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Abstract—MRI-scanners enable non-invasive, in vivo quanti-
tation of metabolites in, e.g., the brain of a patient. Among
other things, this requires adequate estimation of the unknown
temporal decay function of the complex-valued signal emanating
from the metabolites. We propose a method to render a current
decay estimator more simple, accurate, and robust, and test it on
a simulated signal comprising contributions from ten metabolite
species and scanner noise.

Index Terms — metabolite quantitation, signal-decay function,
semi-parametric estimation, low-pass filter.

I. INTRODUCTION

Magnetic Resonance Imaging, MRI, is the only technique
that enables non-invasive, in vivo quantitationI of metabolites
in, e.g., the brain of a patient. To be more precise, MR
Spectroscopy, MRS, a modality of MRI, is the correct name
of this technique.

The present paper is a follow-up of our paper in Proceedings
ICTOPEN 2013 [1], entitled “Error-Bars in Semi-Parametric’
Estimation”. In that study, we pointed out that the model
function of the temporal decay of an in vivo MRS signal
is usually unknown due to natural tissue inhomogeneity in a
patient. Although the form of the decay has only nuisance
value in the clinic, ignorance about this form unavoidably
causes bias in the estimated metabolite concentrations, much
to the detriment of medical practice.

In the previous paper we approximated the unknown true
decay by a surrogate, analytical physical model function,
namely mono-exponential decay [1]. The decay constant was
estimated from the data. This procedure, although used in
many MRS applications, can give rise to considerable, yet
undetectable, bias.

In the present paper, on the other hand, we estimate the decay
function numerically — i.e., in contrast to using an analytical
form — and substitute the result into the model of the MRS
signal. Unlike previous methods for numerically estimating the
decay, see e.g. [2],[3],[4] and references therein, the estimate is
not easily perturbed by measurement noise in the MRS signal.
Details of the new method are still under investigation.

The estimated decay is in turn used to complete the model
function of the MRS signal. Finally, the model parameters of

An alternative term for quantitation is quantification.
2Semi-parametric means that the model function used for describ-
ing/analysing a physical phenomenon is only partly known.
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Figure 1.  Left: Re[FFT(d(¢))], where d(t) is here the version used in the
simulation of the MRS signal s(t). Recall that the spectroscopic lineshape,
in the frequency domain, is the Fourier Transform of the temporal decay d(t)
of s(t). Right: Re[FFT(s(¢))] (noiseless) and Re[FFT(sm, (¢))]; from [1].

In MRS, the frequency is expressed in units of ppm, while the spectrum is
displayed in reversed order, i.e., running from high to low values. The numbers
along the axes can be zoomed to improve reading. Graphs made with ’jMRUI’

[5].

medical interest can be estimated by non-linear least-squares
(NLLS) fitting of the MRS model function to the in vivo
measured MRS signal [4].

Sec. II is devoted to the new method for numerically
estimating the decay function. Sec. III treats subsequent NLLS
fitting of the MRS model function to a simulated in vivo MRS
signal with thousand different added noise realisations (Monte
Carlo procedure). Sec. I'V discusses various aspects of the new
method and the Monte Carlo results. Finally, Sec. V sums up
conclusions.

II. METHODS

A. Model function [1]

An in vivo MRS signal, s(t), is complex-valued and is
acquired in the time-domain. Apart from noise, we model it
here by

s(t) =

—_ d(t) ePo S(t)no_decay (2)

M
d(t) e*#o Z Cm Sm(t) et @Tlvmitem) (1)
m=1
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in which ¢ is time, 2 = —1, (o 1s an overall phase,

Av,, and @, are nuisance parameters (for clinicians), and
m =1,..., M are the indices of the metabolites.

Furthermore, ¢,,, m = 1,..., M are the amounts or con-
centrations of the metabolites, to be estimated. They are
the most important pieces of information for clinicians. The
Sm(t), m =1,..., M are known, non-decaying theoretically
computed versions of the model functions of the metabolites.
The definition of s(#)"°-4¢°® follows from comparing Eqgs. (1)
and (2).

d(t) governs the decay of the signal’ As mentioneed in
the Introduction, the form of d(t) is a priori unknown due
to tissue heterogeneity in humans or animals. We devised a
new method for numerically estimating it from the data. Our
previous methods are sensitive to noise in the data. Below we
show how the effect of noise can be alleviated.

