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Abstract
Offshore wind farms have the potential to deliver a significant part of the future energy demands as a
renewable energy source. Currently, simulations used to design, control and plan maintenance of wind
farms in industry are based on low-fidelity blade element momentum methods. However, these meth-
ods are not very accurate and with the increase in available computational capabilities, it is expected for
industry to move towards Navier-Stokes based methods. Research mainly uses LES methods as they
resolve the large-scale, often anisotropic, atmospheric turbulence while the effect of the small-scale, of-
ten more isotropic, turbulence caused by the blades is modelled. However, these LES methods are too
computationally demanding for industry. Therefore, the expectation is that industry will move towards
less computationally demanding RANS simulations.

RANS simulations do need to provide a sufficient increase in accuracy to justify the additional com-
putational cost. However, the most used RANS-model in relation to wind farms, 𝑘 − 𝜖, has crippling
shortcomings. It over-predicts the eddy viscosity in the near wake, leading to an over-prediction of
wake recovery and fails to model the anisotropy of the turbulence quantities. To account for these
shortcomings, a recent development is to use data-driven techniques to improve turbulence modelling.
In literature many of these machine learning techniques use the generalised Galilean invariant effective
viscosity hypothesis in connection to some machine learning technique, such as deep neural networks.
Within the faculty of Aerospace Engineering of the TU Delft, the sparse regression of the turbulence
stress anisotropy (SpaRTA)method has shown a lot of promise. This method uses temporally averaged
fields from LES data together with sparse regression methods to learn corrections for the anisotropy
tensor and turbulence production terms. The SpaRTA method has already been successfully applied
to several wind turbine configurations in neutral atmospheric conditions. Therefore, this thesis aims to
extend the SpaRTA methodology to wind turbines in stably stratified atmospheric boundary layers.

The main way in which the SpaRTA method is extended for stable stratification is to include an
additional additive correction term for the turbulent heat flux, which is modelled by the gradient-diffusion
hypothesis in the baseline model. This extended SpaRTA method is applied to two cases: a stably
stratified parcel of air moving over land based on the GABLS1 inter-comparison study and a case with
a turbine placed in similar environmental conditions.

The simulations with implemented correction models show significant improvement over the base-
line simulations. For the first case the only improvement is in the computation of the turbulence kinetic
energy as the anisotropy correction corrects for the slight over-prediction of the baseline model. In
the case with the turbine the anisotropy correction removes turbulence kinetic energy in the near-wake
while the turbulence production correction increases the turbulence kinetic energy in the shear-layer
between the wake and the outside flow. This correction meant that turbulent mixing was modelled
better and the over-prediction of the wake in the velocity field was removed when compared to the
baseline simulations.

However, it is concluded that the effects of the additional turbulent heat flux correction can also be
incorporated in the turbulence production correction, making the turbulent heat flux correction superflu-
ous. Other ways to improve this methodology are mainly related to the availability of high-quality LES
data for different configurations in terms of lay-out and atmospheric boundary layer conditions. Lastly,
another factor limiting this methodology for these cases is the ability to properly model the turbulence
anisotropy correction.
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1
Introduction

Much of current research endeavours are part of the push for a more sustainable future in an attempt to
limit global warming. Potentially, a significant part of the energy demands in the future could be fulfilled
by wind energy. As space becomes more and more scarce, this wind energy demand is increasingly
being met by offshore wind farms. In 2019 a record share of 10% of newly installed wind capacity is
accounted for by offshore wind farms (GWEC, 2019). Moreover, the Dutch government envisions a
growth of offshore wind energy capacity towards 11.5GW by 2030 (Wiebes, 2018).

In order to support this development, it is paramount that accurate simulation tools are available to
industry. These simulation tools help make more informed design choices with respect to maximising
yield of wind farms, optimum control strategies and making lifetime and maintenance predictions based
on loading simulation. Currently, industry is mostly reliant on low-fidelity blade element momentum
methods. These are the preferred methods of use as they give somewhat accurate results at very
low computational cost. However, the shortcomings of these methods become increasingly apparent,
especially in situations where wake-interaction is important such as wind farms. Wake losses in wind
farms can be as high as 10% to 20% according to Barthelmie et al. (2007). Combined with the rapid
growth in computational ability, it is expected that industry will move towards more computationally
intensive Navier-Stokes methods, provided that the increase in accuracy is worth it.

The most used Navier-Stokes based method for wind farm simulation is LES, where the largest
scales of the turbulence are resolved and the effect of the smaller, more isotropic scales are modelled.
However, the computational demands for this method are relatively high, so it is more probable that
industry will move towards less computationally intensive RANS methods where the Navier-Stokes
equations are averaged and all scales of turbulence are modelled.

RANS simulations do need to provide a sufficient increase in accuracy to justify the additional com-
putational cost. However, Réthoré (2009) showed that the most used RANS-model in relation to wind
farms, 𝑘 − 𝜖, has crippling shortcomings. It over-predicts the eddy viscosity in the near wake, leading
to an over-prediction of wake recovery and fails to model the anisotropy of the turbulence quantities.
The increasing computational capabilities and availability of high-fidelity data also supports another
development. Recently a lot of effort is put in using data-driven machine learning methods to improve
turbulence models. Notably, Ling et al. (2016a) used a deep neural network to develop new models for
the anisotropy field of the turbulent stress. Within the Aerospace Engineering faculty of the TU Delft
Schmelzer et al. (2020) introduced the SpaRTA framework, which uses k-corrective frozen-RANS sim-
ulation to extract the optimal correction fields. Then, sparse symbolic regression is applied in order to
train simple, easy to interpret, algebraic models for two turbulence model correction terms: a correction
term of the turbulence anisotropy and a correction term of the TKE production. This framework was
applied to moderate Reynolds number wind turbine flows in neutral conditions by Steiner et al. (2020).
It was further improved upon by expanding the library of features in Steiner et al. (2022) and Steiner
et al. (2021) introduced a classifier which differentiated between the wake and the outside flow.

The obvious next step in the development of the SpaRTA methodology is to expand it to non-neutral
conditions. Therefore, the main research objective of this thesis is:

1



2 1. Introduction

To reduce the 𝑘 − 𝜖 turbulence model and gradient-diffusion hypothesis scalar-flux model
uncertainties in stably-stratifiedwind turbinewakeapplications by extending the SpaRTA
methodology to include the effects of stratification and applying it to stably-stratified
cases.

In order to achieve the main objective, several sub-objectives are formulated:

SO1. Generate or obtain ground-truth LES reference data from the open-source SOWFA-6 toolbox for
OpenFOAM.

SO2. Determine optimal turbulence model form corrections by extending the k-corrective frozen-RANS
approach to include a correction for the gradient-diffusion hypothesis model for the turbulent heat
flux.

SO3. Train simple algebraic models for the respective correction terms using the sparse regression
techniques from SpaRTA.

SO4. Implement the trained correction models in OpenFOAM to assess performance compared to the
baseline 𝑘 − 𝜖 model.

These objectives have to be fulfilled in order to answer the main research question of this thesis:

Towhat extend can the SpaRTAmethodology extended to include stratification effects im-
prove RANS simulations of wind farms in stable atmospheric boundary layer conditions?

To provide an answer for the main research question, it is supported by the following sub-questions
(SQ):

SQ1. How does the extension of the SpaRTA methodology to also include a model form correction of
the turbulent heat flux influence the corrected simulations?

SQ2. How do the original model form corrections of the SpaRTA methodology influence the perfor-
mance of the corrected simulations?

SQ3. What is the best selection criterion for selecting correctionmodels after regression: mean squared
error, max squared error or complexity?

SQ4. What are the main factors holding back the performance of the corrected simulations of the ex-
tended SpaRTA methodology?

This thesis starts answering the research questions by supplying a solid theoretical foundation of
the work undertaken in Chapter 2. After the fundamentals and state-of-the-art of current wind-farm
simulation and data-driven improvement methods of turbulence modelling are described, the ground-
truth data of the two cases used in this thesis are detailed in Chapter 3. Then, Chapter 4 describes the
computation of the optimal correction fields for the SpaRTA methodology extended to include stable
stratification and applied to the two reference cases. These optimal correction fields are then used to
train correction models in Chapter 5. Chapter 6 implements these trained models in RANS simulations
and compares them to baseline simulations in order to assess the performance. Lastly, a reflection
on the research questions and their answers, as well as recommendations for future work is given in
Chapter 7.



2
Background of Wind Farm Simulation

and Machine Learning
This chapter describes the fundamentals on which the work in this report is based. Started is with
the basics of Computational Fluid Dynamics (CFD), after which atmospheric boundary layers (ABLs),
wind farms and their influence on CFD are detailed. Lastly, machine learning in wind farm simulation
is investigated.

2.1. Overview of Computational Fluid Dynamics
In order to describe how machine learning can be used to improve simulations of wind farms, first the
basics of aerodynamic simulation have to be covered. Therefore, this section gives an overview of the
fundamentals of CFD.

2.1.1. Governing Equations of CFD
Turbulent fluid flow is chaotic in nature and characterised by a large range of scales, from tiny to very
large scales. The physics of a Newtonian fluid in a Cartesian coordinate system are captured in a
system of equations which consists of conservation of mass ((2.1)), conservation of momentum in
three directions ((2.2)) and conservation of energy ((2.3)). In these equations 𝜌 is the density, 𝑢𝑖 is the
velocity in direction 𝑖, 𝑝 is the pressure, 𝜏𝑖𝑗 is the stress tensor, 𝑓𝑖 are body forces, 𝐸 is the total energy
and 𝑞𝑖 denotes the heat conduction.

𝜕𝜌
𝜕𝑡 +

𝜕(𝜌𝑢𝑖)
𝜕𝑥𝑖

= 0 (2.1)

𝜕(𝜌𝑢𝑗)
𝜕𝑡 +

𝜕(𝜌𝑢𝑖𝑢𝑗)
𝜕𝑥𝑖

= − 𝜕𝑝𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑖

+ 𝜌𝑓𝑗 (2.2)

𝜕(𝜌𝐸)
𝜕𝑡 + 𝜕(𝑢𝑖𝜌𝐸)𝜕𝑥𝑖

= −𝜕𝑢𝑖𝑝𝜕𝑥𝑖
+
𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑖

− 𝜕𝑞𝑖𝜕𝑥𝑖
+ 𝑢𝑖𝜌𝑓𝑖 (2.3)

The above equations are often simplified by assuming incompressible flow and no body forces.
This means that energy conservation follows from momentum conservation and is no longer needed.
Also, the continuity and momentum equations are simplified as displayed in (2.4) and (2.5). In these
simplified equations 𝜈 is the kinematic viscosity. These equations are often referred to as the Navier-
Stokes equations.

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.4)

𝜕𝑢𝑖
𝜕𝑡 +

𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈𝜕
2𝑢𝑖
𝜕𝑥2𝑗

(2.5)
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4 2. Background of Wind Farm Simulation and Machine Learning

Aside from these equations, conservation can also be applied for a passive scalar, 𝜃, as displayed
in (2.6) with no sources or sinks and 𝛼 the diffusivity (Pope, 2000).

𝜕𝜃
𝜕𝑡 +

𝜕(𝑢𝑖𝜃)
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑗

(𝛼 𝜕𝜃𝜕𝑥𝑗
) (2.6)

In the context of wind farm simulation this passive scalar is usually the potential temperature. How-
ever, the passive scalar can also be a mass density of a non-reacting trace constituent in a fluid for
example (Wyngaard, 2010).

2.1.2. Length Scales of Turbulence
The Navier-Stokes equations can theoretically be discretised and all turbulence scales can be resolved,
this is called a Direct Numerical Simulation (DNS). However, in order to do so, the mesh has to be fine
enough to be able to simulate all the turbulent scales. The Reynolds number is used to characterise a
flow and is defined as the ratio between inertial and viscous forces. It is computed by using (2.7) where
𝐿 and 𝑈 are a flow characteristic length and velocity scale respectively.

Re = 𝐿𝑈
𝜈 (2.7)

Turbulence consists of eddies. The largest eddies have characteristic length, velocity and time
scales comparable to the characteristic scales of the flow itself. These largest eddies break down
into smaller eddies through the energy cascade. These smaller eddies also break down into smaller
eddies, until the eddies become so small that the turbulence kinetic energy dissipates due to molecular
viscosity. These smallest scales are called the Kolmogorov scales. The Kolmogorov scales of length,
velocity and time are related to the kinematic viscosity and the dissipation rate by (2.8), (2.9) and (2.10)
respectively. These expressions are based on dimensional arguments (Pope, 2000).

𝜂𝐾 = (
𝜈3
𝜖 )

1/4
(2.8)

𝑢𝐾 = (𝜈𝜖)1/4 (2.9)

𝜏𝐾 = √
𝜈
𝜖 (2.10)

When it is assumed that the dissipation rate is equal to the production rate, the dissipation rate is
related to the characteristic length and velocity scales by (2.11).

𝜖 ∼ 𝑈
3

𝐿 (2.11)

Then it can be derived that the total number of grid points in one direction needed to capture all the
turbulent length scales, from the largest to the very smallest relates to the Reynolds number through
(2.12).

𝑁𝐿 ∼
𝐿
𝜂𝐾

∼ Re3/4 (2.12)

The same is done for the number of timesteps needed in (2.13).

𝑁𝑇 ∼
𝑇
𝜏𝐾
∼ Re1/2 (2.13)

This means the total amount of computations needed (grid points in three dimensions times the
amount of time steps) scales with Re11/4. Seeing that simulations of wind farms often cover circum-
stances with Reynolds numbers above 108, it is clear that DNS is not feasible for industrial applications.
Broadly speaking, two different ways to solve this problem are used: Large eddy simulation (LES) and
Reynolds-averaged Navier-Stokes (RANS). These two methods are discussed in more detail in the
next two sections.
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2.1.3. Large Eddy Simulation
The kinetic energy of the turbulence is divided over a large range of length scales. LES is based on the
assumption that the smaller scales of the turbulence have a more universal nature. Whereas the large
scales are more heavily influenced by the boundary conditions and are thus more case dependent.
Therefore, in LES, the larger scales of the velocity field are resolved directly while the effect of the
smaller eddies is modelled. This is done by applying a spatial filter operation over the parameter fields,
which splits up the variables in a resolvable and subgrid-scale part. This decomposition for the velocity
is given in (2.14).

𝑢𝑖(x, 𝑡) = 𝑢𝑖(x) + 𝑢″𝑖 (x, 𝑡) (2.14)

After the filter is applied to the Navier-Stokes equations displayed in (2.4) to (2.6), the LES equations
are obtained. These filtered Navier-Stokes equations for continuity, momentum and a passive scalar
are displayed in (2.15), (2.16) and (2.17) respectively.

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.15)

𝜕𝑢𝑖
𝜕𝑡 +

𝜕𝑢𝑖 𝑢𝑗
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(𝜈(𝜕𝑢𝑖𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

)) −
𝜕𝜏𝑆𝐺𝑆𝑖𝑗
𝜕𝑥𝑗

(2.16)

𝜕𝜃
𝜕𝑡 +

𝜕𝑢𝑗𝜃
𝜕𝑥𝑗

= 𝛼 𝜕2𝜃
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝑞𝑆𝐺𝑆𝑗
𝜕𝑥𝑗

(2.17)

In (2.16), 𝜏𝑆𝐺𝑆𝑖𝑗 represents the sub-grid scale stress tensor and is equal to 𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗. This term
requires a closure model to model the influence of the ”sub-grid scale” eddies on the resolved larger
scales. The Smagorinsky model is a common model used to do this and links the sub-grid scale stress
tensor to a sub-grid scale viscosity. The same approach is taken by the one equation eddy viscosity
model which differs in the fact that a transport equation is solved for the sub-grid scale TKE Pope
(2000).

In the passive scalar equation ((2.17)) closure is needed for the sub-grid scale scalar flux 𝑞𝑆𝐺𝑆𝑗 = 𝑢𝑗𝜃.
This is usually accomplished using the gradient-diffusion hypothesis, which will be described in more
detail in Subsection 2.2.3.

2.1.4. Reynolds-Averaged Navier-Stokes
RANS attempts to ease the computational requirements demanded by DNS and LES by solving for
the mean flow quantities. This is done by splitting the quantities into a mean (⋅) and a fluctuating (⋅′)
part. This decomposition for the velocity is given in (2.18). The approach is the same for the other
parameters.

𝑢𝑖(x, 𝑡) = 𝑢𝑖(x) + 𝑢′𝑖(x, 𝑡) (2.18)

The mean is obtained by taking the temporal average in (2.19).

𝑢𝑖 =
1
𝑇 ∫

𝑇

0
𝑢𝑖(x, 𝑡)𝑑𝑡 (2.19)

The Reynolds-averaged Navier-Stokes equations are obtained by substituting the decomposed ve-
locity and pressure in the conservation equations and applying Reynolds averaging. Some important
features of this Reynolds averaging operator are that the mean of a fluctuating component is 0, the
mean of two fluctuating components multiplied is nonzero and the mean of the mean is just the mean
itself. The resulting incompressible Reynolds Averaged conservation equations for mass and momen-
tum are displayed in (2.20) and (2.21).

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.20)

𝜕𝑢𝑖
𝜕𝑡 +

𝜕𝑢𝑖 𝑢𝑗
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(𝜈(𝜕𝑢𝑖𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

)) −
𝜕(𝑢′𝑖𝑢′𝑗)
𝜕𝑥𝑗

(2.21)
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When comparing the Reynolds-averaged equations to the original equations it is visible that the
averaging operation introduced a new term: the Reynolds flux or Reynolds stress 𝑅𝑖𝑗 = 𝑢′𝑖𝑢′𝑗. This
Reynolds stress represents the momentum transfer through turbulent fluctuations and is often decom-
posed in an isotropic and anisotropic part as displayed in (2.22). Where 𝑘 is the turbulence kinetic
energy which is defined as 𝑘 ≡ 1

2𝑢
′
𝑖𝑢′𝑖 and 𝛿𝑖𝑗 is the Kronecker delta.

𝑅𝑖𝑗 =
2
3𝑘𝛿𝑖𝑗 + 𝑎𝑖𝑗 (2.22)

The anisotropic part of the Reynolds stress is non-dimensionalised as displayed in (2.23) to obtain
𝑏𝑖𝑗 which is referred to as the anisotropy tensor (Pope, 2000).

𝑏𝑖𝑗 =
𝑅𝑖𝑗
2𝑘 −

1
3𝛿𝑖𝑗 =

𝑎𝑖𝑗
2𝑘 (2.23)

The modelling of the Reynolds stress is a topic of much research. Generally the models can be
divided in a few different categories which are detailed in Subsection 2.1.5. Aside from the Navier-
stokes equations, Reynolds averaging is also applied to the passive scalar transport equation. This
yields the equation displayed in (2.24) (Wyngaard, 2010).

𝜕𝜃
𝜕𝑡 +

𝜕𝑢𝑖𝜃
𝜕𝑥𝑖

= 𝛼 𝜕2𝜃
𝜕𝑥𝑖𝜕𝑥𝑖

− 𝜕𝑢
′
𝑖𝜃′
𝜕𝑥𝑖

(2.24)

Again, a new term is introduced due to the Reynolds averaging operation: 𝑢′𝑖𝜃′. This term is called
the turbulence scalar flux and has to be modelled, like the Reynolds stress.

2.1.5. Turbulence Modelling
As mentioned in Subsection 2.1.4, when considering the Reynolds-averaged Navier-Stokes equations
and the corresponding scalar transport equation, there are two parameters which have to be modelled:
the Reynolds stress and the turbulence scalar flux.

2.1.5.1. Reynolds Stress Modelling
There are two main ways in which the turbulence is modelled in RANS: eddy viscosity methods and
Reynolds stress methods. These are both covered in this section.

Eddy Viscosity Models
The approach, which is applied the most, relies on the Boussinesq hypothesis as introduced in Boussi-
nesq (1877). This Boussinesq hypothesis relates the Reynolds stress tensor to the product of the mean
strain-rate tensor and an ”eddy” viscosity, analogously to laminar flow, as displayed in (2.25) (Wilcox,
2006). The latter term in this equation is absorbed into the pressure term.

𝑢′𝑖𝑢′𝑗 = −𝜈𝑇(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) + 23𝑘𝛿𝑖𝑗 (2.25)

This leads to a modified version of the RANS-equations as displayed in (2.26).

𝜕𝑢𝑖
𝜕𝑡 + 𝑢𝑗

𝜕𝑢𝑖 𝑢𝑗
𝜕𝑥𝑗

= − 𝜕
𝜕𝑥𝑖

(𝑝𝜌 +
2
3𝑘) +

𝜕
𝜕𝑥𝑗

((𝜈 + 𝜈𝑇)(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)) (2.26)

Modelling the effect of turbulence as added viscosity is very useful as an engineering method, see-
ing that the computational cost only weakly depends on the Reynolds number (Sanderse et al., 2011).
However, eddies are not molecules, which means that the physical basis for this assumption is weak.
Furthermore, the eddy viscosity is a field quantity and not a property of the fluid and DNS simulations
performed by Schmitt (2007) do not show a clear correlation between the Reynolds stress and the
mean strain-rate. This means that in many situations the Boussinesq hypothesis is not valid. Espe-
cially in flows with sudden changes in mean strain-rate, flows over curved surfaces, flows in ducts with
secondary motions, flows in rotating fluids and three-dimensional flows (Wilcox, 2006). Nonetheless,
the Boussinesq hypothesis is the basis of the most widely used turbulence models in industry.

The eddy viscosity models can be further divided by the way in which the eddy viscosity is computed.
Usually, the models are split based on the number of additional partial differential equations (PDEs)
that need to be solved.
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Algebraic models The simplest models are algebraic models or zero-equation models. In these
models the eddy viscosity is computed based on a characteristic length scale called the mixing length.
This is somewhat like the mean free path between molecules in a gas (Wilcox, 2006). Two well known
models of this type are the Cebeci-Smith model (Smith and Cebeci, 1967) and the Baldwin-Lomax
model (Baldwin and Lomax, 1978). The advantages of these models are the simplicity and ease of
implementation. However, these models are very simplified and work well only for the flows for which
they have been calibrated according to Wilcox (2006).

One-equation models In order to improve the prediction of turbulent flows Prandtl postulated that
the eddy viscosity depends on the turbulence kinetic energy and a length scale (Prandtl andWieghardt,
1945). This meant a model which solved an additional transport equation for the turbulence kinetic
energy. However, the need for a specific length scale for each flow case makes the advantage of this
model over algebraic models rather small (Wilcox, 2006). Even so, models based on a postulated
equation for the eddy viscosity do not have this problem. Well-known examples of this methodology
are the Baldwin-Barth model (Baldwin and Barth, 1991) and the Spalart-Allmaras model (Spalart and
Allmaras, 1992). The advantages of these models are the low computational cost and high numerical
stability due to only solving one additional PDE (Wilcox, 2006).

Two-equation models The two-equation models are amongst the models which are most widely
used. These models generally solve an equation for the turbulence kinetic energy, 𝑘 and a second
quantity, for example the specific turbulence dissipation rate 𝜔 or the turbulence dissipation rate 𝜖.
These quantities are then used to compute the eddy viscosity according to (2.27).

𝜈𝑇 = 𝐶𝜇
𝑘2
𝜖 or 𝜈𝑇 =

𝑘
𝜔 (2.27)

A widely used model is the 𝑘 − 𝜖 model introduced by Jones and Launder (1972) where an equi-
librium of turbulence production and dissipation is assumed. The advantages of this model are the
low computational cost, due to only solving two additional transport equations, and the good results
for external flows. However, the model struggles with flows with strong pressure gradients, stream line
curvature and separation (Wilcox, 2006). This model is the best model for simulating the atmospheric
boundary layer according to Sanderse et al. (2011), amongst others. The equations for 𝑘 and 𝜖 are
displayed in (2.28) and (2.29), where 𝐶𝜖1and 𝐶𝜖2 are coefficients.

𝜕𝑘
𝜕𝑡 + 𝑢𝑗

𝜕𝑘
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜕
𝜕𝑥𝑗

(( 1Re +
𝜈𝑇
Pr𝑘

) 𝜕𝑘𝜕𝑥𝑗
)

⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝜖⏟
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

(2.28)

𝜕𝜖
𝜕𝑡 + 𝑢𝑗

𝜕𝜖
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝐶𝜖1
𝜖
𝑘 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜕
𝜕𝑥𝑗

(( 1Re +
𝜈𝑇
Pr𝜖

) 𝜕𝜖𝜕𝑥𝑗
)

⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝐶𝜖2
𝜖
𝑘 𝜖⏝⎵⏟⎵⏝

𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

(2.29)

The 𝑘−𝜔model byWilcox (1988) is also used a lot. This model solves additional transport equations
for the turbulence kinetic energy and the specific dissipation rate. When comparing it to the 𝑘−𝜖model,
it gives better results for boundary layer flows and for flows with pressure gradients and separation
Wilcox (2006). The equations for 𝑘 and 𝜔 are displayed in (2.30) and (2.31), where 𝛼 and 𝛽 are
coefficients.

𝜕𝑘
𝜕𝑡 + 𝑢𝑗

𝜕𝑘
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜕
𝜕𝑥𝑗

(( 1Re +
𝜈𝑇
Pr𝑘

) 𝜕𝑘𝜕𝑥𝑗
)

⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝐶𝐷𝑘𝜔⏝⎵⏟⎵⏝
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

(2.30)

𝜕𝜔
𝜕𝑡 + 𝑢𝑗

𝜕𝜔
𝜕𝑥𝑗⏝⎵⏟⎵⏝

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛼𝜔𝑘 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗⏝⎵⎵⏟⎵⎵⏝

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜕
𝜕𝑥𝑗

(( 1Re +
𝜈𝑇
Pr𝜖

) 𝜕𝜔𝜕𝑥𝑗
)

⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝛽𝜔2⏟
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

(2.31)

A blend of the 𝑘 − 𝜖 and the 𝑘 − 𝜔 models leads to the SST model (Menter, 1993) which is better
for simulating regions close to wind turbine blades according to Sanderse et al. (2011).
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Reynolds Stress Models
Even though the Boussinesq hypothesis has garnered widespread use, it does have some serious
shortcomings as previously discussed. Another fundamentally different approach to modelling the
Reynolds stress is the Reynolds stress model introduced by Launder et al. (1975). This approach
starts from the exact Reynolds stress transport equations and directly solves model transport equa-
tions for the different components. This makes it suitable to simulate anisotropic flow, as opposed to
the two-equation models. However, a major drawback is the fact that six additional PDEs have to be
solved leading to a large increase in computational cost. Furthermore, the Reynolds stress models can
suffer from numerical instability (Sanderse et al., 2011).

2.1.5.2. Turbulence Scalar Flux Modelling
In order to close the scalar transport equation, the turbulence scalar flux is modelled.

Gradient-Diffusion Models
The most commonly used model is similar to the eddy viscosity model and based on the gradient-
diffusion hypothesis as displayed in (2.32) (Combest et al., 2011).

𝑢′𝑖𝜃′ = −𝛼𝑡
𝜕𝜃
𝜕𝑥𝑖

(2.32)

The turbulent diffusivity 𝛼𝑡 is usually computed by dividing the eddy viscosity from the eddy viscosity
model with a turbulent Prandtl or Schmidt number, which is defined as a global flow-specific value. The
benefit of this model is its simplicity and low computational overhead. However, it is known that the
model is inaccurate in flows where the scalar flux is not aligned with the mean scalar gradient, so in
flows with high anisotropy (Combest et al., 2011).

Algebraic Models
A slightly more complex model was introduced by Batchelor (1949) which replaced the turbulent diffu-
sivity in (2.32) with an anisotropic turbulent diffusivity tensor 𝐷𝑡𝑖𝑗. This method is also called generalised
gradient-diffusion hypothesis. Different models introduced by Daly and Harlow (1970) and Fox (2003)
use slightly different expressions to determine the turbulent diffusivity tensor. However, what they have
in common is that in both models the turbulent diffusivity tensor is directly proportional to the Reynolds
stresses. These models overcome the issue with gradient diffusion hypothesis of misalignment be-
tween the scalar flux and mean scalar gradient (Combest et al., 2011). Abe and Suga (2001) introduced
the even more complex higher order generalised gradient-diffusion hypothesis. However, research by
Ling et al. (2016b) showed that the increase in accuracy of all these models are not significant enough
to justify the additional cost.

Scalar-flux Models
The last class of turbulence scalar flux closure models are similar to the Reynolds stress models in
the sense that they solve the transport equation of the turbulence scalar flux (Younis et al., 2005).
Models differ in the way the different terms of the transport equation are treated. Methods based on
the turbulence scalar flux transport equation are amongst the most detailed for scalar-flux transport.
However, the cost of this is a higher computational overhead when compared to the gradient-diffusion
hypothesis and algebraic models (Combest et al., 2011).

2.1.6. Realizability of the Reynolds Stress
As discussed in Subsection 2.1.5 many turbulence models in use today make use of the eddy viscosity
assumption, which basically assumes a linear relationship between the anisotropy tensor 𝑎𝑖𝑗 and the
mean strain rate tensor 𝑆𝑖𝑗. This does introduce a modelling error, which is why many data-driven
approaches aim at finding better ways to model this anisotropy tensor. This is discussed further in
Section 2.3. In this section several characteristics of the Reynolds stress tensor and the anisotropy
tensor are discussed. Furthermore, this discussion leads to the introduction of the barycentric map
which can be used to plot all realizable turbulence states.
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2.1.6.1. Realizability Constraints
The discussion starts with looking at the realizability constraints of the Reynolds stress. Any square
matrix A is considered positive semi-definite if (2.33) is satisfied for every nonzero column-vector x with
real numbers.

xTAx ≥ 0 (2.33)

The Reynolds stress is constructed by Reynolds-averaging the outer product of the velocity fluctu-
ations, displayed in (2.34).

𝑢′𝑖𝑢′𝑗 = u’⊗ u’ = [
𝑢′1
𝑢′2
𝑢′3
] [𝑢′1 𝑢′2 𝑢′3] = [

𝑢′1𝑢′1 𝑢′1𝑢′2 𝑢′1𝑢′3
𝑢′2𝑢′1 𝑢′2𝑢′2 𝑢′2𝑢′3
𝑢′3𝑢′1 𝑢′3𝑢′2 𝑢′3𝑢′3

] = 𝑢′𝑖𝑢′𝑗 (2.34)

This means that the Reynolds stress is basically the Reynolds-averagedmultiplication of the velocity
fluctuation vector with its transpose. When this expression is substituted for A in (2.33) it is shown that
the Reynolds stress tensor is positive semi-definite. This is displayed in (2.35).

xTu′u′Tx = (xTu′)2 ≥ 0 (2.35)

When Reynolds averaging is applied, positive semi-definiteness is still guaranteed due to the fact
that all samples satisfy this condition. Aside from this, the fact that the Reynolds stress tensor is sym-
metric ensures diagonalizability. Both these properties ensure that the eigenvalues are non-negative
(Banerjee et al., 2007). This, together with the Cauchy-Schwartz inequality, leads to the physical re-
alizability constraints the individual components of the Reynolds stress tensor have to satisfy. These
constraints are displayed in (2.36) where with Greek indices summation is not implied (Schumann,
1977).

𝑢′𝜇𝑢′𝜇 ≥ 0, 𝑢′𝜇𝑢′𝜇 + 𝑢′𝜈𝑢′𝜈 ≥ 2 |𝑢′𝜇𝑢′𝜈| , det(𝑢′𝑖𝑢′𝑗) ≥ 0, 𝜇, 𝜈 = {1, 2, 3} (2.36)

The minimum value for the diagonal components of the Reynolds stress is zero, due to the non-
negativeness condition in (2.36). Furthermore, from the definition of the turbulence kinetic energy in
(2.37) it can be concluded that the maximum value of a single diagonal component of the Reynolds
stress is 2𝑘.

𝑘 = 𝑢′𝑖𝑢′𝑖
2 (2.37)

In (2.38) eigenvalue decomposition is applied to the expression for the Reynolds stress. The
columns of 𝑉𝑖𝑗 are the eigenvectors of the Reynolds stress tensor and the diagonal components of
Φ𝑖𝑗 are the eigenvalues, 𝛾𝑖 of the Reynolds stress tensor.

𝑅𝑖𝑗 = 2𝑘(
𝛿𝑖𝑗
3 + 𝑏𝑖𝑗) = 2𝑘(

𝛿𝑖𝑗
3 + 𝑉𝑖𝑘Φ𝑘𝑙𝑉𝑗𝑙) (2.38)

From (2.38) the amplitude (TKE), orientation (eigenvectors) and shape (eigenvalues) of the Reynolds
stress can be determined. The eigenvectors define the so-called principal coordinate system in which
the Reynolds stress is a diagonal tensor with the eigenvalues on the diagonal. From the bounds on
the diagonal components of the Reynolds stress it can be concluded that the minimum and maximum
value of the eigenvalues are 0 and 2𝑘 respectively. The eigenvalues of the anisotropy tensor, 𝛾𝑖, are
related to the eigenvalues of the Reynolds stress tensor, 𝜙𝑖, as displayed in (2.39). This means that
the eigenvalues of the anisotropy tensor are bounded by −1/3 ≤ 𝛾𝑖 ≤ 2/3.

𝛾𝑖 =
𝜙𝑖
2𝑘 −

1
3 (2.39)

From (2.23) for the anisotropy tensor and the realizability conditions of (2.36), it can also be derived
that the off-diagonal components of the anisotropy tensor are bounded by −1/2 ≤ 𝑏𝜇𝜈 ≤ 1/2 (Banerjee
et al., 2007).
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2.1.6.2. Barycentric Map
The topic of representation of the Reynolds stress tensor, and specifically the anisotropy tensor, has
been the topic of multiple research projects. Lumley (1979) introduced the three independent invariants
of the anisotropy tensor, which are displayed in (2.40).

