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|dentification of Probabilistic System Uncertainty
Regions by Explicit Evaluation of Bias
and Variance Errors

Richard G. Hakvoort and Paul M. J. Van den HB&nior Member, IEEE

Abstract—A procedure is developed for identification of prob- system uncertainty regions on the basis of measurement data
abilistic system uncertainty regions for a linear time-invariant and prior assumptions. Next to the problem of dealing with
system with unknown dynamics, on the basis of time sequences,,,mndeled dynamics, a second goal here has been to arrive at

of input and output data. The classical framework is handled . . .
in which the system output is contaminated by a realization nard-bounded (worst case deterministic) uncertainty regions,

of a stationary stochastic process. Given minor and verifiable providing the user with 100% certainty about the dynamic
prior information on the system and the noise process, frequency properties of the system at hand. This is in contrast with a

response, pulse response, and step response confidence regions agiobabilistic formulation of system uncertainty, as present in
constructed by explicitly evaluating the bias and variance errors the classical methods.

of a linear regression estimate. In the model parameterizations
use is made gf general forms of basis functionps. Conservatism of |t has been clearly motivated [20], [27] that the worst
the uncertainty regions is limited by focusing on direct compu- case deterministic versus probabilistic issue is completely
tational solutions rather than on closed-form expressions. Using determined by the prior assumptions concerning the noise
an in_strumental vari_able method for identifi_cation, the procedure  {isturbance on the data.
|esXSU|‘§abIe also for input—output data obtained from closed-loop The worst case deterministic type of problem has been
perlments. . .
addressed in terms of frequency response data in [5], [10],
_Index Terms—Robust control, system identification, uncer- [17], [18], [25], [33], and [34]. In the case of time-domain
tainty modeling. L .
data, a deterministic/worst case approach is often referred to
as set-membership identification or as parameter bounding
identification. Accounts are given in [8], [30], and [32].
N MANY situations where identified models are used t&everal norms are used to outerbound the obtained parametric
reflect the dynamic properties of an underlying dynamicahcertainty sets, as e.g., in terms of frequency response magni-
system, there is interest not only in the specification of onede [42],H..-norms [24], [44], and/;-norms [23], [28], [39].
single nominal model, but simultaneously in a quantificatioDirect outerbounds on the frequency response of the system
of the corresponding model uncertainty. In other words, the considered in [11] and [12]. Contributions based on model
question “how reliable is my identified model?” is a questio(in)validation are provided in [35] and [36]. An important
which is very relevant in many model applications. One afrawback is that due to the worst case character of the assumed
the most apparent examples of this is in model-based robdgiturbances, the obtained system uncertainty regions generally
control design. Here, robust controller analysis and synthesig very conservative, if this worst case disturbance does not
requires the availability of an upper bound on the model-plag¢tually occur. This is shown in [20] and [31].
mismatch, specified in some norm [7]. Approaches that consider disturbance signals to be stochas-
In “classical” prediction error identification [26], [38] it tic and that also account for undermodeling are given in [1],
is possible to quantify asymptotic confidence intervals fgg], [9], and [45]. In this approach the noise is assumed
estimated parameters and frequency responses, however @§ljehave noisy, i.e., random and uncorrelated to the input
in the situation that there is no unmodeled dynamics. Thisgnal, and prior assumptions about the system are made,
situation, referring to the case that we can exactly model tQgrying from deterministic [1], [6] to stochastic [9]. Typically
plant under study by a (low-order) finite-dimensional lineahese procedures yield frequency response uncertainty regions
time-invariant model is considered to be overly optimistic. hich are correct with a certain specified probability, provided
Motivated by applications in model-based robust contrghe prior assumptions that are made are correct. The current
theory, many authors have considered the problem of derivifgitations of these methods are that they are restricted to
Manuscript received May 19, 1995; revised January 20, 1997 and May geriodic input signals [1], [6] or that a probabilistic embedding
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at computational solutions by explicitly calculating bias and The input signal is assumed to be a quasi-stationary signal
variance errors of a linear regression [least squares (LS)[26] and may be dependent on the noise proegsso as to
instrumental variable (V)] estimate. In this way we are ablallow for experimental data that is obtained from closed-loop
to arrive at expressions for system uncertainty in terms ekperiments.
frequency response, pulse response, and step response, for aAydata set taken from the systef¥y, will typically consist
user-chosen sequence of frequency points and time indexasdata sequencefu(t) bi=1, ... n, {y(¢) }+=1, ... v, Where N
respectively. As a result, conservatism induced by uppetenotes the length of the observation interval.
bounding the errors is limited. We will adopt the classical In order to cope with unknown initial conditions the input
prediction error framework with stochastic noise disturbanaggnal in the past is assumed to be bounded by
on the data; the required prior information on the system is
limited and is shown to be partly constructible from the data. lu(®)] <, vi<0 (2)

We will employ a linear model parameterization in term or some given.

of general b'a3|s func'qons. Recent work on Laguerre, Kau.Z’When characterizing uncertainty sets concerning the system
and generalized functions has shown to have great potentlé\l

in identification problems: see [19], [31], [40], [41], and [43] y%amlcs on the basis of the available data sequences, use will

. ) . bfe made of representations of the syst8me A in the form
In this way approximate knowledge about pole locations % a general series expansion

the unknown system can be incorporated by the choice of a AS A C Hoo C Ha, it follows that for {Fi(2)}rco, . oo

propriate basis fu_nctlons, Iegdlng to a m_o_del par_ameterlzatlgnirlg a prechosen sequence of basis functiongin any
in terms of a series expansion that exhibits an increased rate

systemG, € A can be uniquely written as
of convergence.
The outline of the paper is as follows. In the next section >
the identification setting is described. Section Il presents the Go(2) =Y go(k) Fi(2). 3
least squares/instrumental variable estimate. In Section IV, the k=0

frequency response error of the estimated model is evaluateqn the function Spacé—[% many choices for (OrthonormaD
which leads to probabilistic frequency response system uncgsis functions exist, as e.g., the standard pulse bagis =
tainty regions. In the subsequent sections pulse response and the Laguerre basig(z) = v1— a2z(1 — az)*/(z —
step response uncertainty regions are derived. In Section Vi1 for any 4 € IR, |a| < 1, and the two-parameter Kautz
it is shown how the prior information that is required folhasis which is a second-order generalization of the Laguerre
our procedure can be identified from the data itself. Next, ighsis. Recently, the latter two bases are exploited in terms
Section VlII, a simulation example is shown. The present paf system identification of expansion coefficients; see [41]
per is an extended version of [15]. A worst case deterministiyd [43]. More general constructions of orthonormal basis
counterpart of the procedure is presented in [14]. functions have been introduced in [19] and used for identi-