From Eq. (2), one has

s(t) e~*#0
s(t)no_decay

s

| 1p(t
= Is(t)no_decayl @ 2 (3)

d(t) =~

bl

where the approximation sign *=2’ indicates that this relation
is satisfied only when all physical parameters contained in
the denominator, s(¢)"°-94°“®Y have the true value and mea-
surement noise is absent from the numerator; exp(1¢(t)) is a
complex-valued phase factor.

In practice, neither of the two conditions mentioned above is
satisfied. As for the 1st condition, reasonable starting values
of the physical parameters can be obtained by initially fitting
Eq. (1) to the data s(¢) using the simple analytical decay
function d(t) = exp(at), where o« < 0. As for the 2nd
condition, at values of ¢ where the size of the oscillatory signal
s(t) happens to be about equal to, or smaller than, that of the
noise, the value of the division |s(t)|/|s(t)"*-9¢| in Eq. (3)
can be severely perturbed, resulting in a spiky appearance
of d(t). It is this latter phenomenon that was successfully
addressed in the present work. The next Subsection is devoted
to our method.

B. Reduction of the sensitivity of Eq.(3) to noise

In the past, the spiky appearance mentioned above was
addressed mainly after executing the division, i.e., after the
damage was done. Here, we intervene before executing the
division, and this in such a way that it is rendered harmless.
To be able to do so, one must identify the main cause of
the sensitivity to noise. As already indicated in the previous
Subsection, the heart of the problem lies in the oscillatory
nature of MRS signals. Therefore, we propose to remove the
oscillations prior to division, and this using a conventional,
’Butterworth 3’, low-pass filter [6]. For optimal performance,
it is important to avoid edge effects of the filter at ¢t = 0,
the starting point of the signal at its maximum strength. To

3If the MRI/MRS scanner operates at a magnetic field of > 11.7 Tesla,
the decays of all metabolite species may be equal due to micro-susceptibility
effects [1]. See Re[FFT(d(t))] used in this work in Fig. 1.
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Figure 2. Absolute value of the complex-valued MRS signal, |s(t)], in
the numerator of the fraction in Eq. (3). Apparently, the signal has decayed
into the noise by sample point 500. As many as 10 metabolites contribute
to the signal [1]; see right-hand side of Fig. 1.
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Figure 3.  Blue: Same as Fig. 2, but now symmetrised by including
reflection w.r.t. ¢ = O (also, more points shown). Yellow: Low-pass filtered
version of the blue curve. The symmetrisation manoeuvred the time point
t = 0 to the centre, thus minimising filter end-effects at ¢ = 0.
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Figure 4. Blue: Absolute value of the complex-valued non-decaying

signal |s(t)"°-9e@y | in the denominator of the fraction in Eq. (3), and
symmetrised as in Fig. 3. Yellow: Low-pass filtered version of the blue
curve. The yellow curves of Figs. 3, 4 are blue, red respectively in Fig. 5.

this end, we symmetrise the signal by reflection with respect
to t = 0, thereby doubling its duration. Subsequently, we
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Figure 5.  The four separately low-pass filtered components of Eq. (3)

which together yield the wanted estimate of the complex-valued temporal
decay of the MRS signal, shown in Fig. 6. Green: Re[e?(!)]. Brown:
Im[e *?(*)]. See also the caption of Fig. 4.
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Figure 6. Complex-valued decay d(t), estimated by combining the right-
hand halves of the four curves, according to Eq. (3). Blue: Real part. Red:
Imaginary part. The over-sensitive division of the blue curves in Figs. 3, 4,
applied in the past, has now been replaced by division of the yellow curves.
The latter division is robust in the presence of noise in s(t).

0.02

N N
N AN A
LV A
MWATT U
A

-0.015 L
0 200 400 600 800 1000 1200

Figure 7.  Incurred error: Estimated decay minus true decay. Blue: Real
part. Red: Imaginary part. Note that the vertical scale has been expanded
considerably. In fact, the error is of the order of one to two percent.

apply the filter to the entire, double-length signal. In this way,
the time point ¢ = 0 is at maximum distance from either
end (edge). In addition, apart from noise, the signal is nearly
zero at both ends. As a result, edge-effects of the filter are
minimised.

Figs. 2 to 7 provide a graphical display of the procedure just
described.

