
Autonomous Conflict Resolution for
High-Density Urban Operations Us-
ing Deep Reinforcement Learning

Ricardo Santana

Autonomous Conflict Resolutionfor High-Density UrbanOperations Using DeepReinforcement Learning
by

Ricardo Santana
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday, April 3 at 13:00.

Student number: 5369525
Project duration: May 2022 – April 2023
Thesis committee: Dr. B.F. Lopes Dos Santos TU Delft, Chair

Dr. O.A. Sharpans’kykh TU Delft, Supervisor
Dr.ir. E. van Kampen TU Delft, Examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

They say that running a marathon can teach you everything you need to know about yourself. I would say
something similar for writing a dissertation. There are many ups and downs. Sometimes you feel like you are
on top of the world because you had a great idea, and others, you feel devastated to find out it does not end
up working the way you conceived it. The only way to successfully cross the line of such a demanding and
long work is to surround yourself with bright, supportive people, who are there every time you need them.
I want to take the chance to appreciate those people. To my supervisor, Professor Alexei, for giving me the
opportunity to work with him and for all the guidance during the course of this project. To Dr. Peng and
Ph.D. candidates Lasse and Álvaro for helping me navigate the vast technical field I set out to work in. To my
parents, my sister, and my grandmother, who were always there to support me and believe in my success. To
the friends I met in Delft, with whom I had unforgettable moments, and to the friends back in Portugal, who
made the experience of studying remotely much more enjoyable. Did I learn everything I want to know about
myself during the past year? Certainly not, but I did learn many valuable lessons, that will shape the person
and the professional I am about to become. I feel grateful to be closing such an important chapter in my life
and I can not wait to see what the future holds.

Ricardo Santana
Coimbra, March 2023

1

1Front cover image credits: NASA Graphics/Alex Gulino

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

Introduction xiii

I Scientific Paper 1

II Literature Study
previously graded under AE4020 25

1 Introduction 27

2 Conflict Resolution 29
2.1 Conflict Resolution in Air Traffic Control . 29
2.2 Conflict Resolution for UAS Traffic Control . 31

3 Reinforcement Learning 33
3.1 Artificial Intelligence . 33
3.2 Environment . 33
3.3 Policy . 34
3.4 Return . 35
3.5 Categorizing RL Algorithms . 35
3.6 Value-Based Methods . 36

3.6.1 Value Function. 36
3.6.2 Q-Function . 36
3.6.3 Q-Learning. 37
3.6.4 SARSA . 38

3.7 Policy Gradient Methods . 38
3.7.1 Policy Gradient. 38
3.7.2 REINFORCE . 39
3.7.3 REINFORCE with Baseline . 39
3.7.4 Actor-Critic . 40

3.8 Deep Reinforcement Learning . 41
3.8.1 Deep Q-Network . 41
3.8.2 Double Deep Q-Network. 42
3.8.3 Prioritized Experience Replay . 43
3.8.4 Dueling Deep Q-Network . 43
3.8.5 Trust Region Policy Optimization . 44
3.8.6 Generalized Advantage Estimation. 45
3.8.7 Proximal Policy Optimization . 45
3.8.8 Deep Deterministic Policy Gradient . 46
3.8.9 Twin Delayed Deep Deterministic Policy Gradient (TD3) 47

4 Multi-Agent Deep Reinforcement Learning 49
4.1 Single-Agent vs. Multi-Agent Systems . 49
4.2 Multi-Agent Environment. 50
4.3 Challenges and Solutions in Multi-Agent Deep RL . 50

4.3.1 Non-stationarity . 50
4.3.2 Partial Observability . 53

v

vi Contents

4.3.3 Training Schemes . 54
4.3.4 Curriculum Learning. 55
4.3.5 Credit Assignment Problem . 56
4.3.6 Continuous Environments . 57

5 Deep Reinforcement Learning for Conflict Resolution 61
5.1 Environment . 61
5.2 Model . 63

5.2.1 Observation Space . 63
5.2.2 Action Space . 63
5.2.3 Reward Function. 64
5.2.4 Algorithm Performance . 65

6 Research Proposal 67
6.1 Research Questions . 67
6.2 Environment . 68
6.3 Model . 68

6.3.1 Observation Space . 68
6.3.2 Action Space . 68
6.3.3 Reward Function. 68
6.3.4 Algorithm . 69

6.4 Experiments . 69

III Supporting work 71

1 Deep Learning Background 73
1.1 Activation Function . 73
1.2 Parameter Update. 74
1.3 Convolutional Neural Networks. 76
1.4 Sequence Models . 76

2 Custom Gym Environment Verification 79

3 Obtaining Stable Simulation Outputs 81

Bibliography 83

List of Figures

2.1 Three-dimensional safety area around aircraft [64]. 29
2.2 Different flight scenarios [64]. 30

3.1 Example of an RL policy. 34
3.2 Example of interaction between RL agent and its environment. 35
3.3 RL algorithm categories (adapted from [37]). 36
3.4 Actor-critic algorithm layout [25]. 40
3.5 Stream Deep Q-Network (top) vs. Dueling Deep Q-Network (bottom) [65]. 43

4.1 A general multi-agent system [59]. 49
4.2 Multi-agent concurrent DQN architecture [18]. 50
4.3 Network architecture of WDDQN [72]. 52
4.4 Network architecture of DRQN [24]. 53
4.5 Network architectures of DPIQN (a) and DRPIQN (b) [28]. 54
4.6 Training Schemes in MADRL: Centralized Training Centralized Execution (left); Decentralized

Training Decentralized Execution (middle); Centralized Training Decentralized Execution (right)
[21]. 55

4.7 Network architecture of VDN [60]. 56
4.8 Network architecture of QMIX. Mixing Network (a); Overall QMIX architecture (b); Agent Net-

work (c) [48]. 57
4.9 Network architecture of MADDPG [38]. 58
4.10 Network architecture of R-MADDPG [63]. 59

5.1 NASA Sector 33 simulator with two aircraft [7]. 62
5.2 BlueSky sector with three routes R1, R2 and R3, and two intersections I1 and I2 [8]. 62
5.3 SSD assistive methods for conflict resolution [71]. 62
5.4 Discrete heading action space [71]. 64
5.5 RL agent score during DDQN training process [7]. 65
5.6 Learning curve in DD-MARL [8]. 65
5.7 Learning curves in [9]. 66
5.8 Conflict resolution performance of different action types during training [71]. 66

6.1 Custom research environment with a two-route merger. 70
6.2 Custom research environment with a three-route merger. 70

1.1 Convolution operation example. 76
1.2 Architecture of a CNN [44]. 76

3.1 Evolution of the coefficient of variation for the success rate with the trained agent. 81
3.2 Evolution of the coefficient of variation for the success rate without the trained agent. 82
3.3 Evolution of the coefficient of variation for the time to cross the sector with the trained agent. . 82

vii

List of Tables

2.1 Small UAS separation assurance challenges (Hunter et al., 2019) [29]. 32

3.1 Look-up table of an RL policy. 34

1.1 Training parameters used with Adam and Minibatch Gradient Descent in SB3-PPO implemen-
tation [47]. 75

ix

List of Abbreviations

AAC Advanced Airspace Concept

AC Actor Critic

AI Artificial Intelligence

ANN Artificial Neural Network

ATC Air Traffic Control

ATCos Air Traffic Control Operations

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

CTCE Centralized Training Centralized Execution

CTDE Centralized Training Decentralized Execution

CV Coefficient of Variation

DAA Detect and Avoid

DD-MARL Deep Distributed Multi-Agent Reinforcement Learning

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q Network

DDRQN Deep Distributed Recurrent Q-Network

DL Deep Learning

DQN Deep Q Network

DRL Deep Reinforcement Learning

DRPIQN Deep Recurrent Policy Inference Q-Network

DTDE Decentralized Training Decentralized Execution

FAA Federal Aviation Administration

FL Flight Level

GAE Generalized Advantage Estimation

ICAO International Civil Aviation Organization

KL KullbackLeibler

LOS Line of Sight

LSTM Long Short-Term Memory

LTE Long-Term Evolution

MADDPG Multi-Agent Deep Deterministic Policy Gradient

xi

xii List of Abbreviations

MAPPO Multi-Agent Proximal Policy Optimization

MC Monte Carlo

MLP Multi Layer Perceptron

MSE Mean Squared Error

NM Nautical Miles

NN Neural Network

O-D Origin-Destination

PER Prioritized Experience Replay

PPO Proximal Policy Optimization

R-MADDPG Recurrent Multi-Agent Deep Deterministic Policy Gradient

RL Reinforcement Learning

RNN Recurrent Neural Network

SAA Sense and Avoid

SARSA State-Action-Reward-State-Action

SB3 Stable-Baselines3

SGD Stochastic Gradient Descent

SSD Solution Space Diagram

TD Temporal Difference

TD3 Twin Delayed Deep Deterministic Policy Gradient

TRPO Trust Region Policy Optimization

TSAFE Tactical Separation Assured Flight Environment

UAM Urban Air Mobility

UAS Unmanned Aerial Systems

UTM Urban Air Mobility Traffic Management

VDN Value Decomposition Networks

VLL Very Low-Level

VTOL Vertical Take-off and Landing

Introduction

During my master’s degree at the TU Delft, I had the opportunity to develop my interest and knowledge in
the field of Artificial Intelligence. I knew this technology would make great contributions to the future and I
wanted to understand it. I took as many classes in the subject as I could, and started having ideas to build
my own AI projects. I tried many different things, but some of the most worth mentioning was a rip current
detector and a sign language alphabet translator, both based on machine learning algorithms. After taking
my internship at an AI startup building autonomous stores, I was seeking to pursue my academic thesis on
the topic. This was when I contacted Professor Alexei, who I had first met during the agent-based modeling
course I enjoyed. Unexpectedly, the Professor had been following my work online and decided to give me the
chance to work with him on a project to apply Reinforcement Learning to Urban Air Mobility Operations.

Urban Air Mobility has been around for a while, with concepts such as air taxis or drone deliveries making
newspaper headlines. However, there are multiple challenges to taking this idea to life. After discussions
with Professor Alexei, we concluded that interesting work could be developed along the line of automating
a centralized Air Traffic Controller, to be able to scale it to what is expected to be a crowded Urban Airspace.
The challenge was launched, and after some intense months of work, I could not be prouder of the results.
Since I was a little boy, I have been passionate about science, and I am immensely grateful for the opportunity
to make my first contribution to a future I believe in.

This thesis report is organized as follows: In Part I, the scientific paper is presented, containing the main
literature supporting this research, the problem statement, the solution approach used, and the results. Part
II contains the Literature Study work done to initiate this research before the development of this project.
Finally, in Part III, some background context is provided to the reader and relevant information to support
the paper is added.

xiii

I
Scientific Paper

1

Autonomous Conflict Resolution for High-Density Urban Operations
Using Deep Reinforcement Learning

Ricardo Santana,∗

Delft University of Technology, Delft, The Netherlands

Abstract

Low-altitude, high-density air traffic is expected to grow in the coming decades with several companies
being certified to initiate urban operations for both freight and passenger transport. However, traditional
human-centered Air Traffic Control operations (ATCos) are not scalable to handle the increased demand
to maintain safe separation between aircraft. Thus, new autonomous solutions to resolve potential conflicts
between aircraft must be developed, allowing humans to supervise and understand machine actions. We
propose a centralized Deep Reinforcement Learning (DRL)-based framework to provide speed advisories
to vehicles, ensuring safe and efficient operations. We used Proximal Policy Optimization (PPO) to train
the intelligent controller and show that our framework is capable of handling challenging merging point
settings. We evaluated our model extensively using a custom OpenAI Gym environment and proved that it
can achieve a 99% success rate in conflict resolution across multiple merging point configurations.

1 Introduction
Urban Air Mobility (UAM) is a futuristic airspace concept, where goods and passengers are transported by
a network of aerial vehicles with a high level of autonomy. One key research field for the success of urban
operations is the development of appropriate infrastructure, both in terms of ground infrastructure and UAM
traffic control. Regarding ground infrastructure, vertiports are considered the requirement for vertical take-off
and landing of UAM aircraft. Considering UAM traffic control, the drone market is expected to grow, with
companies such as Matternet, focusing on drone deliveries of medical supplies, and Joby Aviation, developing
electrical aircraft for aerial commutes, being approved by the Federal Aviation Administration (FAA) to initiate
UAM operations [Matternet, 2022, Joby, 2022, Straubinger et al., 2020]. Traditionally, human Air Traffic
controllers adopt one or a combination of three strategies to resolve en-route conflicts, occurring when two
aircraft lose a minimum vertical or horizontal separation distance: altitude adjustments, heading adjustments,
and speed adjustments [Wang et al., 2022]. However, existing Air Traffic Control (ATC) cannot scale to handle
high-density operations. Therefore, it is essential to develop a system to resolve conflicts between aircraft under
these high-demand circumstances, by either adopting a centralized UAM Traffic Management (UTM) provider
or a decentralized de-confliction at the vehicle level [Straubinger et al., 2020].

The ability to accommodate higher air traffic density and automatically resolve conflicts has been quested
for many years. Air Traffic Controllers already use automated conflict detection tools. However, when it comes
to the resolution procedures, system maturity levels needed for operational deployment have not yet been at-
tained [Erzberger, 2005]. Heinz Erzberger and his colleagues at NASA Ames Research Center proposed the
Advanced Airspace Concept (AAC), an autonomous Air Traffic Control architecture that relies on two safety
layers - the autoresolver and the TSAFE (Tactical Separation Assured Flight Environment). The autoresolver
generates resolution trajectories that are transferred to aircraft autonomously, while the TSAFE acts as a
backup for imminent conflict [Erzberger, 2004, Erzberger, 2005]. In more recent studies considering Unmanned
Aerial Systems (UAS) for low-altitude operations, the requirement for an automated traffic flow control solu-
tion in structured airspace becomes evident due to the high-throughput, unpredictable, and flexible nature of
autonomous operations [Jang et al., 2017, Hunter and Wei, 2019].

Artificial Intelligence (AI) techniques have been rising in popularity over the past years. Specifically, Rein-
forcement Learning (RL) has successfully achieved super-human performance in several sequential games. In
1997, supercomputer IBM Blue beat the world champion in the game of Chess [Campbell et al., 2002]. In 2013,
Deepmind’s scientists proposed a novel method capable of outperforming humans in classical Atari games [Mnih
et al., 2013]. More impressively, in 2016, the same company developed AlphaGo, an AI algorithm capable of
beating the strongest Go players in the world [Silver et al., 2016]. The premise of RL is to find optimal policies
or sequences of actions without prior knowledge of an environment by interacting and collecting rewards, or

∗MSc Student, Air Transport Operations, Faculty of Aerospace Engineering, Delft University of Technology

1

trial-and-error. RL methods can be divided into value-based and policy-gradient. Value-based methods typi-
cally estimate an action-value function, i.e., the long-term expected cumulative reward given the current state
of the environment and each possible action the agent can take. On the other hand, policy-gradient methods
directly learn a parameterized policy, i.e., the probability of selecting a given action given the current state of
the environment. The combination of RL and Neural Networks (NNs) is called Deep Reinforcement Learning
(DRL) and is able to handle environments with continuous observations by using NNs as function approximators
to select the best action at each step.

DRL algorithms present a very suitable solution for the autonomous ATC conflict resolution problem due
to the sequential decision-making power and the capability of learning without prior environment information
of RL, and the generalization capabilities of NNs, resulting in the agent’s capability to adapt to previously
unseen situations [Wang et al., 2022]. DRL has been used in recent works on en-route conflict resolution. Marc
Brittain and his colleagues developed a line of work focusing on en-route deconfliction using speed adjustments
only. In [Brittain and Wei, 2018] a centralized agent is proposed to select both the optimal route and speed for
two aircraft to cross NASA’s Sector 33 environment. In [Brittain and Wei, 2019, Brittain et al., 2020, Brittain
and Wei, 2021] the concept is expanded to a multi-agent distributed setting to operate a larger number of
aircraft over a BlueSky intersection sector. Although the latest methods achieve very high performance, it can
become difficult for humans to understand and supervise a distributed system. Moreover, as suggested in [Jang
et al., 2017] NASA’s urban airspace operational concept, urban traffic flow operations should be regulated by
a system responsible for supervising and controlling traffic flow, broadcasting traffic information, and detecting
and communicating the presence of unauthorized flights. Therefore, the goal of this research is to bridge the gap
between the ease of adoption of a centralized controller and the scalability achieved by vehicle-level deconfliction
methods, by designing a centralized and scalable conflict resolution approach based on DRL for UAM.

The main contributions of this paper are proposing and evaluating a centralized framework for low-altitude
en-route conflict resolution in high-density stochastic merging point traffic settings. A merging point refers
to an aerial sector configuration in which multiple entry routes merge into a single exit route. The system is
trained in stochastic settings, i.e., the relative position between entry routes is randomized, to make the agent
deployable in multiple locations. The framework proposed resembles existing ATC operations. At every step,
each aircraft communicates its position and speed to the centralized controller. Based on the observation of the
current state of the environment, the autonomous agent selects a speed adjustment for one aircraft at most.
The process is repeated until every aircraft has exited the sector successfully or a collision is imminent, in which
case a redundant safety system (out of the scope of this research) would have to be activated to avoid a collision.

This paper is structured as follows. Section 2 introduces the main DRL theory, including value-based,
policy-gradient, and actor-critic methods. Furthermore, it describes the current state of ATC, some important
considerations when considering UAS, and the main applications of DRL methods to the en-route conflict
resolution problem with speed advisories. Section 3 thoroughly describes the model developed, both in terms of
the environment and learning framework. Namely, it covers the learning environment, observation and action
spaces, reward function, and learning algorithm. Section 4 defines the experiments to be conducted on the
trained model to assess the performance of the agent under different environment conditions, such as variable
aircraft arrival settings, sector configurations, and communication blockage situations. Section 5 shows training
metrics, such as the evolution of the average reward, episode length, and success rate. Moreover, it presents the
results of the experiments defined in the previous section. The performance metrics used, such as the likelihood
of a collision, the average time to cross the sector, and the average distribution of actions over a route, are
evaluated on these different experiment scenarios. Section 6 summarizes the work done and relevant results
obtained. Finally, Section 7 discusses the main limitations of this work, as well as relevant lines for future
research to be conducted.

2 Literature Review
This research is developed at the intersection between two fields: DRL and ATC. In this section, state-of-the-art
model-free DRL theory is addressed, as well as previous applications to en-route conflict resolution.

2.1 Reinforcement Learning
Reinforcement Learning is a sub-field of AI concerned with how an agent can learn new behavior through
trial-and-error interaction with a previously unseen environment [Kaelbling et al., 1996]. In typical supervised
learning settings, an AI model learns using input-output pairs. In Reinforcement Learning, the agent explores the
environment and the only external guidance it receives comes in the form of rewards. The single learning agent
RL problem can be described as a Markov Decision Process (MDP), characterized by the tuple < X,U, f, ρ >,
where X is the state space, describing the current state of the environment, U is the action space, the set of
all possible actions an agent can take, f is the transition probability function, the probability that the agent

2

transitions from one state to another given an action choice, and ρ is the reward function, the incentive given
according to the agent’s goals. For every time step k in an episode, the agent observes the current state xk ∈ X
and takes an action uk ∈ U . Given the current state of the environment, the action selected, the transition
probability function, and the reward function, the environment returns the next state xk+1 and a scalar reward
rk+1 indicating how well the agent performed [Buşoniu et al., 2010]. During the learning process, the agent
updates its policy (π), the method used to choose which possible action to take, to maximize the expected
cumulative reward [Lonza, 2019].

2.1.1 Value-Based Methods

Value-based RL methods rely on learning an action-value function that expresses the long-term quality of an
action given the current observed state. The discounted sum of rewards over a trajectory (τ), or sequence of
state-action pairs, is called discounted return (R) [Lonza, 2019]:

R =

∞∑
k=0

γkrk+1 (1)

Where γk, the discount factor at time step k sets how much importance an agent should attribute to future
rewards, in relation to immediate rewards. The value function (Vπ) is simply the expected discounted return
or the long-term quality of a state following a policy. Similar to the value function, the action-value function
(Qπ), or Q-function, expresses the expected return given not only the current state but also the action selected
by the agent [Lonza, 2019]:

Qπ(x, u) = Eπ[R|x0 = x, u0 = u] (2)

While one can run full trajectories and average the return results to estimate Vπ and Qπ, this is compu-
tationally expensive. Methods that use this technique to estimate the return are called Monte Carlo. A less
expensive way is to use the Bellman equation as it enables the estimation of these functions recursively, from
subsequent states. Equation 2 can be adapted using the Bellman equation [Lonza, 2019]:

Qπ(x, u) = Eπ[rk + γQπ(xt+1, ut+1)|xk = x, uk = u] (3)

Using the immediate reward and the next state value to compute the value for the current state is called
bootstrapping. RL methods that learn online (the agent is improving by collecting new data from the environ-
ment) using bootstrapping are called TD (temporal difference). While TD methods are generally faster and
have lower variance than Monte Carlo, they suffer from a high bias problem [Lonza, 2019]. Off-policy (the
policy being updated - target policy - and the policy acting on the environment - behavior policy - are different)
Q-learning was proven convergence in [Dayan and Watkins, 1992]. This method estimates the Q-function by
iteratively updating the Q-values:

Q(xk, ak)← Q(xk, ak) + αk · [rk+1 + γmaxu′Q(xk+1, u
′)−Q(xk, uk)] (4)

Using a learning rate αk and a TD-error. The apostrophe refers to the next step. The training process
of Q-learning uses a tabular approach to store the Q values and explores the environment choosing between
random and greedy (maximum Q value) actions with an exploration probability ϵ. The problem with this
tabular approach is that it can only consider discrete state-action pairs, meaning the observation values must
be quantized before learning. [Mnih et al., 2013, Mnih et al., 2015] proposed Deep Q Network (DQN), a
combination between Q-learning and NNs that can handle continuous state spaces. The architecture uses a NN
that takes the observations as inputs and directly predicts the Q-values for all possible actions. They introduced
two concepts to stabilize the learning process: an experience replay and a target network. The experience replay
stores experience samples (xk, uk, rk+1, xk+1) and used to train an online network. A target network is used
to predict the target values for the loss function in the online network update. Every C steps, the weights
are transferred from the online to the target network. The online network is updated using the following loss
function:

L(θ) = E(x,u,r,x′)∼U(D)[(r + γmaxu′Q(x′, u′; θ−)−Q(x, u; θ))2] (5)

Where θ are the parameters of the online network and θ− are the parameters of the target network. The
network is updated using minibatches (x, u, r, x′) ∼ U(D) drawn uniformly at random from the experience
replay memory [Mnih et al., 2015].

3

2.1.2 Policy-Gradient and Actor-Critic Methods

Instead of learning an action-value function to find a good policy, policy-gradient methods directly parameterize
the policy (πθ), in order to maximize the expected return (E[R|θ]) with respect to the function approximator
parameters θ. This policy outputs a probability value for each action in discrete action settings. As seen before,
the goal of an agent is to maximize the cumulative reward over a trajectory J(θ) = Eτ∼πθ

[R(τ)]. The policy
gradient theorem gives the derivative of the objective function J that can be used to update the parameters
[Lonza, 2019]:

∇θJ(θ) = Eπθ
[∇θlogπθ(u|x)Qπθ

(x, u)] (6)

On-policy (the policy being updated - target policy - and the policy acting on the environment - behavior
policy - are the same) REINFORCE was introduced in [Williams, 1992] and uses Monte Carlo (MC) returns
to estimate the return R (to substitute the term Qπθ

(x, u) in Equation 6) by summing the discounted future
rewards. The expectation is removed from Equation 6 by sampling from the stochastic policy and averaging
the results. As this architecture uses MC returns on complete trajectories, it is unbiased. However, this comes
at the cost of high variance (because the policy is stochastic, and re-running it may lead to different rewards)
and slower learning (because MC estimates rely on full trajectories). An estimation of the value function is
often subtracted as a baseline in the estimation of the return to reduce variance [Lonza, 2019]. However, these
disadvantages are typically overcome by combining the benefits of value-based and policy-gradient methods -
the so-called actor-critic methods. Actor-critic (AC) was proposed in [Konda and Tsitsiklis, 1999] and uses
two NNs as function approximators: the actor that parameterizes a policy πθ, and the critic that provides
feedback to the actor on how good were actions based on the value function Vw [Haydari and Yilmaz, 2020].
The one-step actor update is obtained by substituting the Q value in Equation 6 with a baseline by the one-step
bootstrapping Q(x, u) = r + γV (x′), where x′ is the next state [Lonza, 2019]:

θ = θ + α(rk + γVw(xk+1)− Vw(xk))∇θlogπθ(ak|xk)) (7)

To find a trade-off between the benefits of TD and MC methods, AC usually employs an n-step return, rather
than a one-step. This means that the advantage estimation in Equation 7 becomes Rk:k+n + γnVw(xk+n) −
Vw(xk). The critic parameters w are updated using the target values yi = Rk:k+n + γnVw(xk+n) and a squared
error loss function [Lonza, 2019].

Multiple advancements have been suggested to AC methods. A3C (asynchronous advantage actor-critic)
proposed in [Mnih et al., 2016] and its synchronous version A2C use multiple actor-learners in parallel to explore
the environment, accelerating and stabilizing the learning process. AC methods have a disadvantage: they may
suffer from instability in the policy that causes a decline in agent performance. This issue is tackled using a trust
region in TRPO (Trust Region Policy Optimization [Schulman et al., 2015a]), or a clipped objective function in
PPO (Proximal Policy Optimization [Schulman et al., 2017]). TRPO uses the Kullback-Leibler (KL) divergence
function (measurement of how different two policy distributions are) between the new and old policies in an
update to create a trust region [Lonza, 2019]:

maximizeθ Eπold

[
πθ(uk|xk)
πθold(uk|xk)

Ak

]
(8)

subject to Eπold
[KL[πθold(·|xk), πθ(·|xk)]] ≤ δ (9)

Where Ak is an estimation of the advantage function of the old policy Aπold
(x, u) = Qπold

(x, u)− Vπold
(x).

