depth along the wave crest, the wave will turn towards the 

shallower water. This process is called refraction. Another phenomenon is diffraction, which is 

caused by sudden change of amplitude along a wave crest. This variation in amplitude is usually 

caused by a structure and causes the wave to turn towards the region with lower amplitude. All 

these processes are of importance in the dynamics of the nearshore zone and the rip currents 

that can occur in this region. In the following paragraph the rip current system will be further 

investigated. 

2.4 Rip Current Systems 

2.4.1 Introduction 

Rip currents are shore normal jet-like currents that typically extend from near the shoreline out 

past the line of breaking waves. They usually occur on gentle sloping beaches exposed to large 

oceanic swell. The rip current system is a horizontal circulation cell of mass transport. Mass 

transport as a concept is used in one of the first attempts to explain rip current systems. It was 

opted that the onshore mass transport by waves over an alongshore bar most efficiently exits 

through a narrow, usually morphodynamically, eroded rip channel to form a strong narrow 

current (Munk, 1949). This current, that was firstly scientifically observed by Shepard et al. 

(1941), was found to get stronger and also the seaward distance the rips would extend 
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increased when the height of the incoming waves increased. Shepard observed that the rip 

currents occurred at the center of beach cusps and on either side of regions in which the breaker 

height is large. At a later stage a more comprehensive series of field measurements were 

depicted by Shepard and Inman (1950). The observations concluded that a rip current system 

generally consisted of 4 parts. Part 1 is the shoreward mass transport due to the waves carrying 

water through the breaker zone in the direction of wave propagation. Part 2 is the movement of 

this water mass parallel to the coast as an alongshore current. Part 3 is the rip current itself, a 

seaward flow of water through a narrow rip channel. And part 4 is an alongshore movement 

outside the breaker zone of the expanding rip head. In the following figure the rip current 

structure is given. 

 

Figure 2-2 Rip current structure (*) 

2.4.2 Rip current parts 

2.4.2.1 Part 1: Onshore flow 

In the deeper water beyond the shoaling zone, water particles of non-breaking waves have a 

decreasing orbital motion to a depth equal to half the wavelength, but little to no net flow in the 

wave direction. As waves move into shallower water, the circular orbits become progressively 

more distorted and upon breaking are highly disrupted. Following the wave breaking, water 

particles still oscillate moving landward with the wave crest and seaward with the trough. The 

average of these onshore currents causes a rise in the mean water level above the still water 

level known as wave set-up. The other parts of the nearshore circulation system stem from this 

onshore flow of water. For further investigation on the mass transport of waves towards the 

shoreline see the paper of Longuet-Higgins (1953). 

2.4.2.2 Part 2: Longshore current 

When waves break in the breaker zone and propagate further through the surf zone, they can 

create currents parallel to the shoreline called longshore currents. Longshore currents occur 

only when waves approach the shoreline at an angle. The angle of the incoming wave causes a 

progressively breaking wave that moves along the shoreline and a longshore current that moves 
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in the same direction as the breaking wave. The longshore current spans the entire width of the 

surf zone. It reaches maximum strength in the middle of the surf zone and diminishes in strength 

further offshore. 

Higher waves create faster longshore currents. The angle of wave approach at breaking also 

affects the speed of the current. Peak currents occur when the wave approaches from 45 

degrees. Higher or lower angles produce slower currents. Waves breaking parallel to the 

shoreline will induce no longshore current generated by the wave angle. 

Like rip currents, longshore currents are subtle but can be seen or felt while standing in the surf 

zone. Longshore currents will always be present with rip currents as part of the rip current 

system. 

 

Figure 2-3: Longshore current (*) 

2.4.2.3 Part 3: Rip current 

Rip currents are jet-like currents of water that typically extend from near the shoreline out past 

the line of breaking waves. 

Rip currents can be caused by several wave phenomena. These include offshore flow through 

channels in sandbars, variability of breaking wave heights, and longshore current interaction 

with structures. A portion of the longshore current enters into "feeder currents," which are the 

segments on the shore-side of a rip current. A rip current also has a neck and a head, as 

illustrated in the Figure 2-2. 

2.4.2.4 Part 4: Rip head 

The rip head is the part of a rip current system that is typically located beyond the breakers, 

marked by a spreading out or fanning of the rip current. It is here where the velocity and 

strength of the rip current circulation begins to weaken considerably.  
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2.4.3 Rip current characteristics 

2.4.3.1 Wave angle 

Rip currents are frequently generated when the incoming wave direction is nearly 

perpendicular to the shoreline. The orientation of the shoreline is therefore a key feature to note 

when assessing the potential for rip current formation at a particular beach. Near shore-normal 

waves produce a larger shoreward transport of water than obliquely incident waves (USACE, 

2006). In one study, angles of incident wave direction within 20 degrees of normal to shore were 

correlated with increased rip current rescues (Engle, 2003). Waves incident at more oblique 

angles produce stronger longshore currents and are substantially less likely to form strong rip 

currents (Gutierrez, 2004). However, in the vicinity of shoreline structures waves approaching 

at angles of greater than 20 degrees create faster longshore currents and are therefore more 

likely to cause rip currents. Below some illustrations are given in which is shown how rip 

currents behave with different wave angles.  

2.4.3.2 Spacing 

Single-cell rip currents occur mostly in the vicinity of jetties or other man-made structures. A 

single rip current system can also form in a small bay with headlands. However it is more 

common to encounter multi-cell rip currents. 

Multi-cell rip currents can form in many different conditions. Here are a few common examples 

of when multiple rip currents occur: 

 One current is being created as another dissipates near the same location. 
 Multiple gaps in the sandbar exist. 
 Wave angles are close to normal on a cuspate beach. 

The spacing between multi-cell rip currents is generally observed to be less than 500 m and will 

vary based upon beach slope, shoreline orientation, wave height, and wave period. 

 
Figure 2-4: Rip current process: cuspate beach (*) 
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2.4.3.3 Duration 

Rip currents are transitory and temporal. The pulsation of an individual rip current is 

approximately 10 to 20 minutes. It is rare to see a rip current sustained for an hour or more. 

This is not to say that an area of beach will not be affected by a series of rip currents for more 

than 10-20 minutes as there could be multi-cell development that occurs over time along a 

stretch of beach. 

2.4.3.4 Velocity 

Rip current velocity is irregular and may swiftly increase within minutes due to larger incoming 

wave groups or nearshore circulation instabilities. It is imperative to understand that changes in 

rip current velocity occur in reaction to changes in incoming wave height and period as well as 

changes in water level. The rapid increase in velocity can catch unwary swimmers off guard. 

While rip current velocities average 0.3 – 0.6 m/s, moderate to strong rip currents can have 

speeds over 2 m/s. 

Without the use of velocity measurements, one can attempt to estimate the potential strength of 

rip currents based on their spacing along a single beach. A single rip current in a given area of 

wave height usually indicates high offshore velocity. Multiple rip currents in the same area of 

given wave height tend to reduce the velocity. In general, the larger the spacing between rip 

currents on a single beach, the larger the potential velocity in the current. However, under the 

right wave and water level conditions, high velocities should be a concern on any beach, no 

matter what the spacing of the rip currents. In the illustrations below the rip currents with a 

larger spacing in between extend further offshore and thus potentially have a larger velocity. 

 

Figure 2-5: Rip current spacing vs. velocity (*) 

2.4.4 Rip current forcing mechanisms 

As previously mentioned, the first suggestion as to the cause of rip currents was based on mass 

transport by waves. In a purely two dimensional case, with the vertical and the shore normal 

axis, it was assumed that the pressure head provided by the shoreward mass transport of the 

waves caused a seaward flow. This is necessary to comply with the mass balance assumption in 

fluid mechanics (Munk, 1949). It was theoretically shown by Longuet-Higgins (1953) that in this 

case there would be an onshore flow at the surface and bottom and a seaward flow at 

intermediate depths. However, measurements in the ocean usually don’t show this behavior and 

it is found that there is no offshore transport of water trough breakers at intermediate depths 
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and no onshore flow of water in the rip currents, where there the flow is directed offshore at all 

depths. Thus, although, a vertical circulation pattern is theoretically possible, a horizontal 

circulation pattern is usually dominant.  

2.4.4.1 Radiation stress 

Continuity of mass is one way to explain the occurrence of rip currents but by considering the 

continuity of momentum flux another approach can be taken to understand the phenomenon of 

a rip current system. Changes in mean sea level due to the incoming waves are caused by an 

increase or decrease of cross-shore momentum flux. Longuet-Higgins (1953) derived theoretical 

expressions for these changes in sea level. A lowering of the mean sea level was predicted as the 

waves approach the break point (wave set-down) and a rise in mean sea level (wave set-up) 

shoreward of the breakers. 

Longuet-Higgins and Stewart introduced the concept of radiation stress to describe  some of the 

nonlinear properties of surface gravity waves, the radiation stress being defined as the excess 

flow of momentum due to the presence of waves (Longuet-Higgins and Stewart, 1964) 

In the theoretical study by Bowen (1969) the concept of Longuet-Higgins is used to investigate 

how the wave field interacts with the alongshore variations, due to different wave fields, bottom 

topography or due to the presence of edge waves, to produce nearshore circulation patterns. 

Bowen finds that the radiation stress provides the driving terms for a steady flow pattern only 

inside the surf zone. The radiation stress is proportional to the square of the wave height. 

Therefore the circulation pattern can be directly related to the alongshore variation in breaker 

height. Currents are flowing seaward where the breaker height is relatively low. The following 

figure shows an alongshore variation in wave-setup due to an alongshore variation of incoming 

waves. 

 

Figure 2-6: Longshore variation in wave-setup (*) 

The nonlinear terms in the equation of motion show that the outward flowing current becomes 

narrower with increasing velocity. This specific feature of a rip current, namely the high 
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velocities in a narrow zone, is caused by vortex stretching over a sloping bottom topography, as 

was explained already by Arthur (1962). 

2.4.4.2 Edge waves 

In the experimental study by Bowen and Inman (1969) it was investigated if a nearshore 

circulation cell would occur when a plane beach was exposed to a uniform wave train, normally 

incident on the beach. Standing edge waves were generated on the beach of the same frequency 

as the incoming waves. Steady flow patterns arose from the interaction between the edge waves 

and the incoming waves. The circulation pattern consisted of an onshore flow toward the 

breakers, an alongshore current in the surf zone, and an offshore flow in relatively strong, 

narrow rip currents. The edge waves that are created by the normally incident incoming waves, 

produce an alongshore variation in waves height, and therefore producing a horizontal 

circulation cell. The rip currents were found to occur at alternate antinodes of the edge waves, 

and the spacing between the rip currents was therefore equal to the wavelength of the edge 

waves.  

The edge wave theory, however, is only valid if the beaches are flanked by headland. Then a 

standing edge wave can develop between these two boundaries and a significant amount of 

wave energy can therefore be trapped between these headlands. Otherwise the occurrence of 

edge waves is difficult to explain. 

2.4.4.3 Wave current interaction 

In the previous mentioned studies, the wave energy and current energy have been completely 

uncoupled. It is known however that currents interact with encountering waves. Waves are 

steepened by an opposite current and their wavelength is shortened, a similar process as 

shoaling. This energy coupling between waves and rip currents was investigated by LeBlond and 

Tang (1974). They found that the energy interaction resists the flow, and that larger wave 

perturbations are needed to induce the rip currents.  

Wave-current interactions not only have an effect on the wave height, wave speed and the 

current velocity, but they also cause the wave crest to change direction due to the difference of 

wave velocity along the wave crest. This effect is known as refraction and this is also of 

importance in the dynamics of the rip current structure. Therefore the analytical model of 

LeBlond and Tang was extended by Dalrymple and Lozano (1978) to include the effect of 

refraction of the normally incident  wave field by the nearshore circulation. The analytical model 

describes the rip current cells on an open coastline with sloping planar foreshore and flat 

offshore bathymetry. The findings of the model are that refraction of the waves by the outgoing 

rip currents causes the waves to impinge on the beach at an angle, and therefore generating an 

alongshore current flowing towards the location of the rip channel. Because the rip currents 

reduce the wave energy, the alongshore flow is from regions of high wave energy to low wave 

energy, in the same manner as that of Bowen (1969). The analysis done by Dalrymple and 

Lozano shows that wave-current interaction can support the steady state rip current, however 

they have not treated the initiation mechanism that leads to this steady state.  
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2.4.4.4 Surf zone bathymetric features 

Above studies all have shown that rip currents can occur on plane beaches with a flat 

bathymetry. But often rip current occurrence is caused by the interaction between waves and 

the bathymetry of the surf zone. Beaches can contain man-made bathymetric structures such as 

groins, jetties, and piers and natural bathymetric features such as canyons, ridges, and sandbars. 