Concerning notation}{, will denote the Hilbert space of fication purposes in [40]. The most important phenomenon to
complex functions analytic ifz| > 1 and squared integrablenotice here is that an appropriate choice of basis functions
on the unit circle}{ is the Hardy space of complex functionscan essentially improve the rate of convergence in a series
that are analytic and bounded || > 1; R is the set of expansion (3). To this end, the basis functions introduced in
real-valued scalars{ is the set of bounded signals, i.e.[19] can incorporate dynamics of any complexity (order) and
sup |u(t)] < ¢ € R. thus extend the Laguerre case where one single pole can be
positioned in the functions. In this paper we will consider the
functions Fy(z) to be chosera priori.

As a priori information on the data generating systé#y,

We consider a data generating systéf(z) € A, the class the coefficientsyo(k) are assumed to be bounded by
of proper, bounded-input/bounded-output,¢stable) linear

time-invariant systems, generating input—output data according lgo(k)| < g(k), k=0, 00 4)
to

Il. |DENTIFICATION SETTING

for given g(k) € IR that satisfies an exponential decay,
1) i.e., there exist priori given numbersM, p, k* € IR with

y(t) = Gol@)ult) + vo(?) M, k* > 0, p < 1, such that

with ¢ the forward shift:qu(t) = w(t + 1), », andy scalar g(k) < MpF, Vi > E*. (5)
input and output signals ang, a noise process satisfying the
following assumption which is standard in prediction errovlethods to verify these prior bounds on the basis of measure-

identification (cf. [26]). ment data will be discussed later on.
Assumption 2.1:The noise processy, is a stationary As we will also be dealing with bounding the uncertainty
stochastic process with auto-covariance functidp () = in the pulse and step response of the systéim we

Euo(t + T)vo(t) and it satisfiesi(t) = Ho(q)eo(t) for some denote Go(z) = > 5o po(k)z=*, with {po(k)}r=0, ..., 00
/5-stable Hy(q), where{eo(t)} is a sequence of independenthe pulse response sequence G§, while {so(k) :=
random variables with zero mean values, varianegsand Efzo po(k) }r=o,....c refers to the step response sequence
bounded fourth moments. of Gp.
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The problem that will be considered is formulated as folwhere (¢, §) is an (parameterized) output error signal,

lows. G(z,8) is the parameterized model, while the model
Given are the prior information (4), (5) dHy, the stochastic parameters{g(k)}x=o, ... » are collected in the parameter
nature of the noise process as formulated in Assumption 2vkctor 6 = [¢(0) g(1) --- g(n)]¥ € R™*. In calculating

and the bound on the past input signal (2). Also given isthe output error signal, we will adopt the convention that
sequence of input and output measurement data of leNgth «*(¢) := w(t) for ¢ > 0, andu™*(¢) = 0 for ¢ < 0.
+ For any user-chosen frequengy € [0, n1], determine a  The following signals are defined:
region in the complex plane that will contaifiy(c™) L + 1
asymptotically with a prescribed probability. zk(t) :=Flgu () (10)
« For any user-chosen time index > 0, determine a z(t) :=Fi(g)r(#) (11)

real-valued interval that will contaipo(k) [respectively, with r an instrumental variable signal, correlated with the input

so(k)] asymptotically with a prescribed probability. 't not correlated with the noise process Now denoting
This problem will be handled along the following lines. the column-vectors

The system, is split into two parts:Go(z) = Go(z) +

Go(z), with zolt) 20(t)
n P(t) == : ) )= : (12)
Go(z) = Y 9o(k)Fi(2) (6) Zn(t) 2 (1)
k:c?o the instrumental variable estimatg is obtained by [26], [37],
Goz) = Y. go(k)Fi(z) (7) and [38]
k=n+1 1 N
for some user-defined truncation value Oy = Solee@{T Z C(t)e(t, 0) = 0} (13)
For solving the first part of the problem, we are going to N =

identify the coefficients ofGG, from measurement data. Aswith © ¢ R™! an appropriate parameter spate,> 0,

a result, probabilistic uncertainty bounds will be derived forrepresenting the starting sample used in the IV estimate, and

Go(e"™) using asymptotic variance expressions of a lineaf — N —t, + 1. By algebraic manipulation the standard

regression-type estimate. These variance expressions are based . s ; . . )
: . : . _~expression for a linear regression model estimate follows:

on the stochastic noise Assumptions 2.1. In the variance

expressions the influence of the undermodeling @aytz) X 1 -1 1 X

is properly taken into account. Additionally, deterministic 6y = [—~ > C(t)d)T(t)l = > LByt (14)

uncertainty bounds will be determined for the té&dh(c®), N = N =

using the deterministic prior boundgk) given in (4). The

sum of the deterministic uncertainty bounds &@(c*) and

the probabilistic uncertainty bounds fa&o(c™) provides ¢(t) and thus by appropriate choice of

probabilistic uncertainty regions for the systeff(c™). A In open-loop experimental situations the input signatill

similar procedure will be followed to solve the second part %fatisfy the requirements for a proper instrument, and thus the

the problem, related to the pulse (step) response coefficiegfice, — 4, in that case leads to a simple linear LS estimate

po(k) (so(k))- of the expansion coefficients. Under closed-loop experimental

The truncation order is chosen so as to minimize the.,qitions, the instrument can be chosen so as to match an

uncertainty bounds. _If” is cho;en too small,' th? resunirlgexternal reference signal that is correlated with the input signal
bounds will be heavily determined by the prior mformatlor&' but independent of the noise process

(4), which is generally conservative. if is chosen too large, By adopting the additional notatiar (¢) = w(t) for ¢ < 0,
the confidence regions f@¥,(z) will be large as the variance 4’ - =

. : ; du(¢t) = 0 for t > 0, the system outpuj(¢) can be
increases with the number of parameters to be estimated. \ﬁﬁtten ®) 4 Puy (?)

provided that the inverted matrix is nonsingular. This is
achieved by appropriate choice of the instrumentét) in

as

optimal choice of the truncation order will be commented upon . .

later. y(t) = Go(@)u™ (t)+Go(@)u™ (t) +Golg)u™ (t) +vo(t) (15)
1. AN INSTRUMENTAL VARIABLE ESTIMATE with Go(g)u™(t) = ¢"(t)fo and by = [90(0) - go(n)].

