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Propositions

accompanying the dissertation

MULTISCALE ANALYTICAL DERIVATIVE FORMULATIONS FOR IMPROVED
RESERVOIR MANAGEMENT

by

Rafael MORAES

1. The multiscale adjoint gradient is accurate enough to be used by optimization al-
gorithms (this thesis).

2. Sequentially-coupled forward simulation strategies (mainly IMPES) are easier to
formulate than FIM strategies. The respective adjoint models are, however, the
opposite (Chapter 3).

3. The employment of reduced order models in reservoir management studies does
not make the methodology easier and should not be only faced as a means to re-
duce computation cost. Instead, it should be faced as a means to represent the
model given the uncertainty/knowledge of the system (e.g. Chapter 7).

4. Automatic differentiation is currently not the solution for partial derivative com-
putations for adjoint models since the current computational infrastructure does
not meet the minimum development requirements.

5. Reservoir simulation is retrograde when compared to other CFD fields. I blame
uncertainty for that.

6. Shurahi, a Japanese saying, meaning Shu, learning fundamentals, ha, breaking
with traditions, ri, transcendence, describe the path to mastery. It is a failure if
a PhD candidate ends his research without appreciating all these stages.

7. A PhD research is the process of assessing/realizing the extent of your own igno-
rance.

8. It’s human nature, specially in academia, to recognize some one else’s achievements
only if comfortable with your own.

9. Personality traits should be determined based on the individuals and not on cul-
tural background.

10. Let n be the number of children at a home. Let N be the number of caregivers /
housekeepers at a home. N ≥ n + 1 is a necessary condition to keep the family’s
household coordinated.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor prof. dr. ir. J. D. Jansen and co-promotor dr. H. Hajibeygi.



MULTISCALE ANALYTICAL DERIVATIVE
FORMULATIONS FOR IMPROVED RESERVOIR

MANAGEMENT





MULTISCALE ANALYTICAL DERIVATIVE
FORMULATIONS FOR IMPROVED RESERVOIR

MANAGEMENT

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
maandag 19 november 2018 om 10:00 uur

door

Rafael JESUS DE MORAES

Master of Science in Civil Engineering,
Federal University of Rio de Janeiro, Rio De Janeiro, Brazil,

geboren te Nova Friburgo, Brazil.



Dit proefschrift is goedgekeurd door de promoteoren.

Samenstelling promotiecommissie bestaat uit:

Rector Magnificus, voorzitter
Prof. dr. ir. J. D. Jansen Technische Universiteit Delft, promotor
Dr. H. Hajibeygi Technische Universiteit Delft, copromotor

Onafhankelijke leden:
Prof. dr. Y. Efendiev Texas A&M University, United States of America
Prof. dr. ir. L. J. Sluys Technische Universiteit Delft
Prof. dr. ir. A. W. Heemink Technische Universiteit Delft
Dr. S. Krogstad SINTEF, Norway

Overige leden:
Dr. J. R. P. Rodrigues, Petrobras Research & Development Center, Brazil

Dr. J. R. P. Rodrigues heeft in belangrijke mate aan de totstandkoming van het proef-
schrift bijgedragen.

Keywords: multiscale simulation, analytical derivative computation, adjoint met-
hod, life-cycle optimization, data assimilation

Printed by: GildePrint.

Front & Back: Art & design: Rafael J. de Moraes. Design: Filipe Daflon
(dpixel.com.br). Square (back) and hexagonal (front) tessellation sti-
mulated by the mathematically-inspired work of Dutch graphic artist
M.C. Escher. Inner pattern is derived from a mathematical result of this
thesis (see Figure 4.7).

Copyright © 2018 by R. J. de Moraes

ISBN 978-94-6186-990-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://dpixel.com.br
http://repository.tudelft.nl/


To my guiding star, Estela, and my leading light, Helena.

R. J. de Moraes





CONTENTS

Summary xi

Preface xiii

1 Introduction 1
1.1 Research Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Partial Derivative Matrices Computation. . . . . . . . . . . . . . . 5
1.2.2 Time Discretization and Coupling Strategies . . . . . . . . . . . . . 5

1.3 Multiscale Reservoir Simulation. . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Data Assimiliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Life-cycle Optimimization . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Forward Model’s Responses Derivative Computation . . . . . . . . . . . . 11
1.7 Implementation Notes and Software . . . . . . . . . . . . . . . . . . . . 12
1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Mathematical Framework for the Analytical Computation of Forward Model
Responses Derivatives 19
2.1 Analytical Derivative Information Computation . . . . . . . . . . . . . . 20

2.1.1 Remarks About the Framework . . . . . . . . . . . . . . . . . . . 22
2.1.2 The Forward Method. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 The Backward Method . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 A Lagrange Multiplier Derivation, Interpretation and Association

with the Framework . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Applications of the Framework . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Computation of Derivative Information for Optimization Algorithms
27

2.2.2 Computing Derivative of Different Objective Functions . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Computing Derivative Information of Sequentially Coupled Subsurface Mo-
dels 33
3.1 Mathematical Framework for the Computation of Gradient Information

of Coupled System of Equations . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Remarks About the Framework . . . . . . . . . . . . . . . . . . . 39

3.2 Applications of the Framework . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Algebraic Description of Forward Model Equations . . . . . . . . . 40
3.2.2 Gradient Computation . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Gradient Computation and Optimization for Data Assimilation . . . 46

vii



viii CONTENTS

3.2.4 Gradient Computation and Optimization for Life-cycle Optimiza-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Algorithm Complexity Analysis . . . . . . . . . . . . . . . . . . . 48
3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Gradient Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Water-flooding Data Assimilation . . . . . . . . . . . . . . . . . . 51
3.3.3 Water-flooding Life-Cycle Optimization . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Multiscale Gradient Computation for Flow in Heterogeneous Porous Media 65
4.1 Derivation of the Multiscale Gradient Computation Mathematical Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1 Forward Simulation Model. . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Algebraic Multiscale Formulation of Flow in Heterogeneous Porous

Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.3 Derivative Calculation of Simulator Responses. . . . . . . . . . . . 69

4.2 Computation of Gradient Information: Framework Generalization . . . . . 71
4.2.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Remarks About the Framework . . . . . . . . . . . . . . . . . . . 72

4.3 Partial Derivative of MSFV Prolongation Operator . . . . . . . . . . . . . 74
4.3.1 Prolongation and its derivative in the presence of wells . . . . . . . 78

4.4 Computational Aspects of the MS-Gradient Method . . . . . . . . . . . . 79
4.4.1 Partial Derivative Computation and Automatic Differentiation . . . 79
4.4.2 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.1 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2 Gradient Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Effect of Heterogeneity Distribution and Coarsening Ratio. . . . . . 84
4.5.4 Parameter Estimation Study . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Multiscale gradient computation for sequentially coupled flow and transport
in heterogeneous porous media 95
5.1 Description and Algebraic Representation of the Forward Model Equati-

ons for Sequentially Coupled Solution of Flow and Transport . . . . . . . . 97
5.1.1 Governing Equations, Fine Scale Discretization and Algebraic Des-

cription of the Forward Model Equations . . . . . . . . . . . . . . 97
5.1.2 Multiscale Discretization and Algebraic Description of the Forward

Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Mathematical Framework for the Computation of Flow-Transport Sequen-

tially Coupled, Multiscale Gradient Computation . . . . . . . . . . . . . . 101
5.2.1 Gradient Computation Mathematical Framework . . . . . . . . . . 101
5.2.2 Multiscale Gradient Computation . . . . . . . . . . . . . . . . . . 103
5.2.3 Multiscale Direct Method . . . . . . . . . . . . . . . . . . . . . . 105
5.2.4 Multiscale Adjoint Method . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS ix

5.2.5 Computational and Implementation Aspects of the Methods . . . . 108
5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Gradient Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Iterative Multiscale Gradient Computation for Heterogeneous Subsurface Flow
117
6.1 Algebraic and Algorithmic Description of the Multiscale Iterative Method . 119
6.2 Iterative Multiscale Gradient Computation . . . . . . . . . . . . . . . . . 120

6.2.1 The Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.2 The Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.1 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Investigation of i-MSFV Convergence Behaviour and Gradient Qua-

lity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.3 Robustness with Respect to Heterogeneity Contrast and Distribu-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.4 SPE-10 Comparative Test Case . . . . . . . . . . . . . . . . . . . . 137
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Multiscale Data Assimilation of Spatially Distributed Data 143
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 Problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1.2 Inverse problem as a PDE constrained optimization . . . . . . . . . 147
7.1.3 Randomized Maximum Likelihood (RML) . . . . . . . . . . . . . . 148

7.2 The forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.1 Multiscale simulation . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Data assimilation problem setup . . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Adjoint gradient computation . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Conciliation of spatially distributed data and forward model scales . 152

7.4 Multiscale data assimilation . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4.1 Multiscale gradient computation . . . . . . . . . . . . . . . . . . 153

7.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.1 Construction of scaling operators . . . . . . . . . . . . . . . . . . 160
7.5.2 Maximum a posteriori probability (MAP) estimate . . . . . . . . . . 161
7.5.3 Uncertainty quantification. . . . . . . . . . . . . . . . . . . . . . 164
7.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Conclusions & Research Perspectives 173
8.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2 Addressing the Research Objectives . . . . . . . . . . . . . . . . . . . . . 176
8.3 Research Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



x CONTENTS

A An Efficient Robust Optimization Workflow using Multiscale Simulation and
Stochastic Gradient 181
A.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.1.1 Stochastic Gradient Computation . . . . . . . . . . . . . . . . . . 183
A.1.2 MS-Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.2 MS-StoSAG workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2.1 A Note About Computational Complexity . . . . . . . . . . . . . . 190

A.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3.1 Toy Model - Five-Spot Model. . . . . . . . . . . . . . . . . . . . . 191
A.3.2 Kanaal Reservoir Model . . . . . . . . . . . . . . . . . . . . . . . 197

A.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B Tensors and Tensor Operations Interpretation 207

About the Author 211

List of Publications 213

Acknowledgements 215



SUMMARY

The exploitation of subsurface resources is, inevitably, surrounded by uncertainty. Li-
mited knowledge on the economical, operational, and geological setting are just a few
instances of sources of uncertainty. From the geological point of view, the currently avai-
lable technology is not able to provide the description of the fluids and rock properties
at the necessary level of detail required by the mathematical models utilized in the ex-
ploitation decision-making process. However, even if a full, accurate description of the
subsurface was available, the outcome of such hypothetical mathematical model would
likely be computationally too expensive to be evaluated considering the currently avai-
lable computational power, hindering the decision making process.

Under this reality, geoscientists are consistently making effort to improve the mat-
hematical models, while being inherently constrained by uncertainty, and to find more
efficient ways to computationally solve these models.

Closed-loop Reservoir Management (CLRM) is a workflow that allows the continuous
update of the subsurface models based on production data from different sources. It
relies on computationally demanding optimization algorithms (for the assimilation of
production data and control optimization) which require multiple simulations of the
subsurface model. One important aspect for the successful application of the CLRM
workflow is the definition of a model that can both be run multiple times in a reasonable
timespan and still reasonably represent the underlying physics.

Multiscale (MS) methods, a reservoir simulation technique that solves a coarser si-
mulation model, thus increasing the computational speed up, while still utilizing the
fine-scale representation of the reservoir, figures as an accurate and efficient simulation
strategy.

This thesis focuses on the development of efficient algorithms for subsurface models
optimization by taking advantage of multiscale simulation strategies. It presents (1) mul-
tiscale analytical derivative computation strategies to efficiently and accurately address
the optimization algorithms employed in the CLRM workflow and (2) novel strategies to
handle the mathematical modeling of subsurface management studies from a multis-
cale perspective. On the latter, we specifically address a more fundamental multiscale
aspect of data assimilation studies: the assimilation of observations from a distinct spa-
tial representation compared to the simulation model scale.

As a result, this thesis discusses in detail the development of mathematical models
and algorithms for the derivative computation of subsurface model responses and their
application into gradient-based optimization algorithms employed in the data assimi-
lation and life-cycle optimization steps of CLRM. The advantages are improved compu-
tational efficiency with accuracy maintenance and the ability to address the subsurface
management from a multiscale view point not only from the forward simulation per-
spective, but also from the inverse modeling side.

xi





PREFACE

This thesis collates the developements made during the course of my PhD research pro-
ject, from January 2015 to June 2018. During this period I was under the Petrobras’ pro-
gram for educational development of human resources, when I was released from my
activities at the Research Center and could mostly focus on my PhD research.

The ultimate goal of the research was to investigate the application of multiscale si-
mulation strategies into reservoir management studies. From this broadly stated rese-
arch goal, the objective was naturally shaped along the process into the development
of analytical derivative computation methods applied to gradient-based optimization
techniques, a fundamental aspect of optimization algorithms.

The chapters consist of either published or submitted conference and journal papers
produced during the course of the PhD research. Because the thesis is a compilation of
the papers, any chapter can be read individually and no reading order is particularly
required. However, it should be noted that chapter 2 provides a detailed presentation of
the basic framework for all derivative calculation methods and algorithms presented in
the thesis. Similarly, the developments presented in chapter 4 forms the basis for all the
multicale gradient computation methods here presented.

The introduction chapter aims to provide the research background and the funda-
mental mathematics associated with the developments. Literature review of the state
of the art of the different fundamental components are provided individually at the in-
troduction of each chapter. Also, it is expected that the reader is familiar with some
common nomenclature used in the Petroleum Engineering community.

Even though all the mathematical developments have been demonstrated in petro-
leum reservoir applications, the main target of this research project, all developments
are firstly described in an abstraction level that allows them to be applied in other fields
of science, e.g. meteorology, oceanography, system & control, among others.

Multiscale is a somewhat overloaded terminology, used to describe the conciliation
of different levels of modeling representations. In the specific way the multiscale con-
cept has been applied in this work, we consider that it is utilized between any ‘arbitrary
scales that are adjacent’. This is consistent with the multiscale applications found in the
subsurface simulation literature when the technique is employed as a means to reduce
computational cost. And among all multiscale aspects associated with multiscale reser-
voir simulation, this work is focused on the details of derivative computation.

Even though this thesis, in its majority, is focused on the analytical computation of
derivatives, a discussion on how stochastic gradient computation can take advantage of
MS simulation can be found in Appendix A.

Rafael Jesus de Moraes
Delft, May 2018
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2 1. INTRODUCTION

The decision making process associated to a petroleum reservoir exploitation strategy
is often based on numerical simulation studies. The reservoir simulation model is built
based on a very limited knowledge of the reservoir geological description, fluid charac-
terization and distribution, and rock properties. All this uncertainty leads to often in-
accurate forecast simulations of the field production once the mathematical models rely
on this uncertain data. However, during the life cycle of a petroleum field, more data
may become available as a result of the reservoir exploitation itself (e.g. volume rates
and pressures registered for all wells in the field) and of the strategy to acquire more data
(e.g. seismic surveys, well logs). All this information can help to understand the fluids
distributions and rock properties and hence help to reduce the uncertainty.

Closed-loop Reservoir Management (CLRM) is a workflow that allows the continu-
ous update of reservoir models based on data from different sources and is a topic of
active research [1–4] to make it a tool to be utilized in the decision making process. The
workflow is illustrated in Fig. 1.1.

CLRM is a combination of model-based optimization and data assimilation (computer-
assisted history matching) [5, 6]. The aim is to maximize reservoir performance, in terms
of recovery or financial measures, over the life of the reservoir by changing reservoir ma-
nagement from a periodic to a near-continuous process [7]. Model based optimization
workflows aim to produce reservoir management strategies of significant practical value.
It relies on computationally demanding optimization algorithms (for data assimilation
data and well control optimization) which require multiple reservoir simulations. One
important aspect for the successful application of the CLRM workflow is the definition
of a model that can both be run multiple times in a reasonable timespan and accurately
enough represent the underlying physical phenomena. Techniques such as Reduced-
Order Modeling (ROM) [8–11] and upscaling [12–14] are common techniques to create
models which are faster to be evaluated. Gradient based optimization techniques have
been reported to be the most efficient approaches when it comes to life cycle model-
based optimization [15].

One key aspect of the workflow is the up/down scaling of the system models (repre-
sented by a the green ellipsis in Fig. 1.1). Low-order models are built because on both
data assimilation (represented by the red ellipsis Fig. 1.1) and optimization (represented
by the blue ellipsis in Fig. 1.1) loops many evaluations of the system model are perfor-
med, and hence a fast, yet accurate, low fidelity representation of the high-order model
is highly desirable. Different strategies have been employed to construct low-order mo-
dels. The straightest strategy is to directly use the high-order reservoir model (i.e. the
geological model) as the system-model. This strategy is the most accurate one; though
computationally too expensive, and often prohibitive for real-scale models. Upscaling
techniques can provide a dynamic model in a coarser scale that is faster to be evalua-
ted than the high-order models; however at the expense of accuracy and de-attachment
from geological model. Another approach is to create a Reduced Order Model (ROM)
which although provides a very fast low-order system models, those are only valid on a
certain range of application and may not be mass conservative [10].

MS methods [16, 17], an upcoming reservoir simulation technique, however, solves a
coarser simulation model, thus increasing the computational speed up, while still utili-
zing features of the fine scale model, hence maintaining the geological description. This



1.1. RESEARCH OBJECTIVES

1

3

System (re-
servoir,wells
& facilities)

Sensors

Low-order
system models

High-order
system models

Geology,
seismics,

well logs, well
tests, fluid

properties, etc.

Data
assimilation
algorithms

Optimization
algorithms

Noise Input Output Noise

up/down
scaling

Figure 1.1: Closed-loop reservoir management. Adapted from [7].

provides an accurate and physically consistent solution of the reservoir model which is
a distinct advantage over the aforementioned methods.

In addition to the performance/accuracy dilemma, one problem that arises when
assimilating those various types of data into a reservoir simulation model is that those
data are available in completely different representation scales (i.e. different resoluti-
ons). For instance, the production data is, of course, a result of the various microscope
phenomena involved in the fluids displacement in the porous media, in contrast to the
seismic resolution, that can typically have a high horizontal resolution (in the order of
tens of meters), but is not unusual to observe lower vertical resolution (in the order of
meters), but never on the microscope level. Hence, it is given that when assimilating
data represented in different resolutions some sort of manipulation of the data is neces-
sary, which certainly lead to loss of important information. Multiscale, with its ability
to represent and solve the same reservoir discretized model in different scales, should
handle the scale change issues.

In the light of those challenges, next we introduce the research objectives in section
1.1, followed by the fundamental concepts that form the basis for the developments in
this thesis.

1.1. RESEARCH OBJECTIVES

The aim of this PhD research is twofold: to investigate the utilization of MS techniques as
an efficient and accurate forward simulation alternative, also allowing the assimilation of
production data in the scale they become available. More specifically, the main purpose
of the research is to develop multiscale-based methods applied to closed-loop reservoir
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management studies and shed lights on the following research questions:

1. How can the optimization algorithms applied in the CLRM workflow benefit from
MS-based forward models?

We aim to employ MS simulation techniques to address the performance/accuracy
dilemma. In other words, we focus on taking advantage of MS methods ability to
solve the flow problem in a reduced representation of the system, while providing
accurate fine-scale solutions.

2. Can we design improved data assimilation and optimization strategies based on
multiscale simulation principles?

Specifically, we focus on the utilization of multiscale techniques not only from the
forward simulation point of view. Instead, because the forward simulation is mul-
tiscale, we aim to develop multiscale analytical derivative computation methods
which are efficient and accurate to be used in gradient-based optimization techni-
ques.

3. Can multiscale methods address the multi-level nature of inverse problems?

We are interested in addressing the spatial scale dissimilarity between simulation
model and observed data from a multiscale simulation perspective, so that upsca-
ling/downscaling and consequential lost of information is avoided.

1.2. FORWARD MODELING
The development of the reservoir model reservoir simulator involves the numerical so-
lution of the governing equations describing the flow of fluids in a porous media. The
governing equations are, basically, the mass balance for all the phases present in the
system and the momentum balance for fluid substituted by Darcy’s law [18]. The dis-
cretized equations can be generically expressed in residual form in terms of the mass
balance individual operators for the mass accumulation, flux, and source terms as [19]

g
(
xn+1,xn)= m

(
xn+1

)−m (xn)

∆t
+ f

(
xn+1)+q

(
xn+1)

= ṁ
(
xn+1,xn)+ f

(
xn+1)+q

(
xn+1)= 0.

(1.1)

Let Nx be the total number of primary variables that needs to be solved for at the time-
step n. In Eq. (1.1), g ∈RNx is the model equation vector, x ∈RNx the state vector, ṁ ∈RNx

is the mass accumulation vector, f ∈RNx in the flux vector, and q ∈RNx the source terms
vector. In the scope of this thesis, as it is commonly done in the literature, pressure and
phases saturations are the state variables (natural variable formulation).

We employ a backward Euler discretization in time in Eq. (1.1). Different spatial dis-
cretization schemes can be used to numerically discretize the governing equations [20],
however locally mass conservative schemes are preferred and the Finite Volume method
is the most practiced in reservoir simulation [21–23]. The resulting non-linear system of
equations is solved via an iterative numerical scheme, usually Newton’s method [24], as

∂g
(
xk

)
∂x

(
xk+1 −xk

)
=−g

(
xk

)
, (1.2)
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where k is the Newton iteration index. Eq. (1.2) requires the computation of derivatives
of the discretized residual equations (Eq. (1.1)) with respect to the primary variables x,
i.e.,

∂g

∂x
= ∂ṁ

∂x
+ ∂f

∂x
+ ∂q

∂x
, (1.3)

where
∂•
∂x

∈RNx×Nx represents the first order partial derivative matrices w.r.t. the primary

variables of Eq. (1.1).

1.2.1. PARTIAL DERIVATIVE MATRICES COMPUTATION
As discussed in [25], the computation of partial derivative matrices can be performed
by, basically, three different ways that, in summary, have the following pros and cons:
(1) manual differentiation [26], efficient, but error prone and not flexible; (2) numeri-
cal differentiation [24], flexible, but not efficient; (3) automatic differentiation (AD) [27]:
flexible and general, but efficient implementation is complex. In addition to this list,
more recently, the Operator Based Linearization technique (OBL) was [28] introduced.
In summary, it creates tables for the individual terms of Eq. (1.1) and performs the line-
arization by table interpolation.

The choice of a specific calculation method relies on the assessment of a number
of factors that one wants to prioritize, like flexibility, efficiency, ease of implementation,
among others. For instance, although it consists of a rather flexible framework, the re-
servoir simulator presented by [29] computes the Jacobian matrix either manually or nu-
merically, avoiding eventual performance issues that one might face when performing
the derivative calculation by AD. On this matter, the efficiency of the derivative com-
putations can be preserved by tuning the automatic differentiation calculations using a
diversity of computational implementation techniques [25].

1.2.2. TIME DISCRETIZATION AND COUPLING STRATEGIES
Different coupling strategies can be employed, requiring different numerical solution
strategies. Fully implicit (FIM) strategies solve for all primary variables in the same (non-
linear) system of equations. The discrete-in-time nonlinear model equations represen-
ted in Eq. (1.1) can be represented in the following implicit (residual) form

gn
x1

(
xn−1

1 , . . . ,xn−1
Nc

,xn
1 , . . . ,xn

Nc
,θ

)
= 0

...

gn
xNc

(
xn−1

1 , . . . ,xn−1
Nc

,xn
1 , . . . ,xn

Nc
,θ

)
= 0,

(1.4)

where xn
c ∈ RN n

xc , c ∈ {1, . . . , Nc }, is the set of primary variables associated with the mo-
del equations gn

xc
, and Nc the total number of coupled equations. Such coupling has

the advantage of being more stable (allow for larger time-steps) but the solution of the
resulting system of equations requires handling larger linear systems.

Sequential strategies suppose a weakly-coupled system, allowing for pressure and sa-
turation(s) to be solved by different system of equations with the dependency of pressure
in saturation lagged in time. This strategy allows the employment of the best numerical
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solution strategies for each of the physical phenomenon (flow and transport), however
suffer from stability issues for strongly coupled systems, requiring smaller time-steps
[30].

1.3. MULTISCALE RESERVOIR SIMULATION
Multiscale methods, in particular MS Finite Volume methods (MSFV) [16], are simula-
tion techniques that aim the solution of the flow problem with a lower computational
cost by incorporating the fine-scale model features into a coarse-scale operator [31–33],
i.e.,

x ≈ x′ = P (RAP)−1 Rq = PĂ−1q̆. (1.5)

Let NF be the total number of cells in the discretized fine-scale model and NC be the
total number of cells employed to build the coarse-scale system. So, x′ ∈ RNF is the ap-
proximate fine-scale solution, R ∈ RNC×NF the restriction operator, A ∈ RNF ×NF the fine-
scale system matrix, P ∈ RNF ×NC the prolongation operator, and Ă ∈ RNC×NC the coarse-
scale system matrix. This is achieved via the representation of the fine-scale model in a
coarser-scale (restriction) and via the introduction of basis functions, which are obtai-
ned via the solution of the flow equation

−∇· (λ ·∇ϕi
)= 0, (1.6)

in smaller domains and with special prescribed values

δi j =
{

1, if i = j

0, if i 6= j
(1.7)

where λ = K/µ, K is the absolute permeability tensor, µ the fluid viscosity, ϕi is the i-
th basis function, and δi j is the i-th basis function value at the j-th vertex. The basis
functions will compose the prolongation operator

P = [
ϕ1 ϕ2 · · · ϕNC−1 ϕNC

]
, (1.8)

which is responsible for bringing the coarse-scale solution back to the fine-scale discre-
tization (prolongation). In Eq. (1.8),ϕ ∈RNF is the vector with the basis function values.
The construction of the prolongation operator involves the definition of a primal coarse
grid (where the coarse solution will be obtained) and a dual coarse grid, on whose grid
blocks the basis functions will be computed on. These grid concepts are represented in
Fig. 1.2. In the MS Finite Volume setting [16], the restriction operator corresponds to the
integral over the each primal-coarse block, i.e.,

Ri , j =
{

1, if fine-cell j belongs to primal-coarse block i

0,otherwise.
(1.9)

Because the local flow problems solved to compute the basis functions do not take
into account the source terms, well functions [34] were introduced to capture the ef-
fects of the source term in the approximated MS solution. The basis function and well
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Figure 1.2: Griding elements, in 2D, for the construction of the MSFV restriction and prolongation operators.
Super-imposed to the fine grid (in the center) is drawn (in bold lines) the primal coarse grid. In the left-hand
side a primal coarse grid cell is illustrated. The cells in red, the centroids of the primal grid blocks, are the
vertices of the dual grid blocks (represented on the right hand side). The vertices are them connected to their
neighbors, defining the edges of the dual grid cells. The result is the dual coarse grid.

Figure 1.3: (a) Basis function, (b) sum of all basis functions and (c) well function for a given heterogeneous
porous media (represented in the bottom of the plots) in a given dual-grid cell containing a well (source term).
The well perforates two fine grid blocks in the center of the dual grid block.

function are illustrated in Fig. 1.3. The computation of well/basis functions are only per-
formed once in the simulation, as a pre-processing step. Because their construction is
completely independent, the computation is highly parallelizable [35].

Due to the localization assumptions utilized to compute the basis functions, the
pressure solution obtained via a MSFV scheme is not as accurate as the fine scale so-
lution. However, these discrepancies can be resolved if an iterative scheme is employed
[36]. The Iterative Multiscale Finite Volume method (i-MSFV) is capable of resolving
these differences by resolving the high frequency errors via some iterations in the fine
scale and resolving the low frequency errors via the MSFV coarse scale solution. In brief,
the method consists of re-writing the MSFV in residual form

δx′ν = P (RAP)−1 Rrν−1 (1.10)

which is suitable to be solved by an iterative scheme as

δxνσ = Mrνσ, (1.11)

where
rν = q−Ax′ν−1, (1.12)



1

8 1. INTRODUCTION

and
rνσ = q−Ax′ν, (1.13)

so that
x′

ν = x′ν−1 +δx′ν+δxνσ. (1.14)

Here, ν is the i-MSFV iteration index, r ∈ RNF and rσ ∈ RNF are residual vectors and
δx′ ∈RNF and δxσ ∈RNF are, respectively, the approximate fine-scale and the smoothing
solution corrections. The Eq. (1.11) is solved iteratively [37] until a convergence crite-
rion is met, where M ∈RNF ×NF is a factorization of A which construction depends on the
iterative solver employed in the smoothing step.

The improved accuracy that can be reached is illustrated in Fig. 1.4. In this simula-
tion example [15], one quarter of 5-spot pattern with injection and production pressures
of, respectively, 2 Pa and 1 Pa, a fine scale (a 21x21 grid size) solution accuracy is obtai-
ned after sufficiently iterating in a i-MSVF scheme (with a 3x3 grid size). In this case, 7
iterations are necessary to reach a residual convergence tolerance of 10e-7.

Figure 1.4: Improved solution accuracy by applying i-MSFV. (a) Fine scale pressure solution. (b) MSFV pressure
solution. (c) i-MSFV pressure solution. (d) Absolute error between fine and MSFV solution. (e) Absolute error
between fine and i-MSFV solution. In this case, 7 iterations are necessary to reach a residual convergence
tolerance of 10e-7. In plots (a), (b) and (c) the permeability distribution is shown in the bottom and the surface
represents the pressure distribution (in Pa). The fine lines represent the fine grid cells, whereas the bold lines
represent the coarse grid blocks.

Although the MSFV approximated solution, by design, is conservative at the coarse
scale, it is not conservative in the fine scale. And because we must use the pressure so-
lution to compute a velocity field which will be used to solve the transport equation, it
is important that a conservative velocity field is obtained before the saturation distribu-
tion is computed. For such aim, an additional local problem must be solved to obtain a
conservative fine-scale velocity field [38]. The additional problem, some sort of a post-
processing of the approximated MSFV pressure solution, provides a new pressure solu-
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tion, which is conservative, by solving Neumann problems at the primal grid cells with
the coarse velocity field prescribed as boundary condition

u′′ =
{ −λ ·∇p ′′

k on Ω̆k

−λ ·∇p ′ at ∂Ω̆k
, (1.15)

where u′′ is the interfacial conservative velocity, p ′′ the conservative pressure computed
for the cell at the interior primal-grid domain Ω̆ and p ′ the approximate pressure (given
by Eq. (1.5)) at primal grid interfaces ∂Ω̆. The new velocity field u′′ can be then used in
the transport equation solution. The idea is illustrated in Fig. 1.5.

Figure 1.5: Illustration of conservative velocity field reconstruction. The orange arrows represent the interfa-
cial velocity orthogonal components computed from the (conservative) coarse-scale solution p′. These com-
ponents are utilized as boundary conditions in the construction of p′′, represented by the gray-scale pressure
field (right). The blue arrows represent the interfacial velocity orthogonal components computed from p′′.

When the MSFV method was described, it was mentioned that the basis functions
can only be computed in the beginning of the simulation, as a pre-processing step to the
time-stepping process. But because of total mobility changes due to saturation changes
in the multiphase flow, the basis function might not be as accurate as in the beginning of
the simulation given that it is numerically computed taking into account the total mo-
bility. Re-construction of the basis function can be performed adaptively, as opposed to
the computation of all basis function for all dual grid cells, a much more computatio-
nally expensive approach, by only tracking the most prominent total mobility changes
in the fine scale and then re-computing the basis function of the dual grid cells that con-
tain the fine grid cells which change in mobility in time exceed a given (user specified)
tolerance [38].

1.4. DATA ASSIMILIATION
Data assimilation, parameter estimation, or as more often referred to in the Petroleum
field, History Matching, can be described in the inverse problem theory presented in [5].
Given a set of observable responses

y = h (x,θ) , (1.16)
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computed from the forward model equations, where y ∈ RNy , an inverse problem can
be determined so that observations from the real system can be used to estimate the Nθ

model parameters θ ∈RNθ by ‘solving’

dobs = h (x,θ)+ε, (1.17)

where dobs ∈ RNy is a vector of real observations, ε ∈ RNy is a vector representing the
errors associated with the observed measurements (see Fig. 1.1). However, due to mo-
delling errors of different sources, represented by η ∈RNy , it follows that

dobs = hF (x,θ)+η+ε. (1.18)

Assuming η and ε are independent and Gaussian [6], it follows that

e = η+ε (1.19)

is Gaussian with mean given by the Nd zero vector and covariance

CD = CDη+CDε. (1.20)

In most application of inverse theory to subsurface model parameter estimation,
only CDε is properly represented, and, eventually, the modelling errors compensated by
considering larger values of observational errors. In other words, the modeling error is
neglected and its impact arbitrarily counteracted by a larger ε.

The problem of estimating the θ from dobs (Eq. (1.17)) can be expressed, in a proba-
bilistic setting, via Bayes’ rule as [6]

f (θ,dobs ) = f (dobs |θ) f (θ)

f (dobs )
. (1.21)

In the Bayesian framework considered in this thesis, we assume the a priori probabiblity
density function f (dobs |θ) to be Gaussian, so that

f (θ) ∝ e−
1
2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)
, (1.22)

where Cθ is the a priori model parameter covariance matrix and θpr i or the a priori mo-
del parameter distribution. Also, following the assumption of normally distributed mea-
surement errors, and assuming the measurement errors independent ofθpr i or , f (θ,dobs ),
the conditional a posteriori distribution, follows [6]

f (θ,dobs ) ∝ e−
1
2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+ 1
2 (h(x,θ)−dobs )T C−1

D (h(x,θ)−dobs ). (1.23)

The maximum a posteriori (MAP) model parameters are the ones that maximize f (θ,dobs ).
Hence, we can define an objective function

O (h,θ) =1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) ,
(1.24)
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such that the MAP estimate can be obtained as an optimization problem

minimize
θ

O (h (θ))

subject to g (x ,θ) = 0,

θ ∈ [θmi n ,θmax ] .

(1.25)

1.5. LIFE-CYCLE OPTIMIMIZATION
Life-cycle optimization concerns the maximization of a given economic objective (e.g.
net present value or recovery factor), by manipulating the input variables, i.e. the control
parameters (e.g. the well bottom hole pressures or rates) [15], often subject to operatio-
nal constraints (e.g. maximum water-cut or maximum gas-oil ratio). This optimization
problem can be expressed as

maximize
θ

O (h (θ))

subject to g (x ,θ) = 0,

c (x ,θ) = 0,

d (x ,θ) < 0,

θ ∈ [θmi n ,θmax ] ,

(1.26)

where c and d are, respectively, equality and inequality constraint vectors and, now, the
objective function O expresses the economic objective one aims to maximize and can be
generically expressed as

O (h (θ)) =
N∑

n=1
On (hn (θ)), (1.27)

where On represents the contribution to O in each time-step n (e.g. produced oil reve-
nues and injection water costs) during that time interval.

1.6. FORWARD MODEL’S RESPONSES DERIVATIVE COMPUTA-
TION

Different derivative computation methods can be employed to compute Eq. (1.29). Ana-
lytical methods (namely the Direct [6] and Adjtoint [39] methods) are described in the
literature as the most efficient and accurate ones. However, due to their implementa-
tion complexity and inflexibility, stochastic derivative methods, e.g. EnOpt [3], StoSAG
[40] for life-cycle optimization, and Kalman filter and its derivations, e.g. EnKF [41], ES-
MDA [42], have become popular choices for the solution of the problems described by
Eq. (1.26) and Eq. (1.25), respectively.

In the case that a gradient-based optimization technique is chosen as an alternative
to solve Eq. (1.25) and Eq. (1.25), given any objective function

O =O (h (x,θ)) , (1.28)
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the gradient w.r.t. the parameters reads

∇θO =
(

dO

dθ

)T

=
(

dO

dh

dh

dθ

)T

= GT ∇hO, (1.29)

where G ∈RNy×Nθ is the so-called sensitivity matrix [6].

1.7. IMPLEMENTATION NOTES AND SOFTWARE

A brief overview of the software employed in the developments of this thesis, as well as
high-level consideration about the implementation is provided in this section. The ideas
employed in this development are largely similar to the ideas presented in [43–45].

The aspects of the forward modeling, including the MS simulation strategies, as well
as the data assimilation and life-cycle optmization algorithms presented in the previous
sections were implemented in a research oriented, flexible/extensible reservoir simu-
lator that was used in the CLRM numerical experiments presented in this thesis. The
simulator was designed based on object-oriented programming and generic program-
ming techiques and implemented using the C++ programming language [46].

With respect to extensibility, the AD method via the operator overloading technique
[47] was employed not only in the partial derivative computation required by Eq. (1.3),
but also to allow for easier computation of derivative information required by gradient-
based optimization techniques. The choice mainly relies on the fact that, once the base
computational framework is in place, the computation of the derivatives ‘comes for free’.
This is an important factor when developing CLRM workflows that by itself is largely
based on optimization techniques that make extensive usage of derivatives. The FAD-
BAD++ library [48] was employed in the operator overloading AD. It employs extensive
expression templates and meta-programming techniques [49] to provide differentiabi-
lity to scalar data-types. Although its usage into reservoir simulation is limited performance-
wise [25], in the scope of this thesis it was not considered a severe drawback. However
the usage of other libraries could be considered given the extensive utilization of generic
program in the code implementation.

With respect to the spatial numerical discretization that leads to Eq. (1.1), a two-
point flux approximation is used to approximate the interfacial flux. Upwind weighting
is utilized to evaluate the fluid related properties at the interface, while harmonic average
is used to evaluate the rock properties at the interface. With respect to time discretiza-
tion and coupling between flow and transport, the fully implicit (FIM), implicit pressure
explicit saturation (IMPES) and sequential implicit strategies have been implemented as
requirements for the developments present in this thesis. Details on all these methods
can be found in [21].

Additionally, the Eigen C++ library [50] was utilized for basic linear algebra operati-
ons and data structures, algorithms and linear solvers. The concepts presented by [51]
were employed in the gridding module of the simulator, allowing for the efficient imple-
mentation of grid related algorithms (e.g. Jacobian assembly) and flexible grid represen-
tation.
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1.8. THESIS OUTLINE
In the view of the research objectives defined in Section 1.1 and the mathematical mo-
deling strategies just discussed, the remainder of this thesis is organized in chapters
which aim to address the CLRM challenges as follows.

Chapter 2 This chapter presents the fundamental mathematical framework for the
analytical computation of forward model resposes’ derivatives, suitable to efficiently
solve Eq. (1.29). This is the basis for the remaining developments of this thesis. Even
though all applications of the framework in the scope of this thesis requires the compu-
tation of objective function gradients, it is shown how different derivative information
can be computed via the generic framework.

Chapter 3 This chapter discusses how the derivative information required to solve the
optimization problems defined in Eq. (1.25) and Eq. (1.26) is computed when a sequen-
tially coupled system of equation as in Eq. (1.4) is employed in the forward simulation.
More specifically, we address the gradient computation of sequentially coupled flow and
transport equations.

Chapter 4 This chapter discusses the newly introduced MS gradient computation met-
hod employed to solve Eq. (1.29) efficiently when a MS simulation strategy (Eq. (1.5)) is
employed in the forward simulation. Applications focused on the solution of Eq. (1.24)
illustrates the performance of the method.

Chapter 5 This chapter discusses the extension of the MS gradient computation pre-
sented in 4 to multiphase flows. This requires the definition of the derivative model as-
sociated to Eq. (1.15). More specifically, we focus on the efficient gradient computation
of sequentially coupled flow and transport equations, as presented in Chapter Eq. (3), by
employing MS simulation strategies.

Chapter 6 This chapter discusses how the quality of the MS gradient computed via
the strategy presented in Chapter 4 can be improved by employing a i-MSFV forward
simulation. This is achieved by augmenting the the MS derivative model with Eq. (1.10).
The performance of the method is shown in challenging geological settings.

Chapter 7 The framework developed in Chapter 4 is applied to the assimilation of spa-
tially distributed data. To that end, a multiscale objective function, a variant of Eq. (1.24)
is introduced, where the regularization term is kept at the original parameter descrip-
tion scale and the data misfit term is kept at the observation scale. It is shown how more
robust the solution of Eq. (1.25) can be, specially in the context of uncertainty quantifi-
cation.

Appendix A A discussion on how stochastic derivative methods can take advantage of
MS methods is presented. A multiscale-Stochastic simplex approximate gradient – MS-
StoSAG – workflow is employed to the solution of Eq. (1.26), where all required forward



1

14 REFERENCES

simulation are performed using the concepts discussed in Section 1.3 and the computa-
tion of Eq. (1.29) peformed by the StoSAG algorithm.

Concluding remarks, as well as future research perspectives, are summarized at Chap-
ter 8. Directions on how to address the research questions posed in section 1.1, in the
view of the developements presented in this thesis, are presented in section 8.2. Also, a
multiscale version of the CLRM as presented in Fig. 1.1 based on the results achieved in
this research project.
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2
MATHEMATICAL FRAMEWORK FOR

THE ANALYTICAL COMPUTATION

OF FORWARD MODEL RESPONSES

DERIVATIVES

In this work a mathematical framework that addresses the computation of derivative in-
formation arising from PDE systems is proposed. It is presented how both direct and
adjoint methods are seamlessly addressed. In other words, both algorithms are descri-
bed in an abstraction level such that any derivative information can be computed given
that the proper Jacobians from the forward model are provided. No assumptions with re-
spect to the forward model space or time approximations is made. The mathematical and
computational abstractions, implementation details, as well as the overall design of the
computational framework are discussed. Applications to different optimization studies
(data assimilation and life-cycle optimization), utilizing different forward model nume-
rical discretizations (e.g. sequential couplings and multiscale approaches) illustrate the
application of the framework.

The developments presented in this chapter are based on the design document Initial Design for Forward
and Adjoin Derivative Calculation in DRMS, written by Dr. José R. P. Rodrigues and Dr. Hans Kraaijevanger
for the Dynamic Reservoir Modelling System (DRMS) Joint Venture, composed by Computer Modelling Group
(CMG), Shell, and Petrobras. The partner companies’ authorization to use parts of this design document in
the development of this thesis work is appreciated.
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The computation of derivative information is a key factor in many numerical applicati-
ons. Data assimilation, control optimization, uncertainty quantification, sensitivity ana-
lysis are just a few instances of studies that can take advantage of derivative information.
In the case of multivariate functionals arising from the numerical discretization of PDEs,
the computation of accurate derivative information via analytical (i.e. direct and adjoint)
methods is an involved task and often rely on application-based implementations.

Although of uptmost importance, the discussion of how to compute derivative infor-
mation is often mingled with the dicussion of the optmization algorithm and/or with the
optmization problem.

In various areas of engineering discussions have been held about the relative me-
rits of first discretizing the forward flow equations in time and thereafter deriving the
discrete-time adjoint equations (the first-discretize-then-differentiate approach), versus
first deriving the continuous-time adjoint equations and then discretizing the forward
and adjoint equations in time (the first-differentiate-then-discretize approach) [1]. Most
authors seem to agree that both methods can be applied as long as the forward and bac-
kward equations are truly each others adjoint, which implies discretization at identical
moments in time of the forward and backward equations using identical discretization
schemes. These aspects were discussed in [2] and more recently re-evaluated in rela-
tion to adjoints for multi-component (compositional) simulation [3]. Currently available
large-scale reservoir simulation packages all follow the first-discretize-then-differentiate
approach.

The original idea of generic Direct and Adjoint algorithms for sensitivity matrix buil-
ding, sensitivity matrix and transpose sensitivity matrix vector products was originally
presented in [4].

The alternative implicit differentiation derivation of the adjoint equations were ori-
ginally proposed by [4, 5].

2.1. MATHEMATICAL FRAMEWORK FOR ANALYTICAL DERIVA-
TIVE INFORMATION COMPUTATION

The set of non-linear algebraic equations for a given time-step n will be written as

gn (
xn−1,xn ,θ

)= 0, (2.1)

gn : RN n−1
X ×N n

X ×Nθ → RN n
X , where xn

c ∈ RN n
x is the state vector containing all primary vari-

ables for time-step n and θ ∈ RNθ is the vector of parameters with respect to which we
aim to compute the derivative information. The initial conditions will be assumed to be
given by

g0 (
x0,θ

)
. (2.2)

The functions defining the set of observable responses y ∈ RNY for a time-step are
described as

yn = hn (
xn−1,xn ,θ

)
, (2.3)

where hn :RN n−1
X ×N n

X ×Nθ →RN n
Y represents the output equations
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All instances of gn as defined in Eq. (2.1) for all time-steps can be collated in a

function g : RNX ×Nθ → RNX , where NX =
N∑

n=0
N n

X is the total number of primary varia-

bles for all time-steps, such that the system of non-linear equations is represented as

g (x ,θ) = 0, (2.4)

where x ∈ RNX is the (column) vector of primary variables for all time-steps. Similarly,
all instances of yn as defined in Eq. (2.3) for all time-steps can be collated in a function

h : RNX ×Nθ → RNY , where NY =
N∑

n=0
N n

Y represents the total number of responses for all

time-steps, so that
y = h (x (θ) ,θ) . (2.5)

The collated state vector x is a function of θ through Eq. (2.4), so that we can write
x = x (θ). Hence the response vector y can also be seen as a function of θ only.

