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A B S T R A C T

The International Maritime Organization aims to achieve full decarbonization by 2050 in response to climate
change. This ambitious goal demands well-defined strategies guided by techno-economic assessments. The
complexity of global shipping systems makes predicting long-term maritime trade patterns challenging,
necessitating scenario-building rather than precise forecasts. Investigating shipping demand scenarios is crucial
due to the uncertainty brought by the energy transition and its role as the primary driver of shipping emissions.
This paper improves the representation of maritime shipping in Integrated Assessment Models (IAMs) by
examining the impacts of climate targets on future shipping demand. A novel econometric model, grounded
in advanced gravity theory and integrated with machine-learning algorithms, is proposed to estimate the
elasticities of variables in bilateral seaborne trade. By coupling this model with the WITCH IAM, we explore
various scenarios, providing deeper insights into trade patterns and their implications. The results show that
stricter climate policies and higher carbon taxes reduce GDP due to higher abatement costs, higher fuel prices,
and therefore reduced seaborne trade, especially for oil products and containerized cargo. Early adoption of
carbon taxes in Europe may shift oil production and consumption patterns, temporarily boosting seaborne
trade. Sub-Saharan Africa could experience significant demand growth due to economic and population
increases.
1. Introduction

Our generation has to deal with the ongoing challenge of climate
change. This is mainly due to greenhouse gas emissions, especially
CO2. The Paris Agreement aims to limit global warming to well below
2 ◦C, aiming to keep it under 1.5 ◦C (Agreement, 2015). Although
the Agreement was unanimously accepted by the parties to the United
Nations Framework Convention on Climate Change, it excludes major
emitters from the international aviation and shipping sectors. Accord-
ing to Article 2.2 of the Kyoto Protocol, the International Maritime
Organization (IMO) is tasked with regulating GHG emissions from
international shipping (Hackmann, 2012).

The shipping sector is crucial in global trade, transporting over 80%
of goods by volume and more than 70% by value. 94% of the world’s
fleet primarily handles this extensive activity, contributing significantly
to greenhouse gas emissions (UNCTAD, 2021, 2022). Maritime shipping
has accounted for CO2 emissions of roughly 1.0 GtCO2/yr in recent
years (or 2.8% of global CO2 emissions). Around 70% of this total orig-
inated from international shipping (IMO, 2020; International Energy
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Agency, 2024). As maritime shipping is inextricably linked to economic
growth, sectoral emissions are expected to continue rising (Meersman
and Van de Voorde, 2013; Serra et al., 2020; Naghash et al., 2024).

Over the past decades, the IMO has introduced several measures to
enhance energy efficiency and reduce carbon intensity in the shipping
sector. Notable initiatives include the Energy Efficiency Design Index
(EEDI) for new ships, the Energy Efficiency Existing Ship Index (EEXI)
for existing vessels, and the Ship Energy Efficiency Management Plan
(SEEMP) alongside the Carbon Intensity Indicator (CII) to improve
operational efficiency (Tokuşlu, 2020; DNV, 2022, 2021; IMO, 2020;
International Maritime Organization, 2024). In 2023, the IMO revised
its strategy, aiming for net-zero life-cycle GHG emissions around 2050
rather than 2100, including carbon dioxide removal (CDR) methods.
This updated goal underscores the sector’s commitment to global cli-
mate mitigation efforts (Comer and Carvalho, 2023). However, the
pathways to achieving this target are still unclear and uncertain.

To comprehend emission reduction targets, it is crucial to under-
stand the entire process chain that leads to emissions. Emissions from
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maritime transport are closely tied to the composition of fuel supply,
which depends on the demand for shipping activity. Also, recent fluc-
tuations in the shipping market, such as COVID-19, have underscored
the impact of this volatile demand (Merk et al., 2022). An even greater
ource of volatility is the energy transition. Efforts to reduce the carbon
ntensity of transport will likely increase costs due to carbon taxes
r the adoption of more expensive technologies and designs. This
ntroduces significant uncertainty for the future market and investors in

the sector. Therefore, understanding the evolving demand for shipping
activity is essential.