) . ) ) Substituting these expressions in (14) shows that
In this section we will formulate the linear regres-

sion/instrumental variable estimate that will be used for that
part of the system(,) that will be parametrically identified. 0n = 6o +
We will consider the model structure

e(t, 6) = y(t) — G(g, O)ult) 8) Wwith
with (1) = Go(Q)ut (t) + Go(@Qu™(t) +vo(t).  (17)

n

% 3 g(t)d)T(t)] % S ot (16)

G(z, 0) = Z g(k)Fi(2) (9) The second term in the right-hand side of (16) that is dependent

o on ~(t) clearly reflects the three sources of modeling errors.
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The first term in~(¢) reflects the effect of the neglected In the next subsection we will formulate upper bounds for
tail of the series expansion on the estimated parameters #mel several terms in this expression.

thus points to an effect of undermodeling; the second term

characterizes the effect of unknown initial conditions, and tf& Bounding the Model Error

third term reflects the effect of noise disturbance. Analyzing (21) we have to find upper bounds for the several

terms on the right-hand side of the equation. Given the fact

IV.  FREQUENCY RESPONSEUNCERTAINTY REGIONS that the expressions are complex-valued, we will formulate
. separate bounds for Real and Imaginary parts. To this end we
A. Introduction denote

In this section we will analyze the effect of the uncertainty .
in the estimated parameters on the frequency response of the Re {r.(t)} =:hin,w(?) (24)
estimated model. Im {ro,(t)} =1 k1,0 (1) (25)

0. — 5 - T
Denotedy = [3(0) -+ §(n)]". Then When there is no confusion possible, we will drop the

R n subscript, in order to simplify notation. The quantitipand 3
G(z) = Z G(k)Fr(z) (18) can simply be bounded by using the available data and prior
k=0 information, as follows.
and with Go(z) as defined in (6) it follows from (16) that Lemma 4.1:
N - oo N
G(z) = Go(2) + [Fo(2) - -+ Fu(2)] Re{n}| <7p = > g(k) L 37 krw(®)an(?)
N - N k=n+1 N =
1 T 1 =nt
: [ﬁ > et I > n) =0 1 X
i=. i=. In{n} <7ri= D0 9| Y e
and thusG(z) — Go(z) = —Go(2)+ h=nd =
N 1 N Proof: The expressions follow by substitution of (7) and
1 « T 1 « (10) into (22) ofn, and by utilizing (4). O
[Fo(z) -+ Fu(2)] N ; Ok (t)] N ; B (®)- Lemma 4.2: Denote the Laurent series expansion/f z)

‘o ol . by Fi(z) = 3720 fx(4)z 77, then
Next we evaluate this difference term for a specifically chosen

frequencyw, leading to the expression [Re {8} < Br

[e9) =) N
N B 1 B
G(e™) = Go(e) = —Go(e™) + = 3 ku(t)y(t) (29) =2 90 D5 D rreft O

N b k=0 (=0 t=t,

Im {3} <73

where for fixedw, r.(t) is a complex scalar-valued signal 5} < N
defined b = a1 _
’ ‘ | S SEICD Bl = SETMUY A 3

Ko (t) = [Fo(e™) - Fr(c™)] k=0 =0 t=t,

! Proof: Substituting (3) into (23) and utilizing the

v _
1 .
I > C(t)¢T(t)] ¢(t). (20) Laurent expansion ofFy(z) shows that3 = 1/N

=t Yise, Yo Yieo wu(t)go(k) fu(j)u(t — ). By variable
The signals..(¢) is a filtered version of the signal(t) and can Substitution/ = j — ¢, the above expressions directly result.
be computed, as it only depends on known quantities once the u
frequencyw has been specified. It will play an essential role Lemma 4.3:

throughout the following derivation of model error bounds. _ _ % -
Combining (17) and (19) we can write: Re{Go(e™)}| < 8r:= > g(k)Re{Fr(c™)}]
N L _ i k=n+1
G(e™) = Go(e) ==Gio(e™) + 1+ I |
1 I {Go(c™)}| < 87:= Y g(k)[Im {F3(c™)}].
+ % > rutu(®) (1) Jont 1
=t Proof: The results follow directly by combining (4) and
with 7). U
1 o The above three Lemmas represent computable bounds for
ni=—= Z Ko ()Golg)u™ () (22) the contribution of the first three terms in (21). The actual
t=t, computation of the expressions involves the evaluation of
1 infinite sums. However, due to the fact thatk) shows
B = > Ku®)Go(gu™ (). (23) exponential decay rate inand f;(t) shows exponential decay

t=t, rate int, the infinite sums will converge. In [13] it is shown
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that all sums can be calculated to within arbitrary accuracywhereN (0, A, ,.,) denotes the Multivariate Normal distribu-
This is done by truncating the infinite sums to a finite sum anigon with mean zero and covariance matrix,,.,. Moreover,
providing a bound for the truncation error which will vanishf AY is invertible
with increasing length of the truncated sum. For further details
we refer to [13]. N N

Clearly 35, 8; will be small if ¢, is chosen largefjg, 4) — Zh(t)vo(t) ng(t)vo(t) (AN 7
7, Or, 67 will be small if the effect of the neglected tail N = t=t,

{90(k) }rmnt1. ... oo is small. This tail effect will be small if. N

is chosen large and/or the basis is chosen appropriately so as Z r1(t)vo(t)

to have a series expansion (3) with a high rate of convergence. =t N_i?OX?(Q)
This latter property can be achieved by choosing basis func- N

tions that are adapted to the system dynamics, as is possible Z r2(t)vo(t)

with the generalized basis functions introduced in [19]. For =t

the remaining termi/N >, k.(t)vo(t), we establish the . S
following key lemma which is in fact a multivariate extensionvherex?(2) denotes the Chi-square distribution with 2 degrees
of [16, Proposition 2.5]. of freedom.

Lemma 4.4:Let v, satisfy Assumptions 2.1 and be in- _ Proof: The proof is given in [13] and [16]. In the proof
dependent of the bounded deterministic quasi-stationary §autful use is made of results established in [26, Th. 9.1] and

quence{r(t)}. Let r, and > be two signals determined by[20: ch. 2]. Existence of the limltm y .o 1.&{,\‘1’.,,2 is guaranteed
r1(t) = Fi(q)r(t), 72(t) = Fa(q)r(¢) for two £..-stable linear by the fact that- is a bounded deterministic quasi-stationary

filters F, and F,. Denote sequence, and, satisfies Assumption 2.1. O
The result of this Lemma can be applied to our error
N term1/N S, r.(t)vo(t) by realizing thats () ands r(t)
Z r1(t)vo(t) satisfy the conditions that are formulated fqgrandr; in this
Af}‘l’rz ::Ei tj\t Lemma. In this sense, the Lemma establishes an asymptotic
result for the probability density function of the stochastic term
Z r2(£)vo(t) in our model error. Use of a central limit theorem i
P . provides
N N an asymptotic normal distribution. Consequently, the results

given in 3) and 4) are asymptotic results. For finite the
given distributions are approximations of the true ones. In [13,

Z T1 (t)vo(t) Z 7’2(t)1}0(t)

t=t, t=t,

and A, ., = imy—oo AY

Also, denote fori, j =1, 2

T

Appendix 5.B] extensive Monte Carlo simulations illustrate the
relevance of this approximation also for finidé already. Note
that the expression for the covariance matrix in Part 1) is a

N 1 AT nonasymptotic result; it is correct for any.

R (7) =R Z ri(t)r;(t —7), The asymptotic covariance matrik, ., in the Lemma is

+7 = . .
: dependent on the covariance functifip, () of the unknown

T=—=-N+ts,:-,0, noise disturbance process. For the moment we will assume
T = that it is known. In Section VII, it will be shown that we

Rﬁ,,j (1) :i== Z ri(t+7)r;(t), can replace this covariance function by an estimate without

N-1 = conflicting with the original result stated above.

r=1,---,N—t,

and Rf,\;('r) = Rf,\;,,i (r),i=1,2. Then

1) AY, (G, 5) =

Net .
’ =7l .~

— R, (7)R,, (1),

Y AR R 0)

T=—N-+t,

C. Frequency Response Uncertainty Regions

Using the results of the previous subsection, a computable
bound for the model erro€(ei) — Go(ei) is straightfor-
wardly obtained in the form of a confidence region for the
system’s frequency respongg(c*). The bound is given in
the following main theorem.

Oi’ =52 Theorem 4.5:Consider the IV estimate (14) with corre-
2) A (i) = R, (1R, sponding frequency responégc™). Let vy satisfy Assump-
) Anira(i ) T:z_:oo o1 (T Ruo (7)) tions 2.1 and be independent of the bounded deterministic
i i—19 quasi-stationary sequen¢e(t)}. Letng, 77, B, S, 6r, and
~ A 61 be given by Lemmas 4.1-4.3. Lek(t), x1(¢) be as defined
Z 1 (£)vo(t) in (24) and (25), for a fixed choiee = w; € [0, 7], and denote
1 |t=t,

3)

VA |

A:OON(()? A7‘17’2)

Z T2 (t)vo (t)

t=ts

AN AN
N _ K KRKT
AKRKI - |:)\]\r 8 )\gf :| (26)

KIKR
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conformable to Part 1) of Lemma 4.4. Then, asymptotiéallyare due to the effect of the neglected tail on the accuracy

in N of the estimated coefficients df(q) and represent a bias
contribution. The third contribution witl¥, /5; is due to the
1) |[Re(G ( mj) _ Go(emjm unkr)own |n|.t|al cond|t|oqs in the data, e, the effect of dgta
outside the interval that is measured. Finally, the contribution
< ex AN = = of ér,67 corresponds to the neglected dynamics of the tail

R = —
N R+ AR+ OR WP 2 @ Go(q) itself and also represents a bias contribution.

2 s s The different error sources can be a tradeoff. In particular
2) [ (G(e™) — Go(e™))] the truncation value can be used to make a tradeoff IClJ)etween
)\N bias and variance. A larger value means a smaller bias,
+71; + By + 81, Wp. 2 o but a larger variance. An optimal value can be determined
by varyingn so as to minimize the size of the uncertainty.
Similarly, the integert, offers the possibility to tradeoff the
influence of initial conditions to the variance. A larger value
ts means a decrease of the error contribu'EiB@ts B;, but an

SCN,a

2|7

wherec,s, , corresponds to a probabilityin the standard Nor-
mal distribution, such that € N(0, 1) implies prob(|z| <

N,a) = . N i ) . 1 e increase of the variance, due to a decreasing N —t¢; + 1.
Moreover, if A, is invertible, mtroduceF [m m] It is emphasized that the identification of the IV model is not
asNthe square- rgot of the inverse afY , , i.e., I''T a goal as such, but serves only as a basis for the construction
(Aipr, )"t andI'* =TI Then, asymptotlcally "N of system uncertainty regions. The design variables in the IV

identification, such as the IV model ordershould not be used
o i 1T to obtain a tractable (low-order) nominal model, but should be
Re (G(e) = Go(c™)) " [ir | ity roci

3) o o r-r tuned in such a way that the uncertainty regions are as small
I (G(e™7) = Go(e™)) as possible. The identification of an appropriate (low-order)

) [Re(Q(Gf‘ff) - GO(Gf‘ff))} nominal model, suited for use in control design, is not the

Im (G(e™7) — Go(e™)) issue here.
< Cxax 5 | 5 3 43 The result of Theorem 4.5 is that for any user-chosen fre-
= N + /711 + 2210k + Br + Or) quencyw; an uncertainty region can be determined that is valid

2 with prescribed probability. Typically an uncertainty region
+ \/ vy + 3. (7 + B+ 51)> ., W.p.> will be determined for a user-chosen frequency-grid, requiring
a recalculation of all the terms that determine the uncertainty
region for each separate. This mechanism of recalculation
wherec,, » corresponds to a probability in the Chi-square for each separate requires considerable computational effort.
distribution with 2 degrees of freedom, such that x?(2) However, with contemporary computing power this is not a
implies prob(z < ¢y, o) = a. severe problem. On the other hand, by replacing the usual
Proof: See the Appendix. U closed form expressions by these computational solutions, a

Parts 1) and 2) of this theorem provide probabilistic boundgnsiderable reduction in conservatism is achieved.
for the real and imaginary parts of the model error for one Remark 4.6:In literature variance expressions are given
specific choice ofv;, and as such pointwise for the frequencyor |V and FIR estimates, assuming that the system is in
response of the syster¥o(z). The uncertainty region for the model set and neglecting the influence of the initial
Go(e™7) can be constructed as rectangular system confidenrgmditions; see e.g., [26], [37], and [38]. The first condition
regions in the complex plane using Bonferroni's inequalitynplies that the available results are asymptotic in the model
[29]. In particular, if any complex-valued random variable order » also. Here we clearly have presented results that
has the property thake (z) < ai, W.p. > a1, andlm (z) < are valid for finiten. Some progress has also been made
az, W.p. > ag, then{Re(z) < a; Alm(z) < ag}, W.p. > jn [21] and [22], where for a different identification setting
I—(1—a)=(1-a). a procedure is presented to incorporate the influence of the

Ellipsoidal system confidence regions are obtained willas when computing the variance. Another important aspect is
Part 3) of the above theorem, provided the mawi¥, ., that variance expressions found in literature are often derived
is invertible. Note that this is generally the case, excegdr the asymptotic caséV — oo, whereas here tractable
for frequenciesw; = 0, 7. For these frequencies the signahonasymptotic expressions have been derived. In particular,
{r1(t)} is identically zero, agm (£3(c*)) appearing in (20) the expression for the covariance matrix, as given in Part 1)
is zero. This very naturally means that for frequencies zero agfll emma 4.4, is correct in the nonasymptotic case. Only the
= there is no imaginary system uncertainty. distributions in Theorem 4.5 are asymptotic.

As before, the several sources of uncertainty can clearly beas Theorem 4.5 leads to the construction of system uncer-
distinguished; the\-dependent terms reflect a variance effecfainty regions for frequencies in a user-chosen frequency-grid,
being caused by the noise term. The terms with7j,, 7; it does not provide statements about the system uncertainty

1The probabilistic expressions are based on the asymptotic distribution. of; frequencies outside the grid. However, the system’s prior
the corresponding stochastic variable, and so for fifNtehey will not be ormation (4) concerns a smoothness condition on the fre-
exact, but approximative. guency response, leading to the following Lemma.
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Lemma 4.7:Let Gy € A be finite-dimensional and satisfy Expression (27) now essentially matches the similar expres-
(4) and (5). Then sion (19), and so the analysis and bounding of the model error
follows along very similar lines. This leads to the following
theorem, which provides probabilistic error bounds for the
parametersp(k), and as such confidence intervals for the
system parametergy(k).

for all w & [0, 7]. Theorem 5.1:Consider the IV estimate (14) with
corresponding pulse respons¢p(k)}. Let wo satisfy
Proof: For Gy € A and finite-dimensional(7o will be  Assumptions 2.1 and be independent of the bounded
differentiable on the unit circle, and so deterministic ~ quasi-stationary ~ sequence{r(t)}.  Let
cn, o cCorrespond to a probabilitye in the standard

dGo(¢™) | _ IS~ gy 1L6(E™) Normal distribution, such thatz € A(0,1) implies
Taw TR0 probi(a| < cx.) = a. Denote
= _ dFk(Gu") . B
<3 ot | e gt
5" W= Y SRR
T=—N+t, N

O
As the basis functions are giverpriori, the obtained upper with (¢) given by (28). Then, fotV. — oo
bound expression can be computed, providing upper bounds
on the system uncertainty for frequencies that are not in the N _ B
chosen frequency-grid as meant before. [5(k) = po(k)| < env,a % +7(k) + (k) + 6(k) w.p.> «

V. PULSE RESPONSEUNCERTAINTY REGIONS where

In this section an analysis is made of the uncertainty region o0 1 X
for the estimated pulse response, leading to a pulse response 7(k) = Z )= Z ki (t)z; (t) (29)
uncertainty region for the systefiy(z). j=n+l N =
Additional to the notationGo(z) = > 7Zopo(k)z", B oo = |1 &N
we introduce Go(z) = Y7o, po(k)z* and Go(z) = B(k) Z Z - Z ke fi(E+)w  (30)
Y neo B(k)z7F j=0 = |V =
Expanding the basis functiorfs, (=) according tol},(z) = _ ad .
3020 fx(£)z~¢, and using expressions (3), (6), (7), and (18), S(ky=>_ Gkl (31)
it follows that j=n+l
n Proof: The proof is similar to the proof of Part 1) of
plk) = 30 fi(k) Theorem 4.5, replacing,,(t) by r(t), and using the fact that
i=0 po(k) = Po(k) + Bo(k) With Go(2) = S5, Bo(k)z ™. O
N i . The confidence intervals can be calculated for =
po(k) = Z% 9003 fi(k). 0,---,m, for some user-defined integem, leading to
J=

parameter intervals

Now, multiplication of the left- and right-hand side of (16)

with the row vector{ fo(k) fi(k) --- f.(k)] leads to k) < polk) < pulk). wp-z o

An upper bound can be specified for the remaining parameters,

. - 1 corresponding td = m + 1, -- -, oo, using the prior bounds
Bk) =Po(k) + = Y mr(B(H) @) gmep
N =
1 & . -t Z Dk;k k=m+1, -, 0.
a(®) =lfok) - (R 5 22 <O O] CB)- (28) =
t=t,
Note that again, as in the previous frequency response analysis,

Note that for eachk = 0, 1, ---, n, rx(t) is a scalar real- the bounds refer to computable expressions of known quanti-

valued signal that replaces the complex valued signdk) ties, however, containing infinite sums. They can be calculated
in the analysis of the previous section. Similarly, the signale within each desired accuracy.

ki(t) are computable on the basis of prior knowledge and Remark 5.2: An analysis similar to the one presented here
measurement data. for the pulse response coefficients@f can be given for the
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pulse response coefficients 8f G, with W any stable and Proof: It follows directly that an overestimate substituted
stably invertible weighting function; see [13]. in Parts 1) and 2) of Theorem 4.5 will lead to right-hand sides
in the corresponding expressions that are larger than necessary.
VI. STEP RESPONSEUNCERTAINTY REGIONS The expressions thus hold true, but the resulting uncertainty

erggions (for a given probability) get larger and thus more

In many mdus_trlal apph_catlon s_|tuat|ons where estimat conservative. This same holds for Part 3) of Theorem 4.5,
models and their uncertainty region are of interest, a ste . ) .
ere the ellipsoid on the left-hand side of the expression

response uncertainty region will be of higher relevance thanwzﬁI get smaller
pulse response uncertainty region. . Part 2) of the Proposition follows similarly as Parts 1) and
It appears that the analysis given above can stralghtf%r)—

. - of Theorem 4.5. |
wardly be extended to cover the situation of step respon ®rhe Proposition shows that we may use an “over-estimate
coefficients.

. ok N R of the corresponding matrices that contain the unknown noise
ByA denotmg;o(lf) - 2j=0Pols), So(k) := Zi=_0 po({), autocovariance function. The result is that the obtained uncer-
and 5(k) = 3., _,p(s), we can repeat the analysis as in theyinty regions are somewhat bigger, introducing conservatism.

situation of pulse responses, however, now by multiplicatiqqowever, the probabilistic expressions in the Theorems remain
of the left- and right-hand side of (16) with the row vectopq rect.

S _olfo(d) f1(4) -+ fu(4)]- This leads to In line with the expressions used in Lemma 4.4, we will now
N show how we can construct, for two general filtered reference
3(k) = 30 (k) + i Z ki )y() signals r; and r3, an estimate_f&f,\‘lr,,2 that asymptotically
= satisfies the conditions as mentioned in the above Proposition
with and thus overestimates the exact expresgipn, as defined

k L X -1 in Lemma 4.4-2). As this situation also covers the estimate of
r(t) =Y [fold) -+ fulD]| = et M| ). the spalar entry as meant on Part 2) of the Proposition above,
Z N g; we will only consider this matrix case. The procedure that we

will sketch is similar in spirit to a related procedure that is

As aresult the full analysi_s of the pulse response situation 998 oduced and analyzed for a different problem in [16].
through, however, now with the row vectfp(k) - -+ fn (k)] To this end we consider having available &g-stable

. & . ) A
in r.(t) replaced by the row vectdr ;_o[fo(4) -+ fu(/)]-  nominal modelGiy(q) that has been obtained independently

of the considered data set, for example by identification based
VIl. ESTIMATION OF THE PRIOR INFORMATION FROM DATA on another data set. We consider the output error

A. Introduction &(t) = y(t) — Gu(gult) = P(t) + vo(t) (32)

The uncertainty intervals derived in the previous sectiofdth ¥(2) := (Go(q) — G (g))u(t), and the idea is to use this
can be calculated, provided some prior information on tfpitput error for estimating the second-order statistics of the
system and that its disturbance signals is available. This spefipiS€ process;. Next denote

=0

ically concerns knowledge of the autocovariance function of 1 N—|7|
the noise{R,,(7)}, as present in the expression for the matrix RN (1) = = Z e(t)e(t + |7)) (33)
A%, occurring in Lemma 4.4-1). In specific forms this matrix N-lr| =

is employed in the formulation of Theorems 4.5 and 5.1.

o i ) -~ and consider the following estimate farY,. :
A second source of prior information that is used in our g

e

formulated error bounds is the exponential bound on the decay o w(N) N— 17| An

rate of the expansion coefficiergék). We will first show how AN, = Y cu(n)=—=— RN

we can estimate the noise covariance information from the T=—w(N)

data, and next we will discuss a mechanism how to adjust the { RN(r) RY,., (7‘):| (34)
coefficient bounds in accordance with the data. R1j‘\£1‘2 (r) R’f\z (r)

B. Estimation of Noise Auto-Covariance Function where ¢,,(7) is a (positive real-valued) window function,
Th P . h h ol | imilar to the ones used in spectral analysis [26]. Now the
e next Proposition shows that we can saiely replace lowing Theorem can be established for the situation that

prior information on the noise process in the results of “'We are dealing with open loop measurements

several Theorems by an appropriate estimate. Theorem 7.2:Consider the situation of Lemma 4.4, and
Proposition 7.1: ) consider the expressiond’, and its estimateAY, as
1) Ifin Theorem 4.5 the unknown matrik(, . is replaced defined in (33) and (34), where the window functiog(r)
by an estimate\ . satisfyingAY . — AY . >0, satisfies some technical assumptions (see proof), and the model
then the results 1)-3) of this Theorem still hold true. (75 (q) has been obtained independent of the noise process
2) Ifin Theorem 5.1 the unknown variablg, is replaced {vo(t)}i—y, ... n.
by an estimate\’ , satisfyingAY, — ALY > 0, thenthe  Suppose that the input signgk(t)} is independent of the
results of this Theorem still hold true. O noise procesg, and has an autocovariance functié, (7)
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that satisfied R, (7)| < M,p], for some finiteM,, p, € R, Proof: The proof is the same as the proof of
pu < 1. Then under weak conditions on the input signal (séeheorem 5.1. Note that in this cas#k) = 0 because
proof) of the fact thatjo(k) = go(k), 0 < k < n. O

The procedure of the previous subsection can be used to

1 A ]\T f— i f— T .
1) AIEE)O A = Aryry + Ag Wp. 1 with Ay = estimate the variancafgk, in order to actually compute the

172

> > parameter confidence intervals.

> R (MRy(T) Y Rem(r)Ry(7) The corollary establishes parameter confidence intervals,
T=Teo =m0 although for the computation of these intervals a prior bound
= = g(k) has to be chosen. This result seems to end up in a
Z Ry () Rop(7) Z Ry (1) Ry (7) vicious circle. However, it is still useful if properly combined

with an iterative procedure. The posterior uncertainty interval,
being the result of the above Corollary, is a means to validate
Proof: See the Appendix. O the choice of the prior uncertainty interval induced g:).

The consequence of this result is that the given esfiS a tighter choice ofj(k) will lead to smaller uncertainty
mate ]\g}irz can be used to replace the true valtdg, in mte_rvals, we WI|| |terat|ve_ly re_duce the prior bound_ SO as to
Theorem 4.5 in order to determine frequency response w@¢hieve posterior uncertainty intervals that are not invalidated
certainty regions. Asymptotically correct results are obtaindty the prior bounds for a specifically chosen interftaln*].
with respect to both the ellipsoidal and rectangular confidenbi® [4] it is suggested to choose® such that forn > n* the
regions. The result shows that classical spectral estimatiétiue zero is contained in the posterior uncertainty interval
techniques can fruitfully be applied to estimate the variance & the corresponding parameters. Although there is no formal
an IV or FIR LS estimate. This has also been shown in [20@uarantee that correct results are achieved, this procedure has

In the Theorem it is assumed that the input signal h&§own to yield good results in practice.
an exponentially decaying auto-covariance function. This is
necessary in order for the auto-covariance function of the VIIl. SIMULATION EXAMPLE

output error(t) to be exponentially decaying. Consequently, | this section the procedure for probabilistic uncertainty

the inputu is not allowed to contain undecaying deterministigoynding identification is illustrated by means of an example.
components such as sinusoids. If they are present in the inpuiggnsider the data generating system

they should be detected and removed from both input and
output signals. Go(2)

_0.212* 4+ 0.352° — 0.1222 — 0.112 + 0.23
25— 2524+ 3323 - 2522 + 122 - 0.3
C. Estimation of Parameter Bounds The output of the system is disturbed by low-pass noise

0.2q

y(t) = Go(@u(t) +volt),  wol(t) = o(t)

In this subsection it is indicated how data may be used .
g-05

to derive an appropriate prior bouri{k) on the expansion

coefficients of the system to be modeled. Analogously to theh Nis G . hit : ith vari

derivation of pulse response uncertainty regions in Section W, greeo( ) is Gaussian white noise with variance one. .
First, 500 samples of the output have been measured while

it is possible to derive parameter confidence intervals. tH inout is zero. This | led free-run experiment and
follows directly from (16) that fork < n the INput Is zero. TNIS IS & so-called ree-run experiment a
is used to estimatd?,, (7) according to (33). This estimate

1 X is used later in (34) for the construction of an overbounded
g(k) = go(k) + I > mR(y(t) estimated,. .., of A,.,,., to be used in the uncertainty bounding.
_ t=ts For the model parameterization, basis functions have been
with chosen to be generated by a third-order all-pass function with
1 X - pole locations 0.4183, and 0.6858 0.697% (see [19]). The
ri(t) =cj, lﬁ Z C(t)¢T(t)1 ¢(®) (35) generalized pulse response parameter bounds (5 prri
t=t chosen according td4 = 10 andp = 0.9. Later on these

where ¢;, is the kth Euclidean unit vector. Note that in bounds are tightened using insight obtained from the data.

Comparison with (28)ﬁk(t) is now obtained by replacing Next an identification eXperiment is performed, whéfe=
the row vector[fo(k) fi(k) --- f.(k)] in (28) by the unit 1000 samples of th_e output have been r_neasured, while _the
vector¢f. Again, the analysis presented before fully applie§)put has been excited with a Random Binary Sequence, i.e.,
as formulated in the following Corollary. a signal with amplitude switching betweerl and 1 at random
Corollary 7.3: Consider the situation of Theorem 5.1. Defime instants. By design the initial conditions are zero, so
note \Y as in Theorem 5.1 withs(¢) as defined in (35). @ = 0 andt, is chosen equal to one. As the data are generated
Then, for N — oo in open loop, the signalr(t)} is chosen to be equal to
{u(t)}. For the variance estimates of (34) use is made of
N -Wi i [ =
130F) — g0 (k)] < e )}\% Tk + Bk wop. > a ZT:ukng\-deow [2] with window parameter§s = 0.6 and
With Corollary 7.3 stochastic bounds fgg(k) have been
where7(k) and 3(k) are defined in (29) and (30). O identified, withn = 45 andcyr,0.99 = 2.58. The results are
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g(k)

45 4] 10 20 30 40 50 60 70 80 90 100

k k

Fig. 1. Prior parameter bounddg(k) (dash-dotted), identified bounds Fig. 3. Identified 99.9% confidence regiops(k), pu (k)] for the system’s
g1(k), gu(k) (dashed), and new prior boundsj(k) (solid). pulse response (solid) and system’s pulse respppée) (dashed).

the ellipsoidal and the rectangular confidence regions are
correct, with probability larger than 0.999 (for the rectangles
this follows by application of Bonferroni's inequality). The
probability that the confidence regions are correct for all 32
frequencies uniformly is larger thah— 32 - 0.001 = 0.97.

The results are depicted in Fig. 2, together with the system'’s
frequency respons@y(ct“7). Moreover, with the procedure of
Section V, 3.5-confidence regions are calculated for the first
100 pulse response parameters of the syst&yfr). These
pulse response uncertainty regions are depicted in Fig. 3,
together with the system’s pulse response. It appears that in
this case the confidence regions are correct, i.e., the system is
within the identified bounds, both in Figs. 2 and 3.

IMAGINARY

REAL IX. CONCLUSIONS

Fig. 2. Nyquist diagram identified 99.9%-confidence regions for the sys- I[n this paper an identification procedure has been de-
tem’s frequeniiy_ response (rectangles, ellipsoids) and system’s frequewoped which yields confidence regions for the frequency
responseG(e*“7) (solid, ).
response, pulse response, and step response of some stable
linear time-invariant system. The procedure involves the ex-

depicted in Fig. 1. The boundsg(k) are shown, as well as plicit calculation of bias and variance errors of an instrumental
the calculated confidence intervals. variable/least squares estimate. Relying on a computational

Following the procedure proposed in Section VII-C, newolution, the procedure does not involve nonlinear optimization
and tighter prior boundg(k) have been chosen such thabut restricts to convex optimization algorithms. Probabilistic
they are consistent with the confidence intervals for the firghcertainty regions are obtained, while the separate sources of
24 parameters. The new prior bounds are smaller than thecertainty (undermodeling, noise and initial conditions) can
confidence intervals ofy(k) for & > 24, where zero is in the clearly be distinguished so as to indicate appropriate action for
confidence intervals. The resulting new bounds, correspondiggluction of the uncertainty regions.
to M = 3 andp = 0.85, are also depicted in Fig. 1. In fact, It is shown that the required prior information can be
they appear to be satisfied by the systéig(z). reliably estimated from the data itself. The procedure is

With the tighter chosen prior boundgk) and the covari- applicable to closed-loop experiments, and extensions to the
ance estimaté?é‘"(v) obtained from the free-run experimentmultivariable situation are available [13]. The use of gener-
probabilistic frequency response uncertainty regions are naized (orthonormal) basis functions enables us to incorporate
identified on the basis of Theorem 4.5. Uncertainty regiomsior knowledge about the system dynamics into the basis,
are calculated for 32 frequencies between zero anhdhile thus leading to models with reduced bias and having a limited

n = 39 parameters are identified. Both ellipsoidal conaumber of parameters.
fidence regions, corresponding tQ o.999 = 13.815, and The procedure makes use of results which are asymptotic
rectangular confidence regions, correspondingatty gegs = in the number of data. As in applications there are always

3.5, are calculated. Consequently, for each frequency bdthite-data records, but the results might not be valid in
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practice. On the other hand, Monte Carlo simulations [13] haepplying the triangle inequality, gives that, wp.«
shown that the error caused by the finiteness of the number

of data can be very small, even for small valuesof A “a F{Re(c?(ef‘ff) - GO(GW":))_ ‘ _ ‘F[WR} n
successful application of the presented identification method Im (G(e™7) — Go(e")) | nr
for identification and robust control of an industrial process /3R r Re (Go(c™))
has been reported in [3]. B /31 T | Im (Go(e™9))
Re (G(e"7) = Go(e™7)) |
> e
APPENDIX 2 F{Im(G(e“ﬂ') — Gol(e)) | +
A. Proof of Theorem 4.5 - Déﬂ (|Re (Go(e))| + |nr| + |Br|)+
Combining (21) with Lemma 4.4 yields [’m (1Em ol )] + ol + 164
. — Im (Go(e™ )| + 07| + |81
\/N[Re (G( “i) = Go(e™9)) = nr — Br V22 |
I (G(c') = Gole) =1 = _ | [Re (G(e) = Go(e)
Z (ool Im (G(e™i) — Go(e™7))
KR t Vo t _ _
= V—00 - 2 + 2 +7p+ 3
R = N—o N0, A, V711 Y51 (Or + Mg + Br)+

== »
vy Z rr(t)vo(t) — /72 +73( (81 +7r +B1)

=t from which result 3) follows by taking the second and third

as the conditions of Lemma 4.4 are satisfied. In particulgf, ., to the left and squaring left- and right-hand side. OJ
{kr(t)} and{x;(¢)} are filtered versions of the S|gn{31I>( e

which is independent ofv(¢)}. Also, note that\ . equals
MNepr I N — 00, Using ¢y, taken from thRe Standard B. P-roof of Theo.rem.7.2 .
Normal distribution, gives, asymptotically iV With {+(¢)} being independent ofco(t)} it follows that

VN[Re (G(c™) = Go(€™)) — g — Br + Re (Go(e))|  RN(r):= ERY(r) = R) (1) + Ry (7),  |r|<N-1.

S oV ey )‘Q;c’ w.p. a- Denote matrix-elementi, 5) of A,.,.,(r) defined in (34) by

. _ _ — )\f,\_’,,_ Then fori, j = 1,2
Dividing the left- and right-hand side by/7 using the °°

bounds derived in Lemma’s 4.1-4.3, and applying the trlangle . I7]

inequality, gives that, w.p> « EXY, = Z RY, (MR (T) + R,y (7)]-
v | T=—w
N, a ]':TR > [Re (G(e™9) = Go(¢"9))| = |nal Since {r1(t)} and {ry(t)} are bounded deterministic and
_ jointly quasi-stationary, and therefor&), () is bounded,
—|/3R| |Re (Go(e™7)) i,j = 1, 2. Moreover, the auto-covariance function of the
> |Re (G(7) — Go(¢™))| = Tig output error
= Fr = Re(r) = lim RY(r) = Ro(r) + Ry (7)

which proves Part 1). Part 2) can be proven similar to this.
If AY s invertible, Part 4) of Lemma 4.4 is applica-shows exponential decay rateinas both terms on the right-

KRK

ble. Usingc,,. taken from the Chi-square distribution withhand side show exponential decay. Also, Rﬁ‘ ) defined
2 degrees of freedom, this gives asymptoticallyNn in Lemma 4.4
[Re (Gci7) = Gole)) — g — /3RrFT lim RY, (7) = Ry, (r), V7| <w
Im (G(e™7) = Go(e™7)) = ng = B e
{Re(G( i) = Go(e™)) = nr — /JR} wherew is allowed to tend to infinity as long as/N tends
Im (G(e™7) — Go(¢9)) —n1 — Br to zero, which is assumed to be the case.
< ey o w.p. a. In line with [20] the following assumptions are imposed on

the window ¢, (7), stating that the window should converge
Hence, w.p.> « (36) holds true, as shown at the bottom ofp one if N — oo, but slow enough in comparison to the
the page. Dividing the left- and right-hand side b{f and number of dataV.

VN

F[Re@( ¢*3) = Golc/)) = 1 = B + Re (Go(c))) )

Im (G(e'7) = Go(c™9)) = 1 — Br + Im (Go(e"7)) H = Ve
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Assumption 2.1:The sequence of integefiw(N)} is a  [8]
positi\{e, monotonously increasing sequence such that for some
k > % [9]

wN)
VN/log" N
for some finiteC, and the real-valued window-functiat,(
is such that|c,(7)] < C,V w, 7, and limy—co ¢w(7)

1,V .
Under these conditions it follows that

im
N—oo (10]

[11]

7)
o 02

o i 13
Jdim EAY. =N+ D R (1) Ry(7) -
where),. ., denotes elemerit, j) of matrix A,.,.,. Under the
conditions mentioned in the theorem, the above assumptions
on the window, and the weak conditions on the input signals
u(t) formulated in [20, (2.11) and (3.14)], [20, Th. 3.1] can
be applied which yields that with probability one
o . [16]
lim AY, = lim EA,..,.
N—oo e N—oo [17]
Due to the fact that?,,(7) is exponentially decaying, there
exists a stationary stochastic processuch thatR,(7) = [18]
R, () for all 7. Without loss of generality it may be assumed
that n is independent ofr;(t)}, i = 1, 2. [19]
Denote the signalg;(t) = r;(t)n(t), ¢ = 1, 2, then
)

T=—00

[20]
Ry (T) Ry (7)
[21]

[22]

T [23]
= _z_: Algréo v ;En(t)n(t)n(t—i—’r)Tj(t—i-'r)

[24]

Z Ryjq (1) = (I)(Ijqz'(o)v hy=12

[25]

where®, .. (w) refers to the cross-spectrum betwegnand

qi- AS @4,4,(0) > 0 this proves that\y > 0. O [28

[27]
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