Fig. 2 shows the absolute value of the MRS signal |s(t)| over
1300 sample points. Ten different metabolite species contribute
[1]. At sample point 500, the signal has decayed into the noise.
Fig. 3, blue curve, shows the symmetrised version of |s(t)],
in the sample point range -2000 to +2000. The yellow curve
results from low-pass filtering the blue curve. We point at
four aspects: 1) The cut-off frequency of the low-pass filter
was set sufficiently low to strongly reduce the oscillations. 2)
In the outer wings of the yellow curve, the metabolite signal
has decayed to zero. However, the height of these wings is not
zero, but is lifted to the average absolute value of the noise. 3)
In the central region of the yellow curve, the metabolite signal
is greater than the noise, making the former act as homodyne
detector * with long RC-time-constant 5. As a result, the noise
is averaged out in this region. In other words, the noise does
not lift the top of the yellow curve. 4) The cut-off frequency
of the low-pass filter was nonetheless set sufficiently high to
let the yellow curve approach its full value |s(0)|; see also
Fig. 5, below.

Fig. 4 shows the symmetrised version of |s(¢)"°-9¢¢@ |, which
is a synthetic signal composed from a metabolite signal
database using approximate metabolite concentrations, initially
obtained by using a simple approximate analytical physical
decay function, mentioned earlier. The yellow curve is the
result of the low-pass filter.

At this stage of the description of the procedure, we can
already illustrate graphically the main aspect of our method:
Traditionally, one divides the blue curves of Fig. 3, 4; now we
divide the yellow curves, taking the phase factor into account,
which is very robust.

Fig. 5 shows the four components of Eq. (3) as obtained with
the new method. Each is the result of filtering prior to division.
At the time origin, ¢t = 0, the decay process has yet to begin, so
|s(0)no-decay | should approximate |s(0)|. Indeed, the red and
blue low-passed filtered curves (yellow in Fig. 3,4), are seen
to coincide at that point of time. Recall from the discussion
of Fig. 3, above, that |s(0)| is not lifted upward by the noise.
The fact that d(¢) approaches zero beyond sample ~ 600 (next
Figure) despite the lifting of the blue curve in that region, is
brought about by the low-pass filtered phase factor, represented
by the green and brown curves. Details of the shapes of the
latter curves are under investigation.

Fig. 6 shows the result of working out Eq. (3); blue: Real part
of d(t), red: Imaginary part of d(t). Spikes are absent from
sample O to sample 1300. The next Figure shows whether this
result is acceptable.

“http://en.wikipedia.org/wiki/Homodyne_detection
Shttp://en.wikipedia.org/wiki/RC_time_constant
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Figure 8. Residues in the spectral domain. Only the first 450 samples were

used in the the time-domain fit, resulting is low spectral resolution.

Upper: Mono-exponential decay used, and amplitudes 'normalised’; pertain-
ing to column B in Table I. The spectrum is shifted upward from the baseline
for better viewing. Lower: Decay estimated with present method; pertaining
to column D in Table I. Graph made with jMRUI [5].

Finally, Fig. 7 shows the difference between the estimated
decay and the true decay, with a strongly expanded vertical
scale. It turned out that the difference (estimation error) is
here only one to two percent; see also point 9 in Sec. IV.

It remains to be seen whether estimation of metabolite con-
centrations using Eq. (1) and the estimated decay, gives indeed
satisfactory results. This will be treated below, in Sec. III.

ITII. RESULTS

We tested the quality of our estimated decay by means of a
Monte Carlo (MC) simulation as described in [1]. The input
of the MC simulation comprised the model function of Eq. (1)
and a great number, here thousand, of different Gaussian noise
realisations with equal standard deviation (stdev) and zero
mean that were separately added to the noiseless version of
the simulated signal. Each of the resulting thousand different
noisy signals was subjected to model fitting with a home-made
NLLS program, based on LAPACK, that is easily adaptable
to our needs. The output of the MC simulation consists of
the mean, bias, and standard deviation of all fitted model
parameters. The results for the concentrations are listed in
Table I.

IV. DISCUSSION

1) The signal-to-noise ratio (SNR) of our simulated signal
is low; see Fig. 2. Nevertheless, Fig. 7 shows that the
new method for estimating the decay is not particularly
perturbed at this level of the noise.

2) The simulated signal comprises a temporal decay function
that deviates significantly from a mono-exponential; see
Fig. 1. In fact, we prepare for the imminent introduction
[7] of wide-bore magnets for humans operating at a field

as high as 11.7 Tesla. At such a high value, tissue micro-
stucture determines the in vivo inhomogeneity of the
field, and thereby the form of the decay function [8].
Our simulated decay, when transformed to the frequency-
domain by FFT, yields a clearly asymmetric shape; see
Fig. 1. The in vivo decay function for humans at 11.7
Tesla is still unknown.