See the figures below for the various bathymetric features that can play a role in a rip current 

system. 

Figure 2-7: Surf zone bathymetric features (*) 

Canyons and ridges 
A variation of breaking wave amplitude near the shore can be caused by wave refraction by 

submarine canyons and ridges offshore, converging or diverging wave energy for a given wave 

path. This variation of breaking wave amplitude can generate a horizontal circulation cell 

(Shepard and Inman, 1951). 

Sandbars 
An analytical study by Mei and Liu (1977) has shown that a variation in depth along the 

shoreline causes variation in the radiation stress components and in the mean sea level in the 

surf zone, which creates a horizontal circulation cell of stream lines.  

Often, rip currents form where a cut in a longshore sandbar is already present. Typically, the 

incoming waves will break on the sandbar. The sandbar acts as a dam that holds water 

deposited by the breaking waves. As wave set-up occurs and the longshore current develops, the 

low spots in the sandbar become the path of least resistance for the return flow of water. This 

form of a rip current system will be researched further later in this thesis. See the figure below 

for a typical rip current that is induced by a rip channel in a sandbar. 
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Figure 2-8: Rip current through gap in sandbar (small figure is a front view) (*) 

 
Structures 
Rip currents can also be generated by structures because a longshore current encounters a 

structure blocking the flow and therefore forcing its direction seaward due to water level 

gradients.  

An experimental and computational study has been undertaken by Wind and Vreugdenhil 

(1986). They obtained data for a wave-driven current system in a closed basin to back up their 

computations and verify the numerical model that was used. In the basin, owing to the 

interaction of the longshore current with the sidewall, a strong rip current was generated. This 

same current system was modelled with the help of a numerical model. The effect of bottom 

topography, bottom friction, convection and turbulent viscosity on the current system has been 

investigated. In their paper they show that convective terms are of dominant importance for the 

dynamics of rip currents and that viscosity in the model allows for closed streamlines situated 

outside the breaker zone, which was in agreement with the experiment.  

It can be concluded from the research of Wind and Vreugdenhil (1986) that for a detailed 

reproduction of the velocity field of the rip head adjacent to the structure, a more advanced 

turbulence model such as a k-ε model or a Smagorinsky subgrid model should be used for the 

computations. 

2.4.5 Rip current flow 

Rip current flows are induced by the incoming waves and influenced by tidal elevation and the 

bathymetric features that were described in the previous paragraph. In the following table 

hourly mean flows for various beaches have been tabulated.  

Location Ur 

(m/s) 

Umax 

(m/s) 

r 

(m) 

wr 

(m) 

hr* 

(m) 

hb
* 

(m) 

Hmo 

(m) 

Tp 

(s) 

D50 

(mm) 

Skallingen,NED 0.3 1.7 150 90 1.25 1 0.8 8 0.25 

Palm Beach, AUS 0.4 2 200 60 1.8 1 0.75 10 0.35 
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Muriwai, NZL 0.65 2 500 150 1.5 1 1.5 14 0.25 

Moreton Island, AUS 0.4 1 300 35 1.4 1 0.5 10 0.2 

Torrey Pines, CA, USA 0.2 1 300 100 1.25 1 0.5 12 0.1 

Monterey, CA, USA 0.3 2 125 60 1.5 1 1.5 12 0.35 

SeaGrove, FL, USA 0.35 1.25 60 30 0.8 0.3 0.5 8 0.3 

Table 1: Field characteristics of rip currents  

In the table above Ur is the rip current cross-shore velocity, Umax is the maximum documented 

rip current velocity, r is the rip channel spacing, wr is the rip channel width, hr* is the rip 

channel depth (* estimated to MSL), hb* is the bar height, Hmo is the significant wave height, Tp is 

the peak wave period, and D50 is the median sediment size. 

The mean velocities are often quite small, however the maximum velocities can be rather large. 

The variation in the flow velocity can also be caused by the tidal variation of the water level over 

the course of a few hours (Shepard and Inman, 1950).  

Rip currents have also been observed to pulsate on wave group temporal scales (Shepard and 

Inman, 1950). Infragravity rip current pulsations increase the rip current maximum flow to over 

1 m/s over periods of 25-250 s. In addition, varying wave groups can increase the rip velocity 

(MacMahan et al., 2004; MacMahan et al., 2006). 

MacMahan et. al. (2006) suggested that the rip current flow is portioned by the following 

frequency bands, 

    
rip ig VLF mean tide

U U U U U  (2.1) 

Where Uig is the contribution within the infragravity band, 0.004 – 0.04 Hz (25 – 250 s), UVLF is 

the contribution within 0.0005 – 0.004 Hz (4 – 30 min), Umean is the mean based on the rip 

current system and wave conditions, and Utide is the modulation associated with the slow 

variations in the water level. In the numerical study for this thesis the only frequency band that 

was present was the Umean. For more information on the other contribution to the rip current 

velocity see the paper of MacMahan et al. (2006). 

As was previously stated, wave-current interaction was found (also by Chen et. al. (1999)) to 

produce a negative feedback on the wave forcing to reduce the strength and offshore extent of 

the flow. The weaker flow will as a result make the wave-current interaction less pronounced 

and thus the flow velocity will increase again. This mechanism will also cause the rip current to 

pulsate in strength. Furthermore, complex flow patterns occur with instabilities formed at the 

feeder current and with the unsteady rip flow due to vortex shedding. 

The rip current flow, as was explained by Arthur (1962), tends to concentrate in longshore 

direction as depth increases in the direction of flow. A process, which in the absence of friction,  

can be attributed to the conservation of potential vorticity along a stream line. As the rip current 

moves offshore into deeper water, the stream lines move closer together, creating a stronger 

and narrower current. This is due to lengthening of the vortices in this region which is known as 
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vortex stretching. As vorticity is described by the convective terms in the momentum equations, 

it can be concluded that the rip current is convection-dominated.  

Vortex stretching is the lengthening of vortices in a three-dimensional fluid flow, associated with 

a corresponding increase of the component of vorticity in the stretching direction, due to the 

conservation of momentum. 

Vortex stretching is at the core of the description of the turbulence energy cascade from the 

large scales to the small scales in turbulence. In general, in turbulent fluid elements are more 

lengthened than squeezed, on average. This results in more vortex stretching than vortex 

squeezing. For incompressible flow the lengthening implies thinning of the fluid elements in the 

directions perpendicular to the stretching direction. This reduces the radial length scale of the 

associated vorticity. Finally, at the small scales of the order of the Kolmogorov microscales, the 

turbulence kinetic energy is dissipated into heat through the action of molecular viscosity. 
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3 Numerical modelling of nearshore hydrodynamics 

3.1 Introduction 

An analytical solution to the governing equations in a rip current system that has as a result a 

horizontal circulation cell is only found for a two dimensional and very simplified system of 

equations (Bowen, 1969; Mei and Liu, 1977). However, most of the assumptions made in the 

analytical models are not entirely justified. To find solutions for more complex geometry and 

without all of the simplifications, use is made of numerical models that approach the solution to 

the governing equations to certain accuracy. There are many different numerical models that are 

capable of modelling rip currents. The appropriate model depends mainly on the complexity of 

the situation, on the type of beach and on the balance between accuracy and efficiency.  

3.2 Nearshore modelling 

The first mature models that calculated the wave-driven nearshore circulation and that 

incorporated important factors like convection and viscosity in the flow equations were 

reported by e.g., Ebersole and Dalrymple (1979), Wind and Vreugdenhil (1986) and Wu and Liu 

(1982). In these models the wave field was still limited to unidirectional linear monochromatic 

waves. A review of the state-of-the-art surf zone models of those days can be found in Basco 

(1983).  

In the following years more sophisticated models, that still had a decoupled wave and flow 

model, were introduced that included diffraction and breaking criteria for random waves. 

Current refraction was also incorporated through successive and iterative executions of the flow 

and wave models. A review was given by Battjes et. al. (1990) wherein they focused on the 

wave-induced nearshore circulations. One of their conclusions stated that the numerical models, 

with their improvements and more mature state of the decoupled concept of wave-flow 

modelling, were still only able to determine the steady circulation, while no models could yet 

handle low-frequency motions in the surf zone. 

3.3 Boussinesq models 

Nowadays the most popular models for nearshore modelling incorporate the Boussinesq theory 

in which the vertical structure of the velocity is not an exact solution of the basic nonlinear 

balance equations. Instead it is imposed that the horizontal velocity is constant over the vertical 

and the vertical velocity is varying nearly linear from the bottom to the surface.  

The original equations from Joseph Boussinesq have been modified by many investigators to 

extend the applicability and improve various desired characteristics of the corresponding wave. 

One of the most successful extensions to the Boussinesq equations were done by Madsen and 

Sørensen (1992). They extended the applicability of the Boussinesq equations to deeper water 

and they also included the possibility of wave breaking by a separate body of fluid on the wave 

surface with a dissipative effect on the energy balance, simulating the real life wave rollers. 

These extended Boussinesq equations with the improved dispersion properties and the 

possibility of wave breaking, were the basis of a model developed by Madsen et. al. (1997a). This 
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model has been used to study the wave-driven nearshore circulation. The model uses a coupled 

approach, thus the surface gravity waves and the flow are computed with the same model, which 

eliminates the necessity to iteratively find the interaction effects between the waves and the 

currents. The model has been applied to two examples of wave-induced nearshore circulation, 

both with waves normally incident on a plane sloping beach. The first example has a rip channel 

in the bottom profile of the beach, and the second is concerned with a detached breakwater 

parallel to the shoreline. Both simulations show good agreement with laboratory measurements 

both with respect to the variation of the wave heights and setup and the resulting wave-

generated current patterns. Furthermore, this model has the potential to simulate more 

complicated phenomena like low frequency motions (Chen et al., 1999; Madsen et al., 1997a; 

Madsen et al., 1997b; Sørensen et al., 1998).  

3.4 Non-hydrostatic models 

From previous paragraph it can be concluded that Boussinesq-type models are a useful tool to 

study nearshore circulation. However, there are alternatives to using Boussinesq equations for 

the simulation of a two-dimensional rip current structure. Moreover, one can be interested in 

the three-dimensional structure of a rip current, which therefore eliminates the choice of a 

Boussinesq-type model because of its depth averaged nature. One promising approach is, 

instead of using the Boussinesq equations, to discretisize the water in one or more layers and to 

use the Navier-Stokes equations. This gives a model with similar wave characteristics to those of 

the extended Boussinesq-type models (Stelling and Zijlema, 2003; Zijlema and Stelling, 2005). 

There are a many more models that make use of the Navier-Stokes equations or the Euler 

equations to compute the flow and the wave field, however, other than the proposed method by 

Stelling and Zijlema, these methods need 10 to 20 vertical layers in order to obtain accurate 

results, resulting in a longer computation time. These models are therefore less competitive than 

the Boussinesq-type models.  The method of Stelling and Zijlema utilizes an edge based compact 

difference scheme for the approximation of the vertical gradient of the non-hydrostatic pressure. 

This ensures accurate wave breaking and dispersion characteristics of the modelled waves.  

In the XBeach model a depth averaged approach of Stelling and Zijlema is taken. Even though the 

depth averaged approach less accurately computes the dispersion of waves, the result obtained 

by Smit (2008) of the Berkoff test case showed that for relatively short waves the diffraction, 

refraction and wave shoaling was modelled very satisfactorily using only one layer. The two 

layer approach only improved the result marginally. The depth averaged method, however, is 

more competitive with the Boussinesq-type models regarding efficiency and comparable 

regarding accuracy. The big advantage of the XBeach model is the robustness. Almost no 

calibration is required, unlike Boussinesq-type models. 
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4 Model description 

4.1 Introduction 

In the previous chapter one was given an overview of some of the different types of models 

being used in the field of computational fluid dynamics for coastal engineering problems. As was 

stated the numerical method that is being used for the topic of research in this thesis, is the 

method developed by Stelling and Zijlema (2003; 2005). This scheme is incorporated into the 

depth averaged XBeach program, which uses the same non-hydrostatic pressure correction 

technique for the Non Linear Shallow Water Equations (NSWE). However, it is different to the 

numerical scheme proposed by Stelling and Zijlema with respect to the time discretisation, 

which in the XBeach model is made second order accurate as opposed to first order accurate. 

The subject of this chapter is a brief description of the numerical model in its two dimensional 

depth integrated (2DH) form. See Appendix B for the derivation of the governing equations and 

Appendix C for a detailed description of the discretisation technique used in this numerical 

model.  

4.2 Governing equations 

The governing equations of the numerical model are based on the three-dimensional unsteady 

incompressible Reynolds-averaged Navier-Stokes equations. To model the non-hydrostatic free-

surface flows with gravity waves these equations have to be solved together with the continuity 

equation. The numerical model XBeach is a depth averaged model and therefore the governing 

equations have to be integrated over the water depth. These equations are written as follows in 

non-conservative form. See Appendix B for the derivation of these equations. 
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The vertical integration of the non-hydrostatic pressure gradient in equation (4.1) is written as 

follows by virtue of the Leibniz’ rule of integration: 

  d  d
z dd d

p d
z p z p

x x x

 

 

  
 

     (4.2) 

The integral as occurred in the right hand side of (4.2) is approximated by 

  1 1
 d

2 2z z d z dd
p z H p p H p



  
    (4.3) 

Finally, writing (4.2) in non-conservative form, we obtain 
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The process is very similar for the gradient of the dynamic pressure in the y-direction. 

The depth integrated approach of the model is, regarding to the modelled accuracy of the 

frequency dispersion, comparable to the Boussinesq model of Peregrine (1967). Higher accuracy 

of the frequency dispersion of the modelled waves can be obtained by adding more layers in the 

vertical. 

In the momentum equations (4.1) the stress terms ij  include the effect of subgrid turbulent 

mixing. These terms are defined as follows 
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 (4.5) 

The eddy viscosity t can be a constant or can be determined with a Smagorinsky eddy viscosity 

model. 

4.3 Grid schematization 

The numerical model uses a rectangular structured grid, in which a cell with its centre at 

i j i j
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the local water depth Hi,j are then described by 
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Figure 4-1: Horizontal location of variables (#) 
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Figure 4-2: Vertical location of variables (#) 

 

For the horizontal variable layout a staggered arrangement is employed. In the staggered 

arrangement the pressure, bottom and free surface variables are all located at the cell centre. 

The averaged horizontal velocity components U and V, on the other hand, are respectively 

located at the cell faces xi+1/2,j and xi,j+1/2.  

Although the model is in a depth integrated form (2DH), a vertical momentum equation has to 

be solved due to a cell face approach of the pressure. However, unlike for the horizontal 

momentum equations, the vertical variable arrangement is not staggered to allow for the 

application of a compact scheme. Both the pressure terms and the vertical velocity components 

are located at the cell face (See Figure 4-2). This allows for a very natural inclusion of the 

boundary condition of the dynamic pressure at the free surface, which is assumed to be zero at 

the free surface. And it appears that a correct approximation of the pressure distribution in the 

top cell is key to modelling dispersive waves correctly (Stelling and Zijlema, 2003). 

The equations in (4.6) allow for non-uniform mesh sizes. This makes it possible to locally reduce 

the mesh size and thus increase computational accuracy where a strong variation in the flow is 

expected.  

In the governing equations (4.1) the momentum balance is non-conservative, however for an 

accurate prediction of the breaking of waves the advective terms have to be discretisized in a 

conservative approach. This ensures a conservation of the momentum within the grid cell. The 

advective term 
U

U
x




is descretized as follows: 
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defined at the velocity points and thus needs to be interpolated from surrounding points. We use 

a simple first order accurate upwind interpolation: 
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Based on the expression for 1
2

,

n

i j
H


, as given by (4.8), it can be shown that if the time step is 

chosen such that 1 2
1 2 1,

n
i jt U x


   at every time step then the water depth 1

,
n
i jH  is non-negative 

at every time step (Stelling and Duinmeijer, 2003). Therefore flooding never happens faster than 

one grid size per time step. This is physically correct and therefore the calculation of the dry 

areas does not need any special feature. For computational efficiency, the momentum equations 

are not solved and velocity values are set to zero if the water depth 1
2

,

n

i j
H


is below a threshold 

value. The value in this thesis is set to 10-5 m. This approach has been verified by Zijlema and 

Stelling (2008) and they found the approach to be very effective without much numerical 

difficulty. 

4.4 Boundary conditions 

In order for the equations to have an unique solution, boundary conditions need to be 

prescribed. These boundary conditions are prescribed for the tangential and normal velocities 

along the entire boundary of the domain. This includes the bottom, the water surface and the 

four vertical boundaries. See the figure below for the computational domain with its boundaries. 
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Figure 4-3: Horizontal domain  in relation to the global domain (#) 

In Figure 4-3 the computational domain  is bounded horizontally by a rectangular shaped 

boundary ∂h which consists of four vertical planes. The front boundary δfront is the seaward 
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boundary and the back boundary δback is the landward boundary, both of which are parallel to 

the y-axis. The boundaries parallel to the x-axis are the two side boundaries δleft and δright. 

Vertically the domain is bounded by the single valued free surface z =  (x,t )and the bottom z = 

-d(x, t).  

4.4.1 Free surface and bottom 

At the free surface the tangential and normal stresses are assumed to be continuous and the 

total pressure is set to zero, therefore neglecting surface tension effects and differences in the 

atmospheric pressure. This leads to the boundary condition for the dynamic pressure: 

  ( , ( , ), ) 0p t tx x  (4.9) 

Tangential stresses at the surface due to wind can be described using suitable expressions for 

the large scale influence of the wind. It is, however, not possible to include generation of waves 

with these expressions. 

At the bottom the kinematic boundary condition (B.9) is used. The two tangential stresses due to 

bottom friction are specified using an expression based on the depth averaged velocity: 

  ,  
bx f by f

c U U c V V      (4.10) 

Wherein cf is a dimensionless coefficient. 

4.4.2 Closed boundaries 

At closed boundaries the boundary can be regarded as a solid vertical wall. No discharge can go 

through the boundary, which means that the normal velocity is set to zero. For the tangential 

velocities the free-slip condition is applied which implies a zero gradient of the tangential 

velocity. 

4.4.3  Open boundary 

At the seaward boundary and landward open boundary the normal velocity has to be prescribed. 

The gradient of the tangential velocities at these boundaries are assumed to be zero. For a non-

reflecting boundary an absorbing-generating boundary condition based on the Riemann 

invariants is used.  

To construct this boundary condition a few simplifications are made. Firstly, the boundary is 

considered to be a straight line. The x-axis is perpendicular to the boundary and is directed 

positive inwards and the y-axis is parallel to the boundary. Secondly, the bottom located at the 

boundary is approximated as flat and non-linearity’s are neglected. At the boundary the surface 

elevation and depth averaged velocity are the summation of the incoming and reflected signal. 

    ,     r in r inU U U       (4.11) 

The incoming wave signal at the boundary is composed of N long crested harmonic free linear 

waves. Each wave travels with its own celerity ck along a straight ray in the direction k. Along 

each wave ray a local coordinate system s,t is prescribed with s parallel to the wave ray and t 
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perpendicular to the wave ray. The time varying depth averaged velocity due to harmonic k in 

the direction of s is denoted by ûk. At the boundary the total depth averaged velocity and surface 

elevation due to the incoming waves is given by 

  
1 1

        with      and   vˆ ˆ, , , cos sin
N N

in in in in
k k k k k k k k k k k

k k

u v u u u   
 

     u u u  (4.12) 

With the assumption that the wave forms remain constant along the individual wave rays, each 

of the harmonics obeys 

 
ˆ ˆ

0
in in

k k
k

u u
c

t s

 
 

 
 (4.13) 

For linear waves this condition can also be written as 
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The applications that are considered only requires the velocity component perpendicular to the 

boundary and therefore the v -components are ignored from now on. 

The reflected signal also consists of different wave components each travelling in its own 

direction and velocity. However it is very hard to obtain from the model in what direction and in 

with which velocity these reflected signals are travelling. Therefore it is assumed that the 

reflected signal only contains relatively long waves traveling perpendicular to the boundary. 

This is a reasonable assumption as most short wave energy is dissipated due wave breaking and 

only the infragravity waves are reflected. With these two assumptions the Sommerfeld radiation 

condition for the reflected waves is written as 

 0
r ru u

c
t x

 
 

 
 (4.15) 

In which c is the shallow water wave celerity. Again assuming linear waves equation (4.15) can 

be rewritten as 

 0r rc
U

H
   (4.16) 

Now we can add the two relations (4.14) and (4.16) to obtain an expression for the velocity at 

the boundary resulting in 
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Finally substituting (4.11) into (4.17) this is written as 
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b

g
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H
     (4.18) 

This is the weakly reflective boundary condition that replaced the boundary condition already 

present in the model which was based on Van Dongeren and Svendsen (1997), which is also a 

weakly reflective boundary and is used for 2D cases. The boundary condition decribed here 

assumes reflected waves that are perpendicular to the boundary. In 2D cases this can lead to 

significant errors if the reflected waves do not propagate close to normal to the boundary. Note 

that the boundary condition, as described here, also requires the incoming surface elevation to 

be provided at the boundary in addition to the velocity.  

The boundary condition from Van Dongeren and Svendsen is based on the method of 

characteristics and assumes that both outgoing and incoming waves travel with the long wave 

celerity, c gh . 

4.5 Wave breaking 

In numerical models, wave breaking is a difficult phenomenon to capture accurately, as the free 

surface, which acts as an air-water interface, assumes complex shapes due to e.g. wave 

overturning. Furthermore, the air-water interface in breaking waves is often hard to define due 

to the mixing of water and air. As was previously mentioned, there are computational methods 

that can handle these types of problems (Volume of fluid methods, Marker and Cell), but these 

are numerically very intensive and therefore too expensive for the large scale coastal 

engineering applications. Also the detailed information of what happens in a breaking wave is 

not necessary for coastal engineering practice. 

In the present model the free surface is tracked with a single valued function of the horizontal 

plane. This approach is more efficient and makes the simulation of the wave transformation in 

the coastal zone feasible. However, this does mean that breaking waves can no longer be 

captured in detail. Instead, wave breaking is regarded as a sub-grid process. Thus the waves can 

steepen until the front face is almost vertical, but then the process of overturning is not 

modelled.  

This approach has also been successfully applied in other non-hydrostatic numerical models 

based on the non linear shallow water equations (NSW-equations) (e.g. Hibberd and Peregrine, 

1979). In these models the analogy between a bore and a breaking wave is used to simulate 

wave evolution during breaking and run-up. This is justified because from the study of Peregrine 

and Svendsen (1978) it appears that the breaking process itself stabilizes the wave form into a 

turbulent almost vertical front. This means that during breaking a long wave develops for which 

mass and momentum are conserved. The energy dissipation in such a wave is of the same rate as 

in a bore of similar height (Svendsen, 2006). 

Just before the breaking point of the wave, when the wave is still steepening, both frequency 

dispersion and non-linear effects are important. The non-linear properties tend to steepen the 

wave while on the other hand the frequency dispersion is doing the opposite. Because in the 

NSW-equations the frequency dispersion is not included the balancing effect of frequency 
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dispersion is missing, which causes the wave to break prematurely. Therefore models based on 

the NSW-equations are not suitable for the determination of the breaking point accurately, 

which make them only valid after breaking has been initiated.  

Non-hydrostatic models, however, do not have this predicament as they include frequency 

dispersion and are therefore applicable in the region prior breaking. Furthermore, because they 

reduce to the NSW-equations in shallow water they can also be used after breaking has been 

initiated.  

In the paper of Zijlema and Stelling (2008) it was shown by the authors that their non-

hydrostatic model with this approach was capable of predicting the  breakpoint accurately. The 

most attractive feature of this approach is that there are no external parameters (such as 

maximum steepness), which tell the model when breaking should be initiated. 

The XBeach model described in this thesis, is an adapted version of the non-hydrostatic model 

presented in Zijlema and Stelling (2008). Momentum and mass conservation are guaranteed 

using a conservative numerical method based on Stelling and Duinmeijer (2003). Therefore the 

model behavior for wave breaking is similar to their model.  The largest difference is the depth 

averaged method applied in the XBeach model instead of the two layer approach in the model of 

Zijlema and Stelling (2008). Due to the depth averaged method the frequency dispersion is 

modelled less accurately and this can lead to overestimation of wave energies in the high 

frequency range. The breaking point is still accurately simulated but the rate of energy 

dissipation after breaking is underestimated, which could lead to an overestimation of the wave 

height in the surf zone. Also the vertical structure of the flow is not resolved and therefore 

dissipation due to a vertical gradient of the flow velocity is not accounted for. An eddy viscosity 

model, like e.g. the Smagorinsky subgrid model, can increase the rate of energy dissipation after 

breaking due to the high velocity gradients found in the surf zone.  

4.6 Smagorinsky eddy viscosity model 

The Smagorinsky eddy viscosity model (Smagorinsky, 1963) is usually used in Large Eddy 

Simulations (LES), in which the Navier-Stokes equations are averaged over space, which gives a 

result similar to the Reynolds equations, in which the Navier-Stokes equations are ensemble 

averaged over time. The large eddy simulation resolves, as the name suggests, the large eddies, 

due to the averaging over the grid size. The smaller eddies that occur within one or more grid 

volumes are not resolved, however these eddies are small and are more isotropic than the larger 

eddies. The larger structures are broken up into the smaller scales via the energy cascade and 

they lose their self-similar processes that are not much affected by the large scale geometry. This 

means that the small scales are less of a problem to model. Moreover, the most important 

function of the small scale turbulence is the energy dissipation of the large scale motion.  

The small scale turbulences are modelled using sub-grid stress, see equation(4.5). In these terms 

the eddy viscosity is defined by the mesh size and the sub-grid deformation. This eddy viscosity 

is calculated from the gradients of the flow velocity at the resolved scale as follows: 
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The only coefficient needed in the Smagorinsky model is the Smagorinsky constant denoted by 

Cs [-] and is usually given a value between 0.1 and 0.2. In our simulations a value of 0.2 seemed 

to give the best results. The length scale used in the Smagorinsky formulation s is the scale of 

the smallest resolvable eddy and in our case is defined as s x y    . This scale is essentially 

the filter width employed and is therefore dependent on the mesh size. In the Boussinesq model 

of Chen et. al. (1999) for the modelling of a rip current system the same length scale was used. 

As previously mentioned this approach for the eddy viscosity has the advantage that it adds 

dissipation in regions where high gradients of the flow occur. In smooth regions of flow it adds 

very little dissipation which is important for the propagation of waves outside the surf zone 

because the influence of turbulent viscosity is negligible here.  

4.6.1 Discretisation of the Smagorinsky model 

The discretisation of the Smagorinsky subgrid model for the eddy viscosity is as follows, with the 

eddy viscosity defined in the cell center: 
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5 Validation and verification 

In order to asses if the numerical model XBeach can accurately simulate the physical processes 

involved in the nearshore zone, the approach as described in Chapter 4 is compared to two cases 

which have measured data from a laboratory. The following cases will be considered: 

1. Irregular wave breaking in a laboratory barred surf zone 
2. Experiments on rip currents and nearshore Circulation 

The first case to be considered is a laboratory experiment, in which the surf zone turbulence was 

accurately measured. This case is used to verify the correct wave setup and breaking point. Also 

this case is very useful to see if the significant wave height is correctly modelled throughout the 

field. The second case considered is a comprehensive laboratory experiment in a directional 

wave basin with a longshore bar, in which two rip channels were present. The measurement 

data included the free surface and the velocity at various locations in the wave basin. 

5.1 Irregular wave breaking in a laboratory barred surf zone 

5.1.1 Introduction 

The laboratory flume test of Boers (2005) is a study with a field-like surf zone with breaker bars 

and irregular waves in a wave flume. This experiment allows for an excellent comparison to the 

model to verify the important characteristics of waves in the surf zone. The beach profile is a 

barred beach as shown in the figure below. 

 

Figure 5-1: Snapshot of the computation 

The experiment that Boers carried out involved taking numerous measurements. In fact he 

measured the surface elevation at 70 locations with wave gauges throughout the wave flume. 

The physical parameters in the surf zone such as wave heights and periods are based on the 
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surface elevation. Also use was made of Laser-Doppler Velocimeters (LDV), an electromagnetic 

flow meter, a shear stress plate and a video camera.  

In the experiments Boers conducted, three irregular wave conditions were considered with 

different significant wave heights and periods. See Table 2 for the three different wave 

conditions. 

Wave test measured Hmo [m] 

at x = 0 m  

measured Tp [s] 

at x = 0 m 

duration [s] 

of wave series 

Test 1A 0.157 2.05 157.079 

Test 1B 0.206 2.03 157.079 

Test 1C 0.103 3.33 245.441 

Table 2: Measured wave conditions  

It can be seen in the table that Test 1C has the lowest wave steepness. This case is the most 

interesting for us to compare our model with as these lesser steep waves break in the shallow 

region only. For the other conditions it appears the waves break throughout the flume as well as 

the waves at the boundary are already highly non-linear, which makes it much harder to impose 

the right boundary velocity. 

Also from Stelling and Zijlema (2003) and Smit (2008) we know that the dispersion is more 

inaccurately modelled with the depth averaged method than with the a non-hydrostatic model 

with 2 layers,  especially when kH values, which is the wave number k multiplied with the water 

depth H, exceed about 2.0 [-]. However in the Boers test case kH is around 0.9 [-] at the 

boundary, and the depth and wave period only decreases onward from there. In the surf zone 

the kH value is even smaller, just before the first breaker bar the value is estimated to be around 

0.6 [-]. These kH values are small enough to compute with only one layer for sufficient accurate 

results regarding the wave celerity which affects the significant wave height and mean zero-

crossing period.  

5.1.2 Boundary condition 

5.1.2.1 Fourier transform of the surface elevation 

The boundary condition imposed in the numerical model is a cross-shore velocity derived from 

the measured surface elevation at the boundary. This is done with a Discrete Fourier Transform 

(DFT) and the linear dispersion relation, assuming that the surface elevation was made up of 

free harmonics. The surface elevation in the flume at the boundary was measured with a wave 

gauge and was sampled with a frequency of 20 Hz. The measured wave series was then 

transformed in all the components that made up the total wave signal at the boundary. This was 

done with the use of a Fast Fourier Transform (FFT) algorithm. An FFT computes the DFT and 

produces exactly the same result as evaluating the DFT definition directly. The only difference is 

that an FFT is much faster.  The DFT is defined by the following equation. 
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The amplitudes for all the frequencies from the record are 2 times the modulus of the complex 

elements of Xk, with k ranging from zero to half the record length due to the symmetry. And the 

phase is equal to the four-quadrant inverse tangent of the imaginary and real parts of Xk.  

5.1.2.2 Velocity boundary 

The forcing at the open boundary is a velocity in the cross-shore direction. This velocity can be 

determined with the linear wave theory, the Stokes wave theory or the cnoidal wave theory. 

Which theory is used depends on the conditions found at the boundary. See the figure below for 

the ranges of applicability of the various wave theories, wherein H is wave height, h is the water 

depth and  is the wave period.  

 

Figure 5-2: Water wave theories and their applicability 

The linear wave theory is only applicable to waves with low steepness and in relative deep 

water to relatively intermediate water depth. This theory was used for case 1C to compute the 

depth averaged velocity from the amplitudes and phases of each wave component.  
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Equation (5.2) is the incoming velocity at the boundary wherein αi is the phase, ai is the 

amplitude and fi is the frequency of each wave component of the wave spectrum, ki is the wave 
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number determined with the linear dispersion relation and h is depth at the boundary. For the 

calculation of the incoming velocity the low frequency waves are filtered out of the wave 

spectrum. So for fi < 0.2 Hz the wave amplitude is set to zero. The reasons for doing so will 

become apparent later on in the chapter. 

5.1.3 Setup 

The grid size was set to 0.025 m which roughly amounts to 300 grid points for the peak wave. 

This is enough detail for the waves to be captured accurately. A coarser grid will reduce 

computational runtime, however for validation purposes first a fine grid was employed so that 

the results were without much numerical dissipation. The simulation time was taken equal to 

the duration of the wave measurement time, which is about 1700 seconds. The friction 

coefficient cf was set to 0.15 [-]. The CFL condition was set to 0.5 [-].  

5.1.4 Computations without viscosity 

The first computations were done without the effects of viscosity. The results of these 

computations are presented in this paragraph. To illustrate the results of the computations the 

following figures are shown wherein the mean wave quantities, namely the significant wave 

height and the mean zero-crossing period, are compared to the measurement data. Also the 

spectra from the computations and experiment at different stations throughout the flume are 

compared and the wave setup or the mean water level is compared. These three comparisons 

give a good impression of how the model predicts the mean wave quantities needed for an 

accurate simulation of a rip current system, in which these wave quantities play a major role. 

Figure 5-3 shows the comparison between the significant wave height and the zero-crossing 

period between the computation and the experiment for case 1C. For a large part the significant 

wave height is underestimated. This underestimation is directly from the offshore boundary 

onwards. The open boundary at the offshore side is the non-reflective boundary based on Van 

Dongeren and Svendsen (1997) and assumes incoming long waves and outgoing long waves. 

Due to this assumption the energy of the short waves entering the computational domain is 

slightly reduced when long waves leave the domain. This results in a lower significant wave 

height at the seaward boundary. The position where the significant wave height starts to 

decrease, due to breaking, is very well predicted. This is also true for the mean zero-crossing 

period. At the boundary the mean zero-crossing period is overestimated which is also due to the 

reflection from the shoreline of the low frequency waves. In the very shallow region (x>25 m), 

not enough energy is dissipated and mean zero crossing period is underestimated. If viscosity is 

added to the model extra dissipation of the wave energy can be achieved in this region.  
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Figure 5-3: Computed (solid line) and measured (circles) significant wave heights (top panel) and mean zero-crossing 
periods (bottom panel) along the flumes (simulation without viscosity) 

In Figure 5-4 a comparison is made between the spectra from the computation and experiment 

at different stations throughout the flume. The spatial evolution of the energy density spectrum 

has an amplification in both the sub- and super-harmonic ranges. This is consistent with the 

triad interactions of the waves. In the surf zone this transformation is more rapid and also the 

decrease in energy, due to wave breaking, is more noticeable. The further inshore from the 

breaker line the broader the shape of the wave spectrum, which is attributed to the nonlinear 

couplings and dissipation. In the computations one can see that the energy in the shallow region 

at the higher frequencies is overestimated. Dissipation due to viscosity is a subgrid process 

which was tried to capture using a proper conservation principle, however it apparently fails to 

dissipate enough energy beyond the breaking point. Also in the lower frequencies the energy is 

slightly overpredicted, the reflection of lower frequency waves can be the cause for this effect. 

The incoming low frequency waves, up to 0.2 Hz, as was mentioned in paragraph 5.1.2.2, have 

already been filtered out to reduce this effect. If these would not have been filtered out the 

overestimation would have been considerably higher. In conclusion, the simulation is in good 

agreement with the observed transformation of the spectrum throughout the flume including 

the surf zone and the shoaling region, where our main interest lies. 
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Figure 5-4: Computed (red line) and measured (blue line) energy density spectra at different stations in the flume. All 
spectra use equally spaced frequency intervals. 

Also a good agreement with the measurements is needed with respect to the prediction of the 

wave-setup, which is an important aspect for the generation of a rip current. The following 

figure shows the comparison of the wave-setup between the computation and the flume test. In 

the shallower region the wave-setup is in fairly good agreement with the experimental results 

from the flume test. The computed wave-setup in the shoaling region and in the first part of the 

surf zone, however, is overestimated. Essentially, there is a net inflow of mass in the 

computational domain. The boundary condition based on Van Dongeren and Svendsen can cause 

this, due to the assumption that the incoming waves travel with celerityc gh . This is not the 

case as the incoming short waves travel with the phase speed from the linear wave theory at 

intermediate depth. A boundary condition based on the Sommerfeld radiation condition can be 

more appropriate for the short waves in the computation. 
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Figure 5-5: Computed wave-setup (red line) and the measured wave-setup (circles) 

In the next paragraph first an attempt is made to add extra dissipation in the shallow region to 

decrease the overestimation of the significant wave height in the shallow region by adding a 

constant eddy viscosity stress term to the model. 

5.1.5 Computations with a constant eddy viscosity  

The numerical model is extended with a constant eddy viscosity so that more energy is 

dissipated in the shallow region. In the following figure the results regarding the significant 

wave height and zero-crossing period are shown.  The value of the constant eddy viscosity was 

set to  = 0.01 m2/s. 

 

Figure 5-6: Computed (solid line) and measured (circles) significant wave heights (top panel) and mean zero-crossing 
periods (bottom panel) along the flume (simulation with a constant eddy viscosity) 
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In Figure 5-6 the wave height beyond the first breaker bar is still too high. The wave height is 

also reduced in the region before the first breaker bar. Increasing the viscosity gives better 

results in the region beyond the first breaker bar but also lowers the wave height in the region 

before the first breaker bar, where extra energy dissipation is not needed. 

In Figure 5-7 the comparison is made between the wave energy density spectra of the 

computation and the experiment. The spatial evolution of the wave energy at the higher 

frequencies from deep to shallow water is better modelled than in Figure 5-4, as the viscosity in 

the model dampens the wave height and thus the energy. However, a large increase of the 

energy is seen in the very shallow region (x > 22 m) at the lower frequencies, compared to the 

computation without the turbulent mixing stress included. The higher frequency components 

are dissipated more rapidly due to the eddy viscosity into low frequency motions. The low 

frequency waves are not dissipated as rapidly due to the low gradients of the velocity in these 

waves. The overestimation of the low frequency waves can be caused by the boundary condition 

based on Van Dongeren and Svendsen (1997).  

 

Figure 5-7: Computed (red line) and measured (blue line) energy density spectra at different stations in the flume. 
Computation with a constant eddy viscosity 
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5.1.6 Computations with a constant eddy viscosity and a new boundary condition 

The model was run with a constant eddy viscosity of = 0.01 m2/s and with the boundary 

condition as described in Chapter 4, which is based on the Sommerfeld radiation condition. 

Figure 5-8 shows the significant wave height and the zero-crossing period. The wave height and 

the wave period at the boundary is almost the same as in the experiment. This is due to the use 

of the new boundary condition. In contrast to the boundary condition based on Van Dongeren 

and Svendsen, this boundary condition does not longer assume that the incoming wave celerity 

equals c gh . The propagation speed of the outgoing waves is still approximated as shallow 

water waves. This approximation is justified because the reflected waves are mostly long waves 

with a low frequency. 

 

Figure 5-8: Computed (solid line) and measured (circles) significant wave heights (top panel) and mean zero-crossing 
periods (bottom panel) along the flume (simulation with a constant eddy viscosity and a new boundary condition) 
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At places where a larger gradient of the velocity occurs more energy is dissipated. In the surf 

zone, where more dissipation is required, higher gradients of the flow occur due to wave 

breaking. Therefore the Smagorinsky eddy viscosity model could give improvements in this 

region. In the region before the first breaker bar the horizontal accelerations of the flow are not 
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could also give improvements in this region.  
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Figure 5-9: Computed (red line) and measured (blue line) energy density spectra at different stations in the flume 
(simulation with a constant eddy viscosity and a new boundary condition) 
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overestimation is therefore not very obvious. For example the low frequency energy at x=16 m 

is much better in agreement in Figure 5-9 than in Figure 5-7. However Figure 5-9 shows that 

there should be more dissipation of energy at both the higher and lower frequencies beyond the 

first breaker bar (x> 22 m). In the next paragraph the Smagorinsky eddy viscosity model is 

being put to the test in the hope this will give better results.  

 

 

Figure 5-10: Computed wave-setup (red line) and the measured wave-setup (circles) (simulation with a constant 
eddy viscosity and a new boundary condition) 
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grid that was used. An improvement, again, can be realized by using a finer grid but keeping the 

Smagorinsky coefficient multiplied with the Smagorinsky length scale (Css) a constant. So 

reducing the length scale means an increase of the Smagorinsky constant of an equal amount. 

The Smagorinsky model as used in the XBeach program is not a subgrid model as used in Large 

Eddy Simulations (LES). Unlike LES the XBeach model cannot contain subgrid eddies. The 

Smagorinsky model is used like a breaker model to add extra dissipation after a wave has 

broken and a bore is propagating. This bore is much more dissipative than an unbroken wave, 

and the model used for the research in this thesis does not distinguish between a bore and an 

unbroken wave. However, large gradients in the flow do occur in a bore and therefore a 

Smagorinsky model works so well. The square of the Smagorinsky constant multiplied with the 

square of the length scale ( 2 2
s sC  ) was, in the one dimensional case with y set to 1 m and 

Cs=0.2, equal to 0.002 m2. This value gave the best results.  

 

 

Figure 5-11: Computed (solid line) and measured (circles) significant wave heights (top panel) and mean zero-
crossing periods (bottom panel) along the flume (simulation with Smagorinsky viscosity model and coarser grid) 
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shows a better agreement in the surf zone than the Tm02, however the Tm01 is slightly worse near 

the seaward boundary. 

  

Figure 5-12: Computed (solid line) and measured (circles) significant wave heights (top panel) and mean zero-
crossing periods (bottom panel) along the flume (simulation with Smagorinsky eddy viscosity and denser grid) 

 

 

Figure 5-13: Computed (solid line) and measured (circles) mean period along the flume (simulation with 
Smagorinsky eddy viscosity and denser grid) 
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However there still seems to be an overestimation of the very low frequency waves close to the 

shoreline. Apparently the flow gradient in these low frequency waves is not high enough for the 

eddy viscosity model to dissipate their energy. 

 

Figure 5-14: Computed (red line) and measured (blue line) energy density spectra at different stations in the flume 
(simulation with the Smagorinsky eddy viscosity model) 
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bar, (b) just behind the first breaker bar, (c) before the second breaker bar and (d) behind the 

second breaker bar. 

 

Figure 5-15: Computed wave-setup with the Smagorinsky eddy viscosity model (red line) and the measured wave-
setup (circles) 

 

Figure 5-16: Comparison of the surface elevation between the computation (red line) and the measurements (blue 
line) 
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5.2 Experiments on rip currents and nearshore circulation 

5.2.1 Introduction 

Rip currents and their effects on nearshore circulation have been observed qualitatively in the 

field for many years now (e.g. Shepard et al., 1941), however it is also established that 

comprehensive data sets involving rip currents in the field are difficult to obtain. In the 

laboratory the environment is more easily controlled and therefore the data is qualitatively 

better and a more comprehensive data set can be gathered. There are, however, not many 

laboratory data sets involving rip currents on a longshore varying bathymetry. In fact, rip 

current experiments have only been performed by Hamm (1992), Drønen et. al. (2002) and 

Haller et. al. (2002), of which the experiment of Haller et. al. is the most comprehensive. The 

data set from this experiment is used as validation material for the numerical model XBeach for 

the bathymetry driven nearshore circulation.  

The measurement data from the experiment of Haller et. al. were obtained in a directional wave 

basin with a longshore bar, in which two rip channels were present. The experiment was carried 

out using several incident wave conditions, but all were regular waves and no random waves 

were produced by the wave maker.  

The flow velocity, wave height and mean water level were measured over a large area of the 

wave basin to get a detailed picture of the circulation pattern of the rip current system. For these 

measurements ten capacitance wave gages were used to measure time series of the water 

surface elevation during the experiments. For the time series of the horizontal currents three 2-

D side-looking Acoustic Doppler Velocimeters (ADV’s) were used. These ADV’s were placed 

three centimeters above the bottom of the basin. 

In the experiment it was obvious that the rip current system consisted of two circulation 

patterns. The larger circulation cell was shown to consist of the rip current and the feeder 

current. The second, smaller, circulation cell was counter-rotating to the main circulation cell 

and was closer to the shoreline. Also the measurements showed that the rip current was 

unstable and that the current had a low-frequency oscillation in strength. 

The numerical model Xbeach, as was verified in the previous paragraph, is used to simulate the 

circulation patterns that were found during the experiments of Haller et. al. (2002), induced by 

the monochromatic normally incident waves on a beach with a longshore bar and two rip 

channels.  

The propagation of the uniform wave train over the longshore bar and the channels creates 

variability in wave height and wave breaking, and thus variability in the dissipation of wave 

energy in the region behind the longshore bar. This again creates a longshore variability in wave 

setup, which is the main driver for the feeder currents and the rip current system. The dynamics 

of the rip current system were also explained in Chapter 2. The smaller circulation cells, shown 

in Figure 2-2, are created because of the higher waves at the shoreward side of the longshore bar 

in the channels close to the shoreline. The high waves in the channels break earlier than the 

waves behind the bar. This creates a larger setup near the shoreline, resulting in a longshore 
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gradient of pressure which drives the flow away from the channels.  The breaking pattern is of 

great importance for the flow pattern. If the waves do not break over the bar then the method 

outlined above is eliminated. Also, if the waves in the channel break strongly then the longshore 

surface gradients are reduced, which will then again reduce the rip current.  

5.2.2 Topography 

The topography under consideration is taken from a detailed survey in the wave basin and is 

shown in Figure 5-17. The intention of the experiment was to create a plane sloping bottom and 

two equal symmetric rip channels. However, as it turned out, there were some differences 

between the two channels and also the bars exhibit some longshore nonuniformities.  

 

Figure 5-17: Topography of the wave basin 

5.2.3 Boundary conditions 
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is therefore set at the location of the most offshore wave gauge, which is at 3.95 m from the wave 

maker. This gives a more precise forcing of the model in conjunction with the experiment. Also 

the kH value is lower here due to the lower depth which is around kH = 1.5 [-]. See Figure 5-18 

for the wave gauge locations and the locations of the ADV’s for test B and Figure 5-19 for the 

boundary velocity and surface elevations.  

 

Figure 5-18: Wave gauge locations (left) and current meter locations (right) for test B. 

 

Figure 5-19: Time series of the measured surface elevation and the computed cross-shore velocity at the most 
offshore wave gage. 
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eddy viscosity constant are based on standard values which can be found in the literature and 

are equal to respectively cf= 0.0025 [-] and Cs=0.2 [-]. The Smagorinsky length scale is equal to 

0 05 m.s x y     . 

5.2.5 Results 

In Figure 5-20 the run averaged circulation pattern from the computation is shown. Due to the 

longshore nonuniformities of bathymetry the circulation patterns in both rip channels are not 

symmetric. The figure also shows that a part of the two rip currents are converging offshore in 

the center of the wave basin and that this results in an offshore cross-shore current behind the 

center breaker bar. In Figure 5-25 at x=10 m and y=8 m it shows that the experiment does not 

show this behavior as strongly. An explanation can be found in a different vortex shedding 

pattern, in which the upper rip current and lower rip current are converging more than in the 

experiment. 

 

Figure 5-20: Run averaged flow field 
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In Figure 5-21 the instability of the upper rip current is shown. The figure shows eight snapshots 

of the computed velocity and vorticity. The model simulates the vortex shedding and the 

meandering of the rip side-to-side. The rip current is constantly changing direction and also 

varying in strength. This means that the rip current is unstable and also pulsating in strength. 

The reason for this is the wave-current interaction that takes place. The current slows down the 

wave and therefore increases its height. This causes the wave to break further offshore, which 

then locally increases the wave setup and thus partly eliminating the pressure gradient in the 

longshore direction behind the breaker bar.  This decreases the rip current velocity and 

therefore a less pronounced wave-current interaction follows, which then decreases wave 

height and the process starts over again. This causes the pulsating behavior of the current.  

The vortex shedding can be explained as the vortices moving from high pressure to low 

pressure, this changes the direction of the main rip current flow (also known as a Von Karman 

vortex street). The general circulation pattern can only be found by averaging over a longer time 

interval, as is done in Figure 5-20.  
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Figure 5-21: Snapshots of vorticity and velocity vectors averaged over two wave periods from the simulation. Red 
represents negative and blue represents positive vorticity. Only the upper half of the computational domain is shown. 
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In Figure 5-22 a comparison is made between the velocities from the experiment and the 

velocities from the simulation averaged over the second half of the run. The velocities from the 

experiment are only measured at the locations of the ADV’s, so to make a good comparison the 

velocities from the simulation are also plotted at the same locations. Due to the limited number 

of ADV’s available for each run only a time averaged comparison can be made for the horizontal 

flow velocities, as each run has again a different pattern of vortex shedding due to the high 

instability of this phenomenon. In the figure it shows that the computation is in good agreement 

with the experiment. The direction and length of the velocity vectors in the rip channel are 

similar although the computation has a larger mean velocity in the lower part of the channel and 

the direction is a bit more at an angle compared to the experiment. The experiment shows a 

larger velocity in the upper part of the channel. The feeder currents are very similar in the 

computation and in the experiment.  

 

Figure 5-22: Run averaged velocity vectors from experimental data (blue vectors) and simulation (red vectors). 
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Figure 5-23 shows a comparison between the measured and computed mean wave height along 

five longshore sections. The sections are (a) close to the shoreline, (b) in the trough behind the 

bar, (c) over the bar, (d) on the offshore edge of the bar, and (e) 1 m offshore of the bar. The bar 

is located between x=11 m and x=12.4 m. All five sections demonstrate reasonable agreement 

between the measurements and computations.  

 

Figure 5-23: Comparison of time-avaraged modelled wave height (line) to experimental data (asterisk) 
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Where x(j) are the measured data, y(j) the computed data, and x is the mean of x(j). A value of 

d = 1 indicates perfect agreement, and a value of d = 0 indicates total disagreement. For the 

computation of d, all measured points are used. The value of dH for the wave height in our case is 

0.95, which is better than the value of Chen et. al. (1999) and Haas et. al. (2003) which was dH = 

0.92. 
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all the sections is reasonable. In the trough region the depression in  near the channel is 

modelled well. 

 

Figure 5-24: Comparison of time-averaged modelled mean water level (line) to experimental data (asterisk). 

The mean water level has a d = 0.98, which shows that the pressure gradients are modelled 
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lower measured velocities. Further offshore, at x=10 m, the averaged cross-shore current is 

close to zero which is in agreement with the measurements, however at y=8 m the cross-shore 

current is slightly larger as was mentioned previously. Although, the same longshore section 
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shows that the variability of the measurements here is quite high, as can be seen at y=13.8 m. 