I = 𝑏𝑖𝑖 , II = 𝑏𝑖𝑗𝑏𝑗𝑖 , III = 𝑏𝑖𝑗𝑏𝑖𝑛𝑏𝑗𝑛 (2.40)

Lumley and Newman (1977) used this to represent the realizable states of the turbulence on the
II-III map. They all fall within a triangular shape. Lumley (1979) also introduced a triangular mapping
based on the eigenvalues of the anisotropy tensor.

Banerjee et al. (2007) expanded this to form the barycentric map. This map is based on the fact
that the anisotropy has three limiting states. These are: the one-component turbulence corresponding
to one non-zero eigenvalue of the anisotropy tensor, two-component turbulence corresponding to two
non-zero eigenvalues and three-component turbulence with three non-zero eigenvalues. Banerjee
et al. (2007) expresses the anisotropy tensor in a convex combination of its three limiting states in
(2.41).

𝑏𝑖𝑗 = 𝐶1𝑐𝑏1𝑐 + 𝐶2𝑐𝑏2𝑐 + 𝐶3𝑐𝑏3𝑐 (2.41)

The components in (2.41) are computed using eigenvalues 𝛾1 to 𝛾3 in decreasing value as displayed
in (2.42).

𝐶1𝑐 = 𝛾1 − 𝛾2, 𝐶2𝑐 = 2(𝛾2 − 𝛾3), 𝐶3𝑐 = 3𝛾3 + 1 (2.42)

These components are mapped to the two-coordinate triangular barycentric map using (2.43) and
(2.44), where 𝑥1𝑐 and 𝑦1𝑐 correspond to the coordinates of the corner belonging to one-component
turbulence.

𝑥𝑛𝑒𝑤 = 𝐶1𝑐𝑥1𝑐 + 𝐶2𝑐𝑥2𝑐 + 𝐶3𝑐𝑥3𝑐 (2.43)

𝑦𝑛𝑒𝑤 = 𝐶1𝑐𝑦1𝑐 + 𝐶2𝑐𝑦2𝑐 + 𝐶3𝑐𝑦3𝑐 (2.44)

The barycentric map with the limiting states of the turbulence is displayed in Figure 2.1.

Figure 2.1: Barycentric map displaying the limiting states of turbulence (Banerjee et al., 2007).

Seeing that the three components of the mapping procedure add up to 1, the anisotropy tensor
can also be mapped to the RGB-space. This enables the use of colours to display properties of the
anisotropy tensor field (Emory and Iaccarino, 2014).

2.1.7. Invariance of the Navier-Stokes Equations
As is discussed in Section 2.3, a lot of data-driven approaches to turbulence modelling focus on gen-
erating new models for the anisotropy tensor of the Reynolds stress. An important consideration which
needs to be kept in mind when generating these models is that invariance of the Navier-Stokes equa-
tions needs to be retained, as is shown by Ling et al. (2016c). Therefore, a (short) discussion of
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invariance properties is given and a more general effective-viscosity approach which was introduced
by Pope (1975) is discussed.

The Navier-Stokes equations in their general form are Galilean invariant. This means that the
equations of motion are equal in any inertial frame. Rotation or translation of the reference frame
should not have an influence. For the Navier-Stokes equations this means that when the reference
frame is transformed using a rotation or reflection matrix, any vector or tensor is transformed equally
to the reference frame. This is also true for the anisotropy tensor 𝑏𝑖𝑗. According to Ling et al. (2016a),
a scalar function which takes a tensor A and vector v as input should satisfy (2.45) when transformed
by rotation matrix Q.

𝑓(A,v) = 𝑓(QAQT,Qv) (2.45)

For a function which computes a tensor, (2.46) should be satisfied (Speziale et al., 1991).

Q𝑓(A,v)QT = 𝑓(QAQT,Qv) (2.46)

(2.46) can be guaranteed for 𝑏𝑖𝑗 by using invariant input features to derive an integrity basis (Ling
et al., 2016a). Pope (1975) derived such an integrity basis to formulate a more general effective-
viscosity approach. This approach is based on the assumption that all Reynolds stresses are uniquely
related to the non-dimensionalised rates of strain and rotation and local scalars: 𝑏𝑖𝑗 = 𝑓(𝑆𝑖𝑗 , Ω𝑖𝑗) . The
non-dimensionalised rates of strain and rotation are computed according to (2.47) and (2.48).

𝑆𝑖𝑗 =
1
2
𝑘
𝜖 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (2.47)

Ω𝑖𝑗 =
1
2
𝑘
𝜖 (
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

) (2.48)

From the Cayley-Hamilton theorem it can be concluded that there is a limited number of linearly
independent tensors which can be formed from 𝑆𝑖𝑗 and Ω𝑖𝑗. Based on this theorem Pope (1975) derives
10 linearly independent basis tensors 𝑇(𝑛)𝑖𝑗 and five tensor invariants 𝜆𝑖. These can be used to compute
𝑏𝑖𝑗 as displayed in (2.49).

𝑏𝑖𝑗 =
10

∑
𝑛=1

𝑇(𝑛)𝑖𝑗 (𝑆𝑖𝑗 , Ω𝑖𝑗)𝑔(𝑛)(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5) (2.49)

The tensor basis functions are displayed in (2.50).

𝑇(1)𝑖𝑗 = 𝑆𝑖𝑗 , 𝑇(2)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑗 − Ω𝑖𝑘𝑆𝑘𝑗 , 𝑇(3)𝑖𝑗 = 𝑆𝑖𝑘𝑆𝑘𝑗 −
1
3𝛿𝑖𝑗𝑆𝑚𝑛𝑆𝑛𝑚 ,

𝑇(4)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑗 −
1
3𝛿𝑖𝑗Ω𝑚𝑛Ω𝑛𝑚 , 𝑇

(5)
𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙𝑆𝑙𝑗 − 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑗 ,

𝑇(6)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑗 + 𝑆𝑖𝑘Ω𝑘𝑙Ω𝑙𝑗 −
2
3𝛿𝑖𝑗𝑆𝑚𝑛Ω𝑛𝑜Ω𝑜𝑚 , 𝑇

(7)
𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚Ω𝑚𝑗 − Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚Ω𝑚𝑗 ,

𝑇(8)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑗 − 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚𝑆𝑚𝑗 ,

𝑇(9)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑗 + 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚Ω𝑚𝑗 −
2
3𝛿𝑖𝑗𝑆𝑛𝑜𝑆𝑜𝑝Ω𝑝𝑞Ω𝑞𝑛 ,

𝑇(10)𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙𝑆𝑙𝑚Ω𝑚𝑛Ω𝑛𝑗 − Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑛Ω𝑛𝑗 ,

(2.50)

Moreover, the invariants are given in (2.51).

𝜆1 = 𝑆𝑖𝑗𝑆𝑗𝑖 , 𝜆2 = Ω𝑖𝑗Ω𝑗𝑖 , 𝜆3 = 𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖 , 𝜆4 = Ω𝑖𝑗Ω𝑗𝑘𝑆𝑘𝑖 , 𝜆5 = Ω𝑖𝑗Ω𝑗𝑘𝑆𝑘𝑙𝑆𝑙𝑖 (2.51)
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2.2. Wind Farms and the Atmospheric Boundary Layer
This section is focused on characterising the ABL, its different states and the mutual influence between
the ABL and wind farms. Furthermore, an overview is given of the ways these characteristics influence
simulations of the ABL and wind farms. This is done with the aim of determining a baseline RANS
approach to simulating wind farms.

2.2.1. Atmospheric Boundary Layer Characteristics
The airflow over the Earth is usually split into two parts. The top part of the flow in the free atmosphere is
called the geostrophic wind. The geostrophic wind is mostly free from surface influences and is driven
by a balance of large-scale pressure differences and the Coriolis force due to the rotation of the Earth.
The bottom part of the flow is called the atmospheric boundary layer and its properties are governed by
the strength of the geostrophic wind, surface roughness, Coriolis effects and thermal influences (Burton
et al., 2011). The ABL is generally continuously turbulent, as opposed to the geostrophic wind. Between
these two regions is a thin, sharp inversion layer called the capping inversion (Wyngaard, 2010). This
capping inversion has a strong increase in potential temperature, limits penetration of turbulent gusts
from the ABL into the free atmosphere and controls the height of the ABL (Allaerts, 2016). The focus of
this section is to describe several properties of the ABL which need to be considered when simulating
wind farms in ABL flow.

2.2.1.1. Scales
An example of the spectrum of wind motions is given in Figure 2.2.

Figure 2.2: Wind spectrum at wind farm Brookhaven taken from Burton et al. (2011) based on work from Van der Hoven (1957).

As can be seen in Figure 2.2 there are three discernible peaks in the spectrum of wind motions
at one location: the synoptic variations due to passing weather systems, diurnal variations due to the
difference between day and night and turbulence variations which are of a much shorter timescale
(Burton et al., 2011). These turbulent variations are the main focus of the simulations of wind farms as
they have a large effect on power production and fatigue of wind turbines (Wyngaard, 2010).

According to Burton et al. (2011) turbulence in the ABL is created in two ways: due to friction and
due to thermal effects. These two production mechanisms are also largely interconnected. For a wind
farm in the ABL there is a large variety of turbulent length scales according to Réthoré (2009). The
largest scales are constituted by the atmospheric turbulence scale, created by wind shear, friction with
the ground and thermal effects. Then, there are the smaller turbulent scales which are created in the
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shear layer between the low-velocity flow in the wake of a wind turbine and the faster free stream.
Lastly, the smallest scales of turbulence are the turbulence length scale of the blade-induced vortex
structures. Capturing this large range of scales for a wind farm is not feasible. Therefore, simulations
often focus on either the near wake, where blade induced turbulence is dominant, or the far wake,
where shear induced turbulence is dominant (Vermeer et al., 2003). This is further investigated when
discussing the treatment of turbines in simulations in Subsection 2.2.3.

2.2.1.2. Thermal Stability of the Atmospheric Boundary Layer
During a diurnal cycle, the properties of the ABL at a particular location vary a lot. This is largely due to
the influence of thermal stability. During the day, the Sun warms the surface and heat is transferred from
the ground to the air above. During the night, the opposite is true and heat is transferred from the air to
the ground as the Earth cools due to emitted radiation. This means a rough division of three boundary
layer states can be made: neutral, stable and unstable (also called convective) (Burton et al., 2011).
These different states have vastly different properties which directly affect mechanical turbulence in the
turbine wake regions, and strongly determine the ambient turbulence intensity (Allaerts, 2016).

Neutral Boundary Layer
The first ABL state which is discussed is the neutral state. This state is reached when there is no
heat flux at the surface, which means the potential temperature is constant with height. Adiabatic
cooling of air as it rises, is in thermal equilibrium with its surroundings. This results in the absence
of buoyancy forces, making simulating these conditions easier than when thermal effects need to be
included (Allaerts, 2016; Burton et al., 2011). Therefore, the neutral atmospheric boundary layer has
received significant attention in research, an overview of which is given in Hess and Garratt (2002a,b).
Even though it has received a lot of attention, true neutral conditions are almost never found in practise
(Wyngaard, 2010).

Unstable Boundary Layer
The unstable boundary layer usually occurs during the day when there is a positive heat flux from the
Earth to the air. This means that parcels of warm air near the surface start to rise. As the parcel rises
it expands and cools adiabatically. When this cooling is not sufficient to achieve thermal equilibrium
with its surroundings, it continues to rise. This leads to large convection cells, hence the fact that the
unstable ABL is also called the convective boundary layer. This whole process leads to a lot of vertical
mixing, transfer of momentum and large-scale turbulent eddies. Therefore, the unstable boundary layer
is characterised by high levels of turbulence and, consequently, a thick boundary layer (Allaerts, 2016;
Burton et al., 2011; Wyngaard, 2010).

Stable Boundary Layer
The stable boundary layer occurs most often during the night when there is a negative heat flux at the
surface. Other circumstances where this state can occur are when the ABL encounters a cooler surface
downwind and when the ABL is entraining higher potential temperature air from the capping inversion.
In a stable boundary layer the buoyancy forces which enhance turbulence in the convective boundary
layer, actually suppress vertical motions. The turbulence is now dominated by friction with the ground
or wind turbines (Burton et al., 2011). When the stability is very high, it can even lead to the complete
shutdown of the turbulent energy cascade. The thermal stability selectively dampens the largest eddies,
while the smallest scales viscously dissipate turbulence kinetic energy. In extreme conditions this
can lead to a laminar boundary layer with intermittent turbulence (Allaerts, 2016). Furthermore, the
limiting of the vertical length scales makes the turbulence highly anisotropic. Also, smaller spatial
turbulence scales and low diffusion make the stable boundary layer much more sensitive to terrain
related inhomogeneities (Wyngaard, 2010). This boundary layer is also characterised by a low height
and large wind veer (Allaerts, 2016).

2.2.1.3. Relevant Flow Phenomena
Aside from the thermal stability, there are a few other phenomena which influence the airflow at a wind
farm.



14 2. Background of Wind Farm Simulation and Machine Learning

Wind Turbine wakes
Wind turbine wakes are regions characterised by decreased velocity and increased turbulence. The
magnitude of the velocity deficit is related to the thrust coefficient of the turbine. Thewind speed gradient
between the velocity deficit in the wake and the free stream results in shear-generated turbulence.
Additionally, the turbine itself generates turbulence through tip vortices shed by the blades and general
disturbances caused by the nacelle, blades and tower (Burton et al., 2011).

In a wind farm, the turbulence intensity increases with each turbine the flow passes and the wake
deficit increases in magnitude. However, after only a small number of turbines this effect is not vis-
ible anymore. This is due to the fact that the increased turbulence causes better mixing and faster
restoration of the wake (Witha et al., 2014).

The thermal stability of the boundary layer also has a large effect on the wakes of wind turbines.
This is mainly due to the dependence of ambient turbulence levels on thermal stability. More turbulence
means better mixing and faster restoration of the wake. Dörenkämper et al. (2015) reported wake ef-
fects which were twice as strong in a stably stratified boundary layer as in an unstable boundary layer.
This also means that the influence of turbines on each other is much larger in stable boundary layers.
For example, Wharton and Lundquist (2012) reported 15% difference in individual wind turbine per-
formance between different stability classes for equal hub height wind speed and research by Hansen
et al. (2012) found approximately the same results for the Horn Rev wind farm.

Low-level Turbulent Jets
Low-level turbulent jets are a thin stream of fast moving air close to the ground, whose velocity can
even surpass the geostrophic wind. These jets frequently develop in stable boundary layers and are
an elevated source of turbulence. There are many possible causes for these low-level jets and they
develop through inertial oscillations. These can be triggered by the collapse of daytime turbulence due
to surface cooling, when the flow becomes decoupled from the surface (Allaerts, 2016). The low-level
turbulent jets can be eliminated by wind turbines of a wind farm due to energy extraction and enhanced
mixing of momentum according to LES simulations performed by Lu and Porté-Agel (2011).

Waves
According to Sun et al. (2015), there are two types of waves which occur in the atmosphere. Firstly,
there are vorticity waves which are caused by vortex sheets and rolls due to shear instability. Examples
are Kelvin-Helmholtz billows. Low-level turbulent jets can trigger vorticity waves in the stable boundary
layer due to the large shear instability.

Buoyancy waves constitute the other type of waves and are forced by displacement of streamlines.
Internal gravity waves are an example of this type of waves which can be triggered in a stably stratified
boundary layer. Propagating gravity waves can redistribute large amounts of energy and momentum
over large distances and break down into turbulence (Sun et al., 2015). These waves are propagated
upwards and advected downstream by the mean background flow. At large heights, the non-linear
effects cause the waves to break down, resulting in clear air turbulence. Gravity waves can be triggered
by streamline displacement due to wind farms. However, the impact of these waves is probably small
when compared to mountain induced gravity waves (Allaerts, 2016).

Internal boundary layers
A fully developed boundary layer that encounters a discontinuity, for example a heat flux or wind farm,
does not adjust immediately at all heights. The portion of the boundary layer that is influenced by the
discontinuity increases with downstream distance. This portion is called the internal boundary layer
and is defined as the portion where the velocity and the turbulent stress are significantly affected by the
change in inflow conditions. The adjustment of the ABL to the increase of drag due to wind turbines
shows similarities to the effects of surface roughness (Allaerts, 2016). Namely, the presence of a wind
farm causes increased boundary layer height, reduced surface flux, reduced wind speed and enhanced
turbulence (Lu and Porté-Agel, 2015).

Wake Meandering
Wake meandering is a phenomenon which occurs in all boundary layer states. It basically, consti-
tutes the unsteady movement with low frequencies of entire turbine wakes under the influence of large
scale atmospheric turbulence eddies (Wyngaard, 2010). When the frequency of the wake meandering
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matches the torsional natural frequency of the wind turbines, actual damage might occur (Lu and Porté-
Agel, 2011). It is found in research by, amongst others, Abkar and Porté-Agel (2015) and Machefaux
et al. (2016) that increasing instability leads to larger magnitude wake meandering. This can be ex-
plained by the fact that the more unstable the boundary layer is, the more energy is in the large scale
atmospheric turbulence.

2.2.1.4. Characterizing Length Scales and Non-Dimensional Parameters
In this section the characterization of the flow of a wind farm in the ABL is finished by discussing several
parameters which are used in literature to characterise it.

Brunt-Väisälä Frequency
Traditionally, the different thermal states of the ABL were classified purely based on the heat flux at the
Earth’s surface. However, in the 1970s that classification was not sufficient anymore and the expression
for the Brunt-Väisälä frequency, displayed in (2.52), was introduced (Allaerts, 2016).

𝑁 = √ 𝑔𝜃0
𝜕𝜃
𝜕𝑧 (2.52)

When a parcel of air is vertically displaced, it will start to oscillate at the Brunt-Väisälä frequency,
making it characteristic for the free-atmosphere stratification. It is also a scaling parameter in expres-
sions for the ABL height.

Ozmidov Length Scale
The Ozmidov length scale is used to characterise stratified turbulence and its expression is given in
(2.53), where 𝜖 is the dissipation rate and 𝑁 is the Brunt-Väisälä frequency (Lumley, 1964; Ozmidov,
1965).

𝐿𝑂𝑧 = 2𝜋√
𝜖
𝑁3 (2.53)

The smallest eddies for which the influence of buoyancy is important are of the Ozmidov scale. This
means that in ABL flow, the Ozmidov scale divides the turbulence in two parts. Turbulence of larger
length scale which is anisotropic and turbulence of smaller length scale which displays more isotropic
properties (Khani and Waite, 2014). When performing LES, the Ozmidov scale could be used as cut-off
scale.

Buoyancy Length Scale
The buoyancy length scale corresponds to the thickness of shear layers in stratified turbulence and is
given by (2.54), where 𝑁 is the Brunt-Väisälä frequency (Lindborg, 2006; Waite and Bartello, 2004).

𝐿𝑏 =
2𝜋𝑢𝑟𝑚𝑠
𝑁 (2.54)

Research from Waite and Bartello (2004), Lindborg (2006), Brethouwer et al. (2007) and Khani and
Waite (2014) has shown that to capture the stratified turbulent energy cascade, the buoyancy length
scale has to be resolved in a LES simulation.

Obukhov Length
Presently, the stability of the ABL is usually based on the stability parameter 𝑧/𝐿𝑂 with 𝐿𝑂 the Obukhov
length. This length scale is based on the Monin-Obukhov Similarity Theory (MOST) which is discussed
in Subsection 2.2.2. The Obukhov length corresponds to the height above the surface above which
buoyancy effects become important (Wyngaard, 2010). Loosely, this means the height at which buoy-
ancy production of TKE equals shear-induced TKE (Thé and Yu, 2017). The expression of the Obukhov
length is given in (2.55), where 𝜃 is the potential temperature, 𝑢∗ is the friction velocity, 𝜅 is the von
Kármán constant and 𝑞𝑤 is the surface heat flux.

𝐿𝑂 = −
𝜃0𝑢3∗
𝜅𝑔𝑞𝑤

(2.55)
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Also, a local version of the Obukhov length scale is given in (2.56), where the surface heat flux is
replaced by the local vertical heat flux 𝑤′𝜃′.

Λ = − 𝜃0𝑢3∗
𝜅𝑔𝑤′𝜃′

(2.56)

The Obukhov length is negative for unstable boundary layers, positive for stable boundary layers
and approaches infinity for neutral boundary layers (Wyngaard, 2010). Peña et al. (2010) went even
further and classified seven stability regimes based on the Obukhov length scale, from very stable to
very unstable.

Richardson numbers
In stably stratified turbulence, the strength of the stability is given by the flux Richardson number 𝑅𝑖𝑓.
As can be seen in the expression displayed in (2.57), the flux Richardson number gives the relative
importance of buoyant destruction in the TKE budget (Wyngaard, 2010).

𝑅𝑖𝑓 =
buoyant destruction rate
shear production rate =

𝑔
𝜃0
𝑤′𝜃′

𝑢′𝑖𝑢′𝑗
𝜕𝜃
𝜕𝑥𝑗

(2.57)

The flux Richardson number indicates the strength of the stability. However, when the stability
becomes very strong, the ABL is forced to a laminar state, for which the flux Richardson number cannot
be computed (Allaerts, 2016). Therefore, the gradient Richardson number 𝑅𝑖𝑔 is defined in (2.58).

𝑅𝑖𝑔 =
𝑔
𝜃0
𝜕𝜃
𝜕𝑧

(𝜕𝑢𝜕𝑧 )
2
+ (𝜕𝑣𝜕𝑧)

2 (2.58)

The gradient Richardson number is the ratio of buoyancy forces to inertial forces (Wyngaard, 2010).
Traditionally, it was accepted that turbulence would decay when the gradient Richardson number ex-
ceeded a value of around 0.20-0.25 (Wyngaard, 2010). However, more recent research by Zilitinke-
vich et al. (2013) has shown that the velocity shear maintains turbulence, even for very high gradient
Richardson numbers, sparking a debate on the existence of a critical Richardson number.

Rossby number
The last non-dimensional number is used to characterise the influence of external parameters on the
ABL and is called the Rossby number. It is defined as displayed in (2.59), where 𝐺 is the geostrophic
wind, 𝑓𝐶 the Coriolis parameter and 𝑧0 the surface roughness (Peña et al., 2010). The Coriolis param-
eter is defined as 𝑓𝐶 = 2Ω sin 𝜆 where Ω is the angular velocity of the Earth and 𝜆 is the latitude.

𝑅𝑜 = 𝐺
𝑓𝐶𝑧0

(2.59)

The Rossby number is included in multiple models for the length scale of the wind profile and char-
acterises the relative importance of inertial forces with respect to the Coriolis force due to the planetary
rotation.Length scale models by Lettau (1962), Blackadar (1962), Gryning et al. (2007) and Peña et al.
(2010) include the influence of the Rossby number.

2.2.2. Monin-Oblukhov Similarity Theory
MOST is based on the paper by Obukhov (1946) and later Monin and Obukhov (1954). A history and
discussion of its evolution is given in Foken (2006). MOST is used in a lot of simplified models for ABLs.
Also, it is used in a lot of simulation approaches, either to define inflow conditions or as a wall-treatment
model. Aside from that, it was one of the most important developments in understanding the structure
and properties of the atmospheric surface layer. Therefore, an overview of Monin-Oblukhov Similarity
Theory is given, based on the discussion given by Wyngaard (2010).

MOST is based on dimensional analysis and the Buckingham Pi theorem. This theorem states
that when you know the 𝑚 − 1 governing parameters of a dependant variable, and 𝑛 is the number
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of dimensions, then 𝑚 − 𝑛 independent dimensionless quantities can be formed. The dimensionless
quantities can be arbitrarily chosen. Furthermore, the dependent variable can be taken as a function
of these 𝑚 − 𝑛 dimensionless quantities.

In MOST five parameters are considered to govern the quasi-steady turbulence structure above a
flat, horizontally homogeneous land surface. These parameters are: the length scale of the turbulence
𝐿, the velocity scale of the turbulence 𝑈, the mean temperature flux at the surface 𝑞𝑤, the mean surface
flux of a conserved scalar 𝐶0 and the buoyancy parameter 𝑔/𝜃0. In MOST the turbulence length scale
is taken as the distance 𝑧 from the surface and the turbulence velocity scale is taken as the friction
velocity 𝑢∗. It is assumed that the outer part of the boundary layer does not exert a significant influence
on the surface layer.

Among the parameters which are not considered to govern the turbulence structure in the surface
layer are the boundary-layer depth, as it was wrongly assumed that it does not directly influence surface
layer turbulence, and the mean velocity, to maintain Galilean invariance. Furthermore, the Coriolis
parameter was excluded as its influence is very small compared to the turbulent inertia: the Rossby
number is high. The molecular diffusivities are neglected because of high Reynolds number and the
roughness length, 𝑧0 is excluded, constituting an assumption of 𝑧 >> 𝑧0.

The five chosen parameters mean that 𝑚 = 6 with 𝑛 = 4 dimensions: length, time, temperature
and 𝑐. This means that 2 independent dimensionless quantities can be formed. MOST takes one as
the dependent variable (velocity, temperature or 𝐶) non-dimensionalised with z, the other is taken as
𝑧/𝐿𝑂 with 𝐿𝑂 the Obukhov length as given by (2.55).

MOST implies that the gradients of the mean wind speed, mean potential temperature and concen-
tration are given by (2.60), (2.61) and (2.62).

𝜅𝑧
𝑢∗
𝜕𝑢
𝜕𝑧 = 𝜙𝑚(

𝑧
𝐿𝑂
) (2.60)

− 𝜅𝑧𝑢∗𝑞𝑤
𝜕𝜃
𝜕𝑧 = 𝜙ℎ(

𝑧
𝐿𝑂
) (2.61)

− 𝜅𝑧𝑢∗𝐶0
𝜕𝐶
𝜕𝑧 = 𝜙𝑐(

𝑧
𝐿𝑂
) (2.62)

Functions 𝜙𝑚, 𝜙ℎ and 𝜙𝑐 are the same in all locally, quasi-steady surface layers. Examples of these
functions taken from experimental results are displayed in Figure 2.3.

Figure 2.3: Monin-Oblukhov functions for mean velocity gradient (left) and mean potential temperature gradient (right). Based
on the experimental results from Businger et al. (1971) and taken from Wyngaard (2010).
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According to Wyngaard (2010), the MOST functions for quasi-steady stable atmospheric conditions
were determined based on experimental results to be given by (2.63). However, many other expres-
sions do exist in literature.

𝜙𝑚 = 1.0 + 4.8
𝑧
𝐿𝑂
, 𝜙ℎ = 1.0 + 7.8

𝑧
𝐿𝑂

(2.63)

The same equations for quasi-steady unstable atmospheric conditions are displayed in (2.64).

𝜙𝑚 = (1 − 19.3
𝑧
𝐿𝑂
)
−1/4

, 𝜙ℎ = (1 − 12
𝑧
𝐿𝑂
)
−1/2

(2.64)

The functions given in (2.63) together with the expressions in (2.60) and (2.61) can be combined
to give expressions for the velocity and potential temperature in the surface layer close to the wall
displayed in (2.65).

𝑢(𝑧) = 𝑢∗
𝜅 (ln

𝑧
𝑧0
+ 4.8 𝑧𝐿𝑂

) , 𝜃(𝑧) = 𝜃(𝑧𝑟) −
𝑞𝑤
𝜅𝑢∗

(ln 𝑧
𝑧𝑟
+ 7.8 𝑧𝐿𝑂

) (2.65)

In (2.65), 𝑧0 is the surface roughness and 𝑧𝑟 is the reference height for the reference temperature.
Similar expressions are generated for unstable atmospheric conditions, however these tend to be more
complex. The expressions in (2.65) are used in wall functions of LES and RANS simulations to compute
the velocity and potential temperature in the wall cells.

2.2.3. Turbine Modelling
In order to be able to simulate the flow field in a wind farm, the wind turbines have to be included.
Generally, the methods to include these turbines can be divided into two approaches: direct modelling
in which the blades are discretised on a computational mesh and the generalised actuator disk approach
(Sanderse et al., 2011).

2.2.3.1. Direct Modelling
The most straightforward approach is to include the blades in the computational grid and directly model
the flow around the blades. This method is also the most accurate. However, this accuracy does
come at a cost: simulating the boundary layer on the blades including transition, separation and stall
is computationally very expensive. Especially, when this has to be done for multiple wind turbines
in a wind farm. Furthermore, capturing compressibility effects at the blade tips requires the use of
the compressible Navier-Stokes equations while the wakes are approximately incompressible, further
driving up the computational costs. Therefore, direct modelling is mainly used in research on single
turbine wakes, or research in which near-wake effects are important (Sanderse et al., 2011). Examples
of research which used this method is research done by Sørensen and Hansen (1998), Duque et al.
(1999) and Xu and Sankar (2000).

2.2.3.2. Generalised Actuator Disk Approach
Direct modelling is too computationally demanding for industry to simulate the flow for a whole wind
farm. Therefore, other, less demanding approaches are used. These approaches are based on gen-
eralised actuator disk theory. In this approach, the rotor is represented by an actuator disk, line or
surface. Because of this, the boundary layers on the blades do not have to be computed, alleviating
the computational demands. The actuator disk acts as a body force on the flow, so as a momentum
sink, leading to a discontinuity in pressure. The way in which the force term is included in the equations
depends on whether a disk, line or surface discretization is used. When a method based on this ap-
proach is used, one should also include sources of turbulence to account for the creation of mechanical
turbulence by the blades (Sanderse et al., 2011).

Actuator Disk
The basic form of the actuator disk methodology distributes the load exerted by the rotor uniformly over
the actuator disk. This is displayed in (2.66) where 𝐶𝑇 is the turbine thrust coefficient, 𝑉𝑟𝑒𝑙 is the local
velocity at the actuator disk and 𝐴 is the surface area.
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𝜌f = 1
2𝐶𝑇𝜌𝑉

2
𝑟𝑒𝑙𝐴 (2.66)

An adaptation of this approach to include a non-uniform force distribution is displayed in (2.67)
where 𝑐 is the local chord length of the rotor, 𝐶𝑙 and 𝐶𝑑 are the sectional lift and drag coefficient and eL
and eD are unit vectors in the lift and drag direction.

𝜌f2𝐷 =
1
2𝐶𝑇𝜌𝑉

2
𝑟𝑒𝑙𝑐(𝐶𝑙eL + 𝐶𝑑eD) (2.67)

This approach is similar to Blade Element Momentum Theory (BEM). However, the difference is in
the fact that the local velocity is taken from the flow field and not from an iterative procedure based
on global momentum balance as in BEM. This method gives a relatively accurate representation of
turbulent mixing in the far wake (further than three diameters) according to Allaerts (2016). However,
due to the simplifications made, inaccuracy is introduced in the near wake.

The largest source of inaccuracy introduced by the actuator disk approach is its reliance on the sec-
tional airfoil data. This data is often not complete due to the different conditions a turbine in a wind farm
encounters. A turbine in the wake of another turbine encounters different levels of turbulence which
can trigger very different stall regimes, significantly altering the lift and drag. Even though the inflow
angle might be the same. Furthermore, the fact that present day wind turbines make use of different
stall regimes makes it very difficult for the sectional data to accurately represent reality (Vermeer et al.,
2003).

Another problem with the actuator disk methodology is the fact that discontinuities introduced in
the pressure field can cause numerical oscillations. This is often solved by distributing the forces over
multiple cells using a Gaussian distribution (Réthoré, 2009).

Lastly, the actuator disk approach neglects induced tangential velocities by the rotor. Even though,
the rotation of the turbine causes significant rotation in the wake. This was solved in research by
Porté-Agel et al. (2010) and Wu and Porté-Agel (2011) which included rotation in the actuator disk
methodology. They also showed that the inclusion of non-uniformity and rotation significantly improved
the prediction of the mean velocity profile and turbulence intensity with respect to a uniformly loaded
disk.

Actuator Line
An extension of the actuator disk methodology is the actuator line approach introduced by Sørensen
and Shen (2002). In this approach, the line forces are not averaged over the disk but dependent on
time, making it unsuitable for steady RANS simulation. The advantage of this approach is also the
fact that it is able to compute distinct tip vortices. A drawback of this method is its reliance on 2D
airfoil data, just as with the actuator disk approach. When this data is used, it should be corrected for
Coriolis, centrifugal and tip effects according to Sanderse et al. (2011). Aside from the introduction by
Sørensen and Hansen (1998), examples of research employing the actuator line method are research
by Mikkelsen (2003) and Howard and Pereira (2006).

Actuator Surface
The actuator line method was extended to an actuator surface method by Shen et al. (2009). This
method represents the blade as a planar surface. As with the surface line method, its dependence on
time makes it unsuitable for RANS simulation. The fact that the forces are distributed over a surface,
more accurate airfoil date is needed. Instead of just the lift and drag coefficient, also the pressure and
skin-friction distributions over the surface is needed (Sanderse et al., 2011).

2.2.4. Adaptation of Navier-Stokes Equations for non-neutral ABL
As discussed in Subsection 2.2.1, the flow in the ABL has some very specific characteristics. These
characteristics can influence the governing equations in a myriad of ways. A lot of research has been
done about how the different phenomena can be included in these equations. Even the same phenom-
ena are included in many different ways in different pieces of research.
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2.2.4.1. Buoyancy Treatment
As discussed in Subsection 2.2.1 the ABL can be classified in a number of different states according
to thermal stability. While a lot of research has been done into the simulation of neutral boundary
layers where buoyancy effects are absent (for example Réthoré (2009)), more and more research
is done which includes the effects of thermal stability. In order to do this, generally the Boussinesq
approximation (Spiegel and Veronis, 1960) is applied together with an additional transport equation for
the potential temperature.