The surrogate objective function considers data sampled from the old policy πold. π(·|x) is the distribution
of actions conditioned to the state x [Lonza, 2019, Schulman et al., 2015a]. PPO introduced a novel clipped
surrogate objective function to simplify TRPO, making it more general and sample efficient [Schulman et al.,
2017]:

LCLIP (θ) = Eπold
[min(rk(θ)Ak, clip(rk(θ), 1− ϵ, 1 + ϵ)Ak] (10)

Where rk is a probability ratio similar to Equation 8 rk(θ) = πθ(uk|xk)
πθold

(uk|xk)
, and ϵ is a hyperparameter, typically

ϵ = 0.2. The goal of this objective is to penalize policy changes that move rk away from 1 (i.e. the update
being too large). In case the advantage function is positive (meaning the action taken is better than the old
policy), there is a positive upper bound to the objective. In case the advantage function is negative, there is a
minimum but no maximum negative value to the objective [Schulman et al., 2017]. PPO uses a truncated version
of Generalized Advantage Estimation (GAE) proposed in [Schulman et al., 2015b] to estimate the advantage
value. Denoting δVk = rk + γV (xk+1)− V (xk) the one-step TD advantage estimate, the (T − k)-step estimator
for timestep k in a length-T trajectory is:

4

Ak = −V (xk) + rk + γrk+1 + ...+ γT−k+1rT−1 + γT−kV (xT) (11)
The truncated version of GAE is obtained as the exponentially-weighted average of estimators of all possible

step lengths, where λ is a parameter compromising between bias and variance (0 < λ < 1) [Schulman et al.,
2015b, Schulman et al., 2017]:

Ak = δk + (γλ)δk+1 + ...+ ...+ (γλ)T−k+1δT−1 (12)
PPO uses fixed length-T trajectories and N parallel actors to collect data. Therefore, the loss function in

Equation 10 is optimized for these NT data samples using Adam (in [Kingma and Ba, 2014]). Finally, a squared
error loss term with respect to the critic is added to the loss function to be maximized in Equation 10 if the
actor and critic share parameters. An entropy bonus term is also added to ensure exploration [Schulman et al.,
2017]. The following pseudo-code describes the algorithm:

Algorithm 1 PPO actor-critic algorithm (adapted from [Schulman et al., 2017])
for iteration = 1, 2, ... do

for actor = 1, 2, ..., N do
Run policy πθold in environment for T timesteps
Compute advantage estimates A1, ..., AT

end for
Optimize surrogate L with respect to θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

[Schulman et al., 2017] tested PPO against other state-of-the-art policy-gradient methods on multiple tasks,
including continuous control and Atari game playing, proving the superiority of this algorithm in terms of
performance and sample complexity.

2.2 Deep Reinforcement Learning for En-Route Conflict Resolution
According to the International Civil Aviation Organization (ICAO), a conflict between two aircraft is defined
when the distance between them is lower than a certain threshold. For civil aviation, the values are 5NM
horizontally, and 1000ft vertically. In traditional settings human ATC operators use one or a combination
of three methods to deconflict aircraft: altitude adjustment uses flight levels (FL) expressed in hundreds of
feet to maintain vertical separation; heading adjustment changes the heading direction of an aircraft; lastly,
speed adjustment varies aircraft speed in multiples of 10kt. The conflict resolution method to adopt is chosen
according to three high-level principles: safety is the number one priority; resolving a conflict should not raise
other conflicts; and air traffic disruption and ATCos workload should be minimized [Wang et al., 2022]. A recent
study by Hunter and Wei suggests that the solution for urban operations, with particular characteristics such as
high autonomy levels, low-reliability communications, dense operations, low-altitude flight, and unpredictability,
is to design structured urban airspace with autonomous ATC [Hunter and Wei, 2019].

Planning the trajectories of all vehicles in space and time (4D trajectories) has been proposed as a possible
solution (e.g. [Joulia et al., 2016]). However, it does not cope with the unpredictable and on-demand nature
of urban operations. A recent line of work by Brittain et al. uses DRL with speed advisories to maintain safe
separation between aircraft in challenging en-route aerial sectors.

In [Brittain and Wei, 2018] the authors used Double DQN, a variation of DQN introduced in [Van Hasselt
et al., 2016] that decouples the target value in Equation 5 to tackle the overestimation problem. It uses the
online network to choose the action according to the greedy policy and the target network to compute its value.
[Brittain and Wei, 2018] use NASA’s Sector 33 environment and a hierarchical RL approach to select the optimal
route and speed for N aircraft to get to their destinations. An episode is terminated if every aircraft reaches its
goal position, at least one aircraft got out of time, or two aircraft collided, meaning that the euclidean distance
between them is lower than a pre-defined threshold. The hierarchical RL approach involves two agents: a
parent and a child. The parent agent processes the raw image of the environment using a Convolutional Neural
Network (CNN) and chooses a route combination for the aircraft to follow at the beginning of every episode.
On the other hand, the child agent observes the aircraft coordinates, speed, and the route chosen by the parent
to decide on one of 6N possible speed combinations for the N aircraft at every step (time between steps is 4
seconds of simulation). The reward function at each time step is two-fold: the parent agent is rewarded based
on the inverse of the distance between each aircraft and their goal position, while the child agent is rewarded
based on the speed of each aircraft for efficiency. Thus, longer routes and lower aircraft speeds are penalized.
Additional one-time rewards are added when an episode finishes: -10 for collision, -3 for out-of-time, and +10
for optimal solution [Brittain and Wei, 2018].

5

rp =
1∑N

i=1 |gxi − xi|
(13)

rc = 0.001
N∑
i=1

vi − 0.6 (14)

Where xi represents the current position of aircraft i, gxi is the goal position, and vi is the current speed
[Brittain and Wei, 2018]. In [Brittain and Wei, 2019] the authors adopted a decentralized centralized training
decentralized execution (CTDE) multi-agent approach to the separation assurance problem using the BlueSky
simulator. Instead of a centralized controller, they consider each aircraft as a decision-making agent, containing
its own NN, whose parameters are shared between every aircraft, trained using A2C with the loss function
from PPO and parameter sharing between actor and critic. The environment simulates a sector containing
an intersection or merging point configuration, where N aircraft enter according to a uniform distribution.
The terminal state is achieved once every aircraft has exited the sector. To fix the observation space length, it
contains information about the ownship, as well as the N-closest aircraft that may cause a conflict: agents on the
same route or agents on a conflicting route who have not yet reached the intersection. The information about
the ownship contains distance to the goal, speed, acceleration, distance to the intersection, route identifier,
and the loss of separation distance. The information for each intruder contains distance to the goal, speed,
acceleration, distance to the intersection, route identifier, and distance from the ownship to the intruder. Based
on this observation, each agent takes action independently by selecting one out of three possible speed values
every time step (the time between steps is 12 seconds). The reward function for the multi-agent system penalizes
only the agents involved in a conflict:

rk =

−1, if dco < 3NM

−α+ β · dco, if 3NM ≤ dco < 10NM

0, otherwise
(15)

Where dco is the distance between the ownship and the closest aircraft, and α and β are constants to penalize
agents for approaching the loss of separation distance (dLOS = 3NM). In [Brittain and Wei, 2021] the authors
improved the previous multi-agent method by using a long short-term memory (LSTM) network (proposed in
[Hochreiter and Schmidhuber, 1997]) to handle the fixed-size observation space problem (the N-closest agents
may not always be the most relevant to consider in the observation space) by encoding a variable number of
intruder aircraft sorted based on the distance to the ownship (in descending order for relevance) into a fixed-
length vector and PPO to train the multi-agent architecture. The information observed and rules to determine
conflicting aircraft are similar to previous work. A new action space is proposed so that an agent can either
decelerate, hold the current speed or accelerate. The reward function used is the same as in Equation 15
[Brittain and Wei, 2021]. Finally, in [Brittain et al., 2020] the authors provide two more contributions. First,
substituting the LSTM with an attention mechanism (introduced in [Bahdanau et al., 2014]) to avoid losing
important information from the past as the attention mechanism has access to all hidden vectors, as opposed
to the LSTM which only accesses the information that has already been propagated through the network.
Secondly, adding a constant reward term to minimize the number of speed adjustments (ψ) [Brittain et al.,
2020].

ruk =

{
0, if u = Hold
−ψ, otherwise

(16)

3 Methodology
This research aims at creating an autonomous ATC system to resolve conflicts in high-density traffic merging
point sectors. This type of urban airspace configuration was chosen because it is particularly challenging from
a coordination point of view. First, the decision-making agent must ensure safe separation before and after
the merging point. Secondly, the agent must coordinate high-density traffic coming from multiple routes in a
single exit route (after the merging point) [Brittain and Wei, 2019]. Static airspace configurations have been
considered in prior work. Although easier from a learning perspective, they pose additional problems for real-
world implementations: an agent trained and tested in a given airspace configuration cannot be safely deployed
in a different airspace sector. For that reason, this research aims at training and testing a DRL policy in
variable airspace configurations, generating an agent that is agnostic to the angular distance between entry
routes (before the merging point).

There is yet another critical aspect to define the scope of this work. As discussed in Section 2, Brittain
et al. first used a centralized approach. However, they were constrained in the number of aircraft that could

6

be controlled because the action space size would grow exponentially with the number of agents. Later, they
used a decentralized multi-agent approach, no longer bounded by the size of action space, with the advantage
of handling a more significant number of aircraft. To fix the observation space size, they first considered the
N-closest agents only, and then used different Deep Learning (DL) techniques to encode this information in a
fixed-length vector [Brittain and Wei, 2018, Brittain and Wei, 2019, Brittain and Wei, 2021, Brittain et al.,
2020]. Despite the scalability gains, a decentralized approach presents disadvantages to adopting autonomous
ATC. First, today’s operations are mostly centralized. For instance, Area Control Centers (ACC) manage air
traffic flying in areas under their jurisdictions. Secondly, decentralized systems are likely harder to supervise,
as there are many moving parts. Therefore, this research aims to develop a centralized but scalable approach
to autonomous ATC, designing an observation and action space that scales linearly with the number of aircraft
in the sector.

The proposed centralized training centralized execution (CTCE) architecture relies on two main components:
the airspace sector environment, containing the simulation settings, the state transition rules, and the reward
function reflecting the learning objectives; and the agent, which learns by observing the environment, deciding
which action to take based on its current policy, and updating its NN based on the feedback received from
the environment. The interaction loop between the agent and the environment during learning is illustrated in
Figure 1.

Figure 1: Single-agent DRL architecture for autonomous urban ATC. uk is the action selected based on the
current policy. xk+1 and rk+1 are the next state and reward provided by the environment.

3.1 Problem Formulation
As mentioned before, the goal of this work is to develop an automated ATC system that can handle high-density
urban traffic in challenging merging point configurations. A custom deterministic environment (the next state
can be determined based on the current state and action only) was developed in Python using the OpenAI Gym
library for RL research and rendered using OpenCV [Brockman et al., 2016, Culjak et al., 2012]. Our controller
should be able to prioritize safety, i.e. no collisions in the sector while maximizing efficiency, i.e. minimizing
the average time it takes an aircraft to cross the aerial sector. Although aircraft typically travel at economical
speeds in commercial aviation, the model proposed considers delay minimization as a higher priority in the
context of short-distance urban operations [Wang et al., 2022]. Furthermore, in the scope of this study, a fixed
number of aircraft (|N |) crossing the sector per episode is considered.

3.1.1 Objective

The objective of the model proposed is to provide real-time speed advisories to |N | aircraft, coming from multiple
entry routes, safely and efficiently merging them into a single exit route. In order to do that, it must ensure
that three conditions are met: aircraft do not collide with other aircraft on the same route before or after the
merging point; aircraft do not collide with other aircraft in a conflicting entry route near the merging point; and
aircraft cross the sector as rapidly as possible given the prior constraints. For simplification purposes, aircraft
are considered to fly at the same constant altitude and follow their respective routes. Therefore, a collision is
defined when the euclidean distance between two aircraft is lower than a certain threshold (δi):√

(xn − xm)2 + (yn − ym)2 ≤ δi,∀n ̸= m;n,m ∈ N (17)
To define the conflict resolution process, the concepts of inner and outer boundaries are considered. The

inner boundary represents a near-collision condition or the minimum distance between two aircraft before the
collision. The outer boundary represents the last chance to maneuver the threshold before the inner boundary
is violated [Hunter and Wei, 2019]. Thus, in Equation 17, δi represents the inner boundary threshold. The
model is considered to be successful in an episode if all |N | aircraft exit the route without collisions, considering
gn the goal position of aircraft n, or the point on the exit route from which the agent no longer has control over
the aircraft.

|gxn − xn| = 0,∀n ∈ N (18)

7

3.1.2 Environment Settings

The custom-designed aerial sector depicted in Figure 2 is 4 km wide by 4 km high. The length of the section to be
controlled on each route is 1.8km. The merging point is located in the center of the sector, (xi = 2km, yi = 2km).
The value for the outer boundary threshold (δo) is considered to be directly proportional to the wingspan. Thus,
if we consider the conflict threshold for a Boeing 747-8 to be 5NM, with 68m of wingspan, the outer boundary
for a Joby S2 electric VTOL (vertical take-off and landing) designed for urban operations, with 9m of wingspan
is approximately δo = 1km [Karen Dix-Colony, , Stoll et al., 2014]. The inner boundary is set to be δi = 75m,
or 7.5% of the outer threshold.

A minimum angular separation of 15◦ between entry routes is considered for realism. Moreover, the minimum
angle between an entry route and the exit route is 90◦. Given these values, we can compute the danger radius
around the merging point, i.e. the maximum distance from the merging point at which collisions between aircraft
in conflicting entry routes may happen. This value is 75m/2

sin(15◦/2) ≈ 287m, which means that if two aircraft are
both 287m from the merging point at two routes with the minimum angular separation, they collide. The sector
configuration is randomized on each episode according to the rules: first, the number of entry routes is drawn
at random from a uniform distribution over 2 and 3; secondly, routes are picked at random from the set of
all possibilities (180◦/15◦ + 1), bringing the total number of possible routes in the sector to 14 (including exit
route).

Figure 2: Merging point sector with two entry routes. Aircraft enter the sector through routes 7 or 9 and are
merged into route 1 before exiting.

Aircraft arrive at the first point on each entry route (1.8km away from the merging point) according to a
Poisson process that is independent per route, meaning two aircraft can arrive at the same time on separate
routes. If we consider Ij to be the random variable that represents the inter-arrival time at route j, Ij ∼
Poisson(λ), where λ is the expectation. Furthermore, it is assumed that aircraft have a constant entry speed of
ve = 50m/s. λ is computed such that the expected initial separation between aircraft on the same route equals
the outer boundary. To ensure that collisions would not happen before the autonomous controller could take
action, a lower boundary of 3s was set for Ij .

λ =
δo
ve

= 20s (19)

Considering the Joby S2 as a reference once again, the maximum value for the speed envelope is set to be
the cruise speed of this vehicle at approximately 90m/s [Stoll et al., 2014]. The minimum speed value is set to
30m/s. Finally, speed variations can only happen in intervals of ∆v = 10m/s. Episode steps in this environment
represent a ∆t = 1s of flight time. Such a high action rate is considered due to the expected autonomy in the
context of urban operations [Hunter and Wei, 2019].

3.1.3 Reinforcement Learning Formulation

The interactions between the intelligent controller and the environment must be specified in terms of observation
space, or what features of the environment the agent can see; action space, or what types of action can the
agent take to change the current state of the environment; terminal state, or the conditions under which an
episode is finished; and reward function, or the feedback the agent gets for achieving or getting closer to the

8

goals set. These different parts make up the RL formulation for our centralized solution. Our agent receives
information about the current state of all aircraft in the sector and takes actions to minimize collisions and
maximize efficiency while collecting feedback from the system’s overall performance.

State Space The state space (also called observation space) should contain all the information the agent
requires about the current state of the environment to make an action choice. As the environment represented
in Figure 2 only allows speed adjustments, its current state can be fully described with the following information
for every aircraft - route identifier, current speed, and position within the current route:

X = [r1, v1, d1,i, r2, v2, d2,i, ..., rN , vN , dN ,i] (20)

Where rn is the current route identifier or route angle for aircraft n, vn is the current speed and dn,i is the
distance to the intersection point (i) (always positive, regardless of whether the aircraft has already crossed the
intersection). The route identifier of the exit route is always 0. The identifier for the entry routes is the angle
with the exit route measured counter-clockwise. The distance to the intersection represents the route length
between the current aircraft position and the merging point. The navigation data in the observation space could
be measured using onboard sensors and transmitted using a communication link (e.g. 5G networks) [Hunter
and Wei, 2019]. The size of X scales linearly with the total number of aircraft, as |X| = 3|N |. There are three
additional details regarding the implementation of the observation space that are important for learning. First,
all the features in Equation 20 are normalized between −1 and 1 before entering the NN. This is a standard
technique in DL to improve model performance [Kim, 1999]. This is achieved using the following equation:
fnormalized = f−fmin

fmax−fmin
· 2 − 1, where f is the variable to be normalized. Secondly, as seen in Equation 20,

the state space contains information about all aircraft. However, the relative position of each aircraft in this
vector is not set at random. Instead, aircraft are ordered according to the arrival time at the sector, or the time
they are first observed by the autonomous controller. This sorting technique has proven to stabilize learning,
possibly because aircraft that arrive at similar times in conflicting entry routes are more likely to get involved
in a conflict. Thus, aircraft are sorted from the earliest to the latest arrival time. Lastly, although we defined
a fixed-length state space, the centralized agent is considered to only have access to information about active
aircraft, i.e. aircraft that are currently flying over the sector, and those the agent can control. This means that
the states respecting aircraft that have not yet entered the sector or that have already left (inactive aircraft)
are padded with zeros (a similar zero-padding technique was used in [Vinitsky et al., 2018]).

Action Space The action space should contain all possible action choices to interact with the environment
and achieve the required objectives. Centrally adjusting multiple aircraft speeds at a time could involve an
exponentially growing action space. Besides, it makes it harder for a human supervisor to understand and
follow the system’s decisions. Therefore, the discrete action space defined in the scope of this research allows
for single aircraft adjustments at a time:

U = [None, a−1 , a
+
1 , a

−
2 , a

+
2 , ..., a

−
N , a

+
N] (21)

Where None represents no speed adjustments, a−n decreasing aircraft n speed, and a+n increasing its speed.
Speed variations are always done by adding or subtracting ∆v to the current aircraft speed, limited by lower
and higher boundaries as previously defined. The size of the action vector is |U | = 2|N |+1 and only one of the
entries can be 1 at each time step, with all the others equaling 0. As mentioned, not all aircraft are active at
some point in an episode. Thus, an invalid action happens when the agent chooses to increase or decrease the
speed of an inactive aircraft. If this is the case, the action is filtered, with no speed adjustments taking place.

Terminal State The terminal state is achieved and an episode ends in one of two circumstances: when
Equation 17 is met by any pair of active aircraft, i.e. when a collision happens because the inner boundary
threshold is violated, or when every aircraft has exited the sector without incidents.

Reward Function The reward function should express the goals of the model: in this case, to minimize the
number of collisions and time to cross the intersection. This is done using a combination of four different reward
components. To begin with, an episode reward is set for when the terminal state is achieved.

re(k) =

{
L, if all aircraft exit without collisions
−L, according to (17)

(22)

Where L is a constant used to penalize collisions and positively reward successful episode runs. The episode
reward is given only once per episode. To provide additional guidance for the agent, dense rewards are also
given at every time step, namely a separation reward, a speed reward, and an action reward. The separation
reward penalizes the agent when two aircraft approach the inner threshold.

9

Figure 3: Separation reward per aircraft pair defined in branches (δo = 1000m).

Figure 3 depicts the scaled reward attributed to every pairwise combination of active aircraft flying over the
sector. It starts penalizing the agent when the distance for any pair of aircraft is lower than the outer boundary
and decreases linearly with this distance, penalizing smaller distances the highest. This reward is then averaged
over all possible pairs and given to the agent as:

rs(k) =

{
1

|P|
∑

pm,n∈P βs · (δo − dm,n), if δi ≤ dm,n < δo

0, otherwise
(23)

Where P is the set of all active pairs of aircraft flying over the sector, βs a small negative constant weight
to scale the reward, and dm,n the euclidean distance between aircraft in a given pair pm,n. The speed reward
is given to encourage higher aircraft speeds, reducing flight time over the sector.

The speed reward given to the agent is directly proportional to the velocity of each aircraft, varying between
30m/s and 90m/s, and averaged over all active aircraft in the sector:

rv(k) =
1

|A|
∑
n∈A

βv · vn(t) (24)

Where A is the set of all active aircraft and βv is a small positive constant to scale the reward. The reason
why the separations and speed rewards are averaged is to provide the agent with feedback on how its actions are
affecting the overall performance of the system. Although these rewards already reflect the main goals of this
work, there is one additional reward term added to minimize communication needs and error rates, an action
reward.

ru(k) =

{
0, if u = None

βu otherwise
(25)

Where βu is a small negative constant to penalize speed adjustments. Thus, the agent will try to optimize
its decision-making process to take as few adjustments (or actions) as possible, reducing communication effort.
The overall reward function is obtained by combining the previous components.

r(k) =

{
re(k), if x = xterminal

rs(k) + rv(k) + ru(k), otherwise
(26)

The final reward function in Equation 26 balances the different requirements for the system. The task of the
DRL agent is to optimize its policy to maximize this reward function over an episode. In Figure 2 aircraft ID
3 is shown in orange, meaning that at this step the seventh entry of the action space (a+3) equals 1 according
to the policy learned and this vehicle’s speed is being adjusted (increased to 90m/s).

3.2 Solution Approach
The objective of our single-agent DRL solution is to find a policy that maximizes the expected return given the
reward function defined in Equation 26. To train the agent in our custom environment explained before, the
PPO algorithm was chosen and implemented using the Stable-Baselines3 (SB3) RL library based on PyTorch
DL library [Raffin et al., 2021, Paszke et al., 2019]. The reasons for this decision are two-fold. First, policy

10

gradient methods are appropriate for this research as the environment is not expensive to sample from, and, as
mentioned in Section 2, PPO outperforms other policy gradient methods. Secondly, previous work on en-route
conflict resolution used the loss function (in [Brittain and Wei, 2019]) or the full PPO architecture (in [Brittain
and Wei, 2021, Brittain et al., 2020]) to train their solutions and obtained good results, demonstrating the
suitability of PPO for this type of complex task.

Hyper-parameter Value
Optimizer Adam [Kingma and Ba, 2014]
Learning rate (α) 3× 10−4

Horizon (T) 2048
Minibatch size (M) 64
Number of epochs (K) 10
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ϵ) 0.2
Value function coefficient (c1) 0.5
Entropy coefficient (c2) 0.0

Table 1: Hyper-parameters in PPO implementation (inspired from [Raffin et al., 2022]).

The implementation hyperparameters are summarized in Table 1. These hyperparameters were proposed in
the original PPO paper ([Schulman et al., 2015b]) for robotic tasks and represent the default SB3 library values.
The value function and entropy coefficients are respectively the constants c1 and c2 in the complete PPO loss
function, considering the value and entropy terms:

LCLIP+V F+S
k (θ) = E[LCLIP

k (θ)− c1LV F
k (θ) + c2S[πθ](xk)] (27)

Where LCLIP
k is defined in Equation 10, and LV F

k = (Vθ(xk) − V targ
k)2 [Schulman et al., 2017]. The

architectures for the policy and value networks are shown in Figure 4. The structure of the NN is also inspired
by the original PPO work [Schulman et al., 2015b] and the default library values. The actor and critic have
separate networks, each with two fully connected layers of 64 nodes and a tanh activation function. The output
layer of the policy network has a softmax activation function to output the probability for each discrete action,
while the value function has a linear output layer [Raffin et al., 2021].

Figure 4: Policy and value network architectures (SB3-PPO implementation [Raffin et al., 2021]). The actor
and critic networks each contain two layers of 64 units.

The policy and value network parameters are initialized using orthogonal initialization proposed in [Saxe
et al., 2013]. The reward function was tuned using the parameters in Table 2. Finally, the agent has trained
for a total of 3 million steps with |N | = 10 aircraft flying over the sector per environment episode. During the
rollout phase, a set of experiences of dimension NT is collected sequentially by 4 actors and used to update
the actor and critic for K epochs. The environment is reset every time the terminal state is achieved. During
training, the actions are sampled using the distribution output from the policy. During testing, the most likely
action is chosen.

11

Reward parameter Value
L 10
βs -0.005
βv 0.01
βu -0.1

Table 2: Reward parameters in Equation 26.

4 Experiments
Real-world scenarios are likely to have unexpected interferences that were not considered during training, such
as the presence of unauthorized vehicles, strong winds, tall buildings, and malicious activities [Jang et al., 2017].
Therefore, it is fundamental to understand the behavior of the autonomous centralized controller in as many
simulated unpredictable circumstances as possible before real-world deployment. During these experiments, we
varied aircraft arrival rates and speed, sector configurations, and communication availability.

In the scope of this work, we consider three distinct evaluation metrics to measure the performance of the
trained agent: the likelihood of success computed as the number of successful episodes divided by the total
number of episodes (this equals one minus the likelihood of collision), the average time to cross the intersection
per aircraft, and the average distribution of actions along the route, or the number of times the agent takes a
speeding up or slowing down action with respect to the distance to the merging point.