The total derivatives of the response vector y with respect to the parameter vector θ,
known as the sensitivity matrix, can be computed by deriving Eq. (2.5) with respect to θ,
i.e.,

G = dh

dθ
= ∂h

∂x

d x

dθ
+ ∂h

∂θ
. (2.6)

In order to find a relationship that defines
d x

dθ
, Eq. (2.4) is differentiated with respect to

θ
∂g

∂x

d x

dθ
+ ∂g

∂θ
= 0, (2.7)

so that
d x

dθ
=−

(
∂g

∂x

)−1 ∂g

∂θ
. (2.8)

Substituting Eq. (2.8) in Eq. (2.6) gives

G =−∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
+ ∂h

∂θ
. (2.9)

In many circumstances it is convenient to consider θ as a function of an underlying
(smaller) parameter vector θ̃

θ=φ(θ̃) (2.10)

where φ : RNθ̃ → RNθ . This allows flexibility to easily deal with situations where there
are dependencies among the parameters for which the derivatives are being calculated.
Examples is reservoir simulation are vertical permeability as a multiple of horizontal per-
meability, permeability as function of porosity or porosity as function of net-to-gross ra-
tio. Typically, the time-stepping process does not need to know these relationships and,
therefore, it is desirable to separate them out of the core derivative calculation algorithm
as well.

Likewise, by introducing an arbitrary non-linear function of the responses,

ϕ=ϕ(
y
)

(2.11)
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it is possible to consider combined responses in a way that is transparent to the forward
simulation. Examples in reservoir simulation are net-present value (NPV) and a history
matching misfit function.

Taking into account the observations made above, we will be interested in defining
algorithms applicable to the modified response function

ỹ(x, θ̃) =ϕ(y(x,φ(θ̃))). (2.12)

The sensitivity matrix for ỹ is given by

G̃ = d ỹ

dθ̃
= ∂φ

∂y
G
∂ϕ

∂θ
(2.13)

This is the motivation for considering the problem for calculating WGV for arbitrary
matrices V of order Nθ×p and W of order m ×NY , where m = Nφ and p = Nθ̃ .

Therefore, any derivative information can be computed if the sensitivity matrix given
by Eq. (2.9) is pre- and post-multiplied by arbitrary matrices W and V

WGV =−W
∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
V+W

∂h

∂θ
V. (2.14)

The key aspect that defines the computational performance of the gradient computa-

tion is the order of the operations involving

(
∂g

∂x

)−1

. Based on that, both the direct [6]

and adjoint analytical methods to compute the necessary derivative information can be
defined.

Hence, the forward method first computes GV, whereas the backward method first
computes WG. Once the matrix GV or WG has been obtained, the calculation of WGV
is trivial and does hardly add to the overall computation cost. For this reason, we will
consider the forward method as a method for calculating GV, and the backward method
as a method for calculating WG.

Following the discussion above, two algorithms are proposed:

• A forward method to calculate the product GV, where V is an arbitrary matrix.
Since p systems with matrix are solved Eq. (2.17), the cost is proportional to n
simulations.

• A backward (adjoint) method to calculate the product WG, where W is an arbitrary
matrix. Since m systems with matrix are solved Eq. (2.21), the cost is proportional
to m simulations.

2.1.1. REMARKS ABOUT THE FRAMEWORK
The advantages of this approach are as follows:

1. By playing with W and V it is possible, with these two algorithms, to address the de-
rivative calculation problems encountered in inverse and optimization problems.
In fact, we have
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(a) By applying the forward method with V equal to the identity matrix, we see
that we can calculate the sensitivity matrix G with a cost proportional to the
number of parameters (Nθ). Alternatively, by applying the backward method
with W equal to the identity matrix, we see that G can be computed with a
cost proportional to the number of responses (NY ).

(b) By taking n = 1 in the forward method or p = 1 in the backward method, W
or V reduces to a vector, showing that the product of G or GT with an arbi-
trary vector can be obtained with a cost proportional to a single simulation.
(Note that the matrix-vector product GT WT can be obtained by transposing
the product WG.)

(c) If ϕ in Eq. (2.11) is a scalar (Nϕ = 1), its total derivative with respect to θ,

equal to
dϕ

dθ
= ∂ϕ

∂y
G, can be obtained using the backward method with a cost

proportional to one simulation.

(d) Even other derivative requests could be accommodated under the two algo-
rithms above, allowing for easy incorporation of new methodologies in op-
timization and history matching. For instance, the history matching misfit
function can be viewed as a sum of the misfit for some data series, each one
referring to a particular data (well rate, pressure, etc) for several times. By
taking Nϕ equal to the number of data series, with each component inϕ cor-
responding to one of the data series, the backward method can be used to
calculate the gradient for each data series part with a cost proportional to the
number of data series.

2. The definition of the objective functions and simulator responses for which de-
rivatives are available is flexible. In fact, since the particular expression for the
objective function Eq. (2.11) is totally separated from the derivative calculation
algorithm, new objective functions can be easily defined, as long as the gradient
with respect to the simulator responses is provided.

3. Once the parameter vector θ for which derivatives are calculated inside the simu-
lator is defined, it is possible to extend it to other parameter vectors θ̃ in a com-
pletely transparent way via the transformation φ Eq. (2.10). One can define a new
parameter vector θ̃ and have their derivatives calculated efficiently, as long as they
provide the derivatives of the simulator internal parameter vectorθw.r.t. their pa-
rameter vector θ (see Eq. (2.13)).

4. As will be clear when the algorithms are fully described, they share the same ba-
sic components, differing mainly on how the calculations are done , so that the
implementation of both does not represent too much extra effort. As a matter of
fact, developing the forward method first would allow for implementing and tes-
ting many of the components needed for the more complex backward method in a
simpler context, also allowing for cross verification of the results from both imple-
mentations. The fact that products with arbitrary matrices W and V are being done
only adds a very low extra complexity to the implementation, when compared to
a specific algorithm, for instance to calculate the gradient through adjoint.
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In short, the proposed approach of implementing one forward and one backward
algorithm for multiplying G from left and right with arbitrary matrices is concise, adding
very little complexity when compared to standard gradient calculation through adjoint,
and yet is general, being able to meet all requirements from derivative use and allowing
for easy extensibility in terms of objective functions.

2.1.2. THE FORWARD METHOD
If W is factored out in Eq. (2.14), it can be rewritten as

GV = ∂h

∂x
Z+ ∂h

∂θ
V, (2.15)

where

Z =−
(
∂g

∂x

)−1 ∂g

∂θ
V, (2.16)

is solved from (
∂g

∂x

)
Z =−∂g

∂θ
V. (2.17)

The linear system described in Eq. (2.17) can be re-written in a block-wise form for
each time-step n:

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN





Z0

Z1

...

ZN


=−



∂g0

∂θ
V

∂g1

∂θ
V

...

∂gN

∂θ
V


. (2.18)

Equation Eq. (2.18) shows that the matrix Z can be fully determined by recursively
marching forward in time and solving a system with the matrix for each time-step. Once
defined how the matrix Z can be computed, Eq. (2.18) can be used to compute the sen-
sitivity matrix. The algorithm is described in Algorithm 1.

2.1.3. THE BACKWARD METHOD
Now, if V is factored out in Eq. (2.14), the equation can be rewritten as

WG = Z
∂g

∂θ
+W

∂h

∂θ
, (2.19)

where

Z =−W
∂h

∂x

(
∂g

∂x

)−1

(2.20)



2.1. ANALYTICAL DERIVATIVE INFORMATION COMPUTATION

2

25

Algorithm 1: Right multiplying the sensitivity matrix by an arbitrary matrix via
the direct method.

Input :
∂g

∂x
,
∂g

∂θ
,
∂h

∂x
,
∂h

∂θ
, V

Output: GV
1 foreach n = 0,1,2, . . . , N do
2 foreach j = 1,2, . . . , p do

3 Solve for the j − th column of Zn : zn
j =

(
∂gn

∂xn

)−1 (
− ∂g

∂θ
v j − ∂gn

∂xn−1 zn−1
j

)
4 If there are responses at n, compute (GV)n = ∂hn

∂xn Zn + ∂hn

∂θ
V

is solved from

Z
(
∂g

∂x

)
=−W

∂h

∂x
. (2.21)

The linear system described in Eq. (2.21) can be re-written in a block-wise form for
each time-step n as

(
Z0 Z1 . . . ZN )×



∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN


=

−(
W0 W1 . . . WN )×



∂h0

∂x0

∂h1

∂x0

∂h1

∂x1

. . .
. . .

∂hN

∂xN−1

∂hN

∂xN



(2.22)

One should note that Eq. (2.22) is solved backward in time. Now, by taking the trans-
pose of Eq. (2.22), the linear system of equations that must be solved for each time-step
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for the adjoint method reads

(
Zn)T =

(
∂gn

∂xn

)−T

×(
−

(
Wn ∂hn

∂xn

)T

−
(

Wn+1 ∂hn+1

∂xn

)T

−
(
∂gn+1

∂xn

)T (
Zn+1)T

)
.

(2.23)

Equation 2.22 shows that the matrix Z can be fully determined by recursively mar-
ching backward in time. Once defined how the matrix Z can be computed, Eq. (2.22) can
be employed to compute the sensitivity matrix. The algorithm is described in Algorithm
2.

Algorithm 2: Left multiplying the sensitivity matrix by an arbitrary matrix via
the adjoint Method.

Input :
∂g

∂x
,
∂g

∂θ
,
∂h

∂x
,
∂h

∂θ
, W

Output: WG
1 foreach n = N , . . . ,2,1,0 do
2 foreach i = 1,2, . . . ,m do
3 Solve for the i − th column of (Zn)T :(

zn
i

)T =
(
∂gn

∂xn

)−T

×
(
−

(
wn

i

∂hn

∂xn

)T

−
(

wn+1
i

∂hn+1

∂xn

)T

−
(
∂gn+1

∂xn

)T (
zn+1

i

)T

)

4 Update (WG)n = (WG)n +Zn ∂gn

∂θ
+Wn ∂hn

∂θ

2.1.4. A LAGRANGE MULTIPLIER DERIVATION, INTERPRETATION AND AS-
SOCIATION WITH THE FRAMEWORK

A widely used strategy to derive an adjoint model is the Lagrange multipliers method [7].
Given an objective function O (x,θ) : RN

X ×RN
θ
→ R, an augmented objective function, or

Lagrangian, can be defined as

L (x,θ,λ) =O (x,θ)+λT g , l :RN
X ×RN

θ ×RN
X →R (2.24)

where λ ∈ RN
X . It is largely dicussed in the literature [6, 8, 9] how the adjoint model can

be obtained from Eq. (2.24) for a scalar objective function. Analogously, we consider a
Lagrangian for the model responses h, so that

l (x,θ,Λ) = h (x,θ)+ΛT g , l :RN
X ×RN

θ ×RN
X →R (2.25)
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whereΛ ∈RN
X ×RNY . By applying the necessary fist-order optimality conditions it follows

that 

∂l

∂Λ
= g = 0

∂l

∂x
= ∂h

∂x
+ΛT ∂g

∂x
= 0

∂l

∂θ
= ∂h

∂x

∂x

∂θ
+ ∂h

∂θ
+ΛT

(
∂g

∂x

∂x

∂θ
+ ∂g

∂θ

)
= 0.

It follows that

ΛT =−∂h

∂x

(
∂g

∂x

)−1

(2.26)

Hence,
∂h

∂θ
=−∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
+ ∂h

∂θ
. (2.27)

which, instead of simply computing the gradient of a given scalar objective function, the
derivation would lead to if starting from Eq. (2.24), computes the full sensitivity matrix.

Now, following the same reasoning as exposed in 2.1, Eq. (2.14) can be reproduced if
the Lagrange multiplier is used and Eq. (2.27) is pre- and post-multiplied, respectively,
by W and V.

Also, it can be noted Eq. (2.21) is, in fact, the Lagrange multiplier as found following
the Lagrangian formulation after pre-multiplication by V, so that Eq. (2.26) can be re-
written as

ΛT =−W
∂h

∂x

(
∂g

∂x

)−1

. (2.28)

The Lagrange multipliers can be interpreted as sensitivities of the objective function
value with respect to deviations from the constraints. In case of adjoining the (nonlinear)
porous media flow equations with Lagrange multipliers, this implies that the multipliers
are the sensitivities of the objective function with respect to the residuals of the flow
equations, i.e., to the residual error that remains after approximately solving the nonli-
near equations with the aid of Newton-Rapson iteration.

2.2. APPLICATIONS OF THE FRAMEWORK
In this section we present how our framework can be employed to address the most com-
mon problems associated to subsurface model studies.

2.2.1. COMPUTATION OF DERIVATIVE INFORMATION FOR OPTIMIZATION

ALGORITHMS
Many studies require the employment of optimization algorithms and different algo-
rithms present different performances according to the particularities of the underlying
problem being solved. In this section, we discuss how the mathematical framework here
presented address the computation of different derivative information required by the
different optimization algorithms. More detailed information on the different optimiza-
tion algorithms can found in [10]. We do not cover optimization algorithms that requires
the true Hessian computation, as for subsurface flow problems the computation of the
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full Hessian is perceived to be too expensive. For the application of Newton’s method to
control optimization see [11].

In history matching algorithms, as well as in sensitivity analysis studies, the sensi-
tivity matrix G, defined as the matrix of derivatives of all responses with respect to all
parameters, plays an important role.

In Gauss-Newton methods, the matrix product GT G is directly used. The Levenberg-
Marquardt method’s update equation can be written as(

GT G+λI
)
δθ = GT r (2.29)

Conjugate gradient methods require products of G and GT with arbitrary vectors.
The CG method’s update equation with line search can be written as

θk+1 =θk +αk
(−∇θOk +β∗sk−1

)
(2.30)

where αk is computed by any line search algorithm from

αk = argmin
α

O (θk +αsk ) (2.31)

Quasi-Newton methods require the gradient of the objective function (and possibly
constraints). It’s been reported the limited memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm is one that provides very good permance for history mathcing pro-
blems. The BFGS algorithm update equation can be written as

θk+1 =θk +αk B−1
k (−∇θOk ) (2.32)

where αk is also given by Eq. (2.31).

2.2.2. COMPUTING DERIVATIVE OF DIFFERENT OBJECTIVE FUNCTIONS
In order to illustrate how the framework can be directly used to compute the derivative
information of any given objective function in the form

O =O (h (θ)) ,

consider we wish to employ an optimization algorithm the directly used the gradient of
the objective fucntion the gradient w.r.t. the parameters

∇θO =
(

dO

dθ

)T

=
(

dO

dh

dh

dθ

)T

= GT ∇hO. (2.33)

Next we consider two of the most important reservoir management studies, data assimi-
lation and control optimization.

DATA ASSIMILATION STUDIES

In data assimilation studies (parameter calibration, history matching) one is interested
to calibrate the uncertain parameters (e.g. grid-block permeabilities) by assimilating
observed data from the real system. The problem can be usually seen as a least square
problem minimization. If one looks at the history matching problem under a Bayesian
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framework and under the usual Gaussian assumptions [12], the maximum a posteriori
model can be obtained from the minimization of the following objective function

O (h (θ) ,θ) =1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) ,
(2.34)

whose gradient is given by

∇θO = C−1
θ

(
θ−θpr i or

)+(
dh

dθ

)T

C−1
D (h (x,θ)−dobs ) =

C−1
θ

(
θ−θpr i or

)+GT m.

(2.35)

where

m = C−1
D (h (x,θ)−dobs ) , (2.36)

is an auxiliary vector, so the gradient of O can be written as ∇θO = (mT G)T and Algo-
rithm 2, with W = mT , calculates ∇θO with a cost proportional to one extra forward
simulation, making the Adjoint Method a much more efficient way to calculate the gra-
dient than the Direct Method [4] [9]

CONTROL OPTIMIZATION STUDIES

Life-cycle optimization studies [3, 5, 13–15] are those where one is interested to maxi-
mize an economic indicator (e.g. Net present value) by manipulating the controllable
parameters of the system (e.g. the well rates). We assume that the economic objective
can be generically expressed as

O (h (θ)) =
N∑

n=1
On (hn (θ)), (2.37)

An NPV objective function can be generically expressed as

J = rT h, (2.38)

where h are the well rates (produced oil and water and injected water rates in a waterf-
looding setting [14, 16]) and r are the cost/revenues associated with the wells’ operation.

This allows us to write the gradient of Eq. (3.64) as

∇θ J = rT dh

dθ
= rT G. (2.39)

Eq. (3.64) allows the adjoint method to be employed in the computation of ∇θ J by ma-
king W = rT . Just like in the data assimilation case, ∇θ J is efficiently computed with cost
proportional to one backward simulation using the adjoint method.
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3
COMPUTING DERIVATIVE

INFORMATION OF SEQUENTIALLY

COUPLED SUBSURFACE MODELS

A generic framework for the computation of derivative information required for gradient-
based optimization using sequentially coupled subsurface simulation models is presen-
ted. The proposed approach allows for the computation of any derivative information
with no modification of the mathematical framework. It only requires the forward model
Jacobians and the objective function to be appropriately defined. The flexibility of the fra-
mework is demonstrated by its application in different reservoir management studies. The
performance of the gradient computation strategy is demonstrated in a synthetic water-
flooding model, where the forward model is constructed based on a sequentially coupled
flow-transport system. The methodology is illustrated for a synthetic model, with different
types of applications of data assimilation and life-cycle optimization. Results are com-
pared with the classical fully-coupled (FIM) forward simulation. Based on the presen-
ted numerical examples, it is demonstrated how, without any modifications of the basic
framework, the solution of gradient-based optimization models can be obtained for any
given set of coupled equations. The sequential derivative computation methods deliver
similar results compared to FIM methods, while being computationally more efficient.

The material presented in this chapter has been published in the Journal of Computational Geosciences (2018)
[1] and presented at the SIAM Geosciences Conference (2018) [2].
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The exploitation of subsurface resources frequently involves complex physics and
geology. Thermal, geomechanical, and chemical processes are just a few phenomena
that sometimes must be accounted for, while the domain is often governed by parame-
ters that typically change several orders of magnitude over a wide range of spatial scales.
Numerical simulation of such complex processes can be done with fully-implicit met-
hods (FIMs) and sequentially coupled approaches. Even though FIMs provide the most
stable simulation platform [3], many efforts have successfully lead to stable and efficient
sequential simulations (e.g. [4]). Sequential simulation is often specially attractive for
coupled processes of different physical natures, which often operate on different time
scales or have different spatial support (e.g. local versus global effects). It is worth to be
mentioned that multiscale methods [5–8] and model reduction techniques [9, 10] have
been mainly developed for globally acting processes, and thus function optimally when
they are used in sequential frameworks. Note that such a framework would also benefit
some preconditioning methods that use sequential strategies (operator splitting) for the
solution of linear system of equations. This holds for FIMs simulations using Constrai-
ned Pressure Restriction (CPR) preconditioning [11–13], where a pressure-like system is
being extracted from the FIM Jacobian in order to enhance the convergence.

Ultimately, numerical simulation will support reservoir management studies which
are often based on optimization techniques. It has been shown that gradient-based opti-
mization techniques are the most efficient ones when applied, for instance, to life-cycle
optimization [14, 15] and history matching [16–18] studies. Moreover, it is well known
that the most efficient/accurate gradient computation technique is the adjoint method
[15]. Even though a large body of the literature has been dedicated to this topic, most of it
discusses the adjoint model for FIMs systems. In this case, the adjoint model is obtained
by transposing the forward model system of equations [14, 17]. Also, even though the
mathematical framework presented by [19] and [20] does not limit the derivation of the
adjoint equations to any particular solution strategy, no explicit discussion on how it can
be applied to sequentially coupled system of equations was presented. A multiscale ad-
joint method applied to life-cycle optimization is presented by [21], in which a sequential
solution of flow and transport is employed, such that, consequentially, the adjoint mo-
del also follows a sequential solution strategy. However, in that work, the discussion is
focused on the promising computational savings provided by multiscale simulation and
not so much detail is given as to what extent the gradient computation itself can impose
challenges.

The present work presents a general gradient computation formulation for sequentially-
coupled models. An implicit differentiation strategy [19, 20] is extended to coupled sys-
tems of equations. The algorithms for the derivative computation of simulator responses
neither depend on the objective function type, nature of the parameters, nor on any spe-
cific model coupling. Instead, it is shown how derivative information can be computed
based on any coupling strategy. Using a chain-rule formalism, we firstly introduce a ge-
neric framework capable of computing the specific derivative information required by
any given optimization algorithm. Next, it is shown how such computation is done for
sequentially coupled flow and transport. Thereafter, numerical examples including both
data assimilation and life-cycle optimization are presented.
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3.1. MATHEMATICAL FRAMEWORK FOR THE COMPUTATION OF

GRADIENT INFORMATION OF COUPLED SYSTEM OF EQUA-
TIONS

We consider a system of discrete-in-time nonlinear model equations in implicit (resi-
dual) form: 

gn
x1

(
xn−1

1 , . . . ,xn−1
Nc

,xn
1 , . . . ,xn

Nc
,θ

)
= 0

...

gn
xNc

(
xn−1

1 , . . . ,xn−1
Nc

,xn
1 , . . . ,xn

Nc
,θ

)
= 0,

(3.1)

where xn
c ∈ RN n

xc , c ∈ {1, . . . , Nc }, is the set of primary variables associated with the model
equations gn

xc
, and Nc the total number of coupled equations. The superscript n denotes

the time-step index and θ ∈ RNθ is the vector of parameters with respect to which we
aim to compute derivative information. There are N n

X = ∑Nc
c=1 Nx

n
c primary variables at

time-step n and Nθ parameters. Note that the initial conditions are assumed to be
g0

x1

(
x0

1, . . . ,x0
Nc

,θ
)
= 0

...

g0
xNc

(
x0

1, . . . ,x0
Nc

,θ
)
= 0.

(3.2)

The functions defining the set of observable responses for a time-step are described
as

yn = hn
(
xn−1

1 , . . . ,xn−1
Nc

,xn
1 , . . . ,xn

Nc
,θ

)
, (3.3)

where hn represents the output equations [22]. There are N n
Y observations in time-step

n.
Let

gn (
xn ,xn−1,θ

)=


gn
x1

...

gn
xNc

 , (3.4)

be the set of model equations, where gn : RN n−1
X ×N n

X ×Nθ → RN n
X ,

xn =


xn

1
...

xn
Nc

 , (3.5)

be the state vector, where xn ∈ RN n
X , and Eq. (3.3) be re-defined as

yn = hn (
xn−1,xn ,θ

)
, (3.6)
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where hn : RN n−1
X ×N n

X ×Nθ → RN n
Y .

A “super-vector” notation [19, 20] is used to capture the evolution in time. All in-
stances of gn as defined in Eq. (3.4) for all time-steps, can be collated in a function

g : RNX ×Nθ → RNX , where NX =
N∑

n=0
N n

X is the total number of primary variables for all

time-steps, such that the system of non-linear equations is represented as

g (x (θ) ,θ) = 0. (3.7)

Note that we use bold italic font to indicate super vectors and just bold to indicate ordi-
nary vectors.

Eq. (5.26) indicates the dependency of the forward model equations on both the pri-
mary variables and the model parameters, even though the model equations are only
solved for x and the dependency on θ has to be taken into account for the implicit diffe-
rentiation strategy that will be employed later on.

Similarly, all instances of yn as defined in Eq. (3.6) for all time-steps can be colla-

ted in a function h : RNX ×Nθ → RNY , where NY =
N∑

n=0
N n

Y represents the total number of

responses for all time-steps, so that

y = h (x (θ) ,θ) . (3.8)

Following the same implicit differentiation strategy as in [19] and [23], the sensitivity
matrix G (i.e., sensitivity of the responses with respect to the parameters) can be compu-
ted by deriving Eq. (5.27) with respect to θ, i.e.,

G = dh

dθ
= ∂h

∂x

d x

dθ
+ ∂h

∂θ
. (3.9)

In order to find a relationship that defines
d x

dθ
, Eq. (5.26) is differentiated with respect to

θ
∂g

∂x

d x

dθ
+ ∂g

∂θ
= 0, (3.10)

so that
d x

dθ
=−

(
∂g

∂x

)−1 ∂g

∂θ
. (3.11)

Substituting Eq. (3.11) in Eq. (3.9) gives

G =−∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
+ ∂h

∂θ
. (3.12)

In order to keep the framework general (in terms of which type of derivative infor-
mation can be computed), the sensitivity matrix is pre- and post-multiplied by arbitrary
matrices V (of size Nθ×p) and W (of size m ×NY )

WGV =−W
∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
V+W

∂h

∂θ
V. (3.13)
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The key aspect that defines the computational performance of the gradient computation

is the order of the operations involving

(
∂g

∂x

)−1

. Based on that, both the direct [24] and

adjoint [16] analytical methods to compute the necessary derivative information can be
defined.

If W is factored out in Eq. (6.18), it can be rewritten as

GV = ∂h

∂x
Z+ ∂h

∂θ
V, (3.14)

where

Z =−
(
∂g

∂x

)−1 ∂g

∂θ
V, (3.15)

is solved from (
∂g

∂x

)
Z =−∂g

∂θ
V. (3.16)

The linear system described in Eq. (6.25) can be re-written in a block-wise form for
each time-step n:

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN





Z0

Z1

...

ZN


=−



∂g0

∂θ
V

∂g1

∂θ
V

...

∂gN

∂θ
V


, (3.17)

where, from Eq. (3.4) and Eq. (3.5) one can write

∂gn

∂xn =



∂gn
x1

∂xn
1

. . .
∂gn

x1

∂xn
Nc

...
. . .

...

∂gn
xNc

∂xn
1

. . .
∂gn

xNc

∂xn
Nc


, (3.18)

and

∂gn

∂xn−1 =



∂gn
x1

∂xn−1
1

. . .
∂gn

x1

∂xn−1
Nc

...
. . .

...

∂gn
xNc

∂xn−1
1

. . .
∂gn

xNc

∂xn−1
Nc


. (3.19)
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Here N is the total number of time-steps and the partitioning lines indicate which matrix
and vector terms belong to each time-step. Also, from Eq. (3.6) and Eq. (3.5)

∂hn

∂xn =
(
∂hn

∂xn
1

. . .
∂hn

∂xn
Nc

)
, (3.20)

and
∂hn

∂xn−1 =
(
∂hn

∂xn−1
1

. . .
∂hn

∂xn−1
Nc

)
. (3.21)

This solution strategy is known in the literature as the Forward Method [19], Gradient
Simulator [24], or Direct Method [18]. Note that auxiliary matrix Z has dimensions of
NX ×p and, therefore, it requires N ×p linear systems to be solved. Hence, the cost of
computing GV is proportional to the number of columns in V, i.e., p.

Now, if V is factored out in Eq. (6.18), the equation can be rewritten as

WG = Z
∂g

∂θ
+W

∂h

∂θ
, (3.22)

where

Z =−W
∂h

∂x

(
∂g

∂x

)−1

(3.23)

is solved from

Z
(
∂g

∂x

)
=−W

∂h

∂x
. (3.24)

The linear system described in Eq. (6.37) can be re-written in a block-wise form for
each time-step n as

(
Z0 Z1 . . . ZN )×



∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN


=

−(
W0 W1 . . . WN )×



∂h0

∂x0

∂h1

∂x0

∂h1

∂x1

. . .
. . .

∂hN

∂xN−1

∂hN

∂xN



(3.25)
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One should note that Eq. (6.38) is solved backward in time. Now, by taking the trans-
pose of Eq. (6.38), the linear system of equations that must be solved for each time-step
for the adjoint method reads

(
Zn)T =

(
∂gn

∂xn

)−T

×(
−

(
Wn ∂hn

∂xn

)T

−
(

Wn+1 ∂hn+1

∂xn

)T

−
(
∂gn+1

∂xn

)T (
Zn+1)T

)
.

(3.26)

This solution strategy is known in the literature as the Adjoint (or Backward) Method
(Chavent, 1975). Note that now Z has dimensions of NX ×m, hence it requires N ×m
linear systems to be solved. As such, the cost of computing WG is proportional to the
number of rows in W, i.e., m.

Although the derivation as presented so far is general, in order to properly formulate
the actual method to analytically compute the derivative information, the structure of
the partial derivative matrices involved in the computations must be taken into account.
This is only possible if the specific coupling strategy and the proper dependencies of the
model equations and primary variables are taken into account. Therefore, in the rest for
the paper we focus our studies on sequentially coupled multiphase flow simulations.

3.1.1. REMARKS ABOUT THE FRAMEWORK
The appropriate selection of the arbritrary matrices W and V allows one single frame-
work to compute any derivative information and avoids the expensive computation of G.
For instace, in case of quasi-Newton methods [25], the gradient of the objective function
O =O

(
y (θ)

)
is directly required. Via the chain-rule, one can write

∇θO =
(

dO

dθ

)T

=
(

dO

dh

dh

dθ

)T

= GT ∇hO. (3.27)

The operation (WG)T = GT WT gives the product of GT with the (column) vector WT =
∇hO. Hence, the adjoint method can be efficiently employed to compute the objective
function gradient with respect to the parameters, as described in Eq. (3.27).

Now, in case of conjugate gradient methods [25], products of G and GT with arbitrary
vectors are required. The product GV, with n = 1 can be efficiently computed by the
direct method while, the product GT WT , with m = 1 can be efficiently computed using
the adjoint method.

Another factor that maintains the flexibility of the framework is the formal partiti-
oning of g and x according to the coupling of the equations. The computation of the
auxiliary matrix Z in Eq. (6.24) and Eq. (3.26) will follow the partition of the g . Once
Z is fully determined, the sensitivity matrix products Eq. (6.23) and Eq. (6.35) remain
unchanged. Hence, the framework requires the Jacobians of g w.r.t. x and θ to be deter-
mined from the coupled forward model equations.

We highlight that linear system solutions involving
∂g

∂x
are required on both direct

and adjoint methods (see Eq. (6.25) and Eq. (6.37)) in order to determine the auxili-
ary matrix Z. More specifically, the unique derivative information computation requires
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∂gn

∂xn to be full-rank. This is true in most of the cases given that this is the same partial

derivative matrix required by the forward simulation. For instance, this matrix repre-
sents the Jacobian used by Newton-Raphson non-linear solvers, typically employed in
the forward simulation.

The importance of the implementation separation between the forward model and
the adjoint model was previously highlighted by [14], who also presented a discussion
about memory requirements related to the storage of the partial derivatives (or states
required to re-evaluate them during the backward runs). In that work, the computational
aspects were discussed in the context of an optimal control problem using FIM. Note
that, as shown in the previous section, the framework presented in our paper is readily
applicable to different coupling strategies or derivative computation problems.

Also, both the direct and adjoint methods are treated in the same framework. The
direct method is usually directly associated with the forward simulation. All the deriva-
tive information related computation is usually presented as part of the forward time-
stepping process. Here, it is shown that it can also be achieved in complete separation
from the forward simulation. The requirement is the same as for the adjoint method:
the required Jacobians must be stored / re-evaluated for the derivative information re-
quired at a later stage. However, in one hand the separation from the forward simulation
reduces the code intrusion, on the other hand this strategy requires the storage of the
partial derivative matrices also for the direct method. Even though it has implications
from a memory usage perspective, the computational efficiency of the direct method
remains the same considering an efficient strategy to dump/load the partial derivative
matrices from the hard-disk or their reconstruction from the primary variables states
(similar concerns are associated with the adjoint method).

3.2. APPLICATIONS OF THE FRAMEWORK: LIFE-CYCLE OPTI-
MIZATION AND ASSISTED HISTORY MATCHING OF SEQUEN-
TIALLY COUPLED FLOW AND TRANSPORT FORWARD MO-
DEL

3.2.1. ALGEBRAIC DESCRIPTION OF FORWARD MODEL EQUATIONS
The computation of derivative information for sequentially coupled systems is illustra-
ted in the context of flow and transport in heterogeneous porous media. More speci-
fically, two-phase, immiscible, incompressible flow is considered, with no gravity and
capillary effects. The total mass balance (flow) equation is given by

−∇· (λK ·∇p
)=∇· (u) = q, (3.28)

where u is the total velocity, K the absolute permeability tensor and p is the pressure
[3]. The total mobility is given by λ= λo +λw , with the subscripts o and w standing for,
respectively, oil and water, and the total source term is given by q = qo +qw .

The transport equation for a given phase α can be written as

φ
∂Sα
∂t

+∇· ( fαu
)= qα, (3.29)
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where Sα and fα are, respectively, the saturation and fractional flow of phase α. The
system is closed via the saturation constraint∑

α=o,w Sα = 1. (3.30)

The discrete form of Eq. (3.28) reads

gn
p = An−1pn −qn−1 = 0, (3.31)

where pn ∈ RNb and qn−1 ∈ RNb are vectors of pressure and source terms, respectively,
Nb is the number of grid blocks, and An−1 ∈ RNb×Nb is the system matrix. Interfacial rock
properties are computed by means of harmonic averages for the absolute permeabilities,
whereas an upwind scheme is employed for interfacial fluid properties (i.e. mobilities).
The dependency of the fluid mobilities on the saturation is treated lagged in time be-
cause of the sequential solution strategy.

The discrete form of Eq. (5.5) reads

gn
s = V

(
sn −sn−1)+Ft un −qt

α = 0, (3.32)

where s ∈ RNb , Ft ∈ RNb×NI , and un ∈ RNI are, respectively, the saturation vector, the
upwind fractional flow matrix and the vector containing the normal to grid interfaces
velocity components, with NI being the number of grid interfaces,

V = I
Vφ
∆t

, (3.33)

where V ∈ RNb×Nb , and un is computed from

gn
u = un −Λn−1pn = 0, (3.34)

whereΛn−1 ∈ RNI ×Nb is the transmissibilty matrix. Futhermore, we highlight that, in our
implementation, α is considered to be water, and hence water saturation is a primary
variable. Therefore, all references to saturation found from here on are w.r.t. water satu-
ration. Additionally, ∆t is the time-step size, Vφ ∈ RNb is the vector containing the grid
block pore-volumes, and I is the identity matrix.

The de-coupling of Eq. (5.8) and Eq. (5.9) allows the system to be solved sequenti-
ally, with no dependency of Eq. (5.8) on sn . If t = n −1, the fractional flow and source
terms are evaluated at the previous time-step. This is the so-called implicit-pressure
explicit-saturation (IMPES) discretization in time [3]. However, to avoid time-step size
limitations [26], the so-called sequential implicit strategy (IMPSAT) can be defined by
making t = n. Although Eq. (5.9) now has a non-linear dependency on sn , this scheme
allows for larger time-steps.

3.2.2. GRADIENT COMPUTATION
From the discrete forward simulation equations Eq. (5.8), Eq. (5.9), and Eq. (3.34), Eq.
(3.1) can be specialized as 

gn
p

(
pn ,sn−1,θ

)= 0

gn
u

(
pn ,un ,sn−1,θ

)= 0

gn
s

(
pn ,un ,sn−1,sn ,θ

)= 0,

(3.35)
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where gn
p , gn

u and gn
s are, respectively, the vector-valued equations describing flow (pres-

sure) and transport (saturation) at time-step n. The equations that determine the initial
conditions are assumed to be 

g0
p

(
p0,θ

)= 0

g0
u

(
p0,u0,θ

)= 0

g0
s

(
p0,u0,s0,θ

)= 0.

(3.36)

From Eq. (3.35), let

gn =


gn

p

gn
u

gn
s

 . (3.37)

Also, based on the corresponding primary variables associated to Eq. (3.35), Eq. (3.5)
can be redefined as

xn =


pn

un

sn

 . (3.38)

The functions defining the set of observable outputs at time-step n will be assumed
to be functions of both pn and st , i.e.,

yn = hn (
pn ,st ,θ

)
, (3.39)

which, in the case of IMPES reads

yn = hn (
pn ,sn−1,θ

)
, (3.40)

and for IMPSAT reads
yn = hn (

pn ,sn ,θ
)

. (3.41)

From Eq. (3.38), Eq. (3.39) can be re-written as

yn = hn (
xn−1,xn ,θ

)
. (3.42)

Based on Eq. (3.35), Eq. (3.38), Eq. (6.27) and Eq. (6.28) can be redefined, now ta-
king into account the appropriate dependencies of equations and variables for the flow-
transport coupling, as

∂gn

∂xn =



∂gn
p

∂pn 0 0

∂gn
u

∂pn

∂gn
u

∂un 0

∂gn
s

∂pn

∂gn
s

∂un

∂gn
s

∂sn


=



An−1 0 0

−Λn−1 I 0

−∂qn
α

∂pn Ft ∂gn
s

∂sn


, (3.43)
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and

∂gn

∂xn−1 =



0 0
∂gn

p

∂sn−1

0 0
∂gn

u

∂sn−1

0 0
∂gn

s

∂sn−1


. (3.44)

Furthermore, based on Eq. (3.38) and Eq. (3.42), it follows that

∂hn

∂xn =
(
∂hn

∂pn 0
∂hn

∂sn

)
, (3.45)

and
∂hn

∂xn−1 =
(

0 0
∂hn

∂sn−1

)
. (3.46)

Note that
∂hn

∂sn = 0 in Eq. (3.45) if a sequential explicit method is used. On the other

hand,
∂hn

∂sn−1 = 0 in Eq. (3.46) if a sequential implicit method is used.

Also, one should note that
∂gn

s

∂sn in Eq. (3.43) becomes diagonal if IMPES is used and

non-diagonal if IMPSAT is used. On the other hand,
∂gn

s

∂sn−1 becomes diagonal in Eq.

(3.44) if IMPSAT is used and non-diagonal if IMPES is used.

THE DIRECT METHOD

If Eq. (3.43), Eq. (3.44), Eq. (3.45) and Eq. (3.46) are used in Eq. (6.26), the algorithm to
compute the required gradient information using the direct method can be defined for
the flow-transport coupling. The linear systems that must be solved for the flow equation
in the direct method, for every time-step n, are given by

Zn
p =

(
∂gn

p

∂pn

)−1 (
∂gn

p

∂θ
V−

∂gn
p

∂sn−1 Zn−1
s

)
, (3.47)

for the pressure equation,

Zn
u =

(
∂gn

u

∂un

)−1 (
∂gn

u

∂θ
V− ∂gn

u

∂pn Zn
p − ∂gn

u

∂sn−1 Zn−1
s

)
(3.48)

for the velocity equation, and

Zn
s =

(
∂gn

s

∂sn

)−1 (
∂gn

s

∂θ
V− ∂gn

s

∂pn Zn
p − ∂gn

s

∂un Zn
u − ∂gn

s

∂sn−1 Zn−1
s

)
(3.49)

for the transport equation.
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From Eq. (3.47) and Eq. (3.49), Eq. (6.23) can be redefined based on the partitioning

Zn =


Zn

p

Zn
u

Zn
s

 , (3.50)

so that the computation of the product GV at time-step n is given by

(GV)n = Gn V = ∂hn

∂θ
V− ∂hn

∂pn Zn
p − ∂hn

∂sn Zn
s − ∂hn

∂sn−1 Zn−1
s . (3.51)

Now, the direct method algorithm can be defined and is depicted in Algorithm 3.

Algorithm 3: Right multiplying the sensitivity matrix by an arbitrary matrix via
the direct method.

Input : Partial derivative matrices of gp , gu and gs w.r.t. x and θ, V
Output: GV

1 foreach n = 0,1,2, . . . , N do
2 foreach j = 1,2, . . . , p do
3 Solve for the j − th column of Zn

p using Eq. (3.47).

4 Solve for the j − th column of Zn
u using Eq. (3.48).

5 Solve for the j − th column of Zn
s using Eq. (3.49).

6 If there are responses at n, compute (GV)n using Eq. (3.51)

THE ADJOINT METHOD

By transposing Eq. (3.43), Eq. (3.44), Eq. (3.45) and Eq. (3.46) and replacing them in Eq.
(3.26), the linear system that must be solved for the flow equation, for every time-step n,
now reads (

Zn
p

)T =
(
∂gn

p

∂pn

)−T

×(
−

(
∂gn

u

∂pn

)T (
Zn

u

)T −
(
∂gn

s

∂pn

)T (
Zn

s

)T −
(

Wn ∂hn

∂pn

)T
) (3.52)

for the velocity equation

(
Zn

u

)T =−
(
∂gn

u

∂un

)−T (
∂gn

s

∂un

)T (
Zn

s

)T (3.53)
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and for the transport equation

(
Zn

s

)T =
(
∂gn

s

∂sn

)−T
(
−

(
Wn ∂hn

∂sn

)T

−
(

Wn+1 ∂hn+1

∂sn

)T

−
(
∂gn+1

p

∂sn

)T (
Zn+1

p

)T −
(
∂gn+1

u

∂sn

)T (
Zn+1

u

)T

−
(
∂gn+1

s

∂sn

)T (
Zn+1

s

)T

)
.

(3.54)

By blocking Eq. (6.35) in time we have

WG =
N∑

n=0

(
Zn

p

∂gn
p

∂θ
+Zn

u
∂gn

u

∂θ
+Zn

s
∂gn

s

∂θ
+Wn ∂hn

∂θ

)
. (3.55)

The adjoint algorithm for the sequential coupling is described in Algorithm 4. The
gradient computation does not only involve a backward simulation, but the solution of
pressure and transport related terms in the backward run is reversed when compared to
the order in which the equations are solved in the forward simulation.

We highlight the importance of the backward simulation to exactly follow the forward
simulation steps. In our implementation, because in the backward simulation we pre-
cisely follow the time-stepping strategy taken in the forward simulation, given that any
stability issue has been addressed in the forward simulation (e.g. due to CFL conditions),
the backward simulation also has no stability issues. In other words, the backward for-
mulation, for both IMPES and IMPSAT, is as stable as the forward simulation, given that
the same time-stepping strategy is employed in the backward simulation. Furthermore,
because the tangent linear model as obtained during the Newton iterations is uncondi-
tionally stable, the backward model, which is, by definition, the transpose of the tangent
linear model, also must be stable.

Algorithm 4: Left multiplying the sensitivity matrix by an arbitrary matrix via
the adjoint Method.

Input : Partial derivative matrices of gp , gu and gs w.r.t. x and θ, W
Output: WG

1 foreach n = N , . . . ,2,1,0 do
2 foreach i = 1,2, . . . ,m do

3 Solve for the i − th column of
(
Zn

s

)T using Eq. (3.54).

4 Solve for the i − th column of
(
Zn

u

)T using Eq. (3.53).

5 Solve for the i − th column of
(
Zn

p

)T
using Eq. (3.52).

6 Update (WG) using Eq. (3.55).
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3.2.3. GRADIENT COMPUTATION AND OPTIMIZATION FOR DATA ASSIMILA-
TION

In data assimilation studies one is interested to incorporate reponses (or observations)
from the real system into the numerical model by updating the (uncertain) model para-
meters so that the model’s response reproduces the system observations. From a mathe-
matical point of view, this exercise can be appoached as an optimization problem

minimize
θ

O (h (x ,θ))

subject to g (x ,θ) = 0,

θ ∈ [θmi n ,θmax ] ,

(3.56)

where O is usually an objective function that represents the misfit between observed
data and model responses. In data assimilation problems, θ represents the uncertain
parameters, which are usually bounded between the upper and lower bounds θmi n and
θmax . A commonly used misfit objective function [18], with a regularization term, is
given by

O
(

y ,θ
)=1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2
(h (x ,θ)−dobs )T C−1

D (h (x ,θ)−dobs ) ,
(3.57)

where Cθ is the parameter covariance matrix, θpr i or is the vector containing a prior esti-
mate of the uncertain parameters, dobs the observed data one desires to match, and CD

the data covariance matrix. The gradient of Eq. (3.57) is given by

∇θO = C−1
θ

(
θ−θpr i or

)+(
dh

dθ

)T

C−1
D (h (x ,θ)−dobs ) =

C−1
θ

(
θ−θpr i or

)+GT m.

(3.58)

Since calculating the gradient using the adjoint method requires computational cost
proportional to one extra simulation, while the direct method requires cost proportional
to Nθ extra simulations, the adjoint method is computationally the most efficient one.
Note that

m = C−1
D (h (x ,θ)−dobs ) , (3.59)

where m is an auxiliary vector, so the gradient of O can be written as ∇θO = (mT G)T .
Moreover, Algorithm 4, with W = mT , calculates ∇θO with a cost proportional to one
extra simulation, instead of proportional to the number of parameters as in the direct
method. For this reason, in the data assimilation studies shown here, the adjoint method
is used when evaluating Eq. (7.20).

