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Abstract
Seismic design codes are currently moving from a force­based design approach to a performance­
based design approach. For example, in a performance­based design approach it could be specified
how many lanes must be available during the lifetime of a bridge given a certain earthquake intensity.
The problem with this approach is that it is not specified what the probability must be that the perfor­
mance criterion is satisfied. This raises the question whether the design codes are acceptably safe or
not.

Resistance factors are a way to take into account uncertainty in the design resistance of a (geotech­
nical) system. Different types of resistance factors exist, but in this thesis focus is laid on the Canadian
Highway Bridge Design Code (CHBDC), in which a total resistance factor approach is used. In a total
resistance factor approach, the total design resistance is calculated with unfactored strength parame­
ters, after which the total design resistance is multiplied with the total resistance factor𝜑𝑔𝑢. Because the
total resistance factor in the CHBDC is a multiplicative factor, lower resistance factors lead to stronger
foundation designs.

The goal of this thesis is to calibrate the design procedure in the CHBDC for geotechnical systems
under seismic loading, by finding a relationship between resistance factors and the lifetime probabilities
of failure of said systems. The resistance factor can then be fine­tuned to a lifetime probability of
failure that is consistent with the lifetime probability of failure targeted in static design. As an example
problem, the bearing capacity of a shallow foundation on a clay with a pseudo­dynamic earthquake
load is tested. The research question that is answered in this thesis is: “What should the resistance
factors for geotechnical seismic design be in order to achieve a target lifetime probability of failure that
is consistent with static design targets?”

Not every possible combination of soil strengths and forces on the superstructure can be taken into
account, and therefore the random finite element method (RFEM) is used in a Monte Carlo simula­
tion. In RFEM, each realization of a Monte Carlo FEM simulation has a random soil field and random
forces acting on the structure. Thousands of realizations are performed for each resistance factor,
design return period, and “actual” return period that the designed foundations are tested against. By
seeing how many realizations of the Monte Carlo simulation fail given a certain earthquake intensity,
the conditional probability of failure given that earthquake intensity can be estimated. The total lifetime
probability of failure can then be estimated from the conditional probabilities of failure with the “total
probability theorem”. As part of a parametric study, the lifetime probabilities of failure are estimated for
six different scenarios, each of which has different sources of uncertainty.

The resulting lifetime probabilities of failure for specific resistance factors are interpolated in order
to find a resistance factor that targets a lifetime probability of failure of 10−3, which is consistent with
static design targets. Given that a design return period of 475 years is the lowest design return period
possible in the design code, a resistance factor of 0.53 is recommended.

Currently, the resistance factor that the CHBDC recommends for geotechnical systems under seis­
mic loading are defined as the static resistance factor for that geotechnical system incremented with
0.20, meaning that compared to static design, weaker foundations are designed for seismic load cases.
For the problem in this thesis, the CHBDC recommends that a static resistance factor of 0.50 is used,
and thus the resistance factor for seismic loading is 0.50 + 0.20 = 0.70. It can be noticed that the
resistance factor found in this thesis is closer to the resistance factor for static design than to the resis­
tance factor for seismic design. In order to achieve a lifetime reliability for geotechnical systems under
seismic loading that is consistent with static design targets, it should be considered to lower the seismic
resistance factor to the value of the static resistance factor, and thus to remove the +0.20 clause.

In order to save computational time, simplified models are used. These simplifications could lead to
inaccuracies compared to coupled FEMmodels or/and a fully dynamic approach. As a recommendation
for future research, a more complex model should be considered without lowering the number of real­
izations. It should also be considered to assess failure of a foundation completely on the performance­
criterion for a certain design return period, and thus to target different lifetime probabilities of failure for
different design return periods.
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1
Introduction

Soil is a highly variable material. Since it is infeasible to test the soil strength parameters at every single
location on a site, the soil parameters need to be estimated based on the results of a limited number
of locations, making the exact strength of the soil uncertain. The uncertainty in the soil parameter field
carries over to the design equations of geotechnical systems, and thus to the lifetime reliability of these
systems. In order to target a certain lifetime reliability of a geotechnical system, a Load and Resistance
Factor Approach is often used.

Resistance factors are a way to take into account uncertainty in a during the design phase esti­
mated resistance to loads. First the bearing capacity of a geotechnical structure is estimated using the
sampled soil strength parameters, after which this bearing capacity is weakened with the resistance
factor. The weakened bearing capacity has to be larger than the factored design load in order for the
design not to fail.

Currently in the Canadian Highway Bridge Design Code (CHBDC), the seismic resistance factors
allow for weaker foundation design than the static resistance factors. The question now is, are the levels
of safety that design codes give for seismic design the same as those targeted for static design? The
resistance factor required for seismic design is calibrated in this thesis so that the same lifetime reliability
as targeted in static design can be achieved, using an example problem of a shallow foundation with a
pseudo­dynamic earthquake load.

In this chapter, the topic of this thesis is motivated, the importance of the research is underlined,
and an outline of the thesis structure is given.

1.1. Topic Motivation
Seismic design codes are moving from a force­based design approach to a performance­based design
approach. Performance­based design means that structures are designed to allow (or not allow) a
certain level of damage for a certain hazard level (CSA, 2019a). An example of performance based
design in the Canadian Highway Bridge Design Code is the following:

“Major­route geotechnical systems shall have 100% of the traveled lanes available for use
following ground motions with a return period of at least 475 years.”

The problem with performance­based approaches is that the performance requirements are not
accompanied by any target reliability level. For example, the above performance specification should
include a statement such as “with probability 0.90 over the design lifetime”. It is not known how con­
servative the current design procedure for geotechnical systems under seismic loading really is. If the
building codes are too conservative, this could lead to a structural waste of (public) resources. How­
ever, if the code is unconservative, the potential for human harm would be unacceptable. Calibration
of design codes therefore is an important matter.

Because not much research has been done on the calibration of resistance factors for seismic
shallow foundation design, this research ismuch needed. There are some relevant papers written about
similar topics in related fields. An outline of how design calibration in general should be conducted is
given in a circular by Allen et al. (2005). A source of inspiration may be taken from past work on static

1



2 1. Introduction

pile foundation design calibration (e.g. Fenton & Naghibi, 2011; Oudah et al., 2019; Rahman et al.,
2002; Park et al., 2013) or static shallow foundation design calibration (e.g. Fenton et al., 2005; Foye
et al., 2006; Honjo & Amatya, 2004). Finally there are assessments of static resistance factor safety
(e.g. Fenton et al., 2016; Scott et al., 2003).

1.2. Research Strategy
The goal of this thesis is to estimate the resistance factor needed to achieve a certain target lifetime
probability of failure for geotechnical systems under seismic loading. It is important to know whether or
not current resistance factor practice in seismic design needs to be changed. If this design does need
to be changed, it is important to know what it should be changed to.

The way this is planned to be achieved is by first studying relevant theory, consisting of probabilistic
theory and seismic theory used inmodeling geotechnical systems. Most importantly, the total probability
theorem is explained, which is basis with which the lifetime probability of failure is estimated for a
geotechnical system under seismic loading.

When the theory has been studied, it can be implemented in a simulation program. The random
finite element method (RFEM) is used because it accurately describes the failure mechanisms through
spatially variable soil, which is especially important in this research for the additional complexity of
seismic loading.

The total lifetime probability of failure given a set of design parameters will be determined for an
example case, namely the bearing capacity of a shallow foundation under seismic loading. A parametric
study will be undertaken to consider multiple possible scenarios with different sources of uncertainty.
The different scenarios include strength degradation effects on the soil, different values for live loads
and different parameters in the design procedure.

Results for each set of simulations based on the various scenarios will be presented in the form of
conditional probabilities of failure given an earthquake return period, design return period earthquake,
and resistance factor. These conditional probabilities of failure need to be combined into uncondi­
tional probabilities of failure by using the total probability theorem for each possible seismic resistance
factor. The resistance factor required to achieve a target failure probability can then be estimated by
interpolating the estimated lifetime probability of failure to a specific target lifetime probability of failure.

Summarizing, themain research question becomes: “What should the resistance factors for geotech­
nical seismic design be in order to achieve a target lifetime probability of failure that is consistent with
static design targets?”

1.3. Document Structure
First the relevant literature and theory are discussed in Chapter 2. This includes the design procedures
currently implemented in the Eurocode and the CHBDC. In Chapter 3 details are given on the numerical
modeling theory that was used to estimate the conditional probabilities of failure. In Chapter 4 the
reasoning behind the chosen values of variables is explained, and an overview is given of the scenarios
that have been considered in this thesis. It is also explained how the results are processed in order to
find the total lifetime probability of failure given a resistance factor. The results of the tested scenarios
are then presented in Chapter 5. Relevant figures that have been produced for each scenario are
shown and discussed. The conclusions derived from the research conducted in this thesis work are
given in Chapter 6. Finally, recommended steps for further research are given in Chapter 7.



2
Theoretical Background

In Section 2.1 key details are explained of the philosophy of the Eurocode and Canadian Highway
Bridge Design Code (CHBDC). To give more insight into the structure of the theory sections, a flowchart
of the algorithm used is given in Figure 2.5, which can be seen as a summary of Section 3.2.1. In
Section 2.2 it is described how the effects of earthquakes are modelled, including the acceleration
forces induced by earthquakes and the effects on soil properties. The described theory comes together
in Section 2.3, where the foundation design equation that is used in the Monte Carlo simulation is
described. Finally, in Section 2.4 the probabilistic theory used in this thesis is described.

2.1. Design Codes
Design codes are often based on the principle that the resistance of a structure to actions has to be
larger than the effect of actions on the structure, or so called limit states. The two groups of limit states
are the ultimate limit state (ULS), which concerns itself with failure of the structure and potential loss of
life, and the serviceability limit state (SLS), which concerns itself with the functionality of the structure
and how comfortable people are using the structure (Bond & Harris, 2008). Only ULS is taken into
account in this study. The principle of limit state design is shown in the following equation,

𝐸𝑑 ≤ 𝑅𝑑 (2.1)

where 𝐸𝑑 is the design effect of the actions on the structure, and 𝑅𝑑 is the design resistance of the
structure to actions.

It used to be common for building codes to use a so called allowable or working stress design (ASD
or WSD) up until the final quarter of the 20th century (Bond & Harris, 2008). Design codes started using
a load and resistance factor design approach (LRFD) in the second half of the 20th century, which is
now standard in most modern design codes (Bond & Harris, 2008; Fenton et al., 2016). The difference
between the WSD and LRFD approaches is that WSD concentrates the uncertainty in one single factor
(the factor of safety 𝐹𝑠), whereas in LRFD different factors are used for different sources of uncertainty
(Bond & Harris, 2008), such as for live load and dead load.

There are generally two approaches to LRFD: the total resistance factor approach, and the partial
resistance factor approach (Fenton et al., 2016). The total resistance factor approach is often used in
North­America, whereas the partial resistance factor is used in other parts of the world (Bond & Har­
ris, 2008). In short, with the partial resistance factor approach it is assumed that different sources of
strength (i.e. cohesion and friction angle) bring with them different uncertainties. With the total resis­
tance factor approach it is assumed that the resistance can be calculated with so called characteristic
values, and then one single resistance factor can be used to weaken the calculated resistance.

A characteristic value of a parameter is a single representative value of an uncertain design param­
eter (Fenton, 2013). How this representative value is defined is different for different design codes.
In the Canadian Highway Bridge Design Code a “cautious estimate of the mean value” is used (CSA,
2019, section 6.2). In Eurocode, space is left for incorporation of spatial variability in the determination
of the characteristic values (Hicks, 2013).

3
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Although the different design codes have different approaches to designing a geotechnical system,
many static design approaches have a similar target lifetime probability of failure (Fenton et al., 2016).
In the following sections some aspects of the Canadian Highway Bridge Design Code and the Eurocode
are explained. For each section the respective design code is a source, although they will not be cited
every time. It is advised to go through the design codes if more information is required: Sections 4 and
6 of the CHBDC (CSA, 2019c; CSA, 2019), and the relevant Eurocode parts and national annexes.

2.1.1. Canadian Highway Bridge Design Code
The Canadian Highway Bridge Design Code (CHBDC) uses the total resistance factor approach. An
expansion of Equation 2.1 that is given in the CHBDC can be seen in the following equation,

𝐸𝑑 =∑
𝑖
(𝐼𝐸𝜂𝑖𝛼𝑖𝐹̂𝑖) ≤ 𝜓𝜑𝑔𝑅̂ = 𝑅𝑑 (2.2)

where 𝐼𝐸 is the importance factor (1.0 for all non­major­route bridges, (CSA, 2019c)), subscript 𝑖 is a
set of different load types acting on the structure, 𝜂𝑖 is the load combination factor of the 𝑖𝑡ℎ load (see
CSA, 2019b, Table 3.1), 𝛼𝑖 is the load factor of the 𝑖𝑡ℎ load (e.g. see CSA, 2019b, Table 3.2), 𝐹̂𝑖 is the
𝑖𝑡ℎ characteristic load, 𝜓 is the consequence factor, 𝜑𝑔 is the resistance factor for the relevant failure
mechanism, and 𝑅̂ is the characteristic resistance to actions.

Some factors are specified differently for SLS and ULS. When ULS is regarded, the parameters
gain the subscript “u”, such as 𝜑𝑔𝑢, 𝛼𝑢𝑖 and 𝐹̂𝑢𝑖.

For earthquake cases the CHBDC prescribes ULS Combination 5, in which only permanent loads
and earthquake loads are taken into account. Transitory loads (or live loads) such as traffic and wind
load are assumed to not be present during an earthquake. Transitory loads thus get 𝜂𝑢𝑖 = 0 in Equa­
tion 2.2. Load factors 𝛼𝑢𝑖 also have different values in this load combination than they have in static
design.

Whereas the resistance factors for static design can be found in Table 6.2 of the CHBDC, the re­
sistance factors for seismic design, 𝜑𝑔𝑢, are equal to the static resistance factors incremented with
+0.2 (CSA, 2019, Table 6.5). Because the resistance factor in the CHBDC is multiplicative, a higher re­
sistance factor leads to weaker designed foundations than lower resistance factors do. Consequence
factor 𝜓 is always equal to 1.0 for seismic design.

In the CHBDC it is given that “the reduction in the factored geotechnical resistance due to lique­
faction or cyclic mobility shall be considered” (CSA, 2019, 6.14.5.3). How this should be done is not
specified quantitatively, which is therefore worked out in Section 2.2.3 of this thesis.

2.1.2. Eurocode
Eurocode is a standardized building code for multiple countries. Each country has its own preferences,
which are specified in national annexes. Three different design approaches may be used (CEN, 2005a,
Section 2.4.7.3.4). In each approach a characteristic action 𝐹𝑘 is transformed into a representative
action 𝐹𝑟𝑒𝑝 by multiplying the actions with a load combination factor 𝜓𝑖 (note, the symbol is 𝜂𝑖 in the
CHBDC), after which different factors are used for transitory and permanent loads to go from 𝐹𝑟𝑒𝑝 to
𝐹𝑑. A short explanation for all three approaches is given:

1. Design Approach 1 (has to satisfy two different combinations):

(a) Design Approach 1, Combination 1:
In Combination 1 it is assumed that the characteristic material strength 𝑋𝑘 is equal to the
design material strength 𝑋𝑑. In other words, the partial material factors 𝛾𝜙 and 𝛾𝑐𝑢 are as­
sumed to be equal to 1. However, the partial factors 𝛾𝑄 and 𝛾𝐺 for the actions are more
conservative than in Approach 1, Combination 2. Figure 2.1 shows a diagram of this load
combination (Bond & Harris, 2008).

(b) Design Approach 1, Combination 2:
In Combination 2 it is assumed that the partial material factors 𝛾𝜙 and 𝛾𝑐𝑢 are not equal to
one. The partial factors 𝛾𝑄 and 𝛾𝐺 for the actions are more lenient in Combination 2 than in
Combination 1. Figure 2.2 shows a diagram of this load combination (Bond & Harris, 2008).
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2. Design Approach 2:
Design Approach 2 is a total resistance factor approach. This means that the partial factors for
soil 𝛾𝜙 and 𝛾𝑐𝑢 are equal to 1.0. Instead of using partial factors to go to the design resistance
𝑅𝑑, the characteristic resistance 𝑅𝑘 is divided by a total resistance factor 𝛾𝑅. This is comparable
to the method used in the CHBDC (see Section 2.1.1), although the total resistance factor is a
multiplicative factor in the CHBDC. Figure 2.3 shows a diagram of this load combination (Bond &
Harris, 2008).

3. Design Approach 3:
Design Approach 3 is a partial resistance factor approach. Characteristic soil strength parameters
𝑋𝑘 are taken to their design value 𝑋𝑑 by applying partial material factors 𝛾𝜙 and 𝛾𝑐𝑢 . Although
this approach is similar to Design Approach 1, Combination 2, in Design Approach 3 different
factors for structural and geotechnical actions are used. Figure 2.4 shows a diagram of this load
combination (Bond & Harris, 2008).

In seismic design, the quasi­permanent load factor 𝜓2,𝑖 is used for transitory loads. Just like how
different countries can choose different design approaches, they can also specify their own quasi­
permanent load combination factors. For the Dutch national annex this load combination factor is
specified to be equal to zero for traffic bridges, which is the same as in the CHBDC (see Section 2.1.1).

Figure 2.1: “Hierarchy of parameters for Design Approach 1, Combination 1.” (Bond & Harris, 2008)

Figure 2.2: “Hierarchy of parameters for Design Approach 1, Combination 2.” (Bond & Harris, 2008)
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Figure 2.3: “Hierarchy of parameters for Design Approach 2.” (Bond & Harris, 2008)

Figure 2.4: “Hierarchy of parameters for Design Approach 3.” (Bond & Harris, 2008)

2.2. Seismic Modelling
Instead of using one of many available advanced seismic models, the seismic theory in this section will
be kept as simple as possible. Simplicity is important because each set of Monte Carlo simulations,
used to estimate failure probability, will have a very large number of realizations, going as high as
100 000. A realization is a set of variables 𝑥 that have been sampled from their respective probability
distributions 𝑋 and are tested together as as a step in a Monte Carlo simulation. Every second of run
time on 100 000 individual realizations would add 27.8 hours to the total run time, making it unfeasible
to have complex models given the time frame of this thesis.

Simple models are acceptable, because resistance factor calibration is not so much about the mean
of actions and design, but more about the deviation from that mean. As long as both the design pro­
cedure and the procedure used to determine the bearing capacity of the designed footing are similar,
the results are accurate enough. This is the case for the seismic loading theory, where both the de­
sign forces and the forces used in the FEM testing are generated with the same seismic model. The
following sections describe the procedure used to model the effects of earthquakes on geotechnical
systems.

2.2.1. Peak Ground Acceleration vs Return Period
The main parameter used in this thesis to indicate earthquake intensity is peak ground acceleration
(PGA). PGA is the largest ground acceleration during an earthquake at a location. It is often represented
in units of gravitational acceleration 𝑔, meaning it has units of 𝑚/𝑠2. Besides PGA there are also other
parameters that are needed to describe an earthquake. These parameters are the frequency and time
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Figure 2.5: Flowchart of algorithm with corresponding theory sections
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Figure 2.6: Indication of where NRCAN data was taken, 43∘42’00.4”N 79∘24’58.7”W (OpenStreetMap contributors, 2019)

parameters (Cimellaro & Marasco, 2018). PGA alone was deemed sufficient for the purpose of this
thesis, since only a pseudo­dynamic force and resistance model is considered (Section 2.2.2).

One of the reasons why PGA is so convenient, is that there are plenty of data available through use
of the NRCAN seismic hazard value calculator (nrcan, 2015). The NRCAN calculator gives a number
of different seismic parameters for the 100, 475, 975 and 2475 year return period earthquakes. For
this section, only the return period and the PGA are considered, although other values from NRCAN
are used in Sections 2.2.2 and 2.2.3.

An example location was taken in Toronto at the coordinates 43∘42’00.4”N 79∘24’58.7”W. The loca­
tion of this site can be seen in Figure 2.6, where the red dot is the example location. Different locations
give different values for the PGA, but it is assumed that the selected location is roughly representative
for the general region.

Not only the 100, 475, 975 and 2475 year return periods are of interest, but also all return periods
in between. The data points from NRCAN therefore are interpolated with a power regression, for which
the general expression is given in the following equation,

𝑃𝐺𝐴 = 𝑎 ⋅ 𝑟𝑏𝑖 (2.3)

where 𝑟𝑖 is the return period of an earthquake, and the regression coefficients 𝑎 and 𝑏 have the values
𝑎 = 2.3102 ⋅ 10−4 and 𝑏 = 0.82839. A plot of the regression can be found in Figure 2.7. This approach
for the PGA regression is similar to the approach of Esposito et al. (2019). Although they performed a
regression for a slightly different location in Toronto, the fit of the regression is roughly the same.

2.2.2. Pseudo­Dynamic Forces
Pseudo­dynamic forces are forces or motions that are dynamic in real life, but are modelled with a single
representative static force as a simplified model. The established term for these forces is “pseudo­static
forces”. However, since the forces are completely static and model dynamic forces, pseudo­dynamic
is a more accurate term.

The method used in the CHBDC to determine the intensity of the pseudo­dynamic forces utilizes
spectral acceleration (CSA, 2019c). A spectral acceleration 𝑆 is multiplied with an importance factor
𝐼𝐸 and the weight of the structure 𝑊 to get the pseudo­dynamic horizontal force 𝐹𝑠𝑒𝑖𝑠,ℎ created by an
earthquake on the structure,
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Figure 2.7: A regression of the peak ground acceleration vs the return period using data from nrcan (2015)

𝐹𝑠𝑒𝑖𝑠,ℎ = 𝑆(𝑇, 𝑃𝐺𝐴)𝐼𝐸𝑊 (2.4)

The importance factor 𝐼𝐸 is equal to 1.0 for bridges that are not part of major­routes. As also can be
seen in Equation 2.4, the spectral acceleration is a function of fundamental (natural) period 𝑇 and peak
ground acceleration of the earthquake in question (more about PGA in Section 2.2.1). Every bridge has
a different fundamental period for which seismic forces on the structure are at a maximum. Spectral
acceleration 𝑆 is calculated through the following equation,

𝑆(𝑇, 𝑃𝐺𝐴) = 𝐹(𝑇, 𝑃𝐺𝐴)𝑆𝑎(𝑇, 𝑃𝐺𝐴) (2.5)

where 𝐹 is the site coefficient and 𝑆𝑎 is the 5% damped spectral acceleration, of which the values
depend on T and PGA. 𝐹 has a different value per soil type, as is specified in tables in Section 4 of the
CHBDC. If the PGA value for which a seismic force is needed is in between the PGA values for which
𝐹 is specified in the tables, linear interpolation must be used to determine 𝐹 at that PGA. Similarly, a
linear regression between the 5% damped spectral acceleration 𝑆𝑎 and PGA can be established using
the data of NRCAN, for the location seen in Figure 2.6, as shown in Figure 2.8.

Using Equation 2.5 and substituting it into Equation 2.4 leads to the following equation for 𝐹𝑠𝑒𝑖𝑠,ℎ,

𝐹𝑠𝑒𝑖𝑠,ℎ = 𝐹(𝑇, 𝑃𝐺𝐴)𝑆𝑎(𝑇, 𝑃𝐺𝐴)𝐼𝐸𝑊 (2.6)

In this thesis it is assumed that the fundamental period T is equal to 1 second. The theory described
above then leads to the spectral acceleration points shown in Figure 2.9, to which another power
regression has been fitted. This regression can be used to estimate the horizontal seismic force 𝐹𝑠𝑒𝑖𝑠,ℎ
at any PGA value, and therefore for any earthquake return period.

Now that the horizontal seismic force 𝐹𝑠𝑒𝑖𝑠,ℎ is known, the vertical seismic force 𝐹𝑠𝑒𝑖𝑠,𝑣 can be es­
timated. A popular approach to estimating the vertical seismic force 𝐹𝑠𝑒𝑖𝑠,𝑣 is by assuming that it is a
percentage of the horizontal seismic force 𝐹𝑠𝑒𝑖𝑠,ℎ. The ratio of 𝐹𝑠𝑒𝑖𝑠,𝑣/𝐹𝑠𝑒𝑖𝑠,ℎ will from now on be referred
to as 𝜆.

What value 𝜆 should be is not clear cut. The Eurocode prescribes a 𝜆 of either 0.33 or 0.5, depending
on the value of the design acceleration (CEN, 2005c). Other design codes, such as the Algerian and
the Indian design codes prescribe 𝜆 values of 0.3 and 0.67 respectively (Hamrouni et al., 2018; Latha &
Garaga, 2010). There are papers in favor of a 𝜆 value of 0.25 (Melo & Sharma, 2004), 0.5 (Nouri et al.,
2008), and 0.67 (Sun & Ruan, 2013). In real life, the ratio between the horizontal and vertical seismic
forces depends on the characteristics of each earthquake. Huang (2005) gave a range of 𝜆 values
accurate for most major pulses of earthquakes. Major pulses are assumed to be within −0.322 ≤ 𝜆 ≤
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Figure 2.8: A regression of the 5% damped spectral acceleration vs peak ground acceleration using data from nrcan (2015)

0.293 and −0.544 ≤ 𝜆 ≤ 0.379. Since an upwards seismic force is beneficial for the bearing capacity,
𝜆 is assumed to only be positive and thus in the downward direction. For this thesis it is decided that
𝜆 = +0.3 is an acceptable value.

2.2.3. Cyclic Degradation Factor
The repeated straining of soils during earthquakes can lead to a degradation of shear strength. This
cyclic softening leads to a reduction of the bearing capacity of a shallow foundation. If the Canadian
Highway Bridge Design Code is followed for the design of a shallow foundation, cyclic degradation of
the shear strength should be taken into account (see CSA, 2019, section 6.14.5.3). How the reduction
should be calculated is left open in the CHBDC and in most other literature (e.g. Puri & Prakash, 2013;
Jakka, 2013).

A review of the literature suggests that reducing the soil shear strength can be done by multiplying
the maximum shear strength 𝜏 with a factor which depends on the earthquake magnitude, its duration,
the number of cycles, etc. The factor with which the soil shear strength is reduced will be called the
cyclic degradation factor, 𝛿𝜏, in the rest of this document.

In order to calculate 𝛿𝜏, this thesis follows the strain­based procedure described by Tsai et al. (2014).
Two variables are of importance in computing the cyclic degradation factor: the number of equivalent
earthquake cycles 𝑁𝑐, which is defined as the number of uniform stress cycles that is representative
for a certain non­uniform stress cycle (Srbulov, 2008), and the cyclic shear strain 𝛾.

To calculate both variables, the moment magnitude 𝑀𝑤 has to be known, with preferably a rela­
tionship to peak ground acceleration, which can then be related to the earthquake return period. A
relationship between moment magnitude and PGA is found in the work of Campbell (1997),

ln(𝑃𝐺𝐴) = − 3.512 + 0.904𝑀𝑤 −
1.328
2 ln(𝑅2𝑠𝑒𝑖𝑠 + (0.149 exp(0.647𝑀𝑤))

2
)

+ 0.5 ⋅ (1.125 − 0.112 ln (𝑅𝑠𝑒𝑖𝑠) − 0.0957𝑀𝑤) + (0.440 − 0.171 ln (𝑅𝑠𝑒𝑖𝑠)) (2.7)

where 𝑅𝑠𝑒𝑖𝑠 is the distance from the epicenter of the earthquake to the site in kilometers. Campbell’s
equation can’t easily be inverted so that 𝑀𝑤 can be determined from PGA. Therefore a relationship to
calculate 𝑀𝑤 from PGA is established by fitting a curve to a range of points derived from Equation 2.7,
as seen in Figure 2.10. The rest of this section will focus on how to calculate the cyclic shear strain 𝛾,
the number of equivalent cycles 𝑁𝑐, and finally the cyclic degradation factor 𝛿𝜏.
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Figure 2.9: A regression of the spectral acceleration vs peak ground acceleration using data from nrcan (2015)
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Cyclic Shear Strain
The first component that is needed to calculate the cyclic shear strain 𝛾 is the stress reduction coefficient
𝑟𝑑. 𝑟𝑑 is a way to capture the dynamic response of the soil, and is defined as “the ratio of cyclic stresses
for a flexible soil column to the cyclic stresses for a rigid column” (Idriss & Boulanger, 2006). Idriss and
Boulanger (2006), have calibrated the relationship for the calculation of 𝑟𝑑 as a function of moment
magnitude 𝑀𝑤 and depth 𝑧, as follows,

𝛼(𝑧) = −1.012 − 1.126 sin( 𝑧
11.73 + 5.133)

𝛽(𝑧) = 0.106 + 0.118 sin( 𝑧
11.28 + 5.124)

ln(𝑟𝑑) = 𝛼(𝑧) + 𝛽(𝑧) ⋅ 𝑀𝑤 (2.8)
Another parameter needed in order to estimate the cyclic shear strain is the small strain shear

modulus 𝐺𝑚𝑎𝑥. Tsai et al. (2014) propose to use the following equation,

𝐺𝑚𝑎𝑥 = 𝜌 ⋅ 𝑉2𝑠 (2.9)
where 𝜌 is the mass density of the soil in 𝑘𝑔/𝑚3 and 𝑉𝑠 is the shear wave velocity in 𝑚/𝑠.

Although Srbulov (2008) states that Equation 2.9 is only valid for shear strains that are small enough
for the soil to behave linear­elastically, it is assumed that it is a good enough approximation for the
current goals. Plausible 𝑉𝑠 values were determined with tables in the CHBDC.

The output of Equation 2.8 and Equation 2.9 are now used in the following equation (Idriss &
Boulanger, 2006; Tsai et al., 2014),

𝛾 𝐺
𝐺𝑚𝑎𝑥

= 0.65 𝑃𝐺𝐴𝐺𝑚𝑎𝑥
𝜎0𝑟𝑑 (2.10)

where 𝐺/𝐺𝑚𝑎𝑥 is the normalized modulus reduction curve and 𝜎0 is the in­situ vertical stress. Darendeli
(2001) gives an equation to calculate the normalized modulus reduction curve 𝐺/𝐺𝑚𝑎𝑥 as a function of
𝛾, which has the following form,

𝐺
𝐺𝑚𝑎𝑥

= 1
1 + 𝛾

𝛾𝑟

(2.11)

where 𝛾𝑟 is the cyclic reference strain.
Both sides of Equation 2.11 are multiplied by 𝛾, and the equation is inverted to output 𝛾 as a function

of 𝛾 𝐺
𝐺𝑚𝑎𝑥

,

𝛾 𝐺
𝐺𝑚𝑎𝑥

= 𝛾
1 + (𝛾/𝛾𝑟)

→ 𝛾 =
𝛾 𝐺
𝐺𝑚𝑎𝑥

1 −
𝛾 𝐺
𝐺𝑚𝑎𝑥
𝛾𝑟

(2.12)

Substituting Equation 2.10 into Equation 2.12, an equation for 𝛾 as a function of PGA is found,

𝛾 =
0.65 𝑃𝐺𝐴𝐺𝑚𝑎𝑥

𝜎0𝑟𝑑
1 − 0.65 𝑃𝐺𝐴

𝛾𝑟𝐺𝑚𝑎𝑥
𝜎0𝑟𝑑

(2.13)

Equivalent Number of Cycles
The equivalent number of cycles 𝑁𝑐 for a saturated clay during an earthquake are assumed in this
thesis to be as given by Kishida and Tsai (2014),

𝑁𝑐 =
exp(𝑐0 + 𝑐1 ln (𝑃𝐺𝐴) + 𝑐2 ln (𝑆1) + 𝑐3𝑀𝑤) + 0.5

0.65 (2.14)

where variables 𝑐0, 𝑐1, 𝑐2, and 𝑐3 are regression parameters, and 𝑆1 is the ratio between the spectral
acceleration at 𝑇 = 0.2𝑠 and 𝑇 = 1.0𝑠 (See Section 2.2.2).
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Cyclic Degradation Factor
Matasovic (1993) gives an equation for the cyclic degradation as follows,

𝛿𝜏 = 𝑁−𝑠(𝛾−𝛾𝑡)
𝑟

𝑐 (2.15)

where variables 𝑠 and 𝑟 are regression variables and 𝛾𝑡 is the shear strain below which there is no
strength degradation. It must be noted here that the cyclic degradation factor 𝛿𝜏 in Equation 2.15 is
assumed to be equal to the degradation of the small strain shear modulus.

The outcomes of Equation 2.13, 𝛾, and the outcome of Equation 2.14, 𝑁𝑐, are used to determine
𝛿𝜏 throughout the soil profile for different earthquake intensities. The results of the cyclic degradation
factor calculation can be found in Figure 2.11, where 𝛿𝜏 is plotted against the depth for various PGA
values.

A number of simplifying assumptions have been made. Firstly it is assumed that 𝛿𝜏 increases
linearly throughout the soil. Secondly it is assumed that the linear trend is defined by two values: one
value at a depth of 8 meters, and a value at the surface just below the foundation. The reason why a
cyclic degradation is assumed at ground level, is to incorporate effects the mass of the structure has on
the soil when the structure is in motion. The cyclic degradation factor at 8 meters depth is determined
through Equation 2.15. A simplified relationship for these values can be seen in Figure 2.12. Figure 2.12
also shows 𝛿𝜏 at a depth of 4 meters, which shall be used (as a deterministic value) in the design, if
this is part of the scenario. The cyclic degradation factor at ground level is assumed to be equal to a
percentage of the degradation at 8 meters depth.

A reduced soil strength 𝜏1 at a certain depth can now be estimated by multiplying the in situ soil
strength 𝜏0 with the cyclic degradation factor at that depth,

𝜏1 = 𝛿𝜏𝜏0 (2.16)

2.3. Foundation Design
Because for each realization random soil parameters are generated, a different footing width is required
for each realization in order to resist the factored design load 𝐸𝑑. In the finite element model, the design
is changed by changing the number of surface nodes that represent the footing.

To estimate the required footing width, a modified version of the classic Prandtl equation is used.
Prandtl’s design equation has had many additions over the years, such as by Meyerhoff, Terzaghi and
Brinch Hansen. Earthquake design has also been added to Prandtl’s equation, making for a pseudo­
dynamic approach (Sarma & Iossifelis, 1990; Budhu & Al­Karni, 1993; Paolucci & Pecker, 1997; Cas­
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Figure 2.12: A regression of the cyclic degradation factor vs peak ground acceleration at depths 4 and 8 meters

cone & Casablanca, 2016). In this research, the version of Prandtl’s equation that is recommended
in the CHBDC is chosen, in order to keep the design as close to the code as possible. Although the
equation is only applicable on homogeneous soil bodies, it is assumed that the equation targets the
mean bearing capacity reasonably accurately given input soil parameters that are also estimates of the
mean. The CHBDC version of Prandtl’s equation is the following,

̂𝑞𝑢 = 𝑐̂𝑁𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑖𝑞 + 0.5𝛾𝐵̂𝑁𝛾𝑖𝛾 (2.17)
where ̂𝑞𝑢 is the bearing capacity, the 𝑁 factors are factors that depend on the soil strength parameters,
the 𝑖 factors are load inclination factors, 𝑐̂ is the cohesion, 𝑞 is the surcharge, and 𝛾 is the specific weight
of the soil and 𝐵̂ is the width of the foundation. The hat signs on the bearing capacity 𝑞̂𝑢, the cohesion 𝑐̂
and the foundation width 𝐵̂ mean that they are the characteristic values. Characteristic soil properties
are defined in CHBDC as “cautious estimates of the mean”. What is not shown in Equation 2.17 is the
characteristic value of the friction angle 𝜙̂, which is used in the N factors,

𝑁𝑞 = 𝑒𝜋 tan(𝜙̂) tan2 (
𝜋
4 +

𝜙̂
2 )

𝑁𝛾 = 0.1054 ⋅ exp(0.1675𝜙̂)
𝑁𝑐 = (𝑁𝑞 − 1) cot(𝜙̂) (2.18)

This definition of the N factors is only valid for 𝜙̂ > 0. If 𝜙̂ is equal to zero, i.e. the soil is purely
cohesive, then all factors except 𝑁𝑐 are equal to zero. 𝑁𝑐 then becomes equal to 2 + 𝜋 (Das, 2011).

The definition of the inclination factors 𝑖 are given as follows,

𝜃 = tan−1 (𝐹ℎ𝐹𝑣
)

𝑖𝑐 = 𝑖𝑞 = (1 −
𝜃
𝜋/2

)
2

𝑖𝛾 = (1 −
𝜃
𝜙̂
)
2

(2.19)

where 𝜃 is the angle that the combination of all forces makes with the vertical, 𝐹ℎ is the horizontal
factored design load on the foundation and 𝐹𝑣 is the vertical factored design load on the foundation.
Angles are measured in radians. If there is no horizontal force, the 𝑖 factors become equal to 1.
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Every designed foundation has to withstand at least the factored design load 𝐸𝑑. On the resistance
side, the withstandable force is calculated by multiplying the characteristic bearing capacity 𝑞̂𝑢 with the
characteristic footing width 𝐵̂, which consists of a multiplication of the design width and the resistance
factor 𝜑𝑔𝑢𝐵𝑑,

𝐸𝑑 ≤ 𝜑𝑔𝑢𝐵𝑑 ̂𝑞𝑢 (2.20)
Now Equation 2.17 is substituted into the inequality of Equation 2.20 and everything is written to one
side,

0.5𝛾𝐵2𝑑𝑁𝛾𝑖𝛾 + 𝑐̂𝑁𝑐𝑖𝑐𝐵𝑑 + 𝑞𝑁𝑞𝑖𝑞𝐵𝑑 −
𝐸𝑑
𝜑𝑔𝑢

≥ 0 (2.21)

where it must be noted that the total resistance factor 𝜑𝑔𝑢 is put together in a fraction with 𝐸𝑑 to shorten
the equation. A solution for 𝐵𝑑 in the above quadratic equation can be found by using the quadratic
formula,

𝐵𝑑 ≥
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎 (2.22)

where a, b and c have the following definitions, taken directly from Equation 2.21,

𝑎 = 0.5𝛾𝑁𝛾𝑖𝛾
𝑏 = 𝑐̂𝑁𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑖𝑞

𝑐 = − 𝐸𝑑
𝜑𝑔𝑢

(2.23)

Usually the quadratic formula would give two solutions, with both an addition and a subtraction in the
numerator. Since the width of a foundation cannot be negative, only the addition is valid, and therefore
there is only one solution to Equation 2.21.

When either the soil weight or the friction angle is zero, Equation 2.22 becomes invalid. For that
special case, a different solution is found using simple algebra,

𝐵𝑑 ≥
𝐸𝑑

(𝑐̂𝑁𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑖𝑞)𝜑𝑔𝑢
(2.24)

Equations 2.22 and 2.24 result in a design foundation width 𝐵𝑑 that is larger than a certain value.
In the simulations, the smallest value possible is used, and therefore the “greater than” sign in the
equations is replaced with an “equal to” sign.

2.4. Probabilistic Theory
In order to estimate the failure probability of a shallow foundation under seismic loading sometime
during the design lifetime of the structure, first the conditional failure probability given that an earthquake
with return period 𝑟𝑖 acts upon the foundation must be estimated. The total lifetime probability of failure
is then estimated by using the total probability theorem, in which each conditional probability of failure
given an earthquake return period 𝑟𝑖 is multiplied with the probability of an earthquake with return period
𝑟𝑖 occurring, and then summed together. The details of this procedure and other relevant probabilistic
theory are discussed in the following sections. More in depth information can be found in Fenton and
Griffiths (2008).

2.4.1. Log­normal Distribution
The log­normal distribution is a non­negative, continuous probability distribution. It is constructed by
generating a normal probability distribution and taking the natural exponent of that value.

The parameters of the log­normal distribution can be obtained from the parameters of the underlying
normal distribution as follows (Fenton & Griffiths, 2008),

𝜎2ln𝑋 = ln(1 + 𝜎
2
𝑋
𝜇2𝑋
) (2.25)
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𝜇2ln𝑋 = ln (𝜇𝑋) −
1
2𝜎

2
ln𝑋 (2.26)

2.4.2. Correlation Length
The correlation length, 𝜃, can be roughly defined as the separation distance between two points in
a random field beyond which the correlation coefficient between them becomes negligible (Fenton
& Griffiths, 2008). In this research, the correlation coefficient between any two points in the soil is
assumed to be described by a Markov correlation function (Fenton & Griffiths, 2008),

𝜌 (𝜏) = exp(−2
|𝜏|
𝜃 ) (2.27)

where 𝜏 is the distance between two points. The correlation exponentially decays towards zero with
distance 𝜏.

2.4.3. Conditional Probability
Conditional probability is the probability of an event given that another event has already occurred
(Fenton & Griffiths, 2008). The conditional probability of an event F given that an event R happens will
be denoted as 𝑃 [𝐹|𝑅]. This conditional probability can be calculated as the probability of the intersec­
tion of events F and R, divided by the probability of event R occurring. This is shown symbolically, as
follows,

𝑃 [𝐹|𝑅] = 𝑃 [𝐹 ∩ 𝑅]
𝑃 [𝑅] (2.28)

2.4.4. Total Probability Theorem
The total probability theorem, also known as the law of total probability, is a way to find the unconditional
probability of an event by combining the conditional probabilities of a number of sub events that together
make up the event of interest, multiplied by their probabilities of occurrence (Fenton & Griffiths, 2008),
as shown in the following equation,

𝑃 [𝐹] =
𝑛

∑
𝑖=1
𝑃 [𝐹|𝑋𝑖] 𝑃 [𝑋𝑖] =

𝑛

∑
𝑖=1
𝑃 [𝐹 ∩ 𝑋𝑖] (2.29)

where 𝑃 [𝐹] is the probability of event 𝐹, 𝑃 [𝐹|𝑋𝑖] is the probability of event 𝐹 given that subevent 𝑋𝑖
occurs, and 𝑃 [𝑋𝑖] is the probability that subevent 𝑋𝑖 occurs. There are 𝑛 different subevents 𝑋𝑖 in
Equation 2.29. By multiplying the conditional probability of event 𝐹 given 𝑋𝑖 by the probability that
𝑋𝑖 occurs, the intersection between events 𝐹 and 𝑋𝑖 is calculated. In fact, the essence of the total
probability theorem is that all possible intersections between events 𝐹 and 𝑋𝑖 are summed.

A requirement for the usage of the total probability theorem is that there is no intersection between
the sub events (i.e. they are disjoint), and that all sub events together make up for the complete event
(i.e. they are collectively exhaustive). The equation for the continuous total probability theorem is given
as follows,

𝑃 [𝐹] = ∫𝑃 [𝐹|𝑋 = 𝑥] 𝑓(𝑥) 𝑑𝑥 (2.30)

where the probability density function 𝑓 (𝑥) is the continuous probability density function of a continuous
set of subevents.

Because the maximum intensity of an earthquake during the lifetime of a structure is random, the
total probability theoremmust be used to determine the total lifetime probability of failure of the geotech­
nical system. Since return periods are a continuous variable, the continuous total probability theorem
in Equation 2.30 should ideally be used. For the lifetime probability of failure given seismic events in
Equation 2.30, X would be stochastic return period R, and x the realization of an 𝑖 number of actual
return periods 𝑟𝑖.

Equation 2.30 is only useful when an analytical solution exists for both the integral and the condi­
tional probability of failure. In the case of this thesis, there appears to be no such solution. Therefore
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an approximation has to be used which makes use of simulated estimations of the conditional prob­
ability of failure. Since simulations cannot be done on an infinite scale, a range of return periods is
discretized, which means that the previously continuous set of sub events 𝑟𝑖 is no longer collectively
exhaustive. The estimation now makes use of the discrete Equation 2.29 instead of the continuous
Equation 2.30, and the total probability theorem becomes only an approximation for the total lifetime
probability of failure. It is, however, a good estimation if enough return periods are used and those
return period earthquakes that are omitted do not contribute much to the overall lifetime probability of
failure.

An example to demonstrate what the problem is with a not collectively exhaustive group of events is
the following: Consider a failure event F in which 𝑛 return period seismic events are possible. Although
𝑛 is infinite in reality, let’s consider what happens if only the first 𝑛 = 10 years of return periods are
included, i.e., only 𝑟1 to 𝑟10 are considered, where 𝑟𝑖 is the seismic event having a return period of 𝑖 years.
If the total probability theorem is applied to this case, the probability intersection 𝑃 [𝐹 ∩ 𝑟1 ≤ 𝑅 ≤ 𝑟10]
will be found instead of the unconditional probability of failure 𝑃 [𝐹]. Because the sum of the probability
of failure for all larger return periods is cut off at 𝑃 [𝐹 ∩ 𝑅 > 𝑟10], a large number of subevents is not
taken into account, therefore giving a faulty approximation of the total lifetime probability of failure.

Assuming that seismic events lower than some return period, 𝑟𝑚, can be considered to be static load
cases, and that the design lifetime probabilities of occurrence of seismic events having return periods
in excess of 𝑟𝑛 are negligible, the total lifetime probability of failure can be approximated as a purely
seismic case as follows,

𝑃 [𝐹] ≈ 𝑃 [𝐹|𝑟𝑚 ≤ 𝑅 ≤ 𝑟𝑛] =
𝑃[𝐹 ∩ (𝑟𝑚 ≤ 𝑅 ≤ 𝑟𝑛) ]
𝑃 [𝑟𝑚 ≤ 𝑅 ≤ 𝑟𝑛]

=
∑𝑛𝑖=𝑚 (𝑃 [𝐹|𝑅 = 𝑟𝑖] 𝑃 [𝑅 = 𝑟𝑖] )

𝑃 [𝑟𝑚 ≤ 𝑅 ≤ 𝑟𝑛]
(2.31)

2.4.5. Earthquake Event Probability
Assuming that an earthquake can occur at any instant in time, the probability of an earthquake occurring
can be characterized using a Poisson distribution (see e.g. Fenton & Naghibi, 2017). Simply said, with
the Poisson distribution it is assumed that whether or not a seismic event occurs can be described by
an infinite set of (binomial) trials, one at each instant in time. The probability of a certain number of
events occurring according to the Poisson distribution has the following equation,

𝑃 [𝑁𝑡 = 𝑘] =
(𝜆𝑡)𝑘

𝑘! 𝑒−𝜆𝑡 (2.32)

where 𝑡 is the time during which the binomial trials take place (the design lifetime of a structure), 𝑁𝑡
and 𝑘 are the number of earthquake events in 𝑡 years, and 𝜆 is the mean rate of earthquake events.

If the return period of a specific earthquake intensity is 𝑟𝑖 years, then the mean rate is equal to 1 over
that return period: 𝜆𝑖 = 1/𝑟𝑖. Equation 2.32 gives the probability that a certain number of earthquakes
occurs during the lifetime of the structure 𝑡. However, it is not of interest if 2, 3,or 25 earthquakes
of a certain return period occur. Instead, the probability of at least one earthquake with a certain
return period 𝑅 > 𝑟𝑖 occurring during the lifetime of the structure is of interest. This probability can be
determined by taking the complement of the probability that no earthquake of that strength occurs,

𝑃 [𝑁𝑡 > 0] = 𝑃 [𝑅 > 𝑟𝑖] = 1 − 𝑃 [𝑁𝑡 = 0] (2.33)

which, using Equation 2.32, leads to,

𝑃 [𝑁𝑡 > 0] = 1 − 𝑒
− 𝑡
𝑟𝑖 (2.34)

𝑃 [𝑁𝑡 > 0] is also the probability that a random return period R is larger than 𝑟𝑖. To now calculate the
probability of an earthquake with a specific return period 𝑟𝑖 occurring, an infinitesimally small interval
should be considered, as follows,
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𝑃 [𝑅 = 𝑟𝑖] = lim
Δ𝑟→0

(𝑒−
𝑡

𝑟𝑖+Δ𝑟 − 𝑒−
𝑡

𝑟𝑖−Δ𝑟 ) (2.35)

Of course an infinitesimally small interval is impossible to realize when doing simulations. A decent
approximation is found by using larger intervals.

In this research, the same number of return period intervals are assumed as done by Naghibi and
Fenton (2018). The return period range goes from ln(𝑟𝑚) = 4.0 to ln(𝑟𝑛) = 8.0, with 40 steps of
𝑙𝑛(𝑟𝑖) = 𝑙𝑛(𝑟𝑖−1) + 0.1 in total. The lower boundary 𝑟𝑚 and the upper boundary 𝑟𝑛 correspond to
earthquake return periods of 52 years and 3134 years. The approximate probability that a specific
return period earthquake occurs over the design lifetime t is then,

𝑃 [𝑅 = 𝑟𝑖] ≈ 𝑒
− 𝑡
𝑟𝑖+0.5 − 𝑒−

𝑡
𝑟𝑖−0.5 (2.36)

2.4.6. Probability of Failure Standard Deviation
Each conditional probability of failure is estimated through a number of simulations 𝑛𝑠𝑖𝑚. Because there
is a limited number of simulations that can realistically be performed, there is also a limit to how precise
the answers can be. The standard deviation, 𝜎𝑝̂𝑓 , of the estimated conditional probability of failure 𝑝̂𝑓
can be used to specify the confidence interval of the answers, which is shown in Section 5.3.1.

𝜎𝑝̂𝑓 can be estimated as follows (Fenton & Griffiths, 2008, eq. 6.101),

𝜎𝑝̂𝑓 ≃ √
𝑝̂𝑓 (1 − 𝑝̂𝑓)
𝑛𝑠𝑖𝑚

(2.37)

2.4.7. Reliability Index
For assessment of the failure of a structure, there are two main variables, namely the design resistance
𝑅𝑑 and the design actions 𝐸𝑑. The resistance has to be larger than the loads, otherwise a structure
fails. Both variables can be combined into a single variable with a single probability distribution, called
the limit state 𝑍 (𝑍 = 𝑅𝑑 − 𝐸𝑑). As long as 𝑍 is larger than zero, the resistance will be larger than the
loads, and the structure does not fail.

The reliability index 𝛽 is the number of standard deviations that the mean of 𝑍 is away from zero,
and thus is a way to express the likelihood of a structure failing,

𝛽 = 𝜇𝑍
𝜎𝑍

(2.38)

where 𝜇𝑍 is the mean value of 𝑍, and 𝜎𝑍 is the standard deviation of 𝑍.
The reliability index is used as a different way to define the lifetime reliability of a geotechnical

system under seismic loading. It is used specifically in Section 5.1.3.
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Numerical Modelling

3.1. Modelling Theory
Modelling is the procedure of representing reality by using mathematics. Simplified mathematics are
often accurate enough for engineering purposes.

3.1.1. Soil Property Modelling
Not every single particle at a building site can be tested and evaluated. Representative soil parameters
need to be determined from a limited number of samples, which brings uncertainty into calculations of
the bearing capacity. Are there weak soil zones in between tested locations, and do these weak zones
affect the bearing capacity of the foundation? In order to imitate spatial variability of soil parameters in
the simulations, an algorithm called local average subdivision (LAS) is used.

LAS is based on the principle that engineering measurements are not continuous up to the individual
soil grains, but are discrete, local averages of a group of soil grains (Fenton & Griffiths, 2008). Four
of a possibly infinite number of stages of a one dimensional LAS process are presented in Figure 3.1
(Fenton & Griffiths, 2008). Starting from Stage 0, the generated random field becomes more refined
with each subsequent stage. The value of the generated soil parameter in each cell is 𝑍𝑖𝑗, where 𝑖 is
the stage number, and 𝑗 is the cell number. Every cell in Figure 3.1 has a certain color, which is an
example of the random value 𝑍𝑖𝑗 that a cell could have. The darker the color is, the larger the value of
𝑍𝑖𝑗 is compared to the mean of the random field. This one dimensional random field could for example
be the results of a cone penetration test, although Figure 3.1 would need to be turned by 90 degrees.

A written description of the stages of one dimensional LAS corresponding to Figure 3.1 is given as
follows, as specified by Fenton and Griffiths (2008),

Stage 0: Generate the global average of the random field, 𝑍01. The global average is drawn from a nor­
mal distribution if the the modelled soil parameter is normally or lognormally distributed (see
Section 2.4.1 for the normal distribution corresponding to a specific lognormal distribution);

Stage 1: Divide the initial cell 𝑍01 into two new cells, 𝑍11 and 𝑍12. The generation of 𝑍11 and 𝑍12 has to
satisfy three conditions:

(a) The average of 𝑍11 and 𝑍12 has to be equal to parent value 𝑍01. This can be done by
generating 𝑍12, and then deriving 𝑍11 from the fact that 𝑍01 = (𝑍11 + 𝑍12) /2;

(b) The values of 𝑍11 and 𝑍12 have to be properly correlated (e.g. with a Markov Correlation,
Section 2.4.2);

(c) Both 𝑍11 and 𝑍12 have to have the correct variance that is related to the generated field.

Stage 2: All cells from the previous stage are divided into two new cells. The same three conditions
as in the previous stage apply. Additionally, the correlation with cells further away must be
correct. For example, if 𝑍21 and 𝑍22 are being generated, these values can have a correlation
with 𝑍23 and 𝑍24, depending on the correlation length.

19
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Figure 3.1: “Top­down approach to LAS construction of local average random process.” (Fenton & Griffiths, 2008)

Figure 3.2: Example of a lognormally distributed random cohesion field as produced by the LAS algorithm

Stage 3: Repeat the procedure in Stage 2 until the desired resolution of the soil parameter field is
reached. If the required field is lognormally distributed, the values should be converted from
the corresponding normal distribution (Section 2.4.1) at the end of the final stage.

Similarly to the one dimensional process described above, LAS can be used to generate two di­
mensional random parameter fields. Instead of dividing cells into two new cells, cells are quartered. Of
these four cells, three cells are randomly generated, after which the value of the fourth cell is calculated
in such a way that the mean of the four new cells is equal to the mean of the parent cell.

After the desired resolution has been reached, the randomly generated parameter field can be
allocated to different elements in a finite element mesh, resulting in something similar to what can be
seen in Figure 3.2, in which the cohesion has been mapped to the finite element mesh. As with the one
dimensional example in Figure 3.1, the darker the cell is, the higher the value is relatively to the mean
of the random field. The generated field is isotropic, which can be noticed from the similar dimensions
of the color patches in both the horizontal and vertical directions.

3.1.2. Load Modelling
Earthquake accelerations introduce horizontal and vertical forces on the foundation. Seismic forces for
different return periods 𝑟𝑖 are modelled through the theory given in Section 2.2.2.

Besides seismic forces, the weight of the foundation and superstructure must be modelled, which is
called the dead load. At the moment of designing, the dead load is not known exactly, nor is the exact
force transfer from the bridge to the different parts of the foundation known.

Finally, the live load must be modelled, which is the load due to traffic, weather, and other tran­
sitory effects. Since earthquakes are random in time, it is unknown what the traffic load is during an
earthquake, as can be seen from a traffic load over time diagram plotted in Figure 3.3.

The seismic loads, dead loads and live loads are all chosen to be lognormally distributed. The non­
negative property of the lognormal distribution is desirable, because gravity does not work upwards,
therefore the sign of the modelled load is preferred to be always positive (and thus downwards). Every
property of the used distributions is given in Section 4.1.3, where the variables are justified. This
includes the values of the deterministic parameters used in the design of the simulations, which are
based on the means of the random parameters.
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Figure 3.3: “Time history of the total weights of vehicles on the bridge from 2005” (Wang & Xu, 2019)

3.2. Program Description
3.2.1. Simulation Algorithm
In order to estimate the total lifetime probability of failure, 𝑛𝑠𝑖𝑚 realizations are performed for each of
the 41 earthquake return periods 𝑟𝑖. The discretization of 𝑟𝑖 is given in Section 2.4.5.

Each total lifetime probability of failure is estimated with a different resistance factor 𝜑𝑔𝑢 and design
return period. The resistance factors considered are 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. The design return
periods considered are earthquakes of a return period of 0 years, 475 years, 975 years, and 2475 years.
Given an “actual” earthquake return period 𝑟𝑖, design return period earthquake, and resistance factor
𝜑𝑔𝑢, 𝑛𝑠𝑖𝑚 realizations are performed of the following algorithm, as presented by Naghibi and Fenton
(2018) in Figure 3.4:

1. Generate the random soil parameter fields using local average subdivision (LAS):
LAS is described in Section 3.1.1. Not every soil parameter has an impact on the design pro­
cedure, for which reason random fields are generated on only those parameters that do. Which
variables are random and which variables are deterministic are given in Chapter 4.

2. Sample the characteristic strength values from the random soil parameter fields:
This step is comparable to a real life cone penetration test. A virtual sample is taken by calculating
the average of a set of nodes in each of the random soil parameter fields. Since in real life it is not
often known exactly where a foundation has to be, the samples are taken at a specified distance
𝑟 from the center of the random field.
The characteristic value 𝑋̂ of a normally distributed random variable is found with the arithmetic
average, which has the following equation (Fenton & Griffiths, 2008),

𝑋̂ = 1
𝑛

𝑛

∑
𝑖=1
𝑋̂𝑖 (3.1)

The characteristic value 𝑋̂ of a lognormally distributed random variable is found with the geometric
average, which has to following equation (Fenton & Griffiths, 2008),

𝑋̂ = (𝑋̂1𝑋̂2...𝑋̂𝑛)
1
𝑛 = exp(1𝑛

𝑛

∑
𝑖=1

ln 𝑋̂𝑖) (3.2)

in which 𝑋̂𝑖 are the parameter values of the random field at sampled elements 𝑖. The values of 𝑖
are taken from ground level 𝑖 = 1 to a specified depth of 𝑖 = 𝑛.
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3. Design the foundation for this realization:
A footing is designed for the random soil field that is generated in Step 1, by using the design
procedure described in Section 2.3 and using the characteristic soil parameters 𝑋̂ found in Step 2.
In the design, the intensity of the seismic effects are estimated with a design return period earth­
quake. It is this step where the resistance factor 𝜑𝑔𝑢 is used to get the design foundation width
𝐵𝑑.
Finally, the designed footing is modelled on the finite element mesh by converting the design
width to a number of surface nodes, which is then rounded upwards. For example, if the finite
elements are 0.25 by 0.25 meters and the foundation has to be 1.05 meters wide, the footing is
given 5 different elements, because 1.05/0.25 = 4.2, which is rounded up to 5.

4. Optional: Reduce the soil strength:
If part of the scenario, the random soil parameter field is multiplied with a random cyclic degra­
dation factor field 𝛿𝜏 after the characteristic soil parameters are sampled in step 2. A with depth
increasing random parameter field is generated for 𝛿𝜏 (see Section 2.2.3). In case that cyclic
degradation is part of the scenario, the characteristic soil parameters that are used in the design
are also degraded with a deterministic value in the previous step.

5. Generate loads:
In real life there will be a certain unknown load on the footing when an earthquake hits. This
unknown load consist of seismic loads, dead load and live load. In order to be able to test the
designed foundation against these loads, they need to be randomly generated. The intensity of
the generated seismic load depends on for which return period 𝑟𝑖 the conditional probability of
failure is being estimated in this set of 𝑛𝑠𝑖𝑚 realizations. More is explained in Section 2.2.2 and
in Section 3.1.2.

6. Test the designed footing for failure:
The randomly generated load from Step 5 is spread out over the number of surface nodes corre­
sponding to the foundation design width found in Step 3. A FEM analysis is then conducted over
a mesh with the properties of the random soil fields that have been generated in Step 1. If the
simulated foundation fails, a counter 𝑛𝑓𝑎𝑖𝑙𝑠 is incremented.

After 𝑛𝑠𝑖𝑚 realizations of steps 1 to 6 have finished, the conditional probability of failure given an
earthquake return period 𝑟𝑖 can be estimated. This conditional probability of failure is for the specific
design return period and resistance factor that have been used in the algorithm. The following formula
is used to estimate the conditional probability of failure given an earthquake return period 𝑟𝑖,

𝑃 [𝐹|𝑅 = 𝑟𝑖] ≈
𝑛𝑓𝑎𝑖𝑙𝑠
𝑛𝑠𝑖𝑚

(3.3)

after which the procedure is repeated for return period 𝑟𝑖+1, with the same resistance factor and design
return period. When the conditional probability of failure for each of the 41 return periods has been
estimated, the unconditional probability of failure can be estimated using the total probability theorem
(Section 2.4.4).

3.2.2. RFEM Specifications
In this thesis, soil is modelled with the random finite element method (RFEM). RFEM is a finite element
method (FEM) that is used in a Monte Carlo simulation. Each realization of the Monte Carlo simulation
has random properties, such as a random soil parameter field, or forces acting on the structure. In FEM,
reality is modelled by discretizing differential equations that are representative for a physical process
over space into “finite elements” (Smith et al., 2014).

RFEM also has more advanced approaches, such as the randommaterial point method (e.g. Wang
et al., 2016), importance sampling (e.g. Soubra et al., 2019), or coupled approaches (e.g. Karamitros
et al., 2013; Elia & Rouainia, 2014). None of these are used in this thesis due to time constraints. More
in depth information on the (random) finite element method can be found in Smith et al. (2014) and in
Fenton and Griffiths (2008).

The used RFEM program is a modified version of a program called “RBEAR2D” (Fenton & Griffiths,
2000). The new program is called “RBEAR2S”, because it is the pseudo­dynamic seismic load version
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Figure 3.4: “[Schematic of procedure] used to predict probability of bearing capacity failure.” (Naghibi & Fenton, 2018)
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Figure 3.5: “Mohr–Coulomb failure criterion.” (Smith et al., 2014)

of RBEAR2D. Whereas in RBEAR2D displacement steps are made until the footing fails, in RBEAR2S
a load based approach is used. This load­based addition was programmed by Dr. ir. Bram van den
Eijnden. Instead of cycling through displacement steps until failure, it is now tested whether or not the
solution converges given that a certain load is present on the virtual foundation.

The FEM program goes through a number of iterations in which displacements are calculated. If
the difference in displacements compared to the previous iteration is below a certain threshold, the
solution has converged. If a larger number of iterations is needed without convergence occurring, the
footing has failed.

All elements are 8­node quadrilaterals.
All variables are of single precision floating point format in order to save time.

3.2.3. Yield Criterion
In RBEAR2D, the von Mises yield criterion is used. Because both frictional and cohesive soil parame­
ters can be input into RBEAR2S, a so called “conical” model is preferred over von Mises (Smith et al.,
2014). Therefore the Mohr­Coulomb model was chosen as a yield criterion. If the soil is assumed to be
frictionless, the Mohr­Coulomb model reduces to the Tresca model (Yu, 2006), which is an acceptable
model for the behavior of clay in undrained conditions(Smith et al., 2014).

A graphic representation of the Mohr­Coulomb failure criterion by Smith et al. (2014) can be found
in Figure 3.5. For the Tresca failure space, the graphic is similar, but instead of a cone, the failure
space is an infinite hexagonal prism.
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B

Figure 3.6: Schematic of the FEM boundary conditions. “Cross­section through a realization of the random soil underlying the
footing.” (Fenton et al., 2005)

3.2.4. Boundary Conditions
The outer nodes of the mesh are restricted in their movements. Preferably, the failure zone is not
influenced by these boundary conditions.

A schematic of the degrees of freedom of the mesh can be seen in Figure 3.6. The dimensions of
the mesh in Figure 3.6 are different than the dimensions of the mesh in this thesis, but the boundary
conditions are the same.

The bottom nodes of the mesh are fixed in both the horizontal and vertical directions. It can be
assumed that this is a solid rock layer.

The nodes at the sides of the mesh are fixed in the horizontal direction, but can move vertically. In
real life, there is soil beyond these nodes, which mostly holds back the soil frommoving in the horizontal
direction.

At the top of the mesh, all nodes are free to move, except the nodes at which the foundation is
modelled to be. The footing nodes are tied together in the both the horizontal and vertical direction.
It is assumed that the footing is rough, rigid and does not rotate. The vertical and horizontal load are
spread out over the footing nodes, forcing the footing nodes to move in a way that corresponds to the
loads on them.
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Simulations

4.1. Justification of Variables
How many of the 𝑛𝑠𝑖𝑚 realizations fail is partly dictated by the standard deviation of the randomly
generated variables. In order for the results of this study to be trustworthy, the parameters of both the
deterministic and random variables need to be plausible.

In Section 4.1.1 the soil parameters are justified. Secondly, in Section 4.1.2 the mesh dimensions
are justified. Finally, in Section 4.1.3 the design loads and simulated loads are justified.

4.1.1. Soil Parameter Justification
1. Cohesion (c):

The modelled soil is a high strength clay in undrained conditions. According to the Dutch annex
of Eurocode 1997­1 (Nen­En, 2018), a value of 40 kPa is reasonable for the cohesion of clay.
The coefficient of variation for the cohesion is chosen to be 0.3 (Phoon & Kulhawy, 1999).

2. Friction angle (𝜙):
It is generally accepted that clay may be purely cohesive in undrained conditions. Therefore the
friction angle is chosen to be 𝜙 = 0∘.

3. Dilation angle (𝜓):
The value of the dilation angle has a negligible effect on the results of the simulations. 𝜓 = 0∘
has been chosen.

4. Poisson’s ratio (𝜈):
Poisson’s ratio is limited to a range of 0.0 to +0.5. Generally, the Poisson’s ratio in medium
strength clay ranges from 0.2 to 0.5 (Das, 2008, Table 12.6). A Poisson’s ratio of 0.3 is a conser­
vative estimate that falls within this range.

5. Young’s modulus (𝐸):
The value of the Young’s modulus has a negligible effect on the results of the simulations. Young’s
modulus influences the deformation of the mesh, but does not change the bearing capacity. A
reasonable order of magnitude for clay is 104 kPa (Das, 2008, Table 12.6), which will be the value
used in the simulations.

6. Specific weight (𝛾):
The specific weight of the saturated clay is chosen to be 17 kN/m3, supported by Eurocode 1997­1
Dutch annex (Nen­En, 2018).

7. Sampling distance:
The sampling distance is 5 meters from the center of the footing, to 5 meters deep. This is rather
arbitrarily selected. However, in practice it is unlikely that a borehole will be taken directly under
every foundation, and so the sample is likely to be some distance from the foundation. A value of
5 meters was selected as a reasonable average distance to the closest borehole at a typical site.

25
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8. Scale of fluctuation (𝜃):
The scale of fluctuation, 𝜃, has been assumed to be 5 meters in both the horizontal and vertical
directions; the field is isotropic. If soil is modelled as being isotropic over a large mesh depth, soil
layers are assumed to not be present. However, this is acceptable since the problem described
in this thesis is more about the variability between sampling, design and actual bearing capacity
than about how close to a realistically layered soil the model comes. The choice of taking the
same length for the scale of fluctuation and the sampling distance is reasonably conservative.

9. Cyclic degradation factor (𝛿𝜏):
In Section 2.2.3 the cyclic degradation factor (𝛿𝜏) theory has been described. Since in the cyclic
degradation factor theory it is assumed that the soil has nothing built on it, the (potentially nega­
tive) impact of a foundation on 𝛿𝜏 is not taken into account. For that reason, it is assumed that at
ground level, the cyclic degradation factor is 25% of what it is at 8 meters depth. The coefficient
of variation is taken to be 0.2 (Pecker, 2004).

4.1.2. Mesh Justification
Mesh dimensions are determined through a careful assessment of three criteria.

The first criterion is that the width of the largest designed footing should be within a certain threshold.
If a designed footing is too large, the simulated bearing capacity will be in error due to the finite element
boundary conditions affecting the results. In the program, designed footings should be rejected if they
are too large for the mesh dimensions, which is the case when the foundation width exceeds one­third
of the total mesh width.

The second criterion is the other extreme: if a designed footing is too small, the program should
reject it, because using too few elements makes the solution inaccurate.

The third criterion is that the mesh resolution should be feasible for use in a simulation. A mesh
with a high resolution is preferable over a mesh with a low resolution, because a high resolution leads
to a better approximation of the underlying differential equations. However, with a high resolution the
stiffness matrix also becomes larger. Because of the use of the Cholesky decomposition to transform
the stiffness matrix into a set of triangular matrices, all roundoff errors are multiplied and added up
many times. If too many elements are used, that will eventually lead to numerical instability.

Based on the three criteria, a choice needs to be made on what the mesh size and resolution should
be. Assuming a factored design load that gives a 1 meter wide foundation at the mean cohesion and a
resistance factor 𝜑𝑔𝑢 = 1.0, most outliers of the footing width are under 6.5 meters wide when designed
with the lowest resistance factor that is considered in this study. Considering the mesh width criterion,
the minimum mesh width is 19.5 meters wide, which is rounded up to 20 meters. The mesh height
would be acceptable at 8 meters high, which is a bit less than half of the mesh width. The mesh
element dimensions are chosen to be 0.25 by 0.25 meter, which does not lead to instabilities. By using
these determined dimensions for the element size and mesh width, the total mesh is 80 by 25 elements.

4.1.3. Load Justification
The factored design load 𝐸𝑑 is calculated with the following equation,

𝐸𝑑 = 𝛼𝐿
𝜇𝐿
𝐾𝐿
+ 𝛼𝐷

𝜇𝐷
𝑘𝐷

(4.1)

where 𝛼𝑖 is the load factor, 𝑘𝑖 is the bias factor that transforms the mean load 𝜇𝑖 into a characteristic
load, subscript 𝐿 stands for live load, and subscript 𝐷 stands for dead load. The value of the live load
factor 𝛼𝐿 depends on what the current scenario is that is being simulated (see Section 4.2).

𝐸𝑑 is kept constant for all scenarios, which has the result that the mean footing width does not
change between scenarios. The mesh dimensions can therefore be kept the same for all scenarios.
In order for the design width to be 1 meter at a resistance factor 𝜑𝑔𝑢 = 1 (as stated in Section 4.1.2),
the factored design load is calculated to be 204 kN when assuming that the characteristic strength
parameters are equal to the mean value.

The mean live and dead loads 𝜇𝐿 and 𝜇𝐷 have to be chosen in such a way that they fit Equation 4.1
for the (constant) factored design load 𝐸𝑑. Using the assumption that the mean live load is a certain
percentage of the mean dead load, the live and dead load can be determined. In general, a live load
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that is one­third of the dead load is assumed (Fenton et al., 2016), although this fraction is lowered for
Scenario 6.

The coefficient of variation for the dead load is taken at 0.15 (Bartlett et al., 2003). Live load, which
is expected to be more variable, is given a coefficient of variation of 0.30 (Becker, 1996a, 1996b).
Lastly, the seismic loads are assumed to have a coefficient of variation of 0.85. The intensity of the
seismic loads depends on the value of the dead load, although they have not been correlated within
the program, for which reason the coefficient of variation for this load is rather large.

4.2. Scenarios
4.2.1. Scenario 1 ­ Vertical Load Only
In Scenario 1 a footing is simulated on which only a dead load and a vertical seismic load are present.
Live load and horizontal seismic load are assumed to be absent in both the design and in testing. Cyclic
degradation, however, is taken into account. An overview of the in Scenario 1 incorporated effects can
be found in Table 4.1.

The purpose of this simple scenario is to find the baseline recommended resistance factors. If
only the vertical seismic load is tested, the effect of the incorporation of horizontal seismic loads can
be investigated when this scenario is compared against a scenario that is the same, but that does
incorporate a horizontal seismic load.

The expected results from this scenario are a first indication of the order of magnitude of the resis­
tance factors that target a reliability that is similar to static design targets. Although not every source
of uncertainty is taken into account yet in this scenario, it is expected that the total lifetime probability
of failure found in this scenario will be higher than what the CHBDC should be targeting.

Table 4.1: Scenario 1 ­ Vertical load only

Variables Used in

Design Simulations

Live load No No
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load No No
Soil degradation Yes Yes

4.2.2. Scenario 2 ­ Horizontal Load (Degradation)
The only difference between Scenario 1 and Scenario 2 is the assumption of a horizontal seismic load
acting on the geotechnical system. An overview of all incorporated effects in Scenario 2 can be found
in Table 4.2.

The purpose of this scenario is to find out what the influence is of horizontal seismic loads on
the required value of the resistance factor, which can be seen when the results of this scenario are
compared to the results of Scenario 1.

It is expected that the influence of the by the horizontal seismic forces added uncertainty leads to
lower resistance factors than are found in Scenario 1, and also to larger differences between the results
for the different design return period earthquakes.

4.2.3. Scenario 3 ­ Horizontal Load (No Degradation)
Scenario 3 is the same as Scenario 2, with the only difference being that cyclic degradation is neglected
in Scenario 3. An overview of all incorporated effects in Scenario 3 can be found in Table 4.3.

The purpose of this scenario is to find out what influence the cyclic degradation factor theory has
on the recommended resistance factor. Because the lowest cyclic degradation factors are not much
lower than 0.9 at the largest return period earthquake, it is expected that the results of Scenario 3 won’t
deviate from the results of Scenario 2 by a large margin. However, the spread of resistance factors for
the different design return periods may become smaller, because the cyclic degradation theory appears
to be on the conservative side.
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Table 4.2: Scenario 2 ­ Horizontal load (degradation)

Variables Used in

Design Simulations

Live load No No
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load Yes Yes
Soil degradation Yes Yes

Table 4.3: Scenario 3 ­ Horizontal load (no degradation)

Variables Used in

Design Simulations

Live load No No
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load Yes Yes
Soil degradation No No

4.2.4. Scenario 4 ­ Live Load (factor 1.0)
In Scenario 4 a live load is assumed to be present during the earthquake. Live load was not designed
for, nor simulated for, in previous scenarios, which is in agreement with the CHBDC. With a live load
factor of 1.0, the live load assumed in the design is the same as the mean of the simulated live load
in testing. An important note here is that to incorporate the live load in the design, the dead load had
to be scaled down. This scaling is done so that the constant 𝐸𝑑 requirement in Equation 4.1 would be
satisfied, which means that the mesh does not need to be adjusted (See Section 4.1.3). Because of this
change in mean dead load, the seismic forces on the footing change in intensity slightly. This change
is not expected to make a significant impact on the recommended resistance factors. An overview of
the incorporated effects in Scenario 4 can be found in Table 4.4.

The purpose of this scenario is to see what happens to the recommended resistance factor once a
live load is being taken into account. This is an interesting scenario, because in the CHBDC live load
is neglected for seismic load cases.

If a bridge has a constant flow of traffic over time, there is a probability that a live load is acting
on the structure during an earthquake, and in that case it is expected that Scenario 4 more accurately
models the conditions on the geotechnical system than the previous scenarios do. It is expected that
the resulting resistance factors for Scenario 4 are lower than those in previous scenarios, since more
uncertainty has been added to the system with the live loads.

Table 4.4: Scenario 4 ­ Live load (factor 1.0)

Variables Used in

Design Simulations

Live load 1.0 𝐹𝑑𝑒𝑎𝑑/3
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load Yes Yes
Soil degradation Yes Yes
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4.2.5. Scenario 5 ­ Live Load (factor 1.7)
Scenario 5 is the same as Scenario 4, but with a larger live load factor of 1.7. As was the case in
Scenario 4, the addition of a live load in the design changes the seismic forces slightly, though not
significantly. An overview of all incorporated effects in Scenario 5 can be found in Table 4.5.

The purpose of this scenario is to find out what happens to the recommended resistance factor
when the live load factor in seismic design becomes more like the live load factor in static design. In
static design, extreme (live) load cases are assumed, which means that the design in this scenario is
expected to be conservative. However, Scenario 5 should be seen more as an experiment to see if the
resistance factors go up towards the resistance factors the CHBDC recommends currently for seismic
design of geotechnical systems.

Since the design in Scenario 5 is more conservative than the design in Scenario 4, the estimated
lifetime probabilities of failure will be lower, which results in higher recommended resistance factors for
Scenario 5. In general, the characteristics of the conditional failure probability figures are expected to
be similar to those produced from the results of Scenarios 2 and 4, but shifted upwards.

Table 4.5: Scenario 5 ­ Live load (factor 1.7)

Variables Used in

Design Simulations

Live load 1.7 𝐹𝑑𝑒𝑎𝑑/3
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load Yes Yes
Soil degradation Yes Yes

4.2.6. Scenario 6 ­ Live Load (factor 0.0)
Scenario 6 is the same as the previous two scenarios, except for the fact that the live load factor is
assumed to be 0.0 in Scenario 6, and thus no live load is taken into account in the design step of the
algorithm. A lower value is used for the simulated live load than is used in the other scenarios: the
mean of the live load 𝜇𝐿 has been reduced from 1/3𝑟𝑑 of the dead load to 1/15𝑡ℎ of the dead load. The
dead load has remained unchanged from the dead load in Scenario 2. An overview of all incorporated
effects in Scenario 6 can be found in Table 4.6.

In current CHBDC practice it is assumed that no live load is present on a structure during an earth­
quake. Of course, it is always possible to have some sort of live load on a structure. The question is if
such a load is certain enough to justify a live load factor.

The purpose of this scenario is to see what happens to the recommended resistance factors when
there is a live load on the footing that has not been taken into account in the design. A comparison to
Scenario 2 can then be made to see what the difference is with the idealized scenario where there is
no live load on the structure.

Compared to Scenario 2, it is expected that the recommended resistance factors are a lot lower
in Scenario 6. It is difficult to say what the difference will be compared to the results of Scenario 4.
Although a live load is taken into account in Scenario 4, the larger variance in the live load of Scenario 4
might be more dominant than the change to the live load factor.

Table 4.6: Scenario 6 ­ Live load (factor 0.0)

Variables Used in

Design Simulations

Live load No 𝐹𝑑𝑒𝑎𝑑/15
Dead load Yes Yes
Seismic vertical load Yes Yes
Seismic horizontal load Yes Yes
Soil degradation Yes Yes
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4.3. Number of Realizations

All scenarios have the same number of realizations 𝑛𝑠𝑖𝑚. As shown in Table 4.7, the number of real­
izations gets smaller with an increasing resistance factor. Because higher resistance factors make for
weaker foundation designs, the conditional probability of failure becomes higher as the resistance fac­
tor becomes higher. With higher probabilities of failure, the sampling errors will become less dominant,
as will be explained in Section 5.3.1.

Table 4.7: Number of realizations per run for different resistance factors for all scenarios

𝑛𝑠𝑖𝑚 at 𝜑𝑔𝑢 for each actual return period 𝑟𝑖
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scenario 1 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000
Scenario 2 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000
Scenario 3 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000
Scenario 4 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000
Scenario 5 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000
Scenario 6 10, 000 10, 000 6, 000 6, 000 3, 000 3, 000 3, 000

In each scenario, four different return period earthquakes are used in the design, and those design
parameters are tested gainst 41 different “actual” return period eathquakes. The number of realizations
per lifetime probability of failure for each resistance factor is given in Table 4.8.

Table 4.8: Total number of realizations per design return period for different resistance factors for all scenarios

𝑛𝑠𝑖𝑚 at 𝜑𝑔𝑢 for each design return period

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Scenario 1 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000
Scenario 2 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000
Scenario 3 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000
Scenario 4 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000
Scenario 5 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000
Scenario 6 410, 000 410, 000 246, 000 246, 000 123, 000 123, 000 123, 000

4.4. Results Processing

As an example of how the lifetime probability of failure is estimated for a resistance factor, the results
of Scenario 2 at resistance factor 𝜑𝑔𝑢 = 0.8 are used.

Each simulation has an output that consists of 41 data points of estimated conditional probabilities
of failure given a return period earthquake, 𝑃 [𝐹|𝑅 = 𝑟𝑖]. The conditional probabilities of failure are
also specific for a resistance factor 𝜑𝑔𝑢 and a design return period. In Figure 4.1, raw output from the
simulation is plotted.
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Figure 4.1: Example output of simulation ­ conditional probability of failure vs return period 𝑟𝑖

The total probability theorem utilizes each of the 41 data points (as described in Section 2.4.4). In
Figure 4.2 the interim results of the total probability theorem are plotted: all estimated conditional prob­
abilities of failure have been multiplied with their probability of occurrence, and are then cumulatively
summed up over the horizontal axis. At the largest return period, which is 3000 years, the value of the
unconditional lifetime probability of failure can be found.
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Figure 4.2: Example output of simulation ­ Cumulative weighted conditional probability of failure vs return period 𝑟𝑖

After all of the total lifetime probabilities of failure have been estimated, they can be conditionalized
to the probability of the range of return periods occurring (Equation 2.31). Now the conditional proba­
bility of failure given a range of return periods can be plotted against the resistance factor, as seen in
Figure 4.3.
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Figure 4.3: Example output of simulation ­ Normalized total probability of failure vs resistance factor

A presentation of all relevant results is given in Chapter 5.
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Results

The results of the RFEM investigation are presented in Section 5.1, in the form of graphs of the esti­
mated conditional probability of failure and graphs of the estimated lifetime probability of failure. Sec­
tion 5.1.3 contains an explanation on how to find a resistance factor that successfully targets a lifetime
probability of failure. An interpretation of the results is given in Section 5.2. What are the resistance
factors that can successfully target a lifetime probability of failure similar to static design targets for
a geotechnical system under seismic loading? How do the results compare to the resistance factors
recommended by the CHBDC and how do they compare to other research? Finally, the quality of the
results is discussed in Section 5.3.

A summary of the different scenarios considered is shown in Table 5.1.

Table 5.1: Scenario summary

Description Live load Live load factor Cyclic degradation

Scenario 1 Seismic vertical load only no ­ yes
Scenario 2 Horizontal and vertical seismic load no ­ yes
Scenario 3 Horizontal and vertical seismic load no ­ no
Scenario 4 Horizontal and vertical seismic load yes 1.0 yes
Scenario 5 Horizontal and vertical seismic load yes 1.7 yes
Scenario 6 Horizontal and vertical seismic load yes 0.0 yes

5.1. Results Presentation
All figures in Section 5.1 are grouped by graph type. For example, all graphs of the estimated conditional
probability of failure for resistance factor 𝜑𝑔𝑢 = 0.5 are presented in the same section. Grouping by
graph type makes comparisons between scenarios easier.

5.1.1. Conditional Probabilities of Failure
The design step in the algorithm in Section 3.2.1 is run for four different design return period earth­
quakes. In other words, a design is produced using four different assumed earthquake loads. For each
resistance factor 𝜑𝑔𝑢 the analysis results in 4 sets of 41 estimated conditional probabilities of failure
given a return period 𝑟𝑖; one set for each design return period.

Figures 5.1 to 5.6 present the estimated conditional probability of failure given a return period 𝑅 = 𝑟𝑖
plotted against 𝑟𝑖 for resistance factor 𝜑𝑔𝑢 = 0.5 for each scenario. i ranges from 1 to 41. In Figures 5.7
to 5.12 the same data is presented for resistance factor 𝜑𝑔𝑢 = 1.0. One line is plotted for each of the
four design return periods.

Among other examples, Figure 5.1 and Figure 5.7 appear to have oscillations. Because the con­
ditional failure probability is estimated by using random variables in a Monte Carlo simulation, the
probabilities contain so called sampling errors, which is the source of the noise that is seen in the fig­
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ures. Section 5.3.1 contains more discussion on sampling errors and their influence on the quality of
the estimated lifetime probability of failure for a geotechnical system under seismic loading.

Using a higher design return period results in lower conditional probabilities of failure, because a
foundation designed for a high return period earthquake will be stronger than a foundation designed for
a low return period earthquake. This explains why the design return period of 2475 years has a lower
probability of failure than the design return period of zero years.

A high return period on the horizontal axis implies that a more intense earthquake is acted on the
geotechnical system. If earthquakes of higher intensity occur, the conditional probability of failure given
that return period increases compared to lower return periods. Therefore the estimated conditional
failure probability generally increases with the return period.

The estimated conditional probability of failure is different for each resistance factor 𝜑𝑔𝑢. Only the
conditional probability of failure graphs for resistance factors 𝜑𝑔𝑢 = 0.5 and 𝜑𝑔𝑢 = 1.0 are presented
in this section, although the results for the other resistance factors have also been verified. Results for
other resistance factors are presented in the Appendix of this document.

The reason for presenting 𝜑𝑔𝑢 = 0.5 is that the lifetime probabilities of failure tied to this resistance
factor are generally just below or very close to the lifetime probability of failure targeted in static design.

The reason for presenting 𝜑𝑔𝑢 = 1.0 is that this is the largest resistance factor that has been
simulated.
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Results for 𝜑𝑔𝑢 = 0.5𝜑𝑔𝑢 = 0.5𝜑𝑔𝑢 = 0.5

0 500 1000 1500 2000 2500 3000
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

design period = 0 y

design period = 475 y

design period = 975 y

design period = 2475 y

Figure 5.1: Scenario 1 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Figure 5.2: Scenario 2 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Figure 5.3: Scenario 3 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Figure 5.4: Scenario 4 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Figure 5.5: Scenario 5 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Figure 5.6: Scenario 6 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 0.5)
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Results for 𝜑𝑔𝑢 = 1.0𝜑𝑔𝑢 = 1.0𝜑𝑔𝑢 = 1.0
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Figure 5.7: Scenario 1 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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Figure 5.8: Scenario 2 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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Figure 5.9: Scenario 3 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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Figure 5.10: Scenario 4 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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Figure 5.11: Scenario 5 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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Figure 5.12: Scenario 6 ­ A plot of the conditional probability of failure against the return period (𝜑𝑔𝑢 = 1.0)
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5.1.2. Total Probability of Failure
Figures 5.13 to 5.18 present the lifetime probability of failure plotted against the resistance factor 𝜑𝑔𝑢.

Similarly to the conditional failure probability graphs, the lifetime probability of failure graphs contain
a line for each of the four design return periods. The vertical axis contains the total lifetime probability
of failure given a range of earthquake return periods 𝑟𝑚 to 𝑟𝑛, obtained by using the total probability
theorem.

Because a high resistance factor leads to weaker foundations than a low resistance factor does,
the lifetime probability of failure for a geotechnical system is expected to increase with the resistance
factor, which is a trend that can be seen in the figures. As is the case with the estimated conditional
probability of failure graphs in Section 5.1.1, a larger design return period results in lower probabilities
of failure, which explains the order of the design return period lines.
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Figure 5.13: Scenario 1 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.14: Scenario 2 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.15: Scenario 3 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.16: Scenario 4 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.17: Scenario 5 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.18: Scenario 6 ­ A plot of the total probability of failure against the resistance factor
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Figure 5.19: Example of resistance factor determination ­ Scenario 6

5.1.3. Resistance Factor Determination
By interpolating the lifetime probability of failure graphs in Section 5.1.2, the resistance factors can be
determined that correspond with a similar lifetime reliability index (𝛽, Section 2.4.7) as is being targeted
in static design.

Fenton et al. (2016) state that in the static design of the 2014 edition of the CHBDC, an annual
reliability index of 𝛽 = 3.7 is targeted. With an annual 𝛽 value of 3.7, a geotechnical system with a
lifetime of 75 years has a lifetime reliability index estimated to be between 𝛽 = 3.0 and 𝛽 = 3.5. What
the value of 𝛽 is, depends on resistance degradation over the lifetime of the geotechnical system,
because of things such as weather, (super)structure usage and how well the system is maintained.
A target lifetime probability of failure of 10−3 corresponds with a lifetime reliability index 𝛽 = 3.1, and
therefore is chosen to be adequate in this thesis.

A graphical example of the interpolation procedure for Scenario 6 can be seen in Figure 5.19.
Figure 5.19 is the same as Figure 5.18, except for the line that indicates the target lifetime probability
of failure, 10−3. The resistance factor where the target lifetime probability of failure intersects with the
failure lines, is the resistance factor that successfully targets the lifetime probability of failure.

The results of the interpolations for each scenario are plotted in Figure 5.20. The vertical axis in
Figure 5.20 contains the resistance factor that achieves a target lifetime probability of failure of 10−3.
Each scenario has its own coordinate on the horizontal axis. It should not be attempted to find a trend
in this data, since the scenarios are independent of each other.

5.2. Interpretation
5.2.1. Results vs CHBDC
To make an assessment of the reliability that is currently being targeted in the CHBDC for geotechnical
systems under seismic loading, it must first be known what the resistance factor in the CHBDC is.
This value of the resistance factor depends on how extensive the performed site investigation is. For
the static bearing capacity of a shallow foundation, the resistance factors are 0.45, 0.50 and 0.60 for
low, typical and high site understanding respectively. The reason for this difference is that if the site is
investigated thoroughly, there is less uncertainty in the design, meaning that the resistance factor does
not have to be as conservative as for a limited site investigation. To find the seismic resistance factors,
the static resistance factors are incremented by +0.20, which makes them 0.65, 0.70 and 0.80 for low,
typical and high site understanding respectively.

If site understanding is low, the site investigation consists mostly of an extrapolation of previous
experiences. If site understanding is high, an extensive analysis of both the soils and risks has been
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Figure 5.20: Interpolated required resistance factors for a target probability of 10−3

performed. Typical site understanding is somewhere in between low and high site understanding. In
this thesis, a virtual sample is taken for each realization. The site investigation consists of more than
an extrapolation of similar sites, and therefore the site understanding can’t be categorized as low.
However, one sample is not enough for the investigation to be called extensive. Therefore the CHBDC
would classify the in this thesis performed virtual investigation as “typical”, making the resistance factor
for static design 0.50, and the resistance factor for seismic design 0.70.

All of the recommended resistance factors in Figure 5.20 are below 𝜑𝑔𝑢 = 0.70, except for the
design period of 2475 years in Scenario 5. The results indicate that the CHBDC is not targeting a
lifetime probability of failure of 10−3, but targets an increased lifetime probability of failure, such as
10−2, instead. Scenarios 2 and 3 are the scenarios that come closest to the idealized situation that
the CHBDC assumes, since there is no live load taken into account in those scenarios. Even without
live loads, which means that one source of uncertainty is taken away from the problem, the required
resistance factors are around 0.56. Live load Scenarios 4 and 6 indicate even lower resistance factors
are needed than those found in Scenarios 2 and 3. In general, the recommended seismic resistance
factors are closer to the CHBDC’s static resistance factor (𝜑𝑔𝑢 = 0.50) than to its seismic resistance
factor.

5.2.2. Recommended Resistance Factor
Each scenario has a different level of conservatism in the design because of different effects and dif­
ferent design parameters that are taken into account. For example, Scenario 5 is more conservative
than Scenario 4, where a smaller live load factor is used.

If a design in a scenario is conservative, that means that foundations are overdesigned in the sim­
ulation. An overdesigned foundation is less likely to fail, lowering the lifetime probability of failure for
that design, which in turn means that the target lifetime probability of failure can be achieved with a
higher resistance factor. Thus, conservative designs in the simulations lead to unconservative target
resistance factors.

The resistance factor must be on the conservative side, because the potential loss of human life with
an unconservative resistance factor is unacceptable. One choice could be to recommend the lowest
resistance factor found in all simulations, which would be the most conservative resistance factor. The
worst­case situation has a very small probability of occurrence, and although designs would be safest
with the worst case resistance factor, they would also be overdesigned. Another choice could be to
take the average resistance factor of all results. However, results of conservative and unconservative
scenarios should not be given the same weight. An assessment must be made on which scenario gives
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Figure 5.21: Determination of required resistance factors for a target probability of 10−3

the results that are wished for.
In Scenario 1, only a vertical seismic force is taken into account. Not having horizontal components

in the seismic forces is an optimistic assumption. By neglecting the horizontal seismic forces, uncer­
tainty is left out of the problem, which can be seen from the low estimated conditional probabilities of
failure in Figure 5.1. Scenario 1 is therefore not used to estimate the resistance factor.

A question that must be asked is: “should live load be taken into account in the design?” If a live
load factor is used, it should be a quasi­permanent live load factor. If a static live load factor is used
instead, the live load is assumed to be an extreme load in the design. An earthquake can happen at
any point in time, so the probability of an extreme live load being present during an earthquake is low.
Only Scenarios 4, 5, and 6 have live load in either the design or testing. However, it can be stated that
the live load factor of 1.7 in Scenario 5 is too pessimistic, for which reason Scenario 5 is disregarded
in targeting the resistance factor.

Since Scenarios 1 and 5 are disregarded, only Scenarios 2, 3, 4 and 6 are assumed to be accurate
enough to base the target resistance factor on.

In Scenario 2, the live load is modelled exactly as specified in the CHBDC; no live load is modelled
in either the design or testing of this scenario.

In Scenario 3, cyclic degradation is not taken into account. The design procedure for cyclic degra­
dation is an assumption based on theory. An assumption can be accurate or inaccurate, but it can be
seen that incorporating the cyclic degradation factor in the simulations does not have a large impact on
the targeted resistance factor by comparing Scenario 2 to Scenario 3. For this reason, no errors are
expected to be present in the results of scenarios that use the cyclic degradation factor in the design.

In Scenario 4, a live load is taken into account in which the load factor is equal to 1.0. This load
factor is on the conservative side for a quasi­permanent load factor.

In Scenario 6, a live load is modelled to be on the foundation, although the live load factor is equal
to 0.0. Compared to Scenario 2, the results for Scenario 6 show (logically) that the lifetime probability
of failure goes up if a live load is present that has not been taken into account in the design. This
difference between the targeted resistance factors in Scenario 2 and Scenario 6 is only 0.03.

Figure 5.21 is the same as Figure 5.20 with Scenarios 1 and 5 left out. Included in Figure 5.21 are
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colored areas that indicate the final estimates of the resistance factor for the design return periods of
the same color. The ranges on the recommended resistance factors between scenarios for the different
design periods are all within 0.05.

The results for a design return period of zero years are disregarded, since a 0 year design return
period means that there is no seismic design. Not having a seismic design defeats the purpose of
calibrating the seismic design code. This leaves the results for design return periods 475, 975 and
2475 years.

For a design return period earthquake of 475 years, the recommended resistance factors range from
0.51 to 0.56, for which the chosen resistance factor is 0.53. For a design return period earthquake of 975
years, the recommended resistance factors range from 0.54 to 0.58, for which the chosen resistance
factor is 0.55. For a design return period earthquake of 2475 years, the recommended resistance
factors range from 0.59 to 0.64, for which the chosen resistance factor is 0.60. Each of the chosen
resistance factors is conservative for Scenarios 2 and 3, slightly unconservative for Scenario 4, and
relatively close to the results of Scenario 6.

In the CHBDC, the resistance factor is not defined differently for different design return period earth­
quakes. For a design return period of 475 years, the lifetime probability of failure is higher than it is for
higher design return periods. Since the target lifetime probability of failure for the geotechnical system
needs to be satisfied, no matter what the design return period is, the results for a design return period
earthquake of 475 years are the governing values. Therefore the recommended resistance factor is
chosen to be 0.53.

A resistance factor of 0.53 for geotechnical systems under seismic loading is close to the resistance
factor for systems under static loading for a typical site understanding case, which is 0.50. For simplicity
in the design code, it might be recommendable to use the static resistance factor as a seismic resistance
factor, and thus to omit the +0.20 with which the seismic resistance factor is determined now. Taking
into account the results of Scenario 6, it can be said with reasonable certainty that a live load factor
is not needed if the resistance factor for design under seismic loading is equal to the static resistance
factor, since the target lifetime reliability is easily satisfied with a resistance factor of 0.50, even if an
unexpected live load is present on the foundation during an earthquake event.

5.2.3. Recommended Resistance Factor vs Other Research
A similar study has been performed by Naghibi and Fenton (2018). Between their work and this thesis,
a number of differences can be noted.

One of the largest differences is that Naghibi and Fenton used an averaging domain to simulate
the modelled foundations, whereas the finite element method is used in this thesis. An averaging
domain results in a much lighter algorithm than FEM is, and therefore they were able to perform more
realizations per run. Their results therefore have a higher failure probability resolution and smaller
sampling errors. This local average representation was found to be reasonably accurate (Fenton &
Griffiths, 2003; Fenton et al., 2008).

A different design equation was used in this thesis compared to the study by Naghibi and Fenton,
who used the equations provided by Budhu and Al­Karni (1993), which makes use of earthquake accel­
erations coefficients. They tested the design against the same equations, but with parameters based
on ”actual” strength parameters taken from the averaging domain. In this thesis, the design equation
in the CHBDC was used in combination with pseudo­dynamic forces to test the bearing capacity of the
designed foundations.

The ratio between the vertical and horizontal seismic accelerations 𝜆 is taken to be 0.25 in Naghibi
and Fenton’s work, whereas a value of 𝜆 = 0.3 is used in this thesis.

Another difference is that Naghibi and Fenton simulated a soil that was both frictional and cohesive,
whereas in this thesis a frictionless soil was assumed.

Finally, Naghibi and Fenton studied cases for multiple cities, none of which were Toronto (as is used
in this thesis).

For a target lifetime probability of failure of 10−3, the results of Naghibi and Fenton (2018) suggest
a seismic resistance factor of about 0.35. Most cities have similar total failure probability curves, so it
can be said that 𝜑𝑔𝑢 = 0.35 is universal for those results. This resulting resistance factor is significantly
lower than the resistance factor found in this thesis. One thing that both studies agree on is that the
resistance factors in the CHBDC for a geotechnical system under seismic loading are unconservative.

It is expected that the results found in this thesis more accurately target a lifetime reliability than
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Figure 5.22: Example of the 95% confidence interval for the conditional probabilities of failure of Scenario 3

the research by Naghibi and Fenton did. The main difference between the two studies is the extensive
use of the Budhu and Al­Karni equation by Naghibi and Fenton. Although this method seems accurate
enough, it is not exactly known what data the Budhu and Al­Karni equations are calibrated to. For this
reason it is expected that the use of the finite element method in this thesis has lead to more accurate
results.

5.3. Discussion
5.3.1. Quality of the Results
All of the estimated conditional probabilities of failure are polluted with random noise from so called
sampling errors. “The sampling error is the error caused by observing a sample instead of the whole
population.” (Särndal et al., 2003). This means that a random sample from an infinite range of pos­
sibilities can contain worse cases, but also better cases than is representative for the population that
the sample is approximating. Because of the difference in quality between each of the estimated con­
ditional probabilities of failure, the figures in Section 5.1 are not completely smooth, but appear to be
oscillating.

Sampling errors can be considered to be a normally distributed random variable with a mean of zero.
The standard deviation of the sampling error can be estimated through Equation 2.37 and depends
on the size of the estimated conditional failure probability and the number of realizations used for
this estimation. The more realizations used in the estimation, the more precise the estimate of the
conditional probability of failure is.

A 95% confidence interval can be determined for the estimated conditional probabilities of failure by
making a regression through those data points and estimating the standard deviation for every single
point. Since sampling errors are assumed to be normally distributed, the 95% confidence interval can
be found at ±1.96 ⋅ 𝜎 around the regression. As a demonstration, a third degree polynomial regression
has been fitted to the estimated conditional probabilities of failure of Scenario 3, 𝜑𝑔 = 0.5 in Figure 5.22.
In Figure 5.22 the 95% confidence interval is drawn as a gray area.

One thing that can be noticed is that most outlying data points are near the 95% confidence line. This
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means that all values have sampling errors of expected proportions, and thus the regression appears
to be accurate. Secondly, the confidence interval is relatively larger at lower return periods, where the
failure probability is lower, than at the higher return periods. The logic behind this can be seen when
the coefficient of variation 𝐶𝑉 of the estimated conditional probability of failure 𝑝̂𝑓 is calculated,

𝐶𝑉𝑝̂𝑓 =
𝜎𝑝̂𝑓
𝜇𝑝̂𝑓

≃
√𝑝̂𝑓 (1 − 𝑝̂𝑓) /𝑛𝑠𝑖𝑚

𝑝̂𝑓
= 1
√𝑛𝑠𝑖𝑚

√ 1
𝑝̂𝑓
− 1 (5.1)

in which the standard deviation of 𝑝̂𝑓, found through Equation 2.37, is divided by the mean of 𝑝̂𝑓, which
is assumed to be similar or equal to 𝑝̂𝑓. In the final expression, the denominator 𝑝̂𝑓 is incorporated into
the square root of the numerator.

Equation 5.1 has a vertical asymptote at 𝑝̂𝑓 = 0 and decreases monotonically towards 𝑝̂𝑓 = 1.0. So,
the closer to zero 𝑝̂𝑓 is, the larger the coefficient of variation of 𝑝̂𝑓 is, and the relatively more dominant
the sampling errors are. Of course, 𝑝̂𝑓 is limited by the number of realizations 𝑛𝑠𝑖𝑚; the lowest 𝑝̂𝑓 that
can be estimated is 𝑝̂𝑓 = 1/𝑛𝑠𝑖𝑚. By assuming 𝑝̂𝑓 = 1/𝑛𝑠𝑖𝑚, the square root in the final expression
of Equation 5.1, √1/𝑝̂𝑓 − 1 , becomes √𝑛𝑠𝑖𝑚 − 1 . If 𝑛𝑠𝑖𝑚 is large enough, √𝑛𝑠𝑖𝑚 − 1 approximately
becomes √𝑛𝑠𝑖𝑚 , which means that 𝐶𝑉𝑝̂𝑓 tends to 1 as the estimated failure probability decreases. In
other words, when the conditional probability of failure comes close to the lowest value that can be
estimated, the standard deviation become just as large as the conditional probability of failure itself.

The relatively large sampling errors for low return period earthquakes can have an impact on the total
lifetime probability of failure. Lower return period earthquakes have a larger probability of occurrence,
and therefore potentially contribute more to the total lifetime probability of failure than the higher return
period earthquakes do. Of course, there are many data points in the lower return periods, and in each
of those points sampling errors are present in either the positive or the negative direction. All these
small errors mostly cancel each other out. On the other hand, the conditional failure probability at these
low return periods is much smaller than at higher return periods. This, combined with the canceling
of errors, means that the overall effect of the sampling errors is small. This is demonstrated when
the total lifetime probability of failure is estimated with both the regression and the simulation results.
In the example given in Figure 5.22, the simulated data results in an estimated lifetime probability of
failure of 4.46 ⋅ 10−4, whereas the regression results in a lifetime probability of failure of 4.37 ⋅ 10−4.
This difference between the total lifetime probability of failure found through the simulations and the
one found through the regression is negligible for the determination of the required resistance factor.

As long as most data points are within the 95% confidence interval from a regression, the quality of
the resulting total lifetime probability of failure is good enough for the goal in this thesis. Even results
as poor as Scenario 1 in Figure 5.1 fall within ±1.96 ⋅ 𝜎 of a regression, and thus the sampling errors
are not out of the ordinary. Most outliers are within the 95% confidence interval for every scenario and
resistance factor, and therefore the quality of the results is trustworthy.

5.3.2. Research Shortcomings
Shortcomings in the research mostly come from a limitation of time and a limitation of computational
power. Simplifications have been made to seismic processes, because a coupled FEM model was not
feasible with the large number of realizations needed. If more computational power had been available,
the seismic forces could have been modelled dynamically instead of pseudo­dynamically, for example.
Simplifying assumptions such as the vertical seismic force being a percentage of the horizontal seismic
force, or certain regressions that have been assumed, could have all lead to inaccuracies.

Another simplification is the way cyclic degradation is taken into account. Little quantitative informa­
tion was available in the literature, though it was qualitatively suggested that cyclic degradation should
be incorporated.

The simplifications in the theory have cut the simulation run time drastically, but it was still not feasi­
ble to do hundreds of thousands of realizations for every run. Although the results seem reasonable, it is
believed that the precision of the results has still suffered because of the limited number of realizations.





6
Conclusion

In this document a study has been conducted to find the resistance factor 𝜑𝑔𝑢 that successfully targets
a lifetime reliability for geotechnical systems under seismic loads similar to static design targets. As
an example, the design procedure described by the Canadian Highway Bridge Design Code (CHBDC)
has been used.

The total resistance factors for a target lifetime probability of failure of 10−3 resulting from simulations
are lower than the resistance factors that are recommended in the CHBDC. Lower resistance factors
are more conservative, and thus the CHBDC is unconservative. Whereas the CHBDC recommends a
total resistance factor of 0.70 for what is called a “typical soil investigation”, the results of the study point
towards a seismic resistance factor of 0.53. This value of 0.53 comes closer to the static resistance
factor in the CHBDC, which is 0.50. This confirms the answers found by Naghibi and Fenton (2018),
albeit a bit less drastically.

Before a big change is made to the CHBDC, more research should be conducted. However, rec­
ommendations on changes can still be made.

Firstly, it should be considered to use a quasi­permanent live load factor that is larger than zero. It
is presently assumed that no live load is acting on the foundation during an earthquake. Although this
could be true, it is always possible to have some live load on a bridge, since earthquakes can happen
at any point in time.

Secondly, themost important consideration is to lower the resistance factor for geotechnical systems
under seismic loading. The results of this thesis indicate that the resistance factor for seismic design
that is recommended in the CHBDC is too high. A better choice would be to use the same resistance
factors for both static and seismic design. This avoids confusion, and if future research agrees, might
be conservative enough so that no quasi­permanent live load factor is needed at all. Therefore, it
should be considered for the 𝑠𝑡𝑎𝑡𝑖𝑐 + 0.20 clause to be left out.

The calibration of building codes is an important activity. If the resistance factors are too conser­
vative, more money might be spent on structures than is needed. However, if the resistance factors
aren’t conservative enough, the safety of people cannot be guaranteed. Earthquakes of large magni­
tudes are rare in the Toronto region. Still, one seismic event could lead to many different foundation
failures. Because not much research has been done on the topic of seismic building code calibration,
this thesis should be a useful addition to the body of work, and hopefully will contribute to a safer design
philosophy in general.
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7
Recommendations for Further Research
Inaccuracies in this thesis mainly come from the lack of computational power and time. The finite
element model had to be as simple as possible, so that a large enough number of realizations was
feasible. For future research, it is recommended that a more complex model is used to simulate the
soil behavior, while still maintaining a high number of performed realizations. For example, the use of
a coupled model, or the use of a dynamic model instead of a pseudo­dynamic approach would greatly
improve the accuracy of the solution.

Another problem worth looking into is the difference of target lifetime reliabilities between design
return periods. In this thesis, all foundations were tested until the soil failed completely. This is not
completely correct, since failure is defined differently for different design return periods in the CHBDC.
For example, for a design return period of 475 years, failure can be defined as minimal damage to a
Major­route bridge, whereas extensive damage is the minimum performance for a 2475 year design
return period. The difference in damage means that different lifetime reliabilities are targeted for the
different design return periods. It needs to be verified that all these performance level targets are
satisfied for the targeted resistance factor.

51





References
Allen, T. M., Nowak, A. S., & Bathurst, R. J. (2005). Calibration to Determine Load and Resistance
Factors for Geotechnical and Structural Design. Washington, D.C.: Transportation Research Board.
Retrieved 2019­09­13, from http://www.nap.edu/catalog/21978 doi: 10.17226/21978

Bartlett, F. M., Hong, H. P., & Zhou, W. (2003, April). Load factor calibration for the proposed 2005 edi­
tion of the National Building Code of Canada: Statistics of loads and load effects. Canadian Journal of
Civil Engineering, 30(2), 429–439. Retrieved 2019­10­04, from http://www.nrcresearchpress
.com/doi/10.1139/l02­087 doi: 10.1139/l02­087

Becker, D. E. (1996a). Eighteenth Canadian Geotechnical Colloquium: Limit States Design For
Foundations. Part I. An overview of the foundation design process. Canadian Geotechnical Journal,
33, 956–983.

Becker, D. E. (1996b). Eighteenth Canadian Geotechnical Colloquium: Limit States Design For
Foundations. Part II. Development for the National Building Code of Canada. Canadian Geotechnical
Journal, 33, 984–1007.

Bond, A., & Harris, A. (2008). Decoding Eurocode 7 (1st ed ed.). London ; New York: Taylor &
Francis. (OCLC: ocn166383807)

Budhu, M., & Al­Karni, A. (1993, March). Seismic bearing capacity of soils. Géotechnique, 43(1),
181–187. Retrieved 2019­03­29, from http://www.icevirtuallibrary.com/doi/10.1680/
geot.1993.43.1.181 doi: 10.1680/geot.1993.43.1.181

Campbell, K. W. (1997, January). Empirical Near­Source Attenuation Relationships for Horizontal and
Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo­Absolute Ac­
celeration Response Spectra. Seismological Research Letters, 68(1), 154–179. Retrieved 2019­05­
15, from https://pubs.geoscienceworld.org/srl/article/68/1/154­179/142166 doi:
10.1785/gssrl.68.1.154

Cascone, E., & Casablanca, O. (2016, May). Static and seismic bearing capacity of shallow strip
footings. Soil Dynamics and Earthquake Engineering, 84, 204–223. Retrieved 2019­03­29, from
https://linkinghub.elsevier.com/retrieve/pii/S026772611600049X doi: 10.1016/
j.soildyn.2016.02.010
∗CEN. (2002). Eurocode ­ Basis of structural design.

CEN. (2005a). Eurocode 7 ­ Geotechnical design Part 1 ­ General rules.
∗CEN. (2005b). Eurocode 8 ­ Design of structures for earthquake resistance Part 1 ­ General rules,
seismic actions and rules for buildings.

CEN. (2005c). Eurocode 8 ­ Design of structures for earthquake resistance Part 5 ­ Foundations,
retaining structures and geotechnical aspects.

Cimellaro, G. P., & Marasco, S. (2018). Introduction to dynamics of structures and earthquake engi­
neering (Vol. 45). New York, NY: Springer Berlin Heidelberg.
∗CSA. (2019a). Canadian Highway Bridge Design Code ­ Section 1.

CSA. (2019b). Canadian Highway Bridge Design Code ­ Section 3.

CSA. (2019c). Canadian Highway Bridge Design Code ­ Section 4.

CSA. (2019). Canadian Highway Bridge Design Code ­ Section 6.

53

http://www.nap.edu/catalog/21978
http://www.nrcresearchpress.com/doi/10.1139/l02-087
http://www.nrcresearchpress.com/doi/10.1139/l02-087
http://www.icevirtuallibrary.com/doi/10.1680/geot.1993.43.1.181
http://www.icevirtuallibrary.com/doi/10.1680/geot.1993.43.1.181
https://pubs.geoscienceworld.org/srl/article/68/1/154-179/142166
https://linkinghub.elsevier.com/retrieve/pii/S026772611600049X


54 References

Darendeli, M. B. (2001). Development of a New Family of NormalizedModulus Reduction andMaterial
Damping Curves (Ph.D.). University of Texas, Austin, Texas.

Das, B. M. (2008). Fundamentals of geotechnical engineering (3rd ed.). Australia: Thomson. (OCLC:
769037404)

Das, B. M. (2011). Principles of foundation engineering. Australia: Thomson/Brooks/Cole. (OCLC:
879304445)

Elia, G., & Rouainia, M. (2014, August). Performance evaluation of a shallow foundation built on
structured clays under seismic loading. Bulletin of Earthquake Engineering, 12(4), 1537–1561. Re­
trieved 2019­03­29, from http://link.springer.com/10.1007/s10518­014­9591­3 doi:
10.1007/s10518­014­9591­3

Esposito, G., Fenton, G. A., & Naghibi, F. (2019). Seismic Reliability of Axially­Loaded Vertical Piles.
TO BE PUBLISHED.

Fenton, G. A. (2013). Geotechnical Design Code Development in Canada. Advances in Soil Mechan­
ics and Geotechnical Engineering, 277–294. doi: 10.3233/978­1­61499­163­2­277

Fenton, G. A., & Griffiths, D. V. (2000, July). Bearing Capacity of Spatially Random Soils. In Pro­
ceedings of the Probabilistic Mechanics and Structural Reliability Conference (p. 6). Notre Dame,
Indiana.

Fenton, G. A., & Griffiths, D. V. (2003, February). Bearing Capacity Prediction of Spatially Random
c­&phi Soils. Canadian Geotechnical Journal, 40(1), 54–65.

Fenton, G. A., & Griffiths, D. V. (2008). Risk Assessment in Geotechnical Engineering. Hoboken, NJ,
USA: John Wiley & Sons, Inc. doi: 10.1002/9780470284704

Fenton, G. A., Griffiths, D. V., & Cavers, W. (2005, October). Resistance factors for settlement
design. Canadian Geotechnical Journal, 42(5), 1422–1436. Retrieved 2019­03­28, from http://
www.nrcresearchpress.com/doi/10.1139/t05­053 doi: 10.1139/t05­053

Fenton, G. A., Griffiths, D. V., & Zhang, X. (2008, November). Load and resistance factor design of
shallow foundations against bearing failure. Canadian Geotechnical Journal, 45(11), 1556–1571. Re­
trieved 2019­03­29, from http://www.nrcresearchpress.com/doi/10.1139/T08­061 doi:
10.1139/T08­061

Fenton, G. A., & Naghibi, F. (2017, October). Probabilistic Seismic Design of Geotechnical Systems.
Ottawa.

Fenton, G. A., Naghibi, F., Dundas, D., Bathurst, R. J., & Griffiths, D. (2016, February). Reliability­
based geotechnical design in 2014 Canadian Highway Bridge Design Code. Canadian Geotechnical
Journal, 53(2), 236–251. doi: 10.1139/cgj­2015­0158

Fenton, G. A., & Naghibi, M. (2011, November). Geotechnical resistance factors for ultimate limit
state design of deep foundations in frictional soils. Canadian Geotechnical Journal, 48(11), 1742–
1756. Retrieved 2019­03­28, from http://www.nrcresearchpress.com/doi/10.1139/t11
­068 doi: 10.1139/t11­068

Foye, K. C., Salgado, R., & Scott, B. (2006, September). Resistance Factors for Use in Shallow Foun­
dation LRFD. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1208–1218. Re­
trieved 2019­03­28, from http://ascelibrary.org/doi/10.1061/%28ASCE%291090­0241%
282006%29132%3A9%281208%29 doi: 10.1061/(ASCE)1090­0241(2006)132:9(1208)

Hamrouni, A., Sbartai, B., & Dias, D. (2018, August). Probabilistic analysis of ultimate seismic bear­
ing capacity of strip foundations. Journal of Rock Mechanics and Geotechnical Engineering, 10(4),
717–724. Retrieved 2019­06­13, from https://linkinghub.elsevier.com/retrieve/pii/
S1674775517302974 doi: 10.1016/j.jrmge.2018.01.009

http://link.springer.com/10.1007/s10518-014-9591-3
http://www.nrcresearchpress.com/doi/10.1139/t05-053
http://www.nrcresearchpress.com/doi/10.1139/t05-053
http://www.nrcresearchpress.com/doi/10.1139/T08-061
http://www.nrcresearchpress.com/doi/10.1139/t11-068
http://www.nrcresearchpress.com/doi/10.1139/t11-068
http://ascelibrary.org/doi/10.1061/%28ASCE%291090-0241%282006%29132%3A9%281208%29
http://ascelibrary.org/doi/10.1061/%28ASCE%291090-0241%282006%29132%3A9%281208%29
https://linkinghub.elsevier.com/retrieve/pii/S1674775517302974
https://linkinghub.elsevier.com/retrieve/pii/S1674775517302974


References 55

Hicks, M. A. (2013). An Explanation of Characteristic Values of Soil Properties in Eurocode 7. Ad­
vances in Soil Mechanics and Geotechnical Engineering, 36–45. doi: 10.3233/978­1­61499­163­2
­36

Honjo, Y., & Amatya, S. (2004, May). Partial factors calibration based on reliability analyses for square
footings on granular soils. Géotechnique, 55(6), 479–491. Retrieved 2019­03­21, from https://
www.icevirtuallibrary.com/toc/jgeot/55/6

Huang, C.­C. (2005, September). Seismic Displacements of Soil Retaining Walls Situated on Slope.
Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1108–1117. doi: 10.1061/
(ASCE)1090­0241(2005)131:9(1108)

Idriss, I., & Boulanger, R. (2006, February). Semi­empirical procedures for evaluating liq­
uefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2­4),
115–130. Retrieved 2019­05­15, from https://linkinghub.elsevier.com/retrieve/pii/
S0267726105000710 doi: 10.1016/j.soildyn.2004.11.023

Jakka, R. S. (2013, March). Earthquake Resistant Design of Shallow Foundations. Roorkee. doi:
10.13140/RG.2.1.3851.9849

Karamitros, D. K., Bouckovalas, G. D., & Chaloulos, Y. K. (2013, April). Insight into the Seismic
Liquefaction Performance of Shallow Foundations. Journal of Geotechnical and Geoenvironmental
Engineering, 139(4), 599–607. Retrieved 2019­03­29, from http://ascelibrary.org/doi/10
.1061/%28ASCE%29GT.1943­5606.0000797 doi: 10.1061/(ASCE)GT.1943­5606.0000797

Kishida, T., & Tsai, C.­C. (2014, March). Seismic Demand of the Liquefaction Potential with Equivalent
Number of Cycles for Probabilistic Seismic Hazard Analysis. Journal of Geotechnical and Geoen­
vironmental Engineering, 140(3), 04013023. Retrieved 2019­05­31, from http://ascelibrary
.org/doi/10.1061/%28ASCE%29GT.1943­5606.0001033 doi: 10.1061/(ASCE)GT.1943­5606
.0001033

Latha, G. M., & Garaga, A. (2010, November). Seismic Stability Analysis of a Himalayan Rock
Slope. RockMechanics andRock Engineering, 43(6), 831–843. Retrieved 2019­06­13, from http://
link.springer.com/10.1007/s00603­010­0088­3 doi: 10.1007/s00603­010­0088­3

Matasovic, N. (1993). Seismic response of composite horizontally­layered soil deposits (Unpublished
doctoral dissertation). Los Angeles.

Melo, C., & Sharma, S. (2004, August). Seismic Coefficients for Pseudostatic Slope Analysis. In
(p. 15). Vancouver, B.C..

Naghibi, F., & Fenton, G. A. (2018, October). Calibration of resistance factors for geotechnical seismic
design. Canadian Geotechnical Journal, 1–8. doi: 10.1139/cgj­2018­0433

Nen­En. (2018). Nationale bijlage bij NEN­EN 1997­1 Eurocode 7: Geotechnisch ontwerp ­ Deel 1:
Algemene regels.

Nouri, H., Fakher, A., & Jones, C. (2008, June). Evaluating the effects of the magnitude and am­
plification of pseudo­static acceleration on reinforced soil slopes and walls using the limit equilibrium
Horizontal Slices Method. Geotextiles and Geomembranes, 26(3), 263–278. Retrieved 2019­06­
13, from https://linkinghub.elsevier.com/retrieve/pii/S0266114407000763 doi:
10.1016/j.geotexmem.2007.09.002

nrcan. (2015). National Building Code of Canada seismic hazard values. Retrieved 2019­05­14, from
http://earthquakescanada.nrcan.gc.ca/hazard­alea/interpolat/calc­en.php

OpenStreetMap contributors. (2019). Planet dump retrieved from https://planet.osm.org. Retrieved
2019­09­07, from https://www.openstreetmap.org

Oudah, F., El Naggar, M. H., & Norlander, G. (2019, April). Unified system reliability approach for single
and group pile foundations – Theory and resistance factor calibration. Computers and Geotechnics,
108, 173–182. Retrieved 2019­03­28, from https://linkinghub.elsevier.com/retrieve/
pii/S0266352X18303082 doi: 10.1016/j.compgeo.2018.12.003

https://www.icevirtuallibrary.com/toc/jgeot/55/6
https://www.icevirtuallibrary.com/toc/jgeot/55/6
https://linkinghub.elsevier.com/retrieve/pii/S0267726105000710
https://linkinghub.elsevier.com/retrieve/pii/S0267726105000710
http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0000797
http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0000797
http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001033
http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001033
http://link.springer.com/10.1007/s00603-010-0088-3
http://link.springer.com/10.1007/s00603-010-0088-3
https://linkinghub.elsevier.com/retrieve/pii/S0266114407000763
http://earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/calc-en.php
https://www.openstreetmap.org
https://linkinghub.elsevier.com/retrieve/pii/S0266352X18303082
https://linkinghub.elsevier.com/retrieve/pii/S0266352X18303082


56 References

Paolucci, R., & Pecker, A. (1997, August). Soil inertia effects on the bearing capacity of rect­
angular foundations on cohesive soils. Engineering Structures, 19(8), 637–643. Retrieved 2019­
03­29, from http://linkinghub.elsevier.com/retrieve/pii/S0141029696001411 doi:
10.1016/S0141­0296(96)00141­1

Park, J. H., Huh, J., Kim, K. J., Chung, M., Lee, J. H., Kim, D., & Kwak, K. (2013, July). Resistance
factors calibration and its application using static load test data for driven steel pipe piles. KSCE
Journal of Civil Engineering, 17(5), 929–938. Retrieved 2019­03­28, from http://link.springer
.com/10.1007/s12205­013­1038­x doi: 10.1007/s12205­013­1038­x

Pecker, A. (2004). Earthquake Resistant Design of Shallow Foundations. In A. Ansal (Ed.), Recent
Advances in Earthquake Geotechnical Engineering and Microzonation (Vol. 1, pp. 285–301). Dor­
drecht: Kluwer Academic Publishers. Retrieved 2019­08­15, from http://link.springer.com/
10.1007/1­4020­2528­9_11 doi: 10.1007/1­4020­2528­9_11

Phoon, K.­K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian
Geotechnical Journal, 36, 612–624.

Puri, V. K., & Prakash, S. (2013, April). Shallow Foundations for Seismic Loads: Design Considera­
tions. In (p. 17). Missouri University of Science and Technology.

Rahman, M. S., Gabr, M. A., Sarica, R. Z., & Hossain, M. S. (2002, July). Load and Resistance
Factor Design (LRFD) for Analysis/Design of Piles Axial Capacity (Tech. Rep. No. FHWA/NC/2005­
08). Raleigh, North Carolina: North Carolina State University In Cooperation.

Sarma, S. K., & Iossifelis, I. S. (1990). Seismic bearing capacity factors of shallow strip footings.
Géotechnique, 40(2), 265–273.

Scott, B., Kim, B. J., & Salgado, R. (2003, April). Assessment of Current Load Factors for Use in
Geotechnical Load and Resistance Factor Design. Journal of Geotechnical and Geoenvironmental
Engineering, 129(4), 287–295. doi: 10.1061/(ASCE)1090­0241(2003)129:4(287)

Smith, I. M., Griffiths, D. V., & Margetts, L. (2014). Programming the Finite Element Method (5th ed.).
Chichester: Wiley.

Soubra, A.­H., Al­Bittar, T., Thajeel, J., & Ahmed, A. (2019, October). Probabilistic analysis of
strip footings resting on spatially varying soils using kriging metamodeling and importance sampling.
Computers and Geotechnics, 114, 103107. Retrieved 2019­09­16, from https://linkinghub
.elsevier.com/retrieve/pii/S0266352X19301636 doi: 10.1016/j.compgeo.2019.103107

Srbulov, M. (2008). Geotechnical earthquake engineering: simplified analyses with case studies and
examples (No. 9). Dordrecht: Springer. (OCLC: 637134573)

Särndal, C.­E., Swensson, B., Wretman, J. H., & Särndal­Swensson­Wretman. (2003).Model assisted
survey sampling (1. softcover print ed.). New York, NY: Springer. (OCLC: 249456962)

Sun, S. L., & Ruan, X. B. (2013, March). Seismic stability for landfills with a triangular berm using
pseudo­static limit equilibrium method. Environmental Earth Sciences, 68(5), 1465–1473. Retrieved
2019­06­13, from http://link.springer.com/10.1007/s12665­012­1843­4 doi: 10.1007/
s12665­012­1843­4

Tsai, C.­C., Mejia, L. H., & Meymand, P. (2014, November). A strain­based procedure to estimate
strength softening in saturated clays during earthquakes. Soil Dynamics and Earthquake Engineering,
66, 191–198. Retrieved 2019­05­15, from https://linkinghub.elsevier.com/retrieve/
pii/S0267726114001614 doi: 10.1016/j.soildyn.2014.07.003

Wang, Hicks, M. A., & Vardon, P. J. (2016, June). Slope failure analysis using the random mate­
rial point method. Géotechnique Letters, 6(2), 113–118. Retrieved 2019­09­16, from http://www
.icevirtuallibrary.com/doi/10.1680/jgele.16.00019 doi: 10.1680/jgele.16.00019

http://linkinghub.elsevier.com/retrieve/pii/S0141029696001411
http://link.springer.com/10.1007/s12205-013-1038-x
http://link.springer.com/10.1007/s12205-013-1038-x
http://link.springer.com/10.1007/1-4020-2528-9_11
http://link.springer.com/10.1007/1-4020-2528-9_11
https://linkinghub.elsevier.com/retrieve/pii/S0266352X19301636
https://linkinghub.elsevier.com/retrieve/pii/S0266352X19301636
http://link.springer.com/10.1007/s12665-012-1843-4
https://linkinghub.elsevier.com/retrieve/pii/S0267726114001614
https://linkinghub.elsevier.com/retrieve/pii/S0267726114001614
http://www.icevirtuallibrary.com/doi/10.1680/jgele.16.00019
http://www.icevirtuallibrary.com/doi/10.1680/jgele.16.00019


References 57

Wang, & Xu. (2019, May). Traffic Load Simulation for Long­Span Suspension Bridges. Jour­
nal of Bridge Engineering, 24(5), 05019005. Retrieved 2019­10­04, from http://ascelibrary
.org/doi/10.1061/%28ASCE%29BE.1943­5592.0001381 doi: 10.1061/(ASCE)BE.1943­5592
.0001381

Yu, H.­S. (2006). Plasticity and geotechnics (No. v. 13). New York, N.Y: Springer­Verlag. (OCLC:
ocm73081989)

http://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001381
http://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001381




A
Result Graphs

59



60 A. Result Graphs
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Figure A.1: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)
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Figure A.2: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.3: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.4: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.5: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.6: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.7: Scenario 1 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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A.2. Scenario 2

0 500 1000 1500 2000 2500 3000
0

0.001

0.002

0.003

0.004

design period = 0 y

design period = 475 y

design period = 975 y

design period = 2475 y

Figure A.8: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)
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Figure A.9: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.10: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.11: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.12: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.13: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.14: Scenario 2 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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A.3. Scenario 3
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Figure A.15: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)
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Figure A.16: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.17: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.18: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.19: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.20: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.21: Scenario 3 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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Figure A.22: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

design period = 0 y

design period = 475 y

design period = 975 y

design period = 2475 y

Figure A.23: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.24: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.25: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.26: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.27: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.28: Scenario 4 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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A.5. Scenario 5
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Figure A.29: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)
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Figure A.30: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.31: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.32: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.33: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.34: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.35: Scenario 5 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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Figure A.36: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.4)
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Figure A.37: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.5)
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Figure A.38: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.6)
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Figure A.39: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.7)
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Figure A.40: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.8)
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Figure A.41: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 0.9)
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Figure A.42: Scenario 6 ­ A plot of the conditional probability of failure against the PGA values (𝜑𝑔𝑢 = 1.0)
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