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Abstract

WiFi sensing has shown great promise in applications such as activity recognition,
human identification, and health monitoring. However, models trained on Channel
State Information (CSI) data often suffer from poor generalizability due to high vari-
ance and inconsistent reporting practices, especially in small-data regimes. Despite
increasing attention to deep learning-based approaches, the community lacks standard-
ized guidelines on handling variance and overfitting across architectures and datasets.
In this work, we first review existing robustness strategies employed in related fields to
identify techniques suitable for WiFi sensing. Based on this survey, we systematically
benchmark five representative methods—stability training, mixup, coupled weight de-
cay, early stopping, and label smoothing—selected for their theoretical grounding and
prior success in mitigating variance. Our evaluation spans three model types (LeNet,
LSTM, CNN+GRU) and two CSI datasets (Widar, NTU-Fi), using stratified 5-fold
cross-validation with repeated trials to ensure reliable variance estimation. Results
show that (1) stability training consistently improves moderately performing models,
(2) coupled weight decay is especially effective for LSTMs, and (3) combining tech-
niques can harm performance in near-saturated scenarios. Our findings offer actionable,
architecture- and dataset-specific guidelines for improving robustness and reproducibil-
ity in WiFi sensing research.

1 Introduction
WiFi sensing is emerging as a promising non-intrusive technology for various applications.
Extensive research has been done into various uses for the technology, and its potential im-
plications for everyday life. Key use cases include human gesture recognition [1], occupancy
detection [2], and health monitoring [3] , among others. These recent advances have unveiled
highly capable methods which can detect human presence [2] and even estimate breathing
rates [3] behind solid barriers.

A significant limitation for WiFi sensing is that deep learning models trained on small
datasets often underperform [4]. Common issues include overfitting, sensitivity to noise, and
strong dependence on model initialization. While robustness techniques have been explored
in other areas like computer vision and speech [5, 6, 7], their effects on WiFi sensing models
have not been properly studied. This matters because WiFi CSI data behaves differently
from other types of data — it is strongly affected by small changes in the environment [8],
lacks clear structure, and is often limited in size[9, 10]. As a result, techniques that work
well in other domains may not have the same impact here.

In this research project, we examine the reliability of state-of-the-art training robustness
techniques—such as stability training [11], label smoothing [12], and data augmentation [13],
and others—in improving model accuracy and robustness when training on small datasets.
Our selection of techniques is based on a review of prior work in related areas such as
computer vision and speech, where these methods have been shown to reduce overfitting,
sensitivity to noise, and dependence on favorable weight initialization. By evaluating these
techniques in the context of deep learning-based WiFi sensing, we aim to identify best
practices for training stable and robust models, while also following strong experimental
reporting standards. This leads us to the following research question:

"How can state-of-the-art learning robustness techniques be leveraged to improve the
stability and robustness of deep neural networks for WiFi sensing, particularly under lim-
ited data conditions?"
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To answer this question, we tested five different training techniques on three different
types of models using two WiFi datasets (see Section 3.3 for details).

Our key contributions are summarized as follows:

• We present the first systematic test of these five prominent learning robustness tech-
niques specifically for WiFi sensing, comparing how they perform across different mod-
els and datasets.

• We demonstrate a set of best practices when enhancing training with learning robust-
ness techniques under small-data regimes, and how it is context-dependent.

• We identified a set of best practices for reporting model performance when working
with limited data, including proper statistical evaluation methods and reliable accu-
racy reporting that accounts for the high variance typical in small-dataset scenarios.

• We provide clear guidelines for other researchers about when and how to use these
techniques, along with all the code and settings needed to reproduce our results.

2 Background
This section reviews key topics in our study: deep learning model architectures in WiFi sens-
ing, evaluation strategies for reliable performance estimation, and techniques for improving
robustness and generalization under small-data regimes.

2.1 Channel State Information
Channel State Information (CSI) captures how an environment distorts a signal by mea-
suring amplitude changes, phase shifts, time delays, and frequency shifts—typically as a
complex-valued matrix. These parameters let transmitters and receivers compensate for
real-world propagation effects (e.g., multipath echoes or movement) to optimize commu-
nication. It also provides the foundation for WiFi sensing, as capturing these propagation
effects allows us to detect movement [1] and the location [2] of certain objects. However, CSI
data introduces critical constraints for deep learning. Publicly available CSI datasets are
quite small (typically 10s-100s of samples), and offer narrow diversity (homogeneous envi-
ronments, restricted activity sets) [9, 10, 14]. These traits amplify overfitting, initialization
sensitivity, and gradient instability– core challenges addressed by robustness techniques.

2.2 Deep Learning Architectures In WiFi Sensing
While WiFi sensing research has explored various sophisticated architectures, our study fo-
cuses on three fundamental network types available in the SenseFi framework. This choice
reflects a key limitation of our work: we are constrained to relatively simple architectures,
which may not capture the full complexity of CSI data as effectively as state-of-the-art mod-
els.

LeNet-style CNNs are simple convolutional architectures originally designed for digit
recognition. While they can detect spatial patterns in 2D CSI matrices, their shallow struc-
ture (2-3 layers) limits complex feature learning. The small receptive field misses long-range
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dependencies in CSI data, and the limited depth prevents sophisticated feature representa-
tions. This simplicity makes LeNet particularly prone to overfitting on small datasets.

Long Short-Term Memory (LSTM) networks were designed to fix the vanishing gradient
problem in traditional RNNs, using gating mechanisms to learn long-term dependencies in
sequential data. Despite this improvement, LSTMs face challenges in WiFi sensing: they’re
computationally expensive, can still struggle with very long sequences, and suffer from gra-
dient instability on noisy CSI data. The additional parameters from gating mechanisms
increase overfitting risk in small-data scenarios.