3.2.4. GRADIENT COMPUTATION AND OPTIMIZATION FOR LIFE-CYCLE OP-
TIMIZATION

Life-cyle optimization aims to find the optimal set of control input parameters that max-
imizes an economic objective (e.g. the recovery factor or the net present value). This
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problem can also be represented as an optimization problem

maximize
θ

O (h (x ,θ))

subject to g (x ,θ) = 0,

c (x ,θ) = 0,

d (x ,θ) < 0,

θ ∈ [θmi n ,θmax ] ,

(3.60)

where c and d represent, respectively, equality and inequality operational contraints
(e.g. maximum injection pressure). Now, θ represent the control parameters (e.g. well
bottom-hole pressures or rates).

Here, let us assume the economical objective function O = J to be the net present
value, which is given in a simplified way by [15]

J =
N∑

n=1

[(qo,n) · ro − (qw p,n) · rw p − (qwi ,n) · rwi ] ·∆tn

(1+b)
tn
τt

. (3.61)

In Eq. (3.61), qo,n represents the oil production rate in m3/day, qw p,n is the water pro-
duction rate in m3/day, qwi ,n is the water injection rate in m3/day, ro is the price of oil
produced in $/m3, rw p is the cost of produced water in $/m3, rwi is the cost of injected
water in $/m3, ∆tn is the difference between consecutive time steps in days, b is the
discount factor expressed as a fraction per year, tn is the cumulative time in days cor-
responding to time-step n, and τt is the reference time period for discounting, typically
one year.

The well rates are computed via the Peaceman [27] formulation as

q (x,θ) = Tλα
(
pb −pw

)
, (3.62)

where pb is the grid-block pressure, pw is the well-bore pressure, T is a connectivity
index, and λα is the mobility of phase α.

Eq. (3.61) can be re-written in vectorial form as

J = rT
o qo − rT

w p qw p − rT
wi qwi , (3.63)

where qo ∈ RN , qw p ∈ RN , qwi ∈ RN , and

ro =
[

ro∆t1

(1+b)
t1
τt

· · · ro∆tN

(1+b)
tN
τt

]T

,

rw p =
[

rw p∆t1

(1+b)
t1
τt

· · · rw p∆tN

(1+b)
tN
τt

]T

,

rwi =
[

rwi∆t1

(1+b)
t1
τt

· · · rwi∆tN

(1+b)
tN
τt

]T

.
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Furthermore, Eq. (3.63) can be rewritten as

J = rT h, (3.64)

where
h = [

qT
o −qT

w p −qT
wi

]T
, r = [

rT
o rT

w p rT
wi

]T
.

This allows us to write the gradient of Eq. (3.64) as

∇θ J = rT dh

dθ
= rT G. (3.65)

Eq. (3.64) allows the adjoint method to be employed in the computation of ∇θ J by ma-
king W = rT . Just like in the data assimilation case, ∇θ J is efficiently computed with cost
proportional to one backward simulation using the adjoint method.

3.2.5. ALGORITHM COMPLEXITY ANALYSIS
As already mentioned, sequential methods can lead to efficient simulation strategies.
Because the direct and adjoint derivative computation methods are tightly related to the
numerical method employed in the forward simulation, a computational efficiency gain
is also observed in these derivative computation methods.

The computational efficiency of the methods is assessed via an asymptotic analy-
sis. In the analysis, only the most computationally intensive operations involved in the
algorithms are considered. Hence, because the cost of solving linear system of equati-
ons overwhelms the cost of the matrix-vector products, only the former is considered
over the latter. The cost associated to the solution of a linear system is considered to be
O

(
αNβ

)
, where α and β are constants dependent of the linear solvers employed, and N

is the size of the system.
Let us consider the computational cost associated to solve the derivative information

for each time-step perfomed in the forward simulation for the different methods (FIM,
IMPSAT and IMPES). In the FIM case, for each column of V for the direct method, or each
row of W for the adjoint method, a linear system of size 2×Nb must be solved, leading
to a complexity OF I M (α(2×Nb)β). In the IMPSAT case, a linear system must be solved
for the flow and tranport equations, leading to a complexity OI MPS AT (αNb

β +αNb
β).

Now, in the IMPES case, the saturation can be obtained via an negligble matrix-vector
multiplication, which requires the solution of only one linear system of size Nb , leading
to a complexity of OI MPES (αNb

β). Fig. 3.1 illustrates the cost ratios OI MPS AT /OF I M and
OI MPES /OF I M for different values ofβ. It is considered that the linear solver employed in
the solution of the different coupling strategies’ systems are equally efficient (i.e. same
β).

It is possible to see that it is always more or equally efficient to solve the resulting
linear system(s) of equations in a sequential manner than using a FIM. Another aspect
that is not captured in our analysis is that once we have the system de-coupling, it is
possible to employ more efficient solution strategies based on the underlying physics
and on the resulting system of equations’ properties.

However the cost per time-step associated to the sequential gradient computation
methods are smaller or equal to the FIM gradient computation method. Due to nume-
rical instabilities, sequential methods (mainly IMPES) usually require more time-steps
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Figure 3.1: Computational complexity ratio between IMPES and FIM (red) and IMPSAT and FIM (blue) for
different values of β for one time-step.

than FIM methods due to the limitations imposed by the CFL condition. Therefore, there
is a tradeoff between number of time-steps and time-step cost,(

OSeq

OF I M

)
Tot al

=
N T S

Seq

N T S
F I M

OSeq

OF I M
,

where N T S
Seq is the total number of time-steps taken in the sequential (either IMPES of

IMPSAT) simulation, N T S
F I M is the total number of time-steps taken in the FIM simu-

lation, and OSeq is the cost associated to the sequential simulation (either IMPES or
IMPSAT).

Furthermore, both superior efficiency and stability could be achieved if an adaptive
implicit sequential coupling [28, 29] is employed. The framework here presented could
be directly employed by properly accouting for the explicit/implicit cells in the com-
putation of the partial derivative matrices. The implementation of an AIM derivative
computation method in a fully featured simulator has been used in the literature [19].

Also, we highlight that, although not captured in the above computational asymp-
totic analisys, it is important to note that the more time-steps are taken by the forward
simulation, the more extra information (partial derivative matrices) must be computed
and assembled, as well as stored/re-evaluated at each time-step to be later used in the
backward simulation.

3.3. NUMERICAL EXPERIMENTS
A synthetic model is considered as proof of concept (see Fig. A.5). It is a 2D inverted
five-spot model, consisting of a 21× 21 equidistant Cartesian mesh with grid block di-
mensions of 33.3×33.3×2 m. The reservoir porosity is constant and equal to 0.3. The
fluid properties are described in Table A.2. The uncertainty around the absolute perme-
ability distribution is represented by an ensemble of different permeability realizations.
The ensemble is generated via the decomposition of a reference permeability “image”
using Principal Component Analysis parametrization [30]. Fig. A.8 illustrates 4 different
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Figure 3.2: The synthetic inverted five-spot model used in the numerical experiments. One of the 1,000 per-
meability realizations is shown.

Table 3.1: Fluid properties for five-spot model.

Property Value Unit
Oil dynamic viscosity (µo) 0.5×10−3 Pa s

Water dynamic viscosity (µw ) 1.0×10−3 Pa s
End-point relative permeability, oil (kr ow ) 0.9 –

End-point relative permeability, water (kr w ) 0.6 –
Corey exponent, oil (No) 2.0 –

Corey exponent, water (Nw ) 2.0 –
Residual-oil saturation (Sor = 0.2) 0.2 –
Connate-water saturation (Swc ) 0.0 –

permeability realizations from the ensemble of 1,000 members.

Figure 3.3: Four different permeability realizations from the ensemble of 1,000 members used in the data assi-
milation study.

3.3.1. GRADIENT ACCURACY
In order to quantify how much the gradients computed by the presented sequential met-
hods deviate from those computed using a FIM method, we calculate the angle between
the gradient given by the FIM method and the gradients given by the IMPES and IMPSAT
sequential methods. The angle between the gradient vectors can be computed as

α= cos−1 (∇T
θÔF I M ∇θÔSeq

)
, (3.66)

where,

∇θÔF I M = ∇θOF I M

‖∇θOF I M‖2
(3.67)
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and

∇θÔSeq = ∇θOSeq∥∥∇θOSeq
∥∥

2

. (3.68)

Also, ∇θOF S and ∇θOSeq denote the FIM and the sequential (IMPES and FIM) ana-
lytical gradients, respectively. As a minimum requirement, acceptable MS gradients are
obtained if α is much smaller than 90o [31].

The error metric has been computed for both the direct (Algorithm 3) and adjoint
(Algorithm 4) methods. The metric is assessed for the gradient of the misfit objective
function (Eq. (7.20)) and the life-cycle optimization function (Eq. (3.65)), which experi-
ments setup are described, respectively, in Sections 3.3.2 and 3.3.3 3.2. Also, the metric
is evaluated considering the gradient computed at the initial parameter values.

Table 3.2: Angle (in degrees) between gradient vectors computed via the FIM method and the IMPES and
IMPSAT methods for the synthetic inverted five-spot test case.

∇θO ∇θ J

Direct Adjoint Direct Adjoint

αF I M−I MPES (o) 5.5845 5.5845 0.3427 0.3427
αF I M−I MPS AT (o) 5.2232 5.2232 0.5508 0.5508

It can be observed that the angles for both direct and adjoint methods are equally
accurate. This is an expected result giving that the difference between the two algo-
rithms is the order in which the operations are evaluated. Also, the angles indicate that
algorithms here presented provide gradients that are consistent with the FIM derivative
calculation method. That is an indication that, when the gradient computed via the se-
quential derivative computation algorithms are utilized by a gradient-based algorithm,
the optimization solution path should not be too different from an optimization perfor-
med utilizing gradients computed by a FIM derivative calculation algorithm. This will
be illustrated next, when the gradients are employed in different optimization exercises.

3.3.2. WATER-FLOODING DATA ASSIMILATION
In the data assimilation studies shown here, we run the minimization problem defined
by Eq. (7.7) by setting the objective function to be Eq. (3.57) and defining the vector of
parameters as the natural logarithm of the permeability in each grid cell

θ= [
lnk1 lnk2 . . . lnkNb

]T
. (3.69)

The covariance matrix Cθ is computed from the ensemble of realizations as

Cθ = 1

Ne −1

(
Θ−µeT )(

Θ−µeT )T
(3.70)

whereΘ is the Nb×Ne matrix whose j -th column is given by the member of the ensemble
θ j , j ∈ {1, ..., Ne },

µ= 1

Ne

Ne∑
j=1
θ j (3.71)
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is the ensemble mean, and e = [1, ...,1]T is a vector of ones of size Ne ×1. In Eq. (3.57),
the prior is taken to be the ensemble mean

θpr i or =µ. (3.72)

Additionally, CD is a diagonal matrix [18] given by

CD =σ2I, (3.73)

where σ2 is the variance of the data measurement error.
The optimization utilizes a limited-memory Broyden Fletcher Goldfarb Shanno (LBFGS)

implementation [25]. The LBFGS algorithm requires the objective function gradient.
The misfit objective function gradient given by Eq. (7.20) can be computed via the ad-
joint method (Algorithm 4) with a cost proportional to one simulation backward in time.
The optimization stopping criterion is determined by the minimum objective function
(OF) value that is possible to satisfy a given noise level [18]. Following the definition of
the model parameters in Eq. (3.69), next we show how the framework can be employed
with no modifications by defining different model responses.

PERMEABILITY ESTIMATION FROM WELL PRODUCTION DATA ASSIMILATION

In this exercise, we make the responses to be the water rates at the production wells at
certain observation times

h (x ,θ) =
[

qw
Prod1
obs

T
qw

Prod2
obs

T
qw

Prod3
obs

T
qw

Prod4
obs

T
]T

. (3.74)

The observed data is generated using a twin experiment. One realization of the per-
meability ensemble was randomly chosen to be considered the "truth". The water rates
resulting from the simulation of 10 years of the model, with a 5% white noise level to
represent the measurement error, were considered to be the observed data. The water
rates are considered to be observed at every six months.

The water well rate matches for the FIM, IMPES and IMPSAT methods, as obtained
from the optimizations, are presented, respectively, in Fig. 3.4, Fig. 3.5, and Fig. 3.6. It
can be noted that the gradients computed from the three different forward simulations
are successfully employed in the optimization algorithm, leading to matched responses
that accurately reproduce the observed data.

The matched permeability fields are shown in Fig. 3.7. The resulting permeability
fields are also in good agreement with the reference "truth" model, in particular the per-
meability orientation.

It can be noted from Fig. 3.8 that the optimizations for the three different forward
model coupling strategies follow a similar iteration path. That was expected based on the
angles shown in Table 3.2. Since the IMPES and IMPSAT gradients almost do not deviate
from the FIM gradient, providing a similar search path, similar minima are found.

SEISMIC DATA ASSIMILATION

In this exercise it is aimed to demonstrated how the framework can seamlessly accom-
modate different types of model responses. The observed data is now considered to be
a spatially distributed response. More specifically, we consider the reservoir pressure
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Figure 3.4: Model responses, i.e. well rates, for the well data assimilation exercise utilizing the FIM method. In
the figures, the green line represents the initial well rates, the blue circles the observed rates, and the red lines
the rates after matching.
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Figure 3.5: Model responses, i.e. well rates, for the well data assimilation exercise utilizing the IMPES method.
In the figures, the green line represents the initial well rates, the blue circles the observed rates, and the red
lines the rates after matching.
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Figure 3.6: Model responses, i.e. well rates, for the well data assimilation exercise utilizing the FIM method. In
the figures, the green line represents the initial well rates, the blue circles the observed rates, and the red lines
the rates after matching.
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Figure 3.7: Permeability field update for the well data assimilation exercise. Initial permeability field (a), per-
meability field from "Truth" (b) and permeability field after match utilizing the FIM (c), the IMPES (d) and the
IMPSAT (e) methods.
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Figure 3.8: Optimization performance for the well production data assimilation exercises with gradients com-
puted from FIM (blue), IMPES (red), and IMPSAT (brown) forward simulations. The OF Estimate line (black)
indicates the minimum OF value that is possible to satisfy the observed data noise level [18].
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distribution to be the observed data. Such data can be obtained e.g. from a seismic sur-
vey. The reservoir pressure can be attained from the seismic images if techniques like
the ones presented in [32] and [33] are used. In this case, the derivative computation
framework can be applied just like in the previous exercise by making

h (x ,θ) = [
p1 p2 . . . pN

]T
. (3.75)

The observed pressure values are taken from the same twin experiment used in the well
data history matching shown previously. Also, in the forward simulation, the flow and
transport equations are sequentially coupled using the IMPES strategy.

We note that the framework is still applicable if any other spatially distributed pro-
perty is considered as an observation, e.g. the more widely used impedances, provided
that the necessary Jacobians of h (e.g. via the derivatives of the petro-elastic equations)
are available [34, 35].

In this experiment, perfect observed data is considered, with measurement error in
the range of those usually employed in synthetic studies (see e.g. [18]), is employed.

The pressure match is illustrated in Fig. 3.9, while the resulting permeability field
after the data assimilation is presented in Fig. 3.10.

Here, the IMPES method is employed in the forward simulation.

(a) Initial (b) "Truth" (c) Match

Figure 3.9: Model responses, i.e. pressure distribution, for the seismic data assimilation exercise. Initial pres-
sure distribution (a), response from the "truth" (b) and pressure distribution after the match (c).

Once again, the data assimilation process results in a matched model that recovers
the twin experiment response. Just like in the previous example, the resulting permea-
bility field is in good agreement with the reference.

3.3.3. WATER-FLOODING LIFE-CYCLE OPTIMIZATION

In the life-cycle optimization studies shown here, we run the maximization problem de-
fined by Eq. (3.60) by setting the objective function as in Eq. (3.64) and defining the
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(a) Initial (b) "Truth" (c) Match

Figure 3.10: Permeability field update for the seismic data assimilation exercise. Initial permeability field (a),
permeability field from "Truth" (b) and permeability field after match (c).

vector of parameters to be the well bottom-hole pressures at some given control times

θ=
[

p1
w1

· · · p1
wNw

· · · pKC
w1

· · · pKC
wNw

]T
(3.76)

where Nw is the total number of controlled wells and KC is the total number of times-
teps when a control change occurs. The economical parameters for oil production are
defined in Table A.1.

Table 3.3: Economic parameters associated with oil production.

Value Unit
Oil price 252 $/m3

Cost of injected water 60 $/m3

Cost of produced water 30 $/m3

By allowing all well bottom-hole pressure values (5 in total) to change every 6 control
time steps of 720 days gives a total number of control parameters equal to 30. The values
of the bottom-hole pressures are bounded for the production wells between a minimum
value of 28 MPa and a maximum value of 30 MPa. The injection well pressures are boun-
ded between a minimum value of 30 MPa and maximum value of 32 MPa. The initial
starting strategy is one wherein the injector well operates at a constant BHP of 31 MPa
and the production wells at a constant BHP of 29 MPa.

In this exercise, the optimization utilizes the steepest ascent algorithm [25]. The line-
search step length is reduced by half if the newly proposed controls given by the gradient
do not lead to an increase of the objective function. This backtracking is allowed to be
repeated five times. The control parameters are normalized with respect to the diffe-
rence between the bounds, and a normalized gradient is considered in the line search
direction computation.
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Here, we run three different optimizations with different forward model coupling
strategies: FIM, IMPES, and IMPSAT.

The optimization performance is illustrated in Fig. 3.12 and the optimal control pa-
rameters found by the optimization of the different coupling strategies can be found in
Fig. 3.11.

It can be noted that, for the three couplings considered, the framework provides con-
sistent objective function gradients that provide similar search directions. Similar opti-
mized NPVs are also achieved, with an NPV increase of approximately 20%. Further-
more, except for small deviations in the injection well, the optimal control strategies are
nearly identical between the different optimization runs.
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4
MULTISCALE GRADIENT

COMPUTATION FOR FLOW IN

HETEROGENEOUS POROUS MEDIA

An efficient multiscale (MS) gradient computation method for subsurface flow manage-
ment and optimization is introduced. The general, algebraic framework allows for the
calculation of gradients using both the Direct and Adjoint derivative methods. The fra-
mework also allows for the utilization of any MS formulation that can be algebraically
expressed in terms of a restriction and a prolongation operator. This is achieved via an
implicit differentiation formulation. The approach favors algorithms for multiplying the
sensitivity matrix and its transpose with arbitrary vectors. This provides a flexible way of
computing gradients in a form suitable for any given gradient-based optimization algo-
rithm. No assumption w.r.t. the nature of the problem or specific optimization parame-
ters is made. Therefore, the framework can be applied to any gradient-based study. In the
implementation, extra partial derivative information required by the gradient computa-
tion is computed via automatic differentiation. A detailed utilization of the framework
using the MS Finite Volume (MSFV) simulation technique is presented. Numerical experi-
ments are performed to demonstrate the accuracy of the method compared to a fine-scale
simulator. In addition, an asymptotic analysis is presented to provide an estimate of its
computational complexity. The investigations show that the presented method casts an
accurate and efficient MS gradient computation strategy that can be successfully utilized
in next-generation reservoir management studies.

The material presented in this chapter has been published in the Journal of Computational Physics 336, (2017)
[1] and in the proceedings of the European Conference on the Mathematics of Oil Recovery (ECMOR) XV (2016)
[2].
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Model-based reservoir management techniques typically rely on the information pro-
vided by derivatives. For instance, in sensitivity analysis studies, derivatives can be di-
rectly used to identify the most influential parameters in the reservoir response. Also,
derivative information can be utilized in history matching [3] and control optimization
[4] studies, where gradient-based optimization techniques are employed in the minimi-
zation/maximization of an objective function.

These types of model-based reservoir management studies are computationally de-
manding. They require multiple evaluations of the reservoir model in order to compute
its response under the influence of different inputs. Reduced-order modeling (ROM)
techniques have been employed to reduce the computational cost of the reservoir re-
sponse evaluation. In sensitivity analysis studies, response surface models and design of
experiments are often used to reduce the computational costs (see, e.g., [5]). In history
matching and optimization studies, techniques like upscaling [6], streamline simulation
[7], and proper orthogonal decomposition [8] are employed to create reservoir models
that are faster to evaluate. However, ROM and upscaling methods usually do not provide
accurate enough system responses due to excessive simplifications of the fluid-rock phy-
sics and heterogeneous geological properties. To resolve this challenge, Multiscale (MS)
methods have been developed [9–11].

MS methods solve a coarser simulation model, thus increasing the computational
speed, while resolving the fine scale heterogeneities. Note that the specific multiscale
methods addressed here, map between fine and coarse grids that are both at continuum
(Darcy) scale, but with different computational grid resolutions. Moreover, the map be-
tween the nested fine and coarse grids is developed by using multiscale basis functions
[9]. The basis functions are local solutions of the fine-scale equation, which are adap-
tively updated [12, 13] and allow the MS coarse system to account for the fine-scale he-
terogeneities (which typically do not have separation of scale). Note that in contrast
with MultiGrid (MG) methods, MS methods are not developed as linear solvers, but are
most efficient if they are used –similar as in this paper– to provide approximate con-
servative fine-scale solutions (crucial for multiphase systems). MS methods are found
efficient and accurate for large-scale reservoir models [14, 15]. Important in this class
of MS methods (compared to upscaling methods) is that the coarse-scale solutions are
mapped onto the original fine scale, using the same basis functions. As such, errors can
be calculated against the fine-scale reference systems (and not upscaled averaged ones).
This allows for the development of convergent iterative MS procedures [16–18]. Recent
developments include MS formulations for fractured media [19, 20] with compositional
effects [14, 15, 21] and complex well configurations [22] and gravitational effects [23]. In
addition, algebraic formulation of the method has made it convenient to be integrated
within existing simulators using structured [24, 25] and unstructured [26–28] grids. The
method has been also extended to fully-implicit formulations where all unknowns cross
multiple dynamically-defined scales [29]. Although these developments are found effi-
cient, they are mainly limited to forward simulation modeling. In this paper the focus is
on the use of MS methods within reservoir management workflows.

Reservoir management techniques include optimization algorithms, in which calcu-
lation of derivatives plays an important role. The classical approaches for calculation of
derivatives are either computationally expensive or inaccurate. For instance, numerical
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differentiation (see, e.g., [30, 31]) suffers from discretization approximations and trun-
cation errors, and is impractical when the number of parameters is large. Alternatively,
analytical methods –Direct Methods (or Gradient Simulators) [32] and Adjoint Methods
[33, 34]– can provide accurate and efficient derivatives under appropriate conditions (to
be further discussed in the Section 4.1). However, the use of analytical methods has not
been extensively adopted mainly because they are code-intrusive and require a substan-
tial implementation effort. On this issue, automatic differentiation can partly alleviate
the burden of computing derivative information [35]. Additionally, most commercial si-
mulators do not provide analytical derivative capabilities nor do they provide access to
extend their functionality in this direction. Partially due to these drawbacks, ensemble
methods such as the Ensemble Kalman Filter (EnKF) have become very popular in the
data assimilation community [36]. Similarly, stochastic approximate gradient techni-
ques such as ensemble optimization (EnOpt) and the stochastic simplex approximate
gradient (StoSAG) method are increasingly being used for life cycle optimization [37, 38].
These methods, however, by construction, provide an approximation of the gradient.

Multiscale gradient computation has been studied in the past. A Multiscale finite-
volume Adjoint (MSADJ) method has been applied to sensitivity computation [39], where
the global adjoint problem is solved via a set of coupled sub-grid problems described at
a coarser scale. The coarse-scale sensitivities are then interpolated to the local fine grid
by reconstructing the local variability of the model parameters with the aid of solving
embedded adjoint sub-problems. In a follow up paper [40], the MSADJ method was ef-
ficiently applied to inverse problems of single-phase flow in heterogeneous porous me-
dia. Also, an efficient Multiscale Mixed Finite Element method has been developed for
multiphase adjoint formulations, where both pressure and saturations are solved at the
coarse scale [41]. In contrast to MSADJ, this method did not require fine-scale quantities.

The present development introduces a mathematical framework to compute sensiti-
vities (gradients) in a multiscale strategy. The framework enables the same computatio-
nal efficiency as existing multiscale methods [39–41]. However, its formulation allows for
full flexibility with respect to the types of gradient information that are required by the
different model-based reservoir management studies. This is achieved via an implicit
differentiation strategy, as opposed to the more traditional Lagrange multiplier formula-
tion. Also, the formulation naturally provides not only the Adjoint Method, but also the
Direct Method. It is important to note that, although in this work the multiscale finite
volume (MSFV) is being studied, the proposed MS-gradient method is not restricted to a
specific MS method. Instead, it can be utilized in combination with any MS (and multi-
level) strategy which is expressed in terms of restriction and prolongation operators.

This paper is structured as follows. First, the multiscale gradient computation met-
hod is derived based on the MS reservoir model equations and the respective model
responses. The computation of the required prolongation (matrix of basis functions)
operator derivatives is developed within the Multiscale Finite Volume (MSFV) formula-
tion. Computational complexity of the method is also discussed from a theoretical point
of view via asymptotic analysis of the algorithms. Thereafter, the Numerical Experiments
section describes a systematic investigation of the validation, robustness, and accuracy
of the MS-gradient method for test cases of increasing complexity. Because the propo-
sed method is quite fundamental, the experiments are aimed at evaluating the gradient
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computation itself, rather than any specific application.

4.1. DERIVATION OF THE MULTISCALE GRADIENT COMPUTA-
TION MATHEMATICAL FRAMEWORK

4.1.1. FORWARD SIMULATION MODEL
The derivation of the forward simulation model’s response with respect to the parame-
ters starts by firstly describing its equations in a generic, purely algebraic form. The
analysis is restricted to quasi-steady state problems. In that case, the set of equations
that describes the forward simulation at the fine scale can be algebraically expressed,
without any assumption regarding the underlying physical model, as

gF (x,θ) = 0, (4.1)

x = x (θ) . (4.2)

Once the model state is determined, the observable responses of the forward model
are computed. The forward model responses (typically wellbore pressures and/or rates)
may not only depend on the model state, but also on the parameters themselves, and
can be expressed as

yF = hF (x,θ) , (4.3)

where hF : RNF ×RNθ → RNy represents the output equations [42]. It is assumed that gF

can be described as
gF (x,θ) = A (θ)x−q (θ) , (4.4)

where A(θ) is an NF ×NF matrix and q(θ) is an NF vector.

4.1.2. ALGEBRAIC MULTISCALE FORMULATION OF FLOW IN HETEROGENE-
OUS POROUS MEDIA

MS methods provide accurate and efficient solutions to the flow equations by incorpo-
rating the fine-scale heterogeneities in a coarse-scale operator [10]. This is achieved
by basis functions, which are local solutions of the governing equations without right-
hand-side (RHS) terms, subject to approximate local boundary conditions. These local
basis functions construct the prolongation (interpolation) operator, P = P(θ), which is
an NF × NC matrix that maps (interpolates) the coarse-scale solution to the fine-scale
resolution. For the purpose of the development presented here, the required basic kno-
wledge about the multiscale strategy is that a coarse-scale system can be algebraically
described once the restriction operator, R = R(θ), is defined as an NC ×NF matrix which
maps the fine scale to the coarse scale (more information can be found in [43], [24]). Let
x̆ ∈RNC be the coarse scale solution (NC ¿ NF ), R = R(θ) be an NC ×NF matrix mapping
from the fine scale to the coarse scale and P = P(θ) be an NF ×NC matrix mapping from
the coarse scale to the fine scale. x̆ is obtained by solving

ğ = (RAP) x̆− (
Rq

)= Ăx̆− q̆ = 0̆. (4.5)

Finally, the approximated fine-scale solution x′ is obtained by interpolating the co-
arse scale solution x̆, i.e.,

x′ = Px̆. (4.6)
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4.1.3. DERIVATIVE CALCULATION OF SIMULATOR RESPONSES
In order to derive an expression to compute the multiscale derivatives with respect to
the parameters, an implicit differentiation scheme is followed [44, 45]. The implicit dif-
ferentiation scheme facilitates both the Direct and the Adjoint methods, in contrast to
the formulations based on the standard Lagrange multiplier [4, 30]. In addition, through
its specific algebraic form, it allows for providing any gradient information required by
the selected optimization algorithm.
Based on Eq. (4.6), the function g′ is defined as

g′ = x′−Px̆ = 0, (4.7)

which represents the multiscale procedure to find approximate primary variables at the
fine scale. The state vector is now described as a combination of both sets of primary
variables at the fine and coarse scales, i.e.,

x =
[

x̆
x′

]
, (4.8)

and, similarly, the model equations are represented as a combination of the equations
at both scales, i.e.,

g (x,θ) =
[

ğ
g′

]
= 0. (4.9)

The definition of the state vector as in Eq. (7.32), as a key aspect of this development,
allows for describing the state not only at the fine scale, but also at the coarse scale. The
simulator responses y obtained from the multiscale method are represented as

y = h (x,θ) . (4.10)

The sensitivity matrix G is then computed by obtaining the derivative of Eq. (7.34)
with respect to θ as

G = dh

dθ
= ∂h

∂x

dx

dθ
+ ∂h

∂θ
. (4.11)

In order to find a relationship that defines the derivative of the state vector with re-
spect to the parameters, Eq. (7.33) is differentiated with respect to θ

∂g

∂x

dx

dθ
+ ∂g

∂θ
= 0, (4.12)

so that
dx

dθ
=−

(
∂g

∂x

)−1 ∂g

∂θ
. (4.13)

Substituting Eq. (4.13) in Eq. (4.11) gives

G =−∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
+ ∂h

∂θ
. (4.14)

From Eq. (4.5), Eq. (4.7), Eq. (7.32) and Eq. (7.33), it follows that

∂g

∂x
=

[
RAP 0
−P I

]
. (4.15)
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Note that (
∂g

∂x

)−1

=
[

(RAP)−1 0
P(RAP)−1 I

]
(4.16)

holds. Thus, Eq. (4.14) can be restated as

G =
(
∂h

∂x̆
+ ∂h

∂x′
P
)

(RAP)−1 ∂ğ

∂θ
+ ∂h

∂x′
∂g′

∂θ
+ ∂h

∂θ
. (4.17)

By deriving Eq. (4.5) with respect to θ one finds

∂ğ

∂θ
=

[
∂R

∂θ
(AP)+R

∂A

∂θ
P+ (RA)

∂P

∂θ

]
x̆− ∂R

∂θ
q−R

∂q

∂θ
(4.18)

and also, from Eq. (4.7),
∂g′

∂θ
=−∂P

∂θ
x̆. (4.19)

Note that the partial derivatives of the matrices A, R and P with respect to the vector
of parameters θ result in (third order) tensors. The appropriate interpretation of tensor
operations can be found in Appendix A. The substitution of Eq. (6.19) and Eq. (4.19) in
Eq. (4.17) leads to an expression that will serve as the basis for the multiscale gradient
computation, i.e.,

G =
(
∂h

∂x̆
+ ∂h

∂x′
P
)

(RAP)−1{[
∂R

∂θ
(AP)+R

∂A

∂θ
P+ (RA)

∂P

∂θ

]
x̆− ∂R

∂θ
q−R

∂q

∂θ

}
−

∂h

∂x′
∂P

∂θ
x̆+ ∂h

∂θ
.

(4.20)

Eq. (4.20) is quite general, i.e., it can be employed to compute gradients for any MS
(and multi-level) method, given that the partial derivatives of R and P are provided.

For the sake of simplicity and to be coherent with the numerical experiments presen-
ted below, from now on the dependency of the restriction operator R and the right-hand-
side vector q on the parameters is neglected. This is consistent with the MSFV method
(where the restriction operator is based on a finite volume integration operator at coarse
scale (see e.g. [24]). After these simplifications, Eq. (4.20) can be rewritten as

G =
(
∂h

∂
^
x
+ ∂h

∂x′
P
)

(RAP)−1R
(
∂A

∂θ
P+A

∂P

∂θ

)
^
x− ∂h

∂x′
∂P

∂θ

^
x+ ∂h

∂θ
. (4.21)

The order of the operations involving the (RAP)−1 term is crucial to determine the
computational performance of the sensitivity matrix computation. This order defines
two different algorithms known in the literature as the Direct Method and the Adjoint
Method. The following sections discuss how the two methods are derived for the MS
scenario defined by Eq. (4.21), as well as the (dis)advantages of utilizing each of them.
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4.2. COMPUTATION OF GRADIENT INFORMATION: GENERALI-
ZATION OF THE FRAMEWORK

According to the type of study one wants to perform, different derivative information has
to be provided. For instance, for optimization methods, Quasi-Newton methods require
the gradient of the objective function (and possibly constraints). In history matching
algorithms, as well as in sensitivity analysis studies, the sensitivity matrix G, defined as
the matrix of derivatives of all responses with respect to all parameters, plays an im-
portant role. In Gauss-Newton methods, the matrix product GT G is directly used, while
conjugate gradient methods require products of G and GT with arbitrary vectors. More
detailed information on the different optimization algorithms can found in [46].

To preserve the general applicability of our method, the general problem of multi-
plying G by arbitrary matrices W (of order m ×NY ) and V (of order Nθ ×n) from the left
and the right, respectively, is considered. When n = 1, GV is simply the product of G with
a vector, whereas, when m = 1, (WG)T = GT WT gives the product of GT with the (column)
vector WT . Those examples show how, by defining algorithms to calculate GV and WG
for arbitrary V and W, different types of derivative information can be accommodated in
a single framework.

4.2.1. DIRECT METHOD
The derivation starts by considering the calculation of GV for a given Nθ ×n matrix V.
From Eq. (4.21), by defining

Z =
[

(RAP)−1R
(
∂A

∂θ
P+A

∂P

∂θ

)
^
x
]

V, (4.22)

the product GV can be rewritten as

GV =
(
∂h

∂
^
x
+ ∂h

∂x′
P
)

Z−
(
∂h

∂x′
∂P

∂θ

^
x
)

V+ ∂h

∂θ
V. (4.23)

Here, Z is obtained as the solution to the following linear system of equations

(RAP)Z =
[

R
(
∂A

∂θ
P
^
x+A

∂P

∂θ

^
x
)]

V. (4.24)

This is known as the Forward Method [44], Gradient Simulator [32], or Direct Method
[30]. Note that Z has dimensions of NC ×n and, therefore, it requires n linear systems to
be solved. Hence, the cost of computing GV is proportional to the number of columns in
V. In particular, to obtain the full sensitivity matrix G with the Direct Method, in which
case one has to set V equal to the identity matrix of order Nθ, the cost will be proportional
to the number of parameters.

The algorithm to compute the product of the sensitivity matrix with a matrix via the
Direct Method is depicted in Algorithm 5.

In Algorithm 5, the notation ‘., j ’represents the j -th column of a matrix. Algorithm 5
requires the computation of the product of ∂P

/
∂θx̆ by a column vector. This is discussed

in the next section when Algorithm 7 is presented.
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Algorithm 5: Right multiplying the sensitivity matrix by an arbitrary matrix via
the Direct Method.

Input : R, A, P, ∂A
∂θ , x̆, ∂h

∂x̆ , ∂h
∂x′ , ∂h

∂θ , V
Output: GV

1 Computeα=
(
∂h
∂x̆ + ∂h

∂x′ P
)

andβ= ∂A
∂θPx̆

2 foreach j = 1,2, ...,n do

3 Compute γ=
(
∂P
∂θ x̆

)
V., j ; // Algorithm 7, where m = V., j

4 Compute δ= R
(
βV., j + Aγ

)
5 Solve z = (RAP)−1δ

6 Compute (GV)., j =αz− ∂h
∂x′γ+ ∂h

∂θV., j

4.2.2. ADJOINT METHOD
Next the calculation of WG for a given m ×NY matrix W is considered. From Eq. (4.21),
defining

ZT = W
(
∂h

∂x̆
+ ∂h

∂x′
P
)

(RAP)−1, (4.25)

one obtains

WG = ZT R
(
∂A

∂θ
P+A

∂P

∂θ

)
x̆−W

∂h

∂x′
∂P

∂θ
x̆+W

∂h

∂θ
, (4.26)

which can be rearranged as

WG =
(

ZT R
∂A

∂θ
Px̆+

(
ZT RA−W

∂h

∂x′

)
∂P

∂θ
x̆
)
+W

∂h

∂θ
. (4.27)

Multiplying Eq. (4.25) by RAP from the right and transposing, Z is obtained as the
solution to the following linear system of equations

(RAP)T Z =
(
∂h

∂
^
x
+ ∂h

∂x′
P
)T

WT . (4.28)

This is known in the literature as the Adjoint (or Backward) Method [34]. Note that
now Z has dimensions of NC ×m, hence it requires m linear systems to be solved. As
such, the cost of computing WG is proportional to the number of rows in W. In particular,
to obtain the full sensitivity matrix G with the Adjoint Method, in which case one has
to set W equal to the identity matrix of order NY , the cost will be proportional to the
number of responses.

The algorithm to compute the product of the sensitivity matrix with a matrix from
the left via the backward method is depicted in Algorithm 6.

Algorithm 6 requires a left multiplication of ∂P
/
∂θx̆ by a row vector mT . This will be

further discussed in the next section, where Algorithm 8 is presented.

4.2.3. REMARKS ABOUT THE FRAMEWORK
This paper presents a novel technique for computation of the gradients using multiscale
methods. It entails some important features which are summarized in this section.
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Algorithm 6: Left multiplying the sensitivity matrix by an arbitrary matrix via
the Adjoint Method.

Input : R, A, P, ∂A
∂θ , x̆, ∂h

∂x̆ , ∂h
∂x′ , ∂h

∂θ , W
Output: WG

1 Computeα=
(
∂h
∂x̆ + ∂h

∂x′ P
)

andβ= R ∂A
∂θ x̆

2 foreach i = 1,2, ...,m do
3 Solve z = (RAP)−TαW T

i ,.

4 Compute mT =
(
zT RA−Wi ,.

∂h
∂x′

)
5 Compute γ= mT

(
∂P
∂θ x̆

)
; // Algorithm 8

6 Compute (WG)i ,. = zTβ+γ+Wi ,.
∂h
∂θ

First of all, the general formulation of the method accommodates both the Direct
and Adjoint approaches. Note that the previously-developed multiscale gradient calcu-
lations were all applicable to Adjoint formulation only [39–41].

It is important to also note that the algebraic multiscale-gradient formulation, pre-
sented here, does not make any assumption with respect to neither the nature of the
problem nor the specific optimization parameters. This flexible framework provides any
gradient information which is required by the chosen optimization algorithm. Note that
the previous methods have been developed for specific types of parameters (e.g., per-
meability in [39]). As such, they cannot be readily used to provide gradient information
if the required parameters by the chosen optimization algorithm are not those the met-
hods were developed for. For instance, the work presented in [39] and [40] addressed
the computation of sensitivities where the parameters were specifically the grid-block
permeability values. This specific parameter leads to the sensitivity of the coarse-scale
quantities (transmissibility) being related to the fine-scale permeability via additional
local adjoint problems for the basis functions. As such, the method presented in [39, 40]
is not applicable if, e.g., well controls are being used as optimization parameters. On
the other hand, the work presented in [41] develops an algorithm that allows the well
controls being used. However, it does not account for the sensitivity calculations of the
coarse-scale quantities with respect to the fine-scale parameters. Instead, only a coarse-
scale adjoint problem was solved to compute the required gradient information.

The implicit differentiation strategy of the present method makes it more flexible,
compared to those methods developed based on the Lagrange multiplier formulation (as
in [39–41]). Note that the Lagrange multiplier formulations are developed based on an
objective function, which requires to be pre-defined for each specific application [4, 30].
Instead, the presented implicit differentiation strategy [44, 45] is built on a more generic
system, i.e., the sensitivity matrix. More importantly, the pre- and post-multiplication of
this sensitivity matrix by arbitrary matrices provides a flexible way to conform it to the
specific type of gradient information needed (without requiring the pre-computation of
the full sensitivity matrix).

Finally, the multiscale-gradient formulation is developed through an algebraic for-
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mulation, which is convenient to be implemented in the next-generation optimization
frameworks, and also benefits all multilevel approaches that can be described through
restriction and prolongation operations such as multigrid [47] and domain-decomposition
[48, 49]methods.

4.3. PARTIAL DERIVATIVE OF MSFV PROLONGATION OPERA-
TOR WITH RESPECT TO THE PARAMETERS

A particular aspect of the methodology is the computation of partial derivatives of the
prolongation operator with respect to the parameters, i.e., ∂P

/
∂θ in Eq. (4.21), and ope-

rations with this tensor. This is particularly challenging because the computation of P
might involve complex operations, e.g., the solution of linear systems in the case of MSFV
methods.

In this work, the MSFV method is considered; extensions to other MS methodologies
can be obtained along the same lines. In this case, P is the assembly of all basis functions
obtained via the solution of local flow problems, i.e.,

−∇· (λ ·∇ϕ)= 0, (4.29)

where λ is the mobility and ϕ is the basis function value. The dual-grid sub domains
where the basis functions are computed are defined as follows. A primal coarse grid (on
which the conservative coarse-scale system is constructed) and a dual coarse grid, which
is obtained by connecting coarse nodes, are defined on a given fine-scale grid. A coarse
node is a fine cell inside (typically at the centre of) each coarse cell. The basis functions
are solved locally on these dual coarse cells. Such overlapping coarse and dual coarse
grids are crucial for conservative solutions in MSFV. An illustration of the MSFV grids is
provided in Figure 5.1. The prolongation operator can be expressed in terms of the basis
functions corresponding to each coarse cell j = 1, . . . , NC as

P = [
ϕ1 ϕ2 · · · ϕNC−1 ϕNC

]
, (4.30)

where the basis function belonging to cell j ,ϕ j , is at column j , being a vector of dimen-
sion NF [24]. The construction of the basis functionsϕ j is based on the Finite Volume
(FV) discretization of Eq. (4.29) on the dual coarse grid cells. In order to compute the ba-
sis functions, reduced-dimensional problems are first solved at the edge cells to provide
Dirichlet boundary conditions for internal cells. For the sake of clarity, let us assume
a Cartesian two-dimensional solution domain (although extension to 3D is straightfor-
ward). More specifically, let Λ j be the set of all edges emanating from coarse node j (in
2D, #Λ j = 4). For each edge e ∈Λ j , let

AE
e, jϕ

E
e, j −bE

e, j = 0 (4.31)

be the reduced-dimension discrete form of Eq. (4.29) along the edge e, where ϕE
e, j is

the basis function at that edge, and bE
e, j is the RHS which results from specifying corner

values of ϕE
e, j = 1 at the vertex j and ϕE

e, j = 0 at the opposite vertex of e. If Γ j is the set
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Figure 4.1: Illustration of MSFV coarse grids for a 2D domain. Given a fine-scale grid (shown in light solid black
lines), the coarse grid (shown in solid bold black) is imposed as a non-overlapping partition of the computa-
tional domain. The coarse nodes (vertices) are then selected (red cells). Connecting coarse nodes constructs
the dual-coarse grid (blue cells) where basis functions are solved.

of all faces which have coarse node j as a common vertex (#Γ j = 4 in 2D), for each face
f ∈ Γ j , according to Eq. (4.29), one can solve

AF
f , jϕ

F
f , j −

∑
e∈Λ j

EF
e, fϕ

E
e, j = 0, (4.32)

for ϕF
f , j , which is the basis function at the internal (face) cells. Also, EF

e, f is a transfor-

mation matrix that appropriately assembles a vector represented in the edge topology
of e into the face topology of f . Note that EF

e, f is zero when e does not belong to the

boundary of f and that Eq. (4.32) implicitly defines the boundary condition as zero for
any boundary cells of f which do not belong to any of the edges in Λ j . Finally, ϕ j is
the result of assembling the contribution of eachϕF

f , j , f ∈ Γ j , into the overall fine mesh

topology:
ϕ j =

∑
f ∈Γ j

E fϕ
F
f , j , (4.33)

where E f is a transformation matrix that assembles a vector represented in the face to-
pology of f into a size NF vector following the fine grid topology.

