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Abstract. Wind turbine supervisory control and data acquisition (SCADA) datasets available for research usu-
ally contain a limited number of failure events. This limitation hinders the successful application of deep learning
(DL) methods for fault detection and prognosis, as they require large datasets for robust training and general-
isation. This work proposes a method using conditional generative adversarial networks (cGANS) to generate
synthetic SCADA time series that replicate wind turbine behaviour under controllable operational, environmen-
tal, and degradation conditions. Given a set of SCADA time series representing these conditions, the cGAN
generates temperature and pressure time series simulating gearbox operation. Results show that augmenting the
training set of an artificial neural network (ANN) fault detection model with synthetic time series reduces false
positives in the detected gearbox faults by 84 % on average, enabling the model to blindly detect a fault in a test
wind turbine without prior knowledge of the event. Furthermore, training a convolutional autoencoder-based un-
supervised health indicator (HI) model with both real and synthetic SCADA time series leads to an HI that more
accurately captures the expected degradation trend. Using this HI, the gearbox’s remaining useful life (RUL) can
be predicted within the defined error bounds from around 4.5 months before the detection of the fault, while the

HI obtained without the synthetic data fails to produce reliable RUL estimations.

1 Introduction

State-of-the-art deep learning (DL) methods for wind turbine
fault detection and prognosis rely on large datasets for robust
training and generalisation. However, component failures in
wind turbines are rare events (Spinato et al., 2009), and wind
farm operators are often reluctant to disclose detailed infor-
mation about them due to privacy concerns (Chatterjee and
Dethlefs, 2021). Therefore, supervisory control and data ac-
quisition (SCADA) datasets available for research usually in-
clude very few failure events, limiting the successful imple-
mentation of DL methods. A viable solution to this challenge
is to simulate new failure events within SCADA datasets.
This involves generating time series data that mimic sensor
signals reflecting turbine component behaviour as degrada-
tion progresses over a specific time window leading to fail-
ure. Rather than merely replicating existing failure event sig-

nals, these synthetically generated run-to-failure time series
should instead capture diverse degradation scenarios under
varying operational and environmental conditions. This di-
versity is crucial for enhancing the training data of DL fault
detection and prognosis models, improving their robustness
and practicality.

Existing approaches for generating synthetic signals have
mostly used physics-based and hybrid physics-data-driven
models of wind turbines. They often simulate damage by
methods such as inserting additional mass or reducing lo-
cal structural stiffness. For example, synthetic vibrational
signals generated using the OpenFAST software (Jonkman
et al., 2022) have been used to validate condition monitor-
ing methods in Tatsis et al. (2017), Tatsis et al. (2021), and
Song et al. (2024). However, they are unsuitable for training
DL methods to be applied to real wind turbines with different
configurations. In Pujana et al. (2023), a hybrid digital twin
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of a wind turbine drivetrain is developed to generate syn-
thetic stator winding temperature signals, with the temper-
ature increase due to a generator failure modelled as a heat
exchanger. These synthetic signals are used to train a fault
detection model. While useful, these methods oversimplify
the actual component behaviour and cannot model gradual
degradation. Therefore, they fail to generate realistic run-to-
failure sequences across multiple SCADA signals, which are
critical for prognostic applications.

Data-driven approaches for generating synthetic SCADA
time series are rare in the literature. An artificial neu-
ral network (ANN)-based framework for generating syn-
thetic SCADA signals, given operational, environmental, and
degradation conditions, is proposed in Eftekhari Milani et al.
(2024a). While the generated synthetic signals are in good
agreement with the corresponding field data, this approach
assumes that sensor signals at each timestamp are determin-
istic functions of the current conditions. This assumption
overlooks the inertia and temporal dependencies present in
SCADA signals. These signals, especially temperature data,
often exhibit significant inertia, with measurements strongly
dependent on their previous values (Mello et al., 2021).
Furthermore, this approach does not address the inherent
stochasticity of SCADA signals and does not demonstrate
whether it can simulate new failure events.

Generative adversarial networks (GANs) (Goodfellow
et al., 2020) have been proven successful in generating di-
verse and realistic synthetic data across many domains, in-
cluding images (Shorten and Khoshgoftaar, 2019), text (Li
et al., 2018), audio (Liu et al., 2022), and video (Chu et al.,
2020). These models consist of two neural networks trained
in a competitive framework: a generator generating realistic-
looking synthetic samples and a discriminator evaluating
whether the data are real or synthetic. In the wind turbine
SCADA data domain, the application of GANs has been
mostly limited to addressing class imbalances in fault detec-
tion tasks by augmenting faulty data instances. For example,
faulty data instances are generated in Liu et al. (2019) to en-
hance fault detection performance. In Wang et al. (2022), a
variant of GAN called the least squares GAN is used to gen-
erate synthetic data instances and improve the performance
of an autoencoder-based condition monitoring framework.
Similarly, in Liu et al. (2023), a GAN is used to overcome
the limitation of scarce faulty data by generating synthetic
faulty instances, which are then used to enhance the perfor-
mance of an autoencoder-based anomaly detection method.
These methods outperform more traditional oversampling
approaches (Antoniou et al., 2017), such as those based
on the synthetic minority oversampling technique (SMOTE)
(Chawla et al., 2002), which have been extensively used to
address the problem of class imbalance in SCADA datasets
(Peng et al., 2020; Yang et al., 2021; Li et al., 2023; Tao
et al., 2024). However, they are limited to generating indi-
vidual signal instances rather than run-to-failure time series.
Another limitation of these methods is that they cannot sim-
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ulate entirely new failure events and are limited to oversam-
pling faulty data instances corresponding to existing failure
events in SCADA datasets (Chesterman et al., 2023). Extend-
ing these approaches to generate entire time series is chal-
lenging, as a generative model must learn not only the feature
distributions but also their temporal dynamics. Furthermore,
it must generate a diverse set of time series under predefined
operational, environmental, and degradation conditions to be
useful for wind turbine fault detection and prognosis.

This work addresses these limitations by developing a
method based on a conditional GAN (cGAN) (Mirza and
Osindero, 2014). Unlike the standard vanilla GAN, the pro-
posed model allows conditioning each generated signal in-
stance to a vector of predefined conditions, including com-
ponent degradation levels and SCADA measurements related
to environmental conditions and the operational states of the
wind turbine. To capture temporal dynamics of the signal in-
stances, gated recurrent unit (GRU)-based recurrent neural
networks (Cho et al., 2014) are used for both the genera-
tor and the discriminator networks, enabling the model to
retain a memory of condition vectors from previous times-
tamps. Furthermore, as suggested by Yoon et al. (2019), a
supervised loss term is added to the generator’s training loss
function to enhance the cGAN’s ability to generate realis-
tic SCADA time series. The effectiveness of this approach
for fault detection and remaining useful life (RUL) predic-
tion is demonstrated using field SCADA data. The results
show that augmenting field data with synthetic time series
generated by the cGAN significantly reduces false positives
caused by the scarcity of failure events in training data. This
enables the model to blindly detect a fault in one of the test
wind turbines without prior knowledge of the event. Further-
more, including synthetic time series enhances the perfor-
mance of a health indicator (HI) construction model. The re-
sulting HIs better capture the degradation trend than those
generated without the synthetic data, leading to more accu-
rate RUL predictions. The rest of this paper is organised as
follows. Section 2 describes the method developed for syn-
thetic SCADA time series generation. Section 3 introduces
the SCADA dataset used, data preprocessing, selected sig-
nals, and the healthy and faulty wind turbines. Sections 4
and 5 present the application of the proposed method in fault
detection and RUL prediction, respectively. Finally, conclu-
sions are drawn, and future work is discussed in Sect. 6.

2 Generation of synthetic SCADA signals

A set of SCADA signals representing the operation of a wind
turbine component, such as gearbox temperature and pres-
sure signals, is a discrete multivariate time series S = {s; ;}
with distribution pg, where t =1,...,T,i =1,..., N5, N is
the number of component signals, 7 is the time instance, and
T is the length of the dataset. Similarly, O = {0; ;}, where
i=1,...,No,and E = {¢; ;}, where i =1, ..., N, are sets of
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SCADA signals representing operational and environmental
conditions over the same time interval t =1, ..., T, such as
rotor speed and ambient temperature, with N, and N, be-
ing the number of signals representing these conditions, re-
spectively. D is an HI representing the degradation of the
component at each point in time, which can be extracted
from the SCADA signals. The set of {O,E, D} is called
the condition time series C = {c; ;}, where i =1, ..., N, and
N; = Ny + N, + 1 is the number of condition signals.

It is assumed that S is a function of C (Eftekhari Mi-
lani et al., 2024a), with some stochasticity inherent in the
SCADA signals. At each instance ¢, s; is a function of not
only ¢; but also all the previous instances due to the inertia
inherent in the SCADA signals. However, in practice, this
dependence becomes negligible beyond a certain time win-
dow. This relationship can be expressed through a stochastic
generative function JF:

s = F(C1:4,21)s (D

where z; is a vector of random noise with distribution p,. The
objective of this work is to model F through a GAN-based
framework and use it to generate a set of synthetic SCADA
signals S* given any C.

2.1 HI construction

As mentioned in the previous section, D is an HI extracted
from the SCADA dataset and, together with O and E, forms
the condition time series C. In this work, D is obtained us-
ing the unsupervised method developed in Eftekhari Milani
et al. (2024b), where it is demonstrated that it can construct
HIs that track the true component degradation trend more
accurately than other methods proposed in the literature.
This approach adopts a convolutional autoencoder (CAE),
which is trained using a hybrid of particle swarm optimisa-
tion (PSO) and backpropagation to simultaneously maximise
the HI monotonicity built in the middle layer and minimise
the reconstruction error. Due to the generally irreversible na-
ture of component degradation, an HI is expected to demon-
strate a monotonic trend, and monotonicity has been widely
used as one of the main criteria to build HIs (She and Jia,
2019; Yang et al., 2022). Therefore, maximising monotonic-
ity leads to an HI that better represents the component degra-
dation, leading to a more accurate RUL prediction. The train-
ing fitness function to be maximised is

f=m—-—fR—-fi— N 2

where fyr is the monotonicity of the HI built in the middle
layer of the CAE, measured using the Mann—Kendall (MK)
metric (Pohlert, 2015); fr is the CAE reconstruction loss,
i.e., the mean squared error (MSE) of the difference between
the CAE input and output; fy = |HI(0)| is the absolute HI
value at its initial timestamp; and f; = |1 — Hl(end)|, where
HI(end) is the HI value at its final timestamp. Maximising f

https://doi.org/10.5194/wes-10-2563-2025

2565

corresponds to minimising both fy and f; and training the
CAE to associate the healthy state at the initial timestamp
with an HI value of 0 and the failed state at the final times-
tamp with an HI value of 1. In this work, fp is removed from
f because the component is not necessarily in a pristine state
at the initial timestamp of a run-to-failure SCADA time se-
ries.

SCADA measurements are characterised by high noise
levels and varying operational and environmental conditions.
These factors make it more challenging for the CAE to ef-
fectively reconstruct and denoise the signals compared to
more controlled vibration signals obtained from bearing test
beds used in Eftekhari Milani et al. (2024b). Therefore, in
this work, an additional term fsp is considered, which mea-
sures the average weekly rolling standard deviation of the
HI, and minimising this term leads to a less noisy HI. An
equal weight of 1 for the four terms fm, fr, f1, and fsp
results in slow convergence during the training process due
to the slow minimisation of the reconstruction error, and the
obtained training HI tends to be noisy. For this reason, the
weights of the fr and fsp terms are set to 3 using trial and
error to balance the four terms and resolve these issues.

The CAE training fitness function thus used in this work
is

f=mMm-3frR—f1=3fsp. 3)

The CAE architecture and the training algorithm hyperpa-
rameters are set according to those proposed in Eftekhari Mi-
lani et al. (2024b).

Since wind turbines operate under highly variable oper-
ational and environmental conditions, the constructed HIs
usually exhibit local variations, which can reduce the RUL
prediction accuracy. To mitigate these variations, a post-
processing algorithm is developed, leveraging the usual irre-
versible nature of component degradation. As shown in Al-
gorithm 1, a curve is fitted to the HI using the non-parametric
locally weighted scatterplot smoothing (LOWESS) regres-
sion approach (Cleveland and Devlin, 1988). This curve is
then subtracted from the HI, and subsequently, the cumula-
tive maximum of the curve is re-added to the HI.

Algorithm 1 HI post-processing algorithm.

1. Fit a curve to the HI using LOESS.
2. Compute residue: residue = HI — curve.

3. Compute curvecy: curveey(t) = max[curve(l : t)].
4

. Compute the post-processed HI:
curveep.

HlIpp =residue +

Figure 1 provides a visual explanation of this algorithm
and its impact on RUL prediction. Figure 1a shows a hypo-
thetical HI and a curve fitted using LOWESS. In Fig. 1b and
¢, which show the HI at r = 200 s and r = 300 s, respectively,
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it is evident that the slope of the regression line oscillates
between negative and positive values. This undesirable be-
haviour is resolved after post-processing the HI with Algo-
rithm 1, as shown in Fig. 1d—f.

2.2 Vanilla GAN

GANS consist of two neural networks: a generator (G), which
takes an input vector of unit Gaussian random noise and gen-
erates a synthetic sample, and a discriminator (D), which,
given any sample, outputs the probability of it being real (not
synthesised). These neural networks are trained in an adver-
sarial framework where the generator is trained to generate
increasingly realistic-looking synthetic samples to deceive
the discriminator and the discriminator is trained to detect
these synthetic samples with higher accuracy (Goodfellow
et al., 2020). In the context of SCADA signals, the generator
receives a noise vector z; as input and is trained to generate
synthetic signals s that match the distribution of the real sig-
nals s, used to train the GAN. The discriminator is trained to
output a probability of 1 when the data are real and 0 when
they are synthetic, minimising the loss function:

Ly = —Eg,~p, [10gD(s;)] = Eg,~p. [log(1 = D(G(z1)))],
“

where [E denotes the expected value. The generator is trained
to deceive the discriminator by generating synthetic samples
that it classifies as real, assigning a label of 1. It minimises
the loss function:

LY = —E,,,, [logD (G z)]. )

The overall objective is a min—max game between the gen-
erator and the discriminator:

mginmgx V(D,G)=Eg~p, [logD(s,)]
+Ez~p, [log(1 = DG (z))], (©6)

where the discriminator tries to maximise the value function
V, and the generator tries to minimise it.

2.3 Proposed method for generating synthetic SCADA
signals

A vanilla GAN treats S as a group of independent samples
s; and models only the signal distribution p(s;), neglecting
the temporal dependencies (Yoon et al., 2019). Furthermore,
signals are generated based only on a random noise vector.
Therefore, the objective of this work is to develop a GAN-
based framework that effectively models F in Eq. (1):

1. by conditioning the signal generation on both the con-
dition vector C and a random noise vector and
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2. by modelling the temporal dynamics of SCADA signals
by conditioning the signal generation at each timestamp
on information from previous timestamps, in addition to
the current one.

In other words, rather than modelling the marginal distribu-
tion of the signals p(s;), the framework should model the
conditional distribution p(s;|c1:¢).

The first task above is achieved by adopting a cGAN
framework (Mirza and Osindero, 2014), which allows the in-
put of a condition vector at each timestamp ¢ to the generator
and the discriminator, based on which the samples are gen-
erated. The loss functions of the discriminator and generator
then become

Lp = —Eg~p, [IOgD(St|Ct)]

—Ez~p, [log(1 =D (G (z/ler)))]. 7)
Lg=—Ez~p, [logD(G(zler))]. (8)

The second task is achieved by using a recurrent neural
network (RNN) for both the generator and the discrimina-
tor, allowing them to retain information from previous times-
tamps at each . Additionally, as suggested in Yoon et al.
(2019), a supervised loss term Lg is incorporated into the
GAN generator loss function to further enhance temporal
consistency.

L5 =Ese—p. | lls: = G Gilen 3] ©)

This loss term minimises the Euclidean distance between the
true and generated signals during the training phase. The
modified generator loss function then becomes

ﬂlg =Lg+Ls. (10)

The flowchart of the cGAN-based synthetic SCADA sig-
nal generation framework is shown in Fig. 2. In this work,
gated recurrent unit (GRU)-based RNNs have been used, as
GRU cells achieve performance comparable to Long Short-
Term Memory (LSTM) cells while having fewer parame-
ters. This makes them more efficient, faster to train, and less
prone to overfitting (Chung et al., 2014). The flowchart of
the cGAN model is shown in Fig. 3, where y = p(x = s;|¢;),
with x being the input to the discriminator.

The architectures of the generator and the discriminator
are shown in Fig. 4:

1. w is the length of a rolling time window applied to
C before being fed into the GRU layer in both net-
works. This transforms the shape of C from (7', N,) to
(T —w+1,w, N.) and is shown in Fig. 5. The window
length w introduces a trade-off between model com-
plexity and performance. A larger window allows more
information to be captured at each time frame from ear-
lier signal values, at the expense of increased compu-
tational burden. In this study, this parameter is set to

https://doi.org/10.5194/wes-10-2563-2025
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Figure 1. Example of HI post-processing on a hypothetical HI: (a—c) raw HI, its first 200 s, and its first 300 s and (d—f) post-processed HI,

its first 200 s, and its first 300 s.
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Figure 2. Flowchart of the cGAN-based synthetic SCADA signal generation framework.

10, since the HI obtained from the training wind turbine
remained mostly unchanged for larger window length

values.
2. A denotes the leaky ReLLU activation function defined
below with ¢ = 0.2.
X ifx>0
Alx) = ) (11)
ax ifx <0

In both the generator and the discriminator, the condition
signals C pass through two recurrent layers with 64 GRU
cells. The output vector is concatenated with the random vec-
tor in the generator and with the real or synthetic component
signals, S or S%, in the discriminator. The result is then in-
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put to a dense layer with 64 neurons, followed by the output
layer, which in the generator outputs the S* signals and in the
discriminator the probability of its input signal being real.
The hyperparameters are set through trial and error using the
training wind turbine data to find a setting that ensures a sta-
ble training process, with the generator and the discriminator
being trained in tandem and with consistent speeds.

3 Dataset

The field dataset used in this work consists of 10 min SCADA
signals collected from 1 January 2017 to 1 August 2022 from
nine 2MW wind turbines (WT1-9) in a wind farm oper-
ated by Lucky Wind SpA (https://www.luckywind.it/, last ac-

Wind Energ. Sci., 10, 2563-2576, 2025
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Figure 3. Flowchart of the cGAN model.
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or

Discriminator

(w,64) (,64)

Figure 4. Architecture of the generator (left) and the discriminator (right).

cess: 6 November 2025). Each turbine has a rotor diameter of
100 m, a hub height of 80 m, and a three-stage gearbox with
one planetary stage and two parallel stages. Maintenance
logs report that one of the wind turbines, WT8, experienced a
gearbox failure on 23 February 2022. Inspection logs report
widespread debris indentation and circumferential marks in
multiple gearbox bearings and abrasion in several gears. A
total of 10 signals are selected for analysis: seven related to
gearbox operation, two to environmental conditions, and one
to operational conditions. These signals are reported in Ta-
ble 1. The SCADA signals from WTS during the year lead-
ing to the gearbox failure are used for training purposes. In
addition, WT9 data are used as the validation set, and the
remaining seven wind turbines are used as the test set.

3.1 Data preprocessing

Data preprocessing in this study is limited to omitting non-
physical signal values and those corresponding to non-
operational turbine conditions. Non-physical signal values
refer to instances where gearbox-related temperatures are

Wind Energ. Sci., 10, 2563-2576, 2025

lower than the ambient temperature, gearbox oil pressure is
equal to zero, and rotor speed is negative. These outliers,
likely caused by sensor malfunctions, constitute around 5 %
of the total data. Non-operational values occur when the tur-
bine idles and the produced power is negative. They consti-
tute around 20 % of the total data. As a result, around 25 % of
the original data points are excluded from the analysis during
the data preprocessing step.

After eliminating these outliers, the signals are resampled
into 6 h time intervals. Increasing the sampling period re-
duces the number of data points, leading to a lower computa-
tional burden. It also contributes to a higher signal continuity
by reducing the percentage of missing data. However, this
comes at the cost of decreased fault detection and RUL pre-
diction accuracy. A 6 h resampling period has been identified
as a good trade-off between these factors. As a result, the
number of data points in a year drops from around 52 000 to
around 1400, and the percentage of missing data decreases
from around 25 % to around 3 %.

https://doi.org/10.5194/wes-10-2563-2025



A. Eftekhari Milani et al.: Simulating run-to-failure SCADA time series 2569
Table 1. Selected SCADA signals.
Gearbox-related signals (S) Environmental condition signals (E)  Operational condition signals (O)
Gearbox bearing A temperature Ambient wind speed Rotor speed
Gearbox bearing B temperature Ambient temperature
Gearbox bearing C temperature
Gearbox oil temperature
Gearbox oil temperature at the inlet
Gearbox oil pressure before filter
Gearbox oil pressure after filter
Condition No Ne N
) time series N, NN, N olEl s
1timestamp¢ 1 i s —0
-] olE[ s |t~ Th
w T — —
T Ty t=T Th
777777777777 — Figure 6. Flowchart of the SMOTE oversampling. 7, and Tt refer
to WTS8 time frames labelled as healthy and faulty. They span 11
Failure time—~ LT months and 1 month, respectively.
N, T —w + 1samples

Figure 5. Applying a rolling time window of length w to the con-
dition time series.

4 Fault detection case study

In this section, an experiment is performed to assess the
effectiveness of the developed synthetic data generation
method in fault detection by comparing the detection per-
formance with and without synthetic data. A classifier is
trained with the training (WT8) signals spanning 23 Febru-
ary 2021 to 23 February 2022 (the gearbox failure time) to
identify faulty gearbox operation. The timestamps during the
last month before failure are labelled as faulty (1), while the
remaining 11 months is labelled as healthy (0). Selecting a
smaller portion of data as the faulty class can reduce false
positives. However, it leads to a higher data imbalance and
can reduce model performance. In this work, the length of
1 month constitutes the minimum length of the faulty train-
ing data that maintain an acceptable level of data imbalance,
allowing for successful training of the fault detection model.

The classifier used is an artificial neural network (ANN)
with three hidden layers consisting of 16, 8, and 4 neurons,
each with a ReLLU activation function. The output layer uses
a sigmoid activation function. The model is trained using the
Adam optimiser (Kingma and Ba, 2014) with its default pa-
rameters and the binary cross-entropy loss function (Good-
fellow et al., 2016). During training, a training—validation
split is performed, where 20 % of the training data are ran-
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domly set aside for validation, and the training is stopped
when the validation loss stops decreasing for 20 consecutive
epochs. The model architecture is set using trial and error,
where the model complexity is gradually increased in terms
of the number of hidden layers and neurons per layer, until a
significant performance improvement is not observed in the
validation set. Because of the highly imbalanced nature of
the number of healthy and faulty data points in the training
set with the minority (faulty) class encompassing only 8.3 %
of the data points, the SMOTE method (Chawla et al., 2002)
has been used to oversample the faulty data points and bal-
ance the two classes. The shape of the training data before
and after SMOTE oversampling is shown in Fig. 6.

Once trained, the ANN is used to predict fault state labels
(0 or 1) for each timestamp in the SCADA signals of WT1-7
and WT9. State change from healthy to faulty is generally a
gradual rather than instantaneous process. Therefore, an in-
dividual timestamp predicted as faulty might be due to noise
rather than an actual fault (Zhao et al., 2017). For this reason,
in Zhao et al. (2017) and Peter et al. (2022), the ratio of the
detected anomalous data points to the total number of data
points within a fixed time window is used as a fault index.
In this work, a similar approach is adopted. A fault index
is defined as the weekly moving average (MA) of the pre-
dicted labels to improve detection robustness. The flowchart
of the fault detection methodology is shown in Fig. 7. The
results for the training wind turbine and three test wind tur-
bines are shown in Fig. 8a—d. Numerous misclassified labels,
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i.e., a predicted label of 1 when the gearbox is healthy, are
observed mainly for WT2 in Fig. 8b and WT7 in Fig.8d, par-
ticularly clustered around February each year, which coin-
cides with the failure month of WT8, used to train the ANN.
This suggests that, due to the availability of only one failure
event for training, the ANN has learnt the seasonal features in
the signals around the failure time of WT8, associating these
features with class 1 (faulty).

To address this problem, the developed cGAN-based
framework is used to generate synthetic signals that simu-
late the degradation and failure of the WT8 gearbox across
various time frames. To create the condition time series C,
an HI is built using the proposed HI construction method,
representing the degradation of the WT8 gearbox during the
year leading to its failure. The obtained HI is shown in Fig. 9.
This HI and the three environmental and operational condi-
tion signals of WT8 form the condition time series (N, = 4).
These, along with the seven gearbox-related signals of WT8
(Ns =17), are used to train the cGAN. The Adam optimiser
is used with a learning rate of 0.0005 to train both the gen-
erator and the discriminator. This learning rate is lower than
the default 0.001 value. Due to the complexities arising from
coupling two neural networks within a single training pro-
cess, this lower learning rate is required to ensure training
stability.

Once the cGAN is trained, the environmental (E) and op-
erational (O) condition signals are shifted from the Febru-
ary 2021-February 2022 time frame to new time frames,
April 2020-April 2021, July 2019-July 2020, Septem-
ber 2018-September 2019, and December 2017-December
2018, while keeping the degradation signal (D) unchanged.
These time frames are selected to simulate the gearbox
failure in a variety of seasonal conditions. This results in
four new condition time series C; = {O;, E;, D}, where i =
1,...,4. These condition time series are then input to the
trained generator, which generates the corresponding syn-
thetic signal time series S‘; ,wherei =1, ...,4. Together with
their corresponding environmental and operational signals (E
and O), these synthetic signal time series form four synthetic
SCADA datasets. Similar to the original dataset, the initial 11
months in the synthetic datasets is labelled as healthy, while
the last month leading to failure is labelled as the faulty class
and is oversampled using SMOTE to balance the two classes.
The test set predictions using the ANN trained with both the
original and the synthetic datasets are shown in Fig. 8e-h
for the training wind turbine and three test wind turbines.
A noticeable decrease in the number of misclassified labels
can be observed when compared to the predictions made us-
ing only the original dataset. Across the wind turbines in the
healthy test and validation sets, the number of misclassified
labels, reported in Table 2, has decreased significantly, by
around 84 % on average. A detection threshold of 0.107 is se-
lected for the fault index based on the maximum fault index
value observed in the validation wind turbine, the crossing of
which indicates a fault. False positives, i.e., the timestamps
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when the fault index is above the detection threshold while
the gearbox is healthy, are reported in Table 3 and have been
almost completely resolved. It is important to note that the
number of false positives depends on the detection thresh-
old, which is set based on the randomly selected validation
wind turbine (WT9). The component temperatures in differ-
ent wind turbines can have slight differences in the healthy
state. This results in a variability in the number of misclassi-
fied labels in different healthy wind turbines reported in Ta-
ble 2. Therefore, selecting a different wind turbine for valida-
tion can change the number of false positives slightly by low-
ering or raising the detection threshold. However, this affects
the number of false positives similarly in the two cases with
and without synthetic datasets. Therefore, this experiment is
a valid tool for performance comparison. The flowchart of
the fault detection methodology with the synthetic datasets
is shown in Fig. 10.

The results show a clear detection of a potential anomaly
and fault in WT6. The fault index increases sharply around
the end of October 2018 and remains at a lower level
until around the end of May 2019. Further investigation
into the farm maintenance logs and monthly reports re-
vealed that a moderate gearbox-related fault was discovered
and addressed during a 12h maintenance intervention on
30 May 2019. Coincidentally, this anomaly occurred during
the seasonal period where false positives were previously ob-
served in Fig. 8a—d. Therefore, without the synthetic data,
detecting this fault with high certainty would have been chal-
lenging.

Considering the detection threshold of 0.107, the fault in
WT6 is detected on 19 October 2018 at 06:00:00, more than
7 months before the maintenance. Furthermore, the fault in
WTS is detected on 28 August 2021 at 06:00:00, as shown
in Fig. 8e, while the actual failure occurred on 23 Febru-
ary 2022.

5 RUL prediction case study

This section assesses the effectiveness of the developed
method in fault prognosis. WT8, used for training, experi-
enced a gearbox failure, while WT6’s gearbox underwent
maintenance while the fault was at a moderate level, and fail-
ure did not occur. As a result, a ground truth failure time is
not available for the gearbox of WT6. For this reason, the
fault prognosis in this section aims to predict the time when
the degradation reaches a level that can be detected by the
fault detection method discussed in the previous section.
The CAE used for HI construction is trained with WT8
signals spanning the year leading to the gearbox failure. A
threshold of 1 is assigned for gearbox failure, as indicated by
the fj term in the CAE training fitness function in Eq. (3).
Additionally, the mean value of the HI during the week lead-
ing to the detection in WTS, which is 0.84, is set as the HI
threshold corresponding to the degradation level associated
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Figure 7. Flowchart of the fault detection without synthetic datasets. The red blocks represent faulty wind turbine data, and the green blocks

represent healthy wind turbine data.
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with the fault detection. Figure 11 shows WT8 HI along with
these thresholds. Using the trained CAE, the WT6 HI is then
constructed and is shown in Fig. 12a.

To properly train the CAE to extract the true degrada-
tion trend, a training set comprising multiple run-to-failure
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datasets with diverse degradation trajectories is needed. To
achieve this, synthetic signals are generated by modifying
the degradation trend D in the condition time series C
and shifting the environmental E and operational O signals.
The resulting four new condition time series, then, become
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Table 2. Number of misclassified labels in the healthy test and validation set wind turbines.

WT1 WT2 WT3 WT4 WT5 WT7 WT9
Without synthetic datasets 21 193 319 125 14 281 356
With synthetic datasets 4 33 80 13 2 33 44
Table 3. Number of false positives in the healthy test and validation set wind turbines.
WT1I WT2 WT3 WT4 WT5 WT7 WT9
Without synthetic datasets 24 508 928 298 22 802 1045
With synthetic datasets 0 0 0 0 0 18 0

500 750 1000 1250 1500
time [6h]

0 250

Figure 9. HI of WT8 during the year leading to the gearbox failure.

C. ={0;,E;, D;}, where i =1,...,4, with Dy, ..., D4 rep-
resenting four different degradation trajectories. To derive
Dy, ..., D4, the Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN) algorithm
(Colominas et al., 2014) is applied to decompose the training
HI in Fig. 9 into its trend component Dyeng and several other
intrinsic mode functions (IMFs), Dvr,;, which collectively
make up the HI noise.

D = Dyend + Dhoise

Nivmp

Dnoise = Z DIMF,i
i=1

12)

13)

Here Npvr is the number of IMFs other than the trend. The
decomposed trend and noise components of the training HI
are shown in Fig. 13.

Then, four synthetic trends are created using the equation
below:

Dtrend,i (t) = min(Dyend) + [maX(Dtrend)

. t Pi
_mln(Dtrend):|<T> , i=1,...

with p1_4 equal to 1, 3, 10, and 50, respectively, and are plot-
ted in Fig. 14. This equation models an HI trend starting at
the minimum value of the WTS8 HI trend and ending at its

(14)
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maximum value. It is important to note that assigning a fixed
HI value at failure time for all synthetic HIs is valid in the
proposed framework, as the model used for HI construction
is explicitly trained to associate failure with an HI value of 1.
This enforces consistency by design and minimises variabil-
ity in the HI at failure across different realisations. The expo-
nent p; determines the trend regime. A value of 1 produces a
linear trend, while higher values indicate more pronounced
non-linearity, representing increasingly abrupt degradation
patterns. The pj_4 values are chosen to represent meaning-
fully distinct degradation behaviours.

Next, the corresponding synthetic HIs are obtained by
adding the WT8 HI noise to the synthetic trends and are
shown in Fig. 15. These, combined with the shifted opera-
tional and environmental signals, form the four new condi-
tion time series C,..., C}, which are fed into the trained
generator to obtain their respective synthetic signal time se-
ries Ssl/, e Sf{. These synthetic signals, along with the cor-
responding E and O signals, create four additional synthetic
datasets that are added to the CAE’s training set. Subse-
quently, an HI is constructed for WT6, which is shown in
Fig. 12b.

Regardless of the inclusion of synthetic datasets, the HI
built for WT6 crosses the detection threshold around the time
the gearbox fault is detected and briefly overshoots the failure
threshold. However, this exceedance is not sustained, and the
HI stabilises between the detection and failure thresholds un-
til the fault is identified and addressed through maintenance,
preventing complete failure. These results align well with the
behaviour of the fault index in Fig. 8g and the WT6 main-
tenance report, which confirms a moderate gearbox-related
fault. The sudden jump observed both in the fault index and
the HI might be due to a sudden fault, such as a crack.
However, this hypothesis cannot be asserted with confidence,
since no in-depth details are available about this fault case.

Notably, the HI built using synthetic datasets exhibits a
clearer degradation trend, achieving a monotonicity of 0.61
(measured by the MK metric) up to the detection point com-
pared to 0.53 when synthetic datasets are not used.
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Figure 10. Flowchart of the fault detection with synthetic datasets. The red blocks represent faulty wind turbine data, and the green blocks

represent healthy wind turbine data.
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Figure 11. HI of WTS and the selected thresholds for detection and
failure.

To assess the performance of the two HIs in Fig. 12a and
b in predicting the RUL up to the detection point, a second-
order polynomial function at? + bt + c is fitted to the HI up
to timestamp ¢ with ¢t =700, ..., 1470 (detection time) in 6 h
units. The projected crossing point of the fitted function with
the detection threshold of 0.84 is then used to calculate the
predicted RUL at each 7. To ensure convexity and guaran-
tee that the projected trend crosses the threshold, the con-
straint a > 0 is enforced during curve fitting. This approach
can model both linear and curved trends, using the fewest pa-
rameters possible, minimising the risk of overfitting. The true
and predicted RULs are shown in Fig. 16. At each timestamp,
the true RUL corresponds to the number of 6h timestamps
remaining until the detection time. It can be seen that the HI
built with the synthetic datasets considerably outperforms the
one built without them in correctly predicting the RUL. Con-
sidering an error bound of 1 month, this HI achieves a prog-
nosis horizon of around 4.5 months. This implies that using
this HI, along with the adopted RUL prediction approach,
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enables consistent fault time prediction with the assigned ac-
curacy up to 4.5 months in advance. It is worth noting that a
simple RUL prediction approach is used in this work, as de-
veloping more complex forecasting approaches is beyond the
scope of this work. Adopting more sophisticated approaches
could lead to even better RUL prediction performance.

6 Conclusions

In this work, a method based on cGANSs is developed to gen-
erate synthetic SCADA signals. This approach enables the
generation of sensor time series with controllable degrada-
tion trends, as well as operational and environmental con-
ditions. As a result, it can simulate new failure events or
recreate a given failure under different conditions. A fault
detection case study demonstrates that this method almost
completely resolves false positives. This allows for the blind
detection of a fault in one of the test wind turbines more
than 7 months before it was discovered and maintained by
the wind farm operators. The false positives are due to the
availability of only one failure event in the training data, lead-
ing the model to associate the seasonal characteristics of sig-
nals at the time of failure with fault features. By augment-
ing the training data with synthetic signals that simulate the
same failure under different seasonal conditions, this prob-
lem is mitigated. Furthermore, the study shows that training
an HI construction method with synthetic signals simulating
diverse degradation scenarios leads to a considerably more
accurate RUL prediction. This approach enables the predic-
tion of the RUL up to 4.5 months before fault detection in a
test wind turbine. In contrast, the HI built without synthetic
signals fails to provide accurate RUL estimates.

It is important to note that the training and test fault cases
in this work are similar, both involving a fault in the gear-
box that led to elevated temperatures in the gearbox-related
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Figure 12. WT6 HI: (a) with the original signals and (b) with both original and synthetic signals (b).
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Figure 13. Decomposition of the WT8 HI into the (a) trend and (b) noise component.
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Figure 16. Comparison between the WT6 true and predicted RULs
during the year leading to the fault detection.
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time [6h] time [6] SCADA signals. Therefore, the method’s performance might

(c) (d) deteriorate if the test failure mode is significantly different
from the training case. This work serves as a feasibility anal-
ysis that proves the proposed approach can generate entire
sets of time series simulating new failure events that are able
to mitigate the overfitting problem. To identify the extent of
diversity in the failure patterns that can be simulated using

Figure 15. Synthetic HIs used to generate the synthetic signals: (a—
d) refer to HI1-4 built with trends 1-4.
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this method and assess its performance in the presence of
various failure modes, further studies and experiments with
multiple failure cases are required.

Accurately forecasting the future trajectory of an HI for
RUL prediction remains an important topic that is out of
the scope of this paper. Therefore, a simple prediction ap-
proach is employed. This approach can perform well when
the degradation trend remains consistent throughout the life-
time of the component. However, it can fail in the presence
of inconsistent and complex trends. Future research will fo-
cus on developing probabilistic approaches for more precise
RUL prediction using component HIs.
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