4.1 Experiment I: Varying Aircraft Arrival Rate and Speed
Arrival configurations are the conditions under which aircraft enter the sector, namely the inter-arrival time,
determined by the Poisson process parameter for each route, initially set to λ = 20s, and the entry speed,
initially set to ve = 50m/s. In real-world scenarios the arrival settings may change due to multiple factors -
strong wind gusts altering vehicle dynamics, different aircraft types, onboard system failures, and more. This
experiment focuses on performing sensitivity analysis by varying these parameters and analyzing model outputs.
For this analysis the sector is set as shown in Figure 2 and remains fixed, i.e. routes are not randomly generated
as during training.

4.2 Experiment II: Varying Sector Structure
Route configurations refer to the structure of the airspace sector. This can vary depending on the location the
agent is deployed. For this reason, we considered randomized environments during training. Two factors can vary
in an airspace configuration: the number of entry routes in the merging point and the angular distance between
routes. After extensive testing with different preset angular distances between entry routes, it was concluded
that this parameter does not yield a significant difference in the performance indicators. This is counter-
intuitive, as making routes closer to each other increases the likelihood of a collision happening. Moreover, in
structured airspace, it is unrealistic to consider too small inter-route separation. Therefore, only the variation in
the number of routes (between 2 and 6 entry routes) is considered. For this experiment, n routes were generated
at random among the set of possible entries and λ is constant and equals the training reference value (λ = 20).

4.3 Experiment III: Blocking Aircraft Communications
There is a vast number of reasons why communication between the controller and aircraft may be blocked:
unauthorized UAS that do not respond to speed commands, tall buildings or hills, network failures, and more.
For this reason, it is important to assess whether using the trained agent would result in improved performance
under communication blockage conditions. This is if the agent can readjust the system and provide speed
advisories to responding vehicles in order to maintain safety in the sector, i.e, to avoid collisions, even though
it was not trained in these settings. Or whether having no agent at all would represent a higher likelihood
of success. This represents a hypothesis-testing case. The goal is to understand if deploying our agent in a
situation of communication blockage improves the overall safety of the sector when compared with the case
with no speed advisories given.

5 Results
This section is focused on displaying the results of the model developed to answer our main research question:
How to design a centralized scalable conflict resolution approach based on DRL for UAM? To begin with, the

12

training metrics of the PPO training process are discussed. Then, the experiments described in the previous
section are realized to assess the performance of our trained agent under variable environmental conditions.
For the first and second experiments, the performance metrics discussed: average success rate, time to cross
the sector, and action distribution are calculated for variable environment settings. For the third experiment,
since the outcome of the experiment (the success of an episode) is a binary random variable, the Z-test for
proportions is applied at a significance level of 5%.

5.1 Training Metrics
The model proposed trained for approximately 3 million timesteps, or until the cumulative reward curve in
Figure 6 stabilized. Each timestep is a step of the environment during a rollout, meaning that approximately
1468 rollouts were completed in 4 environments (or 367 rollouts per environment). Since we used DummyVecEnv
SB3 function to emulate paralleled environments, they are called sequentially during the training process. Thus,
to collect one rollout of experience across the 4 environments for training takes 8192 timesteps. To obtain the
training metrics, we ran the current policy every 10k timesteps in an evaluation environment for 100 episodes
and averaged the results. Thus, training results correspond to the evolution of the agent during the process.
Since the frequency of evaluation is lower than the frequency of update of the model, no consecutive evaluation
runs use the same PPO agent.

In this subsection, besides displaying the training evolution, we want to compute accurate performance
metrics of our trained agent using the default training environment. To ensure the simulation is run a sufficient
number of episodes for the output results to stabilize, the coefficient of variation (CV) is used. We recompute
this value every time new 100 data points, or outputs of the environment for a given performance metric, are
simulated using the learned policy. One data point is a complete episode.

CV =
σ

µ
(28)

After running this formula for 10k episodes, we concluded that the success rate metric stabilizes after
approximately 6k episodes, regardless of whether the agent takes action or not. Considering the time to cross
the sector, the CV stabilized after 4k episodes. It should also be noticed that the version of the model picked
for testing the agent once we were finished with training was chosen based on the maximum average cumulative
reward achieved during the training evaluation callback described.

The most relevant training metric is the average success rate (over 100 episodes). Figure 5 depicts the
evolution of this metric over time. As mentioned, success is achieved when Equation 18 is met, i.e., every
aircraft exited the sector without collisions. To establish a baseline, we measured the success in case there is no
controller or the controller always chooses u = None, and the average success rate is about 38% in this case.

Figure 5: Evolution of the average success rate with training. In red is the average rate if no actions are taken.
In green is the optimal rate.

We observe that the autonomous controller quickly surpasses this threshold and converges to the optimal
success rate (100%). Once training was finished, the agent obtained an overall performance of about 99% in
successfully providing aircraft with speed advisories in the custom environment designed. This means that the
performance of the environment with the trained agent deployed is 61% superior to the performance without
speed advisories. The average time to cross the sector per aircraft is 46s. This represents 36% less time compared
to the case with no actions taken (1800m×2

50m/s = 72s), proving that deploying the agent also improves the efficiency
of the system. We also measured the average percentage of invalid actions, i.e. actions that are not directed to

13

an active aircraft, taken by the agent over the course of an episode. These represent approximately 11% of the
total number of actions. Although this value has no effect on the overall safety of the system (because these
actions are filtered), it may deteriorate the system as these actions are not being effectively used to increase the
reward.

Figure 6: Evolution of the average reward with training.

Figure 6 depicts the evolution of rewards with training. These are average cumulative rewards obtained
over the span of an episode by the agent, according to the reward function defined in Equation 26. We
observe a similar pattern to the evolution of the success rate. Rewards start by rapidly increasing from a
value of approximately −20, followed by a slower convergence to approximately 90. The resemblance between
these two curves demonstrates the relationship between maximizing rewards and achieving higher success rates.
Moreover, the smooth and rapid convergence of the cumulative reward shows that the agent is efficiently learning
to maximize this function.

Figure 7: Evolution of the average episode length with training.

Figure 7 shows the evolution of the average episode length, i.e., the number of timesteps an episode lasts
on average. To maximize the reward, the agent must guarantee no collisions for an episode length that is long
enough for all aircraft to leave the sector. However, since there are also efficiency goals in place, this time should
be limited. We observe that after a sharp increase in episode length during the beginning of training, this value
stabilizes at around 150 steps per episode.

5.2 Experiment I: Analysis of Variable Aircraft Arrival Rate and Speed
Figure 8 depicts the variation of the success rate (average over 100 episodes) with the variation of the Poisson
parameter λ. For each possible integer value of λ between 5 and 20, 10 data samples were computed. We
observe an S-shaped curve where the evolution is approximately linear between λ = 6 and λ = 11, converging
to 1 for λ ≥ 14. This proves that although the model was not trained for λ ̸= 20, it can generalize and handle
more challenging cases, where the expected separation between aircraft is lower than the outer boundary, with
a high success rate.

14

Figure 8: Variation of the success rate (averaged over 100 episodes) with the Poisson process rate λ in a
two-entry routes sector configuration.

To analyze the variation of the average time to cross the sector with the Poisson parameter, only successful
aircraft were considered, meaning that values from vehicles that do not finish crossing the sector due to a
collision are filtered. As a baseline, one should remember that the time to cross the sector if the agent takes no
action is 72s.

Figure 9: Variation of the time to cross the sector per aircraft (measured in seconds and averaged over 100
episodes) with the Poisson process rate λ in a two-entry routes sector configuration.

We observe that the average time to cross the sector decreases linearly with the increase in the inter-arrival
time between aircraft. An explanation for this phenomenon is that as the Poisson parameter decreases the agent
must handle a higher number of conflicting aircraft at the same time, mainly because the expected separation is
reduced and merging aircraft are condensed in a shorter period of time. Therefore, it must slow down a higher
number of vehicles in order to create sufficient separation to merge them safely, increasing the average time to
cross the sector.

The explanation given for the trend found in Figure 9 can be viewed in the evolution of actions with the
distance covered by aircraft. This is obtained by averaging the number of speeding up and slowing down actions
applied on aircraft over the course of the first 1800m traveled. This average was done by collecting data from
6k episodes. Only actions taken during the entry route are considered as it was observed that most actions are
concentrated during this segment. Moreover, invalid actions are filtered so that only commands that contribute
to the outcome of the simulation are analyzed.

Figure 10 shows the results obtained. As stated, the number of slowing-down actions increases significantly
when we halve the Poisson parameter value. This justifies the longer time to cross the sector. This trend is
mainly observed during the first 900m, when the agent is creating sufficient separation to be able to merge
aircraft safely. The total number of actions when λ = 20 is approximately 54 (with only about 8% slowing
down actions), while this number increases to 58 (with slowing down actions representing 24% of the total)
when λ = 10. Thus, there is a three times higher share of actions to reduce speed when λ = 10, compared
to the reference value used during training. Another trend that can be visualized is that the total number

15

(a) Average action distribution for λ = 20. (b) Average action distribution for λ = 10.

Figure 10: Average action distribution with respect to distance traveled varying the Poisson parameter λ.
Distance values are the upper boundaries of the intervals where actions were measured. Previous distance
values are the lower boundaries.

of actions tends to reduce as aircraft get closer to the merging point, which is desirable as conflicts must be
resolved earlier. In the more complex case (λ = 10), the number of speeding-up actions grows when aircraft get
closer to the intersection. A plausible explanation is that the agent is first prioritizing safety, creating additional
separation between potentially conflicting aircraft, and only later increasing their speed to match the efficiency
requirements.

To test the impact of the case when an aircraft arrives at a different speed than the reference ve = 50m/s,
this value was varied for aircraft ID 5. Everything else remains as before, λ = 20, and the same airspace
configuration.

Figure 11: Variation of the average success rate with the entry speed of aircraft ID 5.

Figure 11 shows that if ve ≤ 60m/s, the agent has no problems generalizing, despite the fact that this
parameter was constant during training. For higher entry speed values, the performance decreases linearly.
A possible explanation is that the agent has not learned to decelerate aircraft that enter with a large speed
difference from other aircraft in the same route, causing a later collision. To overcome this obstacle, future
research could consider modifying this parameter during the training phase. Only the impact of 1 agent was
studied as this is an extraordinary case and such high deviations from the preset entry value are not expected
during controlled operations. Furthermore, this shows that the model can handle smaller and more likely
deviations with almost no loss in accuracy.

5.3 Experiment II: Analysis of Variable Route Configurations
Figure 12 shows the results. It is observable that the performance highly decreases for the cases the agent was
not trained on, i.e. 4, 5, and 6 entry routes. Furthermore, a decrease in performance also happens between 2

16

Figure 12: Variation of the average success rate (averaged over 100 episodes) with the number of entry routes.

and 3 routes, despite that the agent was trained approximately as many times for each case. An explanation for
this decrease is that at increasing the number of routes, the likelihood of conflicting agents at the intersection
point increases due to the fact that the Poisson process is independent per route. Moreover, it also increases
the possible number of aircraft the agent must deconflict during a short time span. Therefore, adding more
routes increase the complexity of the agent’s task. For this reason, as with decreasing the Poisson parameter,
increasing the number of routes also has a negative impact on the average time to cross the sector per aircraft.

Figure 13: Variation of the time to cross the sector per aircraft (measured in seconds and averaged over 100
episodes) with the number of entry routes.

Figure 13 displays the variation of this variable with the increase in the number of routes. We see that the
largest difference happens between 2 and 3 route configurations, and decreases thereafter. A justification for
this may be that since the success rate decreases, and we are only considering successful aircraft in the time to
cross calculation, the remaining aircraft may be the ones who arrived first and thus, have lower crossing times
because do not need to take part in a deconfliction process. As before, this can be explained by the evolution
of actions with distance traveled for 2 and 3 entry route cases in Figure 14.

It is observable that adding an extra entry route makes the agent take more deceleration actions in the first
half of an aircraft’s route. In the case with 2 routes deceleration actions represent only 7.5%, while with 3 entry
routes it increases to about twice as much at 16% of total actions taken. We also see that by increasing the
number of routes, the total number of actions increases by 4 (from 53 to 57). By comparing Figure 10 and
Figure 14, one may conclude that the effect of adding more entry routes is very similar in terms of the distribution
of actions to that of reducing the Poisson process rate. One more interesting consideration is that even in the
more challenging cases, the average number of valid actions per aircraft does not surpass 6, not considering
the None action, meaning the agent is also being efficient in terms of the number of communications it must
establish with aircraft. Future research could consider incorporating a larger number of entry routes during
training to improve these results, provided that this number would match the requirements for deployment in
real urban settings.

17

(a) Average action distribution for n = 2. (b) Average action distribution for n = 3.

Figure 14: Average action distribution with respect to distance traveled varying the number of entry routes n.

5.4 Experiment III: Analysis of the Effects of Blocking Aircraft Communications
To begin with, the mean success rate, if the agent does not communicate with aircraft at all in the case of
the randomly generated routes (considering n = 2 and n = 3 entry routes), is 0.383. Given this value, we
state the null and alternative hypotheses. The null hypothesis is that deploying the agent has a positive effect
on the success rate of the system in case communication with a random aircraft is blocked over the course of
an episode, i.e. the proportion of successful episodes is greater than or equal to the target value 38.3%. The
alternative hypothesis is that using the agent on this specific disruption case has a negative effect on safety,
or that the proportion of successful runs is lower than the target value. After sampling for 100 episodes, the
proportion of successful episodes using the trained agent is 0.3. The Z-score is calculated as [Zou et al., 2003]:

Z =
p− p0√
p0(1−p0)

n

=
0.3− 0.383√
0.383·(1−0.383)

100

≈ −1.7 (29)

Where p0 is the hypothesized success rate proportion, or target value, p is the observed proportion, and n is
the number of samples. Considering the significance level of 0.05, and the Z-score of −1.7, the p-value is 0.0446,
which is lower than the significance level of 0.05, and thus, there is enough evidence to reject the null hypothesis
at a 5% significance level. We conclude that in the communication blockage case, using the trained agent has
a negative safety impact on the sector. Future research could consider random communication blockage during
training to improve the performance of the autonomous controller in these cases that are likely to exist if the
system is deployed in real-world conditions.

6 Conclusions
This research aimed to design and test a centralized and scalable approach to autonomous ATC for UAM
based on DRL. Two main performance targets were considered to engineer this model: the maximization of the
number of successful episodes without collisions and the minimization of the time it takes for an aircraft to cross
the sector. Our approach in terms of observation and action spaces scales linearly with the number of agents,
making it possible to experiment with a crowded sector containing 10 vehicles. By defining the inter-arrival
times on each route according to a random Poisson process, the agent cannot memorize actions and has to learn
the system’s general dynamics to control it. Three main principles showed positive learning results when applied
to the observation space: first, the normalization of the state values, second, sorting aircraft information in the
observation vector according to their global arriving time, and lastly, using zero-padding in the positions of
non-active aircraft. The action space is simple, yet effective according to our results. Considering acceleration
and deceleration actions not only contributes towards the possibility to human-supervise the system but also to
the facilitation of communication protocols between aircraft and the controller. Finally, the reward function was
designed to reflect our safety and efficiency goals, densely penalizing aircraft approaching the inner threshold
and rewarding those traveling at higher speeds. The minimization of actions was also considered in an effort
to reduce errors and maximize communication efficiency. The custom environment developed was used to train
a CTCE DRL framework using PPO. Training results depicted a stable learning agent, rapidly converging to
high success rate values. After training, the best model for testing was chosen based on the maximum average
episode reward achieved. When tested on the training environment, i.e., a sector of randomly generated routes,

18

with a number of entry routes varying between 2 and 3, this model achieves approximately 99% of successful
simulations, around 61% more than the case where no agent is deployed on the environment, proving the effect
of training and the versatility of the agent to be deployed in different airspace configurations, due to the random
configuration nature of this train and test environment.

During experiments, different parameters of the environment were studied. First, the expected inter-arrival
time parameter was varied, demonstrating that shorter times decrease performance, both in terms of success
rate, but also average time to cross the sector per aircraft, which is proved by the distribution of actions, as in the
more complex case where the expected arrival distance between aircraft is smaller, the number of decelerating
actions taken at the beginning of aircraft journeys increases significantly. Varying the entry speed of a single
aircraft also showed a decrease in the overall system’s safety if this speed is greater or equal to 70m/s, and
thus, even though we are considering an autonomous operation, ground rules will most likely have to be defined
in terms of the allowed entry speed envelope. Most surprisingly, for both tests, the agent demonstrated some
generalization capabilities for environment parameter values that were not seen during training. For instance,
despite being trained for an expected arrival separation of 1km, the agent achieved a 100% success rate given
an arrival separation 25% smaller, at 750m, in the fixed two entry-route case scenarios. Varying the number
of routes has proven to have a similar impact as shortening the expected arrival separation, with the variation
from two to three entry routes, yielding approximately the same results both in terms of loss of safety and
added delays as reducing the reference Poisson parameter value by 10%. Lastly, a hypothesis test conducted
on the impact of blocking communications with a random aircraft throughout an episode concluded that our
trained agent deteriorates safety in this case.

7 Discussion and Future Work
We identify four main limitations in this research: vehicle homogeneity, unrealistic flight dynamics, limited
scalability, and invalid actions. First, vehicle homogeneity refers to the fact that all aircraft were considered to
be the same during this study, i.e. respecting the same communication protocols, entry speed, speed envelope,
acceleration requirements, collision distance, et cetera. However, in real-world conditions, vehicles are expected
to be heterogeneous, ranging from small package delivery drones to larger passenger transportation VTOLs.
Secondly, this research considered instantaneous speed changes that are not realistic in actual flight conditions.
Thirdly, our solution presents limited scalability. Despite the fact that both action and observation spaces
scale linearly with the number of aircraft, increasing the number of agents from a certain threshold will bring
performance losses. Moreover, using zero-padding provides the NN with irrelevant information on inactive
aircraft. Lastly, invalid actions, or speed advisories to inactive aircraft, revealed a shortcoming of this research
approach, solved by filtering these values.

Regarding future research to address these shortcomings, our results indicate that including a range of
possible Poisson parameters, route numbers, and communication blockage cases during training may improve
performance under real-world failure scenarios. Moreover, future work could try a mixed airspace environment
with multiple types of vehicles interacting and perhaps a dynamic collision threshold defined by additional vari-
ables to the vehicle’s wingspan. This would make the system more realistic in terms of what is expected from
future urban operations. In terms of improving flight dynamics realism, researchers could use the Bluesky sim-
ulator instead of a custom Gym environment. Another advantage of using Bluesky is to establish a comparable
baseline with other research on en-route conflict resolution [Hoekstra and Ellerbroek, 2016, Wang et al., 2022].
A CNN or LSTM approach could be taken to compress state information into a fixed-size vector, potentially
improving learning and scaling to more agents. However, a solution to the problem of a variable action space
size is also required to cope with an indeterminate number of aircraft. Another solution approach that could
be tested is to use the approach proposed in this research with dynamic allocation of new agents entering the
sector. Since the expected separation between aircraft can be controlled using the Poisson parameter and is
expected to be regulated in future operations, it is possible to determine the maximum number of aircraft in
the sector at the same time. If the observation and action spaces can cope with this number of vehicles, new
incoming ones can be allocated to the positions that were zero-padded because others left the sector. This
dynamic allocation could bring additional training challenges but present a solution to the continuous day-to-
day operations problem. Finally, future research could also focus on finding a reward function to minimize the
number of invalid actions that deteriorate the overall performance of the system.

References
[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.

19

[Brittain and Wei, 2018] Brittain, M. and Wei, P. (2018). Autonomous aircraft sequencing and separation with
hierarchical deep reinforcement learning. International Conference on Research in Air Transportation.

[Brittain and Wei, 2019] Brittain, M. and Wei, P. (2019). Autonomous air traffic controller: A deep multi-agent
reinforcement learning approach. arXiv preprint arXiv:1905.01303.

[Brittain et al., 2020] Brittain, M., Yang, X., and Wei, P. (2020). A deep multi-agent reinforcement learning
approach to autonomous separation assurance. arXiv preprint arXiv:2003.08353.

[Brittain and Wei, 2021] Brittain, M. W. and Wei, P. (2021). One to any: Distributed conflict resolution with
deep multi-agent reinforcement learning and long short-term memory. In AIAA Scitech 2021 Forum, page
1952.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[Buşoniu et al., 2010] Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement learning:
An overview. Innovations in multi-agent systems and applications-1, pages 183–221.

[Campbell et al., 2002] Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intelligence,
134(1-2):57–83.

[Culjak et al., 2012] Culjak, I., Abram, D., Pribanic, T., Dzapo, H., and Cifrek, M. (2012). A brief introduction
to opencv. In 2012 proceedings of the 35th international convention MIPRO, pages 1725–1730. IEEE.

[Dayan and Watkins, 1992] Dayan, P. and Watkins, C. (1992). Q-learning. Machine learning, 8(3):279–292.

[Erzberger, 2004] Erzberger, H. (2004). Transforming the nas: The next generation air traffic control system.
Technical report.

[Erzberger, 2005] Erzberger, H. (2005). Automated conflict resolution for air traffic control.

[Haydari and Yilmaz, 2020] Haydari, A. and Yilmaz, Y. (2020). Deep reinforcement learning for intelligent
transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8):1735–1780.

[Hoekstra and Ellerbroek, 2016] Hoekstra, J. M. and Ellerbroek, J. (2016). Bluesky atc simulator project: an
open data and open source approach. In Proceedings of the 7th international conference on research in air
transportation, volume 131, page 132. FAA/Eurocontrol USA/Europe.

[Hunter and Wei, 2019] Hunter, G. and Wei, P. (2019). Service-oriented separation assurance for small uas
traffic management. In 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS),
pages 1–11. IEEE.

[Jang et al., 2017] Jang, D.-S., Ippolito, C. A., Sankararaman, S., and Stepanyan, V. (2017). Concepts of
airspace structures and system analysis for uas traffic flows for urban areas. In AIAA Information Systems-
AIAA Infotech@ Aerospace, page 0449.

[Joby, 2022] Joby (2022). Joby receives part 135 certificate from the faa.

[Joulia et al., 2016] Joulia, A., Dubot, T., and Bedouet, J. (2016). Towards a 4d traffic management of small
uas operating at very low level. In ICAS, 30th Congress of the International Council of the Aeronautical
Sciences.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285.

[Karen Dix-Colony,] Karen Dix-Colony, B. B. Operating the 747-8 at existing airports.

[Kim, 1999] Kim, D. (1999). Normalization methods for input and output vectors in backpropagation neural
networks. International journal of computer mathematics, 71(2):161–171.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[Konda and Tsitsiklis, 1999] Konda, V. and Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural
information processing systems, 12.

20

[Lonza, 2019] Lonza, A. (2019). Reinforcement Learning Algorithms with Python. Packt Publishing.

[Matternet, 2022] Matternet (2022). Matternet receives faa production certificate for its m2 drone delivery
system.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937. PMLR.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement
learning. nature, 518(7540):529–533.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32.

[Raffin et al., 2021] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. The Journal of Machine Learning Re-
search, 22(1):12348–12355.

[Raffin et al., 2022] Raffin, A., Kober, J., and Stulp, F. (2022). Smooth exploration for robotic reinforcement
learning. In Conference on Robot Learning, pages 1634–1644. PMLR.

[Saxe et al., 2013] Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

[Schulman et al., 2015a] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015a). Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR.

[Schulman et al., 2015b] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). High-
dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484–489.

[Stoll et al., 2014] Stoll, A. M., Stilson, E. V., Bevirt, J., and Pei, P. P. (2014). Conceptual design of the joby
s2 electric vtol pav. In 14th AIAA Aviation Technology, Integration, and Operations Conference, page 2407.

[Straubinger et al., 2020] Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K.-D., Kaiser, J., and Plötner,
K. O. (2020). An overview of current research and developments in urban air mobility–setting the scene for
uam introduction. Journal of Air Transport Management, 87:101852.

[Van Hasselt et al., 2016] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30.

[Vinitsky et al., 2018] Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang, K., Wu, C., Wu, F., Liaw,
R., Liang, E., and Bayen, A. M. (2018). Benchmarks for reinforcement learning in mixed-autonomy traffic.
In Conference on robot learning, pages 399–409. PMLR.

[Wang et al., 2022] Wang, Z., Pan, W., Li, H., Wang, X., and Zuo, Q. (2022). Review of deep reinforcement
learning approaches for conflict resolution in air traffic control. Aerospace, 9(6):294.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3):229–256.

[Zou et al., 2003] Zou, K. H., Fielding, J. R., Silverman, S. G., and Tempany, C. M. (2003). Hypothesis testing
i: proportions. Radiology, 226(3):609–613.

21

II
Literature Study

previously graded under AE4020

25

1
Introduction

Urban Air Mobility (UAM) is a concept of the future airspace, where people and goods are transported by par-
tially or fully autonomous air vehicles. Air taxis, VTOLs (vertical take-off and landing), and personal aircraft
are some of the innovations we are seeing in this field. However, without a proper definition of operations and
safety measures, these concepts will not massively take off anytime soon. Especially in highly complex areas
such as the Urban Airspace, where there are many static and dynamic obstacles such as buildings, humans,
cars, and both piloted and autonomous air vehicles. Moreover, the presence of unauthorized drones, strong
wind, and malicious actors make UAM operations particularly challenging [30].

One of the first problems to be tackled is the Air Traffic Control (ATC) of high-traffic urban aerial spaces.
Traditional ATC relies on human operators and three main conflict resolution methods: altitude adjustment,
heading adjustment and speed adjustment [64]. However, with an increased demand for flight operations
both in high altitude routes with the FAA estimating a growth en-route aircraft at a rate of 1.5% [1], as well as
low altitude flights with passenger VTOL and delivery drone concepts getting approval to begin operations
[5] [40], there is a growing need for an autonomous ATC system [29].