This Boussinesq approximation should not be confused with the Boussinesq hypothesis used in
turbulence modelling and its main assumption is that the adiabatic base state is independent of height.
This means that the base state is characterised by constant density 𝜌0, temperature 𝑇0 and potential
temperature 𝜃0. Furthermore, an important part of the Boussinesq approximation is the fact that all
density variations are neglected, except when they are multiplied with the gravitational acceleration
in the buoyancy term. This reduces the continuity equation to a requirement of non-divergent flow.
Another consequence is the linearization of the equation of state to (2.68) (Allaerts, 2016).

𝜌′
𝜌0
= −𝑇

′

𝑇0
= −𝜃

′

𝜃0
(2.68)

(2.68) couples 𝜌′ and 𝜃′ and, therefore, the buoyancy term in the momentum equation and the
transport equation for the potential temperature. This transport equation in a RANS simulation frame-
work means that not only the turbulence flux, but also the turbulent scalar flux has to be modelled. The
ways in which these two terms are modelled are discussed in Subsection 2.1.5.

Aside from that, a source/sink term of the form displayed in (2.69) is added to the 𝑘- and 𝜖-equations.
This is done to account for buoyant production and destruction of turbulence, in accordance to Koblitz
(2013).

𝐵 = −𝜇𝑡𝑔𝑖
𝜕𝜌
𝜕𝑥𝑖

(2.69)

The term in (2.69) is positive in unstable conditions and negative in stable conditions.

2.2.4.2. Coriolis force
The Coriolis force is a force exerted on the flow due to the rotation of the Earth. The magnitude of the
force is determined by the Coriolis parameter which is computed according to (2.70), where Ω𝐸 is the
rotational velocity of the Earth and 𝜙 is the latitude.

𝑓𝐶 = 2Ω𝐸 sin𝜙 (2.70)

The balance of the Coriolis force with the large scale pressure gradients determines the geostrophic
wind. However, for the scale of wind turbine simulations it used to be assumed that the Coriolis force
was of negligible impact. But the fact that wind turbines, and wind farms, become larger and larger
means that the Coriolis force becomes increasingly relevant in simulations. Research by Porté-Agel
et al. (2010) shows that for large wind turbines and wind farms the inclusion of the Coriolis force does
have an effect on the results. Furthermore, van der Laan et al. (2015a) showed that the wake of a wind
farm is significantly deflected due to the Coriolis effect. This drives more and more research to include
the Coriolis force in the simulations. For example, Allaerts (2016) investigated, amongst other things,
the effect of the Coriolis force on wind farm flow and Koblitz (2013) included the Coriolis force in his
RANS model for non-neutral ABL.

2.2.5. Overview of approaches in research
This section gives an overview of the simulation approaches used in research for wind farms in different
conditions of the atmospheric boundary layers. The discussion is split in two: LES approaches and
RANS approaches.

2.2.5.1. LES
According to Vermeer et al. (2003), the turbulence in the wake of a wind turbine in an ABL is generally
more isotropic than the outside flow. This makes LES a particularly suitable approach as the larger
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scales in the outside flow, where most anisotropy is, are resolved. While the smaller scales of turbu-
lence in the wake, which are more isotropic, are modelled. However, the major downside of this is the
large increase in computational demands when compared to RANS simulation. Troldborg et al. (2007)
used an actuator line approach together with LES to investigate the wake of wind turbines in turbulent
inflow. Turbulence was introduced by using time-varying body forces upstream of the wind turbine. It
confirmed the assumption that the turbulence inside the far wake tends to be more isotropic than the
outside flow. Furthermore, it confirmed that the main factor governing large scale motion of the wake
(wake meandering) are the large coherent structures of atmospheric turbulence.

Porté-Agel et al. (2010) introduced a framework for using LES to simulate wind farms in ABL
flow. This framework parameterises both SGS stress and SGS heat flux using the tuning-free scale-
dependent Lagrangian models introduced by Stoll and Porté-Agel (2006). These models optimise the
model coefficients locally based on the dynamics of the resolved scales. The framework, in combina-
tion with actuator line and actuator disk models, yielded good results when compared with wind-tunnel
measurements. Lu and Porté-Agel (2011) used the framework in combination with the actuator line
model to investigate a large wind farm in a stably-stratified ABL. Notable findings included the elim-
ination of the low-level jet due to energy extraction by the wind turbines and enhanced momentum
mixing, non-axisymmetric wakes due to the Coriolis effect, non-uniform incoming turbulence and blade
rotations. Also, the height of the stable boundary layer was increased. The framework is also used to
investigate the impact of wind farms on a convective ABL by Lu and Porté-Agel (2015). Results showed
a modification of the stability of the ABL in the presence of a wind farm. Furthermore, the presence
of a wind farm increases turbulence, reduces wind speed and increases the height of the ABL. Lastly,
the framework was improved upon with a new SGS model by Lu and Porté-Agel (2013). This model
computes the structure of the SGS flux based on the normalised gradient vector. This improved model
showed good correspondence with reference results.

An LES study based on the framework from Porté-Agel et al. (2010), combined with an actuator disk
model with rotation, was performed by Abkar and Porté-Agel (2015). This study found that stability has
a significant influence on the spatial distribution of the mean velocity deficit, turbulence intensity and
turbulent momentum fluxes. Furthermore, this method was used to simulate a whole diurnal cycle by
Abkar et al. (2016). It showed that ABL flow is almost never steady in nature, making it difficult for
RANS to simulate it properly.

Witha et al. (2014) used LES with an actuator disk model to investigate wind farms in different
thermal stratification regimes and discovered that the turbulence intensity increases with each turbine
the flow passes. However, after a number of wind turbines the wake deficit does not increase anymore.
Dörenkämper et al. (2015) used the standard SGS flux closure by Deardorff (1980) in combination with
an actuator disk with rotation to investigate the impact of stable ABL on wind turbine wakes. He found
that wake effects in the stably stratified ABL were up to twice as strong as in an unstable ABL. This
leads to a difference of up to 20% in power output. Furthermore, it was shown that turbines tend to
reduce stability of the ABL. The rotors enhance mixing, neutralizing a stable ABL.

Johnstone and Coleman (2012) investigated the interaction between a large wind farm and the fully
developed ABL with Coriolis effects. A DNS with artificially low Reynolds number was applied and it
showed that the work by the driving pressure gradient can vary in two ways to balance the sum of
turbulent energy dissipation and farm energy extraction. The boundary layer can become thicker or
the wind can rotate towards the pressure gradient.

Lastly, Allaerts (2016) performed LES simulations of wind farms in conventionally neutral and stable
ABLs. This work focused on the influence of atmospheric stability, inversion layers and the Coriolis ef-
fects. The characteristic length scales in stable boundary layers are smaller than for neutral or unstable
ABLs, which makes the SGS-model more important. Allaerts (2016) used only eddy viscosity models
that did not require additional filtering operations. A TKE model by Deardorff (1980) and a stability de-
pendent Smagorinsky model by Stevens et al. (2000) were used together with a non-rotating actuator
disk method. Both SGS-models yielded results which corresponded well with reference results.

2.2.5.2. RANS
According to Vermeer et al. (2003) the 𝑘 − 𝜖 turbulence model is best suited for wind farm simulations
where far wake phenomena are more important and 𝑘 − 𝜔 SST is better for near wake simulations.
However, research by Réthoré (2009) shows that the 𝑘 − 𝜖 model does have a lot of shortcomings
when simulating wind farms in atmospheric boundary layers. According to Réthoré (2009) it is difficult
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for RANS to model the complex interaction between different turbulence scales as all scales are mixed
together. However, the 𝑘 − 𝜖 model together with the actuator disk model does give the fastest results.
The standard 𝑘 − 𝜖 model largely overpredicts wake recovery compared to measurements. Further-
more, it fails to model the anisotropy of turbulence quantities. Réthoré (2009) gives two main reasons
for this: the eddy viscosity assumption is not valid in the near wake region and the effect of the turbine
on the turbulence mean quantities is not considered in the transport equations of the turbulence model.

In an attempt to overcome these shortcomings, the 𝑘 − 𝜖 − 𝑓𝑃 model was introduced by van der
Laan et al. (2015b). This model was based on previous research on non-linear eddy viscosity models
by van der Laan et al. (2013). This research found that non-linear eddy viscosity models were superior
in the simulation of wind turbine wakes compared to linear eddy viscosity models. However, they were
also much more numerically unstable. It was concluded that the performance increase could mainly be
attributed to the flow dependence of the 𝐶𝜇 coefficient in the computation of the turbulent eddy viscosity
for the non-linear eddy viscosity models. Therefore, a linear eddy viscosity model with a flow-dependant
𝐶𝜇 was created in the 𝑘 − 𝜖 − 𝑓𝑃 model (van der Laan et al., 2015b). This model multiplied the original
𝐶𝜇 coefficient with a flow dependant factor 𝑓𝑃. This factor is computed according to (2.71), where 𝑓0 is
computed by (2.72) and 𝐶𝑅 is the Rotta constant which is calibrated against LES results to be 4.5

𝑓𝑃(
𝜎
𝜎̃) =

2𝑓0
1 + √1 + 4𝑓0(𝑓0 − 1)(

𝜎
𝜎̃ )
2

(2.71)

𝑓0 =
𝐶𝑅

𝐶𝑅 − 1
(2.72)

In (2.71) 𝜎 is the local shear parameter computed according to (2.73). This parameter is used to
determine how far the flow deviates from the log-law regime of a simple shear flow. In regions with a
high shear parameter, 𝑓𝑃 is smaller than 1 and the eddy viscosity is decreased. This results in a lower
prediction of wake recovery.

𝜎 = 𝑘
𝜖
√(𝜕𝑢𝑖𝜕𝑥𝑗

)
2

(2.73)

This model is shown to yield more accurate predictions for the velocity deficit over the standard
𝑘 − 𝜖 model in van der Laan et al. (2015b). van der Laan et al. (2015c) showed that the model also
is more accurate for double wind turbine set-up and van der Laan et al. (2015d) tested the model for
three different wind farm set-ups. The model shows better results for wind farms, especially for the
near wake. This yields better power predictions for the first downstream wind turbines. However, the
difference between the standard 𝑘−𝜖 and 𝑘−𝜖−𝑓𝑃 models becomes smaller for wind turbines further
downstream. Furthermore, the difference in predictions becomes smaller for increasing wind farm size
and wind turbine spacing. Moreover, when the wind direction is not aligned with the wind turbines,
the difference between the two models becomes negligible. This can be attributed to the fact that the
𝑘 − 𝜖 − 𝑓𝑃 is still a linear eddy viscosity model and has trouble modelling anisotropic flows.

When including thermal stratification in the simulation, buoyancy forces are introduced which have
a significant impact on the turbulence characteristics. This means that the standard 𝑘 − 𝜖 or 𝑘 − 𝜖 −
𝑓𝑃 model are not sufficient to simulate non-neutral ABLs. Aside from including the buoyancy forces
in the momentum equation, the adaptation is usually done by introducing additional source and sink
terms in the transport equations for the TKE and 𝜖. Rodi (1987) proposed a buoyancy extended 𝑘 − 𝜖
model. Duynkerke (1988) proposed to modify the model constants to be able to simulate neutral and
stable boundary layers. This method is shown to be inadequate in maintaining turbulence profiles and
inconsistent with the transport equations in stable conditions by Huser et al. (1997). This was due
to the missing buoyancy source terms in the transport equation for TKE according to Vendel et al.
(2010). Wyngaard (1975) and Brost and Wyngaard (1978) used a constant surface cooling rate in
order to obtain quasi-steady conditions. According to Sogachev et al. (2012), the lack of a consistent
formulation of the length scale determining equation for 𝜖 has limited the practical use of these closures.

MOST is often used to validate ABL models. However, it has multiple shortcomings. MOST is only
valid in the surface layer and it has underlying assumptions of homogeneity and stationarity which only
appear in idealised cases. Therefore, Sogachev et al. (2012) concluded that MOST is not applicable for
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significant amounts of the day due to the unsteady nature of the ABL. This also lead to the formulation of
a consistent closure model for 𝑘 − 𝜖 model, that includes buoyancy and vegetation effects, which does
not rely on MOST in Sogachev et al. (2012). This closure model is not limited to homogeneous surfaces
and steady state ABL conditions. Koblitz (2013) used the closure model from Sogachev et al. (2012) to
simulate non-neutral ABLs. It was concluded that the vertical structure of the ABL highly depends on
surface conditions which continuously change in time, leading to the use of unsteady RANS (URANS)
in the simulations.

Rodrigo et al. (2008) also modified the 𝑘 − 𝜖 model in order to account for thermal stratification and
be in equilibrium with MOST. Even though the shortcomings of MOST are pointed out. Cabezón et al.
(2011) compared four different closure models to simulate a wind turbine in ABL flow. The standard
𝑘−𝜖 model by Jones and Launder (1972), the standard 𝑘−𝜖 model with a correction in the 𝜖 equation
proposed by El Kasmi and Masson (2008), the realizable 𝑘−𝜖 model which formulates a new turbulent
viscosity, includes a new transport equation for the dissipation rate and is proposed in Shih et al. (1995).
The last model considered is the Reynolds Stress Model by Gibson and Launder (1978). Cabezón et al.
(2011) concluded that the standard 𝑘 − 𝜖 model leads to underestimations of the wind speed deficit in
the stable ABL. The Reynolds Stress Model gave better results when compared to LES data, at the
cost of higher computational demands.

2.3. Machine Learning in Wind Farm Simulation
Machine learning is a term used to describe a wide range of data-driven techniques within the broader
field of artificial intelligence. A short discussion is given based on Duraisamy et al. (2019). For a
more complete discussion of the various machine learning techniques, Shalev-Shwartz and Ben-David
(2014) can be referred to.

Usually machine learning methods are categorised in two categories: unsupervised and supervised
learning.

In unsupervised learning there are no specific targets to predict. Instead, the goal is to discover
patterns and reduce complexity. Examples of unsupervised learning techniques are clustering, which
is grouping data points based on similarity, and dimension reduction, which is identifying the dependent
variables that describe the data.

Supervised learning, on the other hand, constructs a mapping of the inputs to the outputs. When
the output is categorical, the technique is referred to as classification. If the output is continuous, the
technique is referred to as regression. Examples of supervised learning techniques are random forests,
support vector machines and neural networks.

This section mainly focuses on the machine learning techniques used in turbulence and turbulent
scalar flux modelling. Special attention is given to the SpaRTA method as it will be used in improving
RANS simulation for wind farms in stable atmospheric boundary layers.

2.3.1. Machine Learning in Turbulence Modelling
Duraisamy et al. (2019) gives an overview of the different ways data is being used in turbulence mod-
elling. To do that four levels of simplifications related to RANS closure are identified.

• L1: uncertainties introduced by ensemble averaging that are fundamentally irrecoverable.

• L2: uncertainties in the functional and operational representation of the Reynolds stress.

• L3: uncertainties in the functional forms within a model.

• L4: uncertainties in the coefficients within a model.

A lot of work is done in quantifying the uncertainties introduced in the different levels. For example,
Oliver and Moser (2011) and Cheung et al. (2011) used DNS data from plane channel flow, in combina-
tion with Bayesian inference, to compute posterior probability distributions of model parameters used in
several different turbulence models. This quantifies L4-uncertainties and more research is done to do
this. However, focus is on approaches which aim to improve the accuracy of the predictions of RANS
simulations.

Tracey et al. (2013) used machine learning to reconstruct discrepancies in the anisotropy tensor.
Starting from the eigenvalue decomposition as discussed in Subsection 2.1.6, perturbations to the
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eigenvalues were derived at every spatial location using a DNS data set. These perturbations were
mapped into a feature space containing functions of relevant quantities, such as mean velocity gradi-
ents and turbulence quantities. This mapping was done via Gaussian process regression based on
DNS data. The resulting discrepancy was relatively accurate. This was a starting point of a lot of re-
search that combines turbulence modelling, statistical inference, uncertainty quantification and learning
strategies, according to Duraisamy et al. (2019).

Wang et al. (2017) and Wu et al. (2018) improved this perturbation strategy in order to predict dis-
crepancies in themagnitude, anisotropy and orientation of the Reynolds stress tensor. These strategies
were applied to separated flows over periodic hills and secondary flows in a square duct, significantly
improving predictions of the Reynolds stress anisotropy and mean velocities.

As discussed in Subsection 2.1.7 it is important to ensure Galilean invariance of learned Reynolds
stress models. Tracey et al. (2013), Wang et al. (2017) and Wu et al. (2018) used tensor invariants
based on the eigenvalue decomposition of the Reynolds stress, while Wu et al. (2019) considered using
Euler angles and unit quaternions for representation of the orientation of the Reynolds stress. Pope
(1975) already introduced a formulation of a more generalised expansion of the Reynolds stress ten-
sor. This expansion is based on five invariants and ten linearly independent basis tensors. Based on
the generalised expansion by Pope (1975), Ling et al. (2016c) proposed a neural network architecture
with embedded invariance properties to learn the coefficients, 𝑔(𝑛), of the Reynolds stress expansion.
This architecture had a good predictive capability, but lacked an explicit expression for the resulting
model. Weatheritt and Sandberg (2016, 2017) used symbolic regression and gene expression pro-
gramming to learn expressions for the coefficient functions 𝑔(𝑛) in the context of algebraic Reynolds
stress models. These approaches yielded explicit models that are suitable for implementation. The
models were learned based on DNS data of flow over a backwards facing step at a low Reynolds
number and used to predict flow at a high Reynolds number, which yielded reasonably good results.
However, the results still showed a high level of uncertainty when applying the models to flow over peri-
odic hills. Lastly, Tracey et al. (2015) did a proof of concept study to learn known turbulence modelling
terms from data using neural networks demonstrating the viability of using machine learning methods
in a hybrid PDE/neural networks setting.

2.3.2. Machine Learning in Turbulent Scalar Flux Modelling
The methods described in the previous section are also being used in order to create new, more ac-
curate models for the turbulent scalar flux. As described in Subsection 2.1.5 the prevalent methods
in the field are currently based on the gradient-diffusion hypothesis. However, the gradient-diffusion
hypothesis has significant shortcomings, leading to the introduction of machine learning in turbulent
scalar flux modelling.

Milani et al. (2018) tries to improve turbulent scalar flux predictions by using a random forest al-
gorithm to infer an improved turbulent diffusivity field, purely based on local flow quantities which are
computed in 𝑘 − 𝜖 RANS simulations. These features are the mean velocity gradient, mean scalar
gradient, distance to the nearest wall and the eddy viscosity. They are non-dimensionalised in order
to maintain dimensional consistency. To maintain Galilean invariance invariant tensor basis functions
are created from the features. The random forest method is trained using data from a skewed jet in
crossflow and a wall mounted cube in crossflow and trained using data from an inclined jet in cross-
flow. The results showed significant quantitative and qualitative improvements over the baseline RANS
case, where the turbulent diffusivity is computed using a constant turbulent Prandtl number. Especially,
temperature predictions at the wall were improved. This model is further analysed in Milani et al. (2019)
where a slight adjustment is made to the numerical scheme for solving the scalar equation, leading to
improved results. Also, the model is tested for an inclined jet in favourable pressure gradient crossflow.
In order to gain a more physical understanding of the created model, an investigation to the importance
of the different features is performed. The most important features are the Reynolds number based on
wall-distance and the turbulent viscosity ratio, even though roughly 55% of the results are determined
by features based on the velocity gradient and mean scalar gradient. Lastly, the ability of this ran-
dom forest model to generalise beyond the training data is investigated in Milani et al. (2020b). Again
small adjustments with respect to the model from Milani et al. (2018) are made. In Milani et al. (2020b)
LES-based mean quantities are used as input in stead of RANS quantities. Furthermore, the turbulent
diffusivity extracted from LES computations and used in training are extracted in a different way, miti-
gating the underestimation of turbulent diffusion. The results show improvement of mean temperature
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results. In order to improve the results even further, machine learning should be used in conjunction
with a more advanced, anisotropic model for the turbulent heat flux.

Sandberg et al. (2018) employed gene expression programming to symbolically regress nonlinear
explicit algebraic stress models and heat flux closures. The Reynolds stress closure was based on
Pope (1975) and the heat flux closure was very similar to Milani et al. (2018). The heat flux closure
approach was still based on the gradient-diffusion hypothesis or generalised gradient hypothesis. The
gene expression programming is used to develop models for the turbulent diffusivity based on eight
tensor basis functions based on the non-dimensionalised temperature gradient, strain rate and rotation
rate tensors. Furthermore, the model coefficients are functions of four independent invariants. This
approach is applied to a fundamental trailing edge slot and results show significant improvement over
the baseline RANS case.

Weatheritt et al. (2019) used the gene expression programming framework introduced by Sandberg
et al. (2018) to develop scalar-flux models via symbolic regressions. The aim was to develop a more
general scalar-flux closure as opposed to Sandberg et al. (2018) and Milani et al. (2018), which still
relied on the gradient-diffusion hypothesis. This was done similarly to the approach of Pope (1975) for
the Reynolds stress. Younis et al. (2005) identified ten basis functions and five invariants based on the
non-dimensionalised Reynolds stress, strain rate and rotation rate tensors and the non-dimensionalised
temperature gradient. In order to simplify the resulting model, Weatheritt et al. (2019) only used three
tensor basis functions which were chosen based on alignment and regression power arguments. The
resulting model was applied to jets in crossflow showing promising results.

Sotgiu et al. (2018) also created a turbulent heat flux prediction framework based on tensor rep-
resentation theory from Younis et al. (2005). This Galilean invariant tensor representation allows the
model to simulate anisotropic thermal diffusivities, as opposed to the gradient-diffusion hypothesis.
However, only a few of the terms proposed in Younis et al. (2005) are kept, as more terms leads to
irregular coefficient curves. Sotgiu et al. (2018) used a neural network in order to define the model
coefficients as functions of invariants of the non-dimensional shear rate and Reynolds stress. The
method is validated for a Poiseuille flow at different Reynolds numbers and showed improved results.
This neural network framework is also shown to work for creating models for the Reynolds stress in
Sotgiu et al. (2019).

Milani et al. (2020a) modified the machine learning approach from Ling et al. (2016a) for scalar flux
closure. This constitutes a deep neural network with embedded coordinate frame invariance. As in
Milani et al. (2018) the model is dependant on the non-dimensionalised symmetric and anti-symmetric
parts of the mean velocity flux, the non-dimensionalised mean scalar gradient, turbulent viscosity ratio
and Reynolds number based on wall distance. However, Milani et al. (2020a) identified 15 invariants
and six tensor basis functions based on Zheng (1994). The final model takes the form of the gradient-
diffusion hypothesis with a turbulent diffusivity tensor in stead of a turbulent diffusivity scalar. The model
is validated with good results for inclined jets in crossflow for multiple blowing ratios.

Lastly, Kim and Lee (2020) applied a convolutional neural network to predict the wall-normal heat
flux at the wall based only on nonlinear combinations of the wall shear stress in stream-wise and span-
wise direction and the pressure fluctuations at the wall. This was done on the notion that the prediction
of the turbulent heat transfer in RANS (and LES) is much less accurate than the prediction of skin
friction. The results were more accurate when compared to the baseline RANS case and to simple
linear and multiple linear regression.

In the future, the machine learning approaches can be improved from a better understanding where
uncertainties and errors come from. This is why this field also receives significant attention. For ex-
ample, Hao and Gorlé (2020) investigated the effects of pressure scrambling on the quantification of
turbulent scalar flux model uncertainties.

2.3.3. SpaRTA Method
The SpaRTA method is introduced in Schmelzer et al. (2020) and aims to improve RANS simulation by
learning correction terms for the turbulence anisotropy and TKE production. Schmelzer et al. (2020)
tested the method for periodic hills, a converging-diverging channel and a curved backwards facing
step. For these fundamental flows the models yielded systematic improvements over the baseline.
Even models trained for one flow performed well for flows outside training range but with similar fea-
tures. Steiner et al. (2020) applied the method to wind farms in neutral conditions. The results were
encouraging, but improvement is still needed. Especially, the learned corrections for the anisotropy



26 2. Background of Wind Farm Simulation and Machine Learning

tensors showed issues. Steiner et al. (2022) improved on this by expanding the library of features and
introducing a supplemental scalar correction term for the TKE production correction. Within the learned
models cancellation between different terms of complex models was observed due to the fact that the
dataset requires large corrections in the wake and small corrections in the outside flow. Therefore
Steiner et al. (2021) introduced a classifier which differentiates between the wake and outside flow.
The current report is meant as a first step in expanding the SpaRTA methodology to wind farms in sta-
ble atmospheric boundary conditions, as such the classifier is considered too advanced and the focus
of the following sections is on the methodology as described in Steiner et al. (2022).

2.3.3.1. Derivation of Optimal Correction Terms
The first step in the SpaRTAmethodology is finding the optimal way to correct the RANS equations such
that they match the time-averaged LES results in terms of mean velocity and turbulence intensity. To do
that, the turbulence equations of the RANS simulation are solved with frozen time-averaged LES fields
for velocity, 𝑢̅𝐿𝐸𝑆, turbulence kinetic energy, 𝑘̅𝐿𝐸𝑆, and Reynolds stresses, ̅𝜏𝐿𝐸𝑆𝑖𝑗 . Two correction terms
are added to the transport equations: a correction of the anisotropy tensor, 𝑏Δ𝑖𝑗, and a correction of the
turbulence kinetic energy production, ℛ. The correction term for the TKE is included in the transport
equations as displayed in (2.74) and (2.75), where all frozen time-averaged quantities extracted from
the LES data are denoted with a ⋅̂ and 𝜎𝑘 , 𝐶𝜖1, 𝐶𝜖2 and 𝜎𝜖 are coefficients. This method is called the
k-corrective frozen approach.

𝐷𝑘̂
𝐷𝑡 = 𝒫̂𝑘 +ℛ − 𝜖 +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜎𝑘𝜈𝑡)𝑘̂] (2.74)

𝐷𝜖
𝐷𝑡 = [𝐶𝜖1(𝒫̂𝑘 +ℛ) − 𝐶𝜖2𝜖]

𝜖
𝑘̂
+ 𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜎𝜖𝜈𝑡)𝜖] (2.75)

The production term in (2.74) and (2.75) is computed according to (2.76) where the correction for
the anisotropy tensor is included according to (2.77).

𝒫̂𝑘 = 2𝑘̂𝑏̂𝑖𝑗
𝜕𝑢̂𝑖
𝜕𝑥𝑗

(2.76)

𝑏̂𝑖𝑗 = −
𝜈𝑡
𝑘̂
𝑆̂𝑖𝑗 + 𝑏Δ𝑖𝑗 (2.77)

The optimal values of the correction terms are computed by iteratively solving (2.74) and (2.75).

2.3.3.2. Feature Selection
In order to make a library of candidate functions, the generalised eddy viscosity formulation by Pope
(1975), which is explained in Subsection 2.1.7, is used. This means that the anisotropic part of the
Reynolds stress tensor is modelled as displayed in (2.78).

𝑏Δ𝑖𝑗 =
10

∑
𝑛=1

𝑇(𝑛)𝑖𝑗 (𝑆𝑖𝑗 , Ω𝑖𝑗)𝑔
𝑏Δ𝑖𝑗
𝑛 (𝜆𝜆𝜆,q) = 𝐶𝑏Δ𝑖𝑗Θ𝑏Δ𝑖𝑗 (2.78)

In (2.78) the tensors and invariance are based on the strain rate and rotation rate tensors. A similar
expression is also formulated for the production correction term in (2.79). However, (2.79) also contains
a more general scalar correction, made dimensionally sound through multiplication with 𝜖. This is done
to capture errors in the production term itself, as well as the other model-form errors. An example of
the latter is the omission of the effect of the rotor forcing on the turbulence.

ℛ = 2𝑘
10

∑
𝑛=1

𝑇(𝑛)𝑖𝑗 𝑔ℛ𝑛 (𝜆𝜆𝜆,q)
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜖 ⋅ 𝑔ℛ𝜖 (𝜆𝜆𝜆,q) = 𝐶ℛΘℛ (2.79)

Generally, the SpaRTA methodology uses only the first four tensor basis functions of the eddy
viscosity formulation from Pope (1975) displayed in (2.80). This is done as the first four tensors are
considered sufficient in capturing the main flow correction phenomena.
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𝑇(1)𝑖𝑗 = 𝑆𝑖𝑗
𝑇(2)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑗 − Ω𝑖𝑘𝑆𝑘𝑗

𝑇(3)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑗 −
1
3𝛿𝑖𝑗𝑆𝑚𝑛𝑆𝑛𝑚

𝑇(4)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑗 −
1
3𝛿𝑖𝑗Ω𝑚𝑛Ω𝑛𝑚

(2.80)

Aside from the changed model formulation for the TKE production correction, Steiner et al. (2022)
also significantly increased the library of features with respect to the original formulation from Pope
(1975). The invariants are now taken of the set {𝑆𝑖𝑗 , Ω𝑖𝑗 , 𝐴𝑝𝑖𝑗 , 𝐴𝑘𝑖𝑗}, the definitions of which are given in
Table 2.1.

Table 2.1: Set of tensors on which the invariants used in the regression of the correction terms are based.

Tensor ID Definition Normalisation

𝑆𝑖𝑗
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖
) 𝜖

𝑘

Ω𝑖𝑗
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖
) 𝜖

𝑘

𝐴𝑘𝑖𝑗 −𝕀 × ∇𝑘 𝜖
√𝑘

𝐴𝑝𝑖𝑗 −𝕀 × ∇𝑝 𝜌0 ‖𝑢∇𝑢‖

Increasing the tensor set makes the pressure and turbulence kinetic energy gradients available to
the models. This is done because Kaandorp and Dwight (2020) proved that invariants of 𝑆𝑖𝑗 and Ω𝑖𝑗
are insufficient to represent the required correction 𝑏Δ𝑖𝑗. The set of resulting invariants are displayed in
Table 2.2.

Table 2.2: Invariant bases, number of symmetric and anti-symmetric tensors for each invariant are indicated by 𝑛𝑠 and 𝑛𝑎,
respectively. The invariant bases are the trace of the tensors listed. The asterisk on a invariant bases indicates that also the
cyclic permutation of the anti-symmetric tensors are included (Steiner et al., 2022).

(𝑛𝑠 , 𝑛𝑎) Feature Index Invariant bases
(1,0) 1-2 S2, S3
(0,1) 3-5 ΩΩΩ2, A2𝑝, A2𝑘
(1,1) 6-14 ΩΩΩ2S, ΩΩΩ2S2, ΩΩΩ2SΩΩΩS2

A2𝑝S, A2𝑝S2, A2𝑝SA𝑝S2

A2𝑘S, A
2
𝑘S

2, A2𝑘SA𝑘S
2

(0,2) 15-17 ΩΩΩA𝑝, A𝑝A𝑘, ΩΩΩA𝑘
(1,2) 18-41 ΩΩΩA𝑝S, ΩΩΩA𝑝S2, ΩΩΩ2A𝑝S∗, ΩΩΩ2A𝑝S2∗, ΩΩΩ2SA𝑝S2∗

ΩΩΩA𝑘S, ΩΩΩA𝑘S2, ΩΩΩ2A𝑘S∗, ΩΩΩ2A𝑘S2∗, ΩΩΩ2SA𝑘S2∗
A𝑝A𝑘S, A𝑝A𝑘S2, A2𝑝A𝑘S∗, A2𝑝SA𝑘S2∗

(0,3) 42 ΩΩΩA𝑝A𝑘
(1,3) 43-47 ΩΩΩA𝑝A𝑘S, ΩΩΩA𝑘A𝑝S, ΩΩΩA𝑝A𝑘S2, ΩΩΩA𝑘A𝑝S2, ΩΩΩA𝑝SA𝑘S2

Complementary to the invariants displayed in Table 2.2, Steiner et al. (2022) also uses a set of
additional physics based invariants. These physical features are displayed in Table 2.3
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Table 2.3: Physics interpreted flow features. For each feature the physical description is denoted including the raw feature with
its normalisation. The features that are not Galilean invariant are marked with a †(Steiner et al., 2022).