3) When a model function is partly unknown, estimation of
the physical model parameters contained in it, becomes
biased [1]. If possible, separate estimation of the unknown
part should then be attempted. An estimation without
an analytical, physical model, can be referred to as a
’search in function space’, in contrast to a ’search in
physical parameter space’ when applying NLLS. The
resulting numerical function can be used, in fixed form,
to complete a model function such as Eq. (1). This was
done in the present work.

4) A complication of searching in function space is that
new parameters emerge that have to be set at optimal
values. Such parameters are called hyper-parameters. In
the present case, the hyper-parameter to be set is the
cut-off frequency of the low-pass filter. This frequency
depends on the signal at hand. A clinician can not be
expected to be aware of this. Therefore, hyper-parameters
should be optimised automatically during runtime. This
can be a very difficult problem. Reliable automatic op-
timisation of the above-mentioned cut-off frequency is
under investigation. So far, it seems to be the only hyper-
parameter of the new method, though.

5) As for the main goal of the research, see Table I. The
results lie between two extremes, columns A and E. The
numbers in A were obtained with a surrogate decay,
namely the mono-exponential d(t) = 1.0 x exp(at),
where « is included in the NLLS fit. To ensure proper
convergence, o was kept equal for each metabolite
species during the fit. In column A, bias is significantly
higher than in other columns, for most metabolite species;
therefore, the theory of the Cramér-Rao bound (CRB)
does not apply. The numbers in column E were obtained
with the true decay. The model function being complete
and correct in that case, the standard deviations approxi-
mate the CRB’s (not tested so far).

6) The ratios of the estimated metabolite concentrations
are less sensitive to the inadequacy of assumed mono-
exponential decay. This is apparent from the significant
improvement obtained from normalisation, i.e., adapting
the concentrations such that s(0)"°-9¢@ = 5(0) , keep-
ing their ratios constant; see column B. Should this result
be generally true, then why bother to still estimate d(t)?
We offer the following consideration: If one reconstructs
a signal using good estimated parameters but an incorrect
decay function, then the ’residue’® will not look good.
Understandably, clinicians are suspicious and will reject

In metabolite quantitation with MRS, achieving a noise-like residue in the
spectral (frequency) domain is indispensable.
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Table T

Result of Monte Carlo simulation using Eq. (1) and thousand different noise realisations.
The signal-to-noise ratio (SNR) can be gleaned from Fig. 2. /m = number of metabolite species. mean = mean metabolite concentration
resulting from the Monte Carlo simulation. |error = bias, standard deviation (stdev), rmse (root mean square error).
A = real-valued mono-exponential d(¢). B = as A, but concentrations are normalised. € = as B, but all Av,, are kept equal during
the fit. using estimated d(t). 'D| = using estimated d(t). |E| = as D, but using true d(t).. Negative outcomes, occurring with bias, are
printed red.

m error A B C D E

1 mean 2.14384 1.76495 1.76593 1.74909 1.73544
1 bias 0. 38866 0.00998 0.01096 -0.005289 0.00047
1 Eﬁgﬁi 0.03803 0.08612 0. 08806 0.03336 0.02161
1 rmse 0. 39052 0. 0887 0. 08897 0.03387 0.02161
2 mean 0. 29387 0.24191 0.22688 0.1lesl8 0.18667
2 bias 0.1lol178 0.04982 0.023478 -0.02592 -0.02243
2 Eﬁgﬁi 0. 07986 0.08610 0.08441 0.10853 0.10730
2 rmse 0.12924 0.08277 0.07320 0. 10964 0.11086
2 mean 2.45239 2.01916 2.01879 2. 08084 2.068727
3 bias 0. 38504 -0.04819 -0.04855 -0.00671 -0.00008
3 Eﬁgﬁi 0.03842 0.07374 0.07366 0.03200 0.023182
3 rmse 0. 38695 0.028809 0.028822 0.03367 0.023182
4  mean 1.64442 1.35355 1.35411 1.35075 1.35559
4 bias 0.28817 -0.00231 -0.00215 -0.00551 - 0. 00066
4 Eﬁgﬁi 0.03815 0.05507 0.05514 0.02189 0.023091
4 rmse 0. 29068 0.05512 0.03518 0.03236 0.03092
S mean 0.567436 0.55522 0.53362 0.54143 0.54054
5 bias 0.04136 -D.O7FT9 -0.09939 0. 00242 0.00753
=] Eﬁgﬁi 0. 06529 0.05745 0.05629 0.05937 0.08535
> rmse 0.07813 0.09870 0.11422 0.05997 0.08568
S mean 0.142817 0.12203 0.07778 0.05870 0.03991
& bias 0. 00094 -0.02521 - 0. 082945 -0.08853 -0.10732
5] Eﬁgﬁi 0. 13924 0.11471 0.08819 0.14011 0.13466
& rmse 0.13924 0.11745 0.09733 0.16574 0.17219
7 mean 0. 705835 0.58157 0.58248 0.542870 0.355279
7 bias 0.15380 0.02882 0.02973 - 0. 00405 0.00004
7 Eﬁgﬁi 0.02478 0.02786 0.02730 0.02024 0.01985
7 rmse 0. 15559 0.04008 0.04077 0. 02084 0.01985
2 mean 3.61377 2.97537 2.97626 2.958242 2.97463
8 bias 0.535954 0.00114 0.00203 -0.01121 0.00040
8 Eﬁgﬁi 0.04394 0.10439 0.10431 0.04138 0.03686
8 rmse 0.684105 0.10439 0.10433 0.04303 0.03687
9 mean 0.81817 0.567200 0.67124 0.65541 0.B85680
2 bias 0.15520 0.01113 0.01037 -0.00348 - 000407
=] Eﬁgﬁi 0.032174 0.023447 0.02460 0.02649 0.02840
9 rmse 0.15851 0.03622 0.03612 0.02704 0.02671
10 mean 0. 176800 0.14493 0.14182 0.12168 0.12347
10 bias 0. 055809 0.02502 0.02191 0.00176 0. 00356
10 Eﬁgﬁi 0.03445 0.02886 0.02890 0.03289 0.023455
10 rmse 0. 08583 0.03E19 0.03627 0.032594 0.03484
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a quantitation, when the residue of their NLLS fit does
not resemble pure noise.