Artificial Intelligence (AI) algorithms have been outperforming humans in games over the past years. IBM
Deep Blue beat the world chess champion Garry Kasparov in 1997 [14]. In 2013 Deepmind’s scientists pro-
posed a method called Deep Q-Networks that outperformed human experts in multiple arcade games using
raw pixel inputs [41]. Later, in 2016 Deepmind developed AlphaGo and beat Lee Sedol, one of the strongest
Go players, a game exponentially more complex than chess [57]. All these results rely on the same framework:
Reinforcement Learning (RL). RL algorithms learn without prior environment knowledge by interacting via
trial-and-error and a reward function. Divided into value-based and policy-gradient, and particularly when
combined with Deep Learning (DRL) to handle continuous environments, these methods are well-suited for
sequential decision-making games, such as autonomous ATCos (Air Traffic Control Operations) [64].

This work proposes using DRL to build an autonomous centralized urban (low-altitude) ATC agent capable
of being deployed in locations with different airspace configurations. There are five main components to be
defined: the environment for training, the information the agent requires (observation space), the type of
actions the agent can take (action space), the reward function that reflects the goals and measures how well
the agent is performing, and the training algorithm. This report aims to help define this structure. Chapter 2
introduces the three conflict resolution methods used in ATCos: altitude adjustments, heading adjustments,
and speed adjustments. Moreover, it introduces tools, techniques, and challenges for Unmanned Aircraft
Systems (UAS) conflict resolution, useful for defining the rules for low-altitude Urban Air Mobility (UAM).
Chapter 3 introduces the principal RL and DRL techniques for single-agent environments. Chapter 4 answers
the main problems that arise by extending these algorithms to multi-agent settings: non-stationarity, partial
observability, the credit assignment problem, and continuous environments, as well as the main multi-agent
frameworks: Centralized Training Centralized Execution (CTCE), Centralized Training Decentralized Execu-
tion (CTDE), and Decentralized Training Decentralized Execution (DTDE). Chapter 5 explores recent DRL
solutions in literature for the en-route conflict resolution problem, including the principal five components
mentioned earlier. Finally, Chapter 6 describes the research proposal that results from this review, including
the research questions, the framework used, and suggested experiments.

27

28 1. Introduction

the FAA to operate commercial flights with its fleet of eVTOL (electric vertical take-off and landing) that
can carry one pilot and up to four passengers [5]. A report published in 2018 expects twenty thousand un-
manned missions to be flown in the Paris urban airspace by 2035 [2]. Therefore, new ATM solutions must be
found to cope with this increased demand, maintaining the safety and efficiency of airspace operations.

2
Conflict Resolution

To start this research on autonomous separation assurance, it is important to understand how current Air
Traffic Management systems work. In this chapter, the definition of conflict is presented, along with the
different resolution methods used by Air Traffic Controllers (ATCos) in traditional manned aviation. Then,
the challenges and possible solutions for Unmanned Aircraft Systems are presented.

2.1. Conflict Resolution in Air Traffic Control
According to the International Civil Aviation Organization (ICAO), a conflict is defined as the loss of separa-
tion between two aircraft. The recommended horizontal separation is 5 Nautical Miles (NM) and the vertical
separation is 1000ft [4]. This means that the safety area for an aircraft is defined as a three-dimensional cylin-
der with a 5NM radius and 2000 ft height centered on the airplane as shown in Figure 2.1. Thus, if a second
air vehicle enters this safety area, separation is lost and a conflict occurs [64].

Figure 2.1: Three-dimensional safety area around aircraft [64].

There are two main scenarios in flight operations: free flight and en-route flight. Free flight means an aircraft
can fly freely in the airspace without following a pre-specified route between an entry and exit point. On the
other hand, en-route flight means an aircraft must follow fixed airways [64]. En-route flight has the advan-
tage that routes can be deconflicted before take-off. However, this comes at the cost of traffic congestion, a
problem that can be solved by free flight [64].

29

30 2. Conflict Resolution

Figure 2.2: Different flight scenarios [64].

Three principal conflict resolution methods can be used on their own or in combination by ATCos to resolve
conflicts:

1. Altitude adjustment. Flight levels are used to maintain vertical separation between aircraft. A Flight
level (FL) is expressed in hundreds of feet and represents an aircraft’s altitude at a constant atmospheric
pressure. For altitude adjustments, the controller must choose a flight level. Below FL41, flight levels
are separated by 1000 ft. Above this level, the separation between flight levels increases to 2000 ft.
Adjusting altitude is the preferred conflict resolution method [64].

2. Heading adjustment. This method changes the heading direction of an aircraft, and consequently, its
route. The two approaches for doing this are: first, changing the heading angle by making the aircraft
turn left or right by an angle with its current route direction, or secondly, using the offset method, which
makes an aircraft fly a pre-determined distance to the left or right to ensure lateral separation [64].

3. Speed adjustment. Usually, aircraft fly at a constant cruising speed for energy savings. Speed adjust-
ments are expressed in multiples of 0.01 Mach or 10 kt (knots). Changing speed is the least intuitive
approach for ATCos to resolve conflict between aircraft. Also, the speed envelope at cruising altitude is
small, making this method the least preferred [64].

There are also two high-level principles to decide which resolution method to choose when facing a conflict
in the airspace.

1. Safety is the number one priority, and the resolution of a conflict should not raise new conflicts [64].

2. The conflict resolution method that causes the least traffic disruption and requires the least monitoring
effort should be chosen to reduce ATCos workload [64].

The air traffic demand is increasing, both in the traditional airspace, as well as low-level airspace with new
services for Urban Air Mobility (UAM). The Federal Aviation Administration (FAA) estimates a rise of en-route
aircraft at a rate of 1.5% per year until 2040 [1]. Furthermore, low-altitude carriers are likely to start operations
shortly. Matternet, a USA-based drone delivery company recently received FAA approval to manufacture
unmanned aircraft [40]. Joby Aviation, another USA-based company was also recently certified by the FAA to
operate commercial flights with its fleet of eVTOL (electric vertical take-off and landing) that can carry one
pilot and up to four passengers [5]. A report published in 2018 expects twenty thousand unmanned missions
to be flown in the Paris urban airspace by 2035 [2]. Therefore, new ATM solutions must be found to cope with
this increased demand, maintaining the safety and efficiency of airspace operations.

2.2. Conflict Resolution for UAS Traffic Control 31

2.2. Conflict Resolution for UAS Traffic Control

There are seven main separation assurance techniques proposed recently for Unmanned Aircraft Systems
(UAS) operations:

1. "Radar" [29]. Radar systems use radio waves to sense distances, movements, and velocity. There are
two approaches to using radar for UAS safety assurance. First, the traditional method used in aviation
today is ground-based air traffic control. This can be achieved through cooperative or non-cooperative
radar. Cooperative radar relies on a transponder response from the UAS. If the vehicle is not equipped
with a transponder, this method does not work. Non-cooperative radar systems are a solution for this
shortcoming. However, due to the very low-level (VLL) flight requirements, the number of installations
needed grows, and so does the cost in dense urban areas. As an alternative to ground stations, airborne
radar presents an on-board sense-and-avoid (SAA) solution, with fewer communication requirements
[29].

2. "Electro-Optical or Infrared (EO/IR)" [29]. EO/IR instruments are a passive alternative to radar. While
these devices can provide accurate angular measurements, they are constrained by UAS size, weight,
and power supply. Moreover, EO sensors lose accuracy in low-light conditions. This shortcoming can
be overcome using IR. However, both EO and IR sensors degrade in rainy, foggy, and cloudy weather
conditions [29].

3. "Dependent Surveillance" [29]. Dependent surveillance considers air vehicles to determine their own
navigation data through an onboard satellite-based (GNSS - Global Navigation Surveillance System)
system, augmented by other sensors such as accelerometers. This data is broadcasted to air traffic con-
trol and other aircraft to allow self-separation. As of 2020, ADS-B (Automatic Dependent Surveillance-
Broadcast) is mandatory for all manned aircraft. The advantages of this solution are a long possible
range and robustness to all weather conditions. The disadvantages of this solution are increased trans-
mission challenges both to ground stations due to low-level flight and between vehicles due to inter-
ference sources such as buildings and terrain, widespread adoption requirements and possible signal
integrity and security issues due to data anomalies or dropouts and cyber-attacks, respectively [29].

4. "LTE and 5G Networks" [29]. LTE (Long-Term Evolution) and 5G terrestrial communication networks
present potential solutions for UAS surveillance. The low latency of 5G could be combined with a time
of arrival (ToA) approach for location determination. LTE could also be combined with ADS-B to ex-
pand the capabilities of this system to low-altitude flight. Furthermore, ADS-B would improve the reli-
ability of LTE in low-coverage rural regions [29].

5. "Alerting Boundaries" [29]. An alert boundary is used to maintain a safe separation from other aerial
vehicles. Typically, an inner boundary is used to represent a near-collision event, and an outer bound-
ary represents the last chance to mitigate the risk of collision. However, it is not trivial to define what
these boundaries should look like for UAS operations. One idea presented in [29] to compute the inner
boundary is to scale it according to vehicle size. If we assume the inner boundary for a manned aircraft
to be 100 ft vertical and 500 ft horizontal separation, and its wingspan to be 68 m (Boeing 747-8 [33]), we
can compute the inner boundary for the Joby Aviation S2 eVTOL (9 m wingspan [58]) to be 13 ft vertical
and 66 ft horizontal separation approximately. The outer boundary is more complex to calculate be-
cause it varies with several factors such as the geometry of the conflict, vehicle characteristics, speeds,
and weather conditions. Moreover, this outer boundary also relies on the ability of the target aircraft to
maneuver cooperatively or not [29].

6. "Tactical Separation Assurance and Recovery Maneuvers" [29]. Separation assurance and recovery
maneuvers must be designed for when an aircraft encounters the outer boundary threshold. There
are several challenges to the design of such actions. First, the uncertainties in performing such com-
plex maneuvers: "These include navigation and surveillance uncertainties in the current state of the
vehicles involved, uncertainty in the timing of the separation assurance maneuver, uncertainty in the
maneuver execution, uncertainty in the wind field, uncertainty in the target vehicle trajectory..." [29].
Determining the initiation time under these uncertainties can be complex, and an early initiation can
be costly if forecasting errors are present. Secondly, follow-on conflicts may be created by a maneuver
to resolve one conflict, against one of the primary rules for ATCos mentioned before. This is especially

32 2. Conflict Resolution

likely in unstructured heavy-traffic scenarios, where one maneuver can trigger a domino of new con-
flicts [29].

7. "Strategic Deconfliction and Path Planning" [29]. Strategic deconfliction and path planning com-
pute paths with few to no conflicts based on weather, traffic, origin, destination, and obstacles such as
buildings or terrains. This approach also comes with a few setbacks. First, unlike in traditional avia-
tion settings, there is no legal authority responsible for separation assurance in UAS operations. This
raises the question of who establishes the ground rules, and whether they will be followed by everyone.
[31] proposes a 4D contract consisting of route and crossing times for route deconfliction. Secondly,
although 4D contracts could be a solution, they do not adhere to the unpredictability and flexibility
needed for UAS operations, such as on-demand delivery or response to emergent situations. Further-
more, given the uncertainties mentioned before in UAS maneuvers, a pre-defined flight plan could not
be the solution. Finally, such anticipated planning is very complex in terms of computational power
[29].

Traditional Manned Aviation Small UAS Challenges
Consistent vehicle performance Diverse vehicle performance
Good maneuvering capability Limited maneuvering capability
Performance robust in weather Performance poor in weather
High situational awareness Limited situational awareness
In situ decision making High levels of autonomy
Highly reliable communications Comm link failures common
Emerging, ADS-B, surveillance ADS-B not scalable to dense ops
Air data and weather in situ Little or no in situ weather data
Ground-based surveillance radars No independent surveillance
Ground-based navigation aids No navigational aids
Structured routes and airspace Little airspace structure
High-altitude flight, good LOS VLL, often cluttered LOS, clutter
NAS-wide ATC systems No ATC services
Homogeneous O-D missions Different mission types
Ops segregated from public Ops integrated with public
Scheduled predictable ops Unscheduled, unpredictable ops
SAA in time-tested and mature DAA can fail in high-density ops
Simple separation criteria Complex separation assurance
Clear lines of legal responsibility Legal responsibility unclear

Table 2.1: Small UAS separation assurance challenges (Hunter et al., 2019) [29].

By analyzing the challenges and key drivers of the separation assurance problem for UAS, the authors in [29]
suggest an autonomous ATC on structured airspace as an important component of the solution. Thus, the
challenge of this research is to propose an autonomous controller that can keep aircraft separated both en
route and at intersection points. Reinforcement Learning (RL) algorithms represent a possible framework
to find optimal decisions in such an uncertain environment, by learning from interaction by trial-and-error
without prior knowledge of the environment [64]. The next chapter focuses on reviewing the main Rein-
forcement Learning algorithms that can be used to learn an optimal controller technique based on a reward
function.

3
Reinforcement Learning

Reinforcement Learning (RL) algorithms are well suited for tasks involving sequential decision making re-
quirements [64]. In this chapter, the principal model-free RL techniques are studied. After a brief introduc-
tion to value-based and policy gradient methods, the combination of RL and Deep Learning (DL) is explored,
as Deep Reinforcement Learning (DRL) algorithms have powered multiple solutions in the ATC space, both
for single-agent and multi-agent problems [64].

3.1. Artificial Intelligence

Artificial Intelligence (AI) learning algorithms usually fall somewhere in the spectrum between supervised
and unsupervised learning. Supervised learning algorithms learn from structured and labeled data to predict
output labels for input features. These learning methods are trained using input-output pairs. Some super-
vised learning techniques are Support Vector Machines, Artificial Neural Networks, Logistic Regression, Naive
Bayes, K-Nearest Neighbor, Random Forests and Decision Trees [15]. On the other hand, unsupervised learn-
ing algorithms learn from unstructured and unlabeled data to identify patterns in data. Some examples of
unsupervised learning methods are data compression, clustering, and generative models [37]. In Reinforce-
ment Learning (RL), no correct outputs are given, but only rewards. Thus, RL stands between supervised
(more informative feedback) and unsupervised (less informative feedback) learning. An RL agent takes ac-
tions to maximize their goal (exploitation) while exploring the environment to collect rewards in unknown
areas (exploration) [37]. Based on these rewards, the agent defines its optimal policy. This means that once
learning is successfully completed, the agent has learned which action to take based on its current state to
maximize the likelihood of achieving its goal.

3.2. Environment

A typical single-agent RL environment is defined as a finite Markov Decision Process (MDP). It is character-
ized by <X, U, f, ρ>, where X represents the state space, U the action space, f : X ×U ×X → [0,1] the transition
probability function, and ρ : X ×U ×X →R the reward function. In case the system is deterministic, the tran-
sition probability function can be replaced by f : X ×U → X , and the reward function by ρ : X ×U → R. At
each step k, the environment is in state xk ∈ X . After observing its current state, the agent takes action uk ∈ u
on the environment. According to the current state, the action, and the transition function f, the environment
returns the next state xk+1 ∈ X and a scalar reward rk+1 ∈R, depending on the reward function ρ [13].

Through trial and error on its interactions with the environment, the agent learns the action uk to take at
step k, given the current state xk that maximizes its cumulative reward. This action choice is called a policy
(π), and the maximum possible cumulative reward to be achieved from the current state is called the value
function (V). Each agent explores the state space to learn which action to select at any given state that will
maximize the value of the next state [37].

33

34 3. Reinforcement Learning

3.3. Policy

A policy is the method used by the agent to choose an action at any given state, by maximizing the cumulative
reward. This means that immediate rewards are considered to be less important than long-term rewards. This
way, the agent is forced to stick to its long-term goals, rather than to look for ways of maximizing its rewards
on the next step [37].

Figure 3.1 represents the optimal policy for the following 3x3 grid problem: an agent is placed at a random
cell in the grid. The origin of the grid is the top left corner cell, the x-axis points right and the y-axis points
down. The reward for reaching the star is +10 and the reward for stepping into the crossed cell is -10. The state
space for this problem is X = {0,1,2}×{0,1,2}. The action space is U = {(1, 0), (-1, 0), (0, -1), (0, 1)}, representing
movements to right, left, up and down respectively. For instance, if the agent is placed at the origin of the
grid, there are two optimal actions, (1, 0), and (0, 1) that both lead to the same cumulative reward. In this
case, the agent chooses randomly between them [37]. On the other hand, if the agent is placed in any other
cell (except for the crossed and starred cells), there’s only one optimal action to take, as represented in the
policy diagram.

Figure 3.1: Example of an RL policy.

In case both the state space X and the action space U are quantized and discrete, the policy can also be
represented in the form of a look-up table. As it is observable from Table 3.1, for each state of the environment,
the agent can easily pick up the action that maximizes the cumulative reward according to the optimal policy
π.

0 1 2
0 (1, 0) or (0, 1) (1, 0) (0, 1)
1 (0, 1) * (0, 1)
2 (1, 0) (1, 0) *

Table 3.1: Look-up table of an RL policy.

One way to characterize RL algorithms is based on the path to an optimal solution. RL algorithms can be
divided into off-policy and on-policy methods. Off-policy algorithms learn an optimal policy independently
of the agent’s action. This set of algorithms involves two policies, one acting on the environment - the behav-
ior policy that depends on the exploration-exploitation settings, and another being updated but not being
used - the target policy, whose updates do not depend on the actions taken by the agent. On the other hand,
on-policy learning relies on using the policy that is being learned to act on the environment. [37].

3.4. Return 35

3.4. Return

Figure 3.2 represents the traditional time-step in a Reinforcement Learning algorithm. Given the current
state xk and action taken by the agent uk according to its policy π, the environment returns the next state
xk+1 and a reward rk+1. If the reward is provided with high frequency, it is called a dense reward. In case it is
only provided a few times per episode, or even only at the end of it, it is called a sparse reward [37]. A good
example of a case where a sparse reward is suitable is the Mountain Car Markov Decision Process (MDP). This
problem was first introduced in [42]. This example consists of a car placed at the bottom of a valley. The goal
is to strategically accelerate the car to the top of the right hill. If we consider the discrete problem, the state
space is defined by position speed interval pairs and the action space by the different acceleration intervals
that can be applied. In this case, a positive reward is only provided if the cart reaches its goal destination after
bouncing back and forth in the valley to gather acceleration (a sparse reward).

Figure 3.2: Example of interaction between RL agent and its environment.

The goal of an RL agent is to find a policy π that maximizes the discounted return (Equation 3.1) for every
state. "The discount factor γ can be regarded as encoding an increasing uncertainty about rewards that will
be received in the future, or as a means to bound the sum which otherwise might grow unbounded" [13]. The
discount factor varies between 0 and 1. If γ is closer to 0, the agent will give more importance to immediate
rewards, which may compromise future goals. On the other hand, if γ is closer to 1, the agent will be willing
to delay the reward, as it gives more importance to future rewards. Therefore, a value of γ closer to 1 is
usually preferable. Back to the comparison with supervised learning, rewards are the way of supervision in
Reinforcement Learning, as they are the only feedback the agent receives from the environment [37].

R(x) =
∞∑

k=0
γk rk+1 (3.1)

3.5. Categorizing RL Algorithms

Reinforcement Learning algorithms can be separated into two different groups: model-based and model-
free algorithms. Model-based algorithms require a model of the environment, information that can be very
useful to find desired policies. However, modeling the environment can be very complicated most times. On
the other hand, model-free algorithms can learn how to act on the environment without this external model
[37].

"The first distinction is between model-free and model-based. Model-free RL algorithms can be further de-
composed into policy gradient and value-based algorithms. Hybrids are methods that combine important
characteristics of both methods" [37].

Model-free RL algorithms cannot rely on the dynamics of the model to make decisions. Thus, they have to
run through a series of trajectories (τ) according to a policy (π) to gather experience through the collection
of rewards from the environment. Model-free RL excels at handling complex system dynamics, whose be-
havior is not fully known beforehand [16]. There are three principal subcategories of methods in this set of
algorithms: value-based, policy gradient and actor-critic methods [37].

Value-based algorithms typically use the Bellman equation, studied later in this chapter, to learn a Q-function,
which means they learn a Q-value for every state-action pair. If we want to deal with high dimensional state
spaces such as a raw image input from an Atari game, or the current state in a game of Go, Neural Networks
(NNs) are very often used as Q-value function approximators [37].

36 3. Reinforcement Learning

Figure 3.3: RL algorithm categories (adapted from [37]).

Policy gradient algorithms learn actions from a parameterized policy, via updates to the parameters in the
direction of the improvements. Policy gradient methods are useful when the action space is very large or
continuous, a task that cannot be achieved by value-based methods relying on value-action functions Q(s, a)
[37].

Lastly, actor-critic algorithms are situated between value-based and policy gradient algorithms. These "al-
gorithms are on-policy policy gradient algorithms that also learn a value function (generally a Q-function)
called a critic to provide feedback to the policy, the actor" [37].

On the other hand, in model-based RL, the mathematical model of the environment is known, which means
that the next states and rewards can be determined without any interaction with the environment [37]. This
makes these algorithms much more sample-efficient, meaning that the amount of data required to fit the
model is lower. The combination of model-free and model-based approaches has also shown promising re-
sults in rapid, efficient, and secure real-world task learning, with a reduced amount of experience or demon-
stration data, required [16].

Despite all the benefits of model-based RL, it is a challenge to acquire an accurate model of the environment
for many complex real-world applications [37].

3.6. Value-Based Methods

3.6.1. Value Function

"The value function represents the long-term. quality of a state. This is the cumulative reward that is ex-
pected in the future if the agent starts from a given state" [37]. This means that the following relation can be
established between the value function (V) and the discounted return (R):

V π(x) = E[Rπ(x)] (3.2)

3.6.2. Q-Function

Although it would be very memory efficient to store only the discounted returns for every given state, de-
riving a greedy policy from a value function is nontrivial. "The task of the agent is therefore to maximize its
long-term performance (return), while only receiving feedback about its immediate, one-step performance
(reward)" [13]. This can be achieved with the Q-function [17].

3.6. Value-Based Methods 37

Rπ(x0) =
∞∑

k=0
γk rk+1 =

∞∑
k=0

γkρ(xk ,π(xk))

= ρ(x0,π(x0))+
∞∑

k=1
γkρ(xk ,π(xk))

= ρ(x0,π(x0))+γ
∞∑

k=0
γkρ(xk+1,π(xk+1))

= ρ(x0,π(x0))+γRπ(x1)

(3.3)

The Q-function makes the first action a free variable u0.

Qπ(x0,u0) = ρ(x0,u0)+γRπ(x1) (3.4)

The difference between a value function and a Q-function is that the value function indicates the expected
return given a state, while the Q-function provides the expected return for a value action pair.

V π(x) = E[Rk |xk = x,π] (3.5)

Qπ(x,u) = E[Rk |xk = x,uk = u,π] (3.6)

The goal is to find the optimal Q-function. For this, the Bellman equation is used.

Qπ(x0,u0) = ρ(x0,u0)+γRπ(x1)

= ρ(x0,u0)+γ[ρ(x1,π(x1))+γRπ(x2)]

= ρ(x0,u0)+γQπ(x1,π(x1))

(3.7)

This means that Qpi is improved using bootstrapping, i.e., using the current estimate of the value-action
function. Considering that x1 = f (x0,u0), the Bellman equation for Qπ can be written as:

Qπ(x,u) = ρ(x,u)+γQπ(f (x,u),π(f (x,u))) (3.8)

Considering a deterministic system. The goal is to derive a greedy policy from the optimality solution Q*.
Thus, we take Bellman optimal equation (for Q*).

Q∗(x,u) = ρ(x,u)+γmaxu′Q∗(f (x,u),u′) (3.9)

Where u’ is the action for the next state. As long as we have an optimal Q*, an optimal policy can be computed
by choosing the action with the maximum E value for every state [13].

π∗(x) = ar g maxuQ∗(x,u) (3.10)

"A policy that maximizes a Q-function in this way is said to be greedy in that Q-function. So, an optimal policy
can be found by first determining Q∗ and then computing a greedy policy in Q∗" [13].

3.6.3. Q-Learning

Q-learning, introduced by Watkins in 1989 is a simple, yet powerful off-policy value-based model-free RL
algorithm that approximates the optimal control dynamic programming. This algorithm can be viewed as
asynchronous dynamic programming [66]. It builds upon the previous explanation of the Q-function. If we
take the Bellman Equation 3.9 at some (x, u) and turn it into an iterative update substituting the transition
function f and the reward function ρ by a transition sample (xk ,uk , xk+1,rk+1):

Q(xk ,uk) ← rk+1 +γmaxu′Q(xk+1,u′) (3.11)

38 3. Reinforcement Learning

Finally, we make the update incremental by adding a learning rate αk ∈ [0,1] multiplied by the temporal
difference error term:

Q(xk ,uk) ←Q(xk ,uk)+αk · [rk+1 +γmaxu′Q(xk+1,u′)−Q(xk ,uk)] (3.12)

The convergence of Q-Learning for deterministic MDP is achieved if each state-action pair is visited an infi-
nite number of times. This means that the agent "...can learn the Q function (and hence the optimal policy)
while training from actions chosen completely at random at each step, as long as the resulting training se-
quence visits every state-action transition infinitely often" [39]. This is accomplished, in practice, by a trade-
off between exploration (choosing actions at random) and exploitation (choosing greedy actions according
to the current knowledge). Exploration allows the agent to explore new state-action pairs, while exploita-
tion lets it optimize the state-action pairs that have already been explored before, making the process more
sample-efficient.

In practice, the balance between exploration and exploitation is accomplished using the ϵ-greedy strategy,
where ϵ ∈ [0,1] sets the exploration probability.

uk =
{

ar g maxu′Q(xk ,u′) with probability (1−ϵk)

a random action with probability ϵk
(3.13)

3.6.4. SARSA

SARSA (state-action-reward-state-action) is another value-based RL algorithm similar to Q-Learning. How-
ever, in the case of SARSA, the method is on-policy. The update rule is given by:

Q(xk ,uk) ←Q(xk ,uk)+αk · [rk+1 +γQ(xk+1,uk+1)−Q(xk ,uk)] (3.14)

Instead of considering the action with the highest possible value (that might be different from the actual
agent action due to exploration) for the temporal difference (TD) update, SARSA considers the actual action
performed by the agent.

