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Identification of Probabilistic System Uncertainty
Regions by Explicit Evaluation of Bias

and Variance Errors
Richard G. Hakvoort and Paul M. J. Van den Hof,Senior Member, IEEE

Abstract—A procedure is developed for identification of prob-
abilistic system uncertainty regions for a linear time-invariant
system with unknown dynamics, on the basis of time sequences
of input and output data. The classical framework is handled
in which the system output is contaminated by a realization
of a stationary stochastic process. Given minor and verifiable
prior information on the system and the noise process, frequency
response, pulse response, and step response confidence regions are
constructed by explicitly evaluating the bias and variance errors
of a linear regression estimate. In the model parameterizations,
use is made of general forms of basis functions. Conservatism of
the uncertainty regions is limited by focusing on direct compu-
tational solutions rather than on closed-form expressions. Using
an instrumental variable method for identification, the procedure
is suitable also for input–output data obtained from closed-loop
experiments.

Index Terms—Robust control, system identification, uncer-
tainty modeling.

I. INTRODUCTION

I N MANY situations where identified models are used to
reflect the dynamic properties of an underlying dynamical

system, there is interest not only in the specification of one
single nominal model, but simultaneously in a quantification
of the corresponding model uncertainty. In other words, the
question “how reliable is my identified model?” is a question
which is very relevant in many model applications. One of
the most apparent examples of this is in model-based robust
control design. Here, robust controller analysis and synthesis
requires the availability of an upper bound on the model–plant
mismatch, specified in some norm [7].

In “classical” prediction error identification [26], [38] it
is possible to quantify asymptotic confidence intervals for
estimated parameters and frequency responses, however only
in the situation that there is no unmodeled dynamics. This
situation, referring to the case that we can exactly model the
plant under study by a (low-order) finite-dimensional linear
time-invariant model is considered to be overly optimistic.

Motivated by applications in model-based robust control
theory, many authors have considered the problem of deriving
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system uncertainty regions on the basis of measurement data
and prior assumptions. Next to the problem of dealing with
unmodeled dynamics, a second goal here has been to arrive at
hard-bounded (worst case deterministic) uncertainty regions,
providing the user with 100% certainty about the dynamic
properties of the system at hand. This is in contrast with a
probabilistic formulation of system uncertainty, as present in
the classical methods.

It has been clearly motivated [20], [27] that the worst
case deterministic versus probabilistic issue is completely
determined by the prior assumptions concerning the noise
disturbance on the data.

The worst case deterministic type of problem has been
addressed in terms of frequency response data in [5], [10],
[17], [18], [25], [33], and [34]. In the case of time-domain
data, a deterministic/worst case approach is often referred to
as set–membership identification or as parameter bounding
identification. Accounts are given in [8], [30], and [32].
Several norms are used to outerbound the obtained parametric
uncertainty sets, as e.g., in terms of frequency response magni-
tude [42], -norms [24], [44], and -norms [23], [28], [39].
Direct outerbounds on the frequency response of the system
are considered in [11] and [12]. Contributions based on model
(in)validation are provided in [35] and [36]. An important
drawback is that due to the worst case character of the assumed
disturbances, the obtained system uncertainty regions generally
are very conservative, if this worst case disturbance does not
actually occur. This is shown in [20] and [31].

Approaches that consider disturbance signals to be stochas-
tic and that also account for undermodeling are given in [1],
[6], [9], and [45]. In this approach the noise is assumed
to behave noisy, i.e., random and uncorrelated to the input
signal, and prior assumptions about the system are made,
varying from deterministic [1], [6] to stochastic [9]. Typically
these procedures yield frequency response uncertainty regions
which are correct with a certain specified probability, provided
the prior assumptions that are made are correct. The current
limitations of these methods are that they are restricted to
periodic input signals [1], [6] or that a probabilistic embedding
of the unmodeled dynamics has to be specifieda priori [9].

In this paper we present a new procedure for the identifica-
tion of probabilistic system uncertainty regions that properly
handles effects of bias and is not limited to periodic input
excitation. Instead of deriving closed form expressions for
model error bounds, our procedure is designed for arriving
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at computational solutions by explicitly calculating bias and
variance errors of a linear regression [least squares (LS) or
instrumental variable (IV)] estimate. In this way we are able
to arrive at expressions for system uncertainty in terms of
frequency response, pulse response, and step response, for any
user-chosen sequence of frequency points and time indexes,
respectively. As a result, conservatism induced by upper-
bounding the errors is limited. We will adopt the classical
prediction error framework with stochastic noise disturbance
on the data; the required prior information on the system is
limited and is shown to be partly constructible from the data.