Hybrid CNN+GRU architectures combine spatial feature extraction (CNN) with tempo-
ral modeling (GRU). While more sophisticated than the previous architectures, this hybrid
remains relatively simple compared to modern attention-based approaches. The CNN ex-
tracts spatial features from CSI frames, while the GRU models temporal dependencies with
fewer parameters than LSTMs. However, the CNN component may miss complex spatial
relationships, and the GRU can still struggle with long-term dependencies.

The constraint to these simpler architectures through SenseFi represents a significant
limitation of our study, as state-of-the-art WiFi sensing research increasingly relies on more
sophisticated models like attention mechanisms, graph neural networks, or advanced trans-
former architectures that can better capture the complex spatio-temporal relationships in
CSI data. Additionally, computational resource limitations further influenced our choice
toward these simpler models, as training more complex architectures would have required
significantly more computational power than was available for this study.

2.3 Evaluation Under Limited Data
A brief survey of recent WiFi sensing studies shows that most report only a single-shot
accuracy from one train-test split, without any measure of variability or clear partitioning
strategy, making it hard to judge how reliable those results really are [10, 15, 16]. In some
cases, data leakage issues (e.g., including samples from the test set in the training set) further
inflate performance estimates [17, 18]. To address this, we follow better practices from both
WiFi sensing and general machine learning literature.

2.3.1 Statistical Reporting Metrics

When reporting performance on classification tasks, in addition to accuracy, other measures
should be included, such as precision, recall (or F1-score) and AUC, especially under class
imbalance. For continuous outputs, report MSE or MAE along with R². Crucially, every
reported point estimate should be accompanied by uncertainty quantification: for example,
standard deviations or 95% confidence intervals computed over multiple runs [19]. Visualiz-
ing the distribution of results (e.g., via boxplots or error bars) helps readers see the spread
rather than a single number.

2.3.2 Statistical Validation Approaches

To guard against lucky initialization or optimistic bias, use evaluation splits that avoid
leakage and give a better sense of stability. A common choice is stratified k-fold cross-
validation [20, 21]: split data into k roughly equal parts while keeping each class’s proportion
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similar in every part, train on k-1 parts and test on the remaining part, and rotate so each
part is used for testing. This ensures that data leakage is prevented, as otherwise the
model may “see” similar patterns in both the training and testing sets if they overlap and
overestimate real-world performance. This also helps produce a fair performance estimate,
especially when classes are imbalanced, since each fold reflects the overall class distribution.
For very small datasets, bootstrapping632+ [22, 23] (sampling with replacement and testing
on held-out samples) can complement cross-validation by giving another view of variability.
It also improves on regular bootstrap by combining training error (optimistic) and out-of-
bag error (pessimistic), where, depending on how badly the model overfits, it could rely
more on the out-of-bag error. Additionally, since deep models can vary with initialization,
reporting performance over several runs with random weight initializations greatly helps
prevent reliance on lucky starting points.

In summary, our survey of the WiFi CSI literature found that very few studies reported
standard deviations or confidence ranges, nor did they use repeated splits with proper subject
separation. Therefore, we recommend the following structure: (1) report averages plus
standard deviations (or bootstrap-based intervals) for each metric; (2) use repeated k-fold
splits (with subject-wise grouping where relevant) and/or bootstrap sampling; and (3) repeat
the previous step with different random seeds to ensure more diverse set of initial weights.
This can make an evaluation under limited CSI data more reliable and reproducible.

3 Related Work
Various learning robustness techniques have been proposed to make deep models robust
under data scarcity [4, 6, 5]. These strategies include the following:

3.1 Training Robustness Techniques
We organize training robustness techniques into two categories based on their intervention
point: data-based techniques directly modify input data or labels (e.g., augmentations or
label adjustments), while learning-based techniques alter the model’s learning behavior or
rules (e.g., optimization constraints or task redesign).

3.1.1 Learning-Based Techniques

Learning-based approaches intervene in the model’s training rules or overall workflow—through
regularization penalties, early stopping, or specialized training schemes—without changing
the underlying data. These methods guide the optimization process or reshape the learning
task so that the network adopts simpler, more generalizable patterns. When CSI data are
sparse, constraining how the model fits or how quickly it learns can prevent runaway over-
fitting and yield more consistent WiFi sensing results. [7, 6, 10]

Dropout: Dropout randomly deactivates neurons during training, preventing co-adaptation
of features. Srivastava et al. (JMLR’14) showed dropout “significantly reduces overfitting”
and improves performance across vision, speech, etc. [24]. By effectively training an en-
semble of thinned networks, dropout regularizes any model with many parameters. In WiFi
applications with limited CSI samples, dropout helps avoid memorizing the small dataset,
forcing the network to learn more robust, distributed features.
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L2 Regularization (coupled Weight Decay): This technique reduces overfitting by
discouraging large weights in the model. It adds a penalty term (λ||w||2) to the loss function
during training, which pushes weights toward smaller values. This smoothing effect creates
simpler decision boundaries and prevents models from fitting noise in small datasets. For
WiFi CSI tasks with limited data, it’s a standard method to control model complexity. [25]

Early Stopping: Early stopping monitors validation performance and halts training
when improvement ceases. It is a well-known regularization: after enough training steps the
model begins to overfit, so stopping early keeps it in the “sweet spot” [26]. This method is
especially useful when data are scarce, since it prevents the network from fitting noise. In
practice, one trains on CSI data while holding out a validation set; when validation error
stops dropping, training stops. The result is a more stable model that generalizes better to
new WiFi scenarios.

Transfer Learning: Transfer learning reuses a model (or its weights) pre-trained on
one domain for a related task. As noted in the SenseFi WiFi sensing benchmark, “pre-
training models on large datasets can be generalized to downstream WiFi-sensing tasks”
[10]. In limited-data regimes, one may take a neural network pre-trained on an image or
RF dataset and fine-tune it on a small WiFi CSI dataset. The SenseFi study also found
that even shallow pre-trained models transfer well for human activity and identification
tasks [10]. The general idea is that shared low-level features can be re-used, giving a strong
initialization and accelerating learning on scarce WiFi data.