3.7. Policy Gradient Methods
Despite being able to represent complex policies to control agents, value-based methods present limitations
when dealing with a very high number of actions of continuous action spaces. In such cases, when the model
cannot be represented using a low dimensional action space, Policy Gradient (PG) algorithms exhibit great
potential [37].

Policy gradient algorithms, introduced by Sutton in 1999, learn to represent a parameterized policy πθ as a
function approximator, by maximizing the expected return E [R|θ] with respect to the policy parameters θ.
[61] [3].

In the case of discrete action space, the parameterized policy yields a value (z) for each action. These values
are then normalized and converted to probabilities of taking each action using the softmax function, such
as the sum of the probabilities of every possible action is equal to 1 [37]. By sampling at random over the
probability distribution, the exploration-exploitation balance is achieved.

πθ(u|x) = ez(x,u)∑
i ez(x,ui)

(3.15)

3.7.1. Policy Gradient

Considering θ the parameters of a given policy, the goal of an RL agent is, as studied before, to maximize the
expected return over the trajectory. Thus, the objective function is given as:

J (θ) = Eτ∼πθ
[R(τ)] (3.16)

The parameters are optimized in the direction of the gradient ∇J (θ) using gradient ascent, similar to the
classical gradient descent, but looking to find the maximum in the objective function. When the maximum

3.7. Policy Gradient Methods 39

is found, πθ generates trajectories (τ) with the highest possible returns. According to the policy gradient
theorem, introduced by Sutton et al., it is possible to calculate the derivative of the objective function with
respect to the policy’s parameters, without calculating the derivative of the state distribution. [61].

∇J (θ) = Eπθ
[∇θlogπθ(u|x)Qπθ

(x,u)] (3.17)

One can estimate the expectation by sampling trajectories from the policy.

∇J (θ) ≈ 1

N

N∑
i0

[∇θlogπθ(ui |xi)Qπθ
(xi ,ui)] (3.18)

Using gradient ascent, the policy can be optimized using parameter update with learning rate α. The plus
sign in the formula of gradient ascent means the objective is being maximized (i.e. the parameters are being
updated in the direction of the gradient) [37].

θ = θ+α∇θ J (θ) (3.19)

3.7.2. REINFORCE

REINFORCE is the simplest policy gradient algorithm. The challenges raised by the simplicity of this algo-
rithm will be tackled in the next sections, where we will develop an understanding of two more RL algorithms:
REINFORCE with baseline and actor-critic (AC) [37].

The REINFORCE algorithm is an on-policy method, collecting experience for sampling based on its interac-
tions with the environment. To compute the gradient of the objective function, we have to define how to
calculate the action-value function. In REINFORCE, Qπθ

(x,u) is estimated using Monte Carlo (MC) returns.
"Monte Carlo methods estimate the expected return from a state by averaging the return from multiple roll-
outs of a policy" [3]. This means that Equation 3.17 can be replaced by:

∇J (θ) = Eπθ
[∇θlogπθ(uk |xk)Rk] (3.20)

Where Rk is the MC return at time step k. This is also called the reward to go, and is defined as [37]:

Rk =
K∑

k ′=k

γk ′−kρ(xk ′ ,uk ′) (3.21)

3.7.3. REINFORCE with Baseline

The simplest REINFORCE algorithm has a problem of variance, that increases with the length of the trajectory.
This happens because of the stochasticity of the policy, which means that executing the same policy multiple
times may lead to different outcomes, and thus, the value assigned to a certain state-action pair may not be
correct [37].

To reduce the variance and improve the stability and performance of the REINFORCE algorithm, a baseline,
b, is introduced [37]. The gradient of the objective function in the REINFORCE with baseline algorithm is
then given as:

∇J (θ) = Eπθ
[∇θlogπθ(uk |xk)(Rk −b)] (3.22)

The simplest way of defining baseline b is by subtracting the average return. However, this way, the baseline
could be conditioned on the state.

b = 1

N

N∑
n=0

Rn (3.23)

A better alternative is to estimate the value function V πθ , which is, on average, the return obtained by follow-
ing the policy πθ.

40 3. Reinforcement Learning

∇J (θ) = Eπθ
[∇θlogπθ(uk |xk)(Gk −V πθ (xk))] (3.24)

To learn the value function, the best strategy is to fit an ANN with MC estimates.

V πθ
w (s) =

K∑
k ′=k

γk ′−kρ(xk ′ ,uk ′) (3.25)

Where w represents the weights of the Neural Network (NN). The NN is trained on the same data used for
learning πθ, and thus, it does not require any extra interaction with the environment. MC estimates will serve
as the target values to optimize the network’s parameters [37].

3.7.4. Actor-Critic

Figure 3.4: Actor-critic algorithm layout [25].

As we have seen before, REINFORCE had a high variance shortcoming. While adding a baseline improved
it, the convergence of the algorithm is very slow. To speed up learning, the bootstrap method can be used.
As in Q-Learning, we can use subsequent state values in the estimate of returns. The hybrid policy-gradient
algorithm that uses this is called actor-critic (AC), introduced by Konda et al. in 1999, and it combines the
benefits of value-based and policy gradient methods [37]. While most RL methods rely solely on a param-
eterized policy or a value-function approximation, AC methods aim at combining the strong points of both
methods. [35].

Using one-step bootstrapping, the action-value function is defined as:

Q(x,u) = ρ(x,u)+γV (x ′) (3.26)

Where x’ is the next state. In AC algorithms, the actor controls a parameterized policy πθ and the critic rep-
resents a parameterized state-value function (Vw) [37]. "The actor (policy) learns by using feedback from the
critic (value function)" [3]. Using a one-step AC update:

θ = θ+α(ρk +γVw (x ′)−Vw (x))∇θlogπθ(uk |xk) (3.27)

3.8. Deep Reinforcement Learning 41

As opposed to MC methods, TD learning has low variance but high bias. Thus, the combination of both
algorithms is most of the time the best solution. To acknowledge this trade-off, an n-step return can be used
in AC. Using the n-step MC return Gk:k+n , the actor parameters’ update can be rewritten [37].

θ = θ+α(Rk:k+n +γnVw (xk+n)−Vw (xk))∇θlogπθ(uk |xk) (3.28)

The quantity Rk:k+n +γnVw (xk+n)−Vw (xk) can be defined as an estimate for the advantage function:

A(u, x) =Q(u, x)−V (x) (3.29)

Usually, this function is easier to learn; "more intuitively, it is easier to learn that one action has better conse-
quences than another than it is to learn the actual return from taking the action" [3].

To optimize the parameters w of the critic, Stochastic Gradient Descent (SGD) with Mean Squared Loss (MSE)
is used. The target values yi are computed using the following formula:

yi = Rt :t+n +γnVw (xk+n) (3.30)

Finally, the MSE loss function to optimize is defined as:

L = 1

2

∑
i

(Vw (xi)− yi)2 (3.31)

3.8. Deep Reinforcement Learning
So far, we have been mainly studying RL problems where the state space is quantized. However, for very high-
dimensional problems, standard RL algorithms cannot scale the computation of value and policy functions
for all states as the size of the table grows exponentially. Moreover, even if we had no memory constraints,
this table could only be sparsely filled, and information could not be efficiently propagated between state-
action pairs. Deep Reinforcement Learning (DRL) is very efficient at processing this curse of dimensionality.
Classical DRL approaches use Convolutional Neural Networks (CNNs) as function approximators to compute
optimal value-action functions [25] [37] [3].

3.8.1. Deep Q-Network

The simpler DRL method is Deep Q-Network (DQN). In Deep Q-learning, a Q value would be stored for every
state-action pair. As mentioned before, this approach is not scalable to high-dimensional or continuous state
spaces such as raw image inputs. Traditionally, DQN uses CNNs, taking a raw image as an input and directly
predicting the Q-values for every possible action, without the need to store them. The only memory being
used in this case only has to store the network’s weights, which are shared across all the different stages of the
environment. This makes the process much more memory-efficient [37].

In DQN, the Q-values are parameterized in θ, the weights of the neural network:

Qθ(x,u) (3.32)

The objective of DQN is to optimize the Q-function approximator neural network’s weights θ, in order to at-
tain the best possible estimations. However, since the optimal Q-function is not provided to be used as a tar-
get in training the network, the best solution is to minimize the Bellman error for one step r+γmaxu′Qθ(x ′,u′)−
Qθ(x,u), where x’ and u’ refer to the next step. Thus, the parameters θ of the NN can be optimized according
to the following equation:

θ← θ−α[r +γmaxu′Qθ(x ′,u′)−Qθ(x,u)]∇θQθ(x,u) (3.33)

Where ∇θQθ(x,u) is the partial derivative of the Q-function with respect to the neural network’s parameters.
Although this update resembles tabular Q-learning, it does not yield a good approximation. To improve DQN,
the Mean Squared Error (MSE) loss is used. Furthermore, rather than an online update (i.e. updating the pa-
rameters for every sample collected during training), a batch update is chosen. [37]. This is called experience

42 3. Reinforcement Learning

replay, and stores (xk ,uk ,rk+1, xk+1) in memory, such that sample batches can be selected at random to train
the network. There are two main advantages to using a fixed memory buffer (it eliminates older samples to
give place to new ones): first, because mini-batches are sampled from a large pool, temporal correlations
that tend to deprecate RL agent’s learning are broken and these samples can be considered independent and
identically distributed (IID); secondly, the use of batches improves the efficiency of training by reducing the
required number of interactions with the environment and the variance of learning updated [25] [3].

L(θ) = E(x,y,r,x′)[(yi −Qθ(xi ,ui))2] (3.34)

Where y is the Q-target value. The network’s parameters θ are updated according to the gradient descent
formula [37]:

θ = θ−α∇θL(θ) (3.35)

There is yet another cause of instability in the prior formulation of Deep Q-Network: the non-stationarity of
the Q-Learning algorithm. As we have formulated the problem, the network that is updated at every step is
the same which predicts the target values yi . This is a source of instability in the learning process. To tackle
this issue, the concept of a separate target network was introduced. The target network is used to predict
the target value, but its weights are only updated in N-step intervals, contrary to the online network, whose
weights are updated every single step. Usually, the value of N varies between 1000 and 10000 steps, meaning
that with every fixed number of steps the parameters of the online network are copied to the target network.
For all the other steps, the weights of the target network are kept frozen [3] [37]. With this in mind, the Q-target
value can be defined as:

yi = ri +γmaxu′
i
Qθ′ (x ′

i ,u′
i) (3.36)

Where θ′ are the parameters of the target network, θ are the parameters of the online network, and Q is the
Q-function of the target network. Therefore, the loss function becomes:

L(θ) = E(x,y,r,x′)[(r +γmaxu′Qθ′ (x ′,u′)−Qθ(x,u))2] (3.37)

Deep Q-Network was introduced as the first RL model to learn optimal policies directly from raw image in-
puts. Mnih et al. developed this method to play Atari arcade games and achieved super-human performance
in some of them. The architecture implemented in [41] takes an 84x84x4 input, a grayscale image with 4
channels. Each channel represents one of the last 4 frames saved in memory. This allows the agent to not
only know the state of the game but also its recent evolution, overcoming the partial observability problem
of Atari games. If we consider the game of pong, it is not possible to know if the ball is traveling left or right
based only on a single frame [37]. After a series of convolutions and nonlinearities are applied to the input,
the output layer contains a prediction head for each possible action. This avoids having to run a different
network for each action, given that one single network can predict the Q values for all discrete actions [41].

3.8.2. Double Deep Q-Network

Double DQN (DDQN) was first introduced by Hasselt et al. [62] as a more stable and reliable learning method
to tackle the overestimation problem found in DQN that led to sub-optimal policies. Double Q-Learning
appears to tackle the overestimation challenge found in Q-Learning. Since the maximum operator is used
to choose and evaluate actions, it is more likely to compute overoptimistic Q-values [62]. In classical dou-
ble Q-Learning, first introduced by Hasselt [23], two Q-functions are learned Q A and QB . Each Q-function
is updated with a value from the other Q-function trained on the same problem but with a different set of
experiences. The greedy action is derived by averaging both Q-values [23]. DDQN aimed at reducing over-
estimations by decoupling the maximum operation into action selection and action evaluation. The online
network in the DQN architecture is used to evaluate the greedy policy, while the target network is leveraged to
estimate its value [62]. DDQN changes only the target calculation of DQN that we have previously discussed
in Equation 3.36 [65].

yDDQN
i = ri +γQ(x ′,maxu′Q(x ′, a′;θi);θ−) (3.38)

Where θ− are the weights of the target network and θi the current weights of the online network. The update
of the target network remains periodic as in DQN [62].

3.8. Deep Reinforcement Learning 43

3.8.3. Prioritized Experience Replay

Prioritized Experience Replay (PER) built on top of DDQN was introduced by Schaul et al. [51]. As discussed
before, experience or memory replay allows DRL agents to use experiences collected in the past during the
learning process. Classically, the mini-batches used for training the online network were sampled uniformly
from the experience buffer. Prioritized experience replay is aimed at improving learning efficiency by re-
playing state transitions with high expected learning progress more frequently. This importance of a given
transition is measured by the TD error (temporal-difference error). Based on this priority metric, this method
proposes a stochastic selection method, combining greedy prioritization with uniform random sampling.
Using PER, the probability of sampling transition i is computed as:

P (i) = pα
i∑

k pα
k

(3.39)

Where α determines how much prioritization is given, and thus, α = 0 corresponds to uniform sampling.
pi is the priority computed by the TD-error of transition i [51]. Another concept introduced in this paper
is the importance-sampling (IS) weights. Since the estimation of the expected value relies on the distribu-
tion of transitions, and prioritized experience replay changes this stochastic distribution with non-uniform
sampling probabilities, inducing a bias, IS weights were introduced to compensate for this.

wi = (
1

N
· 1

P (i)
)β (3.40)

Where β is a hyper-parameter that represents the amount of importance-sampling correction. If β = 1, the
non-uniform sampling probabilities P (i) are fully compensated. Prioritized replay was found to speed up
learning by a factor of 2 and lead to a new benchmark on the Atari games [51].

3.8.4. Dueling Deep Q-Network

Figure 3.5: Stream Deep Q-Network (top) vs. Dueling Deep Q-Network (bottom) [65].

The idea behind the development of the Dueling Network Architecture in [65] is that in typical RL problems,
it is not necessary to estimate the value of every possible choice of action. The authors provide the example
of the Enduro game setting, where it is only important to know which action to take when a collision is im-
minent. They designed the dueling network, that changes the architecture of DQN by adding two modules
on top of the convolutional layers, instead of only fully connected layers. These streams are built to have the
capacity of computing separate value and advantage functions. This has the benefit that each of the modules
will pay attention to different features of the input. For a race environment, the value streams learn to pay
attention to the road, while the advantage streams pay attention to cars immediately in front of the agent.
Both of these streams are combined to yield a value for the Q-function for every eligible action. Since the
output of the network is a set of Q-values, it can be trained using one of the algorithms studied before, such

44 3. Reinforcement Learning

as DDQN or SARSA. Considering the Dueling Network settings, a parameterized estimate of the Q-function is
computed as:

Q(x,u;θ,α,β) =V (x;θ,β)+ (A(x,u;θ,α)− 1

|U |
∑
u′

A(x,u′;θ,α)) (3.41)

Where α and β are the parameters of the two branches of FC layers, θ represents the parameters of the con-
volutional layers, and U is the finite set of actions. The A(x,u;θ,α) vector is |U |-dimensional [65]. The com-
bination of this dueling network architecture with the previously discussed PER is a state-of-the-art discrete
RL technique [3].

3.8.5. Trust Region Policy Optimization

To improve the stability of the policy-gradient algorithms, Natural Policy Gradient (NPG) was introduced by
Kakade in 2001 to represent the steepest descent direction based on the structure of the parameters, i.e.,
towards the greedy optimal action [32]. To understand NPG, one has first to understand two underlying con-
cepts: first, the Fisher Information Matrix (FIM) is the covariance of an objective function and the Kullback-
Leibler (KL) divergence is a metric that measures how different two distributions are. The higher this value,
the larger the KL divergence metric. The goal is to limit the distance between the old and new distributions
in a model update, which is why the KL distribution is used [37].

DK L(P ||Q) =− ∑
x∈X

P (x)log (
Q(x)

P (x)
) (3.42)

The "FIM defines the local curvature in the distribution space by using the KL divergence as a metric" [37].
The direction and length of the optimization step are adjusted with respect to the second-order derivative of
the KL divergence and the first-order derivative of the objective function in order to stabilize the convergence
of the objective [37].

θ← θ+αF−1∇θ J (θ) (3.43)

Despite the usefulness of the NPG, computing F−1 is very computationally demanding when using modern
DNNs. Trust Region Policy Optimization (TRPO) is an on-policy actor-critic method, proposed in 2015 by
Schulman et al. It uses multiple approximations to compute the NPG, aiming at stabilizing the training of
a DNN policy [37]. This algorithm has proven to be scalable and able to optimize complex policies such as
swimming, hopping, walking, and playing Atari games from raw image inputs [52].

The algorithm uses a surrogate loss function constrained with the distance (KL divergence) between the new
policy and the old policy, representing a trust region. This means that the optimization steps are bounded to
a trust region where the cost function approximation is valid [3] [52]. In practice, the constraint problem on
the policy parameters in TRPO is defined as follows:

maximizeθ Jθold (θ)

subject to DK L(θold ,θ) ≤ δ
(3.44)

Where Jθold (θ) is the objective surrogate function, DK L(θold ,θ) is a heuristic approximation which considers
the average KL divergence between the old parameters θold and the new ones θ, and δ is a coefficient of
the constraint [37]. The objective surrogate function is minimized with respect to the new parameters while
using the state distribution from the old policy. To accomplish this, the authors use an importance sampling
estimator. This is needed because the trajectory is sampled using the old policy, but we want to compute the
distribution of the new one. The final optimization problem solved in TRPO is defined next [52].

maximizeθ Ex∼pθold ,x∼q [
πθ(u|x)

q(u|x)
Qθold (x,u)]

subject to Ex∼ρθold [DK L(πθold (·|x)||πθ(·|x))] ≤ δ

(3.45)

3.8. Deep Reinforcement Learning 45

Where p is the distribution of the initial state x0, q is the sampling distribution, and π(·|x) indicates the ac-
tions distributions conditioned on the state x [37]. From the previous equation, we have to substitute the
expectations by an empirical average using a batch of samples and the Q value by an empirical estimate [52].
An example of a possible sampling method, typically used for policy-gradient estimation is the single path.
Using this scheme, a sequence of state are collected by sampling s0 ∼ ρ0, and simulating a trajectory for T time
steps using the old policy πθold , which will give us a sequence of state action pairs. Thus, q(u|x) =πθold (x|u).
The old Q-values Qθold (x,u) are estimated based on the sum of future discounted rewards along the trajec-
tory [52].

3.8.6. Generalized Advantage Estimation

Policy gradient methods are usually very sample-consuming, requiring a large amount of experience to yield
good learning results. To address this challenge, Schulman et al. proposed an exponentially-weighted esti-
mator of the advantage function, reducing the variance of policy gradient estimates, but introducing some
bias [53]. Denoting the estimate of the discounted advantage function at time step k Âk , the policy gradient
estimator can be written as:

ĝ = 1

N

N∑
n=1

∞∑
k=0

Ân
k∇θlogπθ(un

k |xn
k) (3.46)

Where n indexes over a batch of episodes. The generalized advantage estimator, G AE(γ,λ), is written as an
exponentially-weighted average.

ÂG AE(γ,λ)
k =

∞∑
l=0

(γλ)lδV
k+l (3.47)

Where δV
k = rk+1 +γV (xk+1)−V (xk). The parameter λ is usually set between 0 and 1 and regulates the trade-

off between bias and variance. Finally, a value function estimator has to be defined. In case a nonlinear
function approximator is used to represent the value function, the most straightforward approach to finding
its parameters is to solve a nonlinear regression problem.

minimizeϕ
N∑

n=1
||Vϕ(xn)− V̂n ||2 (3.48)

Where V̂k is the discounted sum of rewards as we have seen before, and n indexes all time steps in a trajectory
batch. The authors added a KL divergence constraint in their trust region (TR) method to optimize the value
function to avoid overfitting the parameters to the most recent batch of data [53]. Using TRPO together with
GAE is a state-of-the-art continuous RL technique [3].

3.8.7. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy, actor-critic algorithm, introduced by Shulman et al. in
2017. It is based on the same ideas as the previously studied TRPO but takes a more simple, general and
sample-efficient approach [37]. This work proposed a novel objective function that allows for multiple epochs
of mini-batch updates. The experiments done by the authors have shown that PPO outperforms other online
policy gradient algorithms in tasks such as robotic locomotion and playing Atari games [54].

The main concept behind PPO is a clipped surrogate objective function. Instead of constraining the objective
as we have seen in TRPO, PPO clips it when it moves away to ensure that optimization steps are not very large
[37]. The main objective function proposed by the authors is given as follows:

LC LI P (θ) = Ex∼pold ,u∼πold [mi n(rk (θ)Ak ,cl i p(rk (θ),1−ϵ,1+ϵ)Ak)] (3.49)

Where ϵ is a hyper-parameter and rk (θ) is a probability ratio:

rk (θ) = πθ(uk |xk)

πθold
(uk |xk)

(3.50)

46 3. Reinforcement Learning

The goal of this objective is to prevent rk from getting outside of the interval [1−ϵ,1+ϵ], by penalizing changes
to the policy that move rk away from 1 [54]. The practical implementation of the PPO algorithm uses a trun-
cated version of the GAE method we have discussed before to estimate the advantage function. At every time
step, multiple trajectories are collected within a time span, and both the policy and the critic are updated
multiple times using mini-batches [37].

3.8.8. Deep Deterministic Policy Gradient

Policy gradient methods, such as TRPO, are not sample efficient in finding an optimal policy, due to their
on-policy nature. In this section, a new set of off-policy actor-critic algorithms is introduced [37]. All policy
gradient algorithms we have studied so far consider stochastic policies πθ(u, x) = P [u|x,θ] that gives a proba-
bility of taking a certain action given the state x and the policy parameters θ. On the other hand, deterministic
policy gradient algorithms use deterministic policies u =µθ(x). Since the deterministic policy gradient (DPG)
integrates over the state space only, it is more sample efficient than the stochastic case that integrates over
both states and actions [56].

Finding an off-policy algorithm that is able to learn desired policies in high-dimensional environments is dif-
ficult. We have studied DQN before, which is able to do this for discrete action settings. If we want to use DQN
in continuous environments, we must discretize the action space. However, for tasks that need more precise
control, this strategy is not scalable. The goal of deterministic policy gradient is to learn a deterministic AC,
i.e., a deterministic µθ(x) policy that approximates ar g maxuQ(x,u). A deterministic policy makes it possible
to work with continuous state-action environments by avoiding a global maximization at every time step [37]
[56].

According to the deterministic policy gradient theorem, a deterministic policy is defined as µθ : X →U , with
parameter vector θ ∈Rn . We define the objective function as an expectation [56].

∇θ J (µθ) = Ex∼pµ [∇θµθ(x)∇uQϕ(x,u)|u=µθ
] (3.51)

To make DPG off-policy, the objective function has to be slightly changed to take into account the value func-
tion of the target policy, parameterized by θ, averaged with respect to the state distribution of the behavior
policy, parameterized by β [56].

∇θ Jβ(µθ) = Ex∼pβ [∇θµθ(x)∇uQϕ(x,u)|u=µθ
] (3.52)

Where β is the behavior or exploratory policy that generates the trajectories. In the off-policy deterministic
actor-critic algorithm, the critic uses Q-learning updates to minimize the Bellman error [56].

δk = rk +γQw (xk+1,µθ(xk+1))−Qw (xk ,uk)

wk+1 = wk +αwδk∇w (xk ,uk)

θk+1 = θk +αθ∇θµθ(xk)∇uQw (xk , ak)|u=µθ(x)

(3.53)

DPG is in practice very unstable when implemented with DNNs. Deep Deterministic Policy Gradient (DDPG),
introduced by Lillicrap et al. in 2015 was the first deterministic actor-critic algorithm that uses DNNs to learn
both the actor and the critic. This is a model-free, actor-critic, off-policy algorithm, extending DQN to the
continuous action RL setting [37] [36].

To train neural networks in RL settings, one has to ensure the samples are IID, which does not hold true
with sequential experiences. Moreover, to increase training efficiency, learning should happen through mini-
batches, rather than online. Similarly to DQN, the DDPG authors decided to use a replay buffer to train the
actor and the critic by sampling a mini-batch from the buffer using a uniform distribution [36].

To tackle the instability faced when directly using NNs with Q-learning, due to the fact that a single network
is being updated while computing the target values, the authors also used a separate target network inspired
by DQN. However, they adapted it for actor-critic settings, using two online networks, one for the critic and
the other for the actor, and two target networks. Moreover, they used "soft" target updates, instead of directly
copying the weights from the online network to the target network, as it happens in DQN every N steps [36].

3.8. Deep Reinforcement Learning 47

A "soft" update means that the actor’s parameters θ′ are partially updated every time step with the current
parameters θ of the online network, as defined in Equation 3.54.

θ′ ← τθ+ (1−τ)θ′ (3.54)

With τ << 1. The main benefit of this approach is the increased stability added to the algorithm. The same
happens for the critic online and target networks parameterized by ϕ and ϕ′ respectively [37]. A third chal-
lenge faced when learning from low-dimensional feature vector observations is that different components
can have units in different ranges. This may make it more difficult for the network to adjust the weights effec-
tively. The authors of DDPG borrowed the concept of batch normalization from deep learning and applied
it to ensure that each dimension across samples in a mini-batch is normalized, making learning faster and
more efficient [36].