Here measurements are taken in the same location of different experimental runs and show 

different results as is also the case at the longshore section x=11.2 m at y=13.8 m. A cause is the 

chaotic vortex shedding of the rip current offshore of the longshore breaker bar, which can be 

completely different in each run. 

 

Figure 5-25: Comparison of time-averaged cross-shore currents (line) to experimental data (asterisk) 

More detailed comparisons between the measurements and the computations of the cross-shore 

velocity in the rip channel are shown in Figure 5-26. The simulated velocities in the rip channel, 

as we have seen in Figure 5-22, are in good agreement in the channel. However, the computed 

velocities are a bit higher in the left part of the channel (12.8<y<13.3), and a bit lower in the 

right part of the channel. However the computed velocity does show to agree well with the 

measurements in the sense that the line of the modelled cross-shore currents goes right 

between the measurements. The index of agreement for the cross-shore currents is fairly good, 

with dU = 0.95. This is again a bit better than the results from Chen et al. (1999)  and Haas et al. 

(2003). 
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Figure 5-26: Comparison of time-averaged modelled cross-shore currents (line) in the channel to experimental data 
(asterisk) 

Figure 5-27 shows the longshore current velocity from the measurements compared with the 

modelled longshore current velocity. The modelled current velocity is in good agreement with 

the measured current. In every longshore section the agreement is good although there are 

some small differences. The index of agreement for the longshore currents is dV = 0.88. In 

summary, the results of the model simulation indicate a good agreement with the measured data 

for the waves, mean water level and the currents. 
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Figure 5-27: Comparison of time-averaged modelled longshore currents (line) to experimental data (asterisk) 

5.3 Conclusions 

First the numerical model XBeach has been put to the test to replicate the measured data from 

the flume experiment conducted by Boers (2005).  The model showed to be very accurate with 

the Smagorinsky eddy viscosity model and the boundary condition based on the Sommerfeld 

radiation condition, as described in Chapter 4. The significant wave height and the wave setup 

are modelled in very good agreement with the experiment. This is important for the test case 

with rip current system as these are the main drivers for the rip current. 

The numerical model XBeach has also been used to simulate the currents generated in a closed 

directional wave basin and compared with the experiments by Haller et al. (2002). The time-

averaged flow properties from the model are compared with the time-averaged measurements, 

and the overall results show good agreement between the model and laboratory data. The 

Wilmott (1981) index of agreement between the model and data is found to be quite good and in 

all cases better than the values found by Chen et al. (1999) and Haas et al. (2003). Thus the 

computations with the model provide a good insight into the mechanisms of the rip current 

circulation, more than can be gained from the measurements alone.  

First, it is noted that the rips in the two channels behave differently. The rip in the upper 

channel, where most of the measurements were taken, is much stronger than the rip in the 
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lower channel. The cause for this difference is that the depth in upper half (y > 7 m) of the basin 

is greater causing more flow toward the upper rip channel leading to a stronger rip current. 

From the study of Haas et al. (2003) it was concluded that the wave current interactions play an 

important role in rip current systems. Observations during the laboratory experiments indicated 

that the feedback mechanism of the wave-current interaction resulted in a slow pulsation of the 

rip current. They also found the influence of the bottom stress to play a significant role. The 

bottom stress is one of the two uncertain parameters in the simulation, together with the 

Smagorinsky constant. A higher bottom stress in the simulations of Haas et. al. gave a more 

stabilized rip current flow. The flow still meandered but only at the seaward end and the flow in 

the channel was steadier. However the instantaneous peak velocity decreased.  

From the simulations it is also noted that wave current interaction and vortex shedding has a 

negative feedback on the stability and strength of the rip current system. For a rip current 

system to work for energy extraction the impact of these mechanisms should be reduced. 
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6 Conclusions and recommendations 

The objective of this study was to accurately simulate the fluid motions in the nearshore zone 

with the use of the numerical model XBeach, in which a non-hydrostatic model based upon the 

numerical scheme as developed by Stelling and Zijlema (2003) was implemented. After the 

model was further developed and validated, an investigation was undertaken in how the wave 

induced current velocity could be increased. In this section the results found in the study will be 

presented together with recommendations for future development and research. 

6.1 Conclusions 

6.1.1 Numerical model 

The depth averaged XBeach  program (Roelvink et al., 2009), with the add-on of the non-

hydrostatic model based upon Stelling and Zijlema (2003) and modified to second order 

accurate in both time and space and including a dynamic eddy viscosity model, appears to give 

very promising results regarding the simulation of the nearshore zone dynamics. The full 

transformation of short waves from deep water to breaking and beyond is accurately modelled. 

Also accurate results were obtained regarding the wave induced horizontal flow circulation 

found on a barred beach with rip channels.  

The most interesting result was the big improvement from the added dynamic eddy viscosity 

model, which was based on the Smagorinsky subgrid eddy viscosity model. The result especially 

improved in the region beyond the breaking line of the waves. The eddy viscosity model adds 

more dissipation to the model in areas where high gradients of the flow occur. Without an eddy 

viscosity model the simulation proved not to give enough dissipation in these regions.  

6.1.2 Application to the nearshore zone 

The model is proven to give accurate results in the nearshore zone with a good efficiency thanks 

to the depth averaged approach. Also the model is very robust and not much tweaking is needed 

in contrast to a lot of Boussinesq models, which have to include numerous extra terms to the 

momentum equations in order to accurately model the surf zone dynamics. The grid size, the 

friction coefficient and the eddy viscosity parameter are the only parameters that need to be 

chosen carefully. The grid size should not be too small in order to include enough numerical 

dissipation, however extra dissipation can be achieved by increasing the eddy viscosity 

parameter, but a fine grid will reduce efficiency, and not too big in order to capture enough 

detail of the incoming waves.  For the incoming waves 30 nodes per wave length is usually 

enough detail.  

For the application to the nearshore zone two experimental studies were considered. The first 

experiment was a flume experiment with irregular waves on a barred beach. The results from 

the non-hydrostatic model together with the added eddy viscosity model were very satisfactory, 

especially regarding the significant wave height and wave period. Also the wave spectra and the 

wave setup were accurately predicted. The results achieved from this test case gave confidence 
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that sufficiently accurate results could also be achieved for the second test case which consisted 

of a more complicated bathymetry involving all the nearshore zone dynamics.  

The results achieved from the second test case were also very good, better than the results 

achieved by Chen et al. (1999) and Haas et. al. (2003). The model is therefore competitive to 

Boussinesq-type models in terms of accuracy. If the model is also competitive in terms of 

efficiency is unknown. The rip current test case consisted of 95.630 grid points and took about 9 

hours and 20 minutes to complete a run of about 1700 seconds on an Intel Core 2 Duo @ 3.00 

GHz CPU. The model, however, is not optimized for a dual core processor.  

6.2 Recommendations 

6.2.1 Numerical model 

The numerical model XBeach, as it is, has a good balance between accuracy and efficiency. The 

model can be made more accurate by adding a second layer, however from the computations 

from Smit (2008)it was concluded that the two layer approach only marginally improved the 

results and adding a second layer will increase computational time significantly.  

Additionally even more layers could be added to the model to improve the dispersion 

characteristics and to find the vertical distribution of the flow. However this would significantly 

reduce efficiency due to more computational effort needed to solve the non-hydrostatic pressure 

matrix, as the size of this matrix is equal to the number of grid points multiplied by the number 

of layers that are employed. However, one can keep the size of the matrix equal to the size as in 

the one layer case by assuming a hyperbolic pressure distribution of the dynamic pressure in the 

vertical. The dynamic pressure at the surface and the vertical gradient of the dynamic pressure 

at the bottom are assumed to be zero, and the value of the depth integrated dynamic pressure is 

assumed to be equal to half of the total pressure at the bottom. Together with the linear vertical 

distribution of the hydrostatic pressure and the hyperbolic vertical distribution of the dynamic 

pressure, the momentum equations in the multiple layers are calculated with this distribution in 

mind. Extra computational effort is needed for solving the momentum equations in the multiple 

layers and the calculation of the vertical dynamic pressure distribution. However the Poisson 

pressure equation is only solved for the dynamic pressure at the bottom, just as is the case in the 

one layer approach.  

6.2.2 Application to the nearshore zone 

The first next logical step with regard to the application to the nearshore zone would be to try 

and model a real world event. This would build more confidence in the application of the model 

and could also lead to some interesting insights. Furthermore comparisons should be made to 

existing Boussinesq models. 
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List of main symbols 

Roman symbols 

Symbol  Description         Unit 

c   Wave celerity         m /s 
cg   Group velocity        m /s 
d  Depth, measured positive downward from z0     m 
g   Gravitational acceleration      m/s2 

H   (i) Water depth       m 
(ii) Wave Height       m 

i   Mesh point index (subscript)       [-] 
j   Mesh point index (subscript)       [-] 
k   Wave number         rad /m 
k x ,k y   Wave number components       rad /m 
L ,Lx ,Ly  Typical Flume/Basin/Area length      m 
p   Normalized dynamic pressure      m2 /s2 

p0   Atmospheric pressure        N /m2 

P   Pressure        N /m2 

qx, qy   Specific discharge in the x-/y-direction      m2 /s 
t   Time          s 
T   Wave period         s 
u   Velocity vector        m /s 
u   x-component of the velocity vector u      m /s 
U  Depth averaged velocity vector      m /s 
U   x-component of the depth averaged velocity U    m /s 
Ui ,j   Discrete velocity U        m /s 
v   y-component of the velocity vector u .     m /s 
V   y-component of the depth averaged velocity U    m /s 
Vi , j   Discrete velocity V        m /s 
w   z-component of the velocity vector u .     m /s 
W   Depth averaged vertical velocity      m /s 
Wi , j ,b   Vertical velocity at z = −d (x)       m /s 
Wi , j ,z   Vertical velocity at z = − (x,t )      m /s 
x   Point at (x ,y )         m 
X   Point at (x ,y ,z ) 
xi , j   Point at (xi ,yj ) 
x   Principle horizontal coordinate      m 
xw   World coordinate        m 
x0   World x-coordinates of origin.      m 
xi ,xi + 1/2 x-location of ith-gridline       m 
y   Lateral horizontal coordinate       m 
yw   World coordinate        m 
yw   World y-coordinate of origin.       m 
yj ,yj + 1/2 y-location of jth-gridline       m 
z   Vertical coordinate        m 
z0   Reference level        m 
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Greek symbols 
 
Symbol  Description         Unit

 
∆s   the characteristic length scale of the smallest resolvable eddy m 
∆xi   Local mesh interval in x-direction      m 
∆yj   Local mesh interval in y-direction      m 
   Rectangular shaped boundary curve of domain     m 
back   “Back” boundary, usually a land boundary     m 
front   “Front” boundary, usually the Seaward boundary    m 
left ,right  “Left/right” boundaries of the domain     m 
  Free surface elevation, measured positive upwards from z0   m 
L   Wave length         m 
t   Eddy viscosity         m2/s 
ij   Stress          m2/s2 

   Horizontal domain enclosed by boundary     m2 

 
Acronyms/Abbreviations 
 
Symbol  Description 

 
NSWE   Non-linear shallow water equations 
XBeach  Extreme Beach behaviour model 
LES   Large eddy simulation 
FOU   First order upwind 
CFL   Courant-Friedrichs-Levy 
DTP  Dynamic Tidal Power 
ADV  Acoustic Doppler Velocimeter 
LDV  Laser Doppler Velocimeter 
DFT  Discrete Fourier Transform 
FFT  Fast Fourier Transform 
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A Nearshore hydropower 

A.1 Introduction 

In this thesis an investigation has been made into the hydrodynamics of the nearshore zone. The 

study of nearhore dynamics is important for coastline developments, harbors and inlets. 

Additionally there is another reason why nearshore hydrodynamics and specifically wave 

induced currents are interesting and should therefore be investigated and modelled. As energy 

consumption is rising and fossil fuels are diminishing, and global warming is more and more on 

the agenda of politicians and policymakers, the world is searching for a renewable energy source 

that can sustain the rising energy consumption of the world’s population. Wind, waves and 

sunlight are all natural phenomena that contain energy which could be harvested. Waves have 

about 5 times the energy density of wind but it has proven difficult to extract this energy from 

waves. In an effective rip current system a part of the wave energy is transformed into a current 

velocity, the so called rip current. Apparently, it is much more effective to extract the energy out 

of a current, so therefore it could be worthwhile to research how strong rip currents are formed 

and if these currents are stable enough for energy extraction.  

Also other ways in which wave motions are transformed into a current can be interesting for 

energy extraction methods from the ocean. For example, tidal power plants can be made more 

effective by also directing the short wave induced currents into the tidal turbines. This will add 

to the current flow of the tidal difference between the offshore and inshore side of the tidal dam.  

The numerical model XBeach, with the addition of a Smagorinsky subgrid model, as verified in 

this thesis appears to be able to reproduce most of the physical relevant processes in a rip 

current system reasonably well. Therefore this model can be used to find ways of utilizing the 

wave induced current velocity for energy extraction methods. In this Appendix the numerical 

model XBeach is applied for a brief investigation into the possible energy potential in a wave 

induced nearshore zone current.  

A.2 Rip current 

From chapters 2 and 5 we can deduce that there are mechanisms in a rip current system that 

decrease the strength and give the current a pulsating behavior. Also, due to vortex shedding, 

the current changes in direction and strength. So a way to increase the current’s strength and 

make the current more suitable for energy extraction is to cancel out these mechanisms.  

The wave-current interaction within the rip current channel decreases the current strength, due 

to the heightening of the waves which causes the waves to break earlier, which in turn decreases 

the longshore wave-setup gradient from within the rip channel to just outside the rip channel. 

This is the main driver of the current and therefore this mechanism should be eliminated in 

order to increase the current. A way of doing this is to block the incoming waves that enter the 

rip channel which therefore cancels out the wave-current interaction in the rip channel.  The 
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wave-current interaction is also known to give the current a pulsating behavior, which is 

therefore also eliminated.  

Vortex shedding, as we have seen in Paragraph 5.2, constantly changes the direction of the 

current, which as a consequence makes it rather difficult to extract energy out of the current. 

Therefore we should also try to obstruct this mechanism. Figure A-1 shows that vertical walls 

have been strategically placed in the topography of the rip current experiment of Haller et. al 

(2002) to achieve this. 

The amended topography results in a stronger rip current without the vortex shedding. In order 

to extract energy from this current a turbine should be placed in the narrowest part of the rip 

channel, where current velocities are at their highest. The average velocity compared with the 

experiment’s mean velocity has increased to more than twice the value. In order for this system 

to work the bathymetry has to be fixed so that erosion of the bottom cannot occur. Otherwise 

the bottom may be modified by erosion which would change the dynamics. In Figure A-1 the 

mean flow field is given with the amended topography.  
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Figure A-1: Run averaged flow field with amended topography 

In the above figure one can see that more velocity vectors behind the breaker bar are directed 

towards the upper rip channel. This results in a higher mass flux through the channel and due to 

the narrower channel the velocities are therefore even higher still. In Figure A-2 the cross-shore 

currents at the longshore sections at the offshore side of the breaker bar and more seaward from 

the bar are compared to the results from the simulation without the amended topography. It can 

be seen that the mean cross-shore current between the walls in the rip channel has significantly 

increased compared to the mean current without the walls. Also, at the more seaward section, 

the mean current is still much higher due to the inability of the current to meander. This can be 

seen in Figure A-3 where the wave averaged flow velocities are shown together with the 

vorticity.  
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Figure A-2: Comparison of time-averaged modelled cross-shore currents with amended topography (blue line) to 
modelled cross-shore currents with original topography (red line) 

 

Figure A-3: Snapshots of vorticity and velocity vectors averaged over two wave periods from the simulation. Red 
represents negative and blue represents positive vorticity. Only the upper half of the computational domain is shown 
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It can be seen from Figure A-3 that the flow is steadier and that the vortiticy in the flow field is 

mainly present in the rip channel. Therefore the vortex shedding of the flow is contained within 

the channel. This results in a higher mass flux through the channel due to the fact that less water 

is flowing back over the breaker bar. 

In Figure A-4 the longshore currents with the amended topography are much higher and are 

more directed towards the upper rip channel. This thus indicates that more water mass is being 

fed into the rip channel resulting in a higher mass flux through the channel. 

 

Figure A-4: Comparison of time averaged modelled longshore currents with amended topography (blue line) to 
modelled longshore currents with original topography (red line) 

In Figure A-5 a comparison is made between the mean wave height at the longshore sections at 

the offshore side of the breaker bar and more seaward from the bar. It can clearly be seen that 

the waves are blocked due to the walls and thus reducing the wave height in the channel. Due to 

the gap at both sides diffraction will cause the waves to impinge into the channel. Thus the wave 

current interaction is still present in the rip channel, however due to lower wave height in the 

channel the mechanism is substantially reduced.  

 

Figure A-5: Comparison of time-averaged modelled wave height with amended topography (blue line) to modelled 
wave height with original topography (red line) 
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Spacing of the rip current is also of importance for its strength. If the spacing between two rip 

channels is increased a stronger current is usually induced. In Figure A-6 the average flow field 

is shown with a single channel instead of two, thus increasing the length of the breaker bar of 

which the mass flux that is transported over the bar is directed back through the rip channel. In 

Figure A-7, however, one can see that the flow velocity is not increased compared to the case 

with two channels.  

 

Figure A-6: run averaged flow with single rip channel 
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Figure A-7: Comparison of time-averaged modelled cross-shore currents with amended topography with two 
channels (blue line) to modelled cross-shore currents with single channel (red line) 

 It should be noted that the above results are for a comparison with the experiments of Haller et. 

al. (2002) and that in real situations the waves are not monochromatic. Furthermore, the tides 

change the water level and thus the dynamics of the rip current system. 

A part of the kinetic energy that is present in the rip current could be extracted with the help of a 

turbine. The energy available in the rip current can be expressed as: 

 
3

2

AV
P


  (A.1) 

Where P = the power generated (in watts), ρ = the density of the water (in kg/m³), A = the 

sweep area of the turbine (in m²) and U = the velocity of the flow. 

In the case above with a single rip channel and a wave height of 4.75 cm at the seaward 

boundary the available power in the rip channel is about 0.82 watt. This is not much, however 

this is a scaled down rip current system in a wave basin. If we consider the experiment, and thus 

the computation, as an undistorted Froude model of field conditions with a length scale ratio of 

1/50, then the conditions correspond to a rip spacing of 450 m, rip channel width of 90 m, 

breaking wave heights of 1.3 – 3.8 m, wave periods of 5.7 – 7.1 s, and a mean rip velocity of 

about 1.5 m/s in the first case, and with the amended topography the mean rip velocity turns out 

to be about 4 m/s. The potential power in the rip channel then amounts to more than 3 MW. 

However, only a part can be extracted but it can be worthwhile to further investigate the energy 

potential in a rip current system. 

In Table 1 one can see the scales of rip current systems in the field. We have seen that the mean 

rip velocity can be more than doubled with the strategic placement of walls that reduce the 

vortex shedding and the wave current interaction. The rip current can be further increased with 

tapered walls reducing the width of the rip channel to increase the flow rate in the channel. 
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Taking the field characteristics of the rip current system at Palm Beach, Australia and reducing 

the width of the channel to 5 m instead of 60 m gives a mean flow velocity of about 5 m/s. The 

available power in such a channel will be about 550 kW. However there are still many 

uncertainties if this realizable. Nonetheless it could be worthwhile to investigate this further and 

use numerical models to see if these flow rates can be achieved. It could be a good way of 

harnessing the power of the ocean waves. 

A.3 Tidal power 

Another form of hydropower from the ocean is tidal power which converts the energy of tides 

into electricity. Although not yet widely used, tidal power has potential for future electricity 

generation. A new concept for tidal power, invented and patented in 1997 by Dutch coastal 

engineers Kees Hulsbergen and Rob Steijn, called Dynamic Tidal Power (DTP), involves the 

construction of very long dams of about 30 to 50 km, extending from the coast straight out into 

the ocean, with a perpendicular barrier at the far end, forming a large 'T' shape. This long T-dam 

interferes with coast-parallel oscillating tidal waves which run along the coasts of continental 

shelves. The oscillating pattern in which these tidal currents flow every day will naturally cause 

the water level to rise significantly on the one side of the dam and to drop on the other side. 

Later in the day the situation reverses. The maximum water level differential will be about 2–3 

meters in a typical coastal region, mainly depending on the length of the dam, and the level of 

acceleration of the local tidal currents. The head is converted into power using a long series of 

turbines installed in the dam. 

These Dynamic Tidal Power dams can also utilize the short wave energy that is available along 

the dam by focusing the wave-setup into the turbines. The head that is created due to the wave-

setup is in addition to the head created by the tidal wave, but only if the wind waves propagate 

approximately in the same direction as the tidal wave. This way the DTP dam can be made more 

profitable. Furthermore, wind turbines can be placed alongside the dam, where wind is more 

constant and stronger than onshore, and, in contrast to offshore wind farms, the wind turbines 

would be easier to maintain and operate.  

Economic viability is estimated to be reached for dam lengths of about 30 km. In Figure A-8 the 

results are shown of a numerical study undertaken by UNESCO-IHE for a DTP dam at IJmuiden 

perpendicular to the coastline into the North Sea.  The information about this dam is taken from 

http://www.ca-oe.org.
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Dynamic Tidal Power (DTP) at IJmuiden 
 
• Installed power 1000 MW (440 turbines) 
• Annual production 4.6 TWh 
• Turbines € 1000 /kW 
• Caissons (for turbines) € 1500 /kW 
• Dam section (without turbines) € 3 billion 
• ·Development cost 10% 
• ·Interest during construction 10% 
• ‘Green’ interest 4% per year 
• Write off in 30 years 
• Net internal rate of return 10% per year 
• Subsidy 20% (‘Kyoto and beyond’) 
• Exploitation cost € 0.015/kW

Figure A-8: Water level differences due to presence of a 30 km long dam at IJmuiden during MHW and spring tide 
(UNESCO-IHE) 

A.4 Conclusion 

From the investigation in A.2 can be concluded that the mean current velocity can significantly 

be increased by reducing the negative feedback mechanisms. By doing this a more steady flow 

can be realized. Also the mean current velocity is substantially increased. However if rip 

currents can be utilized for electricity generation is still questionable. A quick calculation shows 

that existing rip current systems have an energy potential of more than 1 MW and from the 

simulation it was even deduced that the rip current could contain more than 3 MW. However the 

viability of this idea is questionable. Further investigation should be undertaken to answer these 

questions. 

Wave induced could supplement existing tidal power dams by creating a higher water level 

differential due to the wave setup of the short waves, which will increase the profitability of 

these dams. Further investigation and modelling is needed if this can significantly increase 

power output. Also rip currents can be made much stronger by changing the bathymetry in the 

rip current system. However, extensive modelling is needed to know if these currents provide 

for an economic viable power plant. The next step would be to model a real world rip current. 

Subsequently it can be investigated if this rip current can be made steady and strong enough. 

One should also take into consideration the morphological processes that play a role in these 

systems. The numerical model XBeach could also be used for this consideration.  

In the coming years numerical models can be used for the research of ocean and wave energy 

systems, wherein a power take system is implemented. Numerical modelling is also needed to 

optimize the structures of these systems. However tests in a hydraulic laboratory are still 

required to verify numerical calculations with these new implementations. 
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B Derivation of the depth averaged equations 

B.1 Introduction 

Two physical principles are used for the derivation of the underlying equations of fluid flow in 

the field of fluid mechanics. Those two principles are the conservation of momentum and mass. 

The conservation of momentum leads to the well known Navier-Stokes equations and the 

conservation of mass leads to the continuity equation.  

B.2 Navier-Stokes equations 

The Navier–Stokes equations describe the motion of substances that can flow. These equations 

arise from applying Newton's second law to fluid motion, together with the assumption that the 

fluid stress is the sum of a diffusing viscous term (proportional to the gradient of velocity), plus 

a pressure term. 

It is assumed that the reader has seen the derivation of the Navier-Stokes equations many times 

and it is therefore not repeated here.  

The Navier-Stokes equations are given by: 
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 (B.1) 

Where u, v and w denote the velocity components in the x-, y- and z-direction respectively,  the 

fluid density, P the pressure,  the dynamic viscosity, g is the gravitational acceleration (which 

only acts in the z-direction) and  the Laplacian. 

The Navier-Stokes equations are usually accompanied with the conservation of mass equation. 

This equation is described as follows. 

       
   

   

( ) ( ) ( )
0

u v w

t x y z
 (B.2) 

Equations (B.1) and (B.2) describe a wide range of flows found, for both gases and fluids. But 

these equations are highly non-linear and very difficult (read computationally very expensive) 

to solve. 

B.3 Simplifications 

A less accurate but computationally less expensive way of solving (approximating) the Navier-

Stokes equations and the continuity equation is to simplify the equations with some basic 
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assumptions that can be justified for the case at hand. Our area of interest lies in the coastal zone 

of oceans and seas. This justifies some assumptions with regard to the fluid. The fluid density is 

relatively constant in this relatively small region of the oceans and seas, and therefore the 

assumption can be made that the fluid is homogeneous. Secondly the fluid is almost 

incompressible and therefore the second assumption is an incompressible fluid. These two 

assumptions can already greatly simplify the equations, and thus make it more manageable to 

find approximate solutions for these equations in the nearshore zone with grid sizes up to 1 

million nodes. 