7) Column C is as B, but now with the frequency shifts Av,,
locked together during the fit to improve its convergence.
There seems to be no consistent effect of this measure in
the Table.

8) The results of metabolite quantitation with estimated
decay are displayed in column D. The most significant
effect of estimating d(t) is for species 1, 3, 4, 8 whose
concentrations are highest; note that bias < standard
deviation for these species. For species 2 and 6, little
effect of using estimated decay is found, but that applies
even to using the frue decay as listed in column E. When
the order of magnitude of the standard deviation is of the
order of magnitude of the concentration, one can not ex-
pect more. Metabolite species 10, whose concentration is
lowest, while its errors approach those of the concentrated
species, is a case apart; see Table II in the Appendix.

9) As mentioned in Sec. II, in the past the effect of noise on
the division in Eq. (3) was addressed after the division
had been carried out. To this end, low-pass filtering based
on splines, wavelets, or exponentially damped sinusoids
was used. In the present work, we apply a Butterworth
3 low-pass filter (LP), before the division. This amounts
to approximating the LP of the full expression in Eq. (3)
by the LP of its separate constituents, according to :

LP[|s(®)l]

[d(t)] =~ W] LP[e*?(")] “4)

Simulations without noise indicated the order of magni-
tude of the error incurred in Eq.(4). This aspect is to be
investigated further. At high SNR, estimation of d(t) by
yet another method, involving a genetic algorithm named
"pikaia’, is recommended [2,9].

10) The present simulated signal lacks a contribution from so-
called macromolecules (MM) [4]. In clinical practice, this
simplification is not very realistic. The matter is perhaps
handled best by separate measurement of the MM signal
with so-called ’inversion recovery’ [4], and subsequent
subtraction of this MM signal from the full MRS signal,
at least while estimating d(t).

V. CONCLUDING REMARKS

We devised a simple and robust estimator of the generally
unknown temporal decay of in vivo metabolite signals obtained
from an MRI scanner. The estimated temporal decay serves to
complete the metabolite model function for analysing signals
measured non-invasively in patients. This obviates the use of
an approximative surrogate decay function which can cause
biased results. The new estimator not only reduces bias but
also improves the spectral residue of model function fitting,
thus raising confidence of clinical users.
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APPENDIX I
Table IT

NAMES AND CONCENTRATIONS (AMPLITUDES) OF METABOLITES
INVOLVED IN THIS WORK [1]

m | Abbreviated | Metabolite name | True amplitudes
1 Chol choline singlet 1.75497
2 Cho2 choline multiplet 0.19210
3 Crl creatine singlet 1 2.06735
4 Cr2 creatine singlet 2 1.35626
5 Glu glutamate 0.63300
6 Gln glutamine 0.14723
7 ml myo-inositol 0.55275
8 NAAI NAA singlet 2.97423
9 NAA2 NAA multiplet 0.66087

10 sI scyllo-inositol 0.11991
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