In response to this uncertainty, models are required. So far, sectoral
models have been used extensively to explore the decarbonization of
international shipping (Müller-Casseres et al., 2021). However, these
models often treat shipping demand as an exogenous variable, fail-
ing to capture significant connections to other aspects of the global
economy. This limitation is critical because the shipping sector links
product flows across regions and sectors, making it sensitive to regional
developments and policy changes. Moreover, technological improve-
ments and the transition to alternative marine fuels are closely linked
to similar advancements in other energy-using sectors (Raucci et al.,
2023).

Integrated Assessment Models (IAMs) provide a valuable tool for
ddressing these limitations. IAMs have been extensively utilized to
xamine the consequences of different long-term climate mitigation
trategies and have significantly impacted climate governance and
olicy. They offer a detailed representation of the world’s energy,
and use, agricultural, and climate systems, including interlinkages
cross sectors and regions over time. A common approach for exploring
he future under complexity and uncertainty is developing a set of
ontrasting, plausible scenarios. These scenarios help understand how

different factors interact, either working together or against each other,
roviding a systematic way to compare possible futures and guide
limate policy-informed decisions (Walsh et al., 2019; Müller-Casseres

et al., 2021, 2023; Speizer et al., 2024a).
However, IAMs also have notable gaps. Long-term scenarios de-

veloped by these models often pay relatively little attention to emis-
ions from international transport, typically projecting shipping de-
and through aggregated relationships with income and without dif-

erentiating cargo types. Recently, the IAM community has started to
ncorporate the specificities of international shipping, improving the
epresentation of the sector’s demand and mitigation options within
hese models. Walsh et al. (2019) used the TIAM UCL model2 to project
he future of energy product trade, translating energy trade flows into
angible metrics like tonnes and aiding in analyzing interregional en-
rgy commodity trade under various scenarios. The goal is to optimize

energy trade to maximize global welfare and minimize energy system
osts. Müller-Casseres et al. (2021) used the IMAGE model,3 where
ach region can import based on relative production and transportation
osts, the latter depending on the distance. Fuel distribution from
uppliers is determined using a multinomial logit equation, favoring the

cheapest supplier. Also, Speizer et al. (2024b) used the GCAM model4 to
mprove the representation of shipping activity by modeling it explicitly

in terms of service, such as ton-kilometers, for both international
and domestic shipping. GCAM scenarios incorporate reduced shipping
demand driven by carbon pricing and economic factors, factoring in
price elasticity and the effects of carbon policies on activity levels.

Despite notable improvements in these recent studies, IAMs typi-
cally categorize countries as either pure exporters or importers, espe-
cially for energy cargoes. This results in neglecting the complexities of
cross-trading, where a region can be both an importer and exporter of
a specific product. This is important because fuel supply and emissions

2 Pye et al. (2020).
3 Van Vuuren et al. (2015).
4 Calvin et al. (2019).
2 
are related to the actual physical transport rather than the macroeco-
nomic energy balance or trade value in monetary terms. Additionally,

ost current models primarily rely on cost optimization for estimating
nergy trade. This approach does not adequately account for non-
ost factors such as bilateral political or geographical specifics, which
an significantly influence trade patterns. A recent multi-IAM shipping
tudy (Müller-Casseres et al., 2023) has further emphasized this point,

identifying the low representation of shipping activity as a key limita-
tion across IAMs. Therefore, a coordinated effort to enhance shipping
representations across multiple IAMs is required. In this paper, we aim
to advance the representation of maritime shipping within IAMs, with
a particular focus on the WITCH model. By leveraging the integrated
ramework, we incorporate macroeconomic drivers of shipping demand
longside detailed activity-based modeling. This enables us to produce
ore accurate projections and generate policy-relevant insights into the
ecarbonization of the maritime sector.