When the flow is steady,  does not change with respect to time, and when the flow is 

incompressible,  is constant and does not change with respect to space. The conservation of 

mass reduces to the conservation of volume. The following equation will be referred to as the 

local continuity equation: 

   
  
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0

u v w

x y z
 (B.3) 

And using the assumptions outlined in this paragraph we are also able to simplify the Navier-

Stokes equations in (B.1) to the following equations. Treating the density as a constant in space 

and time leads to the incompressible Navier-Stokes equations 

 

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P
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u
u g  (B.4) 

In equation (B.4)  is the kinematic viscosity defined as the ratio between the dynamic viscosity 

and the density. The vector u and g are defined as follows.  
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    
   
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u
v
w g

0
,       0u g  

B.4 Pressure decomposition 

In equation (B.4) the total pressure is used. This pressure consists of a hydrostatic component 

and a hydrodynamic component. In deep water the hydrostatic component is by far the larger 

part of the total pressure. In shallow water, however, the depth is not that large and the 

hydrodynamic component, due to the waves, has a larger contribution to the total pressure. As 

we are interested in the surf zone dynamics, we cannot afford to lose this component in our 

equations. To include the hydrodynamic component we can decompose the total pressure into 

the hydrostatic and the hydrodynamic part. 

 ( )
h d

P p p g z p        (B.5) 

Where pd is the dynamic pressure, ph is the hydrostatic part of the pressure,  is the free surface 

and p is the dynamic pressure normalized with the density. The pressure at the surface is zero 

in (B.5). Substituting (B.5) into (B.4) gives: 
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 (B.6)  

Except for the dynamic pressure component and the viscous terms in these equations, they are 

the same as the well known non-linear shallow water equations. 

B.5 Free surface equation 

The model has to describe the free surface and the depth integrated velocity. The approach to 

describe the free surface is to use a single valued function for the free surface. This does not 

allow for the overturning of waves, and the dissipation effect of this phenomenon is considered 

as a subgrid effect that has to be captured by a proper conservation principle. In this approach 

the following coordinate system is used, where from the z =0 line  is the value of the free 

surface positive upwards, d is the value of the bottom positive downwards and H is the total 

water depth defined by H=+d  (See Figure B-9). 

 

Figure B-9: Coordinate system used 

To obtain the free surface equation the continuity equation is integrated over the total depth: 
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It is assumed that the water surface always consists of the same particles. This assumption is 

justified when no overturning of waves, due to wave breaking is considered. This is not the case 

when plunging waves occur but nevertheless it is a necessary assumption for this numerical 

scheme to work. With the overturning of waves very complex shapes of water surface can occur, 

and, due to the mixing of water and air, it is also hard to define the exact interface between 

water and air. Therefore this assumption is applied. It is however possible to allow for the 
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overturning of waves and to include the effect of the mixing of air and water, but then different 

numerical models should be used. These models are usually based on the Marker and Cell 

scheme (e.g. Harlow and Welsh, 1965; Tome and Mckee, 1994) or the Volume of Fluid method 

(e.g. Hirt and Nichols, 1981), however they have to resolve very small scales in both time and 

space. This makes large scale application impossible and therefore the above method is chosen.   

The vertical velocity of a particle located at the free surface is equal to the material derivative of 

the free surface elevation: 
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  (B.8) 

The vertical velocity of a particle at the bottom is equal to the material derivative of the bottom 

elevation. However, the time derivative of the bottom elevation is zero because it is assumed 

that the bottom does not change over time. This is not the case when morphological processes 

are considered, but even in this case the changes in time of the bottom profile are very slow 

compared to the changes in time of the surface profile due to the large difference in timescale of 

the two processes. The kinematic boundary condition at the bottom is given by 
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When equations (B.8) and (B.9) are substituted into equation (B.7) and use is made of the 

Leibniz rule of integration, the integrated continuity equation is written as follows 
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Where U and V are the depth averaged velocities given by 
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Equation (B.10) is the global continuity equation for the depth averaged model, which gives a 

relation between the surface elevation and the velocity. 

B.6 Depth averaged momentum equations 

The depth averaged momentum equations are derived by means of integration of the 

momentum equations (B.6) over the water depth H. Because the procedure for each of the three 

momentum equations is very similar only the u- momentum equation will be described in detail. 

The u-momentum equation in component form is written as follows 
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This equation is integrated over the depth and for clarity we can consider the following 

contributions separately: (i) the time derivative, (ii) the advective terms, (iii) the pressure 

terms, (iv)the turbulent stress terms. First the time derivative will be integrated. 
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The second and third term on the right hand side are a result of the movement of the free 

surface and the bottom in time. In our case the bottom is stationary and will not change in time, 

so the third term is zero. Integrating the advective terms gives: 
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The terms on the right side of the equation with the integrals are dispersion terms due to the 

non-uniformities in the flow in the vertical. When the vertical distribution of the flow is close to 

uniform and therefore does not deviate much from the average flow velocity, these 

contributions are small. The dispersion terms will give diffusion to the momentum equations 

because the vertical distribution is unknown in a depth averaged model. The last term is due to 

the application of the Leibniz rule and when combined with (B.13) these boundary terms cancel 

out. 

The integration of the hydrostatic pressure term is straightforward and is as follows 
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The vertical integration of the dynamic pressure term was already treated in Chapter 4. 

Finally integrating the turbulent stress terms results in 
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The stresses at the surface and bottom are included in sx and bx respectively. The stress term at 

the surface sx due to e.g. wind was not used and is therefore left out of the following equations. 

In equation (B.14) the terms involving the integral and the terms involving the vertical gradient 

of the horizontal flow are unknown in the depth averaged model, and are therefore left out of 

the equation. Then by combining the equations (B.13), (B.14), (B.15) and (B.16) the depth 

integrated u-momentum equation reads in conservative form: 
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This equation can be written in non-conservative form with the velocity in x-direction as the 

primitive variable. This is required to calculate the velocity in the velocity points. To show that 

the non-conservative form is fully equivalent to the conservative from, the non-conservative u-

momentum equation is derived from (B.17). 

Making use of the product rule, equation (B.17) is written with only the time derivative and 

advective terms as 
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The continuity equation (B.10) is then substituted into equation (B.18) and the equation is 

divided by H. The full u-momentum in non-conservative form then reads 
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The terms on the right hand side of the equation involving the derivatives of xx and yx are the 

viscous contributions. Using a similar derivation as for the x-direction the depth integrated 

equations in the y- and z-direction read in conservative form: 
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And again using the product rule equations (B.20) and (B.21) read in non-conservative form, as 

they are given in Chapter 4: 
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C Discretisation 

This Appendix is concerned with the description of the numerical approximation of the depth 

averaged model XBeach.  

C.1 Global continuity equation 

As was outlined in Appendix B.5 the global continuity equation, which describes the relation 

between the free surface and the depth averaged discharge, is given by 

    UH VH
t x y

  
  

  
0  (C.1) 

A simple discretisation of (C.1) using central differences for the space derivatives and using the 

Hansen scheme for the time derivative gives: 
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  . The water depth is not defined at the velocity 

points and thus needs to be interpolated from surrounding points. We use a simple first order 

accurate upwind interpolation 
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 (C.3) 

This makes the scheme first order accurate due to the first order accurate upwind interpolations 

and continuity equation. To increase the accuracy of the scheme ,
n
i j 1

can be set to
*

,
n
i j . The first 

order prediction will then be corrected using the MacCormack scheme. The corrector step reads 
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In which 
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In here denotes the minmod limiter, which is defined as  

    min ,r rr





1     if 0
0                   if r 0

 (C.6) 

In which r is the ratio of the upwind and downwind gradient of the free surface. A more 

comprehensive description of the minmod limiter can be found in Hirsch (2007). 

The predictor-corrector set is second order accurate in areas where the solution is smooth and 

where discontinuities occur the method reduces to first order accurate.  

C.2 Local continuity equation 

The depth averaged local continuity equation is given by 

 0
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z z
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 (C.7) 

This equation is discretisized using a central difference scheme 
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 (C.8) 

The surface elevation variables at the cell faces are approximated with upwind interpolations. 

The local continuity equation is used to setup a discrete set of Poisson-type equations in which 

the pressures are the only unknown quantities. 

C.3 Horizontal momentum equations 

The discretisation of the depth-averaged horizontal momentum equations can be done with an 

upwind approach which makes the scheme first order accurate. However, to improve accuracy, a 

correction step according to the MacCormack scheme (MacCormack, 1969)  can be used to make 

the method second order accurate. The hydrostatic pressure is integrated using a midpoint rule 

and central differences, while the source terms are integrated using an explicit Euler time 

integration. We will only threat the u-momentum equation in detail as the procedure for the 

momentum equations in the other two directions is very similar. 



79 
 

Predictor step 
The depth averaged horizontal u-momentum equation is discretisized as follows 
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 (C.9) 

The discretisation of the dynamic pressure is denoted by Pr, in T the effects of the viscosity are 

included and S includes all other source terms. The discretisation of the viscosity terms are done 

by central differences: 
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Here ,
n

i j
1 and 

,

n

i j
H 

1
2

1
are obtained by interpolation from surrounding points. 

Equation (C.9) is formulated with the depth averaged momentum as the primitive variable and 

not the velocity. To formulate (C.9) in terms of U the method by Steling and Duinmeijer (2003) 

is used.  

The u-momentum equation is then written as 
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The dynamic pressure term Pr does not have a separate evolution equation in time, as such the 

pressure term cannot be calculated explicitly using values from the previous time level. However 

to improve accuracy of the predictor step the pressure term is included explicitly. The pressure 

term is decomposed into two terms as: 
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 (C.12) 
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In the predictor step the pressure term is included using ,

n

i jp
1

2 . In the corrector step the Poisson 

equation is solved for ,

n

i jp



1
2

1
. The pressure term in the predictor step is given by: 
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Here 
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 represents the average pressure over the vertical which is approximated with 
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Corrector step 
The corrector step is used to make the scheme second order accurate. First order accuracy 

suffers from significant numerical damping, which is fine in regions where damping due to 

turbulence is expected like e.g. in the surf zone, but outside the surf zone, in deeper water, waves 

propagate without much energy loss and here numerical damping is not at all wanted.  

The corrector step formulated in terms of average velocity is given by: 

 
   

1 1 1 1 1
2 2 2 2 2

1 1
2 2

1 1
2 2

1 1
2 2

1
2

1

1 1 1 1

1 1

1 11 1 1 1
1 1 1

12

* * * * *
, , , , , , , , , ,

, ,

, , , , , ,

,

...

...

n n n n n nx n x n y n y n
i j i j i j i j i j i j i j i j i j i j

n n

i j i j
n nn n n n

i j i j i j i j i j i j

n

i j

U U q U q U q U q U

t H x H y

d p d p

H

 

    

     

 

 

    

  





      
  

  

    
 0

x




 (C.14) 

The values of 
*

,
n
i jU are obtained with minmod limiter equivalent to equation (C.5) 

C.4 Vertical momentum equation 

The vertical momentum equation is dicretized in a similar manner to the horizontal equations 

using the MacCormack scheme. In terms of the depth avareged vertical velocity the predictor 

step is: 
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The pressures are defined at the cell faces and therefore do not have to be interpolated. 

Furthermore the pressure at the surface can exactly be set to zero. The vertical velocities are 

defined on the cell faces and therefore the depth averaged velocity 
1
2

,

n

i jW


needs to be expressed 

in terms of the bottom and surface velocities. Using a simple central approximation gives 
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At the bottom the kinematic boundary condition is used for the vertical velocity: 
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A first order upwind approach is taken for the interpolation of 
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. The turbulent 

stresses are again approximated using a central difference scheme as 
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By combining (C.15), (C.16) and (C.17) explicit expression for *
, ,i j sW and *

, ,i j bW obtained. 

Corrector 
The predicted values are again corrected using a MacCormack scheme and including the 

pressure difference implicitly gives the corrector step: 

 

1 1 1 11 1
2 2 2 22 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1

1 1 1
0

* * * **
, , , , , , , ,, , , ,

, , ,

n n n nx x y yn n
i j i j i j i j i j i j i j i ji j i j s i j

n n n
i j i j i j

q W q W q W q WW W p

t H x H y H

    

       

  

      
   

  
(C.19) 

Where 1
2

*

,i j
W


  and 1

2

*

,i j
W


 are obtained using a similar relation as in (C.5).  

The discrete vertical momentum balance of (C.15) and (C.19) looks very different from the 

relations found in Zijlema and Stelling (2005; 2008). This is mainly due to the application of the 

MacCormack scheme for the advection. The discretisation of the pressure term is equivalent to 

the Keller box scheme as used in Zijlema and Stelling (2005; 2008) 