Few-shot: Few-shot learning techniques explicitly train models to learn from very few
examples per class. They often use metric learning (e.g., Siamese or prototypical networks)
so that classes can be recognized with a few labeled samples [27]. In WiFi sensing, approaches
like ReWiS leverage prototypical networks for robust cross-environment activity recognition,
while others apply meta-learning to minimize data collection in tasks like indoor positioning
[28]. In general, few-shot methods use only a few samples from each category during training
and have shown promise for data-efficient WiFi tasks, such as gesture recognition and human
activity identification [27]. By leveraging episodic training or contrastive losses, systems
like Wi-CHAR dynamically adjust feature prototypes to mitigate noise and cross-domain
discrepancies, enabling deployment with minimal labeled data per user or activity (e.g.,
>93% accuracy with five-shot learning) [27].

Self-Supervised Learning: Self-supervised learning (SSL) creates proxy tasks using
unlabeled data to learn useful representations. For example, one might train the network
to predict signal transformations or segments of CSI without using labels. SSL is known
to “outperform supervised learning on less related source datasets” when the self-supervised
pretext is well-designed [7]. In practice, a model could be pre-trained on large amounts of
unlabeled WiFi signals (e.g. predicting future CSI or reconstructing input) and then fine-
tuned on the small labeled set. Such unsupervised pretraining often accelerates convergence
and yields more robust features for the downstream WiFi tasks [7].

Multi-Task Learning: In multi-task learning (MTL), a single model is trained on sev-
eral related tasks simultaneously, sharing representations. Caruana (1997) described MTL
as learning tasks in parallel “while using a shared representation” so that each task benefits
from the others. The Wikipedia entry notes that MTL improves accuracy by exploiting
commonalities between tasks. For WiFi sensing, one could jointly train on multiple activ-
ities (e.g. walking, falling) or modalities (e.g. gesture plus room occupancy) so that the
model learns features useful across tasks. This shared learning acts as an inductive bias,
effectively regularizing the model and reducing overfitting when each task’s data is limited
[7].
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3.1.2 Data-Based Techniques

Data-based methods act directly on the training examples—either by expanding the dataset
or by softly modifying the labels—so that the model sees a wider variety of inputs during
learning. In small-data regimes, where collecting more CSI measurements is expensive or
impractical, these approaches simulate new conditions, smooth noisy labels, or expose the
network to harder examples. By enriching and perturbing the data, they help the model
learn invariances and avoid overfitting to the limited original samples, which is crucial when
channel variations and environmental noise can otherwise lead to wildly inconsistent WiFi
sensing performance. [4, 10, 6, 5]

MixUp Data Augmentation: MixUp augments data by forming convex combinations
of input pairs and their labels, effectively smoothing decision boundaries between samples.
Zhang et al. showed that training on these mixed inputs improves generalization and ro-
bustness – e.g. reducing memorization of noisy labels and boosting resistance to adversarial
perturbations [13]. In WiFi sensing with limited CSI data, MixUp can simulate intermediate
channel states, yielding a richer training set and more stable feature learning.

Random-Transformation Augmentation: Standard augmentations (e.g. random
flips, crops, rotations, noise) and specialized variants (e.g. random erasing, CutOut) create
diverse training examples without new labels. For instance, random erasing replaces a
random image patch with noise, teaching the model to ignore occlusions [7]. Such random
input-level transforms expand WiFi datasets by mimicking physical variations (like different
user orientations or noise patterns), reducing overfitting on scarce data. In general, data
warping methods significantly boost predictive performance under data scarcity [7].

Stability Training: This technique explicitly regularizes the model to produce similar
outputs for slightly perturbed inputs. For example, Zheng et al. (CVPR’16) introduced
stability training, which penalizes output changes under small distortions (e.g. slight com-
pression, scaling, or noise) [11]. By encouraging invariance to input jitter, stability training
makes the network’s representation more robust to real-world signal fluctuations. In WiFi
sensing, where channel measurements can vary subtly (due to environment or hardware
noise), stability training helps maintain consistent predictions even when the CSI inputs are
perturbed.

Adversarial Training: In adversarial training, the model is trained on both clean and
adversarially perturbed examples. Goodfellow et al. (ICLR’15) generated “worst-case” in-
put perturbations and added them to training, which noticeably reduced test errors under
attack [29]. In practice, crafting adversarial CSI samples (small changes to channel phas-
es/amplitudes) and training the network on them makes the model robust to malicious or
unintentional distortions. Adversarial training thus improves stability by explicitly defend-
ing against small but worst-case input changes [30].

Label Smoothing: Instead of one-hot targets (0 or 1), label smoothing assigns soft
labels (e.g. 0.9/0.1) during training [12]. Müller et al. (NeurIPS’19) explain that smoothing
“prevents the network from becoming over-confident” and generally improves generalization
and calibration [31]. In low-data regimes, smoothing guards against fitting noise: the model
learns to hedge its bets rather than memorize small peculiarities of the limited training set.
For WiFi sensing, label smoothing can mitigate label noise (e.g. uncertain activity annota-
tions) and yield a more stable classifier under dataset scarcity.

Each of these training-time methods complements standard learning. By adjusting the
architecture or altering the training data and loss, one can often achieve better robustness
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and generality without fundamentally changing the model class. These practical techniques
— pretraining, augmentation, noise injection, and regularization — collectively help the
model perform well even under domain shifts or attacks. In summary, these training-based
techniques are widely cited as solutions to data scarcity in deep learning [6, 4]. Each ap-
proach can make a model more robust by either effectively increasing/augmenting the data
or by guiding learning to generalize better from limited examples.