The derivative ofϕ j w.r.t. the parameters is obtained from Eq. (4.33), i.e.,

∂ϕ j

∂θ
= ∑

f ∈Γ j

E f

∂ϕF
f , j

∂θ
. (4.34)

Differentiating Eq. (4.32), one can write

∂AF
f , j

∂θ
ϕF

f , j +AF
f , j

∂ϕF
f , j

∂θ
− ∑

e∈Λ j

EF
e, f

∂ϕE
e, j

∂θ
= 0, (4.35)

from which it follows that

∂ϕF
f , j

∂θ
=

(
AF

f , j

)−1
(
−
∂AF

f , j

∂θ
ϕF

f , j +
∑

e∈Λ j

EF
e, f

∂ϕE
e, j

∂θ

)
. (4.36)
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Similarly, from Eq. (4.31),

∂ϕE
e, j

∂θ
=−

(
AE

e, j

)−1 ∂AE
e, j

∂θ
ϕE

e, j (4.37)

holds. Combining Eq. (4.36) and Eq. (4.37) into Eq. (4.34) results in

∂ϕ j

∂θ
= ∑

f ∈Γ j

E f

(
AF

f , j

)−1
(
−
∂AF

f , j

∂θ
ϕF

f , j −
∑

e∈Λ j

EF
e, f

(
AE

e, j

)−1 ∂AE
e, j

∂θ
ϕE

e, j

)
. (4.38)

The third order tensor defining the derivative of P w.r.t. the parameters is obtained
by grouping all ∂ϕ j

/
∂θ at its slices,

∂P

∂θ
=

[
∂ϕ1
∂θ

∂ϕ2
∂θ · · · ∂ϕNC −1

∂θ

∂ϕNC
∂θ

]
NF ×NC×Nθ

. (4.39)

See Appendix A for a discussion on this notation. As discussed in Algorithm 5, the
product (∂P

/
∂θx̆)m, where x̆ ∈RNC and m ∈RNθ , is required. Since

∂P

∂θ
x̆ =

NC∑
j=1

∂ϕ j

∂θ
x̆ j (4.40)

where x̆ j denotes the j -th entry of vector
^
x, it follows, from Eq. (4.38), that

(
∂P

∂θ
x̆
)

m =
NC∑
j=1

x̆ j
∑

f ∈Γ j

E f

(
AF

f , j

)−1
(
−

(
∂AF

f , j

∂θ
ϕF

f , j

)
m−

∑
e∈Λ j

EF
e, f

(
AE

e, j

)−1
(
∂AE

e, j

∂θ
ϕE

e, j

)
m

)
.

(4.41)

Algorithm 7 depicts the solution procedure to calculate (∂P
/
∂θx̆)m based on Eq.

(4.41).
In a similar manner, Algorithm 6 requires the product mT (∂P

/
∂θx̆) , where x̆ ∈ RNC

and m ∈RNF . From Eq. (4.38) and Eq. (4.40), one obtains

mT
(
∂P

∂θ
x̆
)
=

NC∑
j=1

x̆ j
∑

f ∈Γ j

mT E f

(
AF

f , j

)−1
(
−
∂AF

f , j

∂θ
ϕF

f , j−

∑
e∈Λ j

EF
e, f

(
AE

e, j

)−1
(
∂AE

e, j

∂θ
ϕE

e, j

))
.

(4.42)

By defining

γT
f , j = mT E f

(
AF

f , j

)−1
(4.43)

and

δT
e, f , j =γT EF

e, f

(
AE

e, j

)−1
, (4.44)
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Algorithm 7: Computation of the product (∂P
/
∂θx̆ )m, where x̆ ∈ RNC and m ∈

RNθ .

Input : x̆,m, ϕE
e, j , AE

e, j ,
∂AE

e, j

∂θ , j = 1, ..., NC , e ∈Λ j , ϕF
f , j , AF

f , j ,
∂AF

f , j

∂θ , j =
1, ..., NC , f ∈ Γ j

Output:
(
∂P
∂θ x̆

)
m

1 Set:
(
∂P
∂θ x̆

)
m = 0

2 foreach j = 1,2, ..., NC (primal coarse nodes) do
3 foreach f ∈ Γ j do

4 Computeα=−
(
∂AF

f , j

∂θ ϕ
F
f , j

)
m

5 foreach e ∈Λ j do

6 Computeβ=
(
∂AE

e, j

∂θ ϕ
E
e, j

)
m

7 Solve local edge system γ=
(
AE

e, j

)−1
β

8 Accumulate result inα : α=α−EF
e, f γ

9 Solve local face system δ=
(
AF

f , j

)−1
α

10 Accumulate result in
(
∂P
∂θ x̆

)
m :

(
∂P
∂θ x̆

)
m =

(
∂P
∂θ x̆

)
m+ x̆ j E f δ

Eq. (4.42) can be rewritten as

mT
(
∂P

∂θ
x̆
)
=

NC∑
j=1

x̆ j
∑

f ∈Γ j

(
−γT

f , j

(
∂AF

f , j

∂θ
ϕF

f , j

)
− ∑

e∈Λ j

δT
e, f , j

(
∂AE

e, j

∂θ
ϕE

e, j

))
. (4.45)

Right multiplying Eq. (4.43) by AF
f , j and transposing, one can see thatγ f , j is obtained

as (
AF

f , j

)T
γ f , j = ET

f m. (4.46)

Note that ET
f is the transformation matrix that assembles a vector following the fine

grid topology into its proper restriction to the face topology of f . Analogously, δe, f , j is
obtained by solving (

AE
e, j

)T
δe, f , j =

(
EF

e, f

)T
γ. (4.47)

Similar as for ET
f , (EF

e, f )T is the transformation matrix that assembles a vector follo-

wing the face topology of f into its restriction to the edge topology of e. Equations Eq.
(4.45), Eq. (4.46) and Eq. (4.47) are the basis for the algorithm to calculate mT (∂P

/
∂θx̆),

as depicted in Algorithm 4. Note that the face systems are solved before the edge ones,
in contrast to the order of the MS calculation.
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Algorithm 8: Computation of the product mT (∂P
/
∂θx̆ ), where x̆ ∈RNC and m ∈

RNF .

Input : x̆, m, ϕE
e, j , AE

e, j ,
∂AE

e, j

∂θ , j = 1, ..., NC , e ∈Λ j , ϕF
f , j , AF

f , j ,
∂AF

f , j

∂θ , j =
1, ..., NC , f ∈ Γ j

Output: mT
(
∂P
∂θ x̆

)
1 Set: mT

(
∂P
∂θ x̆

)
= 0

2 foreach j = 1,2, ..., NC do
3 foreach f ∈ Γ j do

4 Solve transpose local face system γ=
(
AF

f , j

)−T
ET

f m

5 Compute α=−γT
(
∂AF

f ,i

∂θ ϕ
F
f ,i

)
6 foreach e ∈Λ j do

7 Solve transpose local edge system δ=
(
AE

e, j

)−T (
EF

e, f

)T
γ

8 Accumulate result in α : α=α−δT
(
∂AE

e, j

∂θ ϕ
E
e, j

)
9 Accumulate result in mT

(
∂P
∂θ x̆

)
: mT

(
∂P
∂θ x̆

)
= mT

(
∂P
∂θ x̆

)
+ x̆ jα

4.3.1. PROLONGATION AND ITS DERIVATIVE IN THE PRESENCE OF WELLS

Wells and other fine-scale source terms are considered in the multiscale formulation
by supplementary well basis functions [19, 22]. Well functions are local solutions to Eq.
(4.29) subject to Dirichlet conditions of 1 at the well cell and 0 at the coarse nodes. Hence,
considering well functions, the prolongation operator (for porous rock) is enriched and
reads

P = [
ϕ1 · · · ϕNC | ψ1 · · · ψNW

]
, (4.48)

where each well functionψw adds a column vector to the porous rock prolongation ope-
rator. Note that there are NW wells in the domain. For rate-constrained wells, one has to
add additional rows to the prolongation (and consequently, the coarse-scale system) in
order to solve for the well pressures as additional unknowns [19]. The derivative of Eq.
(4.48) w.r.t. the parameters is given by

∂P

∂θ
=

[
∂ϕ1
∂θ · · · ∂ϕNC

∂θ
| ∂ψ1

∂θ · · · ∂ψNW
∂θ

]
. (4.49)

Computation of the partial derivatives of the well basis functions follows similar stra-
tegy as discussed for Eq. (4.38).
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4.4. COMPUTATIONAL ASPECTS OF THE MS-GRADIENT MET-
HOD

4.4.1. PARTIAL DERIVATIVE COMPUTATION AND AUTOMATIC DIFFERENTI-
ATION

In the computation of analytical gradients, a significant part of the overall implementa-
tion effort is associated with the computation of partial derivative matrices. This com-
putation step often requires access to the source code because not all partial derivatives
are readily available, as opposed to the state variable derivatives via the Jacobian ma-
trix (see, e.g., inputs required by Algorithm 5 and Algorithm 6). To calculate the partial
derivative matrices an Automatic Differentiation (AD) approach is used, because of its
flexibility and accuracy. A review of different AD approaches is provided by [35]. In our
work, an Operator Overloading AD technique (Bendtsen and Stauning 1996) based on
Expression Templates [50] is applied. This facilitates the computation and assemblage
of all the partial derivative matrices because they are obtained at the same time as when
the system matrix and the simulator response are computed.

4.4.2. COMPUTATIONAL EFFICIENCY
An asymptotic analysis is performed to assess the efficiency of the MS-gradient informa-
tion, compared with the fine-scale gradient computation. Note that the computational
cost of linear system assembly and matrix-vector products are negligible when compa-
red to the cost involved in solving the linear system of equations. The complexity of
solving a linear system of size N is assumed to be O (aN b), where a and b are constants
associated with the specific linear solver employed.

Following Algorithm 5, n (number of columns in the V matrix) linear systems of
size NC must be solved to fully define the gradient information, hence its computati-
onal complexity reads O (n(aMS NC

bMS )). Additionally, Algorithm 7 consists of solving
NL ×n × NC linear systems of size NR = NF

/
NC to provide the partial derivative of P

w.r.t. the parameters. Here, NR is the multiscale coarsening ratio, and NL is the number
of local problems that must be solved per coarse grid vertex (4 in 2D and 8 in 3D pro-
blems). Thus, the computational complexity of Algorithm 7 is O (NLnNC (aMS NR

bMS )),
which results in a complexity of OD

MS (n(aMS NC
bMS +NL NC (aMS NR

bMS ))) for the MS Di-
rect Method.

A similar analysis can be performed for Algorithm 6 and Algorithm 8, resulting in an
estimate of the complexity of the MS Adjoint Method, i.e., O A

MS (m(aMS NC
bMS+NL NC (aMS NR

bMS ))),
where m is the number of columns of W.

The complexity of the fine-scale gradient computation for the Direct and Adjoint
Methods is given by O (n(aF S NC

bF S )) and O (m(aF S NC
bF S )), respectively. Therefore, the

cost ratio between the MS and fine-scale computational efficiency can be defined as

OMS

OF S
= aMS

aF S

(
NC

bMS

NF
bF S

+NL
NF

bMS

NF
bF S

NC
(1−bMS )

)
, (4.50)

which holds for both the Direct and the Adjoint Method.
For the sake of simplicity, it is assumed that the solver employed to the MS system

is equally efficient to the one employed to the fine-scale system, i.e., aMS = aF S and
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bMS = bF S = b. As such, the expression defining the cost ratio simplifies to

OMS

OF S
= 1

N b
R

+NL
N b−1

R

N b−1
F

. (4.51)

For a fixed number of fine grid cells NF , it is mainly the coarsening ratio NR that de-
termines the complexity of the MS-gradient algorithm. To illustrate this point, a domain
with NF = 107 fine-scale grid cells is considered. The MS-gradient speed-up, OMS

/
OF S ,

for different coarsening ratios NR for both 2D and 3D cases is presented in Figure 4.2,
where b = 1.3.

Figure 4.2: Cost ratio between MS and fine-scale gradient computation methods, as a function of the multiscale
coarsening ratio, NR , for a 2D (blue) and 3D (red) domain with NF = 107 fine-scale cells.

4.5. NUMERICAL EXPERIMENTS
In this section, performance of the MS-gradient method is studied for single-phase in-
compressible flow in heterogeneous porous media. The following numerical experi-
ments are presented to first validate and then assess the accuracy of the gradient in-
formation computed by the method. For this purpose, a misfit objective function with
no regularization term

O (θ) = 1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) , (4.52)

with a gradient
∇θO = GT C−1

D (h (x,θ)−dobs ) , (4.53)

is considered [30]. In all experiments, the fitting parameters are cell-centered permea-
bilities. The observed quantity, dobs , is the fine scale pressure at the location of (non-
flowing) observation wells, therefore

∂h

∂x′
= I, (4.54)

and
∂h

∂x̆
= 0. (4.55)
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The tensor ∂A
/
∂θ represents partial derivatives of the system (transmissibility) ma-

trix with respect to permeability. Note that the results are expressed in terms of a non-
dimensional pressure, i.e.,

pD = p −ppr od

pi n j −ppr od
, (4.56)

where pi n j and ppr od are the injection and production pressures, respectively. In all the
experiments, pi n j = 1.0 and ppr od = 0.0, the grid-block dimensions are∆x =∆y =∆z = 1
m and the fluid viscosity is 1.0×10−3 Pa s. In addition, in all the following test cases, well
basis functions are included.

4.5.1. VALIDATION EXPERIMENTS
The MS-gradient method is validated against the numerical differentiation method with
a higher-order, two-sided Taylor approximation

∇θOi = 1

2δθi

(
O

(
θi , . . . ,θi−1,θi +δθi ,θi+i , . . . ,θNθ

)−
O

(
θi , . . . ,θi−1,θi −δθi ,θi+i , . . . ,θNθ

))
,

(4.57)

where δ is a multiplicative parameter perturbation. The relative error can be defined as

ε= ‖∇θOF D −∇θO AN‖2

‖∇θO AN‖2
, (4.58)

where ∇θOF D is obtained by performing the appropriate number of multiscale reservoir
simulations required to evaluate Eq. (5.65) and ∇θO AN is obtained by either employing
the Direct or the Adjoint Method to evaluate Eq. (6.49). Note that

m = C−1
D (h (x,θ)−dobs ) , (4.59)

where m is an auxiliary vector, so the gradient of O can be written as ∇θO = (mT G)T

and Algorithm 5, with W = mT , calculates ∇θO with a cost proportional to one extra
MS simulation, making the Adjoint Method a much more efficient way to calculate the
gradient than the Direct Method. Moreover, for all cases, unless stated otherwise, for
simplicity, it is assumed CD = I.

In order to validate the proposed derivative calculation methods, as well as their im-
plementation, the linear decrease of the error ε by decreasing the perturbation value
δ (see chapter 8 of [31]) from 10−1 to 10−4 (the range within which only discretization
errors are observed) is investigated.

The investigation is carried out in three examples of increasing complexity. The first
case is a one-dimensional, homogeneous medium with 45 grid blocks. A primal coarse
grid of just 3 grid blocks is employed (coarsening ratio of 15). Injection and production
wells are located at, respectively, cells 1 and 45. One observation well is located at the
centre of the domain, i.e. at grid block 23. The pressure measured in the observation well
is taken from a reference case with a randomly sampled permeability field. The non-
dimensional injection and production pressures are one and zero, respectively. Figure
4.3 illustrates the setup for this experiment.
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Figure 4.3: Fine and coarse grids and wells setup for 1D numerical experiments. The solid thin lines represent
the fine grid-blocks. The bold dashed lines represent the primal-coarse grid blocks. Vertex cells identified with
red circles. The crossed circle represents the injection well, the dotted circle the production well, and the solid
circle the observation well.

In the other two experiments, the accuracy of the method is assessed for 2D test ca-
ses, one homogeneous and another one heterogeneous. In both cases the fine grid size
is 21x21, while the coarse grid size is 3x3 (coarsening ratio of 7x7). The primal- and dual-
coarse grids are illustrated in Figure 6.1a.

(a) MS grids (b) Reference permeability

Figure 4.4: (a) Fine, primal and dual coarse grids for 2D validation test cases and (b) reference permeability
field.

The permeability field is extracted from 1,000 geological realizations, as shown in Fi-
gure 6.1b, and serves to compute the observed pressure. For the heterogeneous case,
another geological realization is chosen from the ensemble. The ensemble is genera-
ted via the decomposition of a reference permeability “image” using Principal Compo-
nent Analysis parameterization. Figure A.8 illustrates 4 different permeability realizati-
ons from the ensemble. See [51] for more details.

Figure 4.5: Four different permeability realizations from the ensemble of 1,000 members used in the 2D nu-
merical experiments.

A quarter five-spot well configuration is considered, with two observation wells close
to the operating wells. The well positions and operating pressures are described in Table
4.1.
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Table 4.1: Well configuration for the homogeneous, two-dimensional case.

Well Fine scale position (I, J) Well type
INJE (1, 1) Injection

PROD (21,21) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (19, 19) Observation

Figure 4.6 shows that the MS-gradient and fine-scale methods have the same order
of accuracy with respect to the perturbation δ, for all cases. The expected behaviour of
linearly decreasing error values as the perturbation size decreases is observed in all ex-
periments. One can also note that the Direct and Adjoint Methods are equally accurate,
i.e., they both provide the analytical gradient at the same accuracy. Also, it is important
to notice that the localization assumptions involved in 2D are consistently represented
by the analytical methods. The result of the third experiment (Figure 4.6c) indicates the
correctness of the method when applied to compute gradients for heterogeneous media.

(a) 1D, homogeneous (b) 2D, homogeneous (c) 2D, heterogeneous

Figure 4.6: Validation of MS gradient computation method via comparison with numerical differentiation. (a)
One-dimensional, homogeneous, (b) two-dimensional homogenous and (c) two-dimensional heterogeneous
steady-state flow test cases.

4.5.2. GRADIENT ACCURACY
In order to assess the quality of the MS gradient, the angle between fine-scale and MS
normalized gradients, i.e.,

α= cos−1 (∇T
θÔF S ∇θÔMS

)
, (4.60)

is measured. Here,

∇θÔF S = ∇θOF S

‖∇θOF S‖2
(4.61)

and

∇θÔMS = ∇θOMS

‖∇θOMS‖2
. (4.62)

Also, ∇θOF S and ∇θOMS denote the fine-scale and MS analytical gradients, respecti-
vely. As a minimum requirement, acceptable MS gradients are obtained if α is much
smaller than 90o [52].
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Firstly, for the 1D test case, both methods result in α = 0o , indicating that fine scale
and MS gradients are perfectly aligned in this case. This is due to the fact that, in 1D, no
approximations (due to localization) are made in the MS solution, and thus, in the MS
gradient computation.

For the 2D homogenous case, the fine scale and MS gradients result in α = 10.97o ,
using the same setup depicted in Figure 6.1a. Although the gradients are practically
pointing in the same direction, a deviation between the two is observed. To better inves-
tigate this difference, Figure 4.7a and Figure 4.7b present the fine-scale and MS pressure
solutions, respectively, and Figure 4.7c shows the difference between these two pres-
sure solutions. Figure 4.7d and Figure 4.7e present the absolute, normalized gradient
of the OF computed via fine-scale and MS gradient methods, respectively. Figure 4.7f
shows the difference between the absolute, normalized gradient computed by the two
methods.

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Fine scale (p) pressure solution (a) and MSFV (p ′) pressure solution (b). Difference between fine-
scale and MSFV pressure solutions (c). Absolute, normalized fine scale gradient (d) and MSFV (e). Difference
between fine-scale and MS absolute, normalized gradients (f). In all figures the dual-coarse grid is shown. Also
shown, in the red boxes, are the coarse nodes.

The difference between the MS and fine-scale methods is due to the localization as-
sumption in the calculation of the basis functions [16]. Note that, thanks to the well
functions, the multiscale solutions are accurately capturing the wells.

4.5.3. EFFECT OF HETEROGENEITY DISTRIBUTION AND COARSENING RA-
TIO

In the first case, OF gradients are computed for the whole ensemble of heterogeneous
permeability fields (see Figure 4.4). Moreover, the same realization depicted in Figure
6.1b is considered as the reference from which the observed pressures are computed.
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Table 4.2: Well configuration for the homogeneous, two-dimensional case.

Well Fine scale position (I, J) Well type
INJE (11, 11) Injection

PROD1 (1, 1) Production
PROD2 (21, 1) Production
PROD3 (1, 21) Production
PROD4 (21, 21) Production

OBSWELL1 (3, 3) Observation
OBSWELL2 (19, 3) Observation
OBSWELL3 (3, 19) Observation
OBSWELL4 (19, 19) Observation

An inverted five-spot well pattern is employed, whiled four observation wells are pla-
ced close to the production wells. The well configuration is depicted in Table 4.2.

Two different coarsening ratios are applied, one resulting in a coarse grid of 3x3 (as
illustrated in Figure 6.1a) and another one resulting in a coarse grid of 7x7. The angles
between the fine scale gradient and the MS gradient for each realization are computed,
using Eq. (4.60). A histogram illustrating the angle distribution for each coarsening ratio
is presented in Figure 4.8.

(a) (b)

Figure 4.8: Histograms of angles between fine scale and multiscale gradients for 3x3 (a) and 7x7 (b) coarse
grids. The fine-scale computational domain contains 21x21 grid cells. The vertical red dashed line indicates
the 90o limit.

Note that, for this case, the quality of the gradients is significantly improved once the
coarse grid size of 3x3 is increased to 7x7. Important to note is that, as shown in Figure
4.9, the MS gradients are least accurate when the norm of the gradient vector is small.
Therefore, they are not expected to have a major effect on the optimization procedure.

For the 3x3 coarse grid case, 9.71% of the angles are greater than 90o , indicating that
some MS gradients point in the opposite direction of the decreasing OF direction. On
the other hand, if a 7x7 coarse grid is used no angle is greater than 90o .
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(a) (b)

Figure 4.9: Cross-plots of fine scale gradient norm vs. α for the 1000 realizations in the heterogeneous ensem-
ble for (a) 3x3 and (b) 7x7 coarse grid. Note that MS gradients are accurate for the cases with large values of
gradient norms. Their relatively inaccurate estimates (largeα) happen mostly when the norms of gradients are
small. The vertical red dashed line indicates the 90o limit.

In order to further explore this point, four sets of 20 equiprobable realizations of log-
normally distributed permeability fields with a spherical variogram and dimensionless
correlation lengths of Ψ1 = 0.5 and Ψ2 = 0.02 are generated using sequential Gaussian
simulations [53]. For each set, the variance and the mean of ln(k) are 2.0 and 3.0, re-
spectively, where k is the grid block permeability. As depicted in Figure 6.5, for the rea-
lizations with a long correlation length, the angles between the permeability layers and
the horizontal axis are 0o , 15o , and 45o . A patchy (small correlation length) pattern is also
considered (Figure 6.5d). Compared with the previous set, the permeability contrast is
much higher in this case.

(a) 0o (b) 15o (c) 45o (d) Patchy

Figure 4.10: Permeability distribution of four different realizations taken from the sets of 20 geostatistically
equiprobable permeability fields with 0o (a), 15o (b), and 45o (c) correlation angles. Also, a patchy field (d)
with a small correlation length is considered.

The fine-scale and coarse grids contain 100 x 100 and 20 x 20 cells, respectively. The
well configuration utilized in this numerical experiment is depicted in Table 6.3.

From Figure 4.11, one can observe that all cases with α > 50o are associated with
small gradient norms and that, for all geological sets, the MS gradient provides gradient
directions that are very accurate, compared with the fine scale solution, when the gra-
dient norms are large.
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Table 4.3: Well configuration for Case 2.

Well Fine scale position (I, J) Well type
INJE (1, 1) Injection

PROD (100, 100) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (98, 98) Observation

Figure 4.11: Cross-plot of fine scale gradient norm (log scale) vs. α for the four sets of 20 equiprobable perme-
ability realizations. The vertical red dashed line indicates the 90o limit.

Note also that, in the case of a small gradient norm, the OF has a weak dependency
on the parameters in the vicinity of the point where the gradient is being calculated. As
such, the overall performance of the optimization algorithm is not expected to be af-
fected by replacing the fine-scale gradient calculation with the MS version. For practical
purposes, as will be shown by the next numerical experiment, acceptable results in opti-
mization studies can be achieved by using approximated multiscale gradients. In gene-
ral, an iterative multiscale strategy [16] should be used in order to guarantee the quality
of the multiscale gradient. The key component of such a development is to relate the
quality of the approximate parameters (often measured via residuals) with the quality
of the gradients. The employment of an iterative scheme imposes challenges associa-
ted with, for instance, the computation of extra partial derivative information that arises
from the smoothing step. These challenges fall beyond the scope of this paper.

4.5.4. PARAMETER ESTIMATION STUDY

In order to investigate how the approximate MS gradient performs in an optimization
algorithm, a parameter estimation study is performed. In this study, the same perme-
ability ensemble as illustrated in Figure A.8 is used. The permeability field employed
to create the synthetic data is illustrated in Figure 6.1b. The initial guess is randomly
chosen from the ensemble. The MS method employs 7x7 coarse grid cells. The well con-
figuration is presented in 4.1. Differently from the other experiments, a misfit objective
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Table 4.4: Matched data for parameter estimation study utilizing gradients computed via fine scale Adjoint
Method.

Well
Observed Initial Matched Percent

Pressure [-] Pressure [-] Pressure [-] Error [%]
OBSWELL1 0.2508 0.1693 0.2505 0.024
OBSWELL2 0.6918 1.8305 0.6920 0.012

function with a regularization term [30], i.e.

O
(
y,θ

)=1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) ,
(4.63)

is considered, where θ ∈ RNF is the vector of parameters, taken to be the natural loga-
rithm of the permeability in each grid cell. The covariance matrix Cθ is computed from
the ensemble of realizations as

Cθ =
1

Ne −1

(
θ−µeT )(

θ−µeT )T
(4.64)

whereΘ is the NF×Ne matrix whose j -th column is given by the member of the ensemble
θ j , j ∈ {1, ..., Ne },

µ= 1

Ne

Ne∑
j=1
θ j (4.65)

is the ensemble mean, and e = [1, ...,1]T is a vector of ones of size Ne ×1. In Eq. (4.63),
the prior is taken to be the ensemble mean,

θpr i or =µ. (4.66)

CD is a diagonal matrix given by [30]

CD =σ2I, (4.67)

whereσ2 is the variance of the data measurement error. In this experiment, the standard
deviation of the pressure measurement error is σ≈ 0.03 (note that the measurement er-
ror is also non-dimensional). This represents a (very accurate) measurement error in the
range of those usually employed in synthetic study cases (see e.g. [30]).

The optimization utilizes an LBGFS implementation [46], with a convergence crite-
rion in the form of a small OF gradient norm value (10 m−2). The matches obtained from
the optimizations utilizing fine scale and MS Adjoint Methods are presented in Table 4.4
and Table 4.5, respectively.

It is clear that good matches are obtained via both gradient computation strategies.
All matched pressure errors are in the order of 10−4, while the measurement errors are
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Table 4.5: Matched data for parameter estimation study utilizing gradients computed via fine scale Adjoint
Method.

Well
Observed Initial Matched Percent

Pressure [-] Pressure [-] Pressure [-] Error [%]
OBSWELL1 0.2508 0.1704 0.2498 0.080
OBSWELL2 0.6918 0.8284 0.6929 0.065

(a) (b) (c)

(d) (e) (f)

Figure 4.12: Permeability field updates. Initial permeability field (a), after model calibration with fine scale (b)
and MS (c) gradient computation. Difference between initial permeability field and fine scale (d) and MS(e)
model calibration. Absolute difference between fine scale and MS permeability fields after model update is
also shown (f).

10−5. The permeability fields estimated by both gradient methods are illustrated in Fi-
gure 4.12. The same figure also shows the differences between initial and updated per-
meability fields, as well as the fine scale vs. MS estimated parameters.

It is clear that the updates employed when a MS gradient is provided (Figure 4.12e)
to the optimizer are close to the updates found when a fine scale gradient (Figure 4.12d)
is utilized.

Finally, the performance of the optimization algorithm is assessed when both (fine
scale and MS) gradients are utilized. Figure 4.13 illustrates the evolution of the normali-
zed OF along the optimization process, where the OF values are normalized by its initial
value.

Although MS-gradient approach is much more efficient (recall Figure 4.2), and both
optimizations lead to good matches when converged, the MS-gradient based optimiza-
tion converges slower than the one based on the fine scale gradients. It is noted that the
quality of the MS solution can be further improved through an iterative procedure [16],
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Figure 4.13: Evolution of the normalized OF value for model calibration utilizing both fine scale and MSFV
gradients.

which will be subject of our future research.
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5
MULTISCALE GRADIENT

COMPUTATION FOR SEQUENTIALLY

COUPLED FLOW AND TRANSPORT IN

HETEROGENEOUS POROUS MEDIA

We present the extension of our recently developed Multiscale (MS) gradient computation
method to multiphase flow heterogeneous porous media. Assuming a flow and transport
sequentially coupled forward simulation, the flow equation is computed using a multis-
cale finite volume (MSFV) formulation and the transport equation is computed in the
fine scale after reconstruction of mass conservative velocity field. The analytical gradient
computation strategy follows a generic and flexible formulation that provides derivative
information to any gradient-based optimization algorithm. Both the Direct and Adjoint
methods are addressed. While the expensive operations involved in the computation of the
gradients are performed at coarse scale, fine scale derivative information (e.g. with respect
to uncertain parameters) is obtained via the partial derivatives of local MS basis functi-
ons. The gradients computed via the MS methods are validated against the one computed
via numerical differentiation. The accuracy of the MS gradient are verified against fine-
scale gradient computation. The investigation in the proposed synthetic models indicate
the potential of the method to be applied to optimization-based reservoir management
studies.

Parts of this chapter have been previously published in the proceedings of the SPE Reservoir Simulation Con-
ference (RSC) (2017) [1].
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Gradient computation is a fundamental component on optimization algorithms. Nume-
rical differentiation [2, 3], stochastic ensemble-based [4–6], and analytical [7, 8] methods
are the most commonly used gradient computation methods. Among those, analytical
methods, more specifically the adjoint method [9–11], have been reported to be most
accurate and efficient ones [3, 12]. Although not a limitation, adjoint methods have
been traditionally employed in fully implicit simulations [13]. In this scenario, the ad-
joint equation is the transpose of the forward system Jacobian [13]. It is shown in [7] how
the adjoint equation can generically account for different coupling strategies by properly
considering the lagged-in-time primary variable dependencies.

Another important aspect associated with optimization algorithms is its computati-
onal cost. Because many forward simulation runs are required to evaluate the objective
function value and its gradient during the optimization process, it is common to develop
simulation models that are faster evaluated ([14–16]) to make optimization studies feasi-
ble. Multiscale (MS) reservoir simulation [17, 18], a strategy the accurately and efficiently
solve flow in heterogeneous porous media, offers unique characteristics that makes it an
interesting forward simulation technique for optimization studies. A class of MS met-
hods [19–23], specifically applied to reservoir simulation, employs a mapping between
the nested fine and coarse grids defined by MS basis functions [18]. This mapping allows
the solution of the flow problem in the coarse grid, thus with less degrees of freedom. At
the same time, the mapping allows for the representation of the primary variables in the
fine grid. For a review on the main developments on MS reservoir simulation, see [24].

The employment of MS methods as forward simulation strategy allows for the com-
putation of MS gradients. Basically, MS gradient computation provides an approximated
gradient based on MS approximated solutions. In [25] it is shown how the sensitivities
of a misfit objective function with respect to fine-scale grid-block permeabilities can be
computed from the coarse-scale transmissibilities via the solution of local adjoint pro-
blems for the MS basis functions. In a follow up work [26], it is shown the performance
for the technique in single-phase, transient flow subsurface history matching problem.
In [27] it is shown how a MS adjoint strategy is employed to compute gradient informa-
tion using only coarse scale information, in a sequentially coupled simulation strategy.
In the context of life-cycle optimization, where fine-scale sensitivity information is nee-
ded, they also employ a coarsening strategy to solve the transport equation [28]. Also,
in [29], reservoir simulator’s outputs computed from approximated iterative MS Finite
Volume (i-MSFV) [21] solutions are successfully used in the computation of stochastic
ensemble-based gradient via the Stochastic Simplex Approximate Gradient (StoSAG) [5].
In [30], the finite difference method is combined with a Gauss-Newton approach to ap-
proximated the sensitivity matrix via linear interpolation of locally built quadratic functi-
ons. Recently, a generic mathematical framework to compute MS gradient information
via the direct and adjoint method has been developed [31]. No assumption with respect
to the parameters nor the optimization problem nature is made. The performance of MS
gradients is demonstrated in single-phase flow optimization models.

In the present work, it is shown how the framework presented in [31] is used to ad-
dress multiphase flow MS gradient computation. As fine-grid resolution is necessary to
accurately capture the sharp, local saturation fronts [32]. Even though MS extensions
for the solution of hyperbolic transport equations exist [28, 33], the transport equation is
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considered to be solved in fine scale after appropriated conservative velocity field recon-
struction [34]. And because MS simulations most commonly require a sequential cou-
pling of flow and transport equations, the framework presented in [31] must be extended
to accommodate the latter. Due to its algebraic description, conservative velocity field
construction and transport equations can be appropriately accommodated. The time-
stepping nature of multiphase flow is captured via a super-vector notation [7, 8, 35].

5.1. DESCRIPTION AND ALGEBRAIC REPRESENTATION OF THE

FORWARD MODEL EQUATIONS FOR SEQUENTIALLY COU-
PLED SOLUTION OF FLOW AND TRANSPORT

In order to properly assess the dependencies of the model equations and primary varia-
bles, necessary to develop the analytical gradient methods, the governing equations and
the respective solution strategies are discussed. In the scope of this work, and consistent
with the main developments regarding MS methods [17, 18], the forward simulation mo-
del is built based on a sequential coupling strategy for flow and transport [36].

5.1.1. GOVERNING EQUATIONS, FINE SCALE DISCRETIZATION AND ALGE-
BRAIC DESCRIPTION OF THE FORWARD MODEL EQUATIONS

Two-phase, immiscible flow is described by mass conservation equation for each phase
α ∈ {o, w}

∂

∂t

(
φραSα

)+∇· (ραuα
)= ραqα, (5.1)

where φ is the porosity and Sα, ρα and qα are, respectively, saturation, density, and
source for phase α. Neglecting gravity and capillary forces, the Darcy velocity for phase
α, uα, can be expressed as

uα =−λαK ·∇p, (5.2)

whereλα is the mobility of phaseα, i.e. the ratio between the phase relative permeability
and viscosity, and K is the absolute permeability tensor. For incompressible fluid and
porous-rock, each mass conservation equation can be divided by the respective (con-
stant) density ρα and summed, which yields to

−∇· (ut ) = qt , (5.3)

where qt is the sum of all phases’ source terms and

ut =λt K ·∇p, (5.4)

is the total velocity. In Eq. (5.4), λt is the total mobility (the sum of all phase mobilities).
Finally, one transport equation can be written as

φ
∂Sα
∂t

+∇· ( fαut
)= qα, (5.5)
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where fα is the fractional flow of phase α, and is computed as

fα = λα

λt
, (5.6)

where λα is the mobility of phase α. The system is closed via the saturation constraint∑
α=o,w Sα = 1. (5.7)

Using a two-point flux finite volume discretization (TPFA) in space and sequential
discretization in time [36], the discretized form of Eq. (5.3) can be written as

gn
p = An−1pn −qn−1 = 0, (5.8)

where pn ∈RNF and qn−1 ∈RNF are pressure and source terms for all phases vectors, NF

being the number of fine grid blocks, and An−1 ∈ RNF ×NF is the system matrix. Interfa-
cial rock properties are computed by means of harmonic averages for the absolute per-
meabilities, whereas an upwind scheme is employed for interfacial fluid properties (i.e.
mobilities). The dependency of the fluid mobilities on the saturation is treated lagged in
time because of sequential solution strategy.

The discretization of Eq. (5.5) can be written as

gn
s = V

(
sn −sn−1)+ F̃t un −qt

α = 0, (5.9)

where s ∈ RNF , F̃t ∈ RNF ×NI , and un ∈ RNI are, respectively, the saturation vector, the
fractional flow matrix and the velocity vector velocity orthogonal components at the in-
terfaces, with NI being the number of fine grid interfaces, and

V = Vφ
∆t

I, (5.10)

where V ∈ RNF ×NF . Also, ∆t is the time-step size, Vφ ∈ RNF is the vector containing the
grid block pore-volumes, and I is the identity matrix.

The de-coupling of equations Eq. (5.8) and Eq. (5.9) allows the system to be solved
sequentially, with no dependency of Eq. (5.8) on sn . Note that the non-linear depen-
dency of Eq. (5.18) on st defines the flow-transport coupling. If t = n −1, the fractional
flow and source term are evaluated at the previous time-step. This allows sn to be ea-
sily obtained from Eq. (5.9). However, due to instabilities, this scheme has limitations
on the time-step size. This is the so-called implicit-pressure explicit-saturation (IMPES)
discretization in time [36], or simply sequential explicit. On the other hand, if t = n, a
sequential implicit strategy is difined, where Eq. (5.9) now has a non-linear dependency
on sn . This scheme allows for larger times steps, however requires a non-linar solution
of Eq. (5.9).

5.1.2. MULTISCALE DISCRETIZATION AND ALGEBRAIC DESCRIPTION OF THE

FORWARD MODEL EQUATIONS
Instead of solving an expensive NF ×NF linear system from Eq. (5.8), the flow equation is
solved using a MS method. MS is an efficient strategy to solve system of equations arising
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from the discretization of elliptic PDE’s. More specifically, we employ a multiscale finite
volume (MSFV) formulation [17, 19], which is capable of providing mass conservative
solutions. However, note that the transport equation is computed at the fine-scale, after
reconstruction of mass conservative velocity field [34]. The conservative velocity field is
reconstructed from the approximate MS pressure field via the solution of Neumann local
problems based on the mass-conservative fluxes at the coarse-grid block boundaries. A
MSFV solution strategy is employed to solve Eq. (5.8). Two sets of (dual and primal)
coarse grids are constructed in order to formulate a MSFV method (see Fig. 5.1). The
resulting MS system can be algebraically expressed as [19]

(RAP)n−1 p̆n = Rn−1qn , (5.11)

where R ∈ RNC×NF is the restriction operator, P ∈ RNF ×NC the prolongation operator and
p̆ ∈ RNC the coarse pressure solution, with NC being the number of coarse grid blocks.
The interpolated fine-scale pressure is obtained by means of the prolongation operator
as

p′n = Pn−1p̆n , (5.12)

where p′ ∈RNF is the approximated fine scale pressure solution.

Figure 5.1: Illustration of MSFV coarse grids for a 2D domain. Given a fine-scale grid (shown in light solid black
lines), the coarse grid (shown in solid bold black) is imposed as a non-overlapping partition of the computa-
tional domain. The coarse nodes (vertices) are then selected (red cells). Connecting coarse nodes constructs
the dual-coarse grid (blue cells) where basis functions are constructed. The boundary of the dual-cell k is
represented by ∂Ω̆k and the k − th primal-cell domain by Ω̆k

Although the approximated pressure can provide a conservative velocity field at the
coarse scale

u′ =−λ ·∇p ′, (5.13)

the velocity vector u′ ∈ RNI is not conservative at the fine-scale. Hence, an additional
local problem [34, 37]

−∇· (λ ·∇p ′′
k

)= q ′′ (5.14)

is solved on the primal coarse grid cell domain Ω̆k with the Neumann boundary condi-
tions (

λ ·∇p ′′
k

) · n̄k︸ ︷︷ ︸
u′′

= (
λ ·∇p ′) · n̄k︸ ︷︷ ︸

u′

at ∂Ω̆k . (5.15)

Here, p ′′ is the corrected pressure solution and q ′′ are the source terms. The subscript k
denotes for the domain corresponding to the k− th coarse grid, and n̄k is the unit vector
normal to ∂Ω̆k .

Equations Eq. (5.14) can be written in discrete form as

A′′n−1p′′n = q′′n +EC
I

(
Λ′n−1p′n

)
, (5.16)

where A′′n−1 ∈ RNF ×NF results from the assemblage of the local discretizations of Eq.
(5.14) into one global block diagonal matrix and q′′n ∈RNF is the vector containing source
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terms and EC
I ∈ RNF ×NI is the operator that maps the Neumann boundary conditions

imposed by Eq. (5.15) from the interfaces to the cells and Λ′n−1 ∈ RNI ×NF is the trans-
missibilty matrix built based on p′n .

Using the corrected pressure p′′n ∈RNF from the solution of Eq. (5.16) to calculate

u =
{−λ ·∇p ′′

k on Ω̆k ,

−λ ·∇p ′ at ∂Ω̆k ,
(5.17)

provides a conservative velocity field inside the Ω̆k domain. The velocity field computed
via Eq. (5.17) is, therefore, suited to be used in the solution of Eq. (5.9). The discrete form
of Eq. (5.17) can be expressed as

un =Λ′n−1p′n +Λ′′n−1p′′n , (5.18)

where Λ′′n−1 ∈ RNI ×NF is the transmissibilty matrix built based on p′′. Note that Λ′ 6= 0
only at the boundaries of the primal coarse cells, ∂Ω̆k . Similarly, Λ′′ 6= 0 only on the
interior of the primal coarse cells and has a block diagonal structure. Fig. 5.2 illustrates
the final conservative velocity field.

Figure 5.2: Illustration of conservative velocity field reconstruction. The orange arrows represent the interfacial
velocity orthogonal components computed from the (conservative) coarse-scale solution. These components
are utilized as boundary conditions in the construction of p′′, represented by the gray-scale pressure field
(right). The blue arrows represent the interfacial velocity orthogonal components computed from p′′.

As discussed in [31], the MS solution for the flow equation for time-step n can be
algebraically described by

ğn (
p̆,sn−1,θ

)= (RAP)n−1p̆n −Rn−1qn = Ăn−1p̆n − q̆n = 0̆, (5.19)

and
g′n (

p̆,p′,sn−1,θ
)= p′n −Pn−1p̆n = 0. (5.20)

Note that An−1 = An−1
(
sn−1

)
and Pn−1 = Pn−1

(
sn−1

)
. Furthermore, although pro-

longation depends on time, it is only rebuilt infrequently, depending on how much the
mobilities change in the corresponding coarse grid block [34].
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From Eq. (5.18) one can write

gu
(
un ,p′n ,p′′n ,sn−1,θ

)= un −Λ′n−1p′n −Λ′′n−1p′′n = 0. (5.21)

Note that Λ′n−1 = Λ′n−1 (
sn−1

)
and Λ′′n−1 = Λ′′n−1 (

sn−1
)
. Also, from Eq. (5.16), one

can define
g′′n (

pn ,p′n ,sn−1,θ
)= A′′n p′′n −q′′n −EC

I

(
Λ′n−1p′n

)
= 0. (5.22)

Equation Eq. (5.9) can be algebraically expressed as

gn
s

(
p′n ,un ,sn−1,sn ,θ

)= st −sn−1 −Ft un −qt
α = 0 (5.23)

where
Ft (

st )= V−1F̃t (5.24)

is an upwind fractional flow operator, Ft ∈RNF ×NI .

5.2. MATHEMATICAL FRAMEWORK FOR THE COMPUTATION OF

FLOW-TRANSPORT SEQUENTIALLY COUPLED, MULTISCALE

GRADIENT COMPUTATION
The mathematical framework for the computation of gradient information for sequati-
ally coupled system for equations is discussed in [38]. It is presented in a very general
setup. Given that the forward model equations are described in a generic, purely alge-
braic form, the framework can be applied to the computation of any desired derivative
information. In this direction, the multiscale forward model equations will be descri-
bed in such way the algorithms presented in [38] can be employed in the computation
of multiscale gradients. But, firstly, we brifly describe the derivative computation frame-
work.

5.2.1. GRADIENT COMPUTATION MATHEMATICAL FRAMEWORK
It is discussed in [7, 31, 38] how any derivative information can be efficiently computed
from the sensitivity matrix as

WGV =−W
∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
V+W

∂h

∂θ
V, (5.25)

where V (of order Nθ×p) and W (of order m×NY ) are arbitrary matrices, defined based
on the derivative information one wants to obtain.

In Eq. (6.18), a super-vector notation [7, 8] is used to capture the evolution in time,
hence

g (x (θ) ,θ) = 0, (5.26)

where ,
y = h (x (θ) ,θ) . (5.27)

The key aspect that defines the computational performance of the gradient compu-

tation is the order of the operations involving

(
∂g

∂x

)−1

. Based on that, both the Direct
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and Adjoint analytical methods to compute the necessary derivative information can be
defined.

If W is factored out in Eq. (6.18), it can be rewritten as

GV = ∂h

∂x
Z+ ∂h

∂θ
V. (5.28)

where

Z =−
(
∂g

∂x

)−1 ∂g

∂θ
V, (5.29)

is solved from (
∂g

∂x

)
Z =−∂g

∂θ
V. (5.30)

The linear system described in Eq. (6.25) can be re-written in a block-wise fashion
for each time-step n:

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN




Z0

Z1

...
ZN

=

−



∂g0

∂θ
V

∂g1

∂θ
V

...
∂gN

∂θ
V



(5.31)

The partitioning lines indicate which matrix and vector terms belong to each time-
step.

Now, if V is factored out in Eq. (6.18), it can be rewritten as

WG = Z
∂g

∂θ
+W

∂h

∂θ
, (5.32)

where

Z =−W
∂h

∂x

(
∂g

∂x

)−1

(5.33)

is solved from

Z
(
∂g

∂x

)
=−W

∂h

∂x
. (5.34)

The linear system described in Eq. (6.37) can be re-written in a block-wise fashion
for each time-step n as
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(
Z0 Z1 . . . ZN )×

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gN

∂xN−1

∂gN

∂xN


=

−(
W0 W1 . . . WN )×

∂h0

∂x0

∂h1

∂x0

∂h1

∂x1

. . .
. . .

∂hN

∂xN−1

∂hN

∂xN



(5.35)

The structure of Eq. (6.38) shows that it can be solved via a back substitution, i.e. the
solution of the gradient information is backward in time.

Although the derivation as presented so far is considerably general, in order to pro-
perly formulate the actual method to analytically compute the gradient information, the
structure of the partial derivative matrices involved must be taken into account. And this
is only possible if the specific coupling strategy and the proper dependencies of the mo-
del equations and primary variables are taken into account. In this direction, such de-
pendencies are properly considered in the context of sequentially coupled, multiscale,
multiphase flow. The framework dicussed in [38] is specialized for this specific applica-
tion.

5.2.2. MULTISCALE GRADIENT COMPUTATION
Following the MS solution discussed in 5.1.2, the forward model set equations can be
defined via the following partitioning

gn (
xn ,xn−1,θ,

)=
 gn

p

gn
u

gn
s

=


ğn

g′n

g′′n

gu
n

gs
n

 , (5.36)

where

xn = xn (θ) =


p̆
p′

p′′
u
s


n

. (5.37)
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The horizontal partition lines group the (sub) equations and primary variables involved
in the computation of flow, velocity and transport models equations.

From Eq. (5.19), Eq. (5.20), gn
p can be fully defined as

gn
p

(
xn ,xn−1,θ

)=[
Ăn−1

−Pn−1 I

][
p̆
p′

]n

−
[

q̆n

0

]
= 0,

(5.38)

By differentiating Eq. (5.38) with respect to Eq. (5.37), it follows that

∂gn
p

∂xn =
[

Ăn−1

−Pn−1 I

]
. (5.39)

Because the only state variable lagged in time that the model equations in the current
time-step are dependent on is the saturation, the partial derivative of Eq. (5.38) with
respect to xn−1

∂gn
p

∂xn−1 =

 0 . . .
∂ğn

∂sn−1

0 . . .
∂g′n

∂sn−1

 . (5.40)

From Eq. (5.22) and Eq. (5.21), gn
u can be fully defined as

gn
u

(
xn ,xn−1,θ

)=[ −EC
I Λ

′n−1 A′′n−1

−Λ′n−1 −Λ′′n−1 I

] p′
p′′
u

n

−
 0

q′′
0

= 0,
(5.41)

By differentiating Eq. (5.41) with respect to Eq. (5.37), it follows that

∂gn
u

∂xn =
[ −EC

I Λ
′n−1 A′′n−1

−Λ′n−1 −Λ′′n−1 I

]
, (5.42)

and with respect to xn−1

∂gn
u

∂xn−1 =

 0 . . .
∂g′′n

∂sn−1

0 . . .
∂gu

n

∂sn−1

 . (5.43)

Because the transport equation is solved at fine scale, after the proper reconstruction
of the conservative velocity field, the partitioning of gn

s Eq. (5.23) is kept unchanged
when compared to the fine-scale derivative computation strategy [38].

Next, by utilizing the partitions of the forward model equations as just presented,
the MS version of the Direct and Adjoint methods algorithms for sequentially coupled
forward simulation are derived as specializations of the Direct and Adjoint methods for
fine-scale simulation.
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5.2.3. MULTISCALE DIRECT METHOD
By utilizing the partition

Zn
p =

[
Z̆n

Z′n
]

, (5.44)

and utilizing Eq. (5.39), Zn
p can be computed as

[
Ăn−1

−Pn−1 I

][
Z̆n

Z′n
]
=


∂ğ

∂θ
V− ∂ğn

∂sn−1 Zn−1
s

∂g′

∂θ
V− ∂g′n

∂sn−1 Zn−1
s

 . (5.45)

Similarly, for the velocity equation,

[ −EC
I Λ

′n−1 A′′n−1

−Λ′n−1 −Λ′′n−1 I

] Z′n

Z′′n

Zn
u

=

 ∂g′′

∂θ
V− ∂g′′n

∂sn−1 Zn−1
s

∂gu

∂θ
V− ∂gn

u

∂sn−1 Zn−1
s

 , (5.46)

and for the transport equation,

Zn
s = ∂gn

s

∂θ
V− ∂gn

s

∂p′n Z′n −Fn−1Zn
u − ∂gn

s

∂sn−1 Zn−1
s . (5.47)

Now, the algorithm to compute the gradient information using the Direct method on
a MS fashion can be fully defined, and it is described in 9.

5.2.4. MULTISCALE ADJOINT METHOD
By utilizing the partition defined in Eq. (5.44) and Eq. (5.39) and Eq. (5.40), Zn

p can be
computed as

 (
Ăn−1

)T (−Pn−1
)T

I
(
−EC

I Λ
′n−1

)T (
−Λ′n−1

)T ∂gs

∂p′




(
Z̆n

)T(
Z′n)T(
Z′′n)T

(Zu
n)T

(Zs
n)T

=


−

(
Wn ∂hn

∂p′n

)T

 .

(5.48)

From Eq. (5.42) and Eq. (5.43), Zn
u can be computed as[ (

A′′n−1
)T (

−Λ′′n−1
)T

I

][ (
Z′′n)T

(Zu
n)T

]
=

[
−(

Fn−1
)T (

Zn
s

)T

]
.

(5.49)
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Algorithm 9: Multiscale Gradient Computation via the Direct Method.

Input : Partial derivative matrices of gp and gs w.r.t. x and θ, V
Output: GV

1 foreach n = 0,1,2, . . . , N do

2 Compute α=
(
∂A

∂θ
Pp̆− ∂q

∂θ

)n

3 Compute η=
(
∂A

∂sn−1 Pp̆− ∂q

∂sn−1

)n

4 foreach j = 1,2, . . . , p do

5 Compute γθ =
∂P

∂θ
p̆V., j ; // Algorithm 3 in [31], where m = V., j

6 Compute βθ = Rn−1
(
αV., j +Aγθ

)
7 Compute γs = ∂P

∂sn−1 p̆Zs
n−1
., j ; // Algorithm 3 in [31], where

m = Zs
n−1
., j

8 Compute βs = Rn−1
(
ηZs

n−1
., j +Aγs

)
9 Solve Z̆n

., j =
(
Ăn−1

)−1
(βθ−βs )

10 Compute Z′n
., j = Pn−1Z̆n

., j −γθ−γs

11 Solve Z′′n
., j =

(
A′′n−1

)(
∂g′′

∂θ
V., j − ∂g′′n

∂sn−1 Zs
n−1
., j +EC

I Λ
′n−1Z′n

., j

)
12 Compute Zu

n
., j =Λ′n−1Z′n

., j +Λ′′n−1Z′′n
., j +

∂gu

∂θ
V., j −

∂gn
u

∂sn−1 Zs
n−1
., j

13 Compute Zs
n
., j =

∂gn
s

∂θ
V., j −

∂gn
s

∂sn−1 Zs
n−1
., j +Fn−1Zu

n
., j

14 If there are responses at n, compute

(GV)n
., j =

∂hn

∂p′n Z′n
., j +

∂hn

∂sn−1 Zs
n−1
., j + ∂hn

∂θ
V., j

And Zn
s can be computed as

(
Zn

s

)T =

−
(

Wn+1 ∂hn+1

∂sn

)T

−
(
∂ğn+1

∂sn

)T

Z̆n+1 −
(
∂g′n+1

∂sn

)T

Z′n+1 −
(
∂g′′n+1

∂sn

)T

Z′′n+1 −
(
∂gn+1

u

∂sn

)T

Zn+1
u

−
(
∂gs

n+1

∂sn

)T (
Zn+1

s

)T
.

(5.50)

The algorithm to compute the gradient information using the Adjoint method on a
MS fashion can be now fully defined, and it can be found in 10.
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Algorithm 10: Multiscale Gradient Computation via the Adjoint Method.

Input : Partial derivative matrices of gp and gs w.r.t. x and θ, W
Output: WG

1 Set WG = 0
2 foreach n = N , . . . ,2,1,0 do

3 Compute α=
(
∂A

∂θ
Pp̆− ∂q

∂θ

)n

4 Compute α= Rα
5 foreach i = 1,2, . . . ,m do
6 Compute mT = Z̆n+1

i ,. RA+Z′n+1
i ,.

7 Compute ξ= mT
(
∂P

∂sn−1 p̆
)n

; // Algorithm 4 in [31]

8 Compute

βsi ,. = Z̆n+1
i ,. η+ξ+

(
∂g′′n+1

∂sn

)T (
Z′′n+1

i ,.

)T +
(
∂gn+1

u

∂sn

)T (
Zn+1

ui ,.

)T +
(
∂gn+1

s

∂sn

)T (
Zn+1

si ,.

)T

9 Compute
(
Zn

si ,.

)T =−
(

Wn ∂hn

∂sn

)T

−
(

Wn+1
i ,.

∂hn+1

∂sn

)T

−βsi ,.

10 Compute
(
Zn

ui ,.

)T = (
Fn−1

)T
(
Zn

si ,.

)T

11 Solve
(
Z′′n

i ,.

)T = (
A′′n)−T

(
Λ′′n−1

)T (
Zn

ui ,.

)T

12 Compute(
Z′n

i ,.

)T =
(
Λ′n−1

)T (
Z′′n

i ,.

)T (
EC

I

)T +
(
Λ′n−1

)T (
Zn

ui ,.

)T −
(

Wn
i ,.

∂hn

∂p′n

)T

13 Solve
(
Z̆n

i ,.

)T = (
Ăn

)−T
(Pn)T (

Z′n
i ,.

)T

14 Compute mT = Z̆n
i ,.RA−Z′n

i ,.

15 Compute γ= mT
(
∂P

∂θ
p̆
)n

; // Algorithm 4 in [31]

16 Compute ν= Z̆n
i ,.α−γ+Z′′n

i ,.
∂g′′n

∂θ
+Zn

ui ,.

∂gn
u

∂θ
+Zn

si ,.

∂gn
s

∂θ
+Wn

i ,.

∂hn

∂θ
17 Compute (WG)i ,. = (WG)i ,. +ν

18 Compute η=
(
∂A

∂sn−1 Pp̆− ∂q

∂sn−1

)n
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5.2.5. COMPUTATIONAL AND IMPLEMENTATION ASPECTS OF THE METHODS

COMPUTATION OF PARTIAL DERIVATIVE MATRICES AND AUTOMATIC DIFFERENTIATION

One key aspect of analytical gradient computation is the need for some additional partial
derivative matrices that are not required by standard forward simulation procedures.

The partial derivatives of the model equations with respect to the primary variables

lagged in time,
∂gn

∂xn−1 , can be fully determined from the dependencies of Eq. (5.19),

Eq. (5.20), Eq. (5.22), Eq. (5.21) and Eq. (5.23) on xn−1, or more specifically on sn−1 in
the scope of the present work. Also, the dependencies of the model equations on the

parameters must be taken into account in order to fully determine
∂g

∂θ
.

Ultimately, a reservoir simulation code is an algorithm comprised of many sub-algorithms,
each of them dependent on a given pre-determined set of parameters. The output of
each (sub-algorithm) will be consumed by another (sub-) algorithm and, finally, by the
(sub-) algorithms responsible for the computation of model equations. A convenient
way to analytically compute the partial derivatives of the model equations w.r.t. their
dependent parameters/variables is Automatic Differentiation (AD). In brief, AD is a com-
putational technique that computes the partial derivatives of a given function w.r.t. its
arguments at the same time the function value is evaluated. More information about
the fundamentals of AD can be found in [39], and for applications of AD in reservoir si-
mulation problems we refer to [40–42]. The same discussion holds when it comes to the

computation of the partial derivatives of the model output, namely
∂h

∂x
and

∂h

∂θ
.

The partial derivatives of Eq. (5.19), Eq. (5.20), and Eq. (5.22) w.r.t. θ can be compu-
ted, respectively, as

∂ğn

∂θ
=

(
R
∂A

∂θ
P+RA

∂P

∂θ
+ ∂R

∂θ
AP

)
p̆− ∂R

∂θ
q−R

∂q

∂θ
, (5.51)

∂g′n

∂θ
= ∂P

∂θ
p̆, (5.52)

and
∂g′′n

∂θ
= ∂A′′n−1

∂θ
p′′n − ∂q′′n

∂θ
−EC

I
∂Λ′n−1

∂θ
p′n , (5.53)

Similarly, of Eq. (5.19), Eq. (5.20), and Eq. (5.22) w.r.t. xn−1 can be expressed, re-
spectively, as

∂ğn

∂sn−1 =
(

R
∂A

∂sn−1 P+RA
∂P

∂sn−1 + ∂R

∂sn−1 AP
)

p̆− ∂R

∂sn−1 q−R
∂q

∂sn−1 , (5.54)

∂g′n

∂sn−1 = ∂P

∂sn−1 p̆, (5.55)

and
∂g′′n

∂sn−1 = ∂A′′n−1

∂sn−1 p′′n − ∂q′′n

∂sn−1 −EC
I
∂Λ′n−1

∂sn−1 p′n , (5.56)

The partial derivatives of A′′n−1, result in a third-order tensor. The interpretation of
the operations involving such terms can be found in [31].
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Not only the computation of the partial derivatives requires proper treatment, in or-
der to efficiently evaluate the expressions determining the products, but also special at-
tention must be paid to the order of the operations. This is not only important to deter-
mine the Adjoint and Direct methods, but it is also important in some other steps of the
computation when operations involve the prolongation operator (in those cases where it
depends on the parameters), namely the partial derivatives of P in Eq. (5.51), Eq. (5.52),
and Eq. (5.54), Eq. (5.55). This is discussed next.

PROLONGATION OPERATOR PARTIAL DERIVATIVE

The construction of P usually requires complex operations. For instance, in the Multis-
cale Finite Volume (MSFV) method, the construction of the basis functions require the
solution of linear systems arising from the local flow problems defined in the dual-grid
cells. The efficient computation of the operations involving the partial derivative of the

MSFV P with respect to θ on the form of

(
∂P

∂θ

)
m for the Direct method and in the form

of mT
(
∂P

∂θ

)
for the Adjoint method are described in [31]. In the case of the Adjoint met-

hod, the operations are also performed in an adjoint-like fashion, with computation cost
proportional to the number of dual-coarse grid cells and independent of the number of

parameters. The same strategy can be employed in the operations involving
∂P

∂sn−1 .

Since the present work deals with time-stepping problems, this computation must be
performed at all time-steps due to changes in λ. But, because basis functions are only
infrequently re-constructed, an efficient implementation can take advantage of this fact.
In other words, P is only infrequently and adaptevily updated following a certain criteria,
e.g. spatial changes in the mobility ratio [34]. For instance, a direct solver can be utilized
for the computation of the prolongation partial derivatives, such that the system matrix
is only factorized once and solved multiple times for different right-hand sides.

In the limit case when the dependency of P on sn−1 is neglected, the operations in-
volving the partial derivatives of P in Eq. (5.54) and Eq. (5.55) can be disregarded. In
other words, if P is not updated due to changes in λ in forward simulation, only the ope-

rations involving
∂P

∂θ
must be computed, and only in the beginning of the simulation.

Of course, this assumption is case dependent and hence only valid in certain scenarios.
This option is highlighted in 10 and 9.

THE CONSERVATIVE VELOCITY FIELD RECONSTRUCTION PARTIAL DERIVATIVE

Along with the inexpensive (as shown by [31]) solution of a linear system of equations
arising from ğ, the model equation g′′ also requires the solution of a linear system. More
specifically, for a given time-step n and a given set of outputs i of the same time-step,
one can write

Z′′n
., j =

(
A′′n−1

)(
∂g′′

∂θ
V., j − ∂g′′n

∂sn−1 Zs
n−1
., j +EC

I Λ
′n−1Z′n

., j

)
, (5.57)

for the Direct method and(
Z′′

i ,.
n)T =

(
A′′n−1

)−T
((
Λ′′n−1

)T (
Zui ,.

n−1)T
)

. (5.58)
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for the Adjoint method. Because of the block structure of the operands of Eq. (5.57) and
Eq. (5.58), Z′′ can be determined similarly to how the velocity reconstruction is com-
puted in the forward simulation, via the solution of local systems corresponding to the
primal-coarse grid cell domains. This results on a embarrassingly parallel algorithm,
where all local system solution can be solved independently by different processes.

COMPUTATIONAL EFFICIENCY

The computational efficiency of the methods is assessed via an asymptotic analysis. In
the analysis, only the most computationally intensive operations involved in the algo-
rithms are considered. Hence, because the cost of solving linear system of equations
overwhelms the cost of the matrix-vector products, only the former is considered over
the latter.

The cost associated to the solution of a linear system will be considered to be O
(
aN b

)
,

where a and b are constants dependent of the linear solver employed, and N is the size
of the system. For the sake of simplicity, it will be considered that equally efficient sol-
vers are used for the solution of MS and fine-scale linear systems. However, in an actual,
efficient, implementation, this should not be the case.

Firstly, let’s consider the computational cost associated to solve the derivative infor-
mation for each time-step performed in the forward simulation. For each column of V
for the Direct method, or each row of W for the Adjoint, a linear system of size NC cor-
responding to the model equation ğ, NC linear systems of size NR = NF /NC associated
with the model equation g′′, and a linear system of size NF corresponding to gs must
be solved in the MS case. Here, NR is the MS coarsening ratio. In addition, there is the
cost associated to the solution of the partial derivative of P with respect to sn−1 and θ.
The partial derivative computation with respect to each of these variables is given by
O (NL NC (aMS NR

bMS )) (from the analysis presented in [31]), where NL is the number of
local problems that must be solved per coarse grid vertex (4 in 2D and 8 in 3D problems).
That leads to an estimated computational complexity OMS (aNF

b +aNC
b +NC (aNR

b)+
NL NC (aNR

b)+NL NC (aNR
b)). In the fine-scale case, a linear system must be solved for

each flow and tranport equations, leading to a complexity OF S (aNF
b +aNF

b).
Ultimately, one is interested in the computational gain of the MS gradient computa-

tion over a fine-scale strategy. The computational cost ratio can be estimated by

OMS

OF S
= 1

2

(
1+ 1

N b
R

+ N b−1
R

N b−1
F

(1+2NL)

)
. (5.59)

Eq. Eq. (5.59) represents the computational cost ratio upper bound, in the sense that
P is assumed to be reconstructed every time-step. However, this is not done in practice,
as discussed in Section 5.2.5. There might be cases that no basis function update is re-
quired throughout the simulation, and hence the partial derivative of P w.r.t. sn−1 can
be neglected. This scenario gives us the computational cost ratio lower bound and is
expressed by

OMS

OF S
= 1

2

(
1+ 1

N b
R

+ N b−1
R

N b−1
F

(1+NL)

)
. (5.60)

Eqs. Eq. (5.61) and Eq. (5.60) consider that a linear system must be solved for the
transport equation. However, in the IMPES case, the saturation can be obtained via an
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negligble matrix-vector operation. Because of that, the computational cost ratio upper
and lower bounds for the IMPES coupling read, respectively,

OMS

OF S
= 1

N b
R

+ N b−1
R

N b−1
F

(1+2NL) , (5.61)

and
OMS

OF S
= 1

N b
R

+ N b−1
R

N b−1
F

(1+NL) . (5.62)

Note that the MS gradient computation becomes unattractive when the coarsening
ratio is such that the solution of the local systems required by the construction of the
basis functions and by the conservative velocity field reconstruction becomes relatively
expensive. Clearly, the selection of an optimal coarsening ratio is important, however
the computational efficiency is not the only factor in this task. For instance, the ability of
the basis function to capture fine-scale features must also be taken into consideration.
Also, the velocity field reconstruction might not be necessary if an iterative MS strategy
[21] is employed. However, the gradient computation formulation should also take into
account the fine-scale smoothing process. This is a topic of an ongoing research. Alter-
natively, a coarse scale solution could be considered for the transport as well (see e.g.
[27, 43]). Although this option has not been investigated in the scope of this work, the
generic framework here presented is capable of accomodating this alternative.

Another point that must be highlighted is that, however the cost per time-step as-
sociated to the IMPES gradient computation is smaller than the cost compared to the
Sequential Implicit gradient computation, due to the well known instabilities imposed
by the CFL condition, IMPES simulations usually require (many) more time-steps than
Sequential Implicit simulations. Therefore, there is a tradeoff between number of time-
steps and time-step cost,

O
Seq
MS

O I MPES
F S

= N Seq
T S

N I MPES
T S

aN b
F ≈ C F L I MPES

C F LSeq
aN b

F ,

which indicates that the Sequential Implicit strategy is more efficient when C F LSeq > 1,
given that the condition C F L I MPES ≤ 1 must be met if one wants to guarantee stability.
On top of that, although not captured in the above asymptotic analisys, it is important
to note that the more time-steps taken by the forward simulation, the more extra infor-
mation (partial derivative matrices) must be computed and stored at each time-step to
be later used in the backward simulation. This is discussed next.

5.3. NUMERICAL EXPERIMENTS
The following numerical experiments are presented to first validate and then assess the
accuracy of the gradient information computed by the method presented in this work.
For this purpose, a misfit objective function with no regularization term

O (θ) = 1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) , (5.63)
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with a gradient
∇θO = GT C−1

D (h (x,θ)−dobs ) , (5.64)

is considered ([3]). In the experiments, the history matching parameters are cell-centered
permeabilities and the observed quantity is oil rate at the production wells. The wells are
controlled by minimum bottom-hole pressure (BHP).

5.3.1. VALIDATION
The MS-gradient method is validated against the numerical differentiation method for a
higher-order, two-sided Taylor approximation of

∇θOi = 1

2δθi

(
O

(
θi , . . . ,θi−1,θi +δθi ,θi+i , . . . ,θNθ

)−
O

(
θi , . . . ,θi−1,θi −δθi ,θi+i , . . . ,θNθ

))
,

(5.65)

where δ is a multiplicative parameter perturbation. The relative error can be defined as

ε= ‖∇θOF D −∇θO AN‖2

‖∇θO AN‖2
, (5.66)

where ∇θOF D is obtained by performing the appropriate number of multiscale reservoir
simulations required to evaluate Eq. (5.65) and ∇θO AN is obtained by either employing
the Adjoint MS gradient computation here depicted to evaluate Eq. (5.64). Note that the
framework here presented can be used by making

WT = C−1
D (h (x,θ)−dobs ) , (5.67)

so that the gradient of O can be written as ∇θO = (WG)T . For all cases, for simplicity, it is
assumed CD = I.

In order to validate the proposed derivative calculation method, as well as the im-
plementation, we investigate the linear decrease of the error ε by decreasing the per-
turbation value δ ([2]) from 10−1 to 10−4 (the range within which discretization errors
dominate).

The first case is a one-dimensional, homogeneous medium with 45 grid blocks. A
primal coarse grid of just 3 grid blocks is employed (coarsening ratio of 15). Injection and
production wells are located at, respectively, at the first and last vertices of the primal
grid blocks. Fig. 5.3 illustrates the setup for this experiment. The observed oil-rate is
generated from a reference, randonly distributed pemeability field. In the second case
the refernce permeability field is a homogeneous field and the gradients are computed
based on the randomly distributed permeability field. This allows to assess the proper
capture of fine-scale heterogeneities by the prolongation operator partial derivative w.r.t.
to the grid-block permeabilities.

The expected behaviour of linearly decreasing error values as the perturbation size
decreases is observed in the experiments, as shown in Fig. 5.4.

5.3.2. GRADIENT ACCURACY
The metric used to evaluate the quality of the MS gradient is the angle between fine-scale
and MS normalized gradients

α= cos−1 (∇T
θÔF S ∇θÔMS

)
, (5.68)
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Figure 5.3: Fine and coarse grids and wells setup for 1D numerical experiments. The solid thin lines represent
the fine grid-blocks. The bold dashed lines represent the primal-coarse grid blocks. Vertex cells are identified
via red circles. The crossed circle represents the injection well and the dotted circle the production well.

Figure 5.4: Validation of MS gradient computation method via comparison with numerical differentiation for
the one-dimensional, (a) homogeneous and (b) heterogenous validation cases.

where

∇θÔF S = ∇θOF S

‖∇θOF S‖2
(5.69)

and

∇θÔMS = ∇θOMS

‖∇θOMS‖2
. (5.70)

Here, ∇θOF S is the gradient computed via a fine-scale IMPES adjoint and ∇θOMS de-
notes the MS adjoint gradient computed via the method developed in the present work.
As a minimum requirement, acceptable MS gradients are obtained if α is much smaller
than 90o [44].

Both homogeneous and heterogeneous cases result in α = 0o , indicating that fine-
scale and MS gradients are perfectly aligned in this case. This is due to the fact that,
in 1D, no approximations (due to localization) are made in the MS solution, and thus,
in the MS gradient computation. As exposed in [31], the same behaviour should not be
expected in higher dimensions problem, where basis functions localization assumptions
impact the quality of the gradient.
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6
ITERATIVE MULTISCALE GRADIENT

COMPUTATION FOR

HETEROGENEOUS SUBSURFACE

FLOW

.

We introduce a semi-analytical iterative multiscale derivative computation methodology
that allows for error control and reduction to any desired accuracy, up to fine-scale pre-
cision. The model responses are computed by the multiscale forward simulation of flow
in heterogeneous porous media. The derivative computation method is based on the aug-
mentation of the model equation and state vectors with the smoothing stage defined by
the iterative multiscale method. In the formulation, we avoid additional complexity in-
volved in computing partial derivatives associated to the smoothing step. We account
for it as an approximate derivative computation stage. The numerical experiments il-
lustrate how the newly introduced derivative method computes misfit objective function
gradients that converge to fine-scale one as the iterative multiscale residual converges. The
robustness of the methodology is investigated for test cases with high contrast permeabi-
lity fields. The iterative multiscale gradient method casts a promissing approach, with
minimal accuracy-efficiency tradeoff, for large-scale heterogeneous porous media optimi-
zation problems.

The material presented in this chapter has been submitted to Advances in Water Resources journal (under
review)
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Derivative computation is an important aspect of gradient-based optimization algorithms.
When the objective (or cost) function evaluation involves the numerical simulation of
discretized partial derivative equations (PDE), efficient gradient computation is of ut-
most importance. It is well documented in the literature that the most efficient and
accurate way of computing derivatives are the analytical Direct [1–3] (if the number of
parameters is greater than the number cost functionals) and Adjoint [2–7] (when the
number of cost functionals is greater than the number of parameters) methods. Howe-
ver, even when considering efficient gradient methods, due to the necessity to evaluate
the forward model and the derivative information many times, up until the optimality
conditions are met, techniques to reduce the forward model simulation cost have been
proposed [7–9].

Multiscale (MS) simulation methods [10, 11] have been increasingly employed for the
efficient solution of elliptic [12] and parabolic [13] equations, more specifically subsur-
face flow problems in highly heterogeneous porous media. Also, many developments to
extend its applicability to extended physics have been observed in the recent years [14].

Moreover, MS derivative computation strategies, based on MS forward simulation
models, has also been subject of study. MS adjoint formulation (MS-ADJ) for single-
phase subsurface flow have been presented in [15, 16]. MS adjoint computation methods
for multiphase flow have also been developed [17, 18]. More recently, a mathematical
framework for MS computation of derivative information has been developed [19]. It
has been highlighted in [15, 19] that inaccurate MS gradient computations could lead to
inaccurate gradient directions. However, as it is indicated in [19], strategies that improve
the MS forward simulation solution (e.g. refinement of the MS coarse grid) result in
better gradient estimates. Moreover, in [15] it is suggested that an iterative MS gradient
computation strategy could resolve the multiscale gradient inaccuracies.

In this work, we develop an iterative multiscale gradient computation strategy which
converges to the fine-scale gradient solution, thus allowing for error control and re-
duction for multiscale gradients. The derivative computation method is based on the ge-
neric mathematical framework introduced in [19]. By augmenting the MS model equa-
tion and the state vectors with the i-MSFV smoothing stage, the framework is capable of
providing derivative information at any desired accuracy, up to fine-scale precision. The
augmentation is addressed by the implicit differentiation strategy. In the formulation,
we avoid additional complexity involved in computing partial derivatives associated to
the smoothing step by also only approximately solving the derivative state equation as-
sociated to the it. Also, the strategy seamlessly accommodates both the Direct and Ad-
joint methods.

The remaining of this paper is organized as follows. Firstly, we present an algebraic
formulation for the i-MSFV method, suitable for the derivation of the derivative compu-
tation methods. Next, we derive the Direct and Adjoint methods to compute derivative
information, following the i-MSFV framework, when the algorithms are presented. Nu-
merical validation of the method against numerical differentiation is presented. The
numerical experiments conducted show that fine-scale gradient can be reproduced via
the i-MSFV method if the forward simulation converges to a small enough residual to-
lerance. We show numerical evidences that there is a relationship between the gradient
quality and the i-MSFV solution residual by comparing fine-scale gradient and i-MSFV
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gradients and relating the difference between the two with the pressure error norm. Con-
clusion remarks are finally presented in the last section.

6.1. ALGEBRAIC AND ALGORITHMIC DESCRIPTION OF THE MUL-
TISCALE ITERATIVE METHOD

We consider the set of equations that algebraically describes the forward simulation at
the fine scale, without any assumption regarding the underlying physical model, as [19]

gF (x,θ) = 0, (6.1)

where gF :RNF ×RNθ →RNF represents the set of algebraic forward model equations, x ∈
RNF is the state vector (which, for single-phase flow, contains the grid block pressures),
θ ∈ RNθ is the vector of parameters, and the subscript F refers to ‘fine scale’. There are
NF fine-scale cells and Nθ parameters. Eq. (7.10) implicitly assumes a dependency of
the state vector x on the parameters θ, i.e.

x = x (θ) . (6.2)

Once the model state is determined, the observable responses of the forward model are
computed. The forward model responses may not only depend on the model state, but
also on the parameters themselves, and can be expressed as

yF = hF (x,θ) , (6.3)

where hF : RNF ×RNθ → RNy represents the output equations [20]. It is assumed that gF

can be described as
gF (x,θ) = A (θ)x−q (θ) , (6.4)

where A (θ) ∈RNF ×RNF matrix and q (θ) ∈RNF .
A two-stage multiscale (MS) solution strategy [10, 21] can be devised by firstly com-

puting a coarse scale solution

ğ (x̆,θ) = (RAP) x̆− (
Rq

)= Ăx̆− q̆ = 0̆, (6.5)

ğ :RNC ×RNθ →RNC , where NC is the number of coarse grid-blocks, and then an approx-
imated fine-scale solution

g′ (x′, x̆,θ
)= x′−Px̆ = 0, (6.6)

where g′ :RNF ×RNC ×RNθ →RNF .
The so-called prolongation operator P = P (θ) which is an NF ×NC matrix that maps

(interpolates) the coarse-scale solution to the fine-scale resolution. The so-called re-
striction operator R = R (θ) is defined as an NC ×NF matrix which maps the fine scale
to the coarse scale. More information about how these operators are constructed for the
Multiscale Finite Volume (MSFV) method can be found in [12, 21]. Let x̆ ∈ RNC be the
coarse scale solution (NC ¿ NF ), and x′ ∈RNF the approximated fine-scale solution.

The iterative multiscale strategy [22] can be devised by considering versions of Eq.
(7.13) and Eq. (7.14) written in residual form. Let xν−1 be an approximate solution to Eq.
(7.13) at iteration ν−1 and

rν−1 = q−Axν−1 (6.7)
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be the corresponding residual. A multiscale improvement to this approximation can be
devised by writing Eq. (7.14) in residual form as

ğν
(
x̆ν,xν−1,θ

)= Ăx̆ν− r̆ν−1 = 0̆, (6.8)

where

r̆ν−1 = Rrν−1, (6.9)

r̆ν−1 ∈RNC . Here, x̆ν is redefined as the coarse scale correction. Redefining Eq. (7.15), we
have

g′ν (
x′ν, x̆ν,θ

)= x′ν−Px̆ν = 0, (6.10)

such that x′ν now represents the approximate fine-scale correction at iteration ν, i.e.,

xν−1/2 = xν−1 +x′ν (6.11)

is an approximate solution of Eq. (7.13) augmented with the correction from the coarse-
scale calculation.

The approximate solution provided by Eq. (6.11) can be improved if successive smoo-
thing steps are employed [22]. Let

rν−1
σ = q−Axν−1/2 = q−A

(
xν−1 +x′ν

)
, (6.12)

rν−1
σ ∈ RNF , be the smoothed residual obtained from the approximation given by Eq.

(6.11) and

gνσ
(
x′ν,xνσ,xν−1,θ

)= Axνσ− rν−1
σ = 0, (6.13)

a version of Eq. (7.13) written in residual form. Here xνσ ∈RNF is the smoothed fine-scale
correction at iteration ν. The solution smoothing is obtained by solving Eq. (6.13) using
any iterative solver up to a prescribed (loose) tolerance or (small) maximum number of
iterations [13, 22]. The solution for a given iteration ν is, hence, obtained from

gνx
(
xν,x′ν,xνσ,xν−1,θ

)= xν−xν−1 −x′ν−xνσ = 0, (6.14)

where gνx :RNF ×RNF ×RNF ×RNF ×RNθ →RNF .
The MS iterative strategy is fully depicted in Algorithm 11, where ∥ . ∥ represents the

2-norm.
In Algorithm 11, ε and εσ are, respectively, the user-defined tolerances for the outer-

loop and smoothing step. That allows to control the smoothing step as a relative im-
provement starting from the MS solution approximate solution. An investigation of an
optimal relationship between the number of outer loops and the number of smoothing
steps is presented in [13].

6.2. ITERATIVE MULTISCALE GRADIENT COMPUTATION
For the developments that will follow in this section, it is convenient to write the set of
equations that is solved in every iteration, namely Eq. (6.8), Eq. (6.10), Eq. (6.13) and Eq.
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Algorithm 11: Iterative Multiscale Method [22].

Input : A, R, P, q,ε,εσ
Output: Approximate solution for the linear system Ax = q

1 Set x0 = 0
2 for ν= 1,2, ... do
3 Compute rν−1 = q−Axν−1

4 If
∥ rν−1 ∥
∥ r0 ∥ < ε, quit with solution given by x = xν−1

5 Solve x̆ν = Ă−1
(
Rrν−1

)
6 Compute x′ν = Px̆ν

7 Compute rν−1
σ = q−A

(
xν−1 +x′ν

)
8 Iteratively solve xνσ = A−1rν−1

σ until
∥ rν−1

σ −Axνσ ∥
∥ rν−1

σ ∥ < εσ
9 Update xν = xν−1 +x′ν+xνσ

(6.14), in matrix form as
0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I

×


x̆ν−1

x′ν−1

xν−1
σ

xν−1

x̆ν

x′ν

xνσ

xν



−



Rq

0

q

0

= 0

(6.15)

One must note, however, that, in the i-MSFV procedure, Eq. (6.13) is solved only ap-
proximately and, therefore, stricly speaking the equation in the third row of Eq. (6.15)
does not hold. The idea here is to describe the procedure in an algebraic manner, igno-
ring this approximation, in order to facilitate the presentation of the derivative calcula-
tion algorithms in the next section. Once the derivative calculation methods are obtai-
ned under the assumption that the algebraic relations in Eq. (6.15) hold, the same type
of smoothing approach employed in the i-MSFV to resolve high frequency errors will
be used in the solution of the derivative information. This results in a practical semi-
analytical algorithm for derivative calculation in an iterative formulation. Note that a
fully analytical procedure would require calculating the derivative of the smoothing ope-
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rator employed in the i-MSFV (step 8 in Algorithm 11), which can be quite complex, due
to its nonlinear character [23]. The proposed semi-analytical approach also becomes
general and applicable to any iterative procedure used in step 8, regardless of its nature.
A truly analytical derivative method would require the implementation of derivative cal-
culation for each iterative procedure used. More details on the implication of this as-
sumption are discussed in 12.

Considering all equations that must be solved for all iterations ν ∈ {1, . . . , Nν}, they
can be collated in a super-vector [2, 6, 20] fashion as

g (x ,θ) =



ğ1
(
x̆1,x′0,x0

σ,θ
)

g′1
(
x′1, x̆1,θ

)
g1
σ

(
x1
σ,x′1,x′0,x0

σ,θ
)

g1
x

(
x1,x1

σ,x′1,x0,θ
)

ğ2
(
x̆2,x′1,x1

σ,θ
)

g′2
(
x′2, x̆2,θ

)
g2
σ

(
x2
σ,x′2,x′1,x1

σ,θ
)

g2
x

(
x2,x2

σ,x′2,x1,θ
)

...

ğNν

(
x̆Nν ,x′Nν−1,xNν−1

σ ,θ
)

g′Nν

(
x′Nν , x̆Nν ,θ

)
gNν
σ

(
xNν
σ ,x′Nν ,x′Nν−1,xNν−1

σ ,θ
)

gνx
(
xNν ,xNν

σ ,x′Nν ,xNν−1,θ
)



= 0, (6.16)

and the super-state vector defined as

x (θ) =





x̆1

x′1

x1
σ

x1



T

. . .



x̆Nν−1

x′Nν−1

xNν−1
σ

xNν−1



T 

x̆Nν

x′Nν

xNν
σ

xNν



T 

T

. (6.17)

Note that we use bold-italic in the notation to represent super-vectors.
It is discussed in [2, 19, 24] how any derivative information can be efficiently com-

puted from the pre and post multiplication of the sensitivity matrix G, G ∈ RNy×Nθ , by
arbitrary matrices as

WGV =−W
∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
V+W

∂h

∂θ
V, (6.18)

where V (of order Nθ×p) and W (of order m ×Ny ) are arbitrary matrices, defined based
on the derivative information one wants to obtain.
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Eq. (6.18) requires the partial derivative of the model equations w.r.t. the parameters.
From Eq. (7.14) and Eq. (7.15), as discussed in [19], it follows that

∂ğν

∂θ
=

[
∂R

∂θ
(AP)+R

∂A

∂θ
P+ (RA)

∂P

∂θ

]
x̆ν− ∂R

∂θ
q+

−R
∂q

∂θ
+

(
∂R

∂θ
A+R

∂A

∂θ

)
xν−1,

(6.19)

∂g′

∂θ

ν

=−∂P

∂θ
x̆ν, (6.20)

and deriving Eq. (6.13) w.r.t. θ

∂gνσ
∂θ

= ∂A

∂θ
xνσ+

∂A

∂θ
x′ν− ∂q

∂θ
+ ∂A

∂θ
xν−1. (6.21)

Also, from Eq. (6.14), it follows that
∂gνx
∂θ

= 0 (6.22)

For the sake of simplicity and in coherence with the MSFV method used in the nu-
merical experiments, the dependency of R on θ is neglected.

Now, the order the operations in Eq. (6.18) are evaluated define the Direct and Ad-
joint methods. The derivation of both methods will be discussed in the next sections.

6.2.1. THE DIRECT METHOD
If W is factored out in Eq. (6.18), it can be rewritten as

GV = ∂h

∂x
Z+ ∂h

∂θ
V, (6.23)

where

Z =−
(
∂g

∂x

)−1 ∂g

∂θ
V, (6.24)

is solved from (
∂g

∂x

)
Z =−∂g

∂θ
V. (6.25)

The linear system described in Eq. (6.25) can be re-written in a block-wise fashion
for each iteration ν:

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gNν

∂x Nν−1

∂gNν

∂x Nν





Z0

Z1

...

ZNν


=−



∂g0

∂θ
V

∂g1

∂θ
V

...

∂gNν

∂θ
V


, (6.26)
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where, from Eq. (6.8), Eq. (6.10), and Eq. (6.13)

∂gν

∂xν
=


Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I

 , (6.27)

and

∂gν

∂xν−1 =


0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

 . (6.28)

The partitioning lines indicate which matrix and vector terms belong to each iteration.
Substituting Eq. (6.27) and Eq. (6.28) in Eq. (6.26), follows that

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I
0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I

. . .
. . .

0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I



×

(
Z̆0 Z′0 Z0

σ Z0
x Z̆1 Z′1 Z1

σ Z1
x . . . Z̆Nν Z′Nν ZNν

σ ZNν
x

)T
=

−
(
∂ğ0

∂θ
V

∂g′0

∂θ
V

∂g0
σ

∂θ
V 0

∂ğ1

∂θ
V

∂g′1

∂θ
V

∂g1
σ

∂θ
V 0 . . .

∂ğNν

∂θ
V

∂g′Nν

∂θ
V

∂gNν
σ

∂θ
V 0

)T

,

(6.29)
For every iteration, the linear system that must be solved for the coarse-scale equation is

Z̆ν = Ă−1
(
−∂ğν

∂θ
V−RAZν−1

x

)
, (6.30)

for the fine-scale approximate solution equation

Z′ν =−PZ̆ν− ∂g′ν

∂θ
V, (6.31)

and for the smoothing equation

Zνσ = A−1
(
−∂gνσ
∂θ

V−AZ′ν−AZν−1
x

)
. (6.32)
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As pointed out above, it would not be feasible to fully solve Eq. (6.32). In order to obtain
a practical derivative calculation method, the same smoothing procedure used in the i-
MSFV is applied here, i.e., Zνσ is obtained by solving Eq. (6.32) using any iterative solver
up to a prescribed (loose) tolerance or a (small) maximum number of iterations.

Finally,

Zνx = Zν−1
x +Z′ν+Zνσ. (6.33)

Observing that h only depends on x = xNν , Eq. (6.23) can be simplified to

GV = ∂h

∂x
ZNν

x + ∂h

∂θ
V. (6.34)

Now the Direct method for the iterative multiscale gradient computation can be fully
determined. It is depicted in Algorithm 12. Note that references to superscript −1 corre-
spond to zero terms.

Algorithm 12: Post multiplication of G by V via the Direct method.

Input : R, A, P, x ,
∂A

∂θ
,
∂h

∂x
,
∂h

∂θ
, V, εσ

Output: The GV product
1 foreach j = 1,2, ...,n do
2 foreach ν= 0,1, . . . , Nν do

3 Computeβ= ∂P

∂θ
x̆νV., j ; // Algorithm 3, in [19] where m = V., j

4 Computeα= RAβ+R
(
∂A

∂θ
xν−1 − ∂q

∂θ
+ ∂A

∂θ
Px̆ν

)
V., j

5 Solve Z̆ν., j = Ă−1
(
−α−RAZx

ν−1
., j

)
6 Compute Z′ν

., j =−PZ̆ν., j +β
7 Compute

∂gνσ
∂θ

= ∂A

∂θ
xνσ+

∂A

∂θ
x′ν− ∂q

∂θ
+ ∂A

∂θ
xν−1

8 Compute δ=
(
−∂gνσ
∂θ

V., j −AZ′ν
., j −AZx

ν−1
., j

)
9 Iteratively solve Zσν., j = A−1δ until

∥ δ−AZσν., j ∥
∥ δ ∥ < εσ

10 Compute Zx
ν
., j = Zx

ν−1
., j +Z′ν

., j +Zσν., j

11 Compute (GV)., j =
∂h

∂x
Zx

Nν

., j + ∂h

∂θ
V., j

6.2.2. THE ADJOINT METHOD
Now, if V is factored out in Eq. (6.18), it can be rewritten as

WG = Z
∂g

∂θ
+W

∂h

∂θ
, (6.35)
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where

Z =−W
∂h

∂x

(
∂g

∂x

)−1

(6.36)

is solved from

Z
(
∂g

∂x

)
=−W

∂h

∂x
. (6.37)

The linear system described in Eq. (6.37) can be re-written in a block-wise fashion
for each iteration ν as (

Z0 Z1 . . . ZNν

)
×

∂g0

∂x0

∂g1

∂x0

∂g1

∂x1

. . .
. . .

∂gNν

∂x Nν−1

∂gNν

∂x Nν


=−W

∂h

∂x

(6.38)

The structure of Eq. (6.38) shows that it can be solved via back substitution, i.e. the
solution of the gradient information is backward in the iterations.

Substituting Eq. (6.27) and Eq. (6.28) in Eq. (6.38), follows that(
Z̆0 Z′0 Z0

σ Z0
x Z̆1 Z′1 Z1

σ Z1
x . . . Z̆Nν Z′Nν ZNν

σ ZNν
x

)
×

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I
0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I

. . .
. . .

0 0 0 RA
0 0 0 0
0 0 0 A
0 0 0 −I

Ă 0 0 0
−P I 0 0
0 A A 0
0 −I −I I



=

−W
∂h

∂x
(6.39)
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From Eq. (6.39) and recalling that h only depends on x = xNν , the (transposed) linear
system that must be solved to compute Zν is given by


ĂT −PT 0 0
0 I AT −I
0 0 AT −I
0 0 0 I

0 0 0 0
0 0 0 0
0 0 0 0

AT RT 0 AT −I

×



(
Z̆ν

)T(
Z′ν)T(
Zνσ

)T(
Zνx

)T(
Z̆ν+1

)T(
Z′ν+1

)T

(
Zν+1
σ

)T(
Zν+1

x

)T



= 0, (6.40)

for ν 6= Nν, while ZNν is calculated from


ĂT −PT 0 0
0 I AT −I
0 0 AT −I
0 0 0 I

×



(
Z̆Nν

)T(
Z′Nν

)T(
ZNν
σ

)T(
ZNν

x

)T

=



0

0

0

−
(
∂h

∂x

)T

WT


. (6.41)

The equation that computes the "adjoint state" associated with gνx reads

(
Zνx

)T = (
Zν−1

x

)T −AT RT (
Z̆ν−1)T −AT (

Zν−1
σ

)T
,ν 6= Nν, (6.42)

and (
ZNν

x

)T =−
(
∂h

∂x

)T

WT . (6.43)

The "adjoint state" for gνσ is calculated from(
Zνσ

)T = A−T (
Zνx

)T . (6.44)

As discussed for the direct method, in the proposed derivative calculation method, Eq.
(6.44) is solved as a smoothing step only, using any iterative solver up to a prescribed
tolerance or number of iterations.

For g′ν, the adjoint state is given by(
Z′ν)T = (

Zνx
)T −AT (

Zνσ
)T , (6.45)

and finally for ğν

Z̆ν = (
Ă−T )(

PT Z′ν) . (6.46)
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Eq. (6.35) can be written as a sum where each term corresponds to the contribution
of one iteration

WG =
Nν∑
ν=0

(
Z̆ν
∂ğν

∂θ
+Z′ν ∂g′ν

∂θ
+Zνσ

∂gνσ
∂θ

)
+W

∂h

∂θ
. (6.47)

The algorithm can now be fully defined and is presented in 13. Note the use of the
notation (WG)ν to denote the partial sums in Eq. (6.47) and that references to superscript
ν+1 correspond to zero terms.

Algorithm 13: Pre multiplication of G by W via the Adjoint method.

Input : R, A, P, x ,
∂A

∂θ
,
∂h

∂x
,
∂h

∂θ
, W, εσ

Output: The WG product
1 foreach i = 1,2, . . . ,m do
2 foreach ν= Nν, . . . ,1,0 do

3 Set
(
Zνx

)T
i ,. =

−
(
∂h

∂x

)T

WT , if ν= Nν(
Zν+1

x

)T
i ,. −AT

(
Zν+1
σ

)T
i ,. −AT RT

(
Z̆ν+1

)T
i ,. , otherwise

4 Iteratively solve
(
Zνσ

)T
i ,. = A−T

(
Zνx

)T
i ,. until

∥ Zνx −AZσν., j ∥
∥ Zνx ∥ < εσ

5 Compute
(
Z′ν)T

i ,. =
(
Zνx

)T
i ,. −AT

(
Zνσ

)T
i ,.

6 Solve Z̆νi ,. =
(
Ă−T

)(
PZ̆ν+1

i ,.

)
7 ComputeαT = Z̆νi ,. (RA)−Z′ν

i ,.

8 Computeβ=α∂P

∂θ
x̆ν ; // Algorithm 4 in [19] where mT =αT

9 Compute γ= R
∂A

∂θ
Px̆ν−R

∂q

∂θ
+R

∂A

∂θ
xν−1

10 Compute
∂gνσ
∂θ

= ∂A

∂θ
xνσ+

∂A

∂θ
x′ν− ∂q

∂θ
+ ∂A

∂θ
xν−1

11 Update (WG)νi ,. = (WG)ν+1
i ,. +β+ Z̆νi ,.γ+Zνσi ,.

∂gνσ
∂θ

12 Update WG = (WG)0 +W
∂h

∂θ

REMARKS ABOUT THE FRAMEWORK

An alternative formulation for the i-MSFV formulation has been previously proposed
and investigated in [23]. In that work, both the state and the model equation vectors
explicitly account for the smoothing stage. The formulation here proposed is based on
two observations. Firstly, the implementation of the aforementioned variant, although
offers more control over the gradient quality, relies on the ability of computing partial
derivative matrices of smoothing step w.r.t. the parameters. More specifically, it implies
on the knowledge of how the precondition M of the system matrix A is built. For simpler
iterative strategies, e.g. Jacobi, which construction of M can be simple, the computa-



6.3. NUMERICAL EXPERIMENTS

6

129

tion of
∂M

∂θ
is relatively simple. However, simpler iterative methods are usually less effi-

cient. Also, the requirement of knowing the construction of M hampers the utilization of
‘black-box’ type of pre-conditioners. Secondly, it has been shown in [13] that only a li-
mited number of smoothing steps are necessary to result in an efficient i-MSFV solution
strategy. Hence, not much extra control would be achieved.

Note that the linear solvers employed in lines 9 and 4 of, respectively, algorithms 12
and 13, are the same solvers employed in the solution for the forward simulation, using
the same prescribed (loose) tolerance. Hence, the algorithms shares the same computa-
tional advantages and solving for the approximated derivative information arising from
the smoothing step.

The backward algorithm requires storing all intermediate states generated during the
iterations in the forward run. It also requires solving many systems for each backward
time-step. If the iteration process in the forward run goes until machine precision is
reached, then essentially the fully coupled system has been solved to fine-scale preci-
sion and it might be more beneficial to neglect the iteration history and aim to solve the
fine-scale system of adjoint equations in a more efficient way, given that the derivative
computation problem is linear. However, we highlight that, as it has been shown in the
literature [19, 25], approximate gradients computed from approximate solutions are al-
ready sufficient to efficiently/successfully lead the optimization process to the optimal
solution. How accurate this gradient will need to be is dependent on different aspects,
e.g. the optimization algorithm, how early/late the optimization process is, among ot-
hers. The algorithm here proposed has the advantage of controlling the gradient quality,
as will be shown in the numerical experiments presented in the next section.

6.3. NUMERICAL EXPERIMENTS
Given the fundamental nature of the developments here presented, we focus the nume-
rical experiments on the validation of the computation and assessment of the gradient
quality provided by the iterative multiscale method introduced.

Our experiments will be based on the evaluation of the gradient of a misfit objective
function with no regularization term [3]

O (θ) = 1

2
(h (x,θ)−dobs )T C−1

D (h (x,θ)−dobs ) , (6.48)

with a gradient
∇θO = GT C−1

D (h (x,θ)−dobs ) , (6.49)

where CD ∈RNY ×NY is the so-called data covariance matrix. Here, CD will be considered
a diagonal matrix given by [3]

CD =σ2I, (6.50)

where σ2 is the variance of the data measurement error.
In all experiments, the fitting parameters are cell-centered permeabilities. The ob-

served quantity, dobs , is the fine scale pressure at the location of (non-flowing) observa-
tion wells, therefore

∂h

∂x′
= I, (6.51)
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and
∂h

∂x̆
= 0. (6.52)

In all experiments, the standard deviation of the pressure measurement error is σ≈ 0.03
(note that the measurement error is also non-dimensional). This represents a (very accu-
rate) measurement error in the range of those usually employed in synthetic study cases
(see e.g. [3]).

Note that the wells are controlled by bottom-hole pressure, expressed in terms of a
non-dimensional pressure, i.e.,

pD = p −ppr od

pi n j −ppr od
, (6.53)

where pi n j and ppr od are the injection and production pressures, respectively. In all the
experiments, pi n j = 1.0 and ppr od = 0.0, the grid-block dimensions are∆x =∆y =∆z = 1
m and the fluid viscosity is 1.0×10−3 Pa s. In addition, in all the following test cases, well
basis functions are included.

The metric utilized to to assess the i-MSFV gradient quality is the angle between fine-
scale and i-MSFV normalized gradients, i.e.,

α= cos−1 (∇T
θÔF S ∇θÔMS

)
. (6.54)

Here,

∇θÔF S = ∇θOF S

‖∇θOF S‖2
(6.55)

and

∇θÔMS = ∇θOMS

‖∇θOMS‖2
. (6.56)

Also, ∇θOF S and ∇θOMS denote the fine-scale and MS analytical gradients, respecti-
vely. As a minimum requirement, acceptable MS gradients are obtained if α is much
smaller than 90o [25]. And to prove our hypothesis, we particularly interested in obser-
ving the behaviour of the metric as more accurate i-MSFV solutions are computed.

In our i-MSFV implementation, the iterative process is controlled by the outer loop
residual ε and the pre-conditioner smoother error tolerance εσ. The Krylov subspace
biconjugate gradient stabilized method (BiCGSTAB, [26]) is employed in the smoothing
stage.

6.3.1. VALIDATION EXPERIMENTS
Before focusing in the validation, in this section we will validate the iMS-gradient met-
hod against the numerical differentiation method with a higher order, two-sided Taylor
approximation

∇θOi = 1

2δθi

(
O(θ1, · · · ,θi−1,θi +δθi ,θi+1, · · · ,θNθ

)−

O(θ1, · · · ,θi−1,θi −δθi ,θi+1, · · · ,θNθ
)
) (6.57)
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where we consider δ to be a multiplicative parameter perturbation. We define the rela-
tive error as

ε= ||∇θONU M −∇θOi MS ||2
||∇θOi MS ||2

(6.58)

Here∇θONU M is obtained by performing proper amount of iterative multiscale reservoir
simulations required to evaluate equation [6.57]. ∇θOi MS is obtained by employing the
iterative Direct or Adjoint gradient method.

To evaluate the correctness of the proposed iterative gradient computation methods,
as well as their implementation, we investigate the linear decrease of the relative error
ε by decreasing the parameter perturbation δ from 10−1 to 10−4. This investigation is
carried out in two distinct examples. Both have a fine grid of 21×21 grid blocks. We em-
ploy a 7×7 coarsening ratio, giving a 3×3 coarse grid. The reference twin-experiment is
generated with permeability realization number 992. Fig. 6.1 illustrates the fine-, coarse-
and dual-grid cells along with the reference permeability.

(a) MS grids (b) Reference permeability

Figure 6.1: Validation experiments setup. (a) Primal (bold black line), dual (identified by the blue cells) and
fine grids (thin black lines). (b) Reference permeability field used in the twin experiment.

Next we determine the well positions. We use the so-called quarter well spot. Here,
two observation wells are placed near operating wells. The full specifications can be
found in Table [6.1].

Well Fine scale position (I, J) Well Type

INJE (1,1) Injection
PROD (21,21) Production
OBS1 (3,3) Observation
OBS2 (19,19) Observation

Table 6.1: Validation experiments well setup.

The results of this experiment are found in Fig. 6.2. Here, we use a single outer ite-
ration. We use a very tight smoothing tolerance of εσ = 5×10−8 to ensure that the nu-
merical gradient method produces accurate enough gradients. First of all we can see
that the fine-scale numerical gradient method and the iterative MS-gradient methods



6

132
6. ITERATIVE MULTISCALE GRADIENT COMPUTATION FOR HETEROGENEOUS

SUBSURFACE FLOW

are of the same order of accuracy with respect to the perturbation δ, for all different ca-
ses considered. In all experiments, we can see the linear decreasing behaviour of the
relative error values ε as the perturbation δ decreases. Also we may easily see that the
Adjoint and Direct method are equally accurate. They provide the analytical gradient
at the same accuracy. The second experiment indicates the correctness of the method
when it is applied to heterogeneous porous media problems.

10−4 10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log (δ)

lo
g

(ε
)

Direct
Adjoint

(a) Homogeneous

10−4 10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log (δ)
lo

g
(ε

)

Direct
Adjoint

(b) Heterogeneous

Figure 6.2: Validation of the i-MSFV gradient computation method compared with a numerical gradient. (a)
represents the homogeneous test case, while (b) represents the heterogeneous test case.

6.3.2. INVESTIGATION OF I-MSFV CONVERGENCE BEHAVIOUR AND GRA-
DIENT QUALITY

In this investigation, the error metric given by Eq. (6.54) is evaluated for a whole ensem-
ble of heterogeneous permeability fields. The ensemble is generated via the decompo-
sition of a reference permeability “image” using Principal Component Analysis parame-
terization. Figure 6.3 illustrates 4 different permeability realizations from the ensemble.
See [27] for more details.

The fine-scale and coarse grids contain 21 x 21 and 7 x 7 cells, respectively. An inver-
ted five-spot well pattern is employed, whiled four observation wells are placed close to
the production wells. The well configuration is depicted in Table 6.2.

The synthetic observed pressures at the observation well locations are created via the
classical twin-experiment strategy, which permeability field is extracted from the 1,000
geological realizations (the first one in Fig. 6.3).

The robustness of the method is illustrated in Fig. 6.4. It is possible to observe that the
angle between fine-scale gradient and the i-MSFV gradient is smaller the tighter we make
the outer-loop residual tolerance. Moreover, the variance also goes to almost zero as we
set the residual tolerance to 1e−4. For this set of (relatively small contrast permeability
contrast) permeability fields perfect alignment with with fine-scale gradient is reached
if the tolerance is set to 1e−5.

We highlight that the permeability contrast of this ensemble is not high. Next, we
assess the the robustness for the method for geological settings with higher permeability
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Table 6.2: Well configuration for the homogeneous, two-dimensional case.

Well Fine scale position (I, J) Well type
INJE (11, 11) Injection

PROD1 (1, 1) Production
PROD2 (21, 1) Production
PROD3 (1, 21) Production
PROD4 (21, 21) Production

OBSWELL1 (3, 3) Observation
OBSWELL2 (19, 3) Observation
OBSWELL3 (3, 19) Observation
OBSWELL4 (19, 19) Observation

Figure 6.3: Four different permeability realizations from the ensemble of 1,000 members used in the 2D nu-
merical experiments.

contrasts.

6.3.3. ROBUSTNESS WITH RESPECT TO HETEROGENEITY CONTRAST AND

DISTRIBUTION
In order to further explore the point about the robustness of the method w.r.t. heteroge-
neity contrast and distribution, four sets of 20 equiprobable realizations of log-normally
distributed permeability fields with a spherical variogram and dimensionless correlation
lengths of Ψ1 = 0.5 and Ψ2 = 0.02 are generated using sequential Gaussian simulations
[28]. For each set, the variance and the mean of ln(k) are 2.0 and 3.0, respectively, where
k is the grid block permeability. As depicted in Fig. 6.5, for the realizations with a long
correlation length, the angles between the permeability layers and the horizontal axis
are 0o , 15o , and 45o . A patchy (small correlation length) pattern is also considered (Fi-
gure 6.5d). Compared with the previous set, the permeability contrast is much higher in
this case.

The fine-scale and coarse grids contain 100 x 100 and 20 x 20 cells, respectively. The
well configuration utilized in this numerical experiment is depicted in Table 6.3.

The observed data is generated from a twin-experiment associated with (the first)
permeability realization of each set.

In this experiment, ε = 1.0e−6 and εσ = 1.0e−1. The box-plot shown in Fig. 6.7 sum-
marizes the required total number of smoothing steps, for all outer i-MSFV steps.

The grid orientation effect [29] impact on the performance of the i-MSFV method is
clear in this example. The more the heterogeneity orientation is aligned with the flow
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Figure 6.4: Box-plot illustrating the angleα between fine-scale gradient and i-MSFV gradient computed for the
1,000 member ensemble as a function of the outer-loop tolerance error ε. "No iteration" is equivalent to the
MSFV gradient computation presented in [19].

Table 6.3: Well configuration for Case 2.

Well Fine scale position (I, J) Well type
INJE (1, 1) Injection

PROD (100, 100) Production
OBSWELL1 (3, 3) Observation
OBSWELL2 (98, 98) Observation
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(a) 0o (b) 15o (c) 45o (d) Patchy

Figure 6.5: Permeability distribution of four different realizations taken from the sets of 20 geostatistically
equiprobable permeability fields with different correlation angles (a-c). Also, a patchy field (d) with a small
correlation length is considered.
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Figure 6.6: Illustration of gradient quality improvement when an i-MSFV gradient computation strategy is
employed in comparison to a MSFV computation strategy. The x-axis represent the angleα between fine-scale
and the MSFV gradient (illustrated by blue crosses) and the i-MSFV gradient with error tolerance ε = 10−6

(illustrated by orange circles).

orientation, the less is the number of required iterations. Also, in relation to Fig. 6.6, the
more challenging the forward problem, the more challenging it is to compute i-MSFV
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Figure 6.7: Box-plot representing the total number of smoothing iterations required to compute the misfit OF
gradient for the different permeability ensembles with correlation angles 0o , 15o and 45o and with a small
correlation length (patchy).
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gradient in accordance to the fine-scale gradient. Nevertheless, in all cases, almost all i-
MSFV realization gradients are perfectly aligned with fine-scale gradient, demonstrating
the robustness of the method.

6.3.4. SPE-10 COMPARATIVE TEST CASE
Now, we investigate the performance of our method in the SPE-10 comparative case [30],
regarded as challenging model for upscaling [31] and multiscale simulation [32] techni-
ques. Here, we consider the 2-D flow simulation of both top and bottom layer of the
original 3D model, which permeability fields are illustrated in 6.8.

(a) Top layer

(b) Bottom layer

Figure 6.8: SPE-10 comparative test case: top (a) and bottom (b) layer permeability fields.

The fine grid dimensions is 60 x 220, while we employ a 12 x 20 coarse grid in the
MS simulation. A quarter five-spot well setting is considered. Four observation wells are
deliberetely positioned in low permeability regions, surrounded by high permeability
regions. The well positions are described in Table 6.4.

Table 6.4: Well configuration for the SPE-10 comparative test case.

Well Fine scale position (I, J) Well type
INJE (1, 220) Injection

PROD (60, 1) Production
OBSWELL1 (33, 5) Observation
OBSWELL2 (28, 50) Observation
OBSWELL3 (28, 83) Observation
OBSWELL4 (43, 204) Observation

We note that it has been reported (see e.g. [32]) that the MSFV method provides non-
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monotone pressure solutions when solving pressure for the bottom layer (6.8b), which
strategies to improve the MS solution, among them the i-MSFV [33] here considered, are
necessary to address the issue.

In this twin experiment, the reference permeability field used to compute the obser-
vations is considered homogeneous with value equals to 1e-13.

In this experiment, we fix εσ = 1.0e−2 and vary ε = 1.0e−2,1.0e−4,1.0e−6 to evaluate
whether the same convergence behaviour of the i-MSFV gradient toward fine-scale gra-
dient direction is observed.

MSFV 1e-2 1e-4 1e-6
0

20

40

60

ε

α
(o

)

(a) Top layer

MSFV 1e-2 1e-4 1e-6
0

20

40

60

ε

(b) Bottom layer

Figure 6.9: i-MSFV gradient quality (angleα between fine-scale and i-MSFV gradients) as a function of residual
error ε for the SPE-10 top layer (a) and bottom layer (b).

Once again we observe that the method provide accurate gradients, even considering
this challenging geological setting, for both top and bottom layers of the model.

6.3.5. DISCUSSION

Based on the results acquired from the different numerical cases of increasing complex-
ity we demonstrated that our newly introduced method can provide accurate gradients,
up to fine-scale accuracy, if small enough residual tolerances are employed in the i-MSFV
forward simulation. Also, it is shown that only a few i-MSFV/smoothing iterations are
necessary to have reasonably accurate gradients. However, we highlight that, from an
optimization point of view, gradients that are not fully in accordance with fine-scale gra-
dient are necessary. As long as the gradient roughly points to the correct up/downward
direction, the optimization process is able to progress towards the maximum/minimum.
This is particularly true in the early iterations, the more steep region of the objective
function. On the other hand, as the optimization process approach the optimum, more
accurate gradients are required for precise stop criteria evaluation. The convergent be-
haviour of the i-MSFV gradient, which is demonstrated to be directly related to the outer-
residual tolerance, an estimate defined a-priori, should allow for an error control of the
gradient computation, which ultimately would allow control of the optimization process
performance.
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7
MULTISCALE DATA ASSIMILATION

OF SPATIALLY DISTRIBUTED DATA

In data assimilation problems, various types of data are naturally linked to different spa-
tial resolutions (e.g. seismic and electromagnetic data), and these scales are usually not
coincident to the subsurface simulation model scale. Alternatives like up/downscaling of
the data and/or the simulation model can be used, but with potential loss of important
information. To address this issue, a novel Multiscale (MS) data assimilation method is
introduced. The overall idea of the method is to keep uncertain parameters and observed
data at their original representation scale, avoiding up/downscaling of any quantity. The
method relies on a recently developed mathematical framework to compute adjoint gra-
dients via a MS strategy in an algebraic framework. The fine-scale uncertain parameters
are directly updated and the MS grid is constructed in a resolution that meets the obser-
ved data resolution. This formulation therefore enables a consistent assimilation of data
represented at a coarser scale than the simulation model. The misfit objective function is
constructed to keep the MS nature of the problem. The regularization term is represented
at the simulation model (fine) scale, whereas the data misfit term is represented at the ob-
served data (coarse) scale. The computational aspects of the method are investigated in a
simple synthetic model, including an elaborate uncertainty quantification step, and com-
pared to up / downscaling strategies. The experiment shows that the MS strategy provides
several potential advantages compared to more traditional scale conciliation strategies:
1) expensive operations are only performed at the coarse scale; 2) the matched uncertain
parameter distribution is closer to the ‘truth’; 3) faster convergence behaviour occurs due
to faster gradient computation; and 4) better uncertainty quantification results are obtai-
ned. Clearly, larger-scale test are required to further quantify these potential benefits of MS
data assimilation. The proof-of-concept example considered in this paper demonstrates
how to consistently formulate such a gradient-based MS data assimilation strategy in an

The material presented in this chapter has been submitted to the Journal of Computational Geosciences (sub-
mitted) and in the proceedings of the European Conference on the Mathematics of Oil Recovery (ECMOR) XVI
(2018) [1].
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algebraic framework which allows for implementation in available computational plat-
forms.



7

145

Subsurface simulation models should be conditioned to field data, whenever possible,
in order to reduce uncertainty in the model parameters and hence increase forecasting
reliability. Well production data (time-series of fluid rates and pressures), seismic sur-
veys and well testing pressure data are some instances of field data that can be assimi-
lated in order to better estimate the uncertain parameters. In addition, spatially distri-
buted observations (e.g. seismic, electromagnetics) provide valuable information that
can considerably improve the assimilation process [2]. For instance, over the past de-
cades, an increasing number of seismic monitoring cases has been observed [3–8]. One
of the main advantages of time-lapse seismic data is its ability to approximate the pres-
sure/fluid distribution inside the reservoir. This may considerably help to gain insight
about the subsurface fluid displacement process. Moreover, it may help to characterize
the formation, either via improved static geological modeling, or via dynamic assimila-
tion (inverse modeling). One hurdle in the process of assimilating spatially distributed
information is the fact that, more often than not, the observed data and the forward mo-
del are described at different spatial scales. In fact, it is an open question at which scale
data should best be assimilated: the simulation model scale or the observed data scale
[2].

The relevancy of addressing the multiscale nature of inverse problems is observed in
the recent literature on the topic. A collection of articles about multiscale forward mo-
deling strategies and multiscale challenges associated to inverse problems can be found
in [9]. In [10], the authors propose a multiscale data assimilation scheme based on the
decomposition of the objective function so that the error covariance can be estimated
for distinct spatial scales. A multiscale parameter field discretization designed to reduce
the dimensionality of the inverse problem via an adaptive grid refinement is presented
in [11]. The impact of the scale dissimilarity in terms of observation information con-
tent and the parameter space size on the ensemble collapse in ensemble based methods
[12] has been addressed by [13–15] via upscaling/homogenization techniques [16, 17].
The authors also benefit from coarse scale simulations to improve the inverse problem
computational efficiency. In [18] a multiscale method is proposed which accounts for
microscale features by assuming that they can be represented by a low-dimensional pa-
rameterization. Nonetheless, the aforementioned works are based on the assumption
that the fine-scale uncertain parameters can be homogenized and represented at a co-
arser scale.

On the other hand, data assimilation strategies based on multiscale (MS) simulation
[19, 20] have also been developed. MS methods are efficient simulation strategies ca-
pable of solving the flow problem at a coarser grid, while being capable of accurately
representing fine-scale heterogeneities. An adjoint-based multiscale finite volume met-
hod for computation of sensitivities has been presented in [21] and later extended to
time-dependent [22] single-phase flow in porous media. More recently, a general frame-
work for the computation of multiscale gradients has been introduced in [23], with an
extension to multiphase flows [24]. The latter two are based on a general framework for
derivative computation, whose algebraic nature does not rely on any assumption regar-
ding the nature of the parameters, observations, or objective function type. Also, in [25]
a multiscale inversion technique is presented based on the Markov-chain Monte Carlo
method that also relies on the generalized multiscale finite element method [26].
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Despite this body of work found in the in the inverse modeling literature, when one
is interested in assimilating spatially distributed data, there is an implicit assumption
that the observed data is described at the same scale of the parameters is usually made.
Actually, assuming one is not interested in changing the scale of the model parameter
description, some treatment must be employed in the change of the observed data or the
forward model response scale. The literature indicates that up/downscaling of the ob-
served data to the forward model scale, as a pre-processing step with respect to the data
assimilation process, is the most employed strategy in practice [27–29]. In the present
work, we are particularly interested in addressing the spatial scale dissimilarity between
observations and the discretized forward model. In many applications, there is no ob-
servability of the spatially distributed data (due to limitations in the acquisition process;
e.g. in terms of resolution) at the parameter resolution which is necessary to accurately
describe important physical phenomena.

Another important aspect to be considered in data assimilation and uncertainty quan-
tification (UQ) studies is the fact that those rely on computationally demanding algo-
rithms. Different techniques such as Monte Carlo (MC) methods [30], Ensemble Kalman
Filter (EnKF) and derivations [12, 31, 32] and randomized maximum likelihood (RML)
[33] are developed to perform those studies. A comparison between the different techni-
ques is provided by [34]. Regardless of the technique, a common feature they share is
the necessity of performing many forward model runs in order to reasonably sample
the posterior probability distribution of the reservoir uncertain parameters. As already
mentioned, upscaling [16, 17], can build faster, reasonably accurate forward models that
can speed up the sampling process. However, to accurately represent some physical
phenomena, e.g. mixing, diffusion, fluid fronts, or compositional capillary effects, fine-
scale resolution is of utmost importance. Hence, the ability of keeping the high fidelity
description of geological parameters is fundamental for an adequate reservoir characte-
rization. Partial-differential-equation-(PDE)-constrained optimization techniques can
be employed in the solution of the inverse problem. In this case, it is well known that
gradient-based algorithms are the most efficient ones, mainly if combined with efficient
gradient computation. And it is also well known that gradients obtained with the adjoint
method [35–38] are the most efficient and accurate ones.

The objective of this work is to develop and demonstrate an inverse modelling met-
hod that, at the same time, (1) is computationally efficient, (2) addresses the scale dis-
similarity issue, with minimum loss of information, and (3) is capable of updating the
highest fidelity model description. To this end, we exploit multiscale (MS) simulation
strategies in order to (1) speed-up the forward simulation, while preserving fine-scale
geological features, (2) efficiently compute gradient information and (3) seamlessly con-
ciliate model and observed data scales. For a comprehensive review on the recent deve-
lopments associated with MS methods applied to reservoir simulation, see [10].

The remainder of this paper is organized as follows. Firstly, a brief overview about
how data assimilation is approached from a Bayesian perspective is presented. Next, we
state our target forward model, consisting of incompressible single-phase flow in hete-
rogeneous porous media. Also, we revisit the MS solution of the flow equation in a purely
algebraic presentation. Thereafter, we discuss the data assimilation problem setup, fo-
cusing on the challenges of assimilating spatially distributed data. More specifically, we
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discuss alternatives on how to conciliate data and model scales. Then, we introduce our
multiscale data assimilation strategy, consisting of, basically, a MS objective function
and a MS gradient computation strategy. The method here employed is largely based on
the MS gradient computation strategy discussed by [23]. We compare the different data
conciliation methods and our newly introduced method based on a synthetic 2D case.
We focus our experiments on both the maximum a-posteriori (MAP) estimate and UQ
via the RML method. A discussion about the results and the challenges that the method
can encounter are presented next. Finally, a summary of the developments and results,
as well as future research perspectives, are presented.

7.1. PRELIMINARIES

7.1.1. PROBLEM STATEMENT

Let Nd denote the number of space dimensions. Let Ω ⊂ RNd be the problem domain
with boundary ∂Ω. Let ∈RNd be an arbitrary space position. Let ∈RNd be an unit normal
vector to ∂Ω. Our analysis focuses on phenomena governed by an elliptic PDE equation,
denoted by g , in the form

(
g
)

∇· (()∇ ()) = q () , ∈Ω
∇ () = Γ, ∈ ∂ΩΓ
() =Υ, ∈ ∂ΩΥ

(7.1)

where ∂Ω = ∂ΩΥ ∪ ∂ΩΓ, ∂ΩΥ ∩ ∂ΩΓ = ;, = () is the variable of interest, q = q () is the
sink/source term, and is the heterogeneous uncertain coefficient which we aim to esti-
mate via the assimilation of real system observations. We assume has no separation of
scales, hence, homogenization techniques would lead to unavoidable approximations
to the effective property.

Let
y = h (, ) (7.2)

be the observable model responses, then the inverse problem

= h (, )+ε (7.3)

can provide an estimate for given the description of the real observation errors ε. We
assume that , the real system data, can only be observed at a resolution that is coarser or
equal to the resolution at which is described.

7.1.2. INVERSE PROBLEM AS A PDE CONSTRAINED OPTIMIZATION
We base our developments on a Bayesian framework. Let Ny be number of observable
responses, Nθ be the number of model parameters and Nx the number of primary (state)
variables. According to Bayes’ theorem, the posterior probability distribution function
(PDF) can be computed as

f (θ|dobs ) = f (dobs |θ) f (θ)

f (dobs )
, (7.4)



7

148 7. MULTISCALE DATA ASSIMILATION OF SPATIALLY DISTRIBUTED DATA

where θ ∈RNθ is the vector of model parameters and dobs ∈RNy is the vector observable
responses. If the a priori PDF of the uncertain parameters, f (θ) , and the measurement
errors from the observations are assumed Gaussian, it can be shown that the conditional
a posteriori distribution is given by [39]

f (θ|dobs ) ∝ exp
(−O

(
y (x,θ) ,θ

))
, (7.5)

where the objective function O ∈R is given by

O
(
y (x,θ) ,θ

)=1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2

(
y (x,θ)−dobs

)T C−1
D

(
y (x,θ)−dobs

)
.

(7.6)

In the above equations, y ∈ RNy is the vector of model responses (outputs), x ∈ RNx is
the state vector, θpr i or ∈RNθ is the prior mean, Cθ ∈RNθ×Nθ is the parameter covariance
matrix and CD ∈RNy×Ny is the covariance matrix of the measurement errors.

The solution of Eq. (7.6) can be stated as a PDE-constrained optimization problem
as [40]

minimize
θ

O
(
y (x,θ) ,θ

)
subject to g (x,θ) = 0,

θ ∈ [θmi n ,θmax ] ,

(7.7)

where g : RNx ×RNθ → RNx represents the set of forward model equations and θmi n ∈
RNθ ,θmax ∈ RNθ are, respectively, the parameter lower and upper bound vectors. The
efficient solution of Eq. (7.7), resulting from the discretization of Eq. (7.1), requires
gradient-based methods [41] combined with efficient gradient computation methods.
For this purpose, by applying the chain rule to Eq. (7.6) it follows that

∇θO
(
θ,y (x,θ)

)= (
dO

dθ

)T

=
(
∂O

∂θ

)T

+GT ∇yO,

(7.8)

where G ∈RNy×Nθ is the so-called sensitivity matrix, representing the sensitivity of the re-
sponses w.r.t. the parameters. Efficient gradient methods are analytical, and more speci-
fically in inverse problems where the number of parameters is greater than the number
of output functionals, the adjoint method is the most accurate, efficient method [40].
The efficient computation of the right-multiplication of G by an arbitrary vector (as in
Eq. (7.8)) via the adjoint method is discussed in [37].

7.1.3. RANDOMIZED MAXIMUM LIKELIHOOD (RML)
RML [33] is an approximated sampling method for UQ, which obtains the j -th sample of
the posterior PDF distribution by solving Eq. (7.7) for a given sampleθuc, j from a normal
distribution N (θpr i or , Cθ) and a given sample dobs uc, j from N (dobs , CD ). Therefore,
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Eq. (7.6) can be re-written for O j
(
y (x,θ) ,θ

)
as

O j
(
y (x,θ) ,θ

)=1

2

(
θ−θuc, j

)T C−1
θ

(
θ−θuc, j

)+
1

2

(
y (x,θ)−dobs uc, j

)T C−1
D

(
y (x,θ)−dobs uc, j

)
.

(7.9)

Hence, a minimization problem has to be solved for every j -th posterior PDF sample one
wants to estimate. This is only feasible with efficient gradient computation methods, as
described in the previous section.

7.2. THE FORWARD MODEL
The set of discretized equations that describes the forward simulation at the fine scale
can be algebraically expressed as [23]

gF (x,θ) = 0, (7.10)

where gF : RNF ×RNθ → RNF represents the set of algebraic forward model equations
resulting from the numerical discretization of Eq. (7.1) over a fine grid ∈ RNF , x ∈ RNF is
the state vector and the subscript F refers to ‘fine scale’. There are NF fine-scale cells. Eq.
(7.10) implicitly assumes a dependency of the state vector x on the parameters θ, i.e.

x = x (θ) . (7.11)

Once the model state is determined, the observable responses of the forward model are
computed. The forward model responses may not only depend on the model state, but
also on the parameters themselves, and can be expressed as

yF = hF (x,θ) , (7.12)

where hF : RNF ×RNθ → RNy represents the output equations [42]. It is assumed that gF

can be described as
gF (x,θ) = A (θ)x−q (θ) , (7.13)

where A = A (θ) ∈ RNF ×RNF represents the elliptic discrete operator and q = q (θ) ∈ RNF

is a vector of source terms and boundary conditions.

7.2.1. MULTISCALE SIMULATION
A multiscale (MS) solution strategy can be algebraically devised [43, 44] by firstly com-
puting a coarse scale solution

ğ (x̆,θ) = (RAP) x̆− (
Rq

)= Ăx̆− q̆ = 0̆, (7.14)

where-after an approximate fine-scale solution is formed as

g′ (x′, x̆,θ
)= x′−Px̆ = 0. (7.15)

Let x̆ ∈ RNC be the coarse scale solution (NC ¿ NF ), and x′ ∈ RNF the approximated
fine-scale solution. The prolongation operator P = P (θ) is an NF ×NC matrix that maps
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Figure 7.1: Multiscale finite volume grids and illustration of interfacial connections between cells used in the
wirebasket ordering.

(interpolates) the coarse-scale solution to the fine-scale, where NC is the number of co-
arse grid-blocks. The restriction operator R = R (θ) is defined as an NC ×NF matrix which
maps the fine scale to the coarse scale.

In multiscale methods, the scaling operators are constructed based on locally sup-
ported basis functions. Different strategies to build MS basis functions are available
in the literature [19, 20, 26, 45]. In this work, we employ the multiscale finite volume
(MSFV) method [20]. However, we emphasize, as will be clear from the formulation, that
the framework allows the employment of different MS methods, as long as they can be
expressed in terms of R and P. Next we discuss the MSFV basis function construction.

CONSTRUCTION OF SCALING OPERATORS VIA THE MSFV METHOD

The MSFV discretization relies on two overlapping coarse grids, namely the primal and
dual coarse grids, which are superimposed on a given fine grid. The grids are illustrated
in Fig. 7.1. The primal-coarse grid contains NC control volumes Ω̆i , i ∈ {1, . . . , NC }, and
the dual-coarse grid contains ND local domains Ω̃ j , j ∈ {1, . . . , ND }.

The MSFV basis functions are constructed based on local solutions of the elliptic
governing equation Eq. (7.1) for every Ω̃ j , with no right-hand-side and subject to special
boundary conditions [20, 44]

∇·
(
()∇ϕi

j ()
)
= 0, ∈ Ω̃ j

∇∥ ·
(
()∇ϕi

j ()
)
∥ = 0, ∈ ∂Ω̃ j

ϕi
j (k ) = δi k , ∀k ∈ {1, ..., NC },

(7.16)

where ϕi
j is the basis function associated with the vertex i in Ω̃ j , the subscript ∥ repre-

sents the projection along ∂Ω̃ j , δi k is the Kronecker delta, and k ∈ {1, . . . ,2Nd } denotes
the vertices in Ω̃ j (Nd is the spatial dimensionality of the problem – 1, 2 or 3).

Assuming a finite volume discretization of Eq. (7.1), the basis functions, and hence
the prolongation operator, can be constructed directly from the given fine-grid linear
system matrix as [46]

P =P

A−1
I I AI E Ã−1

EE AEV

−Ã−1
EE AEV

−IV V

 , (7.17)
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after A in Eq. (7.13) is re-ordered in a wirebasket ordering [47] as

g =P

gI

gE

gV


=

P

AI I AI E 0
AE I AEE AEV

0 AV E AV V

P T

P

xI

xE

xV

−P

qI

qE

qV

 ,

(7.18)

where P ∈ RNF ×NF is a permutation matrix that reorders from wirebasket to natural or-
dering, AI I ∈ RNI ×NI , AI E ∈ RNI ×NE , AE I ∈ RNE×NI , AEE ∈ RNE×NE , AEV ∈ RNE×NV , AV E ∈
RNV ×NE , AV V ∈ RNV ×NV are, respectively, the sub-matrices of A corresponding to the
interior-interior, interior-edge, edge-interior, edge-edge, edge-vertex, vertex-edge and
vertex-vertex cell connections and NI , NE and NV are, respectively, the total number of
interior, edge and vertex cells in the fine grid. The interfacial connections are illustrated
in Fig. 7.1. Also, gI ∈RNI , gE ∈RNE , gV ∈RNV , xI ∈RNI , xE ∈RNE , xV ∈RNV , and qI ∈RNI ,
qE ∈RNE , qV ∈RNV are, respectively, the model equations, and the state and source term
sub-vectors corresponding to the interior, edge and vertex cells.

Note that the construction of P requires setting AV E = 0, AE I = 0, and AV V = IV V
and likewise the corresponding entries AEE , resulting in ÃEE , which is equivalent to the
localization assumptions required to build the basis functions as stated in Eq. (7.16) [46].

If the FV method is used in the fine-scale system discretization, the restriction opera-
tor can be defined as the sum of the equations of all the fine cells contained in the coarse
cell, i.e. [46]

Ri , j =
{

1, if Ωi ⊂ Ω̆c

0,otherwise.

(
c = 1, . . . , NC ; f = 1, . . . , NF

)
, (7.19)

hence, in combination with Eq. (7.17), establishing the Multiscale Finite Volume (MSFV)
method. Also, a Galerkin restriction operator could be used by making

R = PT ,

and hence, in combination with Eq. (7.17), establishing the MS Finite Element (MSFE)
method. While the MSFV is conservative by construction, the MSFE provides monotone
solutions.

7.3. DATA ASSIMILATION PROBLEM SETUP

7.3.1. ADJOINT GRADIENT COMPUTATION
The maximum a posteriori probability (MAP, [40]) of the uncertain parameters is obtai-
ned by solving the optimization problem stated in Eq. (7.7), with the objective function
(OF) given by Eq. (7.6) (and using Eq. (7.12)), the gradient which is given by

∇θO = C−1
θ

(
θ−θpr i or

)+(
dh

dθ

)T

C−1
D (h (x,θ)−dobs )

= p+GT m,

(7.20)
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where
p = C−1

θ

(
θ−θpr i or

)
, (7.21)

and
m = C−1

D (h (x,θ)−dobs ) , (7.22)

m ∈ RNY . Following an implicit differentiation strategy [37, 38], the sensitivity matrix G
can be obtained from the total derivative of Eq. (7.12) with respect to θ as follows [23]:

G = dh

dθ
= ∂h

∂x

dx

dθ
+ ∂h

∂θ
=−∂h

∂x

(
∂g

∂x

)−1 ∂g

∂θ
+ ∂h

∂θ
, (7.23)

where
∂g

∂x
∈RNF ×RNF ,

∂g

∂θ
∈RNF ×RNθ ,

∂h

∂x
∈RNy ×RNF ,

∂h

∂θ
∈RNy ×RNθ are, respectively,

partial derivative matrices obtained from the derivation of Eq. (7.10) and Eq. (7.12) with
respect to x and θ.

The product GT m = (
mT G

)T
can be solved at costs proportional to one backward

simulation, regardless the number of model parameters, via the adjoint method, by pre-
multiplying Eq. (7.23) by the transpose of Eq. (7.22), as discussed in [37]. By defining

z =
(
∂g

∂x

)−T (
∂h

∂x

)T

m, (7.24)

it follows that

mT G =−zT ∂g

∂θ
+mT ∂h

∂θ
. (7.25)

7.3.2. CONCILIATION OF SPATIALLY DISTRIBUTED DATA AND FORWARD MO-
DEL SCALES

In the data assimilation of spatially distributed observations, Eq. (7.6) assumes that the
observations dobs and the model responses h are described at the same scale. This is
often not the case. Due to resolution issues and acquisition limitations, observations are
often not available at the scale of the model responses. Therefore, if no MS simulation is
available, either dobs must be downscaled to the simulation scale or h must be upscaled
to the observation scale.

The downscaling of observed data can be expressed as

dobs
′ = D ˘dobs , (7.26)

where D is an NF ×NC downscaling operator, ˘dobs ∈ RNC is the coarse scale observation
and d′ ∈RNF is the interpolated observation at the fine scale.

Additionally, one must be able to describe the data covariance matrix CD , originally
at (coarse) observation scale, at the fine scale. This can be achieved by setting

C′
D = DC̆D DT , (7.27)

where C′
D is the covariance matrix represented at the fine scale. It is simple to show that

Eq. (7.27) holds because of the linearity of the expectation operator given the Gaussian
assumptions. From Eq. (7.26), the expectation of dobs

′ is given by

E [dobs
′] = DE [ ˘dobs ]. (7.28)
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The covariance of dobs
′ can then be computed as (Emerick, A. A., personal communica-

tion, March 23, 2018)

Cov[dobs
′] = E [(dobs

′−E [dobs
′])(dobs

′−E [dobs
′])T ]

= E [D( ˘dobs −E [ ˘dobs ])( ˘dobs −E [ ˘dobs ])T DT ]

= DE [( ˘dobs −E [ ˘dobs ])( ˘dobs −E [ ˘dobs ])T ]DT

= DCov[ ˘dobs ]DT

(7.29)

Alternatively, one could upscale the model responses as

˘dobs = Uh, (7.30)

where U is an NC ×NF upscaling operator, and solve Eq. (7.6) by setting dobs = d̆obs . One
advantage over the dowscaling strategy is that CD is kept at its original scale.

We highlight that we only consider strategies that change observed data / response
scale and do not consider strategies that change the original uncertain parameters des-
cription scale. This is because we aim to update the most accurate description of the
model parameters, so that important fine-scale features (crucial to describe the physical
phenomena) are not lost.

7.4. MULTISCALE DATA ASSIMILATION
An MS solution strategy provides a coarse-scale solution that can, theoretically, be re-
presented at any resolution coarser than the fine-scale resolution. In data assimilation
studies, where the spatially distributed data resolution is known and is coarser than the
model resolution, the MS grid can be chosen to be at the same resolution as the assi-
milation grid. This allows spatially distributed model responses to be computed at the
same scale as the observed data. Next, we devise a multiscale data assimilation proce-
dure based on this feature. This allows us, instead of manipulating the data and/or the
uncertain parameters, to accurately compute responses at the observed data scale.

Therefore, a multiscale objective function is introduced by re-writting Eq. (7.6) as

OMS
(
h̆,θ

)=1

2

(
θ−θpr i or

)T C−1
θ

(
θ−θpr i or

)+
1

2

(
h̆ (x̆,θ)− ˘dobs

)T
C−1

D

(
h̆ (x̆,θ)− ˘dobs

)
,

(7.31)

where h̆ is the response at the (coarse) observation scale and x̆ is the coarse state variable,
computed by Eq. (7.14). Hence, the misfit term is computed at the coarse scale – the
scale where data is assimilated – and the regularization term is described at the fine scale
– the scale at the model parameters are described.

7.4.1. MULTISCALE GRADIENT COMPUTATION
As discussed in [23], the state vector can be described as a combination of both sets of
primary variables at the fine and coarse scales, i.e.,

x =
[

x̆
x′

]
, (7.32)
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and, similarly, the model equations can be represented as a combination of the equati-
ons at both scales, i.e.,

g (x,θ) =
[

ğ
g′

]
= 0. (7.33)

The definition of the state vector as in Eq. (7.32) is a key aspect of this development. It
allows the description of the state not only at the fine scale, but also at the coarse scale.
The simulator responses y obtained from the multiscale method are represented as

y̆ = h̆ (x,θ) , (7.34)

the sensitivity matrix G can be computed in a multiscale fashion as

G′ =
(
∂h̆

∂x̆
+ ∂h̆

∂x′
P

)
(RAP)−1R

(
∂A

∂θ
P+A

∂P

∂θ

)
x̆−

∂h̆

∂x′
∂P

∂θ
x̆+ ∂h̆

∂θ
.

(7.35)

Eq. (7.35) allows capturing derivative informations of the coarse response, namely
∂h̆

∂x̆

and
∂h̆

∂θ
.

In a similar way that MS methods represent (interpolate) the coarse scale solution
at the fine scale, the partial derivative of the prolongation operator w.r.t. the model pa-

rameters,
∂P

∂θ
in Eq. (7.35), allows the representation of the model parameters at the

fine-scale, even though the primary variables are not solved at the model scale.
The gradient of Eq. (7.31) w.r.t. the model parameters at fine scale can be computed

as

∇θOMS = C−1
θ

(
θ−θpr i or

)+(
d h̆

dθ

)T

C−1
D

(
h̆ (x̆,θ)− ˘dobs

)=
C−1
θ

(
θ−θpr i or

)+G′T m̆,

(7.36)

where
m̆ = C−1

D

(
h̆ (x̆,θ)− ˘dobs

)
. (7.37)

The product G′T m̆ = (
m̆T G′)T

can be solved at costs proportional to one coarse-scale
backward simulation, regardless of the number of model parameters, via the MS adjoint
method presented in [23], by pre-multiplying Eq. (7.35) by the transpose of Eq. (7.36),
defining

z̆ = (RAP)−T

(
∂h̆

∂x̆
+ ∂h̆

∂x′
P

)T

m̆, (7.38)

and rearranging the terms, it follows that

m̆T G′ = z̆Tα+β∂P

∂θ
x̆+m̆T ∂h̆

∂θ
, (7.39)
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where

α= R
∂A

∂θ
Px̆, (7.40)

and

β= zT RA−m̆T ∂h̆

∂x′
. (7.41)

SCALING OPERATORS PARTIAL DERIVATIVE COMPUTATION

The partial derivative computation of MSFV basis functions was originally discussed in
[21] and recast in an algebraic, general mathematical framework expressed in terms of P

in [23]. An efficient algorithm that computes the product β
∂P

∂θ
x in a backward-fashion

was originally introduced in [23]. Here, we recast this computation in terms of the wire-

basket [46] submatrices of A and
∂g

∂θ
.

[Partial derivative of MSFV prolongation operator w.r.t. θ] Let A ∈ RNF ×NF be the
elliptic discrete operator (Eq. (7.13)), P ∈ RNF ×NF the permutation matrix that reorders

from wirebasket to natural ordering, and
∂gϕ

∂θ
∈RNF ×Nθ the partial derivative of Eq. (7.13)

w.r.t. θ, then
∂P

∂θ
, the partial derivative of the MSFV prolongation operator w.r.t. θ can

be computed as

∂P

∂θ
=P


A−1

I I

(
AI E Ă−1

EE

∂gϕE
∂θ

− ∂gϕI
∂θ

)

−Ă−1
EE

∂gϕE
∂θ

0

 , (7.42)

where
∂gϕI
∂θ

∈RNI ×Nθ and
∂gϕE
∂θ

∈RNE×Nθ are the partial derivative submatrices from
∂gϕ

∂θ
∈

RNF ×Nθ after the wirebasket reordering of Eq. (7.13) and the application of the MSFV lo-
calization assumptions and boundary conditions.

Proof 1 The basis function can be computed from Eq. (7.18), after applying the MSFV
localization assumptions and applying the appropriate boundary conditions

P T gϕ
(
x =ϕ,θ

)=
gϕI

gϕE
gϕV

=
AI I AI E 0

0 ÃEE AEV

0 0 IV V

[]
−

0
0
0

 , (7.43)

whose partial derivative w.r.t. θ, reads

∂gϕI
∂θ
∂gϕE
∂θ
∂gϕV
∂θ

=


∂AI I

∂θ
+ ∂AI E

∂θ
∂ÃEE

∂θ
+ ∂AEV

∂θ
0

 . (7.44)
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The partial derivative of Eq. (7.17) w.r.t. θ is

∂P

∂θ
=P



A−1
I I


−∂AI E

∂θ
−

AI E

(
Ă−1

EE

(
−∂ÃEE

∂θ
− ∂AEV

∂θ

))
−∂AI I

∂θ


Ã−1

EE

(
−∂ÃEE

∂θ
− ∂AEV

∂θ

)
0


. (7.45)

Substituting Eq. (7.44) in Eq. (7.45), it follows that

∂P

∂θ
=P


A−1

I I

(
AI E Ã−1

EE

∂gϕE
∂θ

− ∂gϕI
∂θ

)

−Ã−1
EE

∂gϕE
∂θ

0

 .

Hence, likewise the MSFV prolongation operator can be fully determined directly
from the fine-scale system matrix, while the partial derivative of the prolongation ope-
rator w.r.t. the model parameters can fully determined from both A and the partial deri-

vative matrix
∂g

∂θ
.

Note that, even though Proposition 7.4.1 indicates the important ability of determi-

ning
∂P

∂θ
from

∂g

∂θ
, it does not provide enough information about how to efficiently com-

pute this partial derivative. It is discussed in [23] how to efficiently compute the left/right

multiplication of
∂P

∂θ
in the context of, respectively, the direct and adjoint methods. Al-

gorithm 4 in that paper presents and efficient way to compute the product β
∂P

∂θ
x̆, at

costs proportional to the number of coarse cells and independent of the number of pa-
rameters, suitable to be used in combination with Eq. (7.39) for its efficient solution.

7.5. NUMERICAL EXPERIMENTS
We focus our analysis on incompressible, single phase-flow. In our experiments, a sim-
ple synthetic model is considered as proof of concept (see Fig. A.5). It is a 2D inverted
five-spot model, consisting of a 21×21 equidistant Cartesian mesh with grid block sizes
of 33.3× 33.3× 2 m. The reservoir porosity is constant and equal to 0.3. A fluid dyna-
mic viscosity of 0.5× 10−3 Pa.s is considered. The wells are controlled by bottom-hole
pressure (BHP). The injection pressure is 35 MPa and the production wells’ BHP is 25
MPa.

The uncertainty around the absolute permeability distribution is represented by an
ensemble of different permeability realizations. The ensemble is generated via the de-
composition of a reference permeability ‘image’using Principal Component Analysis (PCA)
parameterization [48]. Fig. A.8 illustrates four different permeability realizations from
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Figure 7.2: The synthetic inverted five-spot model used in the numerical experiments. One of the 1,000 per-
meability realizations is shown.

Figure 7.3: Four different permeability realizations from the ensemble of 1,000 members of the toy model
numerical experiment.

the ensemble of 1,000 equiprobable permeability realizations. In order to focus on the
MS aspect of the data assimilation process, we assume that pressures can be approxima-
tely extracted from a time-lapse seismic survey [49–53]. However, it is important to note
that this is not a limitation. If one is interested to perform the data assimilation in diffe-
rent domains, say, in the impedances domain [2], the additional complexity involved is
the appropriate incorporation of seismic forward model equations in the forward model
set of equations [54] and, consequentially, the computation of the appropriate partial
derivative information necessary to compute Eq. (7.20).

The ‘true’observed data, ptr ue , is obtained from a twin experiment, where a MS si-
mulation is run using a permeability field randomly chosen from an ensemble of equi-
probable model realizations. The coarse observed data is the coarse scale pressure x̆
computed with Eq. (7.14), while the (hypothetical, for comparison purposes) fine obser-
ved data is computed with Eq. (7.13). The pressure measurement errors are considered
to follow a spherical covariance model with a 1% standard deviation in all experiments
and correlation lengths equal to 1 grid-block size. Noise is added to the data by setting

pobs = ptr ue +
√

CD z, (7.46)

where z is sampled from N (µ = 0, σ2 = 1) and
p

CD is computed from a Cholesky de-
composition. More details on the procedure can be found in [40]. The resulting noisy
observed coarse and fine pressure fields are illustrated, respectively, in Fig. 7.4d and
Fig. 7.4c.

We consider the observation grid (Fig. 7.4b) where the observed data is represented
to be three times coarser than the model grid (Fig. 7.4a) in the x and y directions. Hence,
it has 7×7 grid-blocks with grid block size 99.9×99.9×2 m.
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(a) Model grid (b) Observation grid

(c) Fine-scale observation (d) Coarse-scale observation

Figure 7.4: Schematic representation of the model (fine) grid (a) and observation (coarse) grid (b). Also, the
(noisy) pressure data distribution observed at the fine-grid (hypothetical complete observations) (c) and at the
actual observation grid resolution (d).
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The covariance matrix Cθ is computed from the ensemble of realizations as

Cθ = 1

Ne −1

(
Θ−µeT )(

Θ−µeT )T
, (7.47)

whereΘ is the NF×Ne matrix whose j -th column is given by the member of the ensemble
θ j , j ∈ {1, ..., Ne },

µ= 1

Ne

Ne∑
j=1
θ j , (7.48)

is the ensemble mean, and e = [1, ...,1]T is a vector of ones of size Ne ×1. The prior is
taken to be the ensemble mean,

θpr i or =µ. (7.49)

In the fine scale data assimilation strategy, an adjoint model [37] is used to calculate the
OF gradient given by Eq. (7.6). In the multiscale strategy, we employ the MS adjoint
gradient computation depicted in Algorithm 4 in [23]. Because the spatially distributed
observed data at the coarse scale is the primary variable itself, in Eq. (7.31) we have

∂h̆

∂x̆
= Ĭ, (7.50)

where Ĭ is the NC ×NC identity matrix, and

∂h̆

∂x′
= 0. (7.51)

when pressure is observed at the coarse scale, and

∂h

∂x
= I, (7.52)

when pressure is observed at the fine-scale.

Also, because in this case the relationship between the primary variables and the
outputs is not a function of the parameter, it follows that

∂h̆

∂θ
= 0̆, (7.53)

and
∂h

∂θ
= 0. (7.54)

We utilize the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
as presented in [41], as it is the most efficient algorithm to deliver optimization results
for the solution of Eq. (7.7) [55].
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7.5.1. CONSTRUCTION OF SCALING OPERATORS

OBSERVED DATA DOWNSCALING

Two different approaches on how to deal with the scale dissimilarity via downscaling are
considered here. In the first one, we downscale the response measured at the coarse
scale by setting

D = RT . (7.55)

where R is the MSFV restriction operator. This strategy can be viewed as a constant in-
terpolation of the coarse scale observations at the fine-scale model scale.

In the second strategy, we build a multiscale prolongation operator Ppr i or = P
(
θpr i or

)
,

whose columns are comprised of local multiscale basis functions [20], and prolong (in-
terpolate) the coarse scale information by setting

D = Ppr i or . (7.56)

Note that Ppr i or is static and can be viewed as a MS downscaling operator.
In the aforementioned strategies, Eq. (7.6) can be used by making dobs = dobs

′ and
a conventional gradient-based optimization to solve Eq. (7.7) is run at the model (fine)
scale.

MODEL RESPONSE UPSCALING

Two upscaling strategies are considered. In the first one, a simple arithmetic average is
applied by setting

U = M, (7.57)

where,

M
(
c, f

)=


1

NC
F

, if f ∈Ωc

0, otherwise
. (7.58)

In Eq. (7.58), NC
F is the number of fine grid cells within a given coarse cell C , Ωc is the

c-th primal coarse grid domain and f is the fine-grid cell index.
In the second upscaling strategy, we again build a prolongation operator Ppr i or ba-

sed on θpr i or and upscale the observed response by setting

U = P†, (7.59)

where the † symbol denotes the Moore-Penrose pseud-inverse. Here, we construct P†

from its truncated singular value decomposition (TSVD) [56]

P† =ΣΛ∆T = [
Σp Σ0

][
Λp 0
0 0

][
∆T

p

∆T
0

]
=ΣpΛp∆

T
p (7.60)

where Σ ∈ RNF ×NF and ∆ ∈ RNC×NC are orthonormal matrices, Λ ∈ RNF ×NC is a diago-
nal matrix containing the singular values of P, and the subscript p indicates the first p
columns of the matrices corresponding the p non-zero singular values.
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7.5.2. MAXIMUM a posteriori PROBABILITY (MAP) ESTIMATE
In this section we assess the performance of computing the MAP estimate via the newly
introduced method in comparison the to down/upscaling strategies discussed before.
Therefore, six different data assimilation strategies are considered, namely:

1. fine-scale data assimilation with constant prolongation downscaling of observed
pressure (Eq. (7.55));

2. fine-scale data assimilation with prior MS prolongation downscaling of observed
pressure (Eq. (7.56));

3. fine-scale data assimilation with arithmetic average to upscale the simulated pres-
sure (Eq. (7.58));

4. fine-scale data assimilation with pseudo-inverse of MS prolongation to upscale
the simulated pressure (Eq. (7.59));

5. multiscale data assimilation strategy introduced in this work;

6. fine-scale data assimilation with complete observations available at the model
(fine) scale.

The latter, a hypothetical situation, is considered as the reference case, as if enough
resolution was available to resolve the observed property at the (fine) model scale. Also,
note that MS operators are used in strategies 1, 2 and 4. For comparison purposes, we
consider the objective function normalized by the number of data points Nd . Further-

more, according to [39, 40], an acceptable data match is achieved when
O

Nd
≈ 0.5.

Firstly, we present a qualitative discussion based on the MAP conditioned permeabi-
lity fields and final matched pressure fields in comparison to the respective ’true‘permeability
and pressure fields. The results for the fine-scale, complete observation data assimila-
tion exercise is illustrated in Fig. 7.5, followed by the results from the downscaling and
upscaling data conciliation strategies, represented, respectively, by Fig. 7.6 and Fig. 7.7.
Lastly, the results of the data assimilation using our MS data assimilation strategy are
illustrated in Fig. 7.8.

From a qualitative point of view, the matched responses from all data assimilation
strategies, except the responses obtained by the constant interpolation downscaling (Fig. 7.6g)
and arithmetic average upscaling (Fig. 7.7g), are fairly similar to the observed data. The
pressure matches are both in accordance with the fine-scale pressure match (Fig. 7.5f)
and with the ‘true’ pressure field. However, the simpler up/downscaling strategies result
in somewhat poorer matches around the injection well.

Also, it is possible to observe that, from the point of view of the conditioned per-
meability fields, all assimilation strategies were capable of recovering the main features.
Furthermore, not much difference is noted in the results when comparing the upsca-
ling to the downscaling matched permeability fields. In order to better assess the quality
of the parameter matches, we investigate the permeability distribution from the diffe-
rent matching exercises. Therefore, the density functions of the matched permeability
fields are plotted in Fig. 7.9. It is possible to note that, even though the initial permeabi-
lity distribution is considerably far from the true model (due to the rather homogeneous
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(a) ptr ue (b) ppr i or (c) pmatch

(d) ktr ue (e) kpr i or (f) kmatch

Figure 7.5: Data assimilation results, fine-scale data assimilation, complete, fine-scale observations. In the
first row, the (a) true, (b) initial and (c) matched pressure fields are shown. In the second row, (d) the ‘true’, (e)
the prior and (f) the conditioned permeability fields are shown.

(a) ptr ue (b) ppr i or (c) pmatch , RT (d) pmatch , P

(e) ktr ue (f) kpr i or (g) kmatch , RT (h) kmatch , P

Figure 7.6: Data assimilation results, fine-scale data assimilation, downscaling of data observations. In the
first row, the (a) true, (b) initial, (c) matched using the constant interpolation (RT ) and (d) matched using the
MS prolongation operator (P) pressure fields are shown. In the second row, (d) the ‘true’, (e) the prior, (g) the
conditioned using RT and (g) the conditioned using P permeability fields are shown. The color maps follow
the color bar found in Fig. 7.5

.
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(a) ptr ue (b) ppr i or (c) pmatch , M (d) pmatch , P†

(e) ktr ue (f) kpr i or (g) kmatch , M (h) kmatch , P†

Figure 7.7: Data assimilation results, fine-scale data assimilation, upscaling of model responses. In the first
row, the (a) true, (b) initial, (c) matched using arithmetic average (M) and (d) matched using the MS prolon-
gation operator pseudo-inverse (P†) pressure fields are shown. In the second row, (d) the ‘true’, (e) the prior,
(g) the conditioned using M and (g) the conditioned using P† permeability fields are shown. The color maps
follow the color bars found in Fig. 7.5.

(a) ptr ue (b) ppr i or (c) pmatch

(d) ktr ue (e) kpr i or (f) kmatch

Figure 7.8: Data assimilation results, multiscale data assimilation. In the first row, the (a) true, (b) initial and
(c) matched pressure fields are shown. In the second row, (d) the ‘true’, (e) the prior and (f) the conditioned
permeability fields are shown. The color maps follow the color bars found in Fig. 7.5. Note that MS assimilation
provides a fine-scale improved permeability field (f) while the observation is at coarse scale.
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prior used in the MAP), the complete observation, fine-scale strategy is capable of repro-
duction of the reference permeability density function. But, more importantly, the MS
data assimilation, with coarse scale only observations, can also provide a permeability
field whose density function is consistent with the ‘true’permeability density function.
Also, it can be noted that the permeability fields obtained by the other strategies are also
consistent with the ‘true’permeability distribution.
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Figure 7.9: Permeability conditioned marginal PDFs for the different data assimilation strategies.

We also analyse the optimization convergence behaviour shown in Fig. 7.10 for quan-
titative assessment of the match. The fine-scale reference data assimilation reaches a
normalized OF value very close to the ideal value of 0.5, while all other data assimi-
lation strategies reach values relatively higher, with the simpler constant interpolation
and arithmetic average scaling strategies reaching slightly higher OF values. It is impor-
tant to note that the optimization behaviour is remarkably similar for all up/downscaling
strategies, as well as for the MS data assimilation strategy here presented.

7.5.3. UNCERTAINTY QUANTIFICATION

A RML is run for 100 randomly chosen permeability realization from the 1,000 members
ensemble (Fig. A.8), for each data conciliation strategy. In order to estimate the conditi-
oned permeability distribution for each permeability realization, a LBFGS optimization
is run for each chosen member. The results for the exercise are shown in Fig. 7.11.

It can be observed that the permeability marginal PDFs conditioned to the pressure
data obtained by the MS data assimilation here introduced (Fig. 7.11e) are closer to the
reference fine-scale conditioned PDFs (Fig. 7.11f). Additionally, by observing the spread
of the conditioned PDFs obtained from the RML employing the up/downscaling strate-
gies, one can note that the MS strategy is also capable of somewhat better representing
the uncertainty.
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Figure 7.10: Optimization performance of the data assimilation utilizing the 6 different scale conciliation stra-
tegies as presented in this section. Note that the FS represent the hypothetical case where both observed data
and model parameters are at fine scale (i.e. item 6 on our list of strategies).

7.5.4. DISCUSSION
Firstly, even though all data assimilation strategies were capable of achieving similar
MAP estimates, one should note that the synthetic case used in the experiments has
low permeability contrasts. Moreover the five-spot configuration is very simple and the
well spacing is relatively dense compared to the characteristic size of the heterogenei-
ties. Nonetheless, given the good results observed in the employment of our MS data
assimilation strategy, we believe that the performance of the method in more challen-
ging scenarios is worth investigating. A systematic study of the effects of the underlying
geological complexity on the MS assimilation procedure is necessary.The MS ability to
preserve fine-scale features is expected to allow for more detailed description of the fine-
scale uncertain parameters. Additionally, we emphasize the importance of the proper re-
presentation of the measurement errors at different scales. One must take into account
the data redundancy in the case of downscaling the observed data to the model scale.

One could consider a third, fine-scale only, MS-based approach, based on the recon-
struction of the prolongation operator at every optimizer iteration γ, so that changes in
the permeability during the optimization process are also captured by the basis functi-
ons update. Hence, one could write

d′γ
obs = Pγ ˘dobs , (7.61)

where Pγ is the reconstructed prolongation operator at every optimization iteration γ.
This can only be achieved at the expense of the reconstruction of the basis function every
γ . We performed studies (not reported here) where we neglect the partial derivative of
P w.r.t θ but we did update P. Similar results were obtained when P is not updated and
only based on the prior (Eq. (7.56)), as reported here. Moreover, it is discussed in [23]
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Figure 7.11: RML probability density functions for 100 permeability realizations randomly chosen from the
original ensemble of 1,000 realizations (see Fig. A.8). The curves in red represent the prior permeability dis-
tributions, while the curves in green the conditioned permeability distributions. (a) Constant interpolation
downscaling (RT ), (b) arithmetic average downscaling (M), (c) MS prolongation operator downscaling, (d) MS
prolongation operator upscaling P†, (e) the multiscale data assimilation strategy and (f) the reference fine-
scale.
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how to efficiently compute ∂P/∂θ. This can be an alternative to further take advantage
of MS principles even when a MS forward simulation is not available.

In this work we employ a two-stage MS simulation strategy, and consequently a two-
stage MS gradient computation strategy. We make the primal MS coarse grid to be coin-
cident to the observation grid resolution. However, the idea of the MS data assimilation
can be extended to seamlessly address data available at multiple scales, or even consi-
der one, or multiple MS grid resolution(s) for assimilation purposes only and different
one(s) for the forward simulation. To this end, multilevel multiscale strategies [57] could
be applied. Following the same multilevel multiscale strategy, data acquired at different
scales (e.g. electromagnetics, high resolution close to the well, along with seismic data,
low resolution in the vertical direction) could also be seamlessly and simultaneously be
assimilated.

Following our studies, and also reported by [23] and [21], it can be noted that MSFV
gradients can be less accurate for highly heterogeneous media. In addition, one may
want to have error control on the MSFV gradient quality for practical applications. Furt-
hermore, LBFGS proposes under/overshooting updates, mainly close to the wells [58],
which also configures a challenging scenario for the MSFV gradient computation. These
challenges can be addressed from the optimization point of view or from the gradient
computation perspective. The former can be considered via data misfit damping or pa-
rameter constraints [58]. The latter by improved MS gradient quality, via more accurate
MSFV solutions [59, 60]. An iterative MSFV gradient computation, following the solu-
tion strategy proposed by [60] could allow for additional error control over the gradient
computation.
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8
CONCLUSIONS & RESEARCH

PERSPECTIVES

In Section 8.1 a detailed discussion about the findings obtained on each of the chapters
presented in this thesis is presented. In Section 8.2, it is discussed how the developments
here presented helped to address, or at least further understand, the research questions
posed in 1.1. Finally, research directions that could be pursued based on our findings are
discussed in 8.3

8.1. CONCLUSIONS
From the developments presented in each chapter, the following conclusion can be drawn.

Chapter 2 Two basic algorithms are necessary to address the adjoint and direct met-
hods. The complexity relies on how the adjoint states are computed, which are delegated
to functors. These functors can be specialized according to the forward model and type
of responses involved in the derivative computation problem.

Chapter 3 An efficient, general framework that addresses the derivative information
computation of sequentially coupled system of equations is presented. The flexibility of
the framework is illustrated in small data assimilation and life-cycle optimization stu-
dies in which the forward model’s flow and transport equations are sequentially cou-
pled. In the applications, it is shown how different objective functions (i.e. NPV and
least-squares misfit), parameters (i.e. BHPs and grid-block permeabilities), and respon-
ses (i.e. well rates and grid-block pressures) can be accounted for in the computation
without any change in the framework. Numerical results of a simple synthetic model
demonstrates that the framework can be successfully employed to optimization studies.
It is shown that the sequential derivative computation methods deliver similar results
compared to the classical FIM methods. Furthermore, the computational asymptotic
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analysis of the presented algorithms shows that the sequential derivative computation
methods are more computationally efficient when compared to FIM methods.

Chapter 4 A Multiscale gradient computation strategy was developed based on a gene-
ral algebraic formulation that does not depend on a particular objective function. This
was possible by recasting the calculation of derivatives as multiplying a sensitivity matrix
and its transpose with arbitrary matrices. The proposed framework is capable of provi-
ding different types of gradient information. Such flexibility allows the employment of
the framework to any reservoir management study that requires gradient information.
Also, the formulation naturally provides both Direct and Adjoint Methods. It was shown,
via an asymptotic analysis, that the MS gradient computation strategy can be considera-
bly more efficient than the fine scale strategy. Due to the algebraic nature of the formu-
lation, the presented strategy can be applied to any MS (and multilevel) methodology.

The accuracy of the developed MS gradient computation strategy is studied for a
set of examples with increasing complexity. The investigations show that the sources
of inaccuracies in the MS solution (e.g. localization assumptions) also result in inaccu-
racies in the gradient computation. However, fortunately, strategies to improve the MS
solution also improve the MS gradient accuracy. Another important observation is that
greater angles between MS and fine scale gradient vectors are associated with small va-
lues of the gradient norms. Because small gradient norms indicate a weak association
between parameters and responses, such differences are typically not very relevant in
optimization. Lastly, in our example, the gradient directions, and therefore the conver-
gence behavior of the gradient-based optimization procedure, were similar when either
the fine scale or the MS strategy was applied. All this indicates that the presented met-
hod allows for accurate, yet less computationally expensive, gradient computations that
can be successfully utilized in reservoir management studies.

Extension of the presented algorithm to include iterative multiscale strategies [1] is
important for real-field applications. The key component of this extension is to develop
an a-priori estimate of the quality of the gradients. Furthermore, for multiphase simula-
tions, the introduced augmented state vector should also include the reconstruction of
conservative field [2]. These are subjects of ongoing research.

Chapter 5 We present a framework to efficiently compute gradient information requi-
red by computer-assisted history matching studies via an Adjoint, multiscale formula-
tion. No assumption regarding the type of HM parameter or observed data is made du-
ring the derivation of the method. Following an IMPES coupling solution strategy, we
show how to derive the Adjoint formulation of sequentially coupled simulation strate-
gies. In the formulation of the forward model equations, the flow equation is solved by
a MS strategy, while the transport equation is solved in the fine-scale. No assumption
is made with respect to which MS method is employed other than that it has to be des-
cribed in terms of restriction and prolongation operators. A conservative velocity field
is reconstructed from the inexact MS pressure field via the solution of Neumann local
problems based on the mass-conservative fluxes at the coarse-grid block boundaries.
The equations associated with the aforementioned steps are rigorously incorporated in
the adjoint formulation by algebraically keeping them in the set of forward model equa-
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tions. Only relatively small linear system of equations must be solved, given that they
arise from either the independent, local basis function system of equations, the (also
independent) local problems solved for the conservative velocity field computation, or
the MS coarse system. This fact grants the method efficiency and opportunity for taking
advatage of parallel, high-performance computing environments. The partial derivative
matrices required by the Adjoint formulation are computed via Automatic Differentia-
tion. The validation numerical experiments show, in a straightforward, fit for purpose
setup, that all the complexities involved in the computation of MS gradients of a multip-
hase flow problem are approprietely captured by the formulation. The expected accu-
racy of the method is demonstrated when compared to fine-scale gradient.

Chapter 6 We introduce iterative multiscale gradient computation methods based on
the iterative Multiscale Finite Volume (i-MSFV) simulation method. By firstly re-casting
the i-MSFV method in an algebraic framework, we derive a flexible, multi-purpose deri-
vative computation framework which accounts for the Direct and Adjoint methods. The
computational efficiency of the methods is discussed and it is shown that they share ad-
vantages equivalent to the i-MSFV method. The methods are validated via numerical
experiments against numerical differentiation. It is demonstrated that the newly intro-
duced methods address the challenges encountered by the MSFV gradient computation,
specifically associated with high heterogeneity contrast. Accurate gradients, as accurate
as fine-scale gradient computation, are obtained for challenging geological models, pre-
senting high permeability contrasts (e.g. the SPE-10 comparative test case). It is shown
that accurate gradients are obtained if the i-MSFV model converges to an error tolerance
of 1.0e−6. However, we highlight that such accuracy is not necessary and only a few
i-MSFV/smoothing iterations are necessary to acquired reasonably accurate gradients.
Further control of the gradient quality via an a-priori error estimate along the optimi-
zation process should allow for a computationally efficient optimization method. More
specifically, a less accurate gradient estimate usually suffice in the early optimization
iterations, when the objective function convergence is more steep, while more accu-
rate gradients are required in the more flat regions for a more precise stopping criterion.
Hence, the determination of an a-priori error estimate should be a key development.

Chapter 7 Our numerical experiments indicate that the presented method has the po-
tential to outperform strategies that rely on upscaling/downscaling of model responses
/ observed data. An important result is the ability of our MS data assimilation strategy
to closely reproduce the reference fine-scale uncertainty quantification results. Appli-
cations in more complex cases, and for different types of assimilation problems, should
give more insights about the computational and methodological advantages of MS data
assimilation, as indicated by the results of the simple example addressed in our study.
Our paper demonstrates how to consistently formulate such MS data assimilation stra-
tegy, in particular in combination with the use of adjoint-based techniques to efficiently
obtain MS gradient information, and in an algebraic framework which allows for imple-
mentation in existing computational platforms.
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Appendix A In this paper we presented a computationally efficient multiscale based
stochastic optimization (MS-StoSAG) workflow, and applied it to two synthetic test ca-
ses. Deterministic and robust optimization experiments were performed to illustrate
that significant improvements in objective function values (10-15% relative to the re-
active control strategy) are attainable in a computationally efficient manner. The valida-
tion of our results highlights the accuracy of the multiscale forward simulation models.
The results from our experiments show that an approximately five-times speedup can
be achieved with scope for even higher speedups with our proposed workflow. We have
illustrated that our MS-StoSAG workflow can achieve computationally efficient results,
which improves the applicability of robust life-cycle optimization.

8.2. ADDRESSING THE RESEARCH OBJECTIVES
In Section 1.1, the hypotheses explored during the PhD research were posed as research
questions. Now, it is discussed how the different developments in the scope of this thesis
contributed to mature the answers to those questions.

1. How can the optimization algorithms applied in the CLRM workflow benefit from
MS-based forward models?

The forward simulation required by the data assimilation and optimization loops
in CLRM management studies represented in Fig. 1.1 benefit from the efficient
solution of the flow equation provided by the MSFV method. The sequential cou-
pling strategy discussed in chapter 3 allows for the employment of the efficient
solution strategies, more suited for the different underlying physics.

The MS-StoSAG method introduced in A exploits the fact that basis function can
be built only once for the entire optimization process. A offline/online type of
strategy, via the i-MSFV method, is employed to compensate for the fact that basis
function are not reconstructed/updated. The workflow casts an efficient strategy
for robust life-cyle optimization. Remakable speed-ups (4-5 times) are achieved
in such types of studies.

2. Can we design improved data assimilation and optimization strategies based on
multiscale simulation principles?

Novel, efficient derivative computation strategies for gradient-based optimization
algorithms have been introduced. The analytical derivative methods explores a
wide spectrum of MS simulation aspects, ranging from the more fundamental
ones, discussed in Chapter 4, to the multiphase aspects, as discussed in Chapter 5
and how to further improve the MS gradient to any desired accuracy (Chapter 6).
The careful analysis of the algorithms’ complexity demostrates the computational
efficiency potential of the methodologies.

3. Can multiscale methods address the multi-level nature of inverse problems?

A novel multiscale data assimilation strategy was introduced in Chapter 7. Its po-
tential to robustly address the simulation model and spatially distributed data
scale conciliation is specially highlighted in an uncertainty quantification study,
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when we show its superior performance when compared to the alternative down
/ upscaling strategies. Futhermore, based on the mathematical framework pre-
sented in that chapter, a multiscale data assimilation framework can be devised as
illustrated in Fig. 8.1.
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Figure 8.1: Multiscale inversion framework. In the picture G stands for the geo-model grid and Ğ stands for
the primal coarse grid.

8.3. RESEARCH PERSPECTIVES
Evaluate the Developments in More Complex Models Even though some complex ge-
ological scenarios have been considered as test cases throughout this thesis, most of the
developments were tested in relatively simple models. The applicability of the develo-
pements here presented have to be tested in more realistic simulation scenarios. More
complex fluid models, realistic grids (in terms of size and topology/geometry), well dis-
tribution and production planning & scheduling can be not only a challenge for multis-
cale simulations, but will, consequently, represent challenges for the MS-based strate-
gies presented in this thesis. Fortunately, the developments here presented are general
enough to account for such complexities. However the actual performance of them will
only be known after their application to real models. This would require developments
on both the mathematical and the computational modeling aspects. Some of them are
considered below.

An Unified Framework for Derivative Computation of System Responses The general
algebraic framework presented in Chapter 2 has been shown to be flexible to accomo-
date many different derivative computation requirements throughout this thesis. The
mathematical framework could be independently deployed, i.e. as a library, and serve as
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a computational model for the analytical derivative computation of partial differential
equations in general. In other words, the developments here presented are not limited
to reservoir managment applications, but could, theoretically, be readily employed is
different areas of science, e.g. metheorology, oceanography, system & control, among
others.

Efficient, Flexible Partial Derivative Computation The utilization of analytical deri-
vative methods (specifically the adjoint method) have been hindered by the implemen-
tation complexity and due to its lack of flexibility. Even though the framework presented
in Chapter 2 represents an important step towards an easier implementation of adjoint
models, the computation of the required partial derivative matrices requires special at-
tention. Even though AD provides improved flexibiliy, current implementations are not
efficient. Modern linearization strategies, like OBL [3], should be investigated as flexible,
efficient alternatives for the partial derivative matrices computations.

Efficient Multiscale Derivative Computation for Multiphase Flows & Accounting for
More Physics The developments presented in Chapter 5 consider transport to be sol-
ved in the fine scale, after the necessary conservative velocity field reconstruction. Even
though it is advantageous to represent transport at this scale so that important pheno-
mena are accurately represented, efficient transport solution could be achieved if done
at the coarse scale. In that direction, the Adaptive Dynamic Multiscale (ADM) [4] met-
hod could be considered as an efficient, yet accurate alternative for the derivative com-
putation for multiphase flows, including compositional simulations [5]. Furthermore,
more physics should be accounted for in the forward simulation and the MS derivative
computation strategies assessed for those scenarios. For instance, because compressible
flows are efficiently addressed by the i-MSFV method [6], the developments presented in
Chapter 6 could be readly applied for such types of simulations.

Simultaneous Assimilation of Data Represented in Multiple Scales Even though the
multiscale data assimilation methodology introduced in Chapter 7 has been applied in
the data assimilation of coarse-scale observations, nothing prevents the framework to be
employed in the smulteneous assimilation of data observed at different scales. For in-
stance, eletromagnetics can provide high-resolution observations near to the wellbore,
while time-lapse seismic provides global pressure / fluid distribution estimations. The
two-level MS assimilation strategy here presented could readily address the challenge
of joint assimilation of both types of observations. Furthermore, a multilevel MS sim-
lulation strategy could allow not only for multiple observation scales, but also allow for
the simultaneous separation of gelogical scale, dynamic simulation scale and multiple
observation scales.

Accounting for Modeling Errors in Data Assimilation Studies Even though modelling
errors are acknowledged to occur in the simulation of subsurface processes, those are
not account in inverse modelling (i.e. parameter estimation) studies. Usually, only the
errors associated with the measurements are properly accounted for. More specifically,
it is discussed in Section 1.4 that modeling errors are, if not neglected, only empirically
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accounted for (see Eq. (1.18) in that section). A methodology to account for modelling
errors associated with upscaling of subsurface models could be devised based on mul-
tiscale simulation principles.

Multiscale as efficient simulation strategy for uncertainty quantification Randomi-
zed maximum likelihood (RML), as employed in Chapter 7, relies on gaussianity assump-
tions, whereas Monte Carlo techniques aim to accurately sample the posterior probabi-
lity distribution. Even though the former is efficient when combined to efficient deri-
vative computation streategies, the latter is computationally very expensive. Two-state
Markov-chain Monte Carlo (McMC) [7, 8] and Multi-level Monte Carlo (MLMC) [9] have
been proposed to reduce the computational cost of the sampling by evaluating less com-
putationally demanding forward models when selecting/discarding models. Multilevel
multiscale methods could be an alternative to efficiently and accurately decide on the
trial models. Furthermore, the derivative calculation here proposed can provide an ef-
ficient way to improve trial models. With the evolution of computational power, Monte
Carlo methods are becoming more feasible, while techniques to reduce the model eva-
luation cost is also of interest.

Adjoint-aided Improved Multiscale Forward Simulation The Lagrange multipliers,
obtained directly from either the Lagrangian or indirectly as shown in 2 can be inter-
preted as sensitivities of the objective function value with respect to deviations from the
constraints. In case of adjoining the (nonlinear) porous media flow equations with La-
grange multipliers, this implies that the multipliers are the sensitivities of the objective
function with respect to the residuals of the flow equations, i.e., to the residual error that
remains after approximately solving the nonlinear equations with the aid of Newton-
Rapson iteration. This fact could be investigated as a mean for improved multiscale-
simulation-based optimization, e.g. for adaptive convergence control of the nonlinear
solver, adaptive convergence control of the iterative fine-scale smoothing step, or for
adaptive coarsening criteria in the multiscale partitioning of the computational dom-
ain.
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A
AN EFFICIENT ROBUST

OPTIMIZATION WORKFLOW USING

MULTISCALE SIMULATION AND

STOCHASTIC GRADIENT

We present an efficient workflow that combines multiscale (MS) forward simulation and
stochastic gradient computation (MS-StoSAG) for the optimization of well controls app-
lied to waterflooding under geological uncertainty. A two-stage iterative Multiscale Finite
Volume (i-MSFV), a mass conservative reservoir simulation strategy, is employed as the
forward simulation strategy. MS methods provide the ability to accurately capture fine
scale heterogeneities, and thus the fine-scale physics of the problem, while solving for the
primary variables in a more computationally efficient coarse-scale simulation grid. In the
workflow, the construction of the basis fuctions is performed at an offline stage and they
are not reconstructed/update throughout the optimization process. Instead, inaccuracies
due to outdated basis functions are addressed by the i-MSFV smoothing stage. The Sto-
chastic Simplex Approximate Gradient (StoSAG) method, a stochastic gradient technique,
is employed to compute the gradient of the objective function using forward simulation
responses. Our experiments illustrate that i-MSFV simulations provide accurate forward
simulation responses for the gradient computation, with the advantage of speeding up
the workflow due to faster simulations. Speed-ups up to a factor of five on the forward
simulation, the most computationally expensive step of the optimization workflow, were
achieved for the examples considered in the paper. Additionally, we investigate the impact
of MS parameters such as coarsening ratio and heterogeneity contrast on the optimization.
The combination of speed and accuracy of MS forward simulation with the flexibility of
the StoSAG technique allows for a flexible and efficient optimization workflow suitable for
large-scale problems.

The material presented in this appendix has been published in the Journal of Petroleum Science and Engineer-
ing 172, (2019) [1] and in the proceedings of the SPE Reservoir Simulation Conference (RSC) 2017 [2].
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We consider the life-cycle optimization of hydrocarbon production by manipula-
ting well controls (pressure, rates or valve settings) for a given configuration of wells,
a process also known as long-term production optimization or recovery optimization.
In particular we consider robust optimization of strategies which maximize an objective
function over an ensemble of reservoir model realizations to capture the effect of geo-
logic uncertainty [3]. The most efficient optimization techniques for this purpose are
gradient-based with gradients computed using the adjoint method [4]. However, the
implementation of an adjoint is time-consuming and requires access to the simulator
source code. This has led to a growing popularity of stochastic gradient-based optimiza-
tion techniques which are easy to implement and flexible to use with different reservoir
simulators as well as a different control types. One of the most used stochastic gradient-
based techniques is Ensemble Optimization (EnOpt) which was first introduced by [5].
EnOpt uses a number of perturbed control vectors around a known control strategy
where the number of perturbations is much lower than the total number of elements
in the control vector (i.e. the number of well controls times the number of control time
periods over the life time of the reservoir). The associated objective function values of
these perturbed controls are used to approximate the gradient using linear regression.

For optimization of a single reservoir model, i.e. deterministic optimization, the
computational effort to estimate the gradient increases with the number of perturbed
controls to be evaluated. However, it is shown in [5] that for optimization over multi-
ple reservoir models, i.e. for robust optimization, pairing one reservoir model to one
perturbed control strategy leads to a similar computational efficiency as gradient-based
techniques. An improved version of EnOpt for robust optimization was introduced in [6],
called Stochastic Simplex Approximate Gradient (StoSAG), which is theoretically more
sound and produces higher-quality gradients compared to EnOpt. Inspite of the at-
tractive computational efficiency many high fidelity simulations need to be run within
the optimization workflow. For real field cases this can be computationally demanding.
The forward simulation is the most time consuming aspect of any robust optimization
workflow. Thus it is essential to improve the forward simulation performance. Addi-
tionally, it was shown in [7] that, although the one-to-one pairing is computationally
efficient, higher quality StoSAG gradients can be achieved by using a larger number of
perturbations. Thus improving the computational efficiency of individual forward si-
mulations could also be used to achieve higher quality StoSAG gradients by simulating a
larger number of perturbed control strategies which will consequently improve the over-
all optimization process.

An increase in computational efficiency for robust optimization workflows is usually
achieved by two general approaches. The first approach is to use a subset of model reali-
zations for the optimization which reduces the number of simulations needed, while the
second approach is by using faster simulation models. An overview of different appro-
aches and workflows for using a subset of model realizations along with the advantages
and disadvantages of these methods can be found in [8]. One of the ways to improve
the computational efficiency of forward simulation models in optimization is through
the use of Reduced Order Models (ROM) [9–11]. Alternatively, there, has been an incre-
ase in the applicability of different simulation strategies to speed up the computational
process. One such technique is the Multiscale (MS) method [12, 13]. MS methods aim
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to solve the equations at a coarser scale, yet preserving the fine scale description. MS
methods have increasingly been demonstrated as an efficient and accurate technique
for reservoir simulation [14–17]. For an overview of important developments in MS met-
hods we refer to [18]. Among these developments, an important one in the scope of the
present work is the development of iterative MS methods, more specifically the iterative
Multiscale Finite Volume method (i-MSFV) [19, 20]. Due to the localization assumptions
utilized in the construction of the MS basis functions, the solution obtained via an MS
scheme is not as accurate as the fine-scale solution. However, these discrepancies can
be resolved if an iterative scheme is employed. Moreover, because i-MSFV provides a
fine-scale error estimate and an approximate, however fully conservative velocity field,
it allows for both accurate and efficient simulation with control of the error estimate [21].

Upscaling/homogenization techniques [22], aim to compute effective model para-
meters to represent fine-scale properties at a coarser, computationally affordable, scale.
Even though upscaling methods can provide accurate production/injection rates [23],
which is essential for stochastic gradient-based techniques, it is often important to ena-
ble the accurate modeling of physical phenomena that requires a fine-scale heteroge-
neity representation, e.g. front displacements, capillarity effects, and mixing. On the ot-
her hand, MS simulation strategies aim to compute coarse scale primary variables, but
are still able to represent an approximate solution at the fine scale, which is an advantage
over upscaling techniques. However, this leads to, consequently, approximate reservoir
responses, which will be utilized by stochastic gradient computation methods. On that
note, it is shown in [24, 25] that analytical gradients (e.g. adjoint-based ones) computed
via MS strategies provide an accurate enough approximation of the true gradient, capa-
ble of providing optimization results comparable to fine-scale optimizations. Also, the
quality of stochastic gradients compared to analytically computed ones is discussed in
[7].

The remainder of the paper is organized as follows. First, we discuss the StoSAG opti-
mization methodology followed by the multiscale reservoir simulation framework which
has been implemented in-house and used in this study. We then provide the workflow
used for the optimization experiments performed in this paper. The computational gain
of the workflow is illustrated via an analysis of the computation complexity of the algo-
rithms involved. Following the theoretical descriptions of these two building blocks we
illustrate the advantages and computational gains achieved on two different reservoir
models for optimization cases with and without geological uncertainties.

A.1. THEORETICAL FRAMEWORK

A.1.1. STOCHASTIC GRADIENT COMPUTATION

In model-based optimization problems, traditionally, controllable variables, in indivi-
dual wells or at field scale, such as injection or production rates, bottom-hole pressures
(BHP) or inflow control valve (ICV) settings etc., are manipulated to maximize the va-
lue of an objective function such as Net Present Value (NPV) or Ultimate Recovery (UR).
The controllable variables commonly referred to as controls are denoted by the vector
u which consists of all the variables to be optimized at the different control time steps.
In this section we briefly outline the StoSAG method first introduced in [26]. A detailed
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description of the method can be found in [6].
For a control vector u` ∈ RNu , where Nu is the total number of controls and ` is the

optimization iteration index, we generate an ensemble of multi-variate Gaussian dis-
tributed perturbed control vectors {u1, u2,. . . , uM }, M being total number of ensem-
ble members, around the control vector u` with a user defined covariance matrix C ∈
RNu×Nu . At the first iteration the choice of the control vector is user-defined and at sub-
sequent iterations determined by the optimization algorithm. The covariance matrix C
is usually kept constant throughout the optimization although methods exists to adap-
tively update the covariance matrix see e.g. [27, 28]. The objective function J chosen to
be optimized is then evaluated for each of the perturbed control vectors {u1, u2,. . . , uM }
which leads to a corresponding set of objective function values {J1, J2,. . . , JM }.

To estimate the stochastic gradient we assemble a mean-shifted matrix of the control
vectors U defined as

U = [u1 −u` u2 −u` · · ·uM −u`], (A.1)

and a mean-shifted vector of the corresponding objective function values j defined as

j = [
J (u1)− J (u`) J (u2)− J (u`) · · · J (uM )− J (u`)

]T
. (A.2)

The equations described above can be used for deterministic (single geological mo-
del) optimization. Recently many papers have investigated the theoretical and practical
applications of stochastic gradients for robust optimization; see e.g. [26, 29] and refe-
rences therein. In this paper we use a 1:1 ratio, i.e. one reservoir model to one perturbed
control strategy, to robustly estimate the gradient. This leads to a slightly different no-
tation for the vector of objective function anomalies given in Eq. (A.2) which for robust
optimization is defined as

j = [
J (u1,m1)− J (u`,m1) J (u2,m2)− J (u`,m2) · · · J (uM ,mM )− J (u`,mM )

]T
. (A.3)

where m are the geological model realizations which are equal in number to the number
of perturbed control vectors. The StoSAG gradient is then calculated via linear regression
and is given by [6]

g = (U(UT ))†Uj, (A.4)

where the superscript † indicates the Moore-Penrose pseudo inverse and g ∈ RNu . The
gradient calculated above is then utilized in a simple steepest ascent algorithm [30] to
calculate an updated control vector until convergence is achieved. [31] have shown that
the formulation provided above has many commonalities with other stochastic gradient
methods such as Simultaneous Perturbation Stochastic Approximation (SPSA) [32].

A.1.2. MULTISCALE RESERVOIR SIMULATION
Multiscale (MS) methods [12, 13], in summary, use locally constructed MS basis functi-
ons to enable the solution of the original fine-scale problem at a coarse scale and allow
the solution to be accurately represented back to the fine-scale representation of the re-
servoir model.
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In the context of this work we consider an immiscible, incompressible two-phase
flow regime. Because MS methods are well-suited to solve elliptic problems, a sequential
strategy to solve the governing equations is traditionally considered. Here, an Implicit in
Pressure, Explicit in Saturation (IMPES) coupling is employed. For further explanations
about the governing equations and solution strategies see, e.g., [33].

The two-level [34] MS system can be algebraically expressed as [35, 36]

(RAP) p̆ = (
Rq

)
(A.5)

where R is an NC ×NF restriction operator, P is an NF ×NC prolongation operator, p̆ ∈
RNC is the coarse-scale pressure solution, q ∈ RNF the source terms vector, and A is the
NF ×NF system matrix resulting from the flow equation discretization [33]. Also, NF and
NC are, respectively, the fine grid and coarse grid number of gridblocks. The interpolated
fine-scale pressure is obtained by

p′ = Pp̆, (A.6)

where p′ ∈ RNF is the approximate fine scale solution. The prolongation operator P is
constructed based on local basis functions. Different strategies to build the basis functi-
ons are available in the literature [12, 13, 37, 38]. The restriction operator R can be either
constructed as the transpose of the prolongation operator in finite-element-based mul-
tiscale methods, or simply be based on the grid geometry in finite-volume-based ones
[13].

Following the MS pressure equation solution, we solve for the saturations at the fine
scale. Because of the hyperbolic nature of the transport equations, a fine grid is neces-
sary in order to capture the local, sharp saturation fronts. Hyperbolic conservative laws
require locally conservative velocity fields. However, MS approximate solutions are not
conservative at the fine scale. There are different alternatives to build a fine-scale con-
servative velocity field to be used in the solution of the transport equation at the fine
scale [20, 21, 39].

Finally, because the Courant–Friedrichs–Lewy (CFL) condition for numerical stabi-
lity [40] can be very restrictive in terms of the time-step size selection, we employ an
asynchronous time-stepping strategy [41]. One should note that sequential implicit [42]
and adaptive implicit [33] simulation strategies could be considered to address the CFL
time-step restrictions. However, we emphasize that IMPES strategies can deliver effi-
cient solution strategies due to the straight forward solution of saturation – it can be
seen as as simple matrix-vector multiplication. Some simulators rely on IMPES and de-
liver very good performances [43]. In the context of optimization, which is the focus
of this work, any efficient simulation coupling strategy could be considered. Also, MS
strategies introduced by [44, 45], which solve the transport equation at the coarse scale,
could be used in our proposed MS-StoSAG workflow.

A.2. MS-STOSAG WORKFLOW
The main idea of the workflow we present next is to speed up the forward simulations
required for the evaluation of the objective function and for the StoSAG gradient com-
putation used at every iteration during optimization. In this direction, regarding MS
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simulations, we want to avoid the overhead to the total simulation time due to the con-
struction of basis function [14]. This can be achieved by employing the offline/online
basis function construction strategy introduced by [46]. The construction of the basis
function, for all ensemble members, is performed at an offline stage, outside the main
optimization loop. Online updates to the MS system are then performed in an online
stage so that any required improvement due to MS solution approximations are com-
pensated. The ensemble optimization workflow combined with the online/offline MS
simulation strategy is shown in Fig. A.1.
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Figure A.1: The MS-StoSAG optimization workflow. MS reservoir simulation is used in the evaluation of the
model responses.

Note that both the simulation of the ensemble members for NPV calculation and for
the StoSAG gradient computation benefit from faster MS simulations. Basis functions
are only built once, at the beginning of the optimization process, at the offline stage.

In our implementation, although a simple steepest-ascent with a variable step size
optimization algorithm has been used, the framework is flexible to allow for the use
of more sophisticated algorithms. Furthermore, for the robust optimization conside-
red in this work, the uncertainty associated with the fine-scale parameters is accounted
for through an ensemble of equiprobable geological realizations. [47, 48] have addres-
sed the application of MS methods for stochastic subsurface fluid flow modeling. Even
though these MS methods have not been considered in this work, it can be observed that
the framework here presented is independent of a particular MS method, and hence any
formulation, including the stochastic MS version, could be considered in our proposed
MS-StoSAG workflow.

A key aspect of our MS-StoSAG workflow is the online stage. This online stage hap-
pens during each forward MS simulation. In our simulator the flow (pressure) equation,
is solved via the Multiscale Finite Volume (MSFV) method [13]. The MSFV method, by
construction, is mass conservative [13]. The restriction operator in Eq. (A.5) is based
on a finite volume integration operator at coarse scale resulting on a matrix of 0’s and
1’s (see e.g. [36]) , whilst the the prolongation operator is based on basis functions con-
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structed via the local solutions of the governing flow equation, subject to assumed local
boundary conditions, without right-hand-side (RHS) terms

−∇· (λ ·∇ϕ)= 0, (A.7)

where λ is the mobility and ϕ is the basis function value. This involves the definition of
a primal coarse grid (on which the conservative coarse-scale system is constructed) and
a dual coarse grid, which is obtained by connecting coarse nodes. A coarse node is a fine
cell inside (typically at the center of) each coarse cell. Basis functions are solved locally
on these dual coarse cells. Such overlapping coarse and dual coarse grids are crucial for
conservative solutions in MSFV. An illustration of the MSFV grids is provided in Fig. A.2.

As basis functions do not account for RHS terms, well terms are considered as sup-
plementary functions, called “well functions” [49]. Well functions are local solutions of
the flow problem considering unity solutions at the well (i.e., pw = 1). An illustration of
basis and well functions is provided in Fig. A.3. The prolongation operator can be ex-
pressed in terms of the basis functions corresponding to each coarse cell j = 1, . . . , NC ,
and each well functionψw corresponding to all w = 1, . . . , Nw wells adds a column vector
to the porous rock prolongation operator

P = [
ϕ1 · · · ϕNC | ψ1 · · · ψNW

]
. (A.8)

Figure A.2: Illustration of MSFV coarse grids for a 2D domain. Given a fine-scale grid (shown in light solid
black lines), the coarse grid (shown in solid bold black) is imposed as a non-overlapping partition of the com-
putational domain. The coarse nodes (vertices) are then selected (filled in red cells). Connecting coarse nodes
constructs the dual-coarse grid (highlighted in blue) where basis functions are solved.

We highlight that, in our implementation, the computation of well/basis functions
is only performed at the offline stage, as a pre-processing step. The basis functions are
not updated because, firstly, the smoothing step of the iterative Multiscale Finite Vo-
lume (i-MSFV) method (discussed below) addresses the discrepancies left over from the
MS solution stage and, secondly, it is more computationally efficient in the optimization
context since basis functions can be computed a priori, i.e. at an offline stage. Building
basis functions is a key element in the multiscale simulation framework. An optimum
balance between efficiency and accuracy is directly associated with the coarsening ratio
employed in the construction of the coarse grid. The ability of capturing the fine-scale
heterogeneities and the position of the coarse nodes [50] are examples of factors that
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Figure A.3: (a) Basis function, (b) sum of all basis functions and (c) well function for a given heterogeneous
porous media (represented in the bottom of the plots) in a given dual-grid cell containing a well (source term).
The well perforates two fine grid blocks in the center of the dual grid block.

influence the choice of the coarsening ratio. In [51] it is indicated that, generally, a co-
arsening factor approximately equal to the square root of the number of grid-blocks in
each direction leads to a good performance/efficiency trade-off. For the robust optimi-
zation experiments considered in this paper the basis functions for every single geologi-
cal model realization have been built. However, because we do so at the offline stage, the
computational cost of building all the basis function is relatively small when compared
to the overall optimization cost.

The approximate multiscale pressure solution provided by Eq. (A.6) is inaccurate
when compared to the fine-scale solution of the pressure equation. Firstly, by design, the
MSFV solution reflects the localization assumptions utilized to compute the basis functi-
ons in Eq. (A.8). Secondly, non-monotone solutions may occur for geological settings
with high permeability contrasts, specially in low permeability regions [52] (as demon-
strated, e.g., for the SPE10 benchmark case [53]). Again, the non-monotone solutions are
associated with the construction of the MSFV basis functions. Different strategies have
been proposed in the literature to address this issue, e.g. the monotone MSFV (m-MSFV)
[50] and the Multiscale Restriction Smoothed Basis (MsRSB) [38] methods. However, in
this work, all these discrepancies can be resolved if an iterative scheme is employed [20].

The iterative Multiscale Finite Volume method (i-MSFV) is capable of resolving these
differences by resolving the high frequency errors via some iterative (smoothing) solu-
tions at the fine scale and resolving the low frequency errors via the MSFV coarse-scale
solution. In brief, the method consists of re-writing Eqs. (A.5) and Eq. (A.6) in residual
form and iteratively solving the resulting system of equations until a convergence cri-
terion is met. Note that i-MSFV delivers conservative coarse-scale solutions after any
iteration stage. As such, it is not used as a linear solver, but to maintain the desired user-
defined accuracy. This is, in our implementation, the online stage that addresses the MS
solution inaccuracies. This is illustrated in Fig. A.4.

Regarding the conservative velocity field reconstruction, we also rely on the i-MSFV
method, by smoothing the fine-scale i-MSFV solution until a sufficiently small fine-scale
residual is achieved.

We address the CFL time-stepping restrictions by solving the transport equation using
small time-steps, hence honoring the CFL condition, but keeping pressure and velocity
fields unchanged. The transport solver time-step ∆ts is limited by CFL conditions, but
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Figure A.4: Schematic description of the MS reservoir simulation.
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the flow solver time-step ∆tp is not. The velocity field is kept unchanged until the trans-
port solver time ts reaches∆tp . The simulator outputs the information required to com-
pute the gradient and objective function when the final time t f is reached.

A.2.1. A NOTE ABOUT COMPUTATIONAL COMPLEXITY
We measure the computational efficiency of our workflow by comparing the relative
computational complexity of a steepest ascent iteration using our MS-StoSAG strategy
to the alternative of employing a fine-scale simulation in the forward-model evaluati-
ons.

In the scope of our applications, because of the underlying physics and solution stra-
tegies employed, the computational cost of the forward simulation can be assumed to
be the cost of the pressure equation linear system solution. This is because (1) for in-
compressible flow there is no partial derivative computation involved, (2) in the IMPES
strategy the solution of the transport equation is proportional to a matrix-vector multi-
plication. Furthermore, the computational complexity of all other steps of the workflow
can also be considered negligible when compared to the cost of solving a linear system.

The complexity of solving a linear system of size N is assumed to be O (aN b), where
a and b are constants associated with the specific linear solver employed. One steepest
ascent iteration, disregarding any backtracking for the sake of simplicity, requires the
evaluation of M forward simulations to evaluate all realizations’ objective function va-
lues. Additionally, in order to estimate the StoSAG gradient in a 1:1 approach, we need to
evaluate another M forward simulations. Therefore, OF S (2×M ×aN b

F ) is the cost of one
steepest ascent iteration if fine-scale simulation is employed and OMS (2× M × Ni MS ×
(aN b

C +NS ×aN b
F )) is the cost for the MS simulation when empoying a two-stage i-MSFV

strategy, where Ni MS is the total number of i-MSFV iterations and NS is the total number
of smoothing steps per i-MSFV iteration.

Given that we are interested in evaluating the relative gain of the workflow compared
to ensemble optimization when fine-scale forward simulations are employed, we can
say that, given our setting, this can be assessed by simply computing the ratio

OF S

OMS
= OF S (2×M ×aN b

F )

OMS (2×M ×Ni MS × (aN b
C +NS ×aN b

F ))

= OF S (aN b
F )

OMS (Ni MS × (aN b
C +NS ×aN b

F ))
.

Thus, because of the discussion above, and because our steepest ascent stopping
criteria is the maximum number of iterations, the computational gain of the MS-StoSAG
workflow for the MS setting we use can be directly estimated from the computational
cost ratio between fine-scale and MS cost to solve the flow equation. This will be the
metric used when evaluating the computational cost in the numerical experiments.

A.3. NUMERICAL EXPERIMENTS
We illustrate the application of our proposed framework for life-cycle waterflooding op-
timization of two different models. For both models, the controls are bottom-hole pres-
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sures in the injection and production wells. The objective function used for optimiza-
tion is a standard economic objective, Net Present Value (NPV), as defined in Eq. (A.9),
for which we use the prices provided in Table A.1.

J =
K∑

k=1

[(qo,k ) · ro − (qw p,k ) · rw p − (qwi ,k ) · rwi ] ·∆tk

(1+b)
tk
τt

(A.9)

where qo,k represents the oil production rate in m3/day, qw p,k is the water production
rate in m3/day, qwi ,k is the water injection rate in m3/day, ro is the price of oil produced
in $/m3, rw p is the cost of produced water in $/m3, rwi is the cost of injected water in
$/m3, ∆tk is the difference between consecutive time steps in days, b is the discount
factor expressed as a fraction per year, tk is the cumulative time in days corresponding
to time step k, and τt is the reference time period for discounting, typically one year.

Table A.1: Costs associated with oil production.

Value Unit
Oil price 252 $/m3

Cost of injected water 60 $/m3

Cost of produced water 30 $/m3

In the MS simulation of all numerical experiments there is no basis function recon-
struction. Instead, we delegate the resolution of the discrepancies left by the localization
assumptions and inaccuracies due to outdated basis functions to the i-MSFV smoothing
step. Also, the conservative velocity field is reconstructed directly from the smoothed
pressure field. Therefore, we require the i-MSFV loop to reduce the fine scale residual
with one order of magnitude, while the fine scale residual tolerance after smoothing is
set to 10−6. A l 2-norm is employed to compute the residual norm. The stabilized bi-
conjugate gradient iterative solver with ILUT preconditioner [54] is used as the fine-scale
smoother.

A.3.1. TOY MODEL - FIVE-SPOT MODEL
In the first numerical experiment, in order to evaluate the proposed workflow in a rela-
tively controlled environment, a toy-model, consisting of a simple synthetic 2D inverted
five-spot model is considered. It consists of a 21×21 regular mesh with grid block size
dimensions of 33.3×33.3×2 m. The reservoir porosity is constant and equal to 0.3. The
permeability distribution is depicted in Fig. A.5 and the fluid properties are described in
Table A.2. For the optimization, we have 5 control variables per control time step. In this
exercise we use 6 control time steps of 720 days each, thus we optimize 30 variables. The
values of the bottom-hole pressures are bounded for the production wells between a mi-
nimum value of 28 MPa and a maximum value of 30 MPa. The injection well pressures
are bounded between a minimum value of 30 MPa and maximum value of 32 MPa.

DETERMINISTIC LIFE-CYCLE OPTIMIZATION

We first consider a single model realization. For this purpose we use an ensemble of 50
perturbed control vectors with a perturbation size defined as 10% of the difference bet-
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Figure A.5: The permeability realization used for deterministic optimization and well placement

Table A.2: Fluid properties for five-spot Model.

Property Value Unit
Oil dynamic viscosity (µo) 0.5×10−3 Pa s

Water dynamic viscosity (µw ) 1.0×10−3 Pa s
End-point relative permeability, oil (kr ow ) 0.9 –

End-point relative permeability, water (kr w ) 0.6 –
Corey exponent, oil (No) 2.0 –

Corey exponent, water (Nw ) 2.0 –
Residual-oil saturation (Sor = 0.2) 0.2 –
Connate-water saturation (Sw c) 0.0 –

ween the min and max bounds of the controls. The stopping criteria used is a maximum
number of 25 optimization iterations. The initial starting strategy is one wherein the in-
jector well operates at a constant BHP of 31 MPa and the production wells at a constant
BHP of 29 MPa. When working with reduced order or upscaled models it is imperative
to compare and validate the results with respect to the fine scale model realization.

Multiscale Optimization We consider two different coarsening ratios to test the effi-
ciency of our proposed MS-StoSAG workflow. The two coarsening ratios are 7x7 and 3x3.
Thus a deterministic optimization with the optimization parameters discussed above is
performed for 3 different models, fine scale, i-MSFV 7x7 and i-MSFV 3x3. The optimiza-
tion process is illustrated in Fig. A.6. We observe that all three models find optimal stra-
tegies which produce approximately similar NPV values. We also observe that while the
i-MSFV 7x7 model achieves a slightly lower NPV compared to the fine scale model, the
i-MSFV 3x3 model achieves a higher NPV than the other two models. Thus the coarsest
model used produced the highest NPV which may be counter-intuitive. Cross validation
of the i-MSFV strategies on the 21x21 fine scale model produces NPV values which are
indistinguishable from each other which could be the result of a relatively simple small
model. Fig. A.7 is a comparison of the optimal control strategies obtained from the dif-
ferent models. We observe that all the strategies are very similar to each other thus the
objective function values are also similar.
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Figure A.6: Comparison of the objective function through the iteration process for fine scale and the two i-
MSFV strategies, toy model.

Sensitivity to Optimization Parameters The parameters which influence the compu-
tation of a stochastic gradient such as the ensemble size of the perturbed controls, per-
turbation sizes to generate the ensemble of controls, random seeds used to generate the
perturbed controls were varied and tested with the different i-MSFV models. The results
from this exercise followed the exact same trends as reported in earlier publications see
e.g. [7] who investigated the impact of gradient quality based on the various parameter
choices.

Robust Life-cycle Optimization Inclusion of uncertainty within the optimization fra-
mework is usually accounted for by utilizing an ensemble of equiprobable geological
model realizations. In this paper a large ensemble of 1,000 realizations of the five-spot
model was generated via the decomposition of a reference permeability “image” using
Principal Component Analysis parameterization. See [55] for more details. Fig. A.8 illus-
trates 4 different permeability realizations from a reduced ensemble of 50 members used
in the optimization experiments. The reduced ensemble was selected by simulating all
1000 realizations with the same control vector and uniformly sampling realizations ba-
sed on the highest, lowest and intermediate objective function values. We acknowledge
that there exists a range of formal clustering techniques to carefully select a represen-
tative ensemble. For the proof-of-concept optimization experiments in this paper the
representativeness of the selected ensemble to a larger ensemble is deemed to be out-
side the scope of this paper.

The objective function used for the robust optimization experiments is the expected
NPV calculated over the 50 realizations. Fig. A.9 illustrates the evolution of the mean
NPV through the optimization process for the different simulation models. The same
coarsening ratios and initial starting strategy has been used as the deterministic case.
The fine scale strategy achieves the highest objective function values followed by the
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Figure A.7: Comparison of the optimal control strategies between fine scale and two i-MSFV strategies, toy
model.

Figure A.8: Four different permeability realizations from the ensemble of 1,000 members used in the toy model
numerical experiments.



A.3. NUMERICAL EXPERIMENTS

A

195

i-MSFV 7x7 model and the i-MSFV 3x3 model. Though the five-spot model is relatively
small it is reassuring that, irrespective of the different models (fine scale or i-MSFV) used,
very similar objective function values have been achieved when geological uncertainties
are accounted for.
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Figure A.9: Comparison of the mean objective function value for the three different simulation strategies, fine
scale (blue), i-MSFV 7x7 (orange) and i-MSFV 3x3 (red), toy model.

Fig. A.10 is a comparison of the optimal control strategies for two different models,
fine scale and i-MSFV 3x3. The optimal control strategies achieved after robust opti-
mization are quite different from the strategies achieved for deterministic optimization
which could be the impact of geological uncertainties, the correspondingly different ba-
sis functions and impact of coarsening ratio on the different realizations. A-priori de-
termination of the impact of these factors on the results is non-trivial and is probably
model dependent.

COMPUTATIONAL EFFICIENCY

Table A.3 provides a comparison of the computational efficiency and speedup gained for
the different models used for the experiments. We use the linear solver time to measure
the speed up. This accounts for all computations performed by the i-MSFV solution stra-
tegy, i.e solution of the coarse system plus fine-scale smoothing. Also, it is well-known
that the linear system solution is the most time-consuming part in reservoir simulation
framework [33].

An approximately factor 4 speedup can be achieved for this relatively small five-spot
model. The average number of smoothing steps throughout the optimization is approx-
imately similar, irrespective of the coarsening ratio used which is model- and problem-
dependent. The tolerances of the residual for the MS solution and the smoothing steps
are the same for all cases. In order to understand and validate the efficiency of the pro-
posed framework a larger model is used below.
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Figure A.10: Comparison of the controls that generated the highest NPV, toy model.
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Table A.3: Comparison of the computational effort and average number of smoothing steps (N̄S ) for the diffe-
rent i-MSFV cases, toy model.

Simulation strategy OF S
OMS

N̄S

i-MSFV (7x7) 4.3 1
i-MSFV (3x3) 4.7 2

A.3.2. KANAAL RESERVOIR MODEL
A second example is considered to illustrate the effectiveness of our proposed workflow.
We use a 99 x 99 2D model with grid blocks of 10 × 10 × 5 m. Thus we have approx. 10,000
grid blocks in this model compared to the 441 grid blocks in the five-spot model. The
geological description used in this model has been inspired from a typical channelized
North Sea reservoir. The channels (Kanaal in Dutch) are set in a sandy shale background
with permeabilities ranging from 10-50 mD. The channels have permeabilities ranging
from 250-700mD with constant porosities of 20%. This reservoir is developed using a
line drive well configuration with 3 injection wells and 6 production wells as illustrated
in Fig. A.11. The fluid properties of this reservoir are given in Table A.4.

Figure A.11: Illustration of the well configuration used for the Kanaal reservoir model with injectors in the
middle row denoted by X.

An ensemble of 50 geological realizations has been created using geological mo-
deling software [56] to be used for the robust optimization experiments. Each of the
realizations has been constrained to well logs from 4 exploration wells which were gene-
rated from a base-case model. This base-case model does not form part of the ensemble
of model realizations. An illustration of a subset of models is illustrated in Fig. A.12. The
life cycle period for this reservoir is 12 years. We allow the controls, i.e. the bottomhole
pressures in all wells, to be manipulated once every 6 months, i.e. 24 we have control
time steps. Thus for the 9 wells we optimize a total of 9x24 = 216 controls. The values of
the bottomhole pressures are bounded for the production wells between a minimum va-
lue of 28 MPa and a maximum value of 30 MPa. The injection well pressures are bounded
between a minimum value of 30 MPa and maximum value of 32 MPa.

ROBUST LIFE-CYCLE OPTIMIZATION

For this example we focus on robust optimization experiments. The initial control stra-
tegy corresponds to the bottomhole pressures on their maximum bound for the injec-
tors, i.e. a constant pressure of 32 MPa, and on their minimum bound for the producers,
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Figure A.12: Four different permeabilty realizations from an ensemble of 100 members, Kanaal model.

Table A.4: Fluid properties for the Kanaal reservoir model

Property Value Unit
Oil dynamic viscosity (µo) 2×10−3 Pa s

Water dynamic viscosity (µw ) 1.0×10−3 Pa s
End-point relative permeability, oil (kr ow ) 0.9 –

End-point relative permeability, water (kr w ) 0.8 –
Corey exponent, oil (No) 2.0 –

Corey exponent, water (Nw ) 2.0 –
Residual-oil saturation (Sor = 0.2) 0.2 –
Connate-water saturation (Sw c) 0.0 –

i.e. 28 MPa. Different coarsening ratios and their impact on the optimization are inves-
tigated. The coarsening ratios for this example are 3x3, 11x11 and 33x33. The fine scale
model is 99x99. We observe in Fig. A.13 that all the optimization experiments find so-
lutions that achieve an objective function value higher than a reactive control strategy,
where the production wells are shut-in once the water-oil ratio exceeds a preset maxi-
mum. The economic water cut for the reactive control strategy for the prices considered
in this paper is 82%. The reactive control strategy has been used as a reference solution
when evaluating the performance of life-cycle optimization techniques in line with the
approach first introduced in [3]. We also observe from Fig. A.13 that different coarse-
ning ratios achieve different optimal mean NPV values with similar trends as observed
for the five-spot model. It is also important to note that, in this case, the optimization
runs performed with the MS-StoSAG workflow provide mean NPV values higher than the
one obtained by the fine-scale optimization.

COMPARISON OF OPTIMAL STRATEGIES

Fig. A.14 is an illustration of the optimal controls for 2 wells for the fine scale model
and the coarser scale i-MSFV 11x11 model. The optimal controls obtained by the other
models are significantly different from each other with the same trend observed for the
other seven wells. This is a fact that has been consistently observed in the literature,
first noted in [57]. Considerably different control settings can lead to relatively similar
NPV values due to the over-parameterization of the optimization problem. This is in
accordance with numerous other studies; see, e.g., [58–60]. A comparison of the opti-
mal controls for two different i-MSFV models is illustrated in Fig. A.15. Once again, we
observe that different optimal control strategies achieve very similar objective function
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Figure A.13: Comparison of objective function value between fine scale and the different i-MSFV strategies
used, Kanaal model.
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Figure A.14: Comparison of the optimal control strategies from fine scale and i-MSFV 11x11 strategy, Kanaal
model.

In addition to visually recognising differences in the optimal control strategies we
provide in Table A.5 a comparison of the optimal volumes of oil and water produced
and injected for the different simulation models. We observe an interesting trend in the
results. Higher volumes of oil and water are produced in the i-MSFV models compared
to the fine scale model. Additionally we observe that the higher the coarsening ratio, the
higher are the production and injection volumes. An important aspect to be considered
here is the ability of the local basis functions to represent the fine-scale heterogeneities.
The coarsening ratio and the positioning of the coarse node vertices are instrumental
in achieving higher quality basis functions. Different strategies exist to achieve higher
quality basis functions (e.g. [50]), however, in our experiments, we rely on the ability of
the i-MSFV to correct the MSFV solution approximations/errors.
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Figure A.15: Comparison of the optimal control strategies from i-MSFV 11x11 and i-MSFV 3x3 strategies, Ka-
naal model.

Table A.5: Comparison of optimal total produced oil (Qo ) and water (Qw pr od ) and total injected volume
(Qw i n j ) for the different simulation strategies, Kanaal model.

Simulation Strategy Qo(m3) Qw pr od (m3) Qw i n j (m3)

Fine scale 3.82e5 2.88e5 6.37e5
i-MSFV 33x33 3.87e5 3.09e5 6.97e5
i-MSFV 11x11 3.86e5 3.03e5 6.90e5

i-MSFV 3x3 3.92e5 3.32e5 7.24e5

COMPUTATIONAL EFFICIENCY

In this section we compare the computational efficiency and speedup gained for the dif-
ferent coarsening ratios. For the larger Kanaal model an approximately 5 times speedup
in computational efficiency is achieved as observed in Table A.6. The tolerances of the
residual for the MS solution and the smoothing steps are the same for all the cases. We
also observe a clear trend in the average number of smoothing steps required for the dif-
ferent coarsening ratios with a higher number of smoothing steps being required for a
coarser model.

Table A.6: Comparison of the computational effort and average number of smoothing steps (N̄S ) for the diffe-
rent i-MSFV cases, Kanaal model.

Simulation strategy OF S
OMS

N̄S

i-MSFV 33x33 4.44 5
i-MSFV 11x11 5.69 12

i-MSFV 3x3 4.62 18

A.4. DISCUSSION
The multiscale implementation used in this work can be further improved upon to obtain
an even higher computational efficiency similar to the results reported in [25]. The
speedup in the computational efficiency reported in [25] was obtained with coarse-scale
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representations for the both the flow and transport equations. In this paper the flow pro-
blem is solved at the coarse scale while the transport equation has been solved on the
fine scale which improves the accuracy of our results.

Even though no basis function reconstructions were performed in our experiments,
and the i-MSFV fine-scale smoothing performed remarkably well, that might not be the
case when more complex physics are involved in the simulation model (e.g. gravity ef-
fects, capillarity, higher mobility ratios). However, even under more complex scenarios,
MS strategies should still deliver considerable speedups given that basis functions need
only be built adaptively and infrequently. Also, the employment of different velocity field
reconstruction techniques could be necessary in the case that i-MSFV becomes expen-
sive. But again, techniques like those presented by [20, 39] benefit from adaptivity. Furt-
hermore, the implementation of our MS reservoir simulator does not yet capitalize on
all potential advantages of MS methods. MS methods are well suited to take full advan-
tage of modern high performance-computing architectures. For instance, the solution
of basis functions are embarrassingly parallelizable [17, 61], an advantage with respect
to global-based ROM approaches. Moreover, we expect that the computational advan-
tage will increase for larger-sized reservoir models, relying on the model-size-dependent
computational performance of MS methods, as discussed, e.g., in [13].

When working with coarse scale models for optimization it is imperative to validate
the optimized strategy using the fine scale model to understand and quantify the impact
of optimization. Reduced-order or upscaled models, though computationally very effi-
cient, do not always produce similar production responses compared to the fine scale
model. In our approach, because the transport problem is always solved on the fine
scale, the optimal strategies need not be validated as is confirmed by the results in this
paper. This is an additional attractive feature of the workflow proposed in this paper.
When working with ROM methods such as POD [11] or TPWL [10], multiple high-fidelity
simulations need to be performed a-priori (akin to an offline stage) to develop the ROM
and afterwards to verify the accuracy of the results. In our workflow we alleviate the
need for these expensive pre- and re-computations. In our MS-StoSAG workflow the off-
line stage i.e., computation of the basis functions in the MS method is extremely cheap
compared to the overall cost of the optimization process.
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[11] J. F. van Doren, R. Markovinović, and J.-D. Jansen, Reduced-order optimal control of
water flooding using proper orthogonal decomposition, Computational Geosciences
10, 137 (2006), http://dx.doi.org/10.1007/s10596-005-9014-2.

[12] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in
composite materials and porous media, J. Comput. Phys. 134, 169 (1997).

[13] P. Jenny, S. H. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic
problems in subsurface flow simulation, J. Comput. Phys. 187, 47 (2003).
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The partial derivatives of R, P and A matrices with respect to the vector of parameters
θ result in third-order tensors. These tensors can be interpreted as a stack of matrices,
with each matrix representing the partial derivatives of each of its columns with respect
to the parameters. For example, a third order tensor defined by Eq. (4.39) reads

∂P

∂θ
=

[
∂ϕ1
∂θ

∂ϕ2
∂θ · · · ∂ϕNC −1

∂θ

∂ϕNC
∂θ

]
NF ×NC×Nθ

, (B.1)

where ∂P
/
∂θ is an NF ×NC ×Nθ third-order tensor that can be interpreted as a stack of

Nθ matrices of partial derivatives ∂ϕ j
/
∂θ, j = 1, ..., NC , each of dimension NF ×NC .

We illustrate the operations with this third-order tensor by explaining the operations
involved in the partial derivative Eq. (4.5) w.r.t. θ, disregarding the dependency of R on
θ, i.e.,

∂ğ

∂θNC×Nθ

=RNC×NF


1︷ ︸︸ ︷

∂A

∂θNF × NF ×Nθ

P
NF ×NC

+

A
NF × NF

∂P

∂θ NF ×NC×Nθ︸ ︷︷ ︸
2

 x̆NC .

(B.2)

The subscripts represent the dimensions of the tensors. The product 1 in Eq. (B.2)
can be interpreted as a stack of matrices resulting from Nθ products between matrices
∂A

/
∂θ

∣∣·,·,k of dimension NF ×NF and the matrix P of dimension NF ×NC , k = 1, ..., Nθ,
and, therefore is a third-order tensor NF ×NC ×Nθ. Analogously, product 2 also results
in a third-order tensor of size NF ×NC ×Nθ as a stack of the products A times ∂P

/
∂θ

∣∣·,·,k ,
k = 1, ..., Nθ . In the equations, the “squared” dimensions highlight the dimensions which
are operated on in each of the matrix products. Now consider the product of the term
under parenthesis in Eq. (B.2) with the vector x̆,

∂ğ

∂θNC×Nθ

= RNC×NF

(
∂A

∂θ
P+A

∂P

∂θ

)
NF × NC ×Nθ

x̆
NC︸ ︷︷ ︸

1

. (B.3)

The product 1 in Eq. (B.3) can be interpreted as Nθ products between matrices
(∂A

/
∂θP+A∂P

/
∂θ)

∣∣·,·,k of dimensions NF ×NC and the vector x̆ of dimension NC , k =
1, ..., Nθ , hence leading to a matrix of dimensions NF ×Nθ, as follows

∂ğ

∂θNC×Nθ

= R
NC× NF

((
∂A

∂θ
P+A

∂P

∂θ

)
x̆
)

NF ×Nθ

. (B.4)

Finally, the last operation is a simple product between two matrices with the dimen-
sions indicated in Eq. (B.4), leading to

∂ğ

∂θNC×Nθ

=
((

R
(
∂A

∂θ
P+A

∂P

∂θ

))
x̆
)

NC×Nθ

, (B.5)
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from where one can notice that the operations at the right-hand side lead to a matrix
with the dimensions equal to those of the left-hand side matrix.





ABOUT THE AUTHOR

Rafael was born and raised in the picturesque city of Nova Friburgo located on the out-
skirts of Rio de Janeiro, Brazil. During his formative years he was always intrigued by the
dynamics of processes & machines. These interests were pursued and further strengthe-
ned during his graduation studies in Mechanical Engineering at Universidade do Estado
do Rio de Janeiro. After graduating Cum Laude, he joined Engineering Software & Scien-
tific Software (ESSS), through whom he was seconded as a scientific developer in the
development of advanced reservoir simulation technologies and state-of-the-art algo-
rithms for history matching, and life cycle optimization tools to the Petrobras Research
and Development Center (CENPES). During this time, he developed a passion for scien-
tific research which led him to pursue an M.Sc. degree in Civil & Petroleum Engineer-
ing from Universidade do Federal do Rio de Janeiro, with a specialization in numerical
methods for reservoir simulation. Before the completion of his M.Sc. degree program,
Rafael was hired by Petrobras as a Reservoir Simulation Engineer at CENPES. During
the next few years, Rafael, coordinated and contributed to several national and inter-
national R&D projects. In 2010, he was assigned as the Senior Petrobras Representative
at the Dynamic Reservoir Modelling System (DRMS) Joint Venture between Petrobras,
Shell and CMG which was focused on the development of a highly specialized next ge-
neration reservoir simulator. This assignment took him and his beautiful wife Thays
to Calgary, Alberta, Canada, where they lived for more than 4 years during which their
angelic twin daughters, Estella and Helena, were born. In addition to being the Senior
Petrobras representative in Calgary, Rafael also served as the Uncertainty team lead. He
was awarded the prestigious CMG Momento in recognition of his immense contribution
to success achieved by the DRMS JV. After enjoying the snowy slopes of Calgary, Rafael
was sent in 2015 by Petrobras to pursue his Doctoral Studies (PhD), at Delft University
of Technology, the Netherlands, under the supervision of Prof. dr.ir. Jan-Dirk Jansen and
Dr. Hadi Hajibeygi. During his doctoral studies he was awarded a Fellowship for excep-
tional new researchers by UCLA at the Institute of Applied and Pure Mathematics, Los
Angeles, California, USA. After completion of his fellowship he returned to the Nether-
lands to successfully defend his doctoral thesis in November 2018 all the while enjoying,
in addition to his research, the sights, sounds and culture of Europe. He particularly
cherished the joy of biking his daughters on his Bakfiets (Special Dutch Family Bicycle)
against the strong winds in the flat plains of the Netherlands.

Rahul-Mark Fonseca
Utrecht, October 2018

211





LIST OF PUBLICATIONS

The following is a listing of the journal and conference publications that resulted from
the PhD research, in reverse chronological order.

JOURNAL PAPERS

6. R.J. de Moraes, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Multiscale gradient computation
for sequentially coupled flow and transport in heterogeneous porous media, (to be submit-
ted).

5. R.J. de Moraes, H. Hajibeygi, J.D. Jansen, A multiscale method for data assimilation of spa-
tially distributed data, Computational Geosciences, (Submitted).

4. R.J. de Moraes, W. de Zeeuw, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Iterative multis-
cale gradient computation for heterogeneous subsurface flow, Advances in Water Resources,
(under review).

3. R.J. de Moraes, R.M. Fonseca, M. A. Helici, A. W. Heemink, J.D. Jansen, An efficient robust
optimization workflow using multiscale simulation and stochastic gradients, Journal of Pe-
troleum Sciences and Engineering 172, (2019).

2. R.J. de Moraes, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Computing derivative informa-
tion of sequentially coupled subsurface models, Computational Geosciences (online) (2018).

1. R.J. de Moraes, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Multiscale gradient computation

for flow in heterogeneous porous media, Journal of Computational Physics 336, 644 (2017).

213

https://www.journals.elsevier.com/journal-of-computational-physics
https://www.journals.elsevier.com/journal-of-computational-physics
https://link.springer.com/journal/10596
https://www.journals.elsevier.com/advances-in-water-resources
https://www.journals.elsevier.com/advances-in-water-resources
https://doi.org/10.1016/j.petrol.2018.09.047
https://doi.org/10.1016/j.petrol.2018.09.047
https://doi.org/10.1007/s10596-018-9772-2
https://doi.org/10.1016/j.jcp.2017.02.024


214 LIST OF PUBLICATIONS

CONFERENCE PROCEEDINGS

7. W. de Zeeuw, R.J. de Moraes, A. W. Heemink, J.D. Jansen, Adjoint-based Adaptive Conver-
gence Control of the Iterative Finite Volume Multiscale Method, in SPE Reservoir Simulation
Conference, Society of Petroleum Engineers, (2019).

6. R.J. de Moraes, H. Hajibeygi, J.D. Jansen, A Multiscale Method For Data Assimilation, in
ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery, EAGE Publi-
cations BV, (2018).

5. R.J. de Moraes, H. Hajibeygi, J.D. Jansen, Multiscale Data Assimilation of Spatially Distri-
buted Information, in 10th International Conference on Porous Media and Annual Meeting,
Interpore, (2018).

4. R.J. de Moraes, H. Hajibeygi, J.D. Jansen, Multiscale Gradient Computation for Sequenti-
ally Coupled Flow and Transport in Heterogeneous Porous Media, in SIAM Conference on
Mathematical and Computational Issues in the Geosciences, SIAM, (2017).

3. R.J. de Moraes, R. M. Fonseca, M. Helici, A. W. Heemink, J. D. Jansen, Improving the Com-
putational Efficiency of Approximate Gradients Using a Multiscale Reservoir Simulation Fra-
mework, in SPE Reservoir Simulation Conference, Society of Petroleum Engineers, (2017).

2. R.J. de Moraes, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Multiscale Gradient Computation
for Multiphase Flow in Porous Media, in SPE Reservoir Simulation Conference, Society of
Petroleum Engineers, (2017).

1. R.J. de Moraes, J.R.P. Rodrigues, H. Hajibeygi, J.D. Jansen, Multiscale Gradient Computation

for Subsurface Flow Models, in ECMOR XV - 15th European Conference on the Mathematics

of Oil Recovery, EAGE Publications BV, (2016).

https://www.spe.org/events/en/2019/conference/19rsc/reservoir-simulation-conference.html
https://www.spe.org/events/en/2019/conference/19rsc/reservoir-simulation-conference.html
https://doi.org/10.3997/2214-4609.201802230
https://doi.org/10.3997/2214-4609.201802230
https://events.interpore.org/event/2/contributions/294/contribution.pdf
https://events.interpore.org/event/2/contributions/294/contribution.pdf
https://www.siam-gs17.de/
https://www.siam-gs17.de/
https://doi.org/10.2118/182620-MS
https://doi.org/10.2118/182625-MS
https://doi.org/10.2118/182625-MS
http://dx.doi.org/10.3997/2214-4609.201601891 
http://dx.doi.org/10.3997/2214-4609.201601891 


ACKNOWLEDGEMENTS
Once a friend told me that the PhD success is owned by the PhD candidate solely. I
cannot claim that. That is very fortunate. And I say fortunate because I was very lucky to
have the opportunity to interact with many knowledgeable people who helped with the
entire process, in different dimensions. I could not get to the end of it without interacting
with them. Not only in the technical aspect. But also in all other aspects involved in this
complex route that must be pursued to get to the end of a PhD. I am not naming every
one individually here, but if you have actually been part of this process in any shape or
form, I am sure you know how thankful I am.

My promotor prof. dr. ir. Jan Dirk Jansen, who always had the right words to push
me further. For the trust he deposited on me, for instance by saying ‘to maximize the
impact of my talents’. For the opportunities he promoted, like my participation in the
Data Assimilation Summer School in Romenia, the fellowship at UCLA, and so many
others. Thank you for your efforts to make me a better researcher.

My copromotor, dr. Hadi Hajibeygi, for introducing me the multiscale world, for al-
ways being challenging and honest with my research. For letting me lead research acti-
vities in DARSim. The interactions with the group has provided me a insightful, broade-
ning experience.

My Petrobras supervisor (and more importantly, friend), dr. José R. P. Rodrigues, for
his endless patience while discussing every single detail of the adjoint formulation and
implementation, continued support, availability, and, last but not least, friendship.

I am thankful to Petrobras for giving me the opportunity to undergo its H&R deve-
lopment program in order to pursue this PhD and for sponsoring all my PhD research.

My paranymphs, Flávia Pacheco, for not only being so encouraging in my professi-
onal career, but also for always being the most supportive friend when I most needed,
and Matteo Cusini, the friend I found in Delft who walked along with me every corner
of my PhD path, inside and outside the university. My friend Rahul Fonseca, who I also
only found in Delft, but understands me and advises me as if we know each other for a
life time. Thank you all for helping me to make it through.

I am especially grateful to the opportunity to have MSc students working on topics
related to my PhD research project: Mircea Helici, who worked in the MS-StoSAG work-
flow implementation, Frank Pennekamp, who worked on the i-MSFV derivative compu-
tation formulation, Wessel de Zeeuw, who worked on both the i-MSFV derivative compu-
tation and in the multiscale-based goal-oriented method developments. Their dedica-
tion to their MSc projects and high-quality work had an impactful result on my research.

My wife Thays Moraes, who not only walked along with me the ups and downs of this
PhD, but has also been my main supporter in life. I would never be able to thrive at any
aspect of life without you!

Rafael Jesus de Moraes
Delft, October 2018

215



The improved understanding of 
subsurface resources and, consequently, 

improved decisions on how to efficiently exploit 
them rely on mathematical and computational models. 
The improvements are usually guided by optimization 

algorithms that require derivative information. This thesis discusses 
the development of efficient and accurate derivative computation 

techniques based on multiscale simulation strategies. The multiscale 
aspect of this research is twofold. On one hand, it allows for 
more efficient computational algorithms. On the other, the 

inherently multiscale nature of the physical process 
can be more appropriately accommodated by 

the mathematical models.
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