To overcome the challenge of exploring a continuous action space environment, DDPG takes advantage of
its off-policy nature, introducing an exploratory policy βθ that is built by adding noise sampled from a noise
process N [37] [36].

βθ(xk) =µθ(xk)+N (3.55)

In summary, the DDPG algorithm consists of three steps performed repeatedly: first, the exploratory policy
βθ collects experience, i.e. state observations and rewards from the environment and stores them in memory
(replay buffer). Secondly, the critic and the actor are updated using a mini-batch sampled from the replay
buffer. The critic is updated using MSE loss between the values predicted by the online critic Qϕ, and the
target values, yi , predicted using the target critic Qϕ′ [37].

yi = ri +γQ(x ′,µ′(x ′|θµ′)|θQ ′) (3.56)

Where µ′ is the target actor-network and Q ′ is the target critic network [36]. The actor is updated using Equa-
tion 3.52. Lastly, the target network parameters are updated using the "soft" update explained before [37].
The experiments performed by the authors of DDPG have shown that the algorithm was able to solve more
than 20 simulated physics tasks and to learn end-to-end policies directly from raw image inputs [36].

3.8.9. Twin Delayed Deep Deterministic Policy Gradient (TD3)

Twin Delayed Deep Deterministic Policy Gradient (TD3) is a state-of-the-art off-policy actor-critic algorithm
that builds upon DDPG to make it more stable, performant, and less sensitive to hyper-parameters [37]. This
word proposed a clipped double Q-learning in an actor-critic setting to tackle the overestimation bias we
have discussed when introducing DDQN [20].

In DDQN, the authors used two neural networks, one for choosing the action and the other to calculate its
value. Although this idea has been successfully applied for value-based settings, it does not work in actor-
critic because policies change very slowly. Thus, the online and target networks are too similar to estimate
different values. Instead, the authors of TD3 propose the use of a pair of actors (πθ1 ,πθ2), and a pair of critics
(Qϕ1 ,Qϕ2), where πθ1 is updated with respect to Qϕ1 and πθ2 with Qϕ2 [20]. The learning target proposed
considers the minimum estimate between the two separate critics:

y = r +γmi ni=1,2Qϕ′
i
(x ′,µθ′ (x ′)) (3.57)

This novel update rule may generate an underestimation bias, but the authors consider this to be prefer-
able in comparison to an overestimation bias. This is because the propagation of the underestimation bias
does not occur through the policy update, as opposed to the overestimation bias. To reduce computational
costs, a single actor can be used and optimized concerning Qϕ1 . TD3 has outperformed other state-of-the-art
methods in every OpenAI gym environment tested [20].

4
Multi-Agent Deep Reinforcement Learning

As stated in the introduction of this report, the goal of this research is to assess the feasibility of an au-
tonomous controller to ensure separation in high-density airspace mergers. Model-free RL methods are one
of the possibilities to tackle this problem. However, multiple problems arise when we extend single-agent RL
algorithms to multi-agent settings, namely non-stationarity or the moving target problem, partial observabil-
ity, and the credit assignment problem. In this chapter, we discuss solutions found in the literature for these
problems.

4.1. Single-Agent vs. Multi-Agent Systems

In a single-agent system, there is only one agent whose goals, actions, and knowledge are modeled. It is how-
ever possible to have more agents if we consider a centralized system in which the decision power is done
by the only agent interacting with the environment and controlling the other agents that may be viewed as
part of the environment, and not as having its own goals, actions, and knowledge [59]. A multi-agent sys-
tem, on the other hand, is a group of autonomous entities perceiving and actuating on a shared environment
[12]. The main difference between single and multi-agent systems is that in a multi-agent scenario, the envi-
ronment dynamics may be altered due to actions taken by other agents. Figure 4.1 depicts the general case
where multiple agents are part of the environment but modeled as different entities, with possibly different
goals, actions, and domain knowledge. A specific environment may be modeled using a different number of
agents, levels of heterogeneity (by having different goals, domain models, or actions), and with or without the
capacity to interact directly via communication [59].

Figure 4.1: A general multi-agent system [59].

49

50 4. Multi-Agent Deep Reinforcement Learning

4.2. Multi-Agent Environment

As we have seen before, the typical single-agent RL scenario is defined as an MDP. A stochastic game is defined
by generalizing the MDP to a multi-agent setting. It is defined as the tuple < X ,U1, ...,Un , f ,ρ1, ...,ρn >, where
n is the number of agents, X is the finite state space, Ui , is the finite set of actions available to the agents. The
interaction between the agents and the environment generates a joint action set U =U1 × ...×Un . The state
transition probability is given by f : X ×U×X → [0,1]. Lastly, the reward function is given as ρi : X ×U×X →R.
In a stochastic game, the state transition is conditioned by the joint action of all agents, and the sum of each
agent’s individual policy forms a joint policy h [13]. The return can then be defined as:

Rh
i (x) = E[

∞∑
k=0

γk ri ,k+1|x0 = x,h] (4.1)

4.3. Challenges and Solutions in Multi-Agent Deep RL

Extending Deep Reinforcement Learning to a multi-agent environment comes with a set of challenges that
MADRL algorithms have to address in order to be efficient at learning and executing complex tasks. In this
section we will address some of the most relevant problems that arise in multi-agent RL settings, starting with
the non-stationarity caused by having multiple agents learning at the same time, creating a moving-target
learning problem for each of the agents, and the partial observability problem. Then, we will move on to study
which are the possible training schemes in MADRL. The possibilities for coordination and communication
between agents will also be discussed. Later, the problem of attributing credit for joint action to individual
agents will be elaborated on. Finally, we will touch on scalability issues and how to overcome them using
different techniques [13] [43] [21].

4.3.1. Non-stationarity

The non-stationarity problem arises due to simultaneous learning and the fact that the environment dynam-
ics appear to be non-stationary from an individual agent point of view [21]. For this reason, every agent faces
a so-called moving target problem, as their optimal policy changes, when the policies of other agents are
altered [13]. In a multi-agent domain, rather than only be concerned with the outcome of its own actions,
an agent must cope with the behavior of other agents that constantly reshape the environment, creating the
non-stationarity problem. The convergence theory that we have discussed before applied to Q-Learning does
not hold anymore in multi-agent environments. The DQN algorithm and its variations that we have studied
before were not designed to deal with non-stationarity. Luckily, more recently, some authors proposed varia-
tions that do [43].

Multi-agent concurrent DQN

Multi-agent concurrent DQN was proposed by Diallo et al. in 2017. Their goal was to let a couple of agents
learn to cooperate in the game of pong. To achieve this, agents must be able to co-adapt to each other’s
behavior. Figure 4.2 depicts the architecture used, considering global goals but independent decision making
capabilities [18].

Figure 4.2: Multi-agent concurrent DQN architecture [18].

4.3. Challenges and Solutions in Multi-Agent Deep RL 51

To let the agents learn to cooperate and correctly divide the area of responsibility, reward shaping is impor-
tant. This model rewarded both agents if they won a game against a pre-trained AI opponent. In case one
agent loses the ball, both agents get punished with a negative reward. Moreover, if they collide with each
other, both get penalized as well. If both of them lose the ball and collide, they are penalized to double [18].

The deep Q-network structure used by Diallo et al. is similar to the one we have introduced before. The
network takes 84x84 screenshots as input. To cope with the partial observability problem, they stack the last
4 frames, so the agents have information about the speed and direction of the ball. They use a traditional
sequence of convolutional layers, followed by fully-connected layers to predict the Q-values for each one of
the 3 possible actions: move up, down, or do not move [18].

The experience replay used is also similar to the one introduced in the DQN paper. However, rather than
sampling at random to obtain the mini-batches used to train the online network, they use the concept of pri-
oritized experience replay we introduced in the previous chapter. The results of this work have demonstrated
that multi-agent concurrent DQN converges even if the environment is non-stationary [18].

Lenient DQN

Lenient-DQN was introduced by Palmer et al. in 2017. To cope with the non-stationarity problem, they use
"...leniency with decaying temperature values to adjust policy updates sampled from the experience replay
memory" [43]. Lenient learning was first introduced by Potter and De Jong to prevent relative overgeneral-
ization, which happens in multi-agent settings when an agent converges to a sub-optimal policy because of
the noise introduced by the exploratory behavior of the other agent. Lenient agents ignore sub-optimal ac-
tions taken by teammates that yield low rewards. The level of leniency is reduced every time the agent visits
a state-action pair. This factor is controlled by a temperature function [45].

l (xk ,uk) = 1−e−K∗Tt (xk ,uk) (4.2)

Where K is a constant that controls the influence the temperature function has on the leniency function.
The temperature is decayed using a β discount factor between 0 and 1. Considering the TD-error δ = Yk −
Q(xk ,uk ;θk), leniency is applied according to the following rule [45].

Q(xk ,uk) =
{

Q(xk ,uk)+αδ if δ> 0 or x > l (xk ,uk)

Q(xk ,uk) otherwise
(4.3)

Where x is a random variable sampled from the uniform distribution x ∼ U (0,1). Lenient DQN adds to the
classical tuple of elements stored in the replay memory the current leniency value for that state-action pair.
This function is computed similarly to Equation 4.2, but the temperature function is given by a dictionary
that maps values of (ϕ(x),u) to temperature values. The state hash-key values ϕ(x) are calculated using an
auto-encoder. An auto-encoder is a neural network that consists of a sequence of convolutional, dense, and
transposed convolutional layers, meaning that it is able to learn a compressed representation of the input
image. This network is trained using the experience collected by the agent in the replay memory [45].

l (x,u) = 1−e−k×T (ϕ(x),u) (4.4)

Where u is the selected action. If the pair (ϕ(x),u) is not present in the temperature dictionary, a new entry
is created, setting the temperature to its maximum value. On the other hand, if the entry is already present,
the temperature will be used and consecutively decayed. To complete the understanding of lenient DQN, we
have to explore its exploration strategy, called T -Greedy Exploration. This action selection method replaces
the ϵ in the ϵ-Greedy algorithm by the average temperature value for a state, comprised between 0 and 1. An
exponent ξ is used to control the rate agent transitions from explorer to exploiter. Thus, an agent takes the
greedy action with probability 1−T (xk)ξ, and a random action with probability T (xk)ξ [45].

Weighted DDQN

More recently, in 2018, Zheng et al. proposed weighted DDQN to cope with non-stationarity and the stochas-
tic rewards caused by the environment’s characteristics and the coexistence of many learning agents [72].
WDDQN applies the idea of leniency to the reward estimator for each state-action pair. Moreover, arguing

52 4. Multi-Agent Deep Reinforcement Learning

that prioritized experience replay leads to poor performance in MAS because the transitions get outdated as
agents update their policies simultaneously, the authors propose a novel scheduled replay strategy to adjust
the priority of transition samples dynamically [72].

Figure 4.3: Network architecture of WDDQN [72].

WDDQN is adapted from an earlier algorithm presented by Zheng, the weighted double Q, by leveraging neu-
ral networks as function approximators. The goal of this WDQ algorithm was balancing between the overes-
timation in Q-learning we have studied before, and the underestimation in the double Q-learning solution
by weighting between a single and double estimator using a parameter β [70]. Thus, in WDDQN, the action
is selected by averaging the Q-values given by two estimators, QU and QV . When u’ is chosen by QU , this
network will be positively biased, and QV negatively biased, and vice versa [72].

a = maxu′
QU (x,u′)+QU (x,u′)

2
(4.5)

Furthermore, the target value used in back-propagation is replaced by a weighted combination, balancing
between overestimation and underestimation. As shown in Figure 4.3, WDDQN does not use the rewards
stored in the replay memory. Instead, they use a lenient reward network (LRN) as an approximator of the
reward function to reduce bias in the immediate reward given by stochastic environments and co-adaptive
agents. Mis-coordination between agents may lower their rewards independently of the optimality of a given
action. To overcome this problem, WDDQN borrows the concept of leniency to update the LRN [72].

Rk+1(xk ,uk) =
{

Rk (xk ,uk)+αδ if δ> 0 or x < l (xk ,uk)

Rk (xk ,uk) otherwise
(4.6)

Where Rk (xk ,uk) is the approximated reward and δ the TD-error between the Rk (xk ,uk) and the target re-
ward, obtained by averaging all immediate rewards stored in memory for that state-action pair. The leniency
function is decayed each time an agent visits a state-action pair as we have seen before [72].

Finally, the authors of WDDQN identified issues with prioritized experience replay (PER). First, PER defines
the priority of a transition based on its TD error. The problem is that if a transition has a very biased reward
due to the stochasticity of the MAS, the PER is likely to pick this transition as a high-priority one to update
the network, when in fact, the reward is incorrect given the noise. To address this, the immediate reward r
is replaced by the estimation using the LRN. Secondly, PER attributes the highest priority to all the samples
in the new trajectory. However, in MAS, the number of trajectories in which agents succeed in cooperation
is low, and when it happens, states closer to the terminal state are more valuable for learning. Moreover,
states that are distant from the terminal state can worsen the estimation. Therefore, samples closer to the
terminal state should often be used to train the network. For this reason, the authors propose a scheduled
replay strategy (SRS) that assigns different priorities based on the sample’s position within the trajectory. This
way, the SRS assigns higher priority to samples that are closer to the terminal state. This has proven to speed
up convergence and improve training performance [72].

4.3. Challenges and Solutions in Multi-Agent Deep RL 53

4.3.2. Partial Observability

In many real-world applications, complete information about the state of the environment is not available to
RL agents. Thus, it is important to build algorithms that cope with the partial observability problem. We have
seen this problem before in the context of DQN applied to pong. If an agent has only access to a single frame,
it cannot extrapolate what are the speed and direction of the ball, and thus, it will have difficulties learning
the best action to take. The DQN authors took a very simplistic approach to solve the problem: stacking
together a sequence of the last few frames. However, as one can imagine, this approach is limited in case
more information about the past could be used. This problem is particularly relevant in the case of MAS,
where environments tend to be more complex, and agents do not know the complete information about the
environment when acting on it [43].

Deep Distributed Recurrent Q-Network

Figure 4.4: Network architecture of DRQN [24].

Deep Recurrent Q-Network (DRQN) was introduced by Hausknecht et al. in 2015. This work aimed at adding
recurrency to DRL in an effort to deal with the partial observability problem. This was achieved using a long
short-term memory (LSTM) network to approximate the Q function [24].
Instead of the stack of the 4 last frames, the DRQN only takes the current frame (84x84) as input for the
convolutional layers, followed by the LSTM. Besides the output of these convolutions, the LSTM also takes
the hidden state passed over by the last unit as input. This way, the information about the past is always
present in a compact representation and considered by the agent [24]. To accomplish this, the LSTM uses a
set of gates to learn which information is important or not, making sure only relevant information about the
past is passed forward to the next unit.

To handle multi-agent partially observable MDP (POMDP), Foerster et al. extended the DRQN algorithm to
the deep distributed recurrent Q-network (DDRQN) method in 2016. The authors propose three key modifi-
cations to the combination of DRQN with IQL, which would be the most straightforward approach to MAS,
but comes at the cost of poor performance when compared to this novel DDRQN algorithm [19]. First, they
add a last-action input to the recurrent neural network (RNN). As agents use stochastic policies during ex-
ploration, they benefit from knowing their action-observation history, rather than the observation history
alone. Thus, by feeding the last action to the network along with the state of the environment, the RNN
can approximate action-observation histories, improving the agent’s decision-making ability. Secondly, they
use inter-agent weight sharing, meaning that all agents share the same neural network with the same pa-
rameters. Different decisions come only from different observations of the environment and thus, different

54 4. Multi-Agent Deep Reinforcement Learning

hidden states. Lastly, they do not rely on the experience replay used in DQN. As we have seen before, the
experience replay can raise challenges in MAS due to non-stationarity, and thus, the authors decided to avoid
possibly misleading experiences during training [19].

Deep Recurrent Policy Inference Q-Network

Figure 4.5: Network architectures of DPIQN (a) and DRPIQN (b) [28].

Deep recurrent policy inference Q-network (DRPIQN) was introduced by Hong et al. in 2017. DRPIQN is
built on top of DPIQN, a method introduced in the same paper, to solve the partial observability problem.
The main goal of DPIQN was to improve the state feature representation in MAS, particularly when modeling
agents with different behaviors. This is done by letting a controllable agent learn the policy features of a target
agent by observation over time. These features are encoded in a spatial-temporal representation vector hPI

of the target agent’s policy πo . DPIQN contains three main components: first, a features extraction module,
which consists of a convolutional neural network. These features he

t are then used for the other two modules,
a Q-function learning module QM , and a policy feature learning module πo . Both the Q-value module and
the policy feature module are built of fully-connected neural networks and take the features from the feature
extractor as inputs. The Q-value module is trained to approximate the optimal Q-function, while the policy
feature module is trying to predict the target agent’s next action ao [28].

DRPIQN is a variant of DPIQN inspired in DRQN to cope with the partial observability problem. We have seen
before how this is important for the approximation of the Q-function. However, it is also important for the
approximation of the target agent’s policy. Considering a competitive environment, the target agent’s policy
can change from a defensive mode to an offensive mode in an episode, making it more difficult for the agent
to adapt the Q-function and the feature policy approximators to the new behavior of the target agent. The
problem is more severe in multi-agent cases as the policies of multiple agents are changing at the same time.
In these cases, inferring the policy of a target agent is a POMDP problem, as the behavior of the target agent
cannot be understood by using only a few observations. By adding recurrent units to both the Q-value and
policy feature approximators, DRPIQN incorporates temporal information in the hidden states of the LSTM
units, allowing the agents to capture long-time dependencies and better policy feature representations [28].

4.3.3. Training Schemes

As we have said before, the most straightforward extension of DRL to MAS would be to train each agent
separately while considering that all other agents are part of the environment. This approach is called de-
centralized training. Agents share no information between them during the process. The main drawback of
using decentralized training is that the environment appears non-stationary from an agent’s perspective, as

4.3. Challenges and Solutions in Multi-Agent Deep RL 55

they do not have access to others’ knowledge, nor to the joint action. Several training schemes have been
proposed in the literature that is better suited for MADRL. In this section, we will analyze centralized training
centralized execution (CTCE), and centralized training decentralized execution (CTDE).

Figure 4.6: Training Schemes in MADRL: Centralized Training Centralized Execution (left); Decentralized Training Decentralized Execu-
tion (middle); Centralized Training Decentralized Execution (right) [21].

The centralized training paradigm relies on updating agent policies based on shared information. This can be
then subdivided into centralized and decentralized execution schemes. CTCE uses a centralizer executor that
takes action on behalf of all agents. The main advantage of this method is that classic single-agent training
methods such as actor-critics or policy gradient methods in multi-agent settings. However, it comes at the
cost of an exponentially growing state-action space if the number of agents is increased [21]. To cope with
the curse of dimensionality problem in CTCE settings, Gupta et al. (2017) represented centralized control as
a "...set of independent sub-policies that map the joint observation to an action for a single agent" [22]. For
instance, considering a policy gradient approach, this means that the probability of the joint action u is the
product of the probabilities of the individual actions ui for each of the agents [22].

P (u) =∏
i

P (ui) (4.7)

This means that the policy of an agent is approximated by a set of output nodes in a neural network, reducing
the dimensions from |U |n to n|U |, being n the number of agents and U the action space for each agent.
Despite this size reduction of the state-action space, CTCE is still not applicable to complex problems due to
scalability issues [22].

The state-of-the-art alternative to CTCE is CTDE. CTDE means that each agent holds an individual policy
mapping from observations to a distribution over individual actions. In this paradigm, agents share compu-
tational resources and information during training, speeding up the learning process and overcoming non-
stationarity, because information about the selected actions is available for every agent [21]. A good example
of a CTDE setting was the DDRQN algorithm we have studied, where agents share the same neural network as
a value-function approximator, but act differently on the environment depending on their local observations.
Parameter sharing can be very beneficial in the case of homogeneous agents since they learn their policies
from the experience gathered by all agents simultaneously [22].

4.3.4. Curriculum Learning

Curriculum learning was introduced by Bengio et al. in 2009. The underlying idea is to improve learning by
starting with simple tasks and then accumulating knowledge to solve complex tasks. In MAS settings, the
tasks of the curriculum become more complex as the number of agents in the environment increases [22].
Curriculum learning proposes reorganizing the training samples according to a set of criteria. By attributing
weights to the training samples, the learning process can start with easier samples, moving towards more
complex ones as the agent progresses. Considering z is the random variable representing a training sample,
such as an input and a target value in supervised learning, and P(z) is the target distribution the agent should
learn from. Then, Wλ(z) is the weight applied to sample z at time step λ [6]. The training distribution at time
step λ is given as follows:

56 4. Multi-Agent Deep Reinforcement Learning

Qλ(z) ∝Wλ(z)P (z)∀z (4.8)

Qλ is a curriculum if the entropy increases with time, meaning the training set becomes more diversified, and
if the weights of particular examples increase as added to the training set. The most straightforward example
of a curriculum is to start training with a set of easy examples, and then move on to the target training set.
This allows the network to capture the global picture first, before specializing in more complex examples [6].

4.3.5. Credit Assignment Problem

Considering a cooperative multi-agent setting, the credit assignment problem is the challenge faced to as-
sign joint rewards to individual agents, as the impact of their contribution to the team’s success is difficult
to estimate. Recent approaches to solving this problem have focused on the decomposition of the reward
between agents, considering their individual contributions. In this section we will study two solutions to this
problem, as part of the CTDE framework we studied before: first, the value decomposition networks (VDN)
"...which factorizes the joint action-value function into a linear combination of individual action-value func-
tions" [21]. Next, we will study QMIX, which was suggested as an improvement to VDN. "QMIX learns a
centralized action-value function that is decomposed into agent individual action-value functions through
non-linear combinations" [21].

Value Decomposition Networks

VDN was introduced by Sunehag et al. in 2017 as an approach to improve on the centralized approach, that
reduces MARL to a single-agent RL problem, and also on independent learners. We have already studied the
disadvantages of both these approaches before. This work aimed for an autonomous solution, in which the
decomposition of the team action-value function over individual agents is learned [60].

Figure 4.7: Network architecture of VDN [60].

The main assumption for VDN’s approach is that the joint action-value function can be decomposed into the
sum of the individual contributions of each agent.

Qtot (τ,u) =
N∑

i=1
Qi (τi ,ui ;θi) (4.9)

4.3. Challenges and Solutions in Multi-Agent Deep RL 57

Where τ is the joint action-observation history, u the joint action, and i the index representing each individual
agent’s components. The approximated action value for individual agents is learned implicitly through back-
propagation using the joint reward as it can be observed in Figure 4.7. This image depicts three steps of the
environment. The recurrent network brings valuable information about the past in the hidden state. Each
of the two agents’ observations passes through a linear layer onto the recurrent layer. Then, a dueling layer
produces the values that are summed up to obtain the joint Q-function for training, while actions are selected
based on individual outputs [60].

QMIX

QMIX was introduced by Rashid et al. in 2018. QMIX aimed at training decentralized policies in a centralized
end-to-end way. They proposed the estimation of the joint action-value function through complex non-linear
combinations of local agent values [48].

Figure 4.8: Network architecture of QMIX. Mixing Network (a); Overall QMIX architecture (b); Agent Network (c) [48].

QMIX represents Qtot uses an architecture consisting of agent networks, mixing networks and hyper net-
works. Each agent a is assigned a network inspired on DRQN that approximates its individual action-value
function Qa(t a ,ua). The mixing network consists of a feed-forward neural network, taking the agent network
outputs as inputs to compute the value of Qtot . To ensure monotonicity, i.e., that the partial derivative of Qtot

with respect to Qa is positive, the weights of the mixing network are always positive. These weights are cal-
culated by the hyper networks, which take the state as input and output the weights for a layer of the mixing
network. Finally, QMIX is trained end to end with respect to the following loss function [48].

L(θ) =
b∑

i=1
[(y tot

i −Qtot (τ,u, x;θ))2] (4.10)

Where b is the batch size of transition samples taken from the replay buffer, y tot = r+γmaxu′Qtot (τ′,u′, s′;θ−),
and θ− are the parameters of the target network as we have seen in DQN [48].

4.3.6. Continuous Environments

Discrete environments are not sufficient to model the full complexity of some real-world applications. For
instance, as we have seen before, the solutions for discrete environments are not scalable for a large number
of possible actions. Thus, it is important to study what are the solutions for multi-agent continuous environ-
ments. In this section, we will extend both the DDPG and the PPO algorithm for multi-agent settings.

MADDPG

MADDPG was introduced by Lowe et al. in 2017 as an adaptation of actor-critic methods that successfully
learn multi-agent cooperative policies. This was achieved with a CTDE framework, by allowing policies to use

58 4. Multi-Agent Deep Reinforcement Learning

Figure 4.9: Network architecture of MADDPG [38].

extra information at training time. In this case, the authors extended an actor-critic policy gradient method
where the critic is augmented using external inputs from other agents [38].
The gradient of the expected return for agent i J (θi) is given as:

∇θi J (θi) = Ex∼pu ,ui∼πi [∇θi logπi (ui |oi)Qπ
i (x,ui , ...,un)] (4.11)

Where π is the set of all agent policies, θ the parameters of these policies, and N the number of agents.
Qπ

i (x,ui , ...,un) is a centralized action-value function that considers all agents’ actions, observations, and
other state information available as input and predicts the Q-value for agent i. These functions are learned
separately by each agent, allowing for the possibility of conflicting rewards in the case of competitive set-
tings, but also for similar rewards in cooperative cases. In deterministic policy settings, this gradient can be
rewritten as [38]:

∇θi J (µi) = Ex,u∼D [∇θi µi (ui |oi)∇ui Qµ

i (x,ui , ...,un)|ui=µi (oi)] (4.12)

Where µi represents a continuous policy µθi with parameters θi . D is the experience replay buffer containing
state, action, and reward information from all agents- Qµ

i is updated according to the following loss function
[38]:

L(θi) = Ex,u,r,u′ [(Qµ

i (x,u1, ...,uN)− y)2] (4.13)

Where y is the target value computed as y = ri +γQµ′
i (x ′,u′

1, ...,u′
N)|u′

j =µ′
j (o j) and µ′ is the set of target policies

with delayed parameters θ′. One of the reasons MADDPG works is that by knowing all other agents’ actions,
the environment becomes stationary, even when the other agents’ policies change. Furthermore, each agent
can maintain an approximation of each of the other agents’ policies, which is then used to compute the
target value in Equation 4.13. This approximation is updated by maximizing the log probability of other
agents’ actions. Finally, to cope with the non-stationarity problem that arises in multi-agent settings due to
the agents’ changing policies, the authors propose to train K in different sub-policies. At each time step, a
random sub-policy is selected for each agent, making agents more robust in handling changes in the policy
of other agents [38].

R-MADDPG
R-MADDPG was introduced by Wang et al. in 2020. The goal of this recurrent algorithm is to handle MA
coordination under partial observability settings with limited communication between agents. Beyond the
recurrency added to both the actor and the critic, another key difference between this approach and the
earlier MADDPG is that R-MADDPG learns two policies in parallel - one for navigation and another one for
communication [63].

4.3. Challenges and Solutions in Multi-Agent Deep RL 59

Figure 4.10: Network architecture of R-MADDPG [63].

Recurrency is added on top of MADDPG to handle limited communication constraints, by enabling agents to
remember past communications and how they affect the capped communication budget. This work intro-
duces three different models to cope with partial observability and limited communication models. First, a
recurrent actor, where an agent’s replay buffer D contains the following information vector: (oi ,k ,ui ,k ,o′

i ,k+1,

ri ,k ,oi ,k ,cp
i ,k ,cp

i ,k+1). o represents the partial observations of agent i at time step k, u its action resulting from
policy πi ,k (oi ,k ,ci ,k), r the agent’s reward, and cp the cell state of the actor-network. Secondly, this work
suggests a recurrent critic, where an experience at time step k contains the following information vector:
(oi ,k ,ui ,k ,o′

i ,k+1,ri ,k ,oi ,k ,cq
i ,k ,cq

i ,k+1). The only difference for the recurrent actor is that here cq denotes the
cell state of the critic network. By combining the information present on both replay buffers described be-
fore, the authors propose a recurrent MA actor and critic. Assuming that the agent’s current policy is µ and
the target policy µ′, and the experience sampled uniformly from the experience replay D, the policy gradient
is calculated as:

∇θi J (µ) = EU (D)[∇θi µ(ui ,k |oi ,k ,cp
i ,k) ·∇ai ,k Qµ

i (x,u,cq
t)|ai ,k=µi (oi ,k ,c

p
i ,k)] (4.14)

The action-value function Qµ

i is updated using the following loss function:

L(θi) = EU (D)[ri +γQµ′
i (x ′,u′

j ,cq
t+1)|a′

j =µ′
j (o j ,c

p
j) −Qµ

i (x,u,cq
t)2] (4.15)

MAPPO

MAPPO was introduced by Yu et al. in 2021. There have been two critical reasons for the lack of PPO appli-
cations in MARL settings: first, PPO is considered to be less sample efficient than off-policy methods such as
DDPG or DQN; Secondly, the usual implementations and hyperparameters used in single-agent PPO would
not yield substantial results in MA settings [68].

The approach chosen to extend PPO to MA settings is a decentralized POMDP with shared rewards. Similarly
to single-agent PPO, agents learn a policy πθ and a value function Vϕ(x). The authors use parameter sharing
for environments with homogeneous agents for the policy and value function networks. Since Vϕ is only
utilized during training, it takes as input information other than the agent’s local observations, but still holds
a CTDE structure. State-of-the-art techniques such as GAE are used in MAPPO as studied before in this report
for the single-agent situation [68].

5
Deep Reinforcement Learning for Conflict

Resolution

As previously mentioned, the objective of this research is to evaluate the performance of an autonomous
controller trained by Reinforcement Learning in resolving conflicts in high-density traffic concentrations for
en-route aerial vehicles. This chapter builds upon the previous knowledge on single and multi-agent DRL ar-
chitectures to analyze DRL-based solutions for autonomous en-route aircraft conflict resolution proposed in
the literature considering the three resolution techniques studied: speed, heading, and altitude adjustments.
Five components will be studied for each solution: the environment, observation space, action space, reward
function, and algorithm performance. This way, ideas, and conclusions will be extrapolated for later use in
this report’s next and last chapter: the research proposal.

5.1. Environment
[7] proposed a hierarchical RL solution for autonomous airspace control using the NASA Sector 33 app. This
learning environment provides the possibility of simulating multiple aircraft flying from origin to destination
with numerous possible routes with the goal of maintaining safe separation and minimizing delay. Thus,
in this work, there are two decisions to be made by the autonomous controller: choosing an aircraft’s route
(once per episode) and its speed (at every time step (∆t). One episode is defined as a simulation, i.e., either
every aircraft achieved their goal destination (gxi) with no collisions and on time |gxi −xi | = 0,∀i , at least one
aircraft got out of time, not arriving at the goal position given the time constraints |gxi − xi | > 0,∀i , or the

aircraft collided with one another
√

(y j − yi)2 + (x j −xi)2 < δ,∀i ̸= j , where δ is the collision threshold. The

optimal solution for the problem with two aircraft is found when the following equation is satisfied: [7]

|gx1 −x1|+ |gx2 −x2| = 0 (5.1)

The same authors of [7] proposed a multi-agent distributed solution for the same autonomous separation
assurance problem using the BlueSky simulator in [8]. The goal of this work is to resolve conflicts and en-
sure a safe separation between all aircraft in a series of air route intersections by adjusting the speed. The
main difference, when compared to the previous work, is that speed control is decentralized among multiple
agents, instead of centralized control for all aircraft. The case study is designed using a realistic ATC simula-
tor (BlueSky) with only three aircraft speeds possible: minimum, current, and maximum cruise speed. The
terminal state is achieved when all aircraft had exited the sector Nai r cr a f t = 0. A conflict happens when the
distance between two aircraft is less than 3NM [8].

61

62 5. Deep Reinforcement Learning for Conflict Resolution

Figure 5.1: NASA Sector 33 simulator with
two aircraft [7].

Figure 5.2: BlueSky sector with three routes R1, R2 and R3, and two
intersections I1 and I2 [8].

The authors of [8] later suggested an alternative architecture to cope with a varying observation size in a
similar Bluesky environment, instead of considering the N-closest agents only. This was proposed in [10]
by using an LSTM over agents, instead of overtime to encode all intruder information in a fixed-length vec-
tor. This idea was then replaced by an attention mechanism in [9] that has the advantage of accessing all
hidden states, and not losing any relevant information. Moreover, in [9], a new reward component was also
introduced to minimize the number of speed changes taken [9].

The previously mentioned works consider en-route conflict resolution by varying aircraft speed only. In [71]
the authors consider heading changes in addition to speed adjustments. This work uses a PyGame custom
environment and the concept of solution space diagram (SSD) as prior ATM-specific knowledge to assist
learning [71].

Figure 5.3: SSD assistive methods for conflict resolution [71].

Figure 5.3 depicts two conflict resolution aids provided by SSD. In (a), a conflict exists if the relative velocity
vectors are within the conflict cones. This method can cause some difficulties to find the optimal speed
and heading if multiple aircraft are present. In (b), by translating the conflict cones according to each of
the intruders’ speeds, a conflict is defined only if the ownship velocity vector is within the translated area in
red. The goals of this work are safety assurance and minimized disruption and a conflict happens when the
separation between two aircraft is less than 5NM. This work considers an additional vertical control layer of
safety for when a conflict is imminent (i.e. happening in 2 minutes or less). The logic used to resolve conflicts
is as follows: when a conflict is detected (i.e. the velocity vector of an aircraft is within the conflict cone
area, the controller chooses a conflict resolution method. During the resolution period, the intention velocity
(pointing towards the next way-point) is monitored, and as soon as it escapes the danger zone, the aircraft
resumes this velocity vector to return to the path. To coordinate multiple aircraft a centralized controller is
used according to the following rules: in a conflict between two aircraft, if one of them does not respond to
the cooperation request, the other must take action; in a conflict between two aircraft, the one with a larger
q-value takes action; in conflicts between more than two aircraft, the larger non-conflicting set is identified
(i.e. aircraft with no conflict with each other), and aircraft that are not part of this set take action [71].

5.2. Model 63

5.2. Model
5.2.1. Observation Space

To solve the aircraft routing and conflict resolution problem for NASA Sector 33 simulator, [7] proposed a
hierarchical RL approach involving two agents: a parent and a child agent. The parent agent observes the
raw pixel app input and decides which route combination to choose based on its comprehension of the air
traffic situation in the sector. The image is processed using a CNN. This action is taken once at the beginning
of the episode. The child agent, on the other hand, uses a multi-layer perceptron with the current aircraft
coordinates in the two-dimensional euclidean space (xi , yi), speed (vi) and route combination (c j , where j is
a route combination) chose by the parent agent as inputs (observations). The child agent takes action every
time step to control aircraft speeds. Therefore, the observation space for the parent agent is constant and
equal to m×m pixels, where m is the size of the screen. Each pixel contains color information as a tuple. The
child agent observation space is dependent on the number of agents (n), equals 2×n +n +1 [7].

The multi-agent decentralized approach in [8] requires communication between agents, and this is reflected
in the observation space. The observation space includes information about the ownship as well as the N-
closest agents that may create a conflict: these include agents on a conflicting route that did not reach the
intersection yet or agents on the same route. By adopting these state space rules, the authors ensure the state
space contains only relevant information and is constant in size. The observation space can be represented
as [8]:

so
t = (I (o),d (1),LOS(o,1),d (2),LOS(o,2), ...,d (n),LOS(o,n), I (2), ..., I (n)) (5.2)

Where I (i) is the distance to the goal, aircraft speed, aircraft acceleration, distance to the intersection, route
identifier, and half the loss of separation for aircraft i . The loss of separation is used to let agents develop
optimal strategies even when different aircraft types are different. d (i) is the distance between aircraft i and
the ownship. LOS(o, i) is the loss of separation between the ownship o and aircraft i [8]. In [9], the state
space is set according to the same rules of which aircraft may be represented in the ownship observations.
The difference is that, because this work considers an attention layer, a variable number of agents can be
considered, instead of the fixed N-closest defined in [8].

In [71], the authors consider an SSD-based image observation space containing all the required information
for the agent to learn: number of aircraft, speeds, headings, and potential conflicts. This image-like repre-
sentation as in the red areas in Figure 5.3 (b) is fed into a CNN that outputs a compact representation of the
current traffic situation for learning [71].

5.2.2. Action Space

As mentioned before, the work on NASA Sector 33 considers a parent agent that acts once per episode and
a child agent that acts every ∆t = 4s. Considering the environment case with two aircraft in Figure 5.1, the
parent agent’s discrete action space is given as Ap = (C1, ...,C j),∀ j , where j is a route combination. In this
case, j = 4, as each aircraft can take two distinct routes, which makes a total of four unique route combina-
tions. The child agent discrete action space is defined as Ac = (U1, ...,Uk),∀k, where U represents the set of all
speed combinations and k is one unique combination. In the experiments of this work, the authors consider
a speed envelope between 300 and 600 knots with 6 possible aircraft speeds in between. Thus, the size of the
child’s action space for two aircraft is 36 [7].

In [8] the authors propose a smaller discrete action space for the multi-agent approach: an aircraft can decide
to change its speed every ∆t = 12s. It can choose to travel at the current cruise speed, minimum allowed
cruise speed, or the maximum allowed cruise speed:

At = [vmi n , vt−1, vmax] (5.3)

The authors of [9] work on the Bluesky simulator with attention consider the same time difference between
actions and an action space comprised of three actions: a− (decrease speed), 0 (hold speed), and a+ (increase
speed), constrained to a minimum and maximum speed set by the simulator [9].

At = [a−,0, a+] (5.4)

64 5. Deep Reinforcement Learning for Conflict Resolution

In [71], four different action spaces are considered. First, a discrete heading controls considering three actions
as shown in Figure 5.4.

Figure 5.4: Discrete heading action space [71].

Secondly, a continuous heading control for a smoother resolution path. This action selects an angle between
the original direction and the selected direction in the range (−π

2 , π
2). Thirdly, continuous speed control for

an agent to choose what exact speed it wants to add with a range (-50knots, 50knots). Lastly, a combination
of the heading angle change and speed control in a two-dimensional action space [71].

5.2.3. Reward Function

[7] defined a reward function for both parent and child agents according to the goals of the work: maintain
safe separation, optimal route choice, and arrival delay minimization. The parent agent is rewarded based on
the distance from each aircraft to their goal positions:

rp = 1∑N
i=1 |gxi −xi |

(5.5)

The child agent is rewarded based on the speed of each aircraft:

rc = 0.001
N∑

i=1
vi −0.6 (5.6)

The 0.001 constant is added to scale rewards between -1 and 1, while −0.6 is added to penalize slower speeds
and reward higher speeds maintaining efficiency. There are three additional rewards provided: −10 for colli-
sion, −3 for out-of-time and +10 for optimal solution [7].

In [8], the same authors proposed a locally applied identical reward function for the distributed multi-agent
approach. This means that if two agents are in a conflict they both get negatively rewarded, but the others do
not. The reward function is defined as:

rt =

−1, if d c

o < 3N M

−α+β ·d c
o , if 3N M ≤ d c

o < 10N M

0, otherwise

(5.7)

Where d c
o is the distance between the ownship and the closest aircraft. α (0.1) and β (0.005) are constants that

penalize agents for approaching the minimum separation distance of 3NM [8]. The reward function in [9] is
a two terms sum: the first component being given by Equation 5.7, and the second (to minimize the number
of speed adjustments) given as:

rt (a) =
{

0, if a = Hol d

−ψ, otherwise
(5.8)

In [71] there are three separate reward functions that are combined in the different action space settings
discussed before. First, a reward function with respect to safety is given:

5.2. Model 65

Rc =
{
−1, if conflict

0, otherwise
(5.9)

Secondly, a reward function related to the deviation from the original flight plan is given with respect to θ, the
angle between the direction selected and the intention direction:

Rh = 0.001cos(θ) (5.10)

Lastly, a speed term is added to penalize deviations from the cruise speed, as it becomes more fuel-consuming
to fly:

Rs = 0.001e
(

v−v0
vu−vl

)2

(5.11)

Where v is the current speed, v0 the cruise speed, vu the maximum speed and vl the minimum speed. Finally,
gathering all the previous rewards for the different action space cases:

R =

Rc +Rh , heading change

Rc +Rh , speed change

Rc +Rh , simultaneous heading and speed

(5.12)

5.2.4. Algorithm Performance

To solve the NASA Sector 33 game using hierarchical RL, [7] used DDQN applied for both the parent agent
(using a CNN feature extractor) and the child agent (using an MLP feature extractor). To analyze the perfor-
mance of the algorithm, the authors defined a game score as given by the rewards for collision, out-of-time
and optimal solution (−10,−3,+10). The evolution of the game score with the training process is depicted in
Figure 5.5, where it is possible to see that the score increases as the AI agent learn [7].

In [8], the authors proposed an A2C advantage actor-critic algorithm with the loss function from PPO with
parameter sharing between the actor and the critic. A CTCE framework with parameter sharing is used, where
a centralized network learns and distributes the knowledge to be used in a decentralized way by all aircraft.
This distribution happens at the beginning of every episode and the network is updated at the end. To eval-
uate the performance of this multi-agent approach, the authors define a goal as an aircraft exiting the sector
with no conflicts. As there are 30 aircraft entering the airspace at a uniform distribution over 4, 5, and 6
minutes, the optimal solution must achieve a goal value of 30 [8].

Figure 5.5: RL agent score during DDQN training process [7]. Figure 5.6: Learning curve in DD-MARL [8].

The authors in [9] tested the same case as in [9] but with a novel approach on top of the CTCE parameter
sharing PPO algorithm: considering attention to cope with a varying number of agents. The attention layer
that represents the understanding of the air traffic situation from an agent’s point of view (as) can be defined
by the following equations:

66 5. Deep Reinforcement Learning for Conflict Resolution

scor e(s,hi) = sT W1hi (5.13)

ηs,hi
= exp(scor e(s,hi))∑n

j=1 exp(scor e(s,h j))
(5.14)

cs =
n∑

i=1
ηs,hi

hi (5.15)

as = f (cs) = t anh(W2cs) (5.16)

Where s is the pre-processed ownship state through fully-connected layers and hi the pre-processed state of
intruder i and n the total number of intruders. ηs is the attention weights of the ownship and each of the
other intruders, and cs is the context vector representing the surrounding air traffic.

Figure 5.7: Learning curves in [9].

Figure 5.7 depicts the learning curve relative to the previously explained score indicator (30 is optimal) for the
algorithms in [8] (D2MA), [10] (D2MAV with LSTM) and [9] (D2MAV-A with attention). In the original D2MA
and D2MAV works, the N-closest or all applicable agents were sorted based on the distance to the ownship.
Since the D2MAV-A algorithm does not require a pre-defined sorting strategy, a new sorting strategy was taken
into consideration for fair comparison - the relative time to the intersection - with D2MA-Time and D2MAV-
Time [9]. The figure makes it possible to conclude that using attention improves convergence and speeds up
the learning process.

Figure 5.8: Conflict resolution performance of different action types during training [71].

In [71], the authors compare the evolution of the average number of conflicts during two flight hours during
training for the four different action types using the PPO algorithm for training. In Figure 5.8 it is observable
that the discrete heading angle action outperforms all the other options [71].

6
Research Proposal

The solutions for the conflict resolution problem analyzed before can be subdivided into two large groups:
the ones that consider a centralized decision-making agent, such as in [7] and [71], and the ones that consider
decentralized decision-making agents (multi-agent learning problem), explicitly sharing the same knowledge
and communicating relevant information at every time step as in [8], [9] and [10]. Moreover, these solutions
can also be categorized by the actions used to solve the conflict. While [7], [8], [9] and [10] use speed ad-
justments only, [71] considers heading adjustments as well. As society moves towards autonomous airspace
control for high-traffic urban airspaces, solutions will have to first be supervised by human operators. For
this reason, this study focuses on a centralized solution, whose actions are easier to understand. The work in
[7] tests a hierarchical solution for a low number of agents only. In [71], the method relied on a centralized
algorithm with pre-defined rules. This work aims at building a centralized autonomous DRL-inspired solu-
tion that controls agents directly in a variety of airspace intersections. Being agnostic to route configurations
is important so that the agent can be generalized to multiple locations. As for the conflict resolution method,
this proposal focuses on changing speed, as it is the less disruptive solution for pre-defined air routes. This
section is organized as follows: first, the targeted research questions are enumerated; second, the model pro-
posed to answer these questions is detailed, including the observation and action spaces, reward functions,
and the reasoning behind the choice of learning algorithm; finally, some proposed scenarios for sensitivity
analysis are developed.

6.1. Research Questions

1. To what extent can a centralized autonomous DRL controller ensure safe separation and efficiency in
high-density urban aerial intersections with variable configurations?

(a) How to model a realistic urban environment? What speed envelopes and collision boundaries
should vehicles have?

(b) What state information does the centralized controller require and how to obtain it?

(c) What are the safety and efficiency goals? What reward function should be adopted to reflect them?

(d) How to structure a feasible action space to cope with a large number of agents in the intersection?

(e) What state-of-the-art DRL algorithm should be chosen to train the autonomous controller given
the environment settings defined before?

(f) How to quantify the agent’s performance? How do the quantifiable metrics evolve with training?

(g) What is the effect of different route configurations on the performance of the autonomous agent?

(h) What is the effect of varying the aircraft sector arrival rates on the performance of the autonomous
agent?

(i) How does the distribution of actions of the centralized agent evolve over a simulation?

(j) How does the typical velocity profile of a vehicle evolve over a simulation? Is the controller mini-
mizing the number of commands an aircraft needs to perform?

67

68 6. Research Proposal

6.2. Environment

The environment proposed is designed using OpenAI Gym library for RL research [11]. The option for a cus-
tom environment was chosen because it speeds up the development process and allows for a design targeted
at the goals of this particular research. This work chooses to focus on a particular type of airspace intersec-
tion: mergers - meaning that two or more routes converge into a single route, causing potential conflicts
between vehicles. The environment simulates random configurations for generalization where the angle
between any entry route and the escape route after convergence is at least 90ž. The arrival distribution of
agents at each route is set at random by a Poisson process. The goals of the environment are to ensure a safe
separation between aircraft and maximize efficiency (i.e. to minimize the time it takes for them to exit the
sector). At the beginning of the episode, a pre-defined constant number of aircraft are positioned to enter
the sector according to the previously mentioned distribution. The episode ends if every aircraft has exited
the sector without collisions, or if two aircraft collide with each other according to the euclidean distance√

(y (j)
t − y (i)

t)2 + (x(j)
t −x(i)

t)2 < δ,∀i ̸= j , where δ is the collision threshold.

6.3. Model
6.3.1. Observation Space

The observation space contains all information for the centralized agent to learn. For every aircraft, this
means knowing the route identifier (angle of the route), distance to the intersection, and current velocity.
Thus, if n is the total number of aircraft in a simulation, the total size of the observation space is n ×3. An
agent’s information is only present in the observation space if the agent is active, meaning that it has already
entered and not yet left the sector. If an agent is not active, the corresponding observation entries are padded
with zeros. Agents are ordered into the observation space according to their time of arrival.

Ot = (R(1)
t ,d (1)

t , v (1)
t , ...,R(n)

t ,d (n)
t , v (n)

t) (6.1)

Where Rt is the route identifier between 0 and 2π, dt is the distance to the intersection between 0 and the
route length, and vt the current speed between within the allowed speed envelope. The observation space is
normalized between -1 and 1 to speed up learning.

6.3.2. Action Space

The action space for this research was thoroughly thought to cope with the expected high-density traffic in
urban areas. For this reason, the action choice is limited to speed control and at each time step, the central-
ized controller chooses one vehicle to apply a speed change (no changes are also possible). The final action
space is discrete and contains the possibility of not changing anything or speeding up or slowing down a
given sector aircraft.

At = [None, A(1)
− , A(1)

+ , ..., A(n)
− , A(n)

+] (6.2)

An aircraft speed is constrained by its speed envelope and the + and - signs represent speeding up and slowing
down by a fixed ∆v . The action space is of size 2×n +1. When we compare the suggested action space with
the combination of all possible speeds suggested in [7], where the action space size is given as Sn , where S is
the size of the set of speed values an aircraft can take, we observe a much smaller action space size for large
values of n, making training faster and more feasible for high congested areas. Possible disadvantages of the
action space chosen are that it takes a few time steps to go from the lower to the higher speed and that it is
not possible to change the speeds of two conflicting aircraft at the same time. However, if the frequency of
actions is high enough, this should not compromise performance significantly, and it makes decisions more
understandable for a human supervisor.

6.3.3. Reward Function

The reward function should provide the agent with an indication of what the goals are. In this case, they are
minimizing the number of conflicts and the time it takes for an aircraft to exit the sector. The reward function
is comprised of four individual components. First, an episode reward is given in case of success or failure:

6.4. Experiments 69

Re (t) =
{

L, if all aircraft exit without collisions

−L, if
√

(y (j)
t − y (i)

t)2 + (x(j)
t −x(i)

t)2 < δ,∀i ̸= j
(6.3)

A large positive reward is given in case of success and a large negative reward in case of failure as in [7].
Secondly, a dense reward is given to prevent conflicts from happening. This is based on the idea of an outer
boundary where it is still possible to resolve the conflict as discussed in the first chapter of this report. As soon
as two aircraft lose this separation, the agent receives a negative reward, that gets larger in absolute value as
they get closer to the collision. This reward is averaged over the number of combinations of active pairs of
aircraft (P).

Rs (t) = 1

|P |
∑

p(i j)∈P

Ws · (Ob −dp(i j)) (6.4)

Where Ws is a small negative weight added to scale the reward, Ob is the outer boundary value, and dp(i j) is
the euclidean distance between aircraft i and j . Thirdly, a velocity reward is given to encourage larger speeds.
This function is the average overall active aircraft (N).

Rv (t) = 1

|N |
∑

n∈N
Wv · v (n)

t (6.5)

Where Wv is a small positive weight added to scale the reward. This makes the agent prioritize higher cruise
speeds, increasing time efficiency that should be crucial in urban operations. Lastly, an action reward is
added as in [9] to minimize the number of actions, improving safety and reducing the number of speed vari-
ations.

Ra(t) =
{

0, if At = None

−ψ, otherwise
(6.6)

Where ψ is a small constant to penalize taking actions that are not meant to keep aircraft speeds as they are.
Finally, the total reward can be computed as:

R(t) =
{

Re (t), if episode is finished

Rs (t)+Rv (t)+Ra(t), otherwise
(6.7)

6.3.4. Algorithm

The DRL algorithm chosen to train a centralized agent according to the environment, observation and action
spaces, and reward function described before was PPO. The implementation for training is based on Stable
Baselines 3 (SB3) [47] and a CTCE framework. There were two main factors for this choice: first, PPO out-
performs other policy gradient algorithms in multiple environments as shown in [54]. Although value-based
methods could have an advantage in case the environment was expensive to sample from, this does not ap-
ply to this problem; secondly, most related works studied use PPO partially or totally, proving the efficiency
of this recent DRL algorithm for the conflict resolution space.

6.4. Experiments

After training the centralized autonomous airspace controller, it is important to test it against a variety of sce-
narios. Figure 6.1 and Figure 6.2 depict two possible configurations. The agent in orange is the one currently
being affected by the controller action. If there is no agent in red, it means the controller is not taking action
on any of the active agents. The orange circle surrounding agents represents their collision threshold which
is defined based on the vehicle’s wingspan.
Tests on this environment include varying the Poisson rate at which aircraft arrive (this value is constant dur-
ing training, ensuring an expected separation equal to the outer boundary). Larger rates should decrease
performance, while lower rates should increase it as the agent gets more time and space to maneuver. More-
over, as the agent was trained for being agnostic to the intersection configuration, varying the angle between

70 6. Research Proposal

Figure 6.1: Custom research environment with a two-
route merger.

Figure 6.2: Custom research environment with a three-
route merger.

entry routes, as well as their number is also interesting to understand how the agent deals with more chal-
lenging scenarios such as more routes or routes that are too close to each other, increasing the likelihood of
conflict. Finally, it is also important to assess how the agent’s actions are distributed in time. Is the agent
sending opposite commands to the same aircraft, increasing the probability of error? Is the agent trying to
send commands to aircraft that are no longer in the sector? Is the agent minimizing the number of commands
concerning the reward function designed? All these questions are important to fine-tune the weights in the
reward function.

III
Supporting work

71

1
Deep Learning Background

DL techniques are at the backbone of our DRL PPO implementation, as NNs are used to approximate both
the actor and the critic. In this section, the main DL principles referenced in the paper are shortly explained.
First, the activation functions used in the actor and critic networks are defined. Secondly, the Gradient De-
scent method used to update the network’s parameters is covered. Finally, two more complex types of NNs
mentioned in the paper, namely CNNs and LSTMs, are described. Typical NNs are constituted by an input
layer (i), multiple hidden layers (h1,h2, ...,hn), and one output layer (o) that predicts the outputs. A hidden
or output layer in a neural network is a set of neurons (also called nodes). Each neuron can be described by a
set of weights (w), biases (b), and an activation function (f) to be applied to the input (x):

v = f (wT x +b) (1.1)

Where v is the output of the neuron. In the most common type of neural network, the fully-connected ANNs
(Artificial Neural Networks), the activation output of one layer serves as the input for the next one. Both
actor and critic networks used in SB3-PPO implementation are fully connected with two hidden layers of 64
neurons.

1.1. Activation Function

There are multiple activation functions used in DL. In the context of the implementation considered in this
work, we used tanh, and softmax activations. Activation functions are important in NNs to add the capacity
of representing non-linear and complex processes. The sigmoid activation function converts input values
into outputs between 0 and 1 and is S-shaped [55].

f (z) = 1

1+e−z (1.2)

The tanh function, or hyperbolic tangent, activation function, is applied in the fully-connected layers of both
actor and critic networks and can be defined as:

f (z) = ez −e−z

ez +e−z (1.3)

The tanh function shape resembles the sigmoid but is symmetric around the origin and the activation values
are bounded between −1 and 1 [55]. The softmax function is applied to the |U | nodes in the output layer of
the policy network to yield the probability for each discrete action and can be written as:

f (z) j = ez j∑|U |
u=1 ezu

, j = 1, ..., |U | (1.4)

For binary classification problems, the sigmoid function can be used to extract the probability of each class.
However, if there are more than two possible output classes, the softmax is used for the same purpose. The

73

74 1. Deep Learning Background

number of neurons in the output layer equals the number of classes. Another activation function that is
typically used is the ReLU (or Rectified Linear Unit) function. This function works as a linear activation if the
input is greater than 0, and equals 0 if the input is lower or equal to 0 [55].

f (z) = max(0, z) (1.5)

1.2. Parameter Update
Neural network parameters are updated during training to optimize a loss function based on a method called
Gradient Descent. One training cycle over the entire set of samples is called an epoch. One possible approach
is Batch Gradient Descent, where the model error is computed with respect to the entire training set, i.e., the
network’s parameters (θ) are updated only at the end of each epoch by averaging the cost function over the
complete dataset.

Algorithm 1 Batch Gradient Descent algorithm (adapted from [49])

for epoch = 1,2, ...,K do
Compute gradient of the loss function w.r.t. parameters θ (∇θ J (θ))
θ← θ−α ·∇θ J (θ)

end for

A disadvantage of this method is that it is very memory-consuming, which can make it unusable for large sets
of training samples. Moreover, it computes unnecessary gradients for similar samples before parameters are
updated [49]. As opposed to Batch Gradient Descent, Stochastic Gradient Descent (SGD) updates parameters
for every training sample.

Algorithm 2 Stochastic Gradient Descent algorithm (adapted from [49])

for epoch = 1,2, ...,K do
for sample (x(i), y (i)) in data do

Compute gradient of the loss function w.r.t. parameters θ
θ← θ−α ·∇θ J (θ; x(i); y (i))

end for
end for

Therefore, SGD is faster and enables online learning (i.e. learning while new data is coming in). However,
it suffers from a high variance and fluctuation of the cost function problem [49]. To combine the strengths
of Batch Gradient Descent and SGD, Minibatch Gradient Descent considers the parameter update over a
minibatch of n training samples.

Algorithm 3 Minibatch Gradient Descent algorithm (adapted from [49])

for epoch = 1,2, ...,K do
for minibatch (x(i :i+n), y (i :i+n)) in data do

Compute gradient of the loss function w.r.t. parameters θ
θ← θ−α ·∇θ J (θ; x(i :i+n); y (i :i+n))

end for
end for

Minibatch sizes typically vary between 50 and 256. This approach has two advantages. First, it reduces the
variance in parameter updates, and second, it can leverage vectorized approaches in modern DL libraries to
efficiently compute the gradient w.r.t. a minibatch of data. However, there are remaining challenges, such
as avoiding local minima or correctly defining the learning rate during training, that are tackled by more
advanced Gradient Descent optimization algorithms [49]. Some of the most relevant are Momentum ([46]),
RMSprop ([26]), or the state-of-the-art combination of both, used in the implementation of PPO described in
the paper, Adam ([34]).

Momentum is an optimization technique that improves Gradient Descent by reducing oscillations and speed-
ing up convergence. This is done by adding a fraction of the previous update to the current update vector [49].

1.2. Parameter Update 75

vt = γvt−1 +α∇θ J (θ) (1.6)

θ = θ− vt (1.7)

The momentum term γ is usually 0.9. If we compare this equation to a ball rolling down a hill, the analogy is
that the ball rolls faster every step until it reaches its terminal velocity (due to γ < 1). If the hill then climbs,
the ball will start losing its speed. Thus, the momentum term increases if the gradient has the same direction
as in the previous step, and reduces if the direction of the gradient is altered [49].

Hinton coped with the gradient change during training and across weights by introducing an adaptive
learning rate method, RMSprop (Root Mean Squared Propagation). It keeps a moving average of the squared
gradient for every weight (E [g 2]) [26].

E [g 2]t = 0.9E [g 2]t−1 +0.1g 2
t (1.8)

It then improves learning by dividing the gradient by the squared root of this moving average. A small ϵ
constant is used to prevent division by 0 [26].

θt+1 = θt − α√
E [g 2]t +ϵ

g t (1.9)

Adam (Adaptive Moment Estimation) is another adaptive learning rate algorithm that keeps an exponentially
decaying average of past squared gradients (vt) like RMSprop and the same type of average of past gradients
(mt) like momentum [49].

mt =β1mt−1 + (1−β1)g t (1.10)

vt =β2vt−1 + (1−β2)g 2
t (1.11)

Where mt and vt are estimates of the first and second moments, respectively. Since these vectors are initial-
ized at 0, bias-correcting terms are defined to adjust in early training iterations [49].

m̂t = mt

1−βt
1

(1.12)

v̂t = vt

1−βt
2

(1.13)

The final Adam update is given as:

θt+1 = θt − α√
v̂t +ϵ

m̂t (1.14)

The following table summarizes the implementation parameters of Adam used in the paper.

Adam Parameter Value
α 3×10−4

β1 0.9
β2 0.999
ϵ 1×10−8

Minibatch size 64
Number of epochs 10

Table 1.1: Training parameters used with Adam and Minibatch Gradient Descent in SB3-PPO implementation [47].

Therefore, the implementation of PPO first collects 4 rollouts of data from 4 different environments. Then, it
runs 10 epochs of Minibatch Gradient Descent on minibatches of size 64. For each minibatch, the parameters
θ of the actor and the critic networks are updated using the Adam update described before.

76 1. Deep Learning Background

1.3. Convolutional Neural Networks
CNNs are typically used when input features are represented as images. A squared black and white image is
simply a N ×N ×1 array of numbers. This is because, for each of the N 2 pixels, a value between 0 and 255 in
the grayscale spectrum is set. In the case of RGB images, the number of channels is 3. A possible approach
to using traditional ANN architectures with images is to flatten this array and consider each pixel entry value
as an input feature. There are two main problems with this approach: first, the number of weights in ANNs
scales significantly with image size, and second, as a consequence, complex ANNs are more likely to overfit
the training data [44].

To understand CNNs, we first have to study the kernel convolution operation. Figure 1.1 depicts the con-
volution operation between a 3×3 input and a 2×2 kernel with a stride of (1,1) and no padding, meaning
the sliding window moves one step at a time and no padding is added to alter the shape of the output. The
highlighted value in the output array is computed as 0×0+1×1+3×2+4×3 = 19. Then, the kernel slides
over the input to calculate the other values.

Figure 1.1: Convolution operation example.

In CNNs, the kernel may be viewed as the weight of the convolutional layer. In case the input is three-
dimensional, the kernel must have the same depth dimension as the input and the operation is performed
in the volume, so the output is always depth 1. Convolutional layers typically contain multiple filters, whose
outputs are stacked up in an output volume. An advantage of this approach is that CNNs use parameter
sharing across multiple regions of the image [44].

Figure 1.2: Architecture of a CNN [44].

Figure 1.2 depicts a typical CNN architecture. The convolution layer convolves multiple filters with the in-
put, generating activation maps after applying a nonlinearity. Sometimes, zero padding is applied to control
the dimensionality of the output. This is only adding 0-value pixels to the border of the output. The pool-
ing layer objective is to reduce the dimensionality of the input and thus, the number of parameters of the
output. Typically, max-pooling is applied, selecting the most significant features only. With a 2×2 pooling
layer and a stride of 2, the input’s height and width dimensions are reduced to 25% of their original size, while
maintaining the depth of the volume constant [44].

1.4. Sequence Models
Sequence models can extract relevant patterns from sequences of data, converting single or sequences of
inputs into single or sequences of outputs [69]. For instance, in the paper, it is mentioned that Brittain and

1.4. Sequence Models 77

Wei used this type of approach to compress variable-length observation information into a fixed-size vector.
The simplest sequence model is RNN (Recurrent Neural Network), proposed in [50], which consists basically
of multiple copies of the same network, each receiving new sequential inputs and conveying information to
the following unit. Each of these networks contains a set of weights and biases that are shared across time
steps of the sequence. Thus, both the hidden state (a(t)) passed forward and the predicted output of a unit
(ŷ (t)) are computed based on these parameters, the previous activation, and the current time input [69].

a(t) = f1(Wax x(t) +Waa a(t−1) +ba) (1.15)

ŷ (t) = f2(Wy a a(t) +by) (1.16)

Where f1 and f2 are activation functions (typically f1 is the tanh, and f2 depends on the output type, it could
be a sigmoid or softmax, for instance). W and b are the unit parameters, shared across units, x(t) is the
sequence input at timestep t , a(t−1) is the hidden state received from the previous unit, a(t) is the hidden
state to be passed over to the next unit, and ŷ (t) is the output of the unit, in case the output of the model
is sequential. To train RNN, a technique called backpropagation through time (BPTT), introduced in [67], is
used, which unenrolls all the unit values to perform the update on the shared parameters. One disadvantage
of RNNs is that they cannot easily learn long-term dependencies [69]. In [27], a solution to the gradient
vanishing problem or difficulty to remember distant past information is presented, the LSTM.

LSTMs are similar to RNNs, but instead of using the unit cells explained before, use memory cells, containing
an internal state and gates, that allow the network to learn what information from the past to retrieve and
what to forget. The internal state is can be considered as the memory of the LSTM that is passed forward. It
depends, in the first place, on the candidate generated (c̃(t)) based on the input data, the hidden state from
the previous cell, and the cell parameters (also shared across cells in this case) [69].

c̃(t) = t anh(Wc [x(t); a(t−1)]+bc) (1.17)

This candidate is updated using the values of the input and forgets gates, based on how relevant the current
input is in the long-term sequence [69]. The output gate is used to compute the hidden state to be passed
forward. Considering input, forget, and output gates Ti , T f , and To , respectively:

Ti =σ(Wi [x(t); a(t−1) +bi]) (1.18)

T f =σ(W f [x(t); a(t−1) +b f]) (1.19)

To =σ(Wo[x(t); a(t−1) +bo]) (1.20)

The candidate update, as well as the hidden state and the output (in the case of a sequential output) values,
are computed as:

c(t) = (Ti ∗ c̃(t))+ (T f ∗ c(t−1)) (1.21)

a(t) = To ∗ t anh(c̃(t)) (1.22)

ŷ (t) = f (Wy a(t) +by) (1.23)

Where ∗ represents the element-wise product. Therefore, in an LSTM, besides the hidden states, cells also
pass internal states forward. Ti controls how important is the input in the long-term learning sequence,
while T f determines how important is the information about previous time steps [69]. In the specific case of
handling variable observation space lengths, LSTM networks can be used over agents, instead of time, given
that agents are sorted in such a way that the most relevant ones come last in the sequence [9].

2
Custom Gym Environment Verification

The verification of the environment developed took two steps: confirming it follows the Gym API rules and
ensuring that the interaction between the agent and the model is mathematically correct, i.e., confirming the
state transition and reward values of a step on the model: (xk ,uk , xk+1,rk+1). The first step is straightforward
as SB3 contains a function to perform this evaluation. The second step is performed by first computing the
tuple values by hand and then checking them against the model outputs. For that, we considered a simple
scenario where |N | = 3. Aircraft ID 1 is on the exit route, 500m away from the merging point at a speed
of 90m/s. Aircraft 2 is on route 9 (check the sector image in the paper for reference on route numbers), 50m
from the merging point at 80m/s. Lastly, aircraft 3 is on route 7, 1200m from the merging point at 60m/s. This
information was added to the environment by setting aircraft coordinates and velocities. The action chosen
is to increase the speed of aircraft 3 (a+

3). At this point, we have all the required information to compute the
next state and reward value and compare them to the output of the environment. Aircraft 3 normalized state
is given as:

[r3, v3,d3,i] = [
165−0

360−0
·2−1,

70−30

90−30
·2−1,

1130−0

1800−0
·2−1] ≈ [−0.08,0.33,0.26] (2.1)

Where 165◦ is the angle route 7 makes with the exit route (measured counter clock-wise), 70m/s is the
updated speed, and 1130m is the updated distance. Following the same rules for aircraft 1 (0 route, 90m/s
velocity, and 590m distance) and aircraft 2 (0 route - transitioned from entry to exit route - 80m/s velocity,
and 30m distance), we obtain the final next state value:

Xk+1 ≈ [−1,1,−0.34,−1,0.67,−0.97,−0.08,0.33,0.26] (2.2)

To verify the reward function an identical procedure is used. The action reward is −0.1 as the action is not
None. The speed reward is computed by:

rv = 1

3
·0.01 · (70+80+90) = 0.8 (2.3)

To compute the separation reward, we first have to determine the distances between all pairs of aircraft:
d1,2 ≈ 560m, d2,3 ≈ 1159m, and d1,3 ≈ 1707m. Since only d1,2 is lower than the outer boundary, only this value
is considered in the reward:

rs = 1

3
·0.005 · (560−1000) ≈−0.73 (2.4)

Thus, the final reward is rk+1 = 0.8−0.1−0.73 =−0.03. It was verified that both the state and reward values
matched the output of the environment, proving that the transition and reward functionalities are working
properly.

79

3
Obtaining Stable Simulation Outputs

Obtaining stable simulation results both for the average success rate and average time to cross parameters is
important so that our analysis is statistically relevant. For this, the stabilization of the coefficient of variation
was used:

CV = σ

µ
(3.1)

Where σ is the standard deviation of the data sampled and µ is the mean. This shows what is the level of
dispersion around the mean with the current number of samples. We recomputed this value every time 100
new data points were sampled. Based on the graphs below, it was determined that the number of required
samples to compute an accurate estimate of the average success rate with or without the agent deployed is
6k, and 4k for the average time to cross the sector per aircraft.

Figure 3.1: Evolution of the coefficient of variation for the success rate with the trained agent.

81

82 3. Obtaining Stable Simulation Outputs

Figure 3.2: Evolution of the coefficient of variation for the success rate without the trained agent.

Figure 3.3: Evolution of the coefficient of variation for the time to cross the sector with the trained agent.

Bibliography

[1] Federal Aviation Administration. Faa aerospace forecast: Fiscal years 2020-2040; u.s. department of
transportation. 2020.

[2] Unmanned Airspace. Airbus launches blueprint utm roadmap, predicts 19,269 drones an hour
above paris in 2035. 2018. URL https://www.unmannedairspace.info/uncategorized/
airbus-launches-blueprint-utm-roadmap-predicts-19269-drones-hour-paris-2035/.

[3] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[4] International Civil Aviation Association. Doc 4444: Air traffic management - procedures for air naviga-
tion services. 16th ed, 2020.

[5] Joby Aviation. Joby receives part 135 certificate from the faa. 2022. URL https://www.jobyaviation.
com/news/joby-receives-part-135-air-carrier-certificate/.

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Pro-
ceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

[7] Marc Brittain and Peng Wei. Autonomous aircraft sequencing and separation with hierarchical deep
reinforcement learning. International Conference on Research in Air Transportation, 2018.

[8] Marc Brittain and Peng Wei. Autonomous air traffic controller: A deep multi-agent reinforcement learn-
ing approach. arXiv preprint arXiv:1905.01303, 2019.

[9] Marc Brittain, Xuxi Yang, and Peng Wei. A deep multi-agent reinforcement learning approach to au-
tonomous separation assurance. arXiv preprint arXiv:2003.08353, 2020.

[10] Marc W Brittain and Peng Wei. One to any: Distributed conflict resolution with deep multi-agent rein-
forcement learning and long short-term memory. In AIAA Scitech 2021 Forum, page 1952, 2021.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[12] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2):156–172, 2008.

[13] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement learning: An
overview. Innovations in multi-agent systems and applications-1, pages 183–221, 2010.

[14] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134(1-2):
57–83, 2002.

[15] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning algo-
rithms. In Proceedings of the 23rd international conference on Machine learning, pages 161–168, 2006.

[16] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey Levine.
Combining model-based and model-free updates for trajectory-centric reinforcement learning. In In-
ternational conference on machine learning, pages 703–711. PMLR, 2017.

[17] Cosimo Della Santina, Jens Kober, Ivo Grondman, and Robert Babuška. Reinforcement learning. 2022.

[18] Elhadji Amadou Oury Diallo, Ayumi Sugiyama, and Toshiharu Sugawara. Learning to coordinate with
deep reinforcement learning in doubles pong game. In 2017 16th IEEE international conference on ma-
chine learning and applications (ICMLA), pages 14–19. IEEE, 2017.

83

https://www.unmannedairspace.info/uncategorized/airbus-launches-blueprint-utm-roadmap-predicts-19269-drones-hour-paris-2035/
https://www.unmannedairspace.info/uncategorized/airbus-launches-blueprint-utm-roadmap-predicts-19269-drones-hour-paris-2035/
https://www.jobyaviation.com/news/joby-receives-part-135-air-carrier-certificate/
https://www.jobyaviation.com/news/joby-receives-part-135-air-carrier-certificate/

84 Bibliography

[19] Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate
to solve riddles with deep distributed recurrent q-networks. arXiv preprint arXiv:1602.02672, 2016.

[20] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[21] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial Intelli-
gence Review, 55(2):895–943, 2022.

[22] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using deep re-
inforcement learning. In International conference on autonomous agents and multiagent systems, pages
66–83. Springer, 2017.

[23] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

[24] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In 2015
aaai fall symposium series, 2015.

[25] Ammar Haydari and Yasin Yilmaz. Deep reinforcement learning for intelligent transportation systems:
A survey. IEEE Transactions on Intelligent Transportation Systems, 2020.

[26] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[28] Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep policy
inference q-network for multi-agent systems. arXiv preprint arXiv:1712.07893, 2017.

[29] George Hunter and Peng Wei. Service-oriented separation assurance for small uas traffic management.
In 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), pages 1–11. IEEE,
2019.

[30] Dae-Sung Jang, Corey A Ippolito, Shankar Sankararaman, and Vahram Stepanyan. Concepts of airspace
structures and system analysis for uas traffic flows for urban areas. In AIAA Information Systems-AIAA
Infotech@ Aerospace, page 0449. 2017.

[31] Antoine Joulia, Thomas Dubot, and Judicael Bedouet. Towards a 4d traffic management of small uas op-
erating at very low level. In ICAS, 30th Congress of the International Council of the Aeronautical Sciences,
2016.

[32] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14, 2001.

[33] Brad Bachtel Karen Dix-Colony. Operating the 747-8 at existing airports. URL https://www.boeing.
com/commercial/aeromagazine/articles/2010_q3/pdfs/AERO_2010_q3_article3.pdf.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing sys-
tems, 12, 1999.

[36] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[37] Andrea Lonza. Reinforcement Learning Algorithms with Python. Packt Publishing, 2019.

[38] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information process-
ing systems, 30, 2017.

https://www.boeing.com/commercial/aeromagazine/articles/2010_q3/pdfs/AERO_2010_q3_article3.pdf
https://www.boeing.com/commercial/aeromagazine/articles/2010_q3/pdfs/AERO_2010_q3_article3.pdf

Bibliography 85

[39] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[40] Matternet. Matternet receives faa production certificate for its m2 drone delivery system. 2022. URL
https://mttr.net/images/Matternet_FAA_Production_Certificate_20221130.pdf.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[42] Andrew William Moore. Efficient memory-based learning for robot control. Technical report, University
of Cambridge, 1990.

[43] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for multia-
gent systems: A review of challenges, solutions, and applications. IEEE transactions on cybernetics, 50
(9):3826–3839, 2020.

[44] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[45] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1707.04402, 2017.

[46] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

[47] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 2021.

[48] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning.
In International conference on machine learning, pages 4295–4304. PMLR, 2018.

[49] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[50] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[51] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[52] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[53] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[54] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[55] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. Towards
Data Sci, 6(12):310–316, 2017.

[56] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In International conference on machine learning, pages 387–395.
PMLR, 2014.

[57] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

https://mttr.net/images/Matternet_FAA_Production_Certificate_20221130.pdf

86 Bibliography

[58] Alex M Stoll, Edward V Stilson, JoeBen Bevirt, and Percy P Pei. Conceptual design of the joby s2 electric
vtol pav. In 14th AIAA Aviation Technology, Integration, and Operations Conference, page 2407, 2014.

[59] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3):345–383, 2000.

[60] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jader-
berg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for
cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

[61] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

[62] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[63] Rose E Wang, Michael Everett, and Jonathan P How. R-maddpg for partially observable environments
and limited communication. arXiv preprint arXiv:2002.06684, 2020.

[64] Zhuang Wang, Weijun Pan, Hui Li, Xuan Wang, and Qinghai Zuo. Review of deep reinforcement learning
approaches for conflict resolution in air traffic control. Aerospace, 9(6):294, 2022.

[65] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling net-
work architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

[66] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

[67] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78
(10):1550–1560, 1990.

[68] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effective-
ness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

[69] S Zargar. Introduction to sequence learning models: Rnn, lstm, gru. no. April, 2021.

[70] Zongzhang Zhang, Zhiyuan Pan, and Mykel J Kochenderfer. Weighted double q-learning. In IJCAI, pages
3455–3461, 2017.

[71] Peng Zhao and Yongming Liu. Physics informed deep reinforcement learning for aircraft conflict reso-
lution. IEEE Transactions on Intelligent Transportation Systems, 2021.

[72] Yan Zheng, Zhaopeng Meng, Jianye Hao, and Zongzhang Zhang. Weighted double deep multiagent
reinforcement learning in stochastic cooperative environments. In Pacific Rim international conference
on artificial intelligence, pages 421–429. Springer, 2018.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	I Scientific Paper
	II Literature Study previously graded under AE4020
	Introduction
	Conflict Resolution
	Conflict Resolution in Air Traffic Control
	Conflict Resolution for UAS Traffic Control

	Reinforcement Learning
	Artificial Intelligence
	Environment
	Policy
	Return
	Categorizing RL Algorithms
	Value-Based Methods
	Value Function
	Q-Function
	Q-Learning
	SARSA

	Policy Gradient Methods
	Policy Gradient
	REINFORCE
	REINFORCE with Baseline
	Actor-Critic

	Deep Reinforcement Learning
	Deep Q-Network
	Double Deep Q-Network
	Prioritized Experience Replay
	Dueling Deep Q-Network
	Trust Region Policy Optimization
	Generalized Advantage Estimation
	Proximal Policy Optimization
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic Policy Gradient (TD3)

	Multi-Agent Deep Reinforcement Learning
	Single-Agent vs. Multi-Agent Systems
	Multi-Agent Environment
	Challenges and Solutions in Multi-Agent Deep RL
	Non-stationarity
	Partial Observability
	Training Schemes
	Curriculum Learning
	Credit Assignment Problem
	Continuous Environments

	Deep Reinforcement Learning for Conflict Resolution
	Environment
	Model
	Observation Space
	Action Space
	Reward Function
	Algorithm Performance

	Research Proposal
	Research Questions
	Environment
	Model
	Observation Space
	Action Space
	Reward Function
	Algorithm

	Experiments

	III Supporting work
	Deep Learning Background
	Activation Function
	Parameter Update
	Convolutional Neural Networks
	Sequence Models

	Custom Gym Environment Verification
	Obtaining Stable Simulation Outputs
	Bibliography