We will employ a linear model parameterization in terms
of general basis functions. Recent work on Laguerre, Kautz,
and generalized functions has shown to have great potentials
in identification problems; see [19], [31], [40], [41], and [43].
In this way approximate knowledge about pole locations of
the unknown system can be incorporated by the choice of ap-
propriate basis functions, leading to a model parameterization
in terms of a series expansion that exhibits an increased rate
of convergence.

The outline of the paper is as follows. In the next section
the identification setting is described. Section III presents the
least squares/instrumental variable estimate. In Section IV, the
frequency response error of the estimated model is evaluated,
which leads to probabilistic frequency response system uncer-
tainty regions. In the subsequent sections pulse response and
step response uncertainty regions are derived. In Section VII,
it is shown how the prior information that is required for
our procedure can be identified from the data itself. Next, in
Section VIII, a simulation example is shown. The present pa-
per is an extended version of [15]. A worst case deterministic
counterpart of the procedure is presented in [14].

Concerning notation, will denote the Hilbert space of
complex functions analytic in and squared integrable
on the unit circle; is the Hardy space of complex functions
that are analytic and bounded in ; is the set of
real-valued scalars; is the set of bounded signals, i.e.,

.

II. I DENTIFICATION SETTING

We consider a data generating system , the class
of proper, bounded-input/bounded-output (-stable) linear
time-invariant systems, generating input–output data according
to

(1)

with the forward shift: , , and scalar
input and output signals and a noise process satisfying the
following assumption which is standard in prediction error
identification (cf. [26]).

Assumption 2.1:The noise process is a stationary
stochastic process with auto-covariance function

and it satisfies for some
-stable , where is a sequence of independent

random variables with zero mean values, variances, and
bounded fourth moments.

The input signal is assumed to be a quasi-stationary signal
[26] and may be dependent on the noise processso as to
allow for experimental data that is obtained from closed-loop
experiments.

A data set taken from the system will typically consist
of data sequences , , where
denotes the length of the observation interval.

In order to cope with unknown initial conditions the input
signal in the past is assumed to be bounded by

(2)

for some given .
When characterizing uncertainty sets concerning the system

dynamics on the basis of the available data sequences, use will
be made of representations of the system in the form
of a general series expansion.

As , it follows that for
being a prechosen sequence of basis functions in, any
system can be uniquely written as

(3)

In the function space , many choices for (orthonormal)
basis functions exist, as e.g., the standard pulse basis

, the Laguerre basis
for any , , and the two-parameter Kautz

basis which is a second-order generalization of the Laguerre
basis. Recently, the latter two bases are exploited in terms
of system identification of expansion coefficients; see [41]
and [43]. More general constructions of orthonormal basis
functions have been introduced in [19] and used for identi-
fication purposes in [40]. The most important phenomenon to
notice here is that an appropriate choice of basis functions
can essentially improve the rate of convergence in a series
expansion (3). To this end, the basis functions introduced in
[19] can incorporate dynamics of any complexity (order) and
thus extend the Laguerre case where one single pole can be
positioned in the functions. In this paper we will consider the
functions to be chosena priori.

As a priori information on the data generating system,
the coefficients are assumed to be bounded by

(4)

for given that satisfies an exponential decay,
i.e., there exista priori given numbers with

, , such that

(5)

Methods to verify these prior bounds on the basis of measure-
ment data will be discussed later on.

As we will also be dealing with bounding the uncertainty
in the pulse and step response of the system, we
denote , with
the pulse response sequence of , while

refers to the step response sequence
of .



1518 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 11, NOVEMBER 1997

The problem that will be considered is formulated as fol-
lows.

Given are the prior information (4), (5) on , the stochastic
nature of the noise process as formulated in Assumption 2.1,
and the bound on the past input signal (2). Also given is a
sequence of input and output measurement data of length.

• For any user-chosen frequency , determine a
region in the complex plane that will contain
asymptotically with a prescribed probability.

• For any user-chosen time index , determine a
real-valued interval that will contain [respectively,

] asymptotically with a prescribed probability.

This problem will be handled along the following lines.
The system is split into two parts:

, with

(6)

(7)

for some user-defined truncation value.
For solving the first part of the problem, we are going to

identify the coefficients of from measurement data. As
a result, probabilistic uncertainty bounds will be derived for

using asymptotic variance expressions of a linear
regression-type estimate. These variance expressions are based
on the stochastic noise Assumptions 2.1. In the variance
expressions the influence of the undermodeling part
is properly taken into account. Additionally, deterministic
uncertainty bounds will be determined for the tail ,
using the deterministic prior bounds given in (4). The
sum of the deterministic uncertainty bounds for and
the probabilistic uncertainty bounds for provides
probabilistic uncertainty regions for the system . A
similar procedure will be followed to solve the second part of
the problem, related to the pulse (step) response coefficients

( ).
The truncation order is chosen so as to minimize the

uncertainty bounds. If is chosen too small, the resulting
bounds will be heavily determined by the prior information
(4), which is generally conservative. If is chosen too large,
the confidence regions for will be large as the variance
increases with the number of parameters to be estimated. An
optimal choice of the truncation order will be commented upon
later.

III. A N INSTRUMENTAL VARIABLE ESTIMATE

In this section we will formulate the linear regres-
sion/instrumental variable estimate that will be used for that
part of the system ( ) that will be parametrically identified.

We will consider the model structure

(8)

with

(9)

where is an (parameterized) output error signal,
is the parameterized model, while the model

parameters are collected in the parameter
vector . In calculating
the output error signal, we will adopt the convention that

for , and for .
The following signals are defined:

(10)

(11)

with an instrumental variable signal, correlated with the input
but not correlated with the noise process. Now denoting

the column-vectors

...
... (12)

the instrumental variable estimate is obtained by [26], [37],
and [38]

(13)

with an appropriate parameter space, ,
representing the starting sample used in the IV estimate, and

. By algebraic manipulation the standard
expression for a linear regression model estimate follows:

(14)

provided that the inverted matrix is nonsingular. This is
achieved by appropriate choice of the instruments in

and thus by appropriate choice of.
In open-loop experimental situations the input signalwill

satisfy the requirements for a proper instrument, and thus the
choice in that case leads to a simple linear LS estimate
of the expansion coefficients. Under closed-loop experimental
conditions, the instrument can be chosen so as to match an
external reference signal that is correlated with the input signal

, but independent of the noise process.
By adopting the additional notation for ,

and for , the system output can be
written as

(15)

with and .
Substituting these expressions in (14) shows that

(16)

with

(17)

The second term in the right-hand side of (16) that is dependent
on clearly reflects the three sources of modeling errors.
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The first term in reflects the effect of the neglected
tail of the series expansion on the estimated parameters and
thus points to an effect of undermodeling; the second term
characterizes the effect of unknown initial conditions, and the
third term reflects the effect of noise disturbance.

IV. FREQUENCY RESPONSEUNCERTAINTY REGIONS

A. Introduction

In this section we will analyze the effect of the uncertainty
in the estimated parameters on the frequency response of the
estimated model.

Denote . Then

(18)

and with as defined in (6) it follows from (16) that

and thus

Next we evaluate this difference term for a specifically chosen
frequency , leading to the expression

(19)

where for fixed , is a complex scalar-valued signal
defined by

(20)

The signal is a filtered version of the signal and can
be computed, as it only depends on known quantities once the
frequency has been specified. It will play an essential role
throughout the following derivation of model error bounds.
Combining (17) and (19) we can write:

(21)

with

(22)

(23)

In the next subsection we will formulate upper bounds for
the several terms in this expression.

B. Bounding the Model Error

Analyzing (21) we have to find upper bounds for the several
terms on the right-hand side of the equation. Given the fact
that the expressions are complex-valued, we will formulate
separate bounds for Real and Imaginary parts. To this end we
denote

(24)

(25)

When there is no confusion possible, we will drop the
subscript, in order to simplify notation. The quantitiesand
can simply be bounded by using the available data and prior
information, as follows.

Lemma 4.1:

Proof: The expressions follow by substitution of (7) and
(10) into (22) of , and by utilizing (4).

Lemma 4.2:Denote the Laurent series expansion of
by , then

Proof: Substituting (3) into (23) and utilizing the
Laurent expansion of shows that

. By variable
substitution , the above expressions directly result.

Lemma 4.3:

Proof: The results follow directly by combining (4) and
(7).

The above three Lemmas represent computable bounds for
the contribution of the first three terms in (21). The actual
computation of the expressions involves the evaluation of
infinite sums. However, due to the fact that shows
exponential decay rate inand shows exponential decay
rate in , the infinite sums will converge. In [13] it is shown
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that all sums can be calculated to within arbitrary accuracy.
This is done by truncating the infinite sums to a finite sum and
providing a bound for the truncation error which will vanish
with increasing length of the truncated sum. For further details
we refer to [13].

Clearly , will be small if is chosen large; ,
, , will be small if the effect of the neglected tail

is small. This tail effect will be small if
is chosen large and/or the basis is chosen appropriately so as
to have a series expansion (3) with a high rate of convergence.
This latter property can be achieved by choosing basis func-
tions that are adapted to the system dynamics, as is possible
with the generalized basis functions introduced in [19]. For
the remaining term , we establish the
following key lemma which is in fact a multivariate extension
of [16, Proposition 2.5].

Lemma 4.4:Let satisfy Assumptions 2.1 and be in-
dependent of the bounded deterministic quasi-stationary se-
quence . Let and be two signals determined by

for two -stable linear
filters and . Denote

and Also, denote for

and . Then

1)

2)

3)

where denotes the Multivariate Normal distribu-
tion with mean zero and covariance matrix . Moreover,
if is invertible

4)

where denotes the Chi-square distribution with 2 degrees
of freedom.

Proof: The proof is given in [13] and [16]. In the proof
fruitful use is made of results established in [26, Th. 9.1] and
[20, ch. 2]. Existence of the limit is guaranteed
by the fact that is a bounded deterministic quasi-stationary
sequence, and satisfies Assumption 2.1.

The result of this Lemma can be applied to our error
term by realizing that and
satisfy the conditions that are formulated forand in this
Lemma. In this sense, the Lemma establishes an asymptotic
result for the probability density function of the stochastic term
in our model error. Use of a central limit theorem provides
an asymptotic normal distribution. Consequently, the results
given in 3) and 4) are asymptotic results. For finite the
given distributions are approximations of the true ones. In [13,
Appendix 5.B] extensive Monte Carlo simulations illustrate the
relevance of this approximation also for finitealready. Note
that the expression for the covariance matrix in Part 1) is a
nonasymptotic result; it is correct for any.

The asymptotic covariance matrix in the Lemma is
dependent on the covariance function of the unknown
noise disturbance process. For the moment we will assume
that it is known. In Section VII, it will be shown that we
can replace this covariance function by an estimate without
conflicting with the original result stated above.

C. Frequency Response Uncertainty Regions

Using the results of the previous subsection, a computable
bound for the model error is straightfor-
wardly obtained in the form of a confidence region for the
system’s frequency response . The bound is given in
the following main theorem.

Theorem 4.5:Consider the IV estimate (14) with corre-
sponding frequency response . Let satisfy Assump-
tions 2.1 and be independent of the bounded deterministic
quasi-stationary sequence . Let , , , , , and

be given by Lemmas 4.1–4.3. Let , be as defined
in (24) and (25), for a fixed choice , and denote

(26)
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conformable to Part 1) of Lemma 4.4. Then, asymptotically1

in

1)

w.p.

2)

w.p.

where corresponds to a probabilityin the standard Nor-
mal distribution, such that implies prob

.
Moreover, if is invertible, introduce

as the square-root of the inverse of , i.e.,
and . Then, asymptotically in

3)

w.p.

where corresponds to a probability in the Chi-square
distribution with 2 degrees of freedom, such that
implies prob .

Proof: See the Appendix.
Parts 1) and 2) of this theorem provide probabilistic bounds

for the real and imaginary parts of the model error for one
specific choice of , and as such pointwise for the frequency
response of the system . The uncertainty region for

can be constructed as rectangular system confidence
regions in the complex plane using Bonferroni’s inequality
[29]. In particular, if any complex-valued random variable
has the property that w.p. , and

w.p. , then w.p.
.

Ellipsoidal system confidence regions are obtained with
Part 3) of the above theorem, provided the matrix
is invertible. Note that this is generally the case, except
for frequencies . For these frequencies the signal

is identically zero, as appearing in (20)
is zero. This very naturally means that for frequencies zero and

there is no imaginary system uncertainty.
As before, the several sources of uncertainty can clearly be

distinguished; the -dependent terms reflect a variance effect,
being caused by the noise term. The terms with ,

1The probabilistic expressions are based on the asymptotic distribution of
the corresponding stochastic variable, and so for finiteN they will not be
exact, but approximative.

are due to the effect of the neglected tail on the accuracy
of the estimated coefficients of and represent a bias
contribution. The third contribution with , is due to the
unknown initial conditions in the data, i.e., the effect of data
outside the interval that is measured. Finally, the contribution
of , corresponds to the neglected dynamics of the tail

itself and also represents a bias contribution.
The different error sources can be a tradeoff. In particular

the truncation value can be used to make a tradeoff between
bias and variance. A larger value means a smaller bias,
but a larger variance. An optimal value can be determined
by varying so as to minimize the size of the uncertainty.
Similarly, the integer offers the possibility to tradeoff the
influence of initial conditions to the variance. A larger value

means a decrease of the error contributions, , but an
increase of the variance, due to a decreasing .

It is emphasized that the identification of the IV model is not
a goal as such, but serves only as a basis for the construction
of system uncertainty regions. The design variables in the IV
identification, such as the IV model order, should not be used
to obtain a tractable (low-order) nominal model, but should be
tuned in such a way that the uncertainty regions are as small
as possible. The identification of an appropriate (low-order)
nominal model, suited for use in control design, is not the
issue here.

The result of Theorem 4.5 is that for any user-chosen fre-
quency an uncertainty region can be determined that is valid
with prescribed probability. Typically an uncertainty region
will be determined for a user-chosen frequency-grid, requiring
a recalculation of all the terms that determine the uncertainty
region for each separate. This mechanism of recalculation
for each separate requires considerable computational effort.
However, with contemporary computing power this is not a
severe problem. On the other hand, by replacing the usual
closed form expressions by these computational solutions, a
considerable reduction in conservatism is achieved.

Remark 4.6: In literature variance expressions are given
for IV and FIR estimates, assuming that the system is in
the model set and neglecting the influence of the initial
conditions; see e.g., [26], [37], and [38]. The first condition
implies that the available results are asymptotic in the model
order also. Here we clearly have presented results that
are valid for finite . Some progress has also been made
in [21] and [22], where for a different identification setting
a procedure is presented to incorporate the influence of the
bias when computing the variance. Another important aspect is
that variance expressions found in literature are often derived
for the asymptotic case , whereas here tractable
nonasymptotic expressions have been derived. In particular,
the expression for the covariance matrix, as given in Part 1)
of Lemma 4.4, is correct in the nonasymptotic case. Only the
distributions in Theorem 4.5 are asymptotic.

As Theorem 4.5 leads to the construction of system uncer-
tainty regions for frequencies in a user-chosen frequency-grid,
it does not provide statements about the system uncertainty
for frequencies outside the grid. However, the system’s prior
information (4) concerns a smoothness condition on the fre-
quency response, leading to the following Lemma.
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Lemma 4.7:Let be finite-dimensional and satisfy
(4) and (5). Then

for all

Proof: For and finite-dimensional, will be
differentiable on the unit circle, and so

As the basis functions are givena priori, the obtained upper
bound expression can be computed, providing upper bounds
on the system uncertainty for frequencies that are not in the
chosen frequency-grid as meant before.

V. PULSE RESPONSEUNCERTAINTY REGIONS

In this section an analysis is made of the uncertainty region
for the estimated pulse response, leading to a pulse response
uncertainty region for the system .

Additional to the notation ,
we introduce and

.
Expanding the basis functions according to

, and using expressions (3), (6), (7), and (18),
it follows that

Now, multiplication of the left- and right-hand side of (16)
with the row vector leads to

(27)

with

(28)

Note that for each , is a scalar real-
valued signal that replaces the complex valued signal
in the analysis of the previous section. Similarly, the signals

are computable on the basis of prior knowledge and
measurement data.

Expression (27) now essentially matches the similar expres-
sion (19), and so the analysis and bounding of the model error
follows along very similar lines. This leads to the following
theorem, which provides probabilistic error bounds for the
parameters , and as such confidence intervals for the
system parameters .

Theorem 5.1:Consider the IV estimate (14) with
corresponding pulse response . Let satisfy
Assumptions 2.1 and be independent of the bounded
deterministic quasi-stationary sequence . Let

correspond to a probability in the standard
Normal distribution, such that, implies
prob . Denote

with given by (28). Then, for

w.p.

where

(29)

(30)

(31)

Proof: The proof is similar to the proof of Part 1) of
Theorem 4.5, replacing by , and using the fact that

with .
The confidence intervals can be calculated for

, for some user-defined integer , leading to
parameter intervals

w.p.

An upper bound can be specified for the remaining parameters,
corresponding to , using the prior bounds
in (4)

Note that again, as in the previous frequency response analysis,
the bounds refer to computable expressions of known quanti-
ties, however, containing infinite sums. They can be calculated
to within each desired accuracy.

Remark 5.2:An analysis similar to the one presented here
for the pulse response coefficients of can be given for the
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pulse response coefficients of with any stable and
stably invertible weighting function; see [13].

VI. STEP RESPONSEUNCERTAINTY REGIONS

In many industrial application situations where estimated
models and their uncertainty region are of interest, a step
response uncertainty region will be of higher relevance than a
pulse response uncertainty region.

It appears that the analysis given above can straightfor-
wardly be extended to cover the situation of step response
coefficients.

By denoting , ,

and , we can repeat the analysis as in the
situation of pulse responses, however, now by multiplication
of the left- and right-hand side of (16) with the row vector

. This leads to

with

As a result the full analysis of the pulse response situation goes
through, however, now with the row vector
in replaced by the row vector .

VII. ESTIMATION OF THE PRIOR INFORMATION FROM DATA

A. Introduction

The uncertainty intervals derived in the previous sections
can be calculated, provided some prior information on the
system and that its disturbance signals is available. This specif-
ically concerns knowledge of the autocovariance function of
the noise, , as present in the expression for the matrix

occurring in Lemma 4.4-1). In specific forms this matrix
is employed in the formulation of Theorems 4.5 and 5.1.

A second source of prior information that is used in our
formulated error bounds is the exponential bound on the decay
rate of the expansion coefficients . We will first show how
we can estimate the noise covariance information from the
data, and next we will discuss a mechanism how to adjust the
coefficient bounds in accordance with the data.

B. Estimation of Noise Auto-Covariance Function

The next Proposition shows that we can safely replace the
prior information on the noise process in the results of the
several Theorems by an appropriate estimate.

Proposition 7.1:

1) If in Theorem 4.5 the unknown matrix is replaced
by an estimate satisfying ,
then the results 1)–3) of this Theorem still hold true.

2) If in Theorem 5.1 the unknown variable is replaced
by an estimate , satisfying , then the
results of this Theorem still hold true.

Proof: It follows directly that an overestimate substituted
in Parts 1) and 2) of Theorem 4.5 will lead to right-hand sides
in the corresponding expressions that are larger than necessary.
The expressions thus hold true, but the resulting uncertainty
regions (for a given probability) get larger and thus more
conservative. This same holds for Part 3) of Theorem 4.5,
where the ellipsoid on the left-hand side of the expression
will get smaller.

Part 2) of the Proposition follows similarly as Parts 1) and
2) of Theorem 4.5.

The Proposition shows that we may use an “over”-estimate
of the corresponding matrices that contain the unknown noise
autocovariance function. The result is that the obtained uncer-
tainty regions are somewhat bigger, introducing conservatism.
However, the probabilistic expressions in the Theorems remain
correct.

In line with the expressions used in Lemma 4.4, we will now
show how we can construct, for two general filtered reference
signals and , an estimate that asymptotically
satisfies the conditions as mentioned in the above Proposition
and thus overestimates the exact expression as defined
in Lemma 4.4-2). As this situation also covers the estimate of
the scalar entry as meant on Part 2) of the Proposition above,
we will only consider this matrix case. The procedure that we
will sketch is similar in spirit to a related procedure that is
introduced and analyzed for a different problem in [16].

To this end we consider having available an -stable
nominal model that has been obtained independently
of the considered data set, for example by identification based
on another data set. We consider the output error

(32)

with , and the idea is to use this
output error for estimating the second-order statistics of the
noise process . Next denote

(33)

and consider the following estimate for :

(34)

where is a (positive real-valued) window function,
similar to the ones used in spectral analysis [26]. Now the
following Theorem can be established for the situation that
we are dealing with open loop measurements.

Theorem 7.2:Consider the situation of Lemma 4.4, and
consider the expressions and its estimate as
defined in (33) and (34), where the window function
satisfies some technical assumptions (see proof), and the model

has been obtained independent of the noise process
.

Suppose that the input signal is independent of the
noise process and has an autocovariance function
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that satisfies for some finite ,
. Then under weak conditions on the input signal (see

proof)

1) w.p. with

2)

Proof: See the Appendix.
The consequence of this result is that the given esti-

mate can be used to replace the true value in
Theorem 4.5 in order to determine frequency response un-
certainty regions. Asymptotically correct results are obtained
with respect to both the ellipsoidal and rectangular confidence
regions. The result shows that classical spectral estimation
techniques can fruitfully be applied to estimate the variance of
an IV or FIR LS estimate. This has also been shown in [20].

In the Theorem it is assumed that the input signal has
an exponentially decaying auto-covariance function. This is
necessary in order for the auto-covariance function of the
output error to be exponentially decaying. Consequently,
the input is not allowed to contain undecaying deterministic
components such as sinusoids. If they are present in the input,
they should be detected and removed from both input and
output signals.

C. Estimation of Parameter Bounds

In this subsection it is indicated how data may be used
to derive an appropriate prior bound on the expansion
coefficients of the system to be modeled. Analogously to the
derivation of pulse response uncertainty regions in Section V,
it is possible to derive parameter confidence intervals. It
follows directly from (16) that for

with

(35)

where is the th Euclidean unit vector. Note that in
comparison with (28), is now obtained by replacing
the row vector in (28) by the unit
vector . Again, the analysis presented before fully applies,
as formulated in the following Corollary.

Corollary 7.3: Consider the situation of Theorem 5.1. De-
note as in Theorem 5.1 with as defined in (35).
Then, for

w.p.

where and are defined in (29) and (30).

Proof: The proof is the same as the proof of
Theorem 5.1. Note that in this case because
of the fact that , .

The procedure of the previous subsection can be used to
estimate the variance , in order to actually compute the
parameter confidence intervals.

The corollary establishes parameter confidence intervals,
although for the computation of these intervals a prior bound

has to be chosen. This result seems to end up in a
vicious circle. However, it is still useful if properly combined
with an iterative procedure. The posterior uncertainty interval,
being the result of the above Corollary, is a means to validate
the choice of the prior uncertainty interval induced by .
As a tighter choice of will lead to smaller uncertainty
intervals, we will iteratively reduce the prior bound so as to
achieve posterior uncertainty intervals that are not invalidated
by the prior bounds for a specifically chosen interval .
In [4] it is suggested to choose such that for the
value zero is contained in the posterior uncertainty interval
for the corresponding parameters. Although there is no formal
guarantee that correct results are achieved, this procedure has
shown to yield good results in practice.

VIII. SIMULATION EXAMPLE

In this section the procedure for probabilistic uncertainty
bounding identification is illustrated by means of an example.

Consider the data generating system

The output of the system is disturbed by low-pass noise

where is Gaussian white noise with variance one.
First, 500 samples of the output have been measured while

the input is zero. This is a so-called free-run experiment and
is used to estimate according to (33). This estimate
is used later in (34) for the construction of an overbounded
estimate of to be used in the uncertainty bounding.

For the model parameterization, basis functions have been
chosen to be generated by a third-order all-pass function with
pole locations 0.4183, and 0.6858 0.697 (see [19]). The
generalized pulse response parameter bounds (5) area priori
chosen according to and . Later on these
bounds are tightened using insight obtained from the data.

Next an identification experiment is performed, where
samples of the output have been measured, while the

input has been excited with a Random Binary Sequence, i.e.,
a signal with amplitude switching between1 and 1 at random
time instants. By design the initial conditions are zero, so

and is chosen equal to one. As the data are generated
in open loop, the signal is chosen to be equal to

. For the variance estimates of (34) use is made of
a Tukey-window [2] with window parameters and

.
With Corollary 7.3 stochastic bounds for have been

identified, with and . The results are
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Fig. 1. Prior parameter bounds�g(k) (dash-dotted), identified bounds
gl(k); gu(k) (dashed), and new prior bounds�g(k) (solid).

Fig. 2. Nyquist diagram identified 99.9%-confidence regions for the sys-
tem’s frequency response (rectangles, ellipsoids) and system’s frequency
responseG0(e

i! ) (solid, �).

depicted in Fig. 1. The bounds are shown, as well as
the calculated confidence intervals.

Following the procedure proposed in Section VII-C, new
and tighter prior bounds have been chosen such that
they are consistent with the confidence intervals for the first
24 parameters. The new prior bounds are smaller than the
confidence intervals of for , where zero is in the
confidence intervals. The resulting new bounds, corresponding
to and , are also depicted in Fig. 1. In fact,
they appear to be satisfied by the system .

With the tighter chosen prior bounds and the covari-
ance estimate obtained from the free-run experiment,
probabilistic frequency response uncertainty regions are now
identified on the basis of Theorem 4.5. Uncertainty regions
are calculated for 32 frequencies between zero and, while

parameters are identified. Both ellipsoidal con-
fidence regions, corresponding to , and
rectangular confidence regions, corresponding to

, are calculated. Consequently, for each frequency both

Fig. 3. Identified 99.9% confidence regions[pl(k); pu(k)] for the system’s
pulse response (solid) and system’s pulse responsep0(k) (dashed).

the ellipsoidal and the rectangular confidence regions are
correct, with probability larger than 0.999 (for the rectangles
this follows by application of Bonferroni’s inequality). The
probability that the confidence regions are correct for all 32
frequencies uniformly is larger than .
The results are depicted in Fig. 2, together with the system’s
frequency response . Moreover, with the procedure of
Section V, 3.5 -confidence regions are calculated for the first
100 pulse response parameters of the system . These
pulse response uncertainty regions are depicted in Fig. 3,
together with the system’s pulse response. It appears that in
this case the confidence regions are correct, i.e., the system is
within the identified bounds, both in Figs. 2 and 3.

IX. CONCLUSIONS

In this paper an identification procedure has been de-
veloped which yields confidence regions for the frequency
response, pulse response, and step response of some stable
linear time-invariant system. The procedure involves the ex-
plicit calculation of bias and variance errors of an instrumental
variable/least squares estimate. Relying on a computational
solution, the procedure does not involve nonlinear optimization
but restricts to convex optimization algorithms. Probabilistic
uncertainty regions are obtained, while the separate sources of
uncertainty (undermodeling, noise and initial conditions) can
clearly be distinguished so as to indicate appropriate action for
reduction of the uncertainty regions.

It is shown that the required prior information can be
reliably estimated from the data itself. The procedure is
applicable to closed-loop experiments, and extensions to the
multivariable situation are available [13]. The use of gener-
alized (orthonormal) basis functions enables us to incorporate
prior knowledge about the system dynamics into the basis,
thus leading to models with reduced bias and having a limited
number of parameters.

The procedure makes use of results which are asymptotic
in the number of data. As in applications there are always
finite-data records, but the results might not be valid in
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practice. On the other hand, Monte Carlo simulations [13] have
shown that the error caused by the finiteness of the number
of data can be very small, even for small values of. A
successful application of the presented identification method
for identification and robust control of an industrial process
has been reported in [3].

APPENDIX

A. Proof of Theorem 4.5

Combining (21) with Lemma 4.4 yields

as the conditions of Lemma 4.4 are satisfied. In particular
and are filtered versions of the signal ,

which is independent of . Also, note that equals
, if . Using taken from the Standard

Normal distribution, gives, asymptotically in

w.p.

Dividing the left- and right-hand side by , using the
bounds derived in Lemma’s 4.1–4.3, and applying the triangle
inequality, gives that, w.p.

which proves Part 1). Part 2) can be proven similar to this.
If is invertible, Part 4) of Lemma 4.4 is applica-

ble. Using taken from the Chi-square distribution with
2 degrees of freedom, this gives asymptotically in

w.p.

Hence, w.p. (36) holds true, as shown at the bottom of

the page. Dividing the left- and right-hand side by and

applying the triangle inequality, gives that, w.p.

from which result 3) follows by taking the second and third
term to the left and squaring left- and right-hand side.

B. Proof of Theorem 7.2

With being independent of it follows that

Denote matrix-element of defined in (34) by
. Then for

Since and are bounded deterministic and
jointly quasi-stationary, and therefore is bounded,

. Moreover, the auto-covariance function of the
output error

shows exponential decay rate inas both terms on the right-
hand side show exponential decay. Also, for defined
in Lemma 4.4

where is allowed to tend to infinity as long as tends
to zero, which is assumed to be the case.

In line with [20] the following assumptions are imposed on
the window , stating that the window should converge
to one if , but slow enough in comparison to the
number of data .

(36)
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Assumption 2.1:The sequence of integers is a
positive, monotonously increasing sequence such that for some

for some finite , and the real-valued window-function
is such that , and

.
Under these conditions it follows that

where denotes element of matrix . Under the
conditions mentioned in the theorem, the above assumptions
on the window, and the weak conditions on the input signal

formulated in [20, (2.11) and (3.14)], [20, Th. 3.1] can
be applied which yields that with probability one

Due to the fact that is exponentially decaying, there
exists a stationary stochastic processsuch that

for all . Without loss of generality it may be assumed
that is independent of , .

Denote the signals , , then

where refers to the cross-spectrum betweenand
. As this proves that .
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[28] P. M. Mäkilä, “Robust identification and Galois sequences,”Int. J.
Contr., vol. 54, pp. 1189–1200, 1991.

[29] E. B. Manoukian,Modern Concepts and Theorems of Mathematical
Statistics. New York: Springer-Verlag, 1986.

[30] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic
systems with set membership uncertainty: An overview,”Automatica,
vol. 27, pp. 997–1009, 1991.

[31] B. M. Ninness, “Stochastic and deterministic modeling,” Ph.D. disser-
tation, Univ. Newcastle, Australia, 1993.

[32] J. P. Norton, “Identification and application of bounded-parameter
models,”Automatica,vol. 23, pp. 497–507, 1987.

[33] P. J. Parker and R. R. Bitmead, “Adaptive frequency response identifi-
cation,” in Proc. 26th Conf. Decision Contr.,Los Angeles, CA, 1987,
pp. 348–353.

[34] J. R. Partington, “Robust identification inH1,” J. Math. Anal. Appl.,
vol. 166, pp. 428–441, 1991.

[35] K. Poolla, P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, “A time-
domain approach to model invalidation,”IEEE Trans. Automat. Contr.,
vol. 39, pp. 951–959, 1994.



1528 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 11, NOVEMBER 1997

[36] R. S. Smith and J. C. Doyle, “Model invalidation: A connection between
robust control and identification,”IEEE Trans. Automat. Contr.,vol. 37,
pp. 942–952, 1992.
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