ID Description Raw Feature Normalisation

𝑞𝑄 Ratio excess rotation rate to strain rate (Q cri-
terion)

1
2(‖ΩΩΩ‖

2 − ‖S‖2) ‖S‖2

𝑞†𝑇𝐼 Turbulence Intensity 𝑘 1
2𝑢𝑖 𝑢𝑖

𝑞𝑅𝑒𝐷 Wall distance based Reynolds number √𝑘𝑑
50𝜈 -

𝑞†𝜕𝑝𝜕𝑠 Pressure gradient along streamline 𝑢𝑘
𝜕𝑃
𝜕𝑥𝑘

√ 𝜕𝑃
𝜕𝑥𝑗

𝜕𝑃
𝜕𝑥𝑗
𝑢𝑖 𝑢𝑖

𝑞𝑇 Ratio of mean turbulent to mean strain time
scale

𝑘
𝜖

1
‖S‖

𝑞𝜈 Viscosity ratio 𝜈𝑡 100𝜈
𝑞†⊥ Non-orthogonality velocity and its gradient |𝑢𝑖 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
| √𝑢𝑙 𝑢𝑙 𝑢𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
𝑢𝑘

𝜕𝑢𝑘
𝜕𝑥𝑗

𝑞†𝒞𝑘/𝒫𝑘 Ratio convection to Boussinesq production of
TKE

𝑢𝑖
d𝑘
d𝑥𝑖

|𝑢′𝑗𝑢′𝑘𝑆𝑗𝑘|

𝑞𝜏 Ratio total to normal Boussinesq Reynolds
stresses

‖𝑢′𝑖𝑢′𝑗𝐵𝑆‖ 𝑘

𝑞𝛾 Shear parameter ||𝜕𝑢𝑖𝜕𝑥𝑗
|| 𝜖

𝑘

𝑞†𝐹 Actuator forcing ||𝐹𝑐𝑒𝑙𝑙||
1
2𝜌0𝐴𝑐𝑒𝑙𝑙‖𝑢‖

In order to compute the library of model features, all the invariants and physical features in Ta-
ble 2.2 and Table 2.3 are recombined with each other up to a maximum of three features. After which,
exponentiation is applied by −1, −12 ,

1
2 and 2. These are then multiplied with the four basis tensors

displayed in (2.80) to achieve the final feature set. This feature set is vastly bigger than the feature
set from Pope (1975), together with the generally large data vectors in CFD simulation, means that a
preliminary step has to be taken to reduce the feature library. This is done using two methods: mutual
information and cliqueing.

Mutual Information
The first method to reduce the library is by estimating the mutual information between the invariants,
features and the targets. This determines whether a feature is relevant for inclusion in the regression.
Mutual information is used for this as it gives an estimation of the amount of information (in bits) is
obtained about the output, given an observation of the input. This means that the method does not rely
on any a priori assumptions about the models, contrary to correlation coefficients, which relies on the
linearity assumption. For continuous random variables 𝑋 and 𝑌, the mutual information between them
is defined as (2.81) (Ver Steeg and Galstyan, 2013).

𝑀𝐼(𝑋; 𝑌) = ∫
𝒴
∫
𝒳
𝑝𝑋,𝑌(𝑥, 𝑦)log

𝑝𝑋,𝑌(𝑥, 𝑦)
𝑝𝑋(𝑥)𝑝𝑌(𝑦)

𝑑𝑥𝑑𝑦 (2.81)

In (2.81) 𝑝𝑋,𝑌 is the joint probability density function and 𝑝𝑋 and 𝑝𝑌 are the marginal probability
functions of random variables 𝑋 and 𝑌. In practise, these underlying probability density functions are
unknown and have to be estimated. Generally this is done in either of two ways: through kernel den-
sity estimators (Moon et al., 1995) or through k-nearest neighbour distances (Walters-Williams and Li,
2009). According to Goderie (2020), k-nearest neighbour is the most suitable for the current applica-
tion as it has a lower computational cost, gives more accurate estimates of the mutual information,
with less variation and the setting of its parameter is more straightforward than for the kernel density
estimators. The k-nearest neighbours method estimates the mutual information between two random
variables through (2.82) (Ver Steeg, 2000).
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𝑀𝐼(𝑋; 𝑌) = 𝜓(𝑘) + 𝜓(𝑁) − 1
𝑁

𝑁

∑
𝑖=1
(𝜓(𝑛𝑥(𝑖) + 1) + 𝜓(𝑛𝑦(𝑖) + 1)) (2.82)

In (2.82), 𝜓 is the digamma function, 𝑁 is the number of samples and 𝑛𝑥 and 𝑛𝑦 are the number
of points in 𝑥 and 𝑦 within the maximum normal distance to the 𝑘th nearest neighbour. This method
assumes that the probability density function is constant within the maximum normal distance to the
𝑘th nearest neighbour.

Cliqueing
Mutual information is used to eliminate irrelevant invariants and physical features before they are com-
bined with each other. However, after the combination another technique is used: cliqueing. This
technique is applied as there is inherently a lot of multi-collinearity within the library. Therefore, the
correlation coefficient is computed between all combined features. Cliques of multiple features are
formed when the correlation coefficients between them are all above 0.99. From these cliques the al-
gebraically simplest features are kept and the rest discarded from the library. This can be done as the
data is insufficient to distinguish between them anyway. Furthermore, a linear measure of correlation
can be used in this case, as the combined features are linearly combined in (2.78).

2.3.3.3. Regression of Correction Terms
Then, elastic net regression is applied to identify the important terms, as displayed in (2.83).

Θ = min
Θ̂
[ ‖𝐶Θ̂ − 𝑏Δ𝑖𝑗‖

2

2
+ 𝛼𝜌𝑚 ‖Θ̂‖1 + 0.5𝛼(1 − 𝜌𝑚) ‖Θ̂‖

2
2 ] (2.83)

Elastic net regression is a mixture of Lasso regression and Ridge regression. Lasso regression
promotes sparsity by allowing only a few nonzero coefficients and shrinking the rest to zero. This
creates simpler models. Ridge regression enforces relatively small coefficients. Small coefficients
lead to models with better convergence properties when implemented in CFD simulations. In (2.83) 𝛼
is the regularisation weight and 𝜌𝑚 is the mixing parameter. A larger value of 𝛼 will lead to a model with
less terms. The best values of 𝜌𝑚 and 𝛼 are not known a priori. Therefore, the elastic net regression
is performed using multiple different combinations of the two values, each yielding a model.

Once a model is found from the elastic net, the unnecessary entries in the libraries are removed and
themodel coefficients are calibrated using Ridge regression as displayed in (2.84). 𝜆𝑅 is a regularization
parameter which ensures the magnitude of the coefficients are not too far apart.

Θ = min
Θ̂
[ ‖𝐶Θ̂ − 𝑏Δ𝑖𝑗‖

2

2
+ 𝜆𝑅 ‖Θ̂‖

2
2 ] (2.84)

The Ridge regression yields models for all values of 𝜆𝑅 for all input model structures. Then, a few
models are hand-picked and tested against high-fidelity data.

2.3.3.4. Implementation in Simulation
When implementing the models trained in the previous section into CFD simulations, Steiner et al.
(2021) and Steiner et al. (2022) showed there were two steps which had to be taken specific for this
methodology.

Blending
The first thing which is implemented is the blending of the correction terms close to the top and bottom
of the domain to zero. This is done in order to avoid interaction between the correction terms and the
boundary conditions, specifically the wall model. Steiner et al. (2022) used a simplified version of the
blending function from Menter (1994), which is displayed in (2.85).

𝐹𝛽(𝑧) =
⎧

⎨
⎩

tanh [( 𝑧
𝑧𝑙𝑜𝑤,𝛽

)
𝛼
]) for 𝑧 ≤ 𝑧𝑚𝑖𝑑

tanh [( 𝑧𝑚𝑎𝑥−𝑧
𝑧𝑚𝑎𝑥−𝑧𝑢𝑝,𝛽

)
𝛼
]) for 𝑧 > 𝑧𝑚𝑖𝑑

(2.85)

The blending parameter, 𝛼, in (2.85) is chosen to be 4 and the lower and upper bounds for the
blending was chosen for the correction to be zero in the first cell centre.
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Limiters
In Steiner et al. (2021) numerical instabilities related to the correction terms are observed. The model
for the anisotropy correction sometimes diverges in the near-wake and themodel for the TKE production
correction sometimes diverges at the rotor disk. Steiner et al. (2021) surmises there are two factors
contributing to these instabilities. Firstly, the corrections remove energy almost everywhere in the flow
domain as the baseline 𝑘−𝜖model tends to overpredict the TKE. Secondly, most models of Steiner et al.
(2021) depend on products of the shear strain invariant, tr(𝑆2𝑖𝑗), normalised shear stress tensor, 𝑆𝑖𝑗, and
the velocity gradient. This means that when locally one component of the velocity gradient becomes too
large, the effect can be amplified by the model, which means that more energy is removed and velocity
gradients are increased further. In order to break the positive feedback loop without influencing the
results too much, two limiters for the correction terms are introduced:

• Eddy viscosity limiter: the linear components of the anisotropy correction models are limited
based on van der Laan et al. (2013):

𝑏Δ𝑖𝑗,𝑙𝑖𝑛 = min (0.8 𝜖𝑘2 𝜈𝑡 , 𝑏
Δ
𝑖𝑗,𝑙𝑖𝑛) (2.86)

• Form error limiter: This limiter is active in areas where actuator forcing is applied, so very close
to the actuator disk. It is formulated as displayed in (2.87).

ℛ = sgn(ℛ) ⋅min (0.5𝒫𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞𝑘 , |ℛ|) (2.87)



3
Generation of LES Reference Data

In order to be able to expand the SpaRTA methodology to stable atmospheric boundary layers, first
high fidelity data for stable environments needs to be available. Two cases are chosen for this: an LES
based on the GABLS1 inter-comparison study described in Beare et al. (2006) and an LES of a turbine
in a stably stratified ABL data obtained from Kokee (2021).

3.1. Case A: Gabls1
The GABLS1 inter comparison study is a cooperative project between different universities and re-
search institutes, all simulating a quasi-equilibrium moderately stable case based on arctic observa-
tions (Beare et al., 2006). They all performed LES simulations based on the same set of instructions,
which were originally adapted from Kosović and Curry (2000). This case is chosen to be simulated as
a large amount of validation data is available.

3.1.1. Case Definition
The case is a simple simulation of a cubic domain of air moving over flat terrain where heat is extracted
to create the stable stratification. It does not contain any turbines and the general parameters of the
simulation are given in Table 3.1.

Table 3.1: General parameters used in simulating the GABLS1 case described in Beare et al. (2006).

Parameter Description Value Unit
𝑥 × 𝑦 × 𝑧 Domain 400 × 400 × 400 m

Δ𝑥 × Δ𝑦 × Δ𝑧 Grid Resolution 6.25 × 6.25 × 6.25 m
𝜌0 Reference Density 1.3223 kgm−3

𝜃0 Reference Potential Temperature 263.5 K
𝜈 Kinematic Viscosity 1.0E-5 m2 s−1
𝜅 Von Kármán constant 0.4 -
𝜙 Latitude 73.0 °
𝑧0 Surface Roughness 0.1 m
𝑈𝑔 , 𝑉𝑔 Geostrophic Velocity 8.0, 0.0 ms−1
𝜃̇𝑤 Surface Cooling Rate 0.25 Kh−1
𝑆𝑚𝑖 Momentum Forcing (0, 0.00111271, 0) ms−2
𝑃 Simulation Period 9.0 h

3.1.2. Simulation Methodology
The LES simulations are performed using the SOWFA-6 toolbox (Lee et al., 2016) for OpenFOAM.

31
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3.1.2.1. Governing Equations
The governing equations for continuity, momentum and potential temperature used in the SOWFA-6
toolbox are displayed in (3.1), (3.2) and (3.3) respectively (Churchfield et al., 2012b).

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (3.1)

𝜕𝑢𝑖
𝜕𝑡 +

𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= − 1𝜌0
𝜕𝑝𝑟𝑔ℎ
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(𝜈 (𝜕𝑢𝑖𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

) − 𝜏𝑆𝐺𝑆𝑖𝑗 − 𝜏𝑤𝑎𝑙𝑙𝑖𝑗 )+(𝜃 − 𝜃0𝜃0
)𝑔𝑖−2𝜖𝑖3𝑘Ω3𝑢𝑘+𝑆𝑚𝑖 +

1
𝜌0
𝑓𝑇𝑖

(3.2)

𝜕𝜃
𝜕𝑡 +

𝜕𝑢𝑗𝜃
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

( 𝜈Pr
𝜕𝜃
𝜕𝑥𝑗

− 𝑞𝑆𝐺𝑆𝑗 − 𝑞𝑤𝑎𝑙𝑙𝑗 ) (3.3)

When comparing the SOWFA-6 momentum equation implementation in (3.2) to the general LES
momentum (2.16) in Subsection 2.1.3, a couple of things are visible. First of all, the Boussinesq ap-
proximation discussed in Subsection 2.2.4 is used. Aside from that, 1

𝜌0
𝜕𝑝𝑟𝑔ℎ
𝜕𝑥𝑖

is the pressure gradient
as deviation from hydrostatic and horizontal-mean gradient. Furthermore, 𝜏𝑆𝐺𝑆𝑖𝑗 is the sub-grid scale

stress and the wall stress is enforced by source term 𝜏𝑤𝑎𝑙𝑙𝑖𝑗 . Moreover, ( 𝜃̃−𝜃0𝜃0
) 𝑔𝑖 is the buoyancy term

and 𝑆𝑚𝑖 is the momentum forcing term representing the mean horizontal pressure gradient driving the
flow. This momentum forcing is set such that the desired geostrophic velocity is achieved. Ω3 in the
Coriolis force term equals 2𝜋

𝑃 sin𝜙 with 𝑃 Earth’s rotational period and 𝜙 the latitude. Lastly 𝑓𝑇𝑖 are the
turbine actuator forces, therefore this term is zero for the GABLS1 case.

In the potential temperature transport equation implementation in (3.3), the thermal diffusivity is
replaced by the kinematic viscosity, 𝜈, divided by the Prandtl number. Similar to the wall stress in (3.2),
the wall heat flux is implemented as source term 𝑞𝑤𝑎𝑙𝑙𝑗 .

As sub-grid scale model for the turbulent stresses, the SOWFA-6 standard one-equation Deardorff
model for planetary boundary layer flows is used (Deardorff, 1980; Moeng, 1984). This model relates
the sub-grid scale stresses to the velocity gradients through a sub-grid scale viscosity as displayed in
(3.4).

𝜏𝑆𝐺𝑆𝑖𝑗 = −𝜈𝑆𝐺𝑆 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (3.4)

Deardorff (1980) models the sub-grid scale viscosity as displayed in (3.5).

𝜈𝑆𝐺𝑆 = 𝑙𝐶𝑘√𝑘𝑆𝐺𝑆 (3.5)

In (3.5), 𝐶𝑘 is a model constant with value 0.0673 for this case and 𝑙 is a stability dependent length-
scale. The value of this length-scale decreases for stably stratified conditions to include the effects of
turbulence suppression. Its value is computed according to (3.6).

𝑙 = min (Δ, 0.76√𝑘𝑆𝐺𝑆𝑁−1) (3.6)

In (3.6) Δ is the local grid resolution, 𝑁 is the Brunt-Väisälä frequency discussed in Subsection 2.2.1
and 𝑘𝑆𝐺𝑆 is computed by solving the transport function for the sub-grid scale TKE displayed in (3.7).

𝜕𝑘𝑆𝐺𝑆
𝜕𝑡 + 𝑢𝑗

𝜕𝑘𝑆𝐺𝑆
𝜕𝑥𝑗

= 𝜈𝑆𝐺𝑆𝑆2 −
𝜈𝑆𝐺𝑆
Pr𝑆𝐺𝑆

𝑁2 + 𝜕
𝜕𝑥𝑗

(2𝜈𝑆𝐺𝑆
𝜕𝑘𝑆𝐺𝑆
𝜕𝑥𝑗

) − 𝑐𝜖
𝑘3/2𝑆𝐺𝑆
𝑙 (3.7)

In (3.7) 𝑆 = (2𝑆𝑖𝑗𝑆𝑖𝑗)
2
, which is the characteristic filtered rate of strain. 𝐶𝜖 is a model coefficient

and computed according to 𝐶𝜖 = 0.19 + 0.74
𝑙
Δ . Lastly, the sub-grid scale Prandtl number from (3.7) is

computed according to (3.8).

Pr𝑆𝐺𝑆 =
1

1 + 2𝑙
Δ

(3.8)
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(3.8) causes Pr𝑆𝐺𝑆 to approach one if the flow is locally stable and 1/3 if the flow is unstable or
neutral (Churchfield et al., 2012b).

The sub-grid scale heat flux is computed according to the gradient-diffusion hypothesis displayed
in (3.9).

𝑞𝑆𝐺𝑆𝑗 = − 𝜈𝑆𝐺𝑆
Pr𝑆𝐺𝑆

𝜕𝜃
𝜕𝑥𝑗

(3.9)

3.1.2.2. Numerical Schemes
In the LES solver, the differential operators in the equations of the previous section are discretized
according to the numerical schemes named in Table 3.2. Additionally, the time stepping is constrained
for a maximum CFL number of 0.75.

Table 3.2: Finite volume discretization schemes used in LES solver.

Operator Description Scheme Order
𝜕
𝜕𝑡 Time CrankNicolson 0.7 2nd/1st
∇ Gradient Gauss linear 2nd
∇⋅ Divergence Gauss linear 2nd

Convection term Gauss local blended linear upwind 2nd/1st
∇2 Laplacian Gauss linear uncorrected 2nd
∇⊥ Surface normal gradient Uncorrected 2nd

The schemes set in Table 3.2 are set generally according to the recommendations from Church-
field et al. (2012b). This means that no correction for non-orthogonality is implemented as the mesh is
fully orthogonal. However, the CrankNicolson parameter 0.7 is slightly lower than recommended by
Churchfield et al. (2012b). This parameter blends the second order accurate CrankNicolson (Crank
and Nicolson, 1947) with the first order accurate Euler scheme. A higher value for this parameter
means increased accuracy, but lower robustness. In this case, the simulations suffers a lot from non-
physical oscillations which are dampened by a lower value for the CrankNicolson parameter. This
is also the reason why the convection terms in the velocity and potential temperature equations are
discretized by a blend of the second order accurate Gauss linear and first order accurate Upwind
schemes. The damping of these oscillations is due to to the more diffusive Upwind scheme. To com-
pute the blending parameters for the velocity and potential temperature equation convection terms the
parameters in Table 3.3 are used.

Table 3.3: Blending parameters used for blending discretization schemes of the convextion terms.

Location 𝑧 𝐹𝑈 𝐹𝜃
1 200m 1.0 1.0
2 300m 0.5 0.9

Below location 1, the blending parameters are equal to the blending parameters 𝐹 at location 1.
This means that below this location, only the second order accurate Gauss linear scheme is used.
Above location 2, the blending factors are equal to the blending factors at location 2. Between the two
locations there is a smooth transition between the values. It is chosen to only blend above 200m as
that is approximately the height of the ABL. The turbulence in the ABL needs to be accurately simulated
without the added diffusivity of the Upwind scheme.

3.1.2.3. Initial Conditions
The initial conditions of the GABLS1 simulations are set up according to Beare et al. (2006). The initial
conditions are only a function of the altitude 𝑧 and the profiles are displayed in Figure 3.1.
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Figure 3.1: Profiles of the initial conditions according to Beare et al. (2006).

As can be seen in Figure 3.1, the velocity is initialised throughout the domain equal to the geostrophic
velocity of 8ms−1 in the x-direction. The potential temperature is set as 265K below an altitude of
100m above which there is a capping inversion with a strength of 0.01Km−1. Aside from this, a
random potential temperature perturbation of 0.1K and 0 mean is introduced to stimulate turbulence.
The turbulence kinetic energy is computed according to 𝑘𝑆𝐺𝑆 = 0.4(1 − 𝑧/250)3 below an altitude of
250m. The sub-grid scale viscosity, sub-grid scale thermal diffusivity and pressure without hydro-static
pressure are all set to 0 in the beginning after which the simulation is run for nine hours.

3.1.2.4. Boundary Conditions
The boundary conditions of the simulation are largely implemented according to the instructions of
Beare et al. (2006). However, where necessary adaptations are made to better suit the SOWFA-6
software. All boundary conditions are displayed in Table 3.4.

Table 3.4: Boundary conditions for the LES simulation of Case A: GABLS1.

BC Lower Upper West South East North
𝑢𝑖 velocityABLWallFunction slip cyclic cyclic cyclic cyclic
𝑝𝑟𝑔ℎ fixedFluxPressure fixedFluxPressure cyclic cyclic cyclic cyclic
𝜃 zeroGradient fixedGradient 0.01 cyclic cyclic cyclic cyclic
𝑘𝑆𝐺𝑆 zeroGradient zeroGradient cyclic cyclic cyclic cyclic
𝜈𝑆𝐺𝑆 fixedValue 0 fixedValue 0 cyclic cyclic cyclic cyclic
𝜏𝑤𝑎𝑙𝑙𝑖𝑗 SchumannGrotzbach fixedValue 0 cyclic cyclic cyclic cyclic
𝑞𝑤𝑎𝑙𝑙𝑗 SpecifiedSurfaceTemperature fixedValue 0 cyclic cyclic cyclic cyclic

The velocityABLWallFunction is implemented in stead of the more commonly used no slip wall
boundary condition for the velocity as this is recommended by Churchfield et al. (2012b) for SOWFA.
This boundary condition sets the parallel velocity at the wall such that the wall-normal velocity gradient
at the centre of the first cell from the wall is equal to the wall-normal velocity gradient at the top of the
first cell. This is done in order for the SGS model to have a meaningful velocity gradient to use in the
production terms. Important to note is that the velocity at the wall is kept parallel to the wall, so there
is absolutely no wall-normal flow.

The SchumannGrotzbach boundary condition for the total stress at the boundary uses Monin-
Obukhov Similarity Theory according to the Schumann/Grotzbach formulation (Schumann, 1975). The
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only non-zero wall shear stress components are determined according to (3.10), where 𝑢∥ = √𝑢2𝑥 + 𝑢2𝑦
is the wall-parallel velocity.

𝜏𝑖3 = −
𝑢𝑖
𝑢∥
𝜏𝑤𝑎𝑙𝑙 , 𝑖 = 1, 2 (3.10)

The total wall shear stress in (3.10) is computed according to the stable version of the rough wall
ABL log-law from Monin-Obukhov similarity theory as displayed in (3.11).

𝜏𝑤𝑎𝑙𝑙 = 𝑢2∗ = (
𝜅𝑢∥

ln 𝑧1
𝑧0
+ 𝛽𝑀

𝑧1
𝐿𝑂

)

2

(3.11)

In (3.11) 𝑧1 is the height of the first cell, 𝑧0 is the surface roughness length scale and 𝜅 is the von
Kármán constant. The MOST parameter 𝛽𝑀 is set to be 4.8 in accordance to Beare et al. (2006). The
Obukhov length is computed according to (2.55), which means that it depends on 𝑢∗. This causes
the computation of the wall shear stress to be an iterative procedure until the values of 𝑢∗ and 𝐿𝑂 are
converged.

Furthermore, the SpecifiedSurfaceTemperature boundary condition also uses the stable version
of MOST to compute the wall heat flux needed to achieve a certain prescribed wall temperature. Fol-
lowing the instructions from Beare et al. (2006), the wall temperature is initially set to be 265K, after
which it decreases by −0.25Kh−1. The vertical component of the wall heat flux is the only non-zero
component and is computed according to (3.12).

𝑞𝑤𝑎𝑙𝑙𝑧 = 𝑞𝑤 =
𝜅𝑢∗Δ𝜃

ln 𝑧1
𝑧0
+ 𝛽𝐻

𝑧1
𝐿𝑂

(3.12)

In (3.12) Δ𝜃 is the difference between the prescribed surface temperature and the temperature in
the first cell above the wall. The Obukhov length 𝐿𝑂 also depends on the wall heat flux, as can be seen
in (2.55). Therefore, the computation of the wall heat flux is also an iterative process until the values of
𝑞𝑤 and 𝐿𝑂 are converged. Furthermore, the value of the MOST parameter 𝛽𝐻 is set to be 7.8 according
to Beare et al. (2006).

3.1.3. Validation
In order for the LES of the GABLS1 case to be validated as ground truth for the SpaRTA methodology,
first the time and planar averaged profiles are compared against literature. After that, it is investigated
how steady the temporal average is and the influence of nonphysical oscillations is determined.

3.1.3.1. Profiles
The first step in validating the LES of the GABLS1 case, is comparing planar-averaged profiles of some
mean parameters over the last hour of the simulation to reference data from Beare et al. (2006). It is
important that the temporally averaged data is good, as this data will be used in training RANS models
which only solve for time-averaged fields. Even though the stable LES set-up is inherently unsteady,
as heat keeps getting removed from the domain, temporal averaging is allowed to be performed as the
set-up is in quasi-equilibrium during the last hour of the simulation according to Beare et al. (2006).
Quasi-equilibrium is defined by Beare et al. (2006) as when the hour-averaged mean wind velocities
reach a quasi-steady state. This is also the reason why the planar averaged profiles can be used.

Figure 3.2 displays the planar averaged profiles of the temporal mean resolved potential tempera-
ture and velocity for the last hour of the simulation. The profiles show good agreement to the reference
profiles from Beare et al. (2006). The most apparent difference is the fact that the atmospheric bound-
ary layer height is slightly lower when compared to most of the other profiles. This can be ascribed
to a relatively low CrankNicolson parameter which causes extra energy dissipation from the atmo-
spheric boundary layer. This lower CrankNicolson parameter is necessitated by the oscillations in
the simulation. Furthermore, the profiles are still close enough to the spread of reference profiles to be
acceptable.



36 3. Generation of LES Reference Data

263 264 265 266 267 268
̃θ [K]

0

50

100

150

200

250

300

350

400

z
[m

]

Potential Tem erature

0 2 4 6 8 10
̃ux, ̃uy [ms−1]

0

50

100

150

200

250

300

350

400
Velocity

Beare et al. (2006)
LES data

Figure 3.2: Planar-averaged profiles of the mean resolved potential temperature and mean resolved velocity over the last hour
of the GABLS1 simulation.

The planar averaged profiles of the temporal averages of the resolved momentum fluxes over the
last hour of the GABLS1 simulation are displayed in Figure 3.3. The mean resolved momentum fluxes
are computed according to (3.13).

𝑢′𝑖𝑢′𝑗 =
1
𝑁

𝑁

∑
𝑛=0
(𝑢𝑛𝑖 − 𝑢𝑖)(𝑢𝑛𝑗 − 𝑢𝑗), with 𝑢𝑖 =

1
𝑁

𝑁

∑
𝑛=0

𝑢𝑛𝑖 (3.13)

It is essential the data of the momentum fluxes is accurate as this data is used to compute correction
terms with which to train new RANS models. When considering Figure 3.3 the profiles show good
agreement with the reference data for all components. For each component the profiles are comfortably
within the spread, except for 𝑢′𝑣′ for which no reference data is available. It is also visible that the
horizontal momentum fluxes 𝑢′𝑢′ and 𝑣′𝑣′ are the dominant turbulence components. This confirms
that the vertical turbulent motions are dampened by the stability present in the atmospheric boundary
layer.
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Figure 3.3: Planar averaged profiles of the mean resolved momentum fluxes over the last hour of the GABLS1 simulation.
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Not only the resolved turbulence is compared to the reference data, also the sub-grid scale turbu-
lence is compared in Figure 3.4. Figure 3.4 shows all profiles for which reference data was available.
Unfortunately, that only includes the sub-grid scale turbulence kinetic energy and the 𝑥𝑧 and 𝑦𝑧 com-
ponents. The profiles again show good agreement with the reference profiles, building confidence in
the simulation of the turbulence present for this case.
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Figure 3.4: Planar averaged profiles of the mean sub-grid scale turbulence over the last hour of the GABLS1 simulation.

The last profiles compared to the reference data are that of the resolved temperature fluxes in
Figure 3.5. These profiles also show good agreement with the reference data, which is essential as this
work aims to extend the SpaRTA methodology towards stable ABLs by improving upon the gradient-
diffusion hypothesis. For this to be effective, the temperature flux data needs to be accurate. The
z-component of the turbulence heat flux is approximately two times as small as the other components,
suggesting that the velocity fluctuations are dominant over the temperature fluctuations in this term.
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Figure 3.5: PLanar averaged profiles of the mean resolved turbulent temperature fluxes over the last hour of the GABLS1
simulation.

3.1.3.2. Quasi-Equilibrium
According to Beare et al. (2006) the GABLS1 simulation is quasi-steady after 9h and the temporal
average can be taken over the last hour. However, the data will be used for input in a steady state
RANS simulation. Therefore, this section investigates how steady the simulation actually is after nine
hours.

Beare et al. (2006) defines quasi-equilibrium as when the hour-averaged mean wind reaches a
quasi-steady state. When considering the mean velocity profiles taken over multiple different hours
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displayed in Figure 3.6, it is visible that the simulation is quite close to quasi-equilibrium. There are some
deviations between the hours, especially for the transversal velocity, but for an inherently unsteady
simulation the profiles are quite close.
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Figure 3.6: Planar averaged mean resolved velocity profiles for multiple different hours.

Doing the same for the resolved potential temperature in Figure 3.7, it is visible that the temperature
is far from steady state. However, this is to be expected as the bottom boundary temperature keeps
decreasing with time.

263 264 265 266 267 268
̃θ [K]

0

50

100

150

200

250

300

350

400

z
[m

]

Potential Temperature
Hour 9
Hour 10
Hour 11
Hour 12

Figure 3.7: Planar averaged mean resolved potential temperature profiles for multiple different hours.

In order to judge the steadiness of the boundary conditions, a measure for the wall friction (𝑢∗)
and the wall heat flux 𝑞𝑤 are plot over time in Figure 3.8. Both show some large-timescale transient
behaviour. This is somewhat more pronounced for the wall heat flux due to the scale, but the friction
velocity also shows a large wavelength oscillation. This indicates that the simulation is not fully steady
state. However, this is also the case for the reference data from Beare et al. (2006).
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Figure 3.8: Time series of the wall friction velocity and the wall heat flux, compared against reference data from Beare et al.
(2006).

The temporal average taken over different hours for the components of temperature fluxes are
displayed in Figure 3.9 to judge the unsteadiness of the turbulence. These profiles show quite some
unsteady behaviour. This could be explained by the fact that the temperature is unsteady while the
velocity has reached quasi-equilibrium.
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Figure 3.9: Planar averaged mean resolved temperature flux profiles for multiple different hours.
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As opposed to the profiles of the temperature fluxes in Figure 3.9, the profiles of the momentum
fluxes in Figure 3.10 are quite steady.The most significant transient behaviour is visible for the 𝑧𝑧
component.This would support the hypothesis that the unsteadiness in the temperature fluxes in caused
by unsteadiness in the temperature itself.
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Figure 3.10: Planar averaged mean resolved momentum flux profiles for multiple different hours.

All in all, it can be concluded that quasi-equilibrium has been reached, but that is far from steady
state. Especially the temperature and temperature fluxes show some clear unsteadiness. This in itself
is not a huge problem when the temporally averaged data is used for steady state RANS simulations.
However, it has to be kept in mind that the data is far from true steady state.

3.1.3.3. Oscillations
As described in Subsection 3.1.2, it is attempted to suppress nonphysical oscillations in two ways:
blending theCrankNicolsonwith themore diffusive backwards time discretization scheme and blend-
ing theGauss linear discretization of the convection terms with upwind discretization above the atmo-
spheric boundary layer. However, when considering a slice of the mean resolved velocity in Figure 3.11,
it is clear to see that some oscillations are still emanating from the ABL. It is possible that these oscil-
lations are triggered by gravity waves, that is also why Beare et al. (2006) recommended a damping
layer. However, seeing that the wavelength of these oscillations is equal to the mesh resolution, it can
be concluded that the oscillations are nonphysical. Moreover, the damping layer is doing its job, as
the oscillations are clearly dampened out towards the top of the domain. Unfortunately, performing
this damping within the ABL itself would significantly deteriorate the results, making it impossible to
dampen out all oscillations.
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Figure 3.11: Vertical slice of mean resolved vertical velocity for the GABLS1 simulation, showing oscillations.

When taking the planar averaged profile of the mean vertical velocity in Figure 3.12, the oscillations
are not as present anymore. There is definitely some noise, but the fact that this noise does not
have the wavelength of the grid resolution could mean that the effect of the oscillations is diminished
by taking the planar average. Therefore, it is recommended to use planar averaged data whenever
possible within the SpaRTA methodology as this limits the influence of the nonphysical oscillations on
the trained models.

−0.12 −0.10 −0.08 −0.06 −0.04 −0.02 0.00 0.02
̃uz [ms−1]

0

50

100

150

200

250

300

350

400

z
[m

]

Velocity

Figure 3.12: Planar averaged profile of the mean resolved vertical velocity for the GABLS1 simulation.

3.1.4. Alignment Turbulent Heat Flux and Temperature Gradient
As is explained in Subsection 2.1.5, the most used method for modelling the turbulent heat flux in
RANS simulation is the gradient-diffusion hypothesis. This method assumes that the turbulent heat
flux vector is proportional to the temperature gradient. To see how well this hypothesis holds up, the
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angle between the resolved turbulent heat flux and mean temperature gradient is computed according
to (3.14) and displayed in Figure 3.13.

cos𝜙 =
𝑢′𝑖𝜃′ ⋅

𝜕𝜃
𝜕𝑥𝑖

|𝑢′𝑖𝜃′| |
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|

(3.14)
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Figure 3.13: Angle between the resolved turbulent heat flux and the mean temperature gradient for the GABLS1 simulation.

Quite surprisingley, Figure 3.13 shows that the gradient-diffusion hypothesis is fundamentally flawed
for the GABLS1 case as the mean temperature gradient is approximately perpendicular to the resolved
turbulent heat flux throughout the domain. This is due tot the fact that the gradient-diffusion hypoth-
esis assumes isotropic turbulence, while in this case the vertical temperature gradient component is
dominant, while the vertical temperature fluctuations are apparently not enough to overcome the sup-
pressed vertical turbulent motions due to stability. Consequently, this is a highly anisotropic flow due
to the stable stratification and the gradient-diffusion hypothesis breaks down. This is in accordance
with observations from Łobocki (2013) and would suggest that not only the magnitude, but also the
direction of the gradient-diffusion hypothesis needs to be corrected for when extending the SpaRTA
methodology towards ABLs in stably stratified regimes. However, it remains to be seen how large the
effect of this discrepancy is on the RANS simulation.