3.2 Architecture Robustness Techniques
Robustness can also arise from the network design itself. When data are limited, the choice
of architecture and its complexity plays a critical role [6]. Key design strategies include:

Simplified Model Complexity: Limiting the depth or width of the network helps
prevent overfitting on small datasets [6]. Alzubaidi et al. report that very deep or wide
models tend to memorize scant data, whereas “non-intricate” (simpler) CNNs often perform
better in low-data regimes [32]. Reducing layers or channels can improve generalization, at
the cost of representational power. Thus, architectures should be carefully scaled to the data
size: extremely deep ResNets or Transformers may be ill-suited unless paired with massive
augmentation or pretraining.

Regularization Layers and Mechanisms: Incorporating dropout, batch normaliza-
tion, or weight decay into the architecture provides strong built-in regularization [6]. In
fact, even with scarce data, dropout remains effective at reducing overfitting [6]. Similarly,
adding noise layers or explicit sparsity constraints can make models more robust. These
components are architectural choices that mitigate variance when each parameter can only
be supported by few examples.

Generative/Adversarial Architecture Modules: Some architectures embed gener-
ative networks to address data scarcity. For instance, a GAN-based branch can be attached
to the model to generate synthetic CSI conditioned on class labels, effectively learning to
expand the dataset [10]. In WiFi sensing, adversarial networks have been used not only to
augment data but also to perform domain adversarial training: by having the model include
a domain-classifier adversarially, it learns features invariant to changing environments (e.g.
room layout or device shift) [10]. Variational autoencoder components have likewise been
integrated (e.g. for CSI compression) to capture data distributions and improve robustness.

Attention and Transformer Blocks: Attention mechanisms allow the model to focus
on the most informative parts of the input. Vision Transformers (ViT) and similar blocks
have shown power in many domains, but they come with huge parameter counts. In prac-
tice, SenseFi finds that ViT-like models do not outperform much simpler CNN/GRU models
on WiFi tasks when training data are limited [10]. The large number of parameters makes
Transformers “not really attractive” for supervised learning on small CSI datasets [10]. In
general, one should avoid over-parameterized architectures (like vanilla Transformers) unless
ample data or heavy regularization is available.

The above design principles guide how to train such networks with small data in mind.
Notably, simplifying the network may matter more than adding complexity: studies show
that with limited CSI samples, shallower CNNs with strong regularization can outperform
very deep nets [10]. Embedding domain knowledge (e.g. physics-inspired layers) is also a
potential strategy, though most work relies on generic modules. Overall, careful architectural
choices – balancing capacity and inductive biases – are crucial for stability when training
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WiFi models on small datasets.

4 Gap And Motivation
Despite substantial progress in general deep-learning strategies for small-data scenarios [6, 4],
domain-specific applications like WiFi CSI sensing lack systematic, controlled comparisons
of robustness methods. Prior works often discuss robustness techniques only within broader
pipelines or focus on other modalities (e.g., images, remote sensing). Existing benchmarks
such as RobustART [7], RobustBench [33], and ARES-Bench [34] address adversarial or
noise robustness but in large-data regimes and different input types, leaving small-data
WiFi sensing unexplored.

In our work, we apply five widely used robustness techniques across multiple model
families—spanning convolutional, recurrent, and hybrid architectures—to WiFi CSI tasks.
Because we evaluate each technique identically on several architectures, our results iden-
tify practices that hold generally, rather than being tied to a single network design. This
“architecture-agnostic” evaluation yields actionable guidelines for diverse WiFi sensing mod-
els under limited data. To our knowledge, this is the first reproducible benchmark comparing
multiple robustness methods across architectures and datasets in WiFi CSI sensing, moti-
vating our study.

5 Methodology
This section describes the experimental setup, including datasets, models, learning robust-
ness techniques, training strategies, and evaluation methods. Our implementation builds
upon the SenseFi benchmark [10], which provides a standardized framework for WiFi sens-
ing using deep learning. It includes multiple model architectures and four publicly available
datasets. We extend the codebase by integrating additional robustness techniques and sta-
tistical evaluation tools.

5.1 Dataset
We use two open-source human activity recognition datasets from SenseFi: NTU-Fi [10] and
Widar [9]. These both provide CSI inputs but differ in baseline difficulty: Widar typically
yields lower baseline accuracy, while NTU-Fi models often achieve high accuracy. This
allows us to examine whether robustness techniques can improve weaker performance in one
case and preserve high performance in another.

5.2 Models
Following SenseFi, we evaluate three relatively simple architectures: LeNet (a CNN, referred
to as CNN-5 in SenseFi), an LSTM-based RNN, and a hybrid CNN+GRU. This allows us
to see whether the effects of these learning robustness techniques can be preserved across
different architectures, which may be more effective for certain designs. We note that this
choice reflects both the SenseFi framework’s available implementations and practical con-
straints: limited computational resources make very deep or large models difficult to train,
especially on modest hardware. Moreover, simpler architectures can have an inherent ad-
vantage in small-data regimes by reducing overfitting, though confirming this benefit fully
would require further study with varied model sizes.
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5.3 Learning Robustness Techniques
Given our use of relatively simple, lightweight models (LeNet, LSTM, CNN+GRU) and lim-
ited compute budget, we focused on robustness methods that are independent of architecture
and incur modest overhead. We selected five techniques—stability training, L2 regulariza-
tion (coupled weight decay), early stopping, label smoothing, and MixUp—because they
(1) can be applied uniformly across different network types without modifying the model
structure; (2) require minimal extra computation or changes to the training pipeline, making
long experiments feasible; (3) collectively address key challenges in small-data WiFi sensing:
stability to input noise (stability training), overfitting control (coupled weight decay, early
stopping, label smoothing), and decision-boundary smoothing/generalization (MixUp); and
(4) fit within our time constraints, whereas other promising methods (e.g., extensive adver-
sarial training loops or self-supervised pretraining on large unlabeled corpora) would demand
substantial setup changes or compute beyond our current resources. This selection balances
broad coverage of robustness goals with practical feasibility for reproducible experiments
under limited data and hardware. Full details and code are included in Appendix A.

5.4 Evaluation
Each model variant is evaluated with regular stratified 5-fold cross-validation which was
implemented in the sklearn library. We report the mean and standard deviation of accuracy
over the five folds. Since F1-score behaved similarly to accuracy in preliminary tests, we
omit it from the main tables and include detailed F1 results in Appendix B. To account
for randomness in training (e.g., weight initialization), each configuration is run twice with
different random seeds, and we average accuracy across those runs.

5.5 Experimental Design
We structure our experiments in two stages to isolate individual effects and explore useful
combinations of the robustness methods introduced earlier. All experiments use the same
base training pipeline from SenseFi, differing only in which techniques are applied.

First, we establish a baseline by training each model on each dataset without any added
robustness methods. This provides a reference point for measuring improvements.

Next, in the individual ablation stage, we apply each robustness technique separately,
one at a time, to the baseline setup. This shows how much benefit each method brings on
its own for a given model and dataset.

Finally, we conduct combination experiments to see if certain methods work well together.
Based on prior findings and practical considerations, we select these groups:

• Generalization – Using weight decay, early stopping, and label smoothing to strongly
limit overfitting.

• Stable MixUp – Since both stability training and MixUp improve robustness by
introducing changes to the data, combining them can lead to cumulative improvement.

• Stable Stopping – Pairing the single most effective method from ablation (stability
training) with early stopping to check if stopping earlier further improves robustness.

• Mixed Trio - applying MixUp, stability training and early stopping together to see
if their effects accumulate.

9



• Full Combination – applying all robustness methods at once to observe whether
maximal intervention helps or if interactions interfere.

6 Results
Our evaluation approach highlights the importance of proper statistical reporting when
working with small datasets. That is why we report mean accuracy ± standard deviation
over stratified 5-fold cross-validation (each configuration run twice with different seeds).
F1-score trends closely mirror accuracy (detailed in Appendix B), so we discuss accuracy
here and refer to F1 only when it reveals additional insights. All numeric values below come
from Tables 1 and 2 in the results file.

Table 1: Performance of each method on the Widar dataset. Values are mean accuracy ±
standard deviation.

Method LeNet LSTM CNN+GRU

Baseline 0.6741 ± 0.0062 0.6021 ± 0.0066 0.6799 ± 0.0089

Stability training 0.7055 ± 0.0058 0.6045 ± 0.0046 0.6884 ± 0.0164

Mixup 0.6740 ± 0.0094 0.6091 ± 0.0059 0.6732 ± 0.0145

Weight Decay 0.6849 ± 0.0065 0.6369 ± 0.0054 0.6853 ± 0.0058

Early Stopping 0.6836 ± 0.0090 0.6068 ± 0.0063 0.6821 ± 0.0065

Label Smoothing 0.6754 ± 0.0082 0.5821 ± 0.0068 0.6861 ± 0.0126

Generalization 0.6835 ± 0.0068 0.6238 ± 0.0119 0.6858 ± 0.0079

Stable MixUp 0.6810 ± 0.0091 0.6222 ± 0.0054 0.6931 ± 0.0086

Stable Stopping 0.7041 ± 0.0089 0.6050 ± 0.0067 0.6837 ± 0.0204

Mixed Trio 0.6287 ± 0.0078 0.5311 ± 0.0134 0.4071 ± 0.0289

Full Combination 0.6949 ± 0.0113 0.6848 ± 0.0053 0.6516 ± 0.0197

6.1 Which Methods Worked Well?
On the Widar dataset, stability training consistently improved accuracy beyond its usual
variation. For example, LeNet rose from about 67.4% ±0.6% to 70.6% ±0.6%, and CNN+GRU
rose from 68.0% ±0.9% to 68.8% ±1.6%, indicating a reliable gain. Weight decay also helped,
especially for LSTM (from about 60.2% ±0.7% to 63.7% ±0.5%), showing that penalizing
large weights reduces overfitting on this smaller dataset. MixUp, label smoothing, and early
stopping alone did not move accuracy beyond one standard deviation, so their individual
benefit on Widar was limited.

On NTU-Fi, individual techniques behaved as expected: none caused significant drops
in accuracy beyond the normal variation. Accuracy changes for stability training, weight
decay, MixUp, label smoothing, or early stopping alone stayed within ±0.5%, matching the
standard deviation. This matches our expectation that single methods would not harm
performance on a near-saturated task.
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Table 2: Performance of each method on the NTU-Fi dataset. Values are mean accuracy ±
standard deviation.

Method LeNet LSTM CNN+GRU

Baseline 0.9950 ± 0.0038 0.9963 ± 0.0054 0.9764 ± 0.0134

Stability Training 0.9963 ± 0.0031 0.9963 ± 0.0046 0.9847 ± 0.0158

Mixup 0.9967 ± 0.0038 0.9867 ± 0.0096 0.9681 ± 0.0146

Weight Decay 0.9942 ± 0.0049 0.9979 ± 0.0029 0.9542 ± 0.0167

Early Stopping 0.9954 ± 0.0060 0.9983 ± 0.0029 0.8333 ± 0.2278

Label Smoothing 0.9979 ± 0.0029 0.9967 ± 0.0038 0.9583 ± 0.0123

Generalization 0.9983 ± 0.0029 0.9925 ± 0.0085 0.8979 ± 0.0688

Stable Mixup 0.9963 ± 0.0041 0.9950 ± 0.0043 0.9344 ± 0.0244

Stable Stopping 0.9938 ± 0.0035 0.9913 ± 0.0077 0.8094 ± 0.0933

Mixed Trio 0.9875 ± 0.0171 0.9433 ± 0.0253 0.8750 ± 0.1197

Full Combination 0.9963 ± 0.0050 0.9654 ± 0.0155 0.7719 ± 0.2766

6.2 Surprising Or Counterintuitive Results
We expected that mixing methods might hurt accuracy on NTU-Fi, and indeed using sev-
eral techniques at once often caused drops beyond the normal range. On Widar, however,
combining three or more techniques sometimes caused a clear accuracy drop. For instance,
stability training with MixUp and early stopping led to roughly a 4.5% decrease. This shows
that stacking methods can actually hurt learning even on moderate datasets.

6.3 How Do Models Differ In Their Benefit?
Different architectures showed different patterns. LeNet on Widar benefited most from sta-
bility training, with smaller gains from weight decay. It was also least harmed by combining
methods, suggesting simpler models may better tolerate extra regularization. LSTM on
Widar gained notably from weight decay and, in combination, from stronger regularization,
implying temporal models may overfit more and need tighter control. CNN+GRU on Widar
saw some improvement from stability training but was most vulnerable when multiple meth-
ods were combined, dropping accuracy more sharply. On NTU-Fi, none of the individual
methods harmed any model beyond normal variation, but combinations caused larger drops
for CNN+GRU and LSTM than for LeNet, indicating that larger or hybrid architectures
can be more sensitive to over-regularization when data are already sufficient.

6.4 Which Technique Offers Best Overall Stability?
Stability training stands out as the most reliable single method on the moderate-baseline
dataset: it improved accuracy beyond the standard deviation for all models on Widar with-
out causing large downsides. Weight decay is especially helpful for LSTM models. MixUp
and label smoothing had limited individual benefit but sometimes added small gains when
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paired with stability training for certain models. Early stopping alone did not yield clear
benefits. On NTU-Fi, no single technique improved accuracy beyond normal variation, so
the safest approach there is to use minimal or no added methods unless validation suggests
otherwise.

7 Conclusions and Future Work
We evaluated five robustness techniques—stability training, mixup, label smoothing, early
stopping, and coupled weight decay—across three model architectures (LeNet, LSTM and
CNN+GRU) on two WiFi CSI datasets (Widar and NTU-Fi), using fixed hyperparameters
for reproducibility. Our goal was to see how each method behaves under a controlled setup
and how different models react.

On the weaker-performing dataset (Widar), stability training stood out for both LeNet
and CNN+GRU, consistently improving accuracy and macro-F1 with modest regularization.
LSTM also benefited but showed its best gains when using coupled weight decay or the
full combination of techniques, likely because its temporal nature needed slightly stronger
regularization to generalize well on limited data. Aggressive stacks (e.g., combining mixup
with early stopping) sometimes led to underfitting, especially with CNN+GRU when early
stopping cut training too soon.

On the near-saturated dataset (NTU-Fi), most robustness methods tended to degrade
performance if applied without caution. Stability training alone caused minor drops for
some models but was less harmful than heavier combos; LSTM again showed that coupled
weight decay and full-combo settings could be tuned to maintain or slightly improve its per-
formance, while LeNet and CNN+GRU generally saw diminishing returns or small declines.
This saturation effect underscores that when baseline accuracy is already very high, extra
regularization or augmentation can easily push the model off its peak.

Because we held hyperparameters constant, these findings reflect each technique’s raw
effect under a fixed training regime; in practice, per-technique tuning might shift the exact
gains or losses. Still, the patterns suggest starting with stability training for LeNet- or
CNN-based setups on moderate baselines, and considering coupled weight decay or light
full-combo for LSTM if initial experiments show underfitting otherwise. Always monitor
validation carefully: for example, when combining mixup and early stopping, you may need
to relax the stopping criterion to avoid premature cut-off. Although the exact reason for
this combination led to worse results is unknown.

Limitations: We tested only two datasets and three models, with two repeats per
configuration; loss scales differ by architecture, so we compare relative changes within each
model. Results may vary with more runs, different hyperparameters, or other architectures
(e.g., Transformer-based).

7.1 Future Work
As it stands, the current setup can be improved. It’s possible to add more learning ro-
bustness methods, and test more different combinations, or run them on more repetitions.
Although each of them drastically affects the time it takes to get results, which is the main
reason that no further improvements were made. On top of that, it is possible to do hyper-
parameter tuning, as even though reasonable values are already used, it can help make the
research more believable if previous validation of the hyperparameters is done. On top of
that, it’s possible to improve the current setup by doing partitioning of the dataset, to see
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if using an identical dataset, with just half the data would affect the results.

Overall, there is no one-size-fits-all. Tailor robustness techniques to your dataset’s base-
line performance and the specific model: LeNet and CNN+GRU tended to benefit most
from stability training on moderate baselines, while LSTM showed its best gains under
coupled weight decay or a broader combination of methods. On highly saturated tasks like
NTU-Fi, apply these methods conservatively or skip some to avoid hurting an already strong
baseline.

8 Responsible Research

8.1 Ethics
Since for this research topic we only use data that is open source, and thus freely available
to everyone, there is no need to ensure that any data is anonymized or kept secret.

8.2 CoC
In line with commonly accepted standards of academic integrity, we have adhered to the
principles of the Netherlands Code of Conduct for Research Integrity, with particular em-
phasis on ensuring reproducibility and transparency in this work.

8.3 LLMs
We used LLMs only to spot typos, fix phrasing inconsistencies, maintain a formal tone,
and offer general feedback on clarity. They were not asked to generate hypotheses, analyze
data, or draw conclusions. Every suggestion was carefully reviewed and approved by the
authors before any changes. We stayed aware that LLM outputs can be imperfect or biased,
so we kept full human oversight. This ensured that all substantive content and scientific
integrity remained the authors’ responsibility, while still benefiting from automated help in
proofreading and style.

8.4 Reproducibility
To ensure the reproducibility of this setup, we make sure to explicitly state any and all
libraries, datasets, codebases and hypervalues used in this research, as well as extra bits of
code that are deemed to improve the reproducibility of the experiment.

8.4.1 SenseFi codebase + modifications

As the basis for our code, the SenseFi codebase was used https://github.com/xyanchen/WiFi-
CSI-Sensing-Benchmark and was further modified as described in the methodology. At the
moment of writing this (June 2025) the most recent version of the SenseFi codebase is used,
and since the research is concluded it is highly unlikely that the codebase will change. All
code related to the implementation of the methodology can be found in Appendix A.
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8.4.2 Reproducibility

The following seeds were used for making sure that the results could be reproduced if
necessary: 43889, 41225 The implementation of the function that ensured that the seeds
were used can be found in Appendix A.

8.4.3 Environment

Here are the specifications of the system that the code was run on:

• System + Hardwark

– OS: Ubuntu 24.04.2 LTS
– kernel version: Linux 6.11.0-26-generic
– GPU: NVIDIA GeForce RTX™ 3060 Laptop GPU
– CPU: 12th Gen Intel® Core™ i7-12700H × 20
– RAM: 16GB

• Python environment

– Python version: 3.10.18
– Pip version: 23.0.1
– Libraries used:

∗ numpy 2.2.6 used for manipulating values in lists
∗ tocrh 2.7.1 used for training the model
∗ scipy 1.15.3 (was used for calculating statistics)
∗ scikit-learn 1.7.0 formerly sklearn. Was used for the implementation of the

k-fold cross validator and calculating the F1 score.

A Appendix A: Learning robustness code implementa-
tion

# Replace your criterion
class LabelSmoothingCrossEntropy(nn.Module):

def __init__(self , smoothing =0.1):
super().__init__ ()
self.smoothing = smoothing

def forward(self , pred , target):
n_class = pred.size (1)
one_hot = torch.zeros_like(pred).scatter(1, target.view(-1, 1)

↪→ , 1)
one_hot = one_hot * (1 - self.smoothing) + self.smoothing /

↪→ n_class
return torch.mean(torch.sum(-one_hot * torch.log_softmax(pred ,

↪→ 1), 1))
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def set_seed(seed):
""" Set seed for reproducibility across all random number

↪→ generators."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Make CuDNN deterministic
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

def mixup_data(inputs , labels , generator , alpha=alphaNum):
’’’Returns mixed inputs , pairs of targets , and lambda ’’’
if alpha > 0:

beta_dist = Beta(alpha , alpha)
lam = beta_dist.sample ().item() # uses global torch generator

else:
lam = 1

batch_size = inputs.size (0)
index = torch.randperm(batch_size , generator=generator).to(inputs.

↪→ device)

mixed_inputs = lam * inputs + (1 - lam) * inputs[index , :]
labels_a , labels_b = labels , labels[index]
return mixed_inputs , labels_a , labels_b , lam

def train(model , tensor_loader , num_epochs , learning_rate , crt , device
↪→ , stabi , dataug , l2 , early , seed , save_path , resume=False):

model = model.to(device)
# Use mixed precision for speed (if you have a modern GPU)
scaler = torch.amp.GradScaler(’cuda’)

if l2:
optimizer = torch.optim.Adam(model.parameters (), lr=

↪→ learning_rate , weight_decay =1e-4)
else:

optimizer = torch.optim.Adam(model.parameters (), lr=
↪→ learning_rate)

# Try to resume from checkpoint
start_epoch = 0
best_loss = float(’inf’)
no_improve_count = 0

if resume:
checkpoint_path = save_path / ’checkpoint_latest.pth’
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checkpoint_info = load_model_checkpoint(model , optimizer ,
↪→ checkpoint_path)

if checkpoint_info:
start_epoch = checkpoint_info[’epoch ’] + 1
best_loss = checkpoint_info.get(’loss’, 0.0)
print(f"Resuming from epoch {start_epoch}, best loss: {

↪→ best_loss :.4f}")

# Create a generator for reproducible random operations during
↪→ training

# Note: We set this once at the beginning , not during training
↪→ loop

generator = torch.Generator ()
generator.manual_seed(seed)

for epoch in range(num_epochs):
model.train()
epoch_loss = 0
epoch_accuracy = 0
epoch_total = 0
for data in tensor_loader:

inputs , lbs = data
inputs = inputs.to(device , non_blocking=True)
lbs = lbs.type(torch.LongTensor).to(device , non_blocking=

↪→ True)

optimizer.zero_grad ()
with torch.amp.autocast(’cuda’):

# FIXED: Apply data augmentation BEFORE forward pass
if dataug:

inputs , lbs_a , lbs_b , lam = mixup_data(inputs , lbs
↪→ , alpha=alphaNum , generator=generator)

outputs = model(inputs) # Forward pass with mixed
↪→ inputs

ce_loss = lam * crt(outputs , lbs_a) + (1 - lam) *
↪→ crt(outputs , lbs_b)

else:
outputs = model(inputs)
ce_loss = crt(outputs , lbs)

# Stability training (after stabilityStart portion of
↪→ training)

if epoch > int(stabilityStart * num_epochs) and stabi:
# Use original inputs for stability training , not

↪→ mixed inputs
if dataug:

# Need to use original inputs for stability ,
↪→ not mixed

orig_inputs = data [0].to(device , non_blocking=
↪→ True)

prt_inputs = orig_inputs + torch.randn_like(
↪→ orig_inputs) * noiseAmount
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orig_outputs = model(orig_inputs)
prt_outputs = model(prt_inputs)
stability_loss = torch.nn.functional.mse_loss(

↪→ orig_outputs , prt_outputs)
else:

prt_inputs = inputs + torch.randn_like(inputs)
↪→ * noiseAmount

prt_outputs = model(prt_inputs)
stability_loss = torch.nn.functional.mse_loss(

↪→ outputs , prt_outputs)

loss = ce_loss + stability * stability_loss
else:

loss = ce_loss

scaler.scale(loss).backward ()
scaler.step(optimizer)
scaler.update ()

epoch_loss += loss.item() * inputs.size (0)
predict_y = torch.argmax(outputs , dim=1).to(device)
if dataug:

# For mixup , we’ll use the primary labels for accuracy
↪→ calculation

epoch_accuracy += (predict_y == lbs_a.to(device)).sum
↪→ ().item()

else:
epoch_accuracy += (predict_y == lbs.to(device)).sum().

↪→ item()
epoch_total += lbs.size (0) if not dataug else lbs_a.size

↪→ (0)

epoch_loss = epoch_loss/len(tensor_loader.dataset)
epoch_accuracy = epoch_accuracy/epoch_total

improvement_threshold = 1e-4 # Require meaningful improvement
if early:

# Training loss usually plateaus/increases when
↪→ overfitting starts

if epoch_loss < (best_loss - improvement_threshold):
best_loss = epoch_loss
save_model_checkpoint(model , optimizer , epoch ,

↪→ epoch_loss , epoch_accuracy , best_loss ,
↪→ save_path , True)

no_improve_count = 0
else:

no_improve_count += 1
if no_improve_count >= 10: # Stop after at least 5

↪→ epochs without regular improvement
print("achieved peak loss !!!")
break

else:
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if epoch_loss < best_loss:
best_loss = epoch_loss
save_model_checkpoint(model , optimizer , epoch ,

↪→ epoch_loss , epoch_accuracy , best_loss ,
↪→ save_path , True)

if epoch == 0 or (epoch +1) % 40 == 0:
print(’Epoch :{}, Accuracy :{:.4f},Loss :{:.9f}’.format(epoch

↪→ +1, float(epoch_accuracy), float(epoch_loss)))

save_model_checkpoint(model , optimizer , epoch , epoch_loss ,
↪→ epoch_accuracy , best_loss , save_path , False)

print(’Final Epoch :{}, Accuracy :{:.4f},Loss :{:.9f}’.format(epoch
↪→ +1, float(epoch_accuracy), float(epoch_loss)))

# At the end , load the best saved model
best_checkpoint_path = save_path / ’model_best.pth’
if best_checkpoint_path.exists ():

checkpoint = torch.load(best_checkpoint_path)
model.load_state_dict(checkpoint[’model_state_dict ’])
print(f"Loaded best model from epoch {checkpoint[’epoch ’]}")
print(f"The model has the f1_score: {checkpoint[’f1_score ’]},

↪→ acc: {checkpoint[’accuracy ’]} and loss: {checkpoint[’
↪→ loss ’]}")

return model
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A Appendix B: F1 scores

A.1 Widar

Table 3: Performance of each method on the Widar dataset. Values are mean F1-score ±
standard deviation.

Method LeNet LSTM CNN+GRU

Baseline 0.6149 ± 0.0049 0.5035 ± 0.0112 0.4597 ± 0.0220

Stability training 0.6510 ± 0.0098 0.5065 ± 0.0079 0.4782 ± 0.0402

Mixup 0.6189 ± 0.0184 0.5220 ± 0.0081 0.3967 ± 0.0307

Weight Decay 0.6308 ± 0.0084 0.5505 ± 0.0051 0.3988 ± 0.0134

Early Stopping 0.6299 ± 0.0067 0.5075 ± 0.0102 0.4711 ± 0.0268

Label Smoothing 0.6171 ± 0.0095 0.4707 ± 0.0059 0.4844 ± 0.0365

Generalization 0.6287 ± 0.0078 0.5311 ± 0.0134 0.4071 ± 0.0289

Stable MixUp 0.6237 ± 0.0163 0.5340 ± 0.0073 0.4387 ± 0.0272

Stable Stopping 0.6500 ± 0.0113 0.5056 ± 0.0098 0.4633 ± 0.0443

Mixed Trio 0.6362 ± 0.0095 0.5503 ± 0.0158 0.3917 ± 0.0221

Full Combination 0.6408 ± 0.0139 0.6100 ± 0.0061 0.3373 ± 0.0219

A.2 NTU-Fi

Table 4: Performance of each method on the NTU-Fi dataset. Values are mean F1-score ±
standard deviation.

Method LeNet LSTM CNN+GRU

Baseline 0.9950 ± 0.0038 0.9962 ± 0.0054 0.9764 ± 0.0134

Stability Training 0.9962 ± 0.0031 0.9962 ± 0.0046 0.9845 ± 0.0162

Mixup 0.9967 ± 0.0038 0.9867 ± 0.0096 0.9672 ± 0.0152

Weight Decay 0.9942 ± 0.0049 0.9979 ± 0.0029 0.9541 ± 0.0165

Early Stopping 0.9954 ± 0.0060 0.9983 ± 0.0029 0.8130 ± 0.2675

Label Smoothing 0.9979 ± 0.0029 0.9967 ± 0.0038 0.9581 ± 0.0124

Generalization 0.9983 ± 0.0029 0.9925 ± 0.0085 0.8820 ± 0.0981

Stable Mixup 0.9962 ± 0.0041 0.9950 ± 0.0043 0.9336 ± 0.0251

Stable Stopping 0.9937 ± 0.0035 0.9912 ± 0.0077 0.8044 ± 0.1031

Mixed Trio 0.9874 ± 0.0174 0.9433 ± 0.0253 0.8607 ± 0.1465

Full Combination 0.9962 ± 0.0050 0.9653 ± 0.0155 0.7585 ± 0.3014
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