Building upon previous research, this paper introduces an econo-
metric approach, an enhancement of the traditional gravity model of
international trade, applied to various cargo types. Projections are
made on bilateral trade flows calibrated on actual trade data, ensuring
the capture of cross-trading effects. Subsequently, the econometric
models are coupled with the WITCH IAM model (De Cian et al., 2009).
or further policy analysis, this model is calibrated based on historical

values and used to analyze the outcomes of multiple scenarios. Four
distinct scenarios have been selected to assess the effects of mitigation
efforts on seaborne shipping activity. They vary in their carbon tax
cheme policies. The trade scenarios encompass nearly all seaborne
raded commodities transported by dry bulk, wet bulk, and container
essels across 17 global regions.

This article is structured as follows: following this introduction, the
ethodology for econometric models, scenarios, and integration into

the integrated assessment model is explained. Next, the results of the
conometric analysis and the scenario runs are presented. Finally, we
iscuss the findings and their policy implications.

2. Methodology

Fig. 1 depicts the methods outlined in this section used to de-
velop shipping activity scenarios, consisting of two main components:
econometric analysis and coupling with the Integrated Assessment

odel. The econometric analysis involves three main approaches tai-
ored to different non-overlapping cargo categories, aiming to identify
nd quantify the impact of influential macroeconomic factors on re-
ional and bilateral trade for each cargo type. The specific cargoes
nalyzed include oil and petroleum products, LNG, coal, iron ore,
rains, containerized cargo, and minor bulks. These eight cargoes are
rouped into three main modeling categories: energy cargo, non-energy
ajor bulk, and minor bulk & containerized cargo. The reference for

hoosing this categorization of cargoes is the Clarkson Shipping In-
telligence Network (SIN) list of cargoes, excluding the not significant
ones such as chemicals and vehicle trades. Our selected range of cargo
covers more than 90% of global seaborne trade. We use historical data
to identify patterns and determine elasticities within these models. Each

odel’s specifics differ in terms of estimation method and influenc-
ng variables, which will be discussed in detail in the next sections.
ubsequently, these econometric models and the derived elasticities
re integrated into the WITCH IAM for policy evaluation and scenario
evelopment. The analysis is long-term and global in scope.

The aim is to obtain the elasticity of change of each chosen de-
terminant variable on the amount of trade. The primary outcome of
the model is the quantity of each traded cargo from one region to
another on a mass basis. Then, by considering proxy ports for each
region, the average distance between regions is obtained, and thus,
the amount of seaborne transport work (mass × distance) is estimated.
Calibration occurs for each cargo against the real data of the 2020

total seaborne trade. This study prioritizes reflecting maritime transport
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Fig. 1. Methodology framework.
work by focusing on the seaborne portion of trade flows. While adjacent
regions like Russia–China, Russia-Europe, Canada-USA, and the Rest of
South America-Brazil heavily rely on pipelines and land transport for oil
and petroleum products, these flows were not excluded. Instead, their
seaborne components were extracted explicitly for analysis.

2.1. Econometrics

While several theories explain international trade, such as com-
parative advantage (Do et al., 2016) and the Heckscher–Ohlin model
(Leamer et al., 1995), the gravity model has emerged as the most com-
monly used framework (Zhang et al., 2015; De Benedictis and Taglioni,
2011). This model is based on the Armington assumption (Alston et al.,
1990). The basic gravity equation states that the trade flow between
countries depends primarily on the size of the economies and the
distance between importer and exporter. This model can effectively
depict bilateral trade patterns (Buongiorno, 2016; Zhang et al., 2018).
Authors in Ubøe et al. (2009) concluded that cost-minimizing models
provide relatively poor fits to observed behavior compared to a simple
gravity model. The following expression shows the classical gravity
model.

𝑇 𝑟𝑎𝑑 𝑒(𝑂 , 𝐷) ∝ 𝐺 𝐷 𝑃𝑂 𝑟𝑖𝑔 𝑖𝑛.𝐺 𝐷 𝑃𝐷 𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝐷 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 (1)