3.2. Case B: Kokee SBL
The LES of this case is performed by Kokee (2021) and simulates a wind turbine in a similarly stable
ABL as the GABLS1 inter-comparison study. This case is chosen to work with as the data is readily
available to the author. As the simulation is not performed by the author, only a brief description of the
simulation methodology and results is given for completeness. For a more in depth description, please
refer to Kokee (2021).

3.2.1. Case Definition
As stated before, this case is a simulation of one wind turbine in a similar stable ABL to the GABLS1
simulation. Therefore, most general parameters displayed in Table 3.5 are very similar.
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Table 3.5: General parameters used in simulating the wind turbine in SBL case by Kokee (2021).

Parameter Description Value Unit
𝑥 × 𝑦 × 𝑧 Domain 2000 × 600 × 600 m
𝜌0 Reference Density 1.225 kgm−3

𝜃0 Reference Potential Temperature 263.5 K
𝜈 Kinematic Viscosity 1.569E-5 m2 s−1
𝜅 Von Kármán constant 0.4 -
𝜙 Latitude 73.0 °
𝑧0 Surface Roughness 0.1 m
𝑈𝑔 , 𝑉𝑔 Geostrophic Velocity 9.0, 0.0 ms−1
𝜃̇𝑤 Surface Cooling Rate 0.25 Kh−1
𝑆𝑚𝑖 Momentum Forcing (0.00041, 0.00103, 0) ms−2
𝑃 Simulation Period 10.5 h
𝐷 Rotor Diameter 126.0 m
𝑧ℎ𝑢𝑏 Hub Height 87.6 m

𝑥𝑟𝑜𝑡, 𝑦𝑟𝑜𝑡 Rotor location (250, 300) m

3.2.2. Simulation Methodology
Just as for the GABLS1 simulation, Kokee (2021) used the SOWFA-6 toolbox for OpenFOAM to perform
the simulations. This means that the governing equations for the two cases are the same. In the
following sections the focus will be on the differences between the two simulations.

3.2.2.1. Precursor-Successor Approach
This case simulates a wind turbine in a rectangular domain where the air flows from West to East.
However, in order for the simulation to have realistic turbulent inflow conditions at theWestern boundary,
Kokee (2021) first performed a precursor simulation.

This precursor simulation is similar to the GABLS1 simulation, except for the fact that themomentum
forcing is used to force the flow to have no lateral component at hub-height. This means a rotation of
the precursor simulation with respect to the GABLS1 simulation. After nine hours the flow is considered
quasi-stationary and inflow boundary data planes are gathered for another hour and a half. These data
planes are then used as inflow conditions for the simulation including wind turbine as displayed in the
schematic in Figure 3.14.

Figure 3.14: Schematic of the precursor-successor approach from Churchfield et al. (2012a).

3.2.2.2. Domain and Mesh
The domain of the Kokee SBL simulation is 2000m ×600m ×600m. This is significantly bigger than
the GABLS1 simulation domain as the wake of the turbine needs to be accurately simulated. The stable
conditions contribute to a longer wake, increasing the need for a longer simulation domain. Aside from
the simulation domain, the mesh resolution is also different. According to Kokee (2021) the turbine
needs 25 grid cells per rotor diameter for accurate representation. This means a mesh resolution of
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5m in all directions at the turbine. To achieve this Kokee (2021) used a resolution of 5m in all directions
below a height of 200m and of 10m in all directions above 200m. A horizontal depiction of the domain
including the wind turbine is displayed in Figure 3.15.
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Figure 3.15: Schematic representation of the domain for Case B: Kokee SBL, with the blue arrow denoting the inflow direction
and the black line denoting the wind turbine.

3.2.2.3. Numerical Schemes
Kokee (2021) used largely the same numerical schemes as were used for the GABLS1 simulation.
The most noticeable difference is a higher CrankNicolson parameter which leads to more accurate
profiles, at the cost of less damping of nonphysical oscillations.

Table 3.6: Finite volume discretization schemes used in LES solver by Kokee (2021).

Operator Description Scheme Order
𝜕
𝜕𝑡 Time CrankNicolson 0.9 2nd/1st
∇ Gradient Gauss linear 2nd
∇⋅ Divergence Gauss linear 2nd

Convection term Gauss local blended linear upwind 2nd/1st
∇2 Laplacian Gauss linear corrected 2nd
∇⊥ Surface normal gradient Corrected 2nd

3.2.2.4. Initial Conditions
For the precursor case, the initial conditions are largely the same as used for the GABLS1 simulation.
The main difference is that Kokee (2021) initialises the sub-grid scale turbulence kinetic energy 𝑘𝑆𝐺𝑆 =
0.5m2 s−2 in stead of the function advised by Beare et al. (2006).

The successor case is initialised with the planar averaged profiles of the last time step before col-
lecting inflow data planes of the precursor case. The downside of this is that there is a lack of proper
turbulence in the initial conditions. However, this is remedied by the turbulent inflow conditions.

3.2.2.5. Boundary Conditions
The precursor case uses the same boundary conditions as the GABLS1 simulation which are displayed
in Table 3.4. The successor simulation uses the boundary conditions as displayed in Table 3.7. The
main difference in the boundary conditions between the precursor and successor simulations is the fact
that the successor uses prescribed inflow conditions for the resolved velocity and resolved potential
temperature in stead of cyclic boundary conditions for the inflow and outflow.
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Table 3.7: Boundary conditions for the LES simulation of the successor simulation of case B: Kokee SBL.

BC Lower Upper West
𝑢𝑖 velocityABLWallFunction slip timeVaryingMappedFixedValue
𝑝𝑟𝑔ℎ fixedFluxPressure fixedFluxPressure fixedFluxPressure
𝜃 zeroGradient fixedGradient 0.01 timeVaryingMappedFixedValue
𝑘𝑆𝐺𝑆 zeroGradient zeroGradient zeroGradient
𝜈𝑆𝐺𝑆 fixedValue 0 fixedValue 0 zeroGradient
𝜏𝑤𝑎𝑙𝑙𝑖𝑗 SchumannGrotzbach fixedValue 0 fixedValue 0
𝑞𝑤𝑎𝑙𝑙𝑗 SpecifiedSurfaceTemperature fixedValue 0 fixedValue 0
BC South East North
𝑢𝑖 cyclic inletOutlet cyclic
𝑝𝑟𝑔ℎ cyclic zeroGradient cyclic
𝜃 cyclic zeroGradient cyclic
𝑘𝑆𝐺𝑆 cyclic zeroGradient cyclic
𝜈𝑆𝐺𝑆 cyclic zeroGradient cyclic
𝜏𝑤𝑎𝑙𝑙𝑖𝑗 cyclic fixedValue 0 cyclic
𝑞𝑤𝑎𝑙𝑙𝑗 cyclic fixedValue 0 cyclic

3.2.2.6. Turbine Representation
For its turbine, Kokee (2021) used the NREL 5MW reference turbine as described by Jonkman et al.
(2009). This turbine has three blades and is representative of current industrial-scale off-shore wind
turbines. The Actuator Disk Method as described in Subsection 2.2.3 is used to parameterise this
turbine due to the lower computational costs and comparable performance for time-averaged fields
with respect to the Actuator Line Method. According to Jonkman et al. (2009), two independent control
systems control the wind power production, the generator-torque controller and the collective rotor
blade pitch controller. The former controls the rotational velocity of the blades and is most active below
the point where power is maximised, the latter is mostly active above that point in order for the power
to be limited. This leads to the time-averaged results for the turbine displayed in Table 3.8. The wind
turbine operates in the lowly loaded region below its rated point of maximum power.

Table 3.8: Time-averaged parameters for the turbine in the Kokee SBL simulation from Kokee (2021).

Parameter Description Value Unit
Ω Turbine Rotational Velocity 9.00 rpm
𝜙 Turbine Blade Pitch 0.0 °
𝐶𝑇 Thrust Coefficient 0.80 -
𝐶𝑃 Power Coefficient 0.56 -

3.2.3. Validation
Table 3.9 shows some general time averaged results for the LES of Case B: Kokee SBL.

Table 3.9: Time-averaged results for the LES of Case B: Kokee SBL (Kokee, 2021).

Parameter Description Value Unit
𝑈ℎ𝑢𝑏 Hub-height Velocity 7.45 ms−1
𝑢∗ Friction Velocity 0.25 ms−1
𝑞𝑤 Wall Heat Flux −0.011 Kms−1
𝐿𝑂 Monin-Obukhov Length 100.0 m

As the validation of this simulation is given in Kokee (2021), only a summary of the most important
results is given.
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The problems of the LES for the Kokee SBL case are very similar to those for the GABLS1 LES.
Most notably, that the boundary conditions and turbulence profiles show some large-period unsteady
phenomena. Furthermore, the nonphysical oscillations visible in the GABLS1 simulation are also vis-
ible in the LES from Kokee (2021). If anything, they are even more pronounced due to the higher
CrankNicolson parameter. Lastly, the misalignment between the resolved turbulence heat flux and
resolved temperature gradient is also observed in this simulation.

Aside from these problems, the profiles of the time averaged simulation are validated against profiles
from literature and the Rough wall atmospheric log-law. Therefore, it is determined that the quality of
the simulation is sufficient to serve as a ground truth for the SpaRTA methodology.



4
Discovery of Optimal Correction Fields

Using the data from Chapter 3, the next step in the SpaRTA methodology is discovering the optimal
correction fields. The discovery is performed for Case A, and for Case B the optimal correction fields
are obtained from Kokee (2021).

4.1. Discovery Simulation Methodology
In order to discover the optimal correction fields, a version of the k-corrective frozen RANS method
first introduced in Schmelzer et al. (2020) is used. This method is adapted in order to account for the
stratification effects.

4.1.1. Governing Equations
The implementation of the k-corrective frozen approach depends on the baseline turbulence models,
which are described first. After that, the way in which the correction fields are extracted is described.

4.1.1.1. Baseline Turbulence Model
For Case A: Gabls1 it is chosen to use the two-equation 𝑘 − 𝜖 model from Koblitz (2013) as baseline
turbulence model, as it is developed to include stratification effects in ABL flow. Kokee (2021) opted
for a slightly more basic turbulence model from Duynkerke (1988) and Wyngaard (1975).

Case A: Gabls1
The turbulence model from Koblitz (2013) computes the turbulence viscosity according to (4.1) and
uses the transport equations for 𝑘 and 𝜖 displayed in (4.2) and (4.3) respectively.

𝜈𝑡 = 𝐶𝜇
𝑘2
𝜖 (4.1)

D𝑘
D𝑡 = 𝒫𝑘 − 𝜖 + ℬ +
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] (4.2)
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[(𝜈 + 𝜈𝑡
𝜎𝜖
) 𝜕𝜖𝜕𝑥𝑗

] (4.3)

The production term𝒫𝑘 in (4.2) and (4.3) is computed according to (4.4). Furthermore, ℬ constitutes
the buoyant production or destruction of turbulence kinetic energy and is computed according to (4.5).
In stable stratification, such as the GABLS1 case, this term is negative and destroys turbulence kinetic
energy.

𝒫𝑘 = 2𝜈𝑡𝑆𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

(4.4)

ℬ = −
𝑔𝑗
𝜃0
𝑢′𝑗𝜃′ =

𝑔𝑗
𝜃0

𝜈𝑡
Pr𝑡

𝜕𝜃
𝜕𝑥𝑗

(4.5)

47
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Koblitz (2013) altered the coefficients in (4.2) and (4.3) to include the limitation of the maximum size
of turbulent eddies by the finite ABL height or the stratification. Therefore, coefficient 𝐶∗𝜖1 is computed
according to (4.7), where the local mixing length 𝑙𝑚 is computed according to (4.7) and the maximum
mixing length 𝑙𝑚𝑎𝑥 according to (4.8).

𝐶∗𝜖1 = 𝐶𝜖1 + (𝐶𝜖2 − 𝐶𝜖1)
𝑙𝑚
𝑙𝑚𝑎𝑥

(4.6)

𝑙𝑚 = 𝐶3/4𝜇
𝑘3/2
𝜖 (4.7)

𝑙𝑚𝑎𝑥 = 𝐶𝜆
∫∞0 𝑧√𝑘d𝑧
∫∞0 √𝑘d𝑧

(4.8)

Moreover, the coefficient for including the buoyant destruction in the transport equation for the dis-
sipation, 𝐶𝜖3, is computed according to (4.9). In (4.9), 𝛼𝐵 is a stability dependent coefficient which
depends on the local gradient Richardson number and the local ratio of mixing lengths, as displayed
in (4.10).

𝐶𝜖3 = (𝐶𝜖1 − 𝐶𝜖2) 𝛼𝐵 + 1 (4.9)

𝛼𝐵 = {
1 − 𝑙𝑚

𝑙𝑚𝑎𝑥
, Ri = − ℬ

𝒫𝑘
> 0

1 − [1 + 𝐶𝜖2−1
𝐶𝜖2−𝐶𝜖1

] 𝑙𝑚
𝑙𝑚𝑎𝑥

, Ri = − ℬ
𝒫𝑘
< 0

(4.10)

Lastly, the turbulent heat flux is computed according to the gradient-diffusion hypothesis displayed
in (4.11).

𝑢′𝑗𝜃′ = −
𝜈𝑡
Pr𝑡

𝜕𝜃
𝜕𝑥𝑗

(4.11)

All coefficients and constants used in the implemented turbulence model from Koblitz (2013) are
displayed in Table 4.1. 𝐶𝜇 anf 𝐶𝜖1 are different from the values recommended by Koblitz (2013) in
order to better match the wall shear stress of the LES data. This will be further expanded upon in
Subsection 4.1.5. 𝐶𝜖2, 𝜎𝑘, 𝜎𝜖 and 𝐶𝜆 are set as recommended by Koblitz (2013) and Pr, 𝜈 and 𝜃0 are
set according to the GABLS1 instructions. Lastly, the turbulent Prandtl number Pr𝑡 is set to the standard
value of 0.7 (Combest et al., 2011).

Table 4.1: Coefficients and constants used in the turbulence model from Koblitz (2013).

Coefficient Value Coefficient Value
𝐶𝜇 0.0771 𝐶𝜆 0.075
𝐶𝜖1 1.6347 Pr 0.7
𝐶𝜖2 1.83 Pr𝑡 0.7
𝜎𝑘 2.95 𝜈 1.0 × 10−5m2 s−1
𝜎𝜖 2.95 𝜃0 263.5K

Case B: Kokee SBL
The baseline turbulence model used by Kokee (2021) is very similar to the model from Koblitz (2013),
but has some key differences. The eddy viscosity is also computed using (4.1) and the transport
equation for the turbulence kinetic energy is the same as (4.2). However, Kokee (2021) uses a slightly
altered version of the transport equation of the dissipation as displayed in (4.12).

D𝜖
D𝑡 =

𝜖
𝑘 (𝐶𝜖1𝒫𝑘 − 𝐶𝜖2𝜖 + 𝐶𝜖3ℬ + 𝐶𝜖4

ℬ2
𝜖 ) +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜈𝑡
𝜎𝜖
) 𝜕𝜖𝜕𝑥𝑗

] (4.12)
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In (4.12) the (buoyant) production terms, 𝒫𝑘 and ℬ, are also computed using (4.4) and (4.5). Con-
trary to the baseline turbulence model used for Case A, the coefficients of the model used by Kokee
(2021) are all constants and no limitation of the size of the turbulent eddies takes place. The values of
the different coefficients used in the above equations are given in Table 4.2 for Case B.

Table 4.2: Coefficients and constants used in the baseline turbulence model used by Kokee (2021) for Case B: Kokee SBL.

Coefficient Value Coefficient Value
𝐶𝜇 1.17 𝜎𝑘 1.0
𝐶𝜖1 1.81 𝜎𝜖 1.3
𝐶𝜖2 1.92 Pr 0.7
𝐶𝜖3 0.5 Pr𝑡 0.85
𝐶𝜖4 1.0 𝜈 1.569 × 10−5m2 s−1

𝜃0 263.5K

4.1.1.2. Postulation of Model Form Errors
As the baseline models for the two cases are slightly different, the equations for the postulation of the
model form errors are also slightly different. Even though the principle of the k-corrective frozen RANS
approach is the same for both cases.

Case A: GABLS1
When the k-corrective frozen approach from the SpaRTA methodology is applied to extract the model
form errors from the turbulence model implementation from Koblitz (2013), the transport equations for 𝑘
and 𝜖 are displayed in (4.13) and (4.14) (Steiner et al., 2022). In these equations, parameters denoted
by a hat (⋅̂) are frozen fields taken from the LES data. The velocity, potential temperature, turbulent
kinetic energy and turbulent heat flux are all taken to be the mean fields over the last hour of the LES.

D𝑘̂
D𝑡 = 𝒫𝑘 +ℛ − 𝜖 + ℬ +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜈𝑡
𝜎𝑘
) 𝜕𝑘̂𝜕𝑥𝑗

] (4.13)

D𝜖
D𝑡 =

𝜖
𝑘̂
(𝐶∗𝜖1 (𝒫𝑘 +ℛ) − 𝐶𝜖2𝜖 + 𝐶𝜖3ℬ) +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜈𝑡
𝜎𝜖
) 𝜕𝜖𝜕𝑥𝑗

] (4.14)

The anisotropy correction term, 𝑏Δ𝑖𝑗, is computed according to (4.15) and implemented in the pro-
duction term as is displayed in (4.16).

𝑏Δ𝑖𝑗 =
dev (𝜏̂𝑖𝑗)
2𝑘̂

+ 𝜈𝑡
𝑘̂
𝑆̂𝑖𝑗 (4.15)

𝒫𝑘 = 𝒫̂𝐵𝑜𝑢𝑠𝑠𝑘 + 𝒫Δ𝑘 = 2𝜈𝑡𝑆̂𝑖𝑗
𝜕𝑢̂𝑖
𝜕𝑥𝑗

− 2𝑘̂𝑏Δ𝑖𝑗
𝜕𝑢̂𝑖
𝜕𝑥𝑗

(4.16)

The above equations are adaptations of the k-corrective frozen method from Steiner et al. (2022).
However, in Subsection 3.1.4 it was seen that the gradient-diffusion hypothesis breaks down in the
stably stratified flows of the GABLS1 and Kokee SBL cases. Therefore, a new correction term for the
turbulent heat flux, 𝑞Δ𝑗 , is introduced in the computation of the turbulent heat flux in (4.17). Chosen
is for a full correction and not just a spatial correction of the turbulent diffusivity or turbulent Prandtl
number such as in Milani et al. (2018, 2019). A correction of just the turbulent diffusivity or turbulent
Prandtl number constitutes a correction of just the magnitude of the turbulent heat flux, even though the
misalignment between the temperature gradient and turbulent heat flux causes the gradient-diffusion
hypothesis to fundamentally break down in stably stratified flows. Therefore, the directionality needs
to be corrected for as well.

To compute the turbulent heat flux correction, 𝑞Δ𝑗 , the turbulent heat flux and temperature fields from
the LES and the turbulent viscosity from the turbulence model are used.

𝑞̂𝑗 = 𝑞𝐺𝐷𝐻𝑗 + 𝑞Δ𝑗 = −
𝜈𝑡
Pr𝑡

𝜕𝜃̂
𝜕𝑥𝑗

+ 𝑞Δ𝑗 (4.17)
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The correction of the turbulent heat flux also means that the term for buoyant production or destruc-
tion of TKE in the transport equations is altered as displayed in (4.18).

ℬ = −
𝑔𝑗
𝜃0
𝑞̂𝑗 =

𝑔𝑗
𝜃0
[ 𝜈𝑡Pr𝑡

𝜕𝜃̂
𝜕𝑥𝑗

− 𝑞Δ𝑗 ] (4.18)

Lastly, the implementation of the new turbulent heat flux correction also leads the transport equation
for the potential temperature to change to (4.19). This equation is not solved in order to compute the
correction fields, as the temperature field is known from the LES data.

𝜕𝑢̂𝑗𝜃̂
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

[( 𝜈Pr +
𝜈𝑡
Pr𝑡

) 𝜕𝜃̂𝜕𝑥𝑗
] −

𝜕𝑞Δ𝑗
𝜕𝑥𝑗

(4.19)

Case B: Kokee SBL
The same principle is used for postulating the model form errors by Kokee (2021). Largely the same
equations are used as for Case A, only the equation for the turbulent dissipation in (4.20) is slightly
different due to a different transport equation in the baseline turbulence model.

D𝜖
D𝑡 =

𝜖
𝑘̂
(𝐶𝜖1 (𝒫𝑘 +ℛ) − 𝐶𝜖2𝜖 + 𝐶𝜖3ℬ + 𝐶𝜖4

ℬ2
𝜖 ) +

𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜈𝑡
𝜎𝜖
) 𝜕𝜖𝜕𝑥𝑗

] (4.20)

4.1.2. Numerical Schemes
The numerical schemes used in discretising the different terms in the governing equations of the two
cases are displayed in Table 4.3. Important is to realise that the RANS simulation is a steady-state
simulation which solves for mean quantities, rendering discretisation of the time derivative to be super-
fluous.

Table 4.3: Finite volume discretization schemes used in the k-corrective frozen simulations.

Operator Description Parameter Scheme Order
𝜕
𝜕𝑡 Time - steadyState -
∇ Gradient - cellLimited Gauss Linear 1.0 2nd
∇⋅ Divergence 𝑢̂𝑗, 𝜃̂ bounded Gauss linearUpwind 2nd
∇⋅ Divergence 𝑘̂, 𝜖, 𝜏̂𝑖𝑗 bounded Gauss upwind 1st
∇⋅ Divergence default Gauss linear 2nd
∇2 Laplacian - Gauss linear corrected 2nd
∇⊥ Surface normal gradient - Corrected 2nd

4.1.3. Initial Conditions
In order for the correction fields to be computed, initial conditions for the different parameters have to
be given. For both cases, the initial conditions, and thus frozen fields, for the velocity (𝑢̂𝑗), potential
temperature (𝜃̂) and pressure (𝑝̂𝑟𝑔ℎ) are taken straight from the mean fields over the last hour of the
LES. The frozen field of the turbulence kinetic energy (𝑘̂) is also set from the LES data, however it
is not as straightforward as for the other frozen fields. Specifically, the total frozen turbulence kinetic
energy is computed from the LES fields of both the resolved and the sub-grid scale Reynolds stresses,
as displayed in (4.21).

𝑘̂ = 1
2 tr (

̂𝑢′𝑖𝑢′𝑗) +
1
2 tr (𝜏̂

𝑆𝐺𝑆
𝑖𝑗 ) (4.21)

Furthermore, the frozen field for the turbulent heat flux (𝑞̂𝑗) also needs to be computed from a
contribution from the resolved and sub-grid scale turbulent heat fluxes as displayed in (4.22).

𝑞̂𝑗 =
̂𝑢′𝑗𝜃′ + 𝑞̂𝑆𝐺𝑆𝑗 (4.22)
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From the remaining non-frozen parameters, the turbulent viscosity (𝜈𝑡) is set initially to 1×10−5m2 s−1
throughout the domain, the dissipation rate (𝜖) initially to 1 × 10−15m3 s−2 and all the correction terms
(𝑏Δ𝑖𝑗, ℛ, 𝑞Δ𝑗 ) to 0.

4.1.4. Boundary Conditions
Both cases use the same boundary conditions for the k-corrective frozen RANS simulation which are
displayed in Table 4.4.

Table 4.4: Boundary conditions for the k-corrective frozen RANS simulations.

BC Lower Upper West
𝜈𝑡 nutkStratAtmRoughWallFunction slip zeroGradient
𝑘 kqRwallFunction slip zeroGradient
𝜖 epsilonWallFunction slip zeroGradient
𝑏Δ𝑖𝑗 calculated calculated calculated
ℛ calculated calculated calculated
𝑞Δ𝑗 calculated calculated calculated
BC South East North
𝜈𝑡 cyclic zeroGradient cyclic
𝑘 cyclic zeroGradient cyclic
𝜖 cyclic zeroGradient cyclic
𝑏Δ𝑖𝑗 cyclic calculated cyclic
ℛ cyclic calculated cyclic
𝑞Δ𝑗 cyclic calculated cyclic

Just as for the LES the North and South boundaries are linked through a cyclic boundary condition.
However, as opposed to the LES where the wall stress was set through the 𝜏𝑤𝑎𝑙𝑙𝑖𝑗 boundary conditions,
for RANS simulations the wall stress is set through the nutkStratAtmRoughWallFunction. This is
an adapted version of the generally used nutkAtmRoughWallFunction in order to include the effects
of stratification. This is done according to (4.23), where 𝑢∥ is the wall-parallel velocity in the first cell, 𝑧1
is the location of the first cell above the wall, 𝑧0 is the roughness length scale and 𝐿𝑂 is the Obukhov
length scale computed according to (2.55) (Kokee, 2021). Constants 𝜅, 𝑧0 and 𝛽𝑀 are set to 0.4, 0.1m
and 4.8 respectively in order to match the LES.

𝜏𝑤𝑎𝑙𝑙
𝜌 = 𝜈𝜕𝑈𝜕𝑧 |𝑤𝑎𝑙𝑙

= 𝑢2∗ = 𝑢∗
𝜅𝑢∥

ln 𝑧1
𝑧0
+ 𝛽𝑀

𝑧1
𝐿𝑂

= 𝐶1/4𝜇 √𝑘 𝜅𝑢∥
ln 𝑧1

𝑧0
+ 𝛽𝑀

𝑧1
𝐿𝑂

≃ (𝜈 + 𝜈𝑡)
𝑢∥
𝑧1

(4.23)

The kqRwallFunction in Table 4.4 is a simple wrapper around a zeroGradient boundary condition
for TKE and the epsilonWallFunction uses either the viscous or inertial sublayer assumptions to
compute 𝜖 at the wall.

Similarly, to Steiner et al. (2022) the corrections are blended close to the boundaries to avoid inter-
action with the wall functions, as described in Subsubsection 2.3.3.4. Case A uses the same blending
function as Steiner et al. (2022) displayed in (2.85) to blend 𝑏Δ𝑖𝑗 and ℛ in the lower and upper 15m of
the domain. 𝑞Δ𝑗 is not blended at all in Case A, as this prevents convergence of the simulation. Kokee
(2021) opted to set all corrections to zero in the upper 30m of the domain in Case B.

4.1.5. Consistency with LES System
As discussed in Subsection 4.1.4, the wall friction is implemented differently in the boundary conditions
for the LES and the RANS. In order to better match the profiles between the two, the boundary condi-
tions need to be matched according to Steiner et al. (2022). This is done to remove the influence of
the mismatch from the correction fields.

The difference in the implementation of the wall friction for the LES and RANS simulations is in how
they both compute 𝑢∗. The LES implementation uses the MOST log-law as displayed in (4.24).
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𝑢𝐿𝐸𝑆∗ ≃ 𝜅𝑢∥
ln 𝑧1

𝑧0
+ 𝛽𝑚

𝑧1
𝐿𝑂

(4.24)

Whereas the RANS implementation relates the friction velocity to the turbulence kinetic energy in
the first cell above the wall according to (4.25).

𝑢𝑅𝐴𝑁𝑆∗ ≃ 4√𝐶𝜇√𝑘1 (4.25)

In order to match the TKE in the first cell above the wall in the RANS simulation to that of the LES
simulation, the 𝐶𝜇 parameter is tuned according to (4.26).

𝐶𝜇 =
(𝑢𝐿𝐸𝑆∗ )4

𝑘21
(4.26)

Changing the value of 𝐶𝜇 also influences the value of 𝐶𝜖1 according to the assumption of equilibrium
turbulence near a wall displayed in (4.27) (Sørensen, 1995).

𝐶𝜖1 = 𝐶𝜖2 −
𝜅2

√𝐶𝜇𝜎𝜖
(4.27)

The resulting values for the two cases, as well as reference values from literature, are displayed
in Table 4.5. The values for Case B: Kokee SBL are computed from the precursor simulation values
(Kokee, 2021).

Table 4.5: Coefficients used to match LES and RANS wall friction and reference values from literature.

Flow 𝐶𝜇 𝐶𝜖1
Case A: Gabls1 0.0771 1.6347
Case B: Kokee SBL (Kokee, 2021) 1.17 1.81
Standard (Launder et al., 1975) 0.09 1.42
ABL (Sogachev et al., 2012) 0.03 1.52

In Table 4.5 it is clearly visible that the value for 𝐶𝜇 used by Kokee (2021) in Case B is far removed
from the reference values, while Case A is much closer. Upon closer inspection of the data it is dis-
covered that Kokee (2021) used a far too low value for the TKE at the wall to compute 𝐶𝜇: 0.06m2 s−2
while the value is actually 0.18m2 s−2. This leads to a nonphysical value for 𝐶𝜇 which has a large
influence in the wall functions as well as in the computation of the eddy viscosity. Unfortunately, this
mistake was discovered too late and the data for the optimal correction fields as computed by Kokee
(2021) is used moving forward. This also necessitates the use of the nonphysical value for 𝐶𝜇 in all
RANS simulations of Case B. Moreover, this means that the optimal correction fields do not only correct
model form errors, but also correct for the nonphysical value of 𝐶𝜇 for Case B.

4.2. Optimal Correction Fields
The methodology as described in Section 4.1 leads to correction fields for the three correction terms:
𝑏Δ𝑖𝑗, ℛ and 𝑞Δ𝑗 . For Case A, the planar averaged profiles of these fields are considered while for the
successor simulation of Case B the full fields are reviewed.

4.2.1. Case A: GABLS1
When considering the planar averaged profiles for the anisotropy correction in Figure 4.1 it is clear that
for most components the Boussinesq hypothesis vastly underestimates the anisotropy tensor. This
leads to the correction to be approximately equal to the LES data of the anisotropy tensor. The only two
components where the Boussinesq hypothesis has a significant contribution, xz and yz, the Boussinesq
anisotropy tensor overshoots the trends of the LES data. This causes the anisotropy tensor correction
for these two components to also be large.
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Turbulence Anisotropy Correction Case A: GABLS1

Figure 4.1: Planar averaged profiles of anisotropy correction components for Case A: GABLS1.

The planar averaged profile of the TKE production correction term is displayed in Figure 4.2. It is
only active in the ABL, which is below a height of approximately 200m and increases in magnitude
closer to the wall.
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Figure 4.2: Planar averaged profile of turbulence kinetic energy production correction for Case A: GABLS1.

The planar averaged profiles of the last correction term, 𝑞Δ𝑗 , are displayed in Figure 4.3. It is clear
that this term needs to correct for the complete absence of horizontal temperature fluxes in the gradient-
diffusion hypothesis due to an absence of horizontal temperature gradients. The contrary is true for the
vertical component, here the gradient-diffusion hypothesis overestimates the temperature flux due to
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the presence of a large negative vertical temperature gradient. However, the LES data for the vertical
temperature flux is smaller, leading to a positive correction of this component.
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Figure 4.3: Planar averaged profiles of turbulent heat flux components for Case A: GABLS1.

Lastly, Figure 4.4 shows all the different turbulence kinetic energy production terms present in the
transport equations for 𝑘 and 𝜖. This is done in order to capture the relative influence of the different
correction terms on the simulations. Only the turbulence heat flux correction, 𝑞Δ𝑗 , has an influence not
captured in Figure 4.4 as this term is also present in the temperature equation. In Figure 4.4 𝒫Δ𝑘 is the
production of TKE due to the anisotropy correction, 𝒫𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞𝑘 due to the conventional Boussinesq
hypothesis, ℛΔ due to the turbulence kinetic energy production correction, ℬΔ is the buoyant TKE
production due to the turbulent heat flux correction and ℬ𝐺𝐷𝐻 is the buoyant TKE production due to the
gradient-diffusion hypothesis.
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Figure 4.4: Planar averaged profiles of TKE production terms for Case A: GABLS1.

Figure 4.4 shows that the anisotropy generally counteracts the Boussinesq production of TKE. How-
ever, close to the wall this effect diminishes as the anisotropy correction is blended while the Boussi-
nesq production only becomes larger.When considering the effect of the transport residual on the TKE
correction it is clear that it is blended at the wall and generally adds TKE. Lastly, the turbulent heat flux
correction counteracts most of the destruction of TKE due to the gradient-diffusion hypothesis. This
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is due to the fact that the vertical component of the turbulent heat flux, which is the only component
relevant in the buoyant production of TKE, is much smaller in the LES data than the gradient-diffusion
hypothesis predicts.

4.2.2. Case B: Kokee SBL
Figure 4.5 displays a contour plot of the TKE production due to the anisotropy correction at the location
of the rotor. This allows for a straightforward analysis of the influence of the anisotropy correction on
the simulation. It is visible that the correction is most active in the near wake of the rotor, especially
in the shear layer between the turbine wake and the outside flow. This is where the velocity gradients
are largest and turbulence anisotropy is highest. Similarly to Case A, the anisotropy correction mainly
removes TKE from the flow for Case B.
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Figure 4.5: Contour plot of TKE production due to anisotropy correction field at turbine location 𝑦 = 𝑦ℎ𝑢𝑏 for Case B: Kokee
SBL. The turbine is indicated by a black vertical line (Kokee, 2021).

Looking at the same contour plot of the TKE production correction in Figure 4.6, some differences
are visible with respect to the anisotropy correction. This correction is mostly active in the shear layer
of the far wake, which is the location where the wake starts to break down and turbulence is generated
by the interaction between the wake and the outside flow. This correction mainly adds TKE to the
simulation.
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Figure 4.6: Contour plot of TKE production correction field at turbine location 𝑦 = 𝑦ℎ𝑢𝑏 for Case B: Kokee SBL. The turbine is
indicated by a black vertical line (Kokee, 2021).

Lastly, looking at the TKE production due to the THF correction it can be seen that the correction
is most active in the capping inversion of the atmospheric boundary layer. The magnitude of this
production of TKE is actually not influenced by the wake, except within the wake where the production
tends to zero. This would indicate that the gradient-diffusion hypothesis is more accurate within the
turbine wake than in the ABL flow. Moreover, when the magnitudes of the TKE production due to
the different corrections are compared, it can be concluded that the TKE production due to the THF
correction is negligible.
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Figure 4.7: Contour plot of TKE production due to THF correction field at turbine location 𝑦 = 𝑦ℎ𝑢𝑏 for Case B: Kokee SBL. The
turbine is indicated by a black vertical line (Kokee, 2021).

However, the THF correction influences the simulation not only due to the TKE production, but also
through the temperature equation. Therefore, the different components of the THF correction field are
displayed in Figure 4.8. The 𝑥-component is negative in the capping inversion and positive in the shear
layer while the 𝑦-component is negative in both the shear layer and the capping inversion. Lastly, as
seen in Figure 4.7, the z-component is mainly active in the capping inversion and ABL flow in stead of
the turbine wake.
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Figure 4.8: Contour plots of THF correction fields at turbine location 𝑦 = 𝑦ℎ𝑢𝑏 for Case B: Kokee SBL. The turbine is indicated
by a black vertical line (Kokee, 2021).



5
Learning of Correction Models

In Chapter 4 the optimal correction fields are generated for Case A and described for Case B. These
optimal fields are used to train models to improve the RANS simulations. The optimal fields for Case
B are taken from Kokee (2021), but the actual training of the models is performed by the author.

5.1. Model Learning Methodology
As described in Subsection 2.3.3, the SpaRTA methodology uses the generalised eddy viscosity for-
mulation by Pope (1975) to express the anisotropy correction as a function of ten basis tensors, 𝑇𝑛𝑖𝑗,
and invariant-based functions as displayed in (5.1) (Steiner et al., 2022).

𝑏Δ𝑖𝑗 =
10

∑
𝑛=1

𝑇(𝑛)𝑖𝑗 (𝑆𝑖𝑗 , Ω𝑖𝑗)𝑔
𝑏Δ𝑖𝑗
𝑛 (𝜆𝜆𝜆,q) = 𝐶𝑏Δ𝑖𝑗Θ𝑏Δ𝑖𝑗 (5.1)

The adapted version in (5.2) is used for the TKE production (Steiner et al., 2022).

ℛ = 2𝑘
10

∑
𝑛=1

𝑇(𝑛)𝑖𝑗 𝑔ℛ𝑛 (𝜆𝜆𝜆,q)
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜖 ⋅ 𝑔ℛ𝜖 (𝜆𝜆𝜆,q) = 𝐶ℛΘℛ (5.2)

And a similar expression for the turbulent heat flux is taken from Milani et al. (2020a) and displayed
in (5.3). This expression uses a different set of basis tensors, which are also based on the temperature
gradient.

𝑞Δ𝑗 = 𝜈𝑡
16

∑
𝑛=11

𝑇(𝑛)𝑗 (𝑆𝑖𝑗 , Ω𝑖𝑗 ,
𝜕𝜃
𝜕𝑥𝑗

)𝑔𝑞
Δ
𝑗
𝑛 (𝜆𝜆𝜆,q) = 𝐶𝑞

Δ
𝑗 Θ𝑞Δ𝑗 (5.3)

The learning of the invariant-based coefficient functions happens in four steps:

1. Create library of features

2. Reduce library using mutual information and cliqueing

3. Model discovery using elastic net regression

4. Model Calibration using Ridge regression

The creation of the library is done by combining all invariants and physical features with each other
up to a maximum of two features. As opposed to Steiner et al. (2022), no exponentiation is applied
in an attempt to arrive at simpler, robuster models which allow for more physical interpretation. The
combined features are then combined with the tensor basis to arrive at the library. For Case A, planar-
averaged data is used to alleviate the memory requirements, but for Case B this is not a possibility
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and the library needs to be reduced. The first way in which this is done is by selecting the sub-domain
displayed in (5.4) to be used for data, in the same way as done in Steiner et al. (2022).

𝑥𝑟𝑜𝑡 − 𝐷 < 𝑥 < 𝑥𝑟𝑜𝑡 + 20𝐷
𝑦𝑟𝑜𝑡 − 1.5𝐷 < 𝑦 < 𝑦𝑟𝑜𝑡 + 1.5𝐷

0 < 𝑧 < 𝑧𝑟𝑜𝑡 + 1.5𝐷
(5.4)

The sub-domain of (5.4) spans 27% of the total domain, but due to the mesh refinement in the lower
regions, it contains 51% of the data. Therefore, further reduction of the library is required to alleviate
memory issues. Similar to Steiner et al. (2022), mutual information and cliqueing are used to achieve
this. Mutual information estimates the amount of information which is obtained about the output, given
an observation of the input and is described in more detail in Subsection 2.3.3. Cliqueing combines
features with correlation coefficients above 0.99 in cliques and selects the algebraically simplest feature
for representation of the whole clique. Both cases split the data in training data (75%) to regress the
models with and test data (25%) to compute the mean and max squared error.

All the features in the resulting library are standardised to unit variance without shifting of the mean,
as this would introduce an nonphysical constant term in the final model. Furthermore, the components
of the target tensors are also standardised to unit variance in order to not let one component of the
target tensors dominate the others.

After the final library is computed, elastic net regression is performed according to (5.5).

Θ = min
Θ̂
[ ‖𝐶Θ̂ − 𝑏Δ𝑖𝑗‖

2

2
+ 𝛼𝜌𝑚 ‖Θ̂‖1 + 0.5𝛼(1 − 𝜌𝑚) ‖Θ̂‖

2
2 ] (5.5)

In (5.5), 100 values for the regularisation weight 𝛼 are used uniformly spaced on a log-scale between
𝛼0 and 𝛼𝑚𝑎𝑥. 𝛼0 is defined as 10−3𝛼𝑚𝑎𝑥 while 𝛼𝑚𝑎𝑥 is computed according to 𝛼𝑚𝑎𝑥 =max (w𝑇x) / (𝑁𝜌𝑚),
wherew are the feature coefficients, x is the library of feature samples and 𝑁 is the number of samples.
𝛼𝑚𝑎𝑥 is chosen in such a way that each regularisation weight 𝛼 larger than 𝛼𝑚𝑎𝑥 leads to all feature
coefficients w set to zero. The values for the mixing parameter 𝜌𝑚 are taken from (5.6). For each
combination of the two parameters a model structure is computed.

𝜌𝑚 = [0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 1.0]𝑇 (5.6)

For each model structure the coefficients are calibrated using Ridge regression according to (5.7).

Θ = min
Θ̂
[ ‖𝐶Θ̂ − 𝑏Δ𝑖𝑗‖

2

2
+ 𝜆𝑅 ‖Θ̂‖

2
2 ] (5.7)

Each value for the Ridge parameter 𝜆𝑅 displayed in (5.8), generates a new model. Therefore, this
methodology generates 7700models from which a few are picked for implementation based on criteria
such as algebraic complexity, mean-squared error and maximum error. As of yet there is no a priori
set of selection criteria to consistently choose the best model.

𝜆𝑅 = [0, 1e−5, 0.001, 0.01, 0.1, 0.25, 0.5]𝑇 (5.8)

5.2. Feature Selection
As discussed in Section 5.1 the selection of the features consists of two main steps: creation and
reduction of the library.

5.2.1. Creation of Library
As displayed in (5.9), the tensor basis for regressing the correction models for the anisotropy and TKE
production, 𝑏Δ𝑖𝑗 and ℛ, are taken from Pope (1975), just as done by Steiner et al. (2022).
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𝑇(1)𝑖𝑗 = 𝑆𝑖𝑗 , 𝑇(2)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑗 − Ω𝑖𝑘𝑆𝑘𝑗 , 𝑇(3)𝑖𝑗 = 𝑆𝑖𝑘𝑆𝑘𝑗 −
1
3𝛿𝑖𝑗𝑆𝑚𝑛𝑆𝑛𝑚 ,

𝑇(4)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑗 −
1
3𝛿𝑖𝑗Ω𝑚𝑛Ω𝑛𝑚 , 𝑇

(5)
𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙𝑆𝑙𝑗 − 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑗 ,

𝑇(6)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑗 + 𝑆𝑖𝑘Ω𝑘𝑙Ω𝑙𝑗 −
2
3𝛿𝑖𝑗𝑆𝑚𝑛Ω𝑛𝑜Ω𝑜𝑚 , 𝑇

(7)
𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚Ω𝑚𝑗 − Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚Ω𝑚𝑗 ,

𝑇(8)𝑖𝑗 = 𝑆𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑗 − 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚𝑆𝑚𝑗 ,

𝑇(9)𝑖𝑗 = Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑗 + 𝑆𝑖𝑘𝑆𝑘𝑙Ω𝑙𝑚Ω𝑚𝑗 −
2
3𝛿𝑖𝑗𝑆𝑛𝑜𝑆𝑜𝑝Ω𝑝𝑞Ω𝑞𝑛 ,

𝑇(10)𝑖𝑗 = Ω𝑖𝑘𝑆𝑘𝑙𝑆𝑙𝑚Ω𝑚𝑛Ω𝑛𝑗 − Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑚𝑆𝑚𝑛Ω𝑛𝑗 ,

(5.9)

The tensor basis for the turbulent heat flux correction, 𝑞Δ𝑗 , is displayed in (5.10) according to Milani
et al. (2020a).

𝑇(11)𝑗 = 𝜕𝜃
𝜕𝑥𝑗

, 𝑇(12)𝑗 = 𝑆𝑗𝑘
𝜕𝜃
𝜕𝑥𝑘

, 𝑇(13)𝑗 = Ω𝑗𝑘
𝜕𝜃
𝜕𝑥𝑘

,

𝑇(14)𝑗 = 𝑆𝑗𝑘𝑆𝑘𝑙
𝜕𝜃
𝜕𝑥𝑙

, 𝑇(15)𝑗 = Ω𝑗𝑘Ω𝑘𝑙
𝜕𝜃
𝜕𝑥𝑙

, 𝑇(16)𝑗 = (𝑆𝑗𝑘Ω𝑘𝑙 + Ω𝑗𝑘𝑆𝑘𝑙)
𝜕𝜃
𝜕𝑥𝑙

(5.10)

The same set of invariants and physical features is used for learning the models for all three correc-
tion terms. The invariants used in this case are not based on the set {𝑆𝑖𝑗 , Ω𝑖𝑗 , 𝐴𝑝𝑖𝑗 , 𝐴𝑘𝑖𝑗} as in Steiner et al.
(2022), but rather the invariants are taken of the set {𝑆𝑖𝑗 , Ω𝑖𝑗 , 𝐴𝜃𝑖𝑗 , 𝐴𝑘𝑖𝑗}. This allows for the stratification
to be included in the correction models. The definitions of the different terms are displayed in Table 5.1

Table 5.1: Set of tensors on which the invariants used in the regression of the correction terms are based.

Tensor ID Definition Normalisation

𝑆𝑖𝑗
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖
) 𝜖

𝑘

Ω𝑖𝑗
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖
) 𝜖

𝑘

𝐴𝑘𝑖𝑗 −𝕀 × ∇𝑘 𝜖
√𝑘

𝐴𝜃𝑖𝑗 −𝕀 × ∇𝜃 𝜃0
𝜖
𝑘√𝑘

The resulting set of invariants used in creating the library is displayed in Table 5.2.

Table 5.2: Invariant bases. The number of symmetric and anti-symmetric tensors for each invariant are indicated by 𝑛𝑠 and 𝑛𝑎,
respectively. The invariant bases are the trace of the tensors listed. The asterisk on a invariant bases indicates that also the
cyclic permutation of the anti-symmetric tensors are included (Steiner et al., 2022).

(𝑛𝑠, 𝑛𝑎) Feature Index Invariant bases
(1,0) 1-2 S2, S3
(0,1) 3-5 ΩΩΩ2, A2𝜃, A2𝑘
(1,1) 6-14 ΩΩΩ2S, ΩΩΩ2S2, ΩΩΩ2SΩΩΩS2

A2𝜃S, A
2
𝜃S

2, A2𝜃SA𝜃S
2

A2𝑘S, A
2
𝑘S

2, A2𝑘SA𝑘S
2

(0,2) 15-17 ΩΩΩA𝜃, A𝜃A𝑘, ΩΩΩA𝑘
(1,2) 18-41 ΩΩΩA𝜃S, ΩΩΩA𝜃S2, ΩΩΩ2A𝜃S∗, ΩΩΩ2A𝜃S2∗, ΩΩΩ2SA𝜃S2∗

ΩΩΩA𝑘S, ΩΩΩA𝑘S2, ΩΩΩ2A𝑘S∗, ΩΩΩ2A𝑘S2∗, ΩΩΩ2SA𝑘S2∗
A𝜃A𝑘S, A𝜃A𝑘S2, A2𝜃A𝑘S

∗, A2𝜃SA𝑘S
2∗

(0,3) 42 ΩΩΩA𝜃A𝑘
(1,3) 43-47 ΩΩΩA𝜃A𝑘S, ΩΩΩA𝑘A𝜃S, ΩΩΩA𝜃A𝑘S2, ΩΩΩA𝑘A𝜃S2, ΩΩΩA𝜃SA𝑘S2
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Decided is to use the same physics based features as Steiner et al. (2022), with the addition of one
feature based on the magnitude of the turbulent heat flux according to the gradient-diffusion hypothesis
in order to include a thermal stratification feature. The resulting set of physics informed flow features
is displayed in Table 5.3. The actuator forcing feature is only used for Case B as there are no turbines,
and thus no actuator forces, in Case A.

Table 5.3: Physics interpreted flow features. For each feature the physical description is denoted including the raw feature with
its normalisation. The features that are not Galilean invariant are marked with a †(Steiner et al., 2022).

ID Description Raw Feature Normalisation

𝑞𝑄 Ratio excess rotation rate to strain rate (Q cri-
terion)

1
2(‖ΩΩΩ‖

2 − ‖S‖2) ‖S‖2

𝑞†𝑇𝐼 Turbulence Intensity 𝑘 1
2𝑢𝑖 𝑢𝑖

𝑞𝑅𝑒𝐷 Wall distance based Reynolds number √𝑘𝑑
50𝜈 -

𝑞†𝜕𝑝𝜕𝑠 Pressure gradient along streamline 𝑢𝑘
𝜕𝑃
𝜕𝑥𝑘

√ 𝜕𝑃
𝜕𝑥𝑗

𝜕𝑃
𝜕𝑥𝑗
𝑢𝑖 𝑢𝑖

𝑞𝑇 Ratio of mean turbulent to mean strain time
scale

𝑘
𝜖

1
‖S‖

𝑞𝜈 Viscosity ratio 𝜈𝑡 100𝜈
𝑞†⊥ Non-orthogonality velocity and its gradient |𝑢𝑖 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
| √𝑢𝑙 𝑢𝑙 𝑢𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
𝑢𝑘

𝜕𝑢𝑘
𝜕𝑥𝑗

𝑞†𝒞𝑘/𝒫𝑘 Ratio convection to Boussinesq production of
TKE

𝑢𝑖
d𝑘
d𝑥𝑖

|𝑢′𝑗𝑢′𝑘𝑆𝑗𝑘|

𝑞𝜏 Ratio total to normal Boussinesq Reynolds
stresses

‖𝑢′𝑖𝑢′𝑗𝐵𝑆‖ 𝑘

𝑞𝛾 Shear parameter ||𝜕𝑢𝑖𝜕𝑥𝑗
|| 𝜖

𝑘

𝑞†𝐹 Actuator forcing ||𝐹𝑐𝑒𝑙𝑙||
1
2𝜌0𝐴𝑐𝑒𝑙𝑙‖𝑢‖

𝑞𝐺𝐷𝐻 Magnitude of THF according to GDH ||− 𝜈𝑡
Pr𝑡

𝜕𝜃
𝜕𝑥𝑗
|| 𝜃0√𝑘

5.2.2. Reduction of Library Using Mutual Information
As discussed in Section 5.1, when all the basis tensors, invariants and features from Subsection 5.2.1
are used, the library for Case B exceeds the memory requirements imposed by the available hardware.
Therefore, the mutual information between the different correction fields and the basis tensors, invari-
ants and features is computed as described in Subsubsection 2.3.3.2. The features with the highest
mutual information with the target correction fields are chosen to form the library with. For consistency,
this is also done for Case A, even though the ability to use planar-averaged data for this case drastically
reduces the imposed memory requirements.

5.2.2.1. Anisotropy Correction 𝑏Δ𝑖𝑗
The first correction field for which the mutual information analysis is performed is the anisotropy cor-
rection 𝑏Δ𝑖𝑗. As the anisotropy correction is a tensor, and the mutual information analysis methodology
requires scalar input, the second invariant of 𝑏Δ𝑖𝑗 is used similarly to Steiner et al. (2022) and Goderie
(2020). This scalar metric of 𝑏Δ𝑖𝑗 is chosen as it quantifies the degree of turbulent anisotropy in the
flow, making it a convenient scalar target for computing the mutual information according to Ling and
Templeton (2015). This metric is computed according to (5.11) where 𝛾𝑖 are the eigenvalues of 𝑏Δ𝑖𝑗 with
𝛾1 ≥ 𝛾2 ≥ 𝛾3.

Π𝑏Δ𝑖𝑗 =
1
2𝑏

Δ
𝑖𝑗𝑏Δ𝑗𝑖 = 𝛾21 + 𝛾1𝛾2 + 𝛾22 (5.11)
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(5.11) is also used to compute the second invariant of the different basis tensors to compare them
to the anisotropy correction. The results for the mutual information between the anisotropy correction
and the basis tensors for Case A and Case B are displayed in Figure 5.1 and Figure 5.2 respectively.
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Figure 5.1: Mutual information between the second invariant of the anisotropy correction 𝑏Δ𝑖𝑗 and the second invariants of the
basis tensors for Case A: GABLS1.
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Figure 5.2: Mutual information between the second invariant of the anisotropy correction 𝑏Δ𝑖𝑗 and the second invariants of the
basis tensors for Case B: Kokee SBL.

The figures for the mutual information between the anisotropy correction and the invariants and
physics-informed features are included in Appendix A. Based on all these results, chosen is to include
the basis tensors and invariants as displayed in Table 5.4 for training the correction models.
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Table 5.4: Selected basis tensors, invariants and physical features for forming library used to regress models for anisotropy
correction.

Feature Type Case A: GABLS1 Case B: Kokee SBL

Basis Tensors 𝑇(1)𝑖𝑗 , 𝑇(2)𝑖𝑗 , 𝑇(3)𝑖𝑗 , 𝑇(4)𝑖𝑗 𝑇(1)𝑖𝑗 , 𝑇(2)𝑖𝑗 , 𝑇(3)𝑖𝑗 , 𝑇(4)𝑖𝑗

Invariants 𝜆1, 𝜆3, 𝜆4, 𝜆7, 𝜆16
𝜆1, 𝜆3, 𝜆7, 𝜆10, 𝜆11, 𝜆21, 𝜆22, 𝜆25,
𝜆33, 𝜆35, 𝜆40, 𝜆43, 𝜆44, 𝜆45, 𝜆46

Physical Features 𝑞𝑇, 𝑞𝑅𝑒𝐷, 𝑞𝜈, 𝑞𝜏, 𝑞𝑇𝐼 𝑞𝑇, 𝑞𝑅𝑒𝐷, 𝑞𝜈, 𝑞𝑇𝐼

Even though they have relatively high mutual information for both cases, physical features 𝑞⊥ and
𝑞𝛾 are removed from the regression library as they showed large deviations from the expected values
when implemented in the simulations. The same goes for higher order basis tensors (higher than
𝑇(4)𝑖𝑗 ) for Case B. When implemented in models, peaks in profiles of these higher order tensors were
smoothed a lot when compared to the frozen reference data.

5.2.2.2. TKE Production Correction ℛ
The TKE production correction field, ℛ, is already a scalar so the mutual information between this cor-
rection field and the invariants can readily be computed. However, to compute the mutual information
for the basis tensors, the TKE production of each basis tensor is computed according to (5.12). There-
fore it is deemed a suitable metric to compute the mutual information with the target with. 𝜖 is already
a scalar and is therefore unaltered in the computation of the mutual information.

𝒫𝑇
(𝑛)
𝑖𝑗
𝑘 = 2𝑘𝑇(𝑛)𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(5.12)

The mutual information between the basis tensors and the TKE production correction for Case A
and Case B are displayed in Figure 5.3 and Figure 5.4 respectively. The same figures for the invariants
and the physical features are included in Appendix A.
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Figure 5.3: Mutual information between the TKE production correction and the TKE production of the basis tensors for Case A:
GABLS1



5.2. Feature Selection 63

ε T(1)ij T(3)ij T(6)ij T(4)ij T(9)ij T(10)ij T(7)ij T(8)ij T(2)ij T(5)ij
0.0

0.5

1.0

1.5

M
I [
-]

Mutual Information with  for Case B: Kokee SBL

Figure 5.4: Mutual information between the TKE production correction and the TKE production of the basis tensors for Case B:
Kokee SBL

Based on the figures in Figure 5.3, Figure 5.4 and Appendix A the basis tensors, invariants and
physical features in Table 5.5 are selected for building the regression library to regress the correction
models for the TKE production. Similarly to the anisotropy correction, higher order basis tensors are
excluded from the regression for Case B due to inaccuracies when implemented.

Table 5.5: Selected basis tensors, invariants and physical features for forming library used to regress models for TKE production
correction

Feature Type Case A: GABLS1 Case B: Kokee SBL

Basis Tensors 𝜖, 𝑇(1)𝑖𝑗 , 𝑇(3)𝑖𝑗 , 𝑇(4)𝑖𝑗 , 𝑇(6)𝑖𝑗 , 𝑇(9)𝑖𝑗 , 𝑇(10)𝑖𝑗 𝜖, 𝑇(1)𝑖𝑗 , 𝑇(3)𝑖𝑗 , 𝑇(4)𝑖𝑗

Invariants 𝜆1, 𝜆3, 𝜆4, 𝜆7, 𝜆16
𝜆1, 𝜆3, 𝜆7, 𝜆10, 𝜆21, 𝜆22, 𝜆25, 𝜆30,

𝜆33, 𝜆35, 𝜆43, 𝜆44
Physical Features 𝑞𝑇, 𝑞𝑅𝑒𝐷, 𝑞𝜈, 𝑞𝑇𝐼, 𝑞𝐺𝐷𝐻 𝑞𝑇, 𝑞𝑅𝑒𝐷, 𝑞𝜈, 𝑞𝑇𝐼, 𝑞𝐺𝐷𝐻

5.2.2.3. THF Correction 𝑞Δ𝑗
Lastly, the mutual information analysis is performed for the turbulent heat flux correction, 𝑞Δ𝑗 . Again, this
correction is not a scalar, so the mutual information cannot be readily computed. Chosen is to use the
𝑧-component of the correction and the basis tensors as this is deemed the most important component.
This assertion ismade as the 𝑧-component of the correction is the only component which also influences
the buoyant TKE production and not only the temperature equation. The mutual information between
the THF correction and the basis tensors for Case A and Case B are displayed in Figure 5.5 and
Figure 5.6 respectively, while the same figures for the invariants and physical features are included in
Appendix A.

Based on the figures in Figure 5.5, Figure 5.6 and Appendix A the basis tensors, invariants and
physical features in Table 5.6 are selected for building the library used for regressing the THF correction
models.
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Figure 5.5: Mutual information between the 𝑧-component of the THF correction and basis tensors for Case A: GABLS1.
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Figure 5.6: Mutual information between the 𝑧-component of the THF correction and basis tensors for Case B: Kokee SBL.

Table 5.6: Selected basis tensors, invariants and physical features for forming library used to regress models for the THF
correction

Feature Type Case A: GABLS1 Case B: Kokee SBL

Basis Tensors 𝑇(11)𝑗 , 𝑇(12)𝑗 , 𝑇(13)𝑗 , 𝑇(14)𝑗 , 𝑇(15)𝑗 𝑇(11)𝑗 , 𝑇(12)𝑗 , 𝑇(13)𝑗 , 𝑇(14)𝑗 , 𝑇(15)𝑗

Invariants 𝜆1, 𝜆3, 𝜆4, 𝜆5, 𝜆16
𝜆1, 𝜆3, 𝜆4, 𝜆7, 𝜆10, 𝜆11, 𝜆16, 𝜆21, 𝜆25,

𝜆35, 𝜆43, 𝜆44,
Physical Features 𝑞𝜈, 𝑞𝑇, 𝑞𝑅𝑒𝐷, 𝑞𝐺𝐷𝐻, 𝑞𝑇𝐼 𝑞𝜈, 𝑞𝑅𝑒𝐷, 𝑞𝐺𝐷𝐻, 𝑞𝑇𝐼

5.3. Selection of models
Once the library is complete and the regression is performed, a lot of models are created. From these
models a few are selected to be implemented in RANS simulations.

5.3.1. Case A: GABLS1
A few models are selected to be implemented for each of the three correction terms.
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5.3.1.1. Anisotropy Correction 𝑏Δ𝑖𝑗
After the regression is performed according to the description in Section 5.1, the mean squared error
and max squared error are computed using the test data. These metrics are displayed for all models
with less than eleven terms in Figure 5.7. Chosen is to keep only simpler models as they are more
robust and it allows for more physical interpretation of the resulting models. Furthermore, for models
with the same features, only the model with the lowest mean squared error is displayed. A figure which
displays the terms present in all the models is included in Appendix B.
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Figure 5.7: Scatter plot of the mean and max squared error of the anisotropy correction models with less than eleven terms,
generated using data from Case A: GABLS1. Selected models are denoted by a black circle.

The selected models in Figure 5.7 are selected based on their low mse and maxse. Also, it is
chosen to select models with different numbers of terms, namely two, four and seven, to investigate
the effect the complexity of the models has on the simulations. The expressions of the chosen models
are included in (5.13). The models in (5.13) only include physical features and none of the invariants.
Also, the more complex models include all the terms of the simpler models, only adding features and
changing the coefficients a bit.

[𝑏Δ𝑖𝑗]
𝐴

9
= 0.0707 ⋅ 𝑇(1)𝑖𝑗 + 2.8825 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(2)𝑖𝑗

[𝑏Δ𝑖𝑗]
𝐴

16
= 0.0493 ⋅ 𝑇(1)𝑖𝑗 + 2.6595 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(2)𝑖𝑗 + 3.3035 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(3)𝑖𝑗

+ 0.0018 ⋅ 𝑞𝑇 ⋅ 𝑇(1)𝑖𝑗

[𝑏Δ𝑖𝑗]
𝐴

2164
= 0.1441 ⋅ 𝑇(1)𝑖𝑗 + 2.6590 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(2)𝑖𝑗 + 4.2728 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(3)𝑖𝑗

+ 0.0017 ⋅ 𝑞𝑇 ⋅ 𝑇(1)𝑖𝑗 + 2.0034 ⋅ 10−7 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑇(1)𝑖𝑗 + 9.6907 ⋅ 10−6 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(4)𝑖𝑗

− 0.0763 ⋅ 𝑞𝜏 ⋅ 𝑇(1)𝑖𝑗

(5.13)

The predictions of the planar-averaged TKE production due to the anisotropy correction 𝑏Δ𝑖𝑗 are
displayed for the models from (5.13) in Figure 5.8. All predictions are quite close to the target, only the
simplest model 9 is slightly further off than the more complicated models 16 and 2164. This also means
that the extra terms in model 2164 with respect to model 16 have a negligible effect on the accuracy of
the prediction.
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Figure 5.8: Prediction of the chosen models for the planar-averaged TKE production due to the anisotropy correction 𝑏Δ𝑖𝑗 for
Case A: GABLS1, as well as the spread of the predictions of all generated models included in the scatter plot.

5.3.1.2. TKE Production Correction ℛ
The same analysis as for 𝑏Δ𝑖𝑗 is performed for the TKE production correction ℛ. The mse and maxse
of the best simple models generated by the regression are displayed in Figure 5.9. Figure 5.9 shows
quite a surprising result, namely that a model of one term performs the best in terms of mse and maxse
of all the models with ten terms or less. Therefore, this is the only model that is selected.
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Figure 5.9: Scatter plot of the mean and max squared error of the TKE production correction models with less than eleven terms,
generated using data from Case A: GABLS1. Selected models are denoted by a black circle.
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The expression of the selected model is displayed in (5.14) and it includes the physical feature
based on the magnitude of the turbulent heat flux according to the gradient-diffusion hypothesis and
the dissipation rate.

[ℛ]𝐴1850 = 2682.1 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝜖 (5.14)

The prediction of the selected model is displayed in Figure 5.10 where it is visible that the selected
model performs the best towards the bottom of the domain.
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Figure 5.10: Prediction of the chosen models for the planar-averaged TKE production correction ℛ for Case A: GABLS1, as well
as the spread of the predictions of all generated models included in the scatter plot.

5.3.1.3. THF Correction 𝑞Δ𝑗
The mse and maxse for the generated models for the THF correction are displayed in Figure 5.11.
Again, models are chosen based on these metrics as well as the number of terms in the model.
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Figure 5.11: Scatter plot of the mean and max squared error of the THF correction models with less than eleven terms, generated
using data from Case A: GABLS1. Selected models are denoted by a black circle.

The chosen models have a complexity of two, four and seven and are displayed in (5.15). Just as



68 5. Learning of Correction Models

with the models for 𝑏Δ𝑖𝑗 it is visible that more complex models contain the same terms as the simpler
models.

[𝑞Δ𝑗 ]
𝐴

117
= 2.1332 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑇(11)𝑗 − 0.0018 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(13)𝑗

[𝑞Δ𝑗 ]
𝐴

119
= 9.4812 ⋅ 10−6 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑇(11)𝑗 − 0.0018 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(13)𝑗 + 0.0516 ⋅ 𝑞𝑇 ⋅ 𝑇(11)𝑗

+ 0.2827 ⋅ 𝑇(11)𝑗

[𝑞Δ𝑗 ]
𝐴

3401
= 1.0332 ⋅ 10−5 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑇(11)𝑗 − 9.5505 ⋅ 10−4 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(13)𝑗 + 0.0813 ⋅ 𝑞𝑇 ⋅ 𝑇(11)𝑗

+ 0.3704 ⋅ 𝑇(11)𝑗 + 9.1374 ⋅ 10−4 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑞𝑇𝐼 ⋅ 𝑇(12)𝑗 + 3.6458 ⋅ 10−11 ⋅ 𝑞2𝑅𝑒𝐷 ⋅ 𝑇(11)𝑗

− 5.9425 ⋅ 10−5 ⋅ 𝑞𝑇 ⋅ 𝑞𝜈 ⋅ 𝑇(11)𝑗

(5.15)

The predictions according to the models in (5.15) are displayed in Figure 5.12. It is visible that
the simplest model shows quite a large deviation from the target, while the two more complex models
match the target quite well. Also, the model with the highest number of terms is not significantly better
than the model 119 with four terms.
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Figure 5.12: Prediction of the chosen models for the planar-averaged z-component of the THF correction 𝑞Δ𝑧 for Case B: Kokee
SBL, as well as the spread of the predictions of all generated models included in the scatter plot.

5.3.2. Case B: Kokee SBL
The same process of choosing models to implement in RANS simulations is done for the models trained
with the data from Case B: Kokee SBL.

5.3.2.1. Turbulence Anisotropy Correction 𝑏Δ𝑖𝑗
Just as for Case A, the regression results in a lot of models. The mean squared error and max squared
error of the created models with five terms or less are displayed in Figure 5.13, where the black cir-
cles denote selected models. The structures of the models displayed in Figure 5.13 are included in
Appendix B. As discussed before, chosen is to focus on the simpler models as they are more robust
and allow for more physical interpretation while still being able to describe complex phenomena. The
models which are chosen in Figure 5.13 are chosen because they have the lowest mean squared error
(4167), lowest complexity (4159) or lowest max squared error (4371).
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Figure 5.13: Scatter plot of the mean and max squared error of the anisotropy correction models with less than six terms,
generated using data from Case B: Kokee SBL. Selected models are denoted by a black circle.

The expressions of the chosen models are included in (5.16). Similarly to Case A, it is visible that
only physical features are selected in themodel and no invariants. Furthermore, for all selected models,
the first basis tensor is the most important.

[𝑏Δ𝑖𝑗]
𝐵

4167
= 0.9054 ⋅ 𝑇(1)𝑖𝑗 + 0.0910 ⋅ 𝑞𝑇 ⋅ 𝑇(1)𝑖𝑗 + 0.0559 ⋅ 𝑇(2)𝑖𝑗 − 0.1425 ⋅ 𝑇(4)𝑖𝑗

+ 2.7725 ⋅ 10−9 ⋅ 𝑞2𝜈 ⋅ 𝑇(2)𝑖𝑗

[𝑏Δ𝑖𝑗]
𝐵

4159
= 1.0534 ⋅ 𝑇(1)𝑖𝑗

[𝑏Δ𝑖𝑗]
𝐵

4371
= 1.3048 ⋅ 𝑇(1)𝑖𝑗 + 0.0699 ⋅ 𝑞𝑇 ⋅ 𝑇(1)𝑖𝑗 − 7.3302 ⋅ 10−5 ⋅ 𝑞𝜈 ⋅ 𝑇(1)𝑖𝑗

− 2.8620 ⋅ 10−6 ⋅ 𝑞𝑅𝑒𝐷 ⋅ 𝑇(1)𝑖𝑗

(5.16)

The prediction of the chosen models for the TKE production due to the anisotropy correction 𝑏Δ𝑖𝑗
is included in Figure 5.14, where the models are also compared to the rest of the models included in
Figure 5.13. It is visible that the model with the lowest mean squared error (4167) provides the best
prediction of the selected polars, while the model with the lowest complexity (4159) is the furthest from
the target data.
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Figure 5.14: Prediction of the chosen models for the planar-averaged TKE production due to the anisotropy correction 𝑏Δ𝑖𝑗 for
Case B: Kokee SBL, as well as the spread of the predictions of all generated models included in the scatter plot.

5.3.2.2. TKE Production Correction ℛ
A similar process is done to select the correction models for the TKE production to implement. Fig-
ure 5.15 displays the mean squared error and the max squared error for all generated models with less
than six terms and the chosen models are denoted by black circles. The model structures of the models
included in Figure 5.15 are included in Appendix B. The chosen models are again based on their low
mean squared error (10), max squared error (12) or complexity (7). Furthermore, model 12 is chosen
as the model with the lowest maxse proved not robust when implemented in RANS simulations.

The expressions of the chosen models are included in (5.17). Again it is visible that no invariants
are used in the chosen models, only physics based features. Furthermore, it is clear that 𝜖 is the most
important basis, as only model [ℛ]𝐵10 uses a basis tensor in the model. Another noteworthy thing is that
all models include a term with only 𝜖 multiplied with a positive coefficient close to 1. This means that the
correction models are effectively removing almost all of the dissipation as computed by the transport
equation for 𝜖.

[ℛ]𝐵10 = 0.9483 ⋅ 𝜖 + 568.76 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝑞𝑇 ⋅ 𝜖 + 3.1999 ⋅ 10−5 ⋅ 𝑞𝑇 ⋅ 𝑞𝜈 ⋅ 𝜖 − 1.0249 ⋅ 10−5 ⋅ 𝑞𝜈 ⋅ 𝜖

+ 2𝑘 (−6.2982 ⋅ 𝑞𝑇𝐼 ⋅ 𝑞𝑇 ⋅ 𝑇(1)𝑖𝑗 )
𝜕𝑢𝑖
𝜕𝑥𝑗

[ℛ]𝐵12 = 0.8093 ⋅ 𝜖 − 72.458 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝑞𝑇 ⋅ 𝜖 + 5.0962 ⋅ 10−5 ⋅ 𝑞𝑇 ⋅ 𝑞𝜈 ⋅ 𝜖 + 299.45 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝜖
[ℛ]𝐵7 = 0.9432 ⋅ 𝜖

(5.17)

Sample profiles of the prediction of the TKE production correction by the chosen models behind the
rotor are included in Figure 5.16. In contrast to the predictions for the turbulence anisotropy correction,
the predictions in Figure 5.16 show very little difference between the models. Even though there is
quite a large difference in model complexity.
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Figure 5.15: Scatter plot of the mean and max squared error of the TKE production correction models with less than six terms,
generated using data from Case B: Kokee SBL. Selected models are denoted by a black circle.
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Figure 5.16: Prediction of the chosen models for the planar-averaged TKE production correction ℛ for Case B: Kokee SBL, as
well as the spread of the predictions of all generated models included in the scatter plot.

5.3.2.3. THF Correction 𝑞Δ𝑗
Lastly, the selection of turbulence heat flux correction models is done. Figure 5.17 shows the perfor-
mance of the simplest models in terms of mean squared error and max squared errors. The model
structures of the models displayed in Figure 5.17 are included in Appendix B. Figure 5.17 shows that
there are only a few unique models with less than six terms. Only two models are selected: the model
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with the lowest mean and max squared error (9) and a model with the lowest complexity (7).
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Figure 5.17: Scatter plot of the mean and max squared error of the THF correction models with less than six terms, generated
using data from Case B: Kokee SBL. Selected models are denoted by a black circle.

The expressions of the chosen models are included in (5.18). Again, the trend that only physi-
cal features are incorporated in models is visible. Furthermore, (5.18) shows that models 9 and 7
are very similar, with model 9 having the same first two terms with only slightly differing coefficients.
Lastly it is visible that a correction of the turbulent diffusivity in the gradient-diffusion hypothesis (all
terms multiplied with 𝑇(11)𝑗 ) is dominant for both models. Especially for model 7 which only corrects
the gradient-diffusion hypothesis based on the magnitude of the turbulent heat flux according to the
gradient-diffusion hypothesis.

[𝑞Δ𝑗 ]
𝐵

9
= 0.3143 ⋅ 𝑇(11)𝑗 + 792.53 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝑇(11)𝑗 + 1.2815 ⋅ 10−10 ⋅ 𝑞2𝑅𝑒𝐷 ⋅ 𝑇(12)𝑗

− 3.3919 ⋅ 10−11 ⋅ 𝑞2𝑅𝑒𝐷 ⋅ 𝑇(13)𝑗 − 0.0115 ⋅ 𝑞𝑇𝐼 ⋅ 𝑞𝜈 ⋅ 𝑇(13)𝑗

[𝑞Δ𝑗 ]
𝐵

7
= 0.3138 ⋅ 𝑇(11)𝑗 + 796.37 ⋅ 𝑞𝐺𝐷𝐻 ⋅ 𝑇(11)𝑗

(5.18)

The predictions of sample profiles between the rotor of the vertical component of the THF correction
term for the chosen models are displayed in Figure 5.18. Some minor differences are visible between
the simpler model 7 and the slightly more complex model 9. However, one is not clearly closer to the
target data than the other.
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6
Implementation of Learned Correction

Terms in Simulations
The correction models have been trained in Chapter 5, therefore the next step is to implement these
trained correction models in RANS simulations.

6.1. Simulation Methodology
The methodology for RANS simulations with implemented models is largely the same for the two cases.
Just as for the LES, the simulations are performed in OpenFOAM-6 using SOWFA-6, with the addition
of the models.

6.1.1. Governing Equations
The governing equations for continuity, momentum and potential temperature are displayed in (6.1),
(6.2) and (6.3) respectively (Churchfield et al., 2012b). These equations are the same for both cases.

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (6.1)

𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑖

= − 1𝜌0
𝜕𝑝𝑟𝑔ℎ
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(𝜈 (𝜕𝑢𝑖𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

) − 𝑢′𝑖𝑢′𝑗) + (
𝜃 − 𝜃0
𝜃0

)𝑔𝑖 − 2𝜖𝑖3𝑘Ω3𝑢𝑘 + 𝑆𝑚𝑖 +
1
𝜌0
𝑓𝑇𝑖 (6.2)

𝜕𝜃𝑢𝑗
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

( 𝜈Pr
𝜕𝜃
𝜕𝑥𝑗

− 𝜃′𝑢′𝑗 − 𝑞
𝑤𝑎𝑙𝑙
𝑗 ) (6.3)

The Reynolds stress, 𝑢′𝑖𝑢′𝑗, and turbulent heat flux, 𝜃′𝑢′𝑗, are computed according to the turbulence
models with implemented correction models described in Subsubsection 4.1.1.2. This means that there
is a slight difference in the turbulence models for the two cases in order to keep consistent with the
k-corrective frozen approach used to extract the optimal correction terms. The momentum source, 𝑆𝑚𝑖
is taken as the mean value in the LES data for the two cases and the same is done for the wall heat
flux 𝑞𝑤𝑎𝑙𝑙𝑗 . The turbine forcing 𝑓𝑇𝑖 is zero for Case A and for Case B it is computed by the Actuator Disk
Model. However, contrary to the LES, the pitch and rpm are kept fixed at the mean LES value in stead
of being controlled by a controller. For Case B this means a mean rotational velocity of 9.30 rpm and
a mean rotor pitch of 0.0°.

6.1.2. Initial Conditions
The initial conditions for 𝑢𝑖, 𝑝𝑟𝑔ℎ and 𝜃 are taken as the mean fields over the last hour of the LES. The
initial conditions for 𝑘, 𝜖 and 𝜈𝑡 are taken from the converged k-corrective frozen RANS simulations, just
as the initial values of the correction terms 𝑏Δ𝑖𝑗, ℛ and 𝑞Δ𝑗 . For Case A these fields can straightforwardly

75
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be copied as the RANS simulation is performed on the same domain and mesh as the LES. However,
when running the simulation with implementedmodels for Case B, it is discovered that part of the turbine
wake exits the domain through the Southern boundary causing some instabilities with the models.
Therefore, the 100m next to the Northern boundary is moved and attached to the Southern boundary.
This could be done as the Northern and Southern boundaries are linked through a cyclic boundary
condition.

6.1.3. Boundary Conditions
The boundary conditions used in the RANS simulations with implemented models are the same for
both cases and displayed in Table 6.1. The only difference is the value for 𝑞𝑤, which is 0.0101Kms−1
for Case A and 0.0109Kms−1 for Case B. The boundary conditions in Table 6.1 are chosen to keep
consistent with the k-corrective frozen RANS simulations and the different wall models used are ex-
plained in more detail in Subsection 4.1.4. The most significant difference from the k-corrective frozen
RANS boundary conditions, is the fact that inflow conditions need to be specified for 𝑢𝑖, 𝜃, 𝑘 and 𝜖.
This is indicated by themappedFixedValue boundary condition in Table 6.1. These inflow conditions
are taken from the inflow plane of the converged k-corrective frozen simulation.

Table 6.1: Boundary conditions for the RANS simulations with implemented models.

BC Lower Upper West
𝑢𝑖 fixedValue 0 slip mappedFixedValue
𝑝𝑟𝑔ℎ fixedFluxPressure fixedFluxPressure fixedFluxPressure
𝜃 zeroGradient fixedGradient 0.01 mappedFixedValue

𝑞𝑤𝑎𝑙𝑙𝑗 fixedValue 𝑞𝑤 fixedValue 0 fixedValue 0
𝜈𝑡 nutkStratAtmRoughWallFunction slip zeroGradient
𝑘 kqRwallFunction slip mappedFixedValue
𝜖 epsilonWallFunction slip mappedFixedValue
𝑏Δ𝑖𝑗 fixedValue 0 fixedValue 0 fixedValue 0
ℛ fixedValue 0 fixedValue 0 fixedValue 0
𝑞Δ𝑗 fixedValue 0 fixedValue 0 fixedValue 0
BC South East North
𝑢𝑖 cyclic inletOutlet cyclic
𝑝𝑟𝑔ℎ cyclic zeroGradient cyclic
𝜃 cyclic zeroGradient cyclic

𝑞𝑤𝑎𝑙𝑙𝑗 cyclic fixedValue 0 cyclic
𝜈𝑡 cyclic zeroGradient cyclic
𝑘 cyclic zeroGradient cyclic
𝜖 cyclic zeroGradient cyclic
𝑏Δ𝑖𝑗 cyclic fixedValue 0 cyclic
ℛ cyclic fixedValue 0 cyclic
𝑞Δ𝑗 cyclic fixedValue 0 cyclic

6.1.4. Blending and Ramping of Implementation of Correction Models
In order to be consistent with the k-corrective frozen RANS simulations used to extract the optimal
correction fields, the simulations with implemented models employ the same blending. For Case A:
GABLS1 this means that the blending function from Steiner et al. (2022) and displayed in (2.85) is
used to blend the anisotropy correction, 𝑏Δ𝑖𝑗, and TKE production correction, ℛ, in the top and bottom
15m of the domain. For Case B: Kokee SBL this means that these terms are set to zero in the top
30m of the domain. In both cases the THF correction, 𝑞Δ𝑗 , is not blended anywhere in the domain.

Aside from blending, ramping of the implementation of the correction models is also used in the
implementation of the correction models. This is needed as in the first iterations there are large changes
in the different parameters. These large changes can lead to large changes in the correction model
values and thus even larger variations in the different parameters. This can snowball and lead to
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a diverging simulation. Therefore, Case A waits 10 iterations after which the correction models are
ramped to full implementation in another 10 iterations. For the Case B simulations, the solver waits
100 iterations and the ramp-time is another 100 iterations.

6.1.5. Limiters
After implementing the correction models for Case B, the same instabilities as observed in Steiner et al.
(2021) and described in Subsubsection 2.3.3.4 are observed. Therefore, it is decided to implement the
same limiters for the anisotropy correction, 𝑏Δ𝑖𝑗, and for the TKE production correction, ℛ, as in Steiner
et al. (2021). These limiters are displayed in (6.4) and (6.5).

• Eddy viscosity limiter: the linear components of the anisotropy correction models are limited
based on van der Laan et al. (2013):

𝑏Δ𝑖𝑗,𝑙𝑖𝑛 = min (0.8 𝜖𝑘2 𝜈𝑡 , 𝑏
Δ
𝑖𝑗,𝑙𝑖𝑛) (6.4)

• Form error limiter: This limiter is active in areas where actuator forcing is applied, so very close
to the actuator disk:

ℛ = sgn(ℛ) ⋅min (0.5𝒫𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞𝑘 , |ℛ|) (6.5)

However, after these two limiters are implemented, instabilities in the temperature field at the shear
layer between the wake and the outside flow are observed. These instabilities are similar to those
caused by the anisotropy correction: large gradients in the temperature causes large THF correction
terms, causing even larger gradients. Therefore, it is chosen to apply a similar limiter as the eddy
viscosity limiter for the THF correction displayed in (6.6).

• THF limiter: the ”GDH” components of the THF correction models are limited:

𝑞Δ𝑗,𝐺𝐷𝐻 = min( 1
2Pr𝑡

, 𝑞Δ𝑗,𝐺𝐷𝐻) (6.6)

The limiter displayed in (6.6) limits the part of the THF correction containing basis tensor 𝑇(11)𝑗 .
This is done as this part of the correction is basically a correction of the coefficient in front of the tem-
perature gradient in the gradient-diffusion hypothesis. When this coefficient becomes larger than 1

Pr𝑡
,

the gradient-diffusion hypothesis part of the THF model switches sign. Meaning that there is counter-
gradient transport of turbulent heat flux, something which is generally nonphysical. To make the limiter
a little more stringent, and avoid getting close to the nonphysical limit, it is chosen to set the limit at
1

2Pr𝑡
.
Due to the absence of turbines, and hence the absence of wakes, in Case A, the RANS simulations

with implemented models for this case are able to being performed without the use of any limiters.

6.2. Results Case A: GABLS1 with Implemented Models
A number of different aspects of simulations for Case A: GABLS1 with implemented models is investi-
gated. Namely, the influence the THF correction has in the simulation, which correction models perform
the best, how much the results of the simulation are improved compared to a baseline simulation and
how good the different models perform.

6.2.1. Influence of the THF Correction
The first aspect of the simulations which is analysed, is the influence of the new addition to the SpaRTA
methodology: the THF correction 𝑞Δ𝑗 . To do this it is not necessary to use results with implementedmod-
els, just using the frozen optimal correction fields is enough. Figure 6.1 displays the planar-averaged
turbulent heat flux of RANS simulations with implemented frozen, so optimal, corrections for Case A.
Furthermore, Figure 6.1 compares three different implementations for the THF correction to judge its
influence: full implementation, implementation of only the z-component and no implementation of the
THF correction.
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Figure 6.1: Comparison of the turbulent heat flux from RANS simulations of Case A: GABLS1 with different versions of the
frozen THF correction (𝑞Δ𝑗 ): full correction (blue), only z-component (orange) and no THF correction (green). All simulations
implemented the frozen anisotropy (𝑏Δ𝑖𝑗) and TKE production (ℛ) corrections.

When considering the different profiles in Figure 6.1 it is visible that the turbulent heat flux is com-
puted much more accurately when the frozen corrections are implemented, almost exactly matching
the target data. This is expected, the real question is how much this improvement of THF computation
influences the other parameters in the RANS simulation. Therefore, Figure 6.2 displays the planar-
averaged profiles for the temperature, velocity and TKE for the different simulations.
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Figure 6.2: Comparison of RANS simulations of Case A: GABLS1 with different versions of the frozen THF correction (𝑞Δ𝑗 ): full
correction (blue), only z-component (orange) and no THF correction (green). All simulations implemented the frozen anisotropy
(𝑏Δ𝑖𝑗) and TKE production (ℛ) corrections.
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Looking at Figure 6.2 it is clear that the full implementation matches the LES profiles almost exactly,
as was to be expected. The only difference is for the TKE profile at the bottom of the domain where
the corrections are blended out to avoid interaction with the wall model. Furthermore, it is clear that
the THF correction does not influence the temperature or velocity profiles for Case A. A reason for this
could be the fact that these profiles are prescribed at the inflow boundary and the domain is not very
long, leaving very little time for these profiles to change.

The fact that all the profiles of the z-component implementation of the THF correction is equal to
the profiles for the full implementation, indicate that the main effect of this THF correction in this case
is through the buoyant production term in the 𝑘- and 𝜖-equations as only the z-component is included
in this term. The other components are only included in the temperature equation but their effect is
apparently negligible.

Looking at the profiles for the TKE, it can be concluded that there is a small influence of the THF
correction due to the deviation in the profile for the implementation without THF correction. This de-
viation was expected, because as seen in Figure 4.4 it was seen that the THF correction introduces
additional production of TKE. Without this additional production the amount of TKE in the simulation is
lower.

Lastly, seeing that the only effect of the THF correction is through the buoyant production, it can be
concluded that it is not necessary to include the THF correction in the SpaRTA methodology for this
case. The additional production of TKE due to the THF correction would have been absorbed in the
TKE production correction. However, it does allow for more detailed analysis of the influence of the
corrections on the TKE production.

6.2.2. Model Selection
In Section 5.3 multiple models with deffering numbers of terms were selected for implementation, with
a lower number of terms generally being associated with a higher mse and maxse. These models
are implemented in different simulations to determine the optimal number of terms in the correction
models. The simulation with high complexity models implements [𝑏Δ𝑖𝑗]𝐴2164 (7 terms), [ℛ]𝐴1850 (1 term)
and [𝑞Δ𝑗 ]𝐴3401 (7 terms). The simulation with medium complexity models implements [𝑏Δ𝑖𝑗]𝐴16 (4 terms),
[ℛ]𝐴1850 (1 term) and [𝑞Δ𝑗 ]𝐴119 (4 terms). Lastly, the low complexity models implemented are [𝑏Δ𝑖𝑗]𝐴9 (2
terms), [ℛ]𝐴1850 (1 term) and [𝑞Δ𝑗 ]𝐴117 (2 terms). It is chosen for all simulations to implement the one-
termmodel for the TKE production correctionℛ as this model significantly outperformed the other, more
complex models in terms of mse and maxse. The resulting planar-averaged profiles for the simulations
are displayed in Figure 6.3.
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Figure 6.3: Comparison of planar-averaged profiles of temperature, velocity and TKE for simulations of Case A: GABLS1 with
different complexity models implemented.
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The profiles for the temperature and velocity in Figure 6.3 show no significant deviations from the
LES data for all simulations with implemented models. This can be explained by the fact that these
are prescribed at the inflow and the case itself is not very complex as there are no turbines. The only
parameter for which the profiles in Figure 6.3 for the different simulations show deviations is the TKE.
The surprising conclusion is that the simulation with medium complexity models is the closest to the
LES data, even though the higher complexity models performed slightly better in terms of mse and
maxse. At the top of the ABL even the low complexity models outperform the high complexity models.
A possible explanation for this could be that with more complex models, the different terms are more
sensitive to changes and start interacting with each other.

6.2.3. Comparison to Baseline
The profiles of the baseline simulation are compared to the simulation with medium complexity models
from the previous section in Figure 6.4. This simulation implements models [𝑏Δ𝑖𝑗]𝐴16, [ℛ]𝐴1850 and [𝑞Δ𝑗 ]𝐴119
and is chosen as it performed the best out of the selected combination of models.
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Figure 6.4: Comparison of planar-averaged profiles of temperature, velocity and TKE for simulations of Case A: GABLS1 with
modelled, frozen and without any corrections implemented.

In Figure 6.4, the TKE profile is again the only profile which displays deviations from the LES data.
For the majority of the profile in the ABL the simulation with modelled corrections shows improve-
ment over the baseline simulation which slightly over-predicts the TKE. Only towards the bottom of the
domain, the simulation with modelled corrections slightly under-predicts the TKE while the baseline
simulation TKE is closer to the LES reference data. An explanation for this is the fact that for such a
simple case the baseline simulation is already quite good.

6.2.4. Model Performance
As seen in the previous section, the simulation with the implemented models deviates slightly from
the target simulation with frozen corrections. In order to investigate what causes this deviation, the
modelled correction terms are compared to the expected correction terms, the influence of deviations
in the correction terms on the TKE production terms is investigated and it is researched what correction
terms have the biggest influence on the final results.

6.2.4.1. Errors in Modelled Correction Terms
First, the values of the different correction terms in the simulation with implemented models are com-
pared to their respective optimal, frozen values and their expected values. These expected values are
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generated by using the implemented models and the data from the k-corrective frozen RANS simula-
tion. This comparison is displayed for the turbulence anisotropy correction, 𝑏Δ𝑖𝑗, in Figure 6.5.
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Figure 6.5: Planar-averaged profiles of the modelled turbulence anisotropy correction compared against the optimal, frozen
correction term and the predicted correction term for Case A: GABLS1.

When considering Figure 6.5, it is visible that the modelled turbulence anisotropy correction term
stays very close to the predicted value throughout the domain. Only towards the bottom of the domain
there are some visible deviations due to the blending of the correction terms close to the wall. The fact
that the implemented model is so close to the expected value is caused by the fact that the data used
to train the models is from from the same case as the models are implemented in. The only cause of
deviations are a compound effect between the three different modelled correction terms. This would
indicate that the main bottleneck of increasing the accuracy of this method is the ability for models to
match the target data of the turbulence anisotropy correction. In Figure 6.5 it is visible that the model
matches the relatively largest component of the turbulence anisotropy correction (𝑥𝑧 and 𝑦𝑧 quite well,
while the other components show quite a large deviation. The same analysis for the TKE production
correction term, ℛ, is displayed in Figure 6.6.
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Figure 6.6: Planar-averaged profile of the modelled TKE production correction compared against the optimal, frozen correction
term and the predicted correction term for Case A: GABLS1.

The modelled TKE production term is generally almost equal to the predicted value, just as for the
turbulence anisotropy correction. This means that in this case the compound effect of the correction
terms on each other is quite small. However, there is a slight overestimation of the modelled TKE
production correction term in the ABL when compared to the target value. Lastly, the modelled com-
ponents of the turbulent heat flux correction are compared against their expected and target values in
Figure 6.7.
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Figure 6.7: Planar-averaged profiles of the modelled THF correction compared against the optimal, frozen correction term and
the predicted correction term for Case A: GABLS1.

Figure 6.7 shows a larger discrepancy between the predicted and modelled values of the correction
term than the other two corrections. Especially the peaks in the capping inversion are exacerbated by
the implemented model. This could be explained by the snow-ball effect of larger gradients, causing
large values in themodels, leading to even larger gradients, causing over-estimations of the peaks. The
target value of the 𝑧-component is matched quite well by the model, while the other two components
are not matched as well. However, in Subsection 6.2.1 it became clear that the 𝑧-component is the
only important component.
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6.2.4.2. Influence Correction Term Modelling Errors on TKE Production
In the previous paragraph it is shown that all correction models show some deviations from the optimal,
frozen values, especially certain components of 𝑏Δ𝑖𝑗 and 𝑞Δ𝑗 . To get a sense on how these deviations in-
fluence the simulations the planar-averaged profiles of the different TKE production terms are displayed
in Figure 6.8. This figure compares the TKE production terms from the simulation with implemented
models (solid lines) to the terms from the k-corrective frozen RANS simulation (dashed lines).
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Figure 6.8: Planar-averaged profiles of the different TKE production terms in the simulation with implemented models (solid lines)
and in the k-corrective frozen RANS simulation (dashed lines) for Case A: GABLS1

First of all, it is clear that the TKE production due to 𝑏Δ𝑖𝑗 shows the largest deviation from the k-
corrective frozen RANS simulation. Especially, throughout the lower portion of the ABL the difference
is quite pronounced. This was to be expected due to the mismatch betweenmodel and target for certain
components of this correction term. Furthermore, it deviates close to the wall as the velocity gradient at
the wall shows a slight mismatch between the RANS simulation and LES data. The velocity gradients
heavily influence the correction models, leading to the significant deviation.

The TKE production correction term shows some slight deviations from the reference value, but
nowhere near as pronounced as for the turbulence anisotropy correction. Lastly, the TKE production
due to the THF correction shows the same exacerbation of the peak in the capping inversion also seen
in the THF correction itself. However, this deviation is much smaller than for the turbulence anisotropy
correction and is also partly remedied by the exacerbation of the negative peak in the TKE production
due to the gradient-diffusion hypothesis.

6.2.4.3. Influence Correction Term Modelling Errors on Simulation
In Figure 6.8 it is seen that the mismatch of the turbulence anisotropy correction, 𝑏Δ𝑖𝑗, has the largest in-
fluence on the TKE production terms in the simulation with implemented models. Therefore, Figure 6.9
shows the planar-averaged profiles of simulations which only model one correction term, while keeping
the other correction terms at their optimal, frozen values. This is done in order to get a sense of how
the correction term modelling errors influence the overall simulation.
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Figure 6.9: Planar-averaged profiles of the temperature, velocity and TKE for Case A: GABLS1 simulations with one correction
term modelled, and the others frozen.

From Figure 6.9 it is clear that almost the entire deviation of the TKE in the simulation with imple-
mented models seen in Figure 6.4 is due to the mismatch between the modelled 𝑏Δ𝑖𝑗 and the optimal
value. As the TKE profile with only 𝑏Δ𝑖𝑗 modelled is the only TKE profile significantly deviating from
the LES data. As seen before, the mismatch between the modelled and optimal turbulence anisotropy
correction is due to the inability of the model to match the LES data. This could indicate that additions
to the regression library are needed in order to better model the phenomena present in the turbulence
anisotropy correction.

6.3. Results Case B: Kokee SBL with Implemented Models
The same analysis of the results of RANS simulations with implemented models for Case B is per-
formed as was done for Case A in the previous section. This means that the influence of the THF
correction is investigated, as well as the model selection. The results are compared against a baseline
simulations and the performance of the different correction models is investigation. However, started
is with an investigation of how the nonphysical turbulence model constants used by Kokee (2021) in
the k-corrective frozen approach influences the simulations.

6.3.1. Influence of Nonphysical Turbulence Model Constants
As discussed in Chapter 4, Kokee (2021) used an unrealistic value for 𝐶𝜇. This parameter influences
the simulation through the computation of the turbulent viscosity, 𝜈𝑡, and is also used in the respective
wall models. The much too high value for 𝐶𝜇 used by Kokee (2021) means that for the same 𝑘 and 𝜖 the
turbulent viscosity is computed to be much higher. For the simulation this directly influences the velocity
through the momentum equation and also the computation of 𝑘 and 𝜖 themselves. Furthermore, the
temperature equation is also influenced as the turbulent diffusivity is computed by dividing the turbulent
viscosity by the (constant) turbulent Prandtl number. To get a sense of how the simulation is influenced
by 𝐶𝜇, the results of baseline RANS simulation using the values for 𝐶𝜇 = 1.17 and 𝐶𝜖1 = 1.81 from
Kokee (2021) is compared to the same simulation but using values for ABLs according to Sogachev
et al. (2012): 𝐶𝜇 = 0.03 and 𝐶𝜖1 = 1.52. Figure 6.10 displays the TKE-profiles for the respective
simulations.
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Figure 6.10: Comparison of TKE profiles for baseline RANS simulations of Case B: Kokee SBL with different values for 𝐶𝜇 and
𝐶𝜖1.

Considering Figure 6.10, it can be concluded that closer to the rotor the values from Kokee (2021)
yields results closer to the LES reference results, while further away from the rotor the values from
Sogachev et al. (2012) yields more accurate results. Another main effect from using the parameter
values of Kokee (2021) seems to be that peaks in the profiles are smoothed out. Especially towards
the rear of the domain, while the parameter values of Sogachev et al. (2012) do not smooth the peaks
enough when comparing to the LES reference data. Aside from that, a surprising observation is that for
both sets of parameter values, the turbulence kinetic energy is generally under-estimated with respect
to the LES reference data. This is surprising as Steiner et al. (2022) and Goderie (2020) both reported
overestimation of the turbulence kinetic energy by the baseline model. A possible explanation for this
difference is the fact that this is a stably stratified case, as opposed to the neutral cases of Steiner et al.
(2022) and Goderie (2020). It was seen in Chapter 3 that even though there is a very large vertical
temperature gradient, the vertical component of the turbulent heat flux in the LES data is relatively
small. This means that the gradient-diffusion hypothesis in the baseline model vastly overestimates the
vertical component of the turbulent heat flux, leading to an over-estimation of the buoyant destruction
of TKE and under-estimation of the TKE.

To see how these differences in TKE computation influence the overall simulation, the stream-wise
velocity profiles are displayed in Figure 6.11. The profiles in Figure 6.11 show the same trend as in
Figure 6.10: the set of parameter values from Kokee (2021) smoothens the profiles far to much, while
the opposite is true for the simulation implementing the reference parameter values fromSogachev et al.
(2012). This would suggest that the value for 𝐶𝜇 from Sogachev et al. (2012) is too small. Aside from
this effect the accuracy level in simulating the velocity seems quite similar for both sets of parameter
values.
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Figure 6.11: Comparison of stream-wise velocity profiles for baseline RANS simulations of Case B: Kokee SBL with different
values for 𝐶𝜇 and 𝐶𝜖1.

Lastly, the temperature profiles included in Figure C.1 show that the effect of these parameters
on the temperature equation is very limited. This means that the 𝐶𝜇 mainly influences the turbulence
computation and themomentum balance. For the correction terms, the use of the unrealistic value for 𝐶𝜇
by Kokee (2021) means that they have to supply additional smoothing of the TKE and velocity profiles.
In the remainder of this work, the baseline simulation refers to the simulation using the parameter values
from Kokee (2021) as the correction terms are computed based on this value for 𝐶𝜇.

6.3.2. Influence of the THF Correction
In Subsection 6.2.1 it is concluded that for Case A: GABLS1 the THF correction, 𝑞Δ𝑗 , only influenced the
simulation through added buoyant production of TKE and not through the temperature equation. For
Case B: Kokee SBL, the same three simulations are performed: one with implemented optimal, frozen
values for the corrections, one with only the z-component of the THF correction and one without the
THF correction. Figure 6.12 displays profiles of the vertical component of the turbulent heat flux behind
the rotor, with the profiles of the horizontal components being included in Figure C.2 and Figure C.3.

It is clear that the simulations with both the full and with only the z-component of the THF correction
almost perfectly match the LES data of the vertical component of the turbulent heat flux. However, the
profiles of the horizontal components of the turbulent heat flux in Appendix C show a much better match
between the simulations with only the z-component and without the THF correction. To see how these
differences in the simulation of the turbulent heat flux influence the temperature, temperature profiles
are displayed in Figure 6.13.

The temperature profiles in Figure 6.13 show some small deviations between the different simula-
tions, especially the simulation without any THF correction shows the most deviation in the horizontal
profiles. However, these deviations are mainly shown due to the very small scales of the figures and
it can be concluded that these differences are not significant (in the order of 0.01K). This confirms
the notion from Subsection 6.2.1 that the THF correction has a negligible effect on the temperature
equation.
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Figure 6.12: Profiles of the z-component of the turbulent heat flux behind the rotor for RANS simulations of Case B: Kokee SBL,
with full THF correction implemented (blue), only z-component of THF correction (orange) and without THF correction (green).
All simulations implemented the optimal, frozen turbulence anisotropy and TKE production corrections.
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Figure 6.13: Profiles of the temperature behind the rotor for RANS simulations of Case B: Kokee SBL, with full THF correction
implemented (blue), only z-component of THF correction (orange) and without THF correction (green). All simulations imple-
mented the optimal, frozen turbulence anisotropy and TKE production corrections.

This only leaves the influence of the THF correction through the buoyant production of TKE. There-
fore, the TKE profiles for the different simulations are included in Figure 6.14.
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Figure 6.14: Profiles of the turbulence kinetic energy behind the rotor for RANS simulations of Case B: Kokee SBL, with full THF
correction implemented (blue), only z-component of THF correction (orange) and without THF correction (green). All simulations
implemented the optimal, frozen turbulence anisotropy and TKE production corrections.

The TKE-profiles of the simulations with the z-component and the full THF correction almost per-
fectly match the LES reference data, while the simulation without the THF correction shows a slight
under-prediction of the TKE. This is due to the missing added buoyant production of TKE due to the
z-component of the THF correction. This effect is also visible in the horizontal velocity profiles included
in Figure C.4. The buoyant production of TKE due to the THF correction could also be incorporated
in the overall TKE production correction, rendering the THF correction unnecessary. This is different
from the conclusion drawn by Kokee (2021), who argued a scalar correction of the turbulent heat flux
is necessary.

Lastly, as the data available is generated incorporating the THF correction, this correction is retained
throughout this work (Kokee, 2021).

6.3.3. Model Selection
For each of the three correction terms, multiple models are implemented in order to find out which
model selection criteria yield the best models.

6.3.3.1. Model Selection for the Turbulence Anisotropy Correction.
In order to discover the best model for the anisotropy correction, all chosen models from Subsubsec-
tion 5.3.2.1 are implemented in RANS simulations of Case B: Kokee SBL. This means that models
[𝑏Δ𝑖𝑗]𝐵4167, [𝑏Δ𝑖𝑗]𝐵4159 and [𝑏Δ𝑖𝑗]𝐵4371 are implemented. For the correction terms for the TKE production and
turbulent heat flux, the models with the lowest mse after the regression are implemented, which are
models [ℛ]𝐵10 and [𝑞Δ𝑗 ]𝐵9 . The simulated production of TKE due to the anisotropy correction behind the
rotor is displayed in Figure 6.15.
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Figure 6.15: Profiles of the production of turbulence kinetic energy due to the anisotropy correction 𝑏Δ𝑖𝑗 behind the rotor for RANS
simulations of Case B: Kokee SBL. Different simulations implemented different models for the anisotropy correction 𝑏Δ𝑖𝑗.

This figure shows that the simulation with model 4371, which is the model with the lowest max
squared error after the regression, computes the TKE production due to the anisotropy correction clos-
est to the LES data. Especially further downstream the effect becomes very pronounced. Where the
simulation with model 4371 stays fairly close to the reference, the peaks in the other two simulation
become very exaggerated, even more exaggerated then predicted. To see how this difference influ-
ences the main simulation parameters, profiles of the horizontal velocity behind the rotor are included
in Figure 6.16 and the same profiles for the temperature and the turbulence kinetic energy are included
in Figure C.5.

Figure 6.16 shows that themodel whichmost accurately modelled the TKE correction also simulated
the horizontal velocity closest to the LES reference data. Models 4167 and 4159 overestimate the TKE
destruction in the shear layers of the wake due to the large gradients present in these layers. This
causes the wake to be more pronounced moving downstream as there is less turbulent mixing between
the wake and the outside flow. An effect clearly seen in both the horizontal and vertical profiles furthest
downstream from the rotor. Therefore, it can be concluded that model [𝑏Δ𝑖𝑗]𝐵4371 performs the best of
the three chosen models, which means this model is used in all subsequent simulations.
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Figure 6.16: Profiles of the horizontal velocity behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the anisotropy correction 𝑏Δ𝑖𝑗.

6.3.3.2. Model Selection for the TKE Production Correction
Just as for the anisotropy correction, all the chosen models for the TKE production correction are
implemented in RANS simulations for Case B: Kokee SBL. This means that models [ℛ]𝐵10, [ℛ]𝐵12 and
[ℛ]𝐵7 are implemented. For the anisotropy correction model [𝑏Δ𝑖𝑗]𝐵4371 is used as it is found to perform
the best in the previous section and for the THF correction model [𝑞Δ𝑗 ]𝐵9 is used as it has the lowest
mse after the regression.

Sample profiles of the simulated TKE production correction for the simulations with the different
TKE production correction models implemented are displayed in Figure 6.17.

Figure 6.17 shows that the vertical profiles are best matched by model 7, especially more down-
stream. However, the peaks in the horizontal profiles of the TKE production correction close to the rotor
are better matched by model 12. It is actually quite surprising that there are such significant differences
between the models as the predictions of all models in Figure 5.16 are very close together. The fact
that the simulation of models 10 and 12 differ significantly also shows that the term containing the first
basis tensor in model 10 does have a significant effect on the simulation. Lastly, the fact that model 7
seems to be outperforming the others is also surprising as it is a very simple model of only one term.
To see how the differences in Figure 6.17 influence the overall simulation, sample profiles for the TKE
are displayed in Figure 6.18 with the same profiles for the temperature and horizontal velocity being
included in Figure C.7 and Figure C.8
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Figure 6.17: Profiles of the production of TKE correctionℛ behind the rotor for RANS simulations of Case B: Kokee SBL. Different
simulations implemented different models for the TKE production correction ℛ.
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Figure 6.18: Profiles of the production of TKE correction behind the rotor for RANS simulations of Case B: Kokee SBL. Different
simulations implemented different models for the TKE production correction ℛ.

In Figure 6.18 it is clear that model 7 provides the best simulation of the TKE, especially more
downstream of the rotor. This is as expected as this model also performed the best in terms of the TKE
production correction itself. Therefore, model [ℛ]𝐵7 is chosen as TKE production correction model for
all subsequent simulations.
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6.3.3.3. Model Selection for the THF Correction
Lastly, the chosen models for the THF correction are implemented. This means that models [𝑞Δ𝑗 ]𝐵9
and [𝑞Δ𝑗 ]𝐵7 are implemented. For the turbulence anisotropy correction and TKE production correction
models [𝑏Δ𝑖𝑗]𝐵4371 and [ℛ]𝐵7 are used as they were found to be the best performing models in the previous
sections.

The vertical component of the THF correction for the two simulations is displayed in Figure 6.19.
Very similar to the prediction after the regression, the two models perform about equally with only
some deviations here and there. However, one model does not clearly outperform the other. This is
not the case for the horizontal components of the THF correction, the figures of which are included in
Figure C.9 and Figure C.10, where model 9 performs much better than model 7. However, as seen in
Subsection 6.3.2, the horizontal components of the THF correction are of negligible importance.
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Figure 6.19: Profiles of the z-component of the THF correction 𝑞Δ𝑧 behind the rotor for RANS simulations of Case B: Kokee SBL.
Different simulations implemented different models for the THF correction 𝑞Δ𝑗 .

Despite the differences in the computation of the THF correction between the models, the effect
on the overall simulation is very minimal. As can be seen in the profiles for the horizontal velocity in
Figure 6.20 and for the temperature and TKE in Figure C.11 and Figure C.12. This can be explained
by the relatively small effect the vertical component of the THF correction has on the overall simulation
through the buoyant production of TKE, while the horizontal components have no influence at all, as
discussed in Subsection 6.3.2.

Seeing that both models perform very similarly, the simplest model is chosen. This means that
model [𝑞Δ𝑗 ]𝐵7 is chosen to model the THF correction.
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Figure 6.20: Profiles of the horizontal velocity behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the THF correction 𝑞Δ𝑗 .

6.3.3.4. Discussion of Model Selection
After considering the performance of the different chosen models, it is clear that there is still no one
clear a priori selection criterion to choose the best models. For the anisotropy correction, the model
with the lowest maxse performed the best, while for the TKE production correction the simplest model
outperformed the more complex models with lower maxse and mse after the regression. Moreover, the
simplest model for the THF correction performed just as good as the more complex model with lower
mse and maxse.

6.3.4. Comparison to Baseline
Next, the RANS simulation of Case B: Kokee SBL with the best models implemented is compared
against the baseline simulation. The simulation with implemented models implements the best models
[𝑏Δ𝑖𝑗]𝐵4371, [ℛ]𝐵7 and [𝑞Δ𝑗 ]𝐵7 . Profiles of the turbulence kinetic energy behind the rotor are compared in
Figure 6.21 for the LES data, the baseline simulation and corrected simulations.

Figure 6.21 shows that the baseline massively underestimates the turbulence kinetic energy com-
pared to the LES data. Something which is much improved by the simulation with implemented models.
A trend which is also visible in the contour plots displayed in Figure 6.22. There, it is also visible that the
maximum of turbulence kinetic energy is very close to the edges of the rotor for the baseline, while the
location of the maximum is much further downstream for the LES data and simulation with implemented
models. This is also visible in the horizontal slices of TKE included in Figure C.13. This phenomenon
could indicate that the most important source of TKE for the baseline simulation are the tip vortices
introduced at the edge of the rotor. While in the LES and RANS simulation with implemented models
the most turbulence is created in the shear layer between the wake and the outside flow. This TKE
production in the shear layer only decays further downstream as the shear layer becomes wider due
to the turbulent mixing. The disparity in turbulence creation between the baseline and the LES data is
corrected for by the implemented models. Referring back to the contour plots of the TKE production
due to the different correction terms from Section 4.2 and the TKE breakdown in Figure C.17, it seems
like 𝑏Δ𝑖𝑗 mainly removes the TKE very close to the rotor from the baseline, while ℛ introduces the addi-
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tional TKE in the shear layer. Meanwhile, the THF correction mainly removes the buoyant destruction
of TKE due to the gradient-diffusion hypothesis in the wake.
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Figure 6.21: Comparison of TKE profiles behind the rotor between the LES data, the baseline simulation, the simulation with
optimal, frozen corrections and the simulation with implemented models for Case B: Kokee SBL.
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Figure 6.22: Comparison of vertical slices of TKE at the location of the rotor between the LES data, the baseline simulation and
the simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and all slices are
plotted with the same colour scale for better comparison.
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The difference in turbulence creation between the baseline simulation and LES data also influences
the stream-wise velocity profiles included in Figure 6.23. The omission of the most important mecha-
nism of turbulence creation in the baseline simulation leads to much reduced mixing of the wake and
outside flow. This leads to an over-estimation of the wake further down-stream of the rotor in the base-
line simulation. The simulation with implemented models corrects for this effect and show much better
agreement with the LES data.
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Figure 6.23: Comparison of stream-wise velocity profiles behind the rotor between the LES data, the baseline simulation, the
simulation with optimal, frozen corrections and the simulation with implemented models for Case B: Kokee SBL.

The contour plots of the stream-wise velocity in Figure 6.24 tell the same story. Thewake is decaying
less rapidly for the baseline simulation than for the LES data. Particularly visible is how the shear-layer
rapidly widens for the LES data and simulation with implemented models, while the shear-layer stays
much more narrow in the baseline simulation. Something which is also visible, to a lesser extend as
the shear-layer mixes with the capping inversion, in the vertical slices of stream-wise velocity included
in Figure C.14.

Lastly, the temperature profiles included in Figure C.19 show no significant differences between the
baseline and the simulation with implemented models. This confirms the assertion that the models do
not significantly influence the temperature equation.
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Figure 6.24: Comparison of horizontal slices of stream-wise velocity at hub-height between the LES data, the baseline simulation
and the simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and all slices are
plotted with the same colour scale for better comparison.

6.3.5. Model Performance
Lastly, the performance of the different correction models implemented for Case B: Kokee SBL is in-
vestigated to get a sense of how the modelling errors influence the simulation.

6.3.5.1. Errors in Modelled Correction Terms
First, the simulated correction terms are compared to their optimal, frozen values and their expected
values based on the selected model and the data from the k-corrective frozen simulation. This com-
parison for the TKE production due to the turbulence anisotropy correction is displayed in Figure 6.25,
where it is visible that the predicted and simulated profiles are quite close together. The most visible
effect is a smoothing of the simulated profiles more downstream of the rotor.
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Figure 6.25: Comparison of the TKE production due to the turbulence anisotropy correction, 𝑏Δ𝑖𝑗, for the optimal, predicted and
modelled correction term for Case B: Kokee SBL.



6.3. Results Case B: Kokee SBL with Implemented Models 97

Looking at the TKE production correction in Figure 6.26, somemore apparent differences are visible
between the expected and simulated correction. Especially the peaks in shear layers between the wake
and the outside flow are visibly smoothed.

0.00 0.05

100

200

300

400

z [
m

]

-1D

0.00 0.01
 [m2s−3]

200

300

400

y 
[m

]

0.0 0.2

100

200

300

400

2D

0.0 0.2
 [m2s−3]

200

300

400

0.0 0.2

100

200

300

400

5D

0.0 0.2
 [m2s−3]

200

300

400

0.0 0.1

100

200

300

400

y=yrotor

9D
LES
Predicted Correction
Modelled Correction

0.0 0.1
 [m2s−3]

200

300

400

z=zrotor

 Profile  Behind the Rotor

Figure 6.26: Comparison of the TKE production correction, ℛ, for the optimal, predicted and modelled correction term for Case
B: Kokee SBL.

Lastly, the comparison of profiles for the z-component of the THF correction is displayed in Fig-
ure 6.27. These profiles show the largest difference between the predicted and simulated values of all
the correction term. Especially the peak in the capping inversion is not present at all in the simulated
model. However, as seen in Subsection 6.3.2, the effect of the THF correction is quite limited.
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Figure 6.27: Comparison of the THF correction, ℛ, for the optimal, predicted and modelled correction term for Case B: Kokee
SBL.
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6.3.5.2. Influence Correction Term Modelling Errors on TKE production
To see how the differences in simulated correction terms influence the production of turbulence kinetic
energy, profiles of the different TKE production terms are displayed in Figure 6.28. There, it is visible
that the buoyant production of TKE is negligible behind the rotor. Furthermore, similar to Case A, 𝑏Δ𝑖𝑗
seems tomainly work against the Boussinesq production of TKE. Also visible is the fact that the peaks in
the values of ℛ in the shear-layers are smoothed in the simulation with implemented models compared
to the optimal values of the correction term. The other two correction terms show better agreement
with the optimal values.
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Figure 6.28: Profiles of different TKE production terms from a RANS simulation with implemented models (solid) and from the
LES data (dashed) for Case B: Kokee SBL.

6.3.5.3. Influence Correction Term Modelling Errors on Simulation
In Figure 6.28 it is shown that the modelling of the different correction terms has a significant effect on
especially the TKE production correction. To get a grasp of how the modelling of the different correction
terms influences the final results, three simulations are performed with different configurations as to
which correction terms are modelled and which are kept constant at their optimal, frozen values. The
resulting profiles for the TKE are displayed in Figure 6.29.

In Figure 6.29 it is visible that the modelling of the TKE production correction introduces a significant
error at the bottom of the domain, further downstream of the rotor. Previously it was shown that the
prediction of the model struggled at this location, so this result is expected. However, that is not the
only significant source of error. The modelling of the anisotropy correction also introduces a significant
error closely behind the rotor, which is also where the correction is the most active. Looking at the
velocity profiles in Figure C.21, it is also this correction which introduces the largest error in the stream-
wise velocity field. This conclusion is different from Case A, where modelling errors of the anisotropy
correction are responsible for virtually all of the difference between the LES data and the simulation
with implemented models.
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Figure 6.29: TKE profiles for simulations of Case B: Kokee SBL with different configurations of correction terms modelled, all the
other correction terms are kept constant at their optimal, frozen values.





7
Conclusions and Recommendations

The main objective of this thesis was to reduce the 𝑘 − 𝜖 turbulence model and gradient-diffusion hy-
pothesis scalar-flux model uncertainties in stably-stratified wind turbine wake applications by extending
the SpaRTA methodology to include the effects of stable stratification. The main addition to extend the
SpaRTA methodology towards stable stratification is an additive correction to the turbulent heat flux.
This additive correction corrects the gradient-diffusion hypothesis model, most commonly used for tur-
bulent scalar flux modelling. Aside from that, a new feature is introduced to the regression library based
on the magnitude of the gradient-diffusion hypothesis version of the turbulent heat flux and the library
includes invariants which are temperature gradient-based in stead of pressure-based.

The performance of this extended SpaRTA methodology was tested by applying it two cases. Case
A is based on the GABLS1 inter-comparison study and concerns a stably-stratified parcel of air above
land without any turbines while Case B concerns a turbine in the same environmental conditions as
Case A. The LES ground-truth data and optimal correction fields for Case B could be obtained from
Kokee (2021), while all simulations for Case A were performed by the author.

The optimal correction fields for both cases were used to train simple algebraic correction models,
which were then implemented in corrected RANS simulations using OpenFOAM. The results were
compared against baseline data, based in which conclusions are drawn in Section 7.1

7.1. Conclusions
In order to answer the main research question of this thesis, first the answers to the sub-questions are
discussed.

SQ1. How does the extension of the SpaRTA methodology to also include a model form correction of
the turbulent heat flux influence the corrected simulations?
In the LES data of both cases it is clearly visible that the gradient-diffusion hypothesis is not suitable
for modelling the turbulent heat flux. This is visible as the turbulent heat flux has a direction approx-
imately perpendicular to the mean temperature gradient for both cases. The vertical component is
dominant in the mean temperature gradient, while this component is the smallest in the turbulent heat
flux. Therefore, an additive correction of the turbulent heat flux seemed like the appropriate addition to
the SpaRTA methodology to include stable stratification.

However, the fact that the temperature profiles for both cases show no significant differenceswhether
the THF correction (𝑞Δ𝑗 ) is implemented or not indicates that this correction has a negligible effect on the
temperature equation. This notion is further confirmed by the velocity and TKE profiles for both cases
perfectly coinciding when the full and only the z-component of the THF correction is implemented. This
means that the only way this correction influences the simulations for these cases is through the buoy-
ant production term in the 𝑘-equation which only includes the z-component of the turbulent heat flux.
It seems to mainly counter-act the buoyant destruction of TKE due to the gradient-diffusion hypothesis
version of the turbulent heat flux, especially in the wake of Case B. This conclusion was also drawn by
Kokee (2021). However, this work further argues that the effect of the THF correction on the 𝑘-equation
can be absorbed in the TKE production correction (ℛ) and the THF correction is not necessary as long
as accurate simulation of the turbulent heat flux is not a requirement.
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SQ2. How do the original model form corrections of the SpaRTA methodology influence the perfor-
mance of the corrected simulations?
Contrary to the THF correction (𝑞Δ𝑗 ), the TKE production correction (ℛ) can only influence the simula-
tions through production or destruction of TKE. The turbulence anisotropy correction (𝑏Δ𝑖𝑗) also mainly
influences the simulation through production or destruction of TKE. However, this correction also influ-
ences the velocity equation through the Reynolds stress.

For Case A, the turbulence anisotropy correction (𝑏Δ𝑖𝑗) mainly removes TKE in places where the
Boussinesq production of TKE is large. This means throughout the ABL and especially in the capping
inversion and towards the bottom of the domain. The effect of the TKE production correction (ℛ)
is smaller, approximately as large as the TKE production due to the THF correction (𝑞Δ𝑗 ). The TKE
production correction adds TKE throughout the ABL and is mainly active towards the bottom of the
domain. Together, the corrections correct for the slight over-prediction of the TKE in the ABL by the
baseline turbulence model. The effect of this improvement on the velocity profiles is not visible due to
the small domain size and simple nature of the case.

Similar to Case A, in Case B the turbulence anisotropy correction (𝑏Δ𝑖𝑗) mainly removes TKE from the
simulation, while the TKE production correction (ℛ) mainly adds TKE. However, this time the TKE pro-
duction correction is the dominant term, while the buoyant production terms of TKE are much smaller.
Again, the turbulence anisotropy correction mainly removes TKE in regions where the Boussinesq pro-
duction is large. This means regions close behind the rotor. Meanwhile, the TKE production correction
is mainly active in the shear layer between the wake and the outside flow where the baseline severely
under-estimates the production of TKE. Together, the corrections cause the TKE to be much higher in
the shear-layer for the corrected simulations than for the baseline. This causes more turbulent mix-
ing between the wake and the outside flow and a faster dissipation of the wake, correcting for the
over-prediction of the wake in the velocity profiles of the baseline simulation.

SQ3. What is the best selection criterion for selecting correctionmodels after regression: mean squared
error, max squared error or complexity?
Based on the implementation of different selected models for the two cases, it is clear that there is not
an a priori selection criterion which is best for selecting correction models.

For Case A different model combinations with low, medium or high complexity were implemented
and tested against each other. The models with higher complexity all had lower or equal max squared
error (maxse) and mean squared error (mse) when compared to the target data after the regression
than models with lower complexity . The surprising result was that the models with medium complexity
performed the best of all combinations when implemented in the simulations. This indicates that there
are other important factors influencing the performance of models in terms of accuracy, such as terms
present or combinations of terms.

The same was visible for Case B, where for each correction term the model selection was done
separate. For the anisotropy correction, the model with the lowest maxse with the target data per-
formed the best, while for the TKE production correction the simplest model outperformed the more
complex models with lower maxse and mse after the regression. Lastly, the simplest model for the
THF correction performed just as good as the more complex models with lower mse and maxse.

SQ4. What are the main factors holding back the performance of the corrected simulations of the
extended SpaRTA methodology?
In order to judge the performance of the different correction models, different configurations of constant,
optimal and coupled, modelled correction terms were implemented.

For Case A virtually all deviation of the TKE profile can be ascribed to themodelling of the turbulence
anisotropy correction 𝑏Δ𝑖𝑗. Seeing that the modelled turbulence anisotropy correction matches very well
with the predicted modelled anisotropy correction based on the LES data, the problem is mainly in the
model itself. This would indicate that either more complex models are needed to capture all phenomena
present in the anisotropy correction, or the regression library needs to be extended with other terms to
more properly capture said phenomena. As the regression library is already quite extensive, the latter
seems unlikely.

Themodelling of the anisotropy correction also adds deviations from the LES data in the TKE profiles
of Case B. These deviations are mainly visible in the TKE profiles close to the rotor, but propagate in the
velocity profiles more downstream. However, again the predicted correction term is quite close to the
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modelled correction term indicating a need for more complex turbulence anisotropy correction models.
Aside from the turbulence anisotropy correction, the TKE production correction also adds a significant
error in the corrected simulation. This is mainly visible in the lower TKE profiles further downstream of
the rotor. However, for this correction the modelled correction term shows significant deviations from
the predicted correction term in the affected regions.

To what extend can the SpaRTA methodology extended to include stratification effects improve RANS
simulations of wind farms in stable atmospheric boundary layer conditions?
As all sub-questions have been answered, the main question can be discussed. It is clear that the
extended SpaRTA methodology provides significant improvement over the baseline models. However,
as stated in the discussion of SQ1, this improvement could probably have been achieved by the origi-
nal SpaRTA methodology. Contrary to this, the additional THF-based feature introduced in this work is
present in some of the best correction models and proves a valuable addition to the SpaRTA method-
ology.

For Case A the improvement is mainly visible in the TKE field. The temperature and velocity fields
are unaffected as they are prescribed at the inflow boundary and the domain is not large enough to
see significant differences. However, the corrected simulations do succeed in correcting the slight
over-prediction of the TKE in the ABL by the baseline model.

The improvements over the baseline model are more pronounced for Case B. In this case the
method manages to correct for a clear under-prediction of the TKE in the turbine wake, especially in
the shear layer between the wake and the outside flow. This has a knock-on effect in the velocity field
where the corrected simulation corrects for the over-prediction of the wake due to the under-estimation
of turbulent mixing in the baseline simulation.

7.2. Recommendations for Future Work
Based on the work performed in this thesis, there are a number of areas where the work can be im-
proved or expanded. These are summarised in the following recommendations for future work.

Ground-Truth Data
The first limitation imposed on the work performed in this thesis is the quality of the ground-truth data
available. Both cases suffered from oscillations and transient effects. Better ground-truth data would
improve the training data and lead to more accurate correction models as the models are not trained
to correct for nonphysical oscillations. However, seeing that stably-stratified cases are inherently un-
steady, getting fully steady ground-truth data will not be possible. But the transient effects should be
as limited as possible. Another solution could be to try and implement the SpaRTA methodology in
unsteady RANS simulations. Furthermore, it is visible that the wall models influence the corrections,
so ideally data would be available which has a low enough resolution at the wall as to not require them.

Aside from the quality of the ground-truth data, the volume of data could also be improved. This
thesis included two very simple cases, however, for further improvement more complex turbine con-
figurations are necessary in order to train the correction models for turbine-wake and wake-wake in-
teractions. Furthermore, other configurations in terms of Reynolds number, turbulence intensity and
stability could also be viable for future research. If enough data is available, more general models could
be trained leading to lasting improvements of wind farm simulation.

Turbulent Heat Flux Correction
As stated before, the turbulent heat flux was probably not necessary for these cases as the only influ-
ence was through the buoyant production of TKE. It is surmised that this effect can also be absorbed
by the TKE production correction, however it is not checked if the performance would be just as high.
Aside from that, this conclusion is drawn only for these cases. It could be that for more severely stable
ABLs the THF correction does have a significant influence on the temperature equation. Furthermore,
this hypothesis also needs to be tested for convective cases.

Correction Models
In this work the largest limiting factor of the performance of the corrected simulation was the modelling
of the anisotropy correction. Therefore, a possible improvement could be to implement more complex
models or research other possible features to add to the library in order to better model this correction.
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Another possible improvement could be to train the models for Case B with the optimal correction
fields generated with the proper value for 𝐶𝜇. Currently, the models are partially correcting for additional
errors due to the nonphysical value used in this work.

Aside from that, the model selection overall is still mostly based on trial and error. A vast improve-
ment to the SpaRTAmethod would be a systematic approach approach which would consistently select
the best models for implementation.

Lastly, the application of the SpaRTA framework for the cases in this thesis could possible be im-
proved by implementing a limiter which distinguishes between the wake and the free-stream such as
in Steiner et al. (2021). As seen in this work, the corrections and correction models are very different
for the two.
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Figure A.1: Mutual Information between second invariant of anisotropy correction and invariants for Case A: GABLS1
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Figure A.2: Mutual Information between second invariant of anisotropy correction and invariants for Case B: Kokee SBL



116 A. Mutual Information of Features in Library

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
MI [-]

qTI
qT
q⊥
qν

λ3: Ω2

λ1: S2
λ16: ATAk

qReD
λ4: A2

T
λ7: Ω2S2

qGDH
qτ

λ5: A2
k
qγ

λ13: A2
kS2

λ29: A2
kΩS

λ35: ATAkS2
λ44: ΩAkATS
λ43: ΩATAkS
λ37: A2

kATS
qk/k

λ17: ΩAk
λ15: ΩAT

λ34: ATAkS
λ18: ΩATS
λ36: A2

TAkS
λ2: S3

λ6: Ω2S
λ12: A2

kS
q∂p∂s

λ45: ΩATAkS2
λ19: ΩATS2

λ14: A2
kSAkS2
λ9: A2

TS
λ39: A2

kATS2
λ32: A2

kΩS2
λ10: A2

TS2
λ21: A2

TΩS
λ27: ΩAkS2

λ25: A2
TSΩS2

λ26: ΩAkS
λ46: ΩAkATS2
λ31: Ω2SAkS2
λ47: ΩATSAkS2
λ38: A2

TAkS2
λ33: A2

kSΩS2
λ28: Ω2AkS
λ30: Ω2AkS2
λ8: Ω2SΩS2

λ40: A2
TSAkS2

λ42: ΩATAk
λ23: A2

TΩS2
λ24: Ω2SATS2
λ20: Ω2ATS
λ22: Ω2ATS2

λ11: A2
TSATS2

qQ
λ41: A2

kSATS2

Mutual I formatio  with  for Case A: GABLS1

Figure A.3: Mutual Information between TKE production correction and invariants for Case A: GABLS1



117

0.0 0.2 0.4 0.6 0.8 1.0 1.2
MI [-]

qγ
qTI

qReD
λ3: Ω2

λ7: Ω2S2
qT

λ1: S2
λ10: A2

TS2
qν

λ35: ATAkS2
λ25: A2

TSΩS2
λ21: A2

TΩS
λ44: ΩAkATS
λ43: ΩATAkS

q⊥
λ33: A2

kSΩS2
λ30: Ω2AkS2
λ22: Ω2ATS2

λ45: ΩATAkS2
λ40: A2

TSAkS2
λ13: A2

kS2
λ29: A2

kΩS
λ16: ATAk

λ23: A2
TΩS2

λ46: ΩAkATS2
λ11: A2

TSATS2
λ28: Ω2AkS

qGDH
λ4: A2

T
λ32: A2

kΩS2
λ8: Ω2SΩS2
λ27: ΩAkS2

λ47: ΩATSAkS2
λ20: Ω2ATS

λ14: A2
kSAkS2

λ18: ΩATS
λ31: Ω2SAkS2
λ41: A2

kSATS2
λ2: S3

λ6: Ω2S
λ24: Ω2SATS2

λ9: A2
TS

λ36: A2
TAkS

λ12: A2
kS

λ34: ATAkS
λ38: A2

TAkS2
λ26: ΩAkS

qk/k
λ5: A2

k
λ42: ΩATAk
λ19: ΩATS2
λ37: A2

kATS
λ39: A2

kATS2
q∂p∂s

λ15: ΩAT
qτ

λ17: ΩAk
qQ
qF

Mutual I formatio  with  for Case B: Kokee SBL
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Figure A.6: Mutual Information between z-component of turbulent heat flux correction and invariants for Case B: Kokee SBL
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Figure B.1: Terms in the generated correction models for the anisotropy correction 𝑏Δ𝑖𝑗 for Case A: GABLS1. The colours of the
squares indicate the relative size of the coefficients, the blue dots indicate the mean-squared error and the yellow diamonds the
maximum squared error.
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Additional Results of Case B: Kokee

SBL with Implemented Models

C.1. Influence of Non-physical Turbulence Model Constants
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Figure C.1: Comparison of temperature profiles for baseline RANS simulations of Case B: Kokee SBL with different values for
𝐶𝜇 and 𝐶𝜖1.
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Figure C.2: Profiles of the z-component of the turbulent heat flux behind the rotor for RANS simulations of Case B: Kokee SBL,
with full THF correction implemented (blue), only z-component of THF correction (orange) and without THF correction (green).
All simulations implemented the optimal, frozen turbulence anisotropy and TKE production corrections.

−0.02 0.00

100

200

300

400

z [
m
]

-1D

−0.010−0.005 0.000
qy [K ms−1]

200

300

400

y 
[m

]

−0.04 −0.02 0.00

100

200

300

400

2D

−0.02 0.00 0.02
qy [K ms−1]

200

300

400

−0.050−0.0250.000

100

200

300

400

5D

−0.05 0.00
qy [K ms−1]

200

300

400

−0.05 0.00

100

200

300

400

y=yrotor

9D
LES
Full qΔ

j

Only qΔ
z

No qΔ
j

−0.05 0.00
qy [K ms−1]

200

300

400

z=zrotor

qy Profile  Δehind the Rotor

Figure C.3: Profiles of the z-component of the turbulent heat flux behind the rotor for RANS simulations of Case B: Kokee SBL,
with full THF correction implemented (blue), only z-component of THF correction (orange) and without THF correction (green).
All simulations implemented the optimal, frozen turbulence anisotropy and TKE production corrections.
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Figure C.4: Profiles of the horizontal velocity behind the rotor for RANS simulations of Case B: Kokee SBL, with full THF cor-
rection implemented (blue), only z-component of THF correction (orange) and without THF correction (green). All simulations
implemented the optimal, frozen turbulence anisotropy and TKE production corrections.
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C.3. Selection of Models for the Turbulence Anisotropy Correction
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Figure C.5: Profiles of the temperature behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the anisotropy correction 𝑏Δ𝑖𝑗.
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Figure C.6: Profiles of the turbulence kinetic energy behind the rotor for RANS simulations of Case B: Kokee SBL. Different
simulations implemented different models for the anisotropy correction 𝑏Δ𝑖𝑗.
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C.4. Selection of Models for the TKE Production Correction
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Figure C.7: Profiles of the temperature behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the TKE Production correction ℛ.
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Figure C.8: Profiles of the streamwise velocity behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the TKE Production correction ℛ.
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C.5. Selection of Models for the THF Correction
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Figure C.9: Profiles of the x-component of the THF correction 𝑞Δ𝑥 behind the rotor for RANS simulations of Case B: Kokee SBL.
Different simulations implemented different models for the THF correction 𝑞Δ𝑗 .
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Figure C.10: Profiles of the y-component of the THF correction 𝑞Δ𝑦 behind the rotor for RANS simulations of Case B: Kokee SBL.
Different simulations implemented different models for the THF correction 𝑞Δ𝑗 .



C.6. Comparison with Baseline 135

263 264 265

100

200

300

400

z [
m
]

-1D

0.07 0.08
θ [K]+2.635e2

200

300

400

y 
[m

]

263 264 265

100

200

300

400

2D

263.5 263.6 263.7
θ [K]

200

300

400

263 264 265

100

200

300

400

5D

263.5 263.6 263.7
θ [K]

200

300

400

263 264 265

100

200

300

400

y=yrotor

9D
LES
qΔ
j  m del 9

qΔ
j  m del 7

0.00 0.05
θ [K]+2.636e2

200

300

400

z=zrotor

θ Pr files Δehind the R t r

Figure C.11: Profiles of the temperature behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations
implemented different models for the THF correction 𝑞Δ𝑗 .
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Figure C.12: Profiles of the TKE behind the rotor for RANS simulations of Case B: Kokee SBL. Different simulations implemented
different models for the THF correction 𝑞Δ𝑗 .
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Figure C.13: Comparison of horizontal slices of TKE at hub-height between the LES data, the baseline simulation and the
simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and all slices are plotted
with the same colour scale for better comparison.
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Figure C.14: Comparison of vertical slices of stream-wise velocity at the location of the rotor between the LES data, the baseline
simulation and the simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and
all slices are plotted with the same colour scale for better comparison.
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Figure C.15: Comparison of vertical temperature slices at the location of the rotor between the LES data, the baseline simulation
and the simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and all slices are
plotted with the same colour scale for better comparison.
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Figure C.16: Comparison of horizontal temperature slices at hub-height between the LES data, the baseline simulation and the
simulation with implemented models for Case B: Kokee SBL. The rotor is represented by the black line and all slices are plotted
with the same colour scale for better comparison.
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Figure C.17: Breakdown of TKE production in the simulation with implemented models for Case B: Kokee SBL. Colour scales
are scaled for better comparison.
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Figure C.18: Breakdown of TKE production in the simulation with implemented models for Case B: Kokee SBL. Colour scales
are not scaled
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Figure C.19: Comparison of temperature profiles behind the rotor between the LES data, the baseline simulation, the simulation
with optimal, frozen corrections and the simulation with implemented models for Case B: Kokee SBL.



140 C. Additional Results of Case B: Kokee SBL with Implemented Models

C.7. Model Performance
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Figure C.20: Temperature profiles for simulations of Case B: Kokee SBL with different configurations of correction terms mod-
elled, all the other correction terms are kept constant at their optimal, frozen values.
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Figure C.21: Stream-wise velocity profiles for simulations of Case B: Kokee SBL with different configurations of correction terms
modelled, all the other correction terms are kept constant at their optimal, frozen values.
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