Early applications of the gravity model in maritime contexts, such
as analyzing seaborne coal and crude oil flows (Adland et al., 2017;
Babri et al., 2017; Ubøe et al., 2009), primarily relied on including dis-
tance and national income as core predictors. Over time, these models
evolved to accommodate more sophisticated features, such as country-
specific fixed effects, energy structures, and political risks (Zhang et al.,
3 
2015, 2018), and to incorporate various trade-enhancing or inhibit-
ing factors like colonial relationships and common language (Kottou
et al., 2020). Furthermore, methodological extensions have emerged
to improve predictive performance: gravity specifications have been
combined with machine learning algorithms (Circlaeys et al., 2017;
Sun et al., 2018; Kottou et al., 2020) and, more recently, graph auto-
encoders (Minakawa et al., 2022) to capture complex relationships in
bilateral trade. In maritime-oriented studies, these enriched models
effectively evaluate shifts in LNG trading patterns and forest product
exports (Buongiorno, 2016; Zhang et al., 2018). Also, studies such
as Tang et al. (2019), Chou et al. (2008) and Huang et al. (2018)
used various types of gravity models to forecast and analyze container
shipping trade flows.

The gravity model is typically used to estimate the value of trade
rather than its physical mass when aggregated over total trade
(De Benedictis and Taglioni, 2011). However, in this paper, we will
break it down for each cargo category to increase accuracy and use it
to determine the mass of trade. This is important because the mass of
trade affects transport work and leads to emission estimation, unlike
trade value. Our approach to modeling trade flows recognizes that a
single model cannot fit all types of cargo, yet we strive to keep the
methodology as straightforward as possible. Estimating bilateral trade
for each cargo category is a key objective that drives our approach.
For energy cargoes, we augment the gravity model with variables
such as production and consumption of the commodity, as well as
fuel prices, alongside the traditional factors of GDP and distance. This
allows for a more precise analysis of trade patterns in the energy sector.
A similar model is employed for non-energy major bulk commodities
like grains and iron ore. In the bulk model, production and consump-
tion data from the IAM are not used because they are themselves
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Ocean Engineering 322 (2025) 120516 
derived from economic growth. To avoid double-counting GDP in
oth the production/consumption projections and trade projections,
e rely solely on GDP for the projections. Thus, the model for bulk

commodities includes GDP, distance, and fuel prices as the primary
variables, while for grain, land use for agriculture is also incorporated
to capture the critical economic drivers. To ensure the accuracy of these

odels, a Variance Inflation Factor (VIF) test is conducted to assess
multicollinearity among variables, allowing us to use the appropriate
stimation method for accurate coefficient estimation. For minor bulk

and containerized cargoes, a different methodology is necessary due
to the diverse nature of these goods and the challenge of finding de-
tailed bilateral and quantity-based data. Each subcategory within these
groups, such as specific manufactured products in containerized cargo
or distinct types of minor bulk goods, often represents a smaller share
of total trade, making standard methods less applicable. Specifically,
traditional methods fall short for manufactured goods typically shipped
in containers due to the lack of reliable historical data by region in
terms of weight. Instead, historical data is often available only in
product values. A distinct approach was developed for containerized
cargo to address these challenges, treating it as a separate commodity
category. The method for minor bulk differs from that for all previous
categories due to more limited data, necessitating a more aggregated
approach. Both aim to estimate bilateral trade flows while considering
each cargo type’s unique characteristics and data constraints. The
analysis excludes other factors, such as environmental regulations, port
infrastructure, common language, colonization, and political stability,
as the focus is primarily on macroeconomic drivers and the impacts
caused by climate policies.

2.1.1. Energy cargo
The gravity model serves as a valuable tool for predicting bilateral

rade. However, its applicability in energy cargo remains limited, with
ew exceptions, such as Zhang et al. (2018) and Maxwell and Zhu

(2011), who successfully utilized this model to estimate LNG trade
flows. Additionally, Ubøe et al. (2009) employed the Gravity and cost-
minimizing models to compare the results for predicting coal seaborne
rade using distance and transportation costs. Similarly, Adland et al.

(2017) applied the model to analyze crude oil exports using distance
nd supply & demand factors using AIS data. Babri et al. (2017) adapted

the model to specialize in international trade flows of coal, iron ore,
nd crude oil, incorporating GDP, distance, and a fixed component to
ccount for trade habits and contracts.

In this study, we will modify the gravity model and make it special-
ized for determining the bilateral trade of fossil fuel energy commodi-
ties: crude oil & petroleum products, natural gas, and coal. This is done
by predicting variables and using a fixed-effect component. Adding
more cargo-specific determinants increases the reliability of results.
Fixed-effect controls the unobserved heterogeneity in data such as
bilateral trade momentum and agreements (Buongiorno, 2016; Gómez-
Herrera, 2013). To improve the estimation method and find the elastic-
ties of change of each determinant, a log–log linearization is done to
he equation (Silva and Tenreyro, 2006; Siliverstovs and Schumacher,

2009). The equation comes as follows:

ln 𝑇 𝑟𝑎𝑑 𝑒𝑂 𝐷 ,𝑡 = 𝛽0 + 𝛽1 ln𝑉1 + 𝛽2 ln𝑉2 +⋯ + 𝛽𝑛 ln𝑉𝑛 + 𝜂𝑂 𝐷 (2)

where 𝑇 𝑟𝑎𝑑 𝑒𝑂 𝐷 ,𝑡 is bilateral trade flow, 𝛽𝑛 is the elasticity of the
eterminant variable of 𝑉𝑛, and 𝜂𝑂 𝐷 is the origin–destination fixed-
ffect components. The variables to include in the study are the GDP,
roduction, and consumption of both importer and exporter regions
nd the average distance of shipping and fuel prices. The rationale
ehind choosing GDP is straightforward as it is a primary determinant
f trade and a proxy of economic growth (Michail, 2020; Michail
t al., 2021; Chou et al., 2008; Meersman and Van de Voorde, 2013).

Distance and fuel price are proxies for transport costs (Zhang et al.,
2015; Li et al., 2022). An escalation in the price of bunker fuel is
4 
expected to reduce trade volume, particularly for imports from dis-
tant regions. The interplay between production, consumption, and
regional supply–demand dynamics significantly impacts global trade.
For exporting countries, the availability of natural resources and their
extraction/production directly influences their capacity and willingness
to export. Higher reserves indicate a secure energy future, encouraging
exports to increase revenue. Therefore, production levels are a key
factor, representing the country’s ability to supply the market. On the
import side, When a country’s domestic production falls short of its
consumption needs, it must rely on imports to meet demand and ensure
economic stability (Zhang et al., 2015, 2018; Maxwell and Zhu, 2011).

onsumption and production of oil are crucial variables for both crude
il and petroleum products.

The empirical data used in this study was based on open-source
ata banks. BPstats (BP, 2021) was used as the main source of data for

bilateral energy trade flow for 2014–2021. The data for sea trade was
extracted, and marginal flows — less than 0.005 million tonnes — were
excluded. The same reference is used also for regional production and
consumption of energy sources. The World Bank was used to gather
the GDP values of the regions (World Bank, 2024). All values are
normalized based on 2005 USD to dampen the effect of inflation. The
lobal average bunker price value is gathered from Clarkson Research
ervices (Han and Wang, 2021). After collecting all the data, they were
rganized to create a panel dataset containing every bilateral trade flow

of each commodity. Zero flows have been removed from the dataset as
suggested by Gómez-Herrera (2013) and Wohl and Kennedy (2018).

A variance inflation factor (VIF) test was performed to assess the
presence of multicollinearity among the variables in the dataset. Sub-
stantial multicollinearity, indicated by a high VIF, suggests a vari-
able is highly correlated with others, potentially leading to inflated
tandard errors and unreliable coefficient estimates in the regression
odel (Thompson et al., 2017). In this case, the RIDGE estimation

method is recommended over ordinary least squares (OLS) (Kidwell
and Brown, 1982). RIDGE introduces a penalty to the magnitude of
coefficients, thereby reducing their variance and enhancing stability in
the presence of correlated predictors. The presence of multicollinearity,
as evidenced by VIF values higher than 5, calls for adopting the RIDGE

ethod. The table of VIF values is presented in the Appendix. Also, the
ataset is divided into two parts: 80% for the train and 20% for the

test. To increase the reliability of the results, k-fold cross-validation is
mplemented.

2.1.2. Major bulk cargo
The primary cargoes examined in this section are whole cereals,

including wheat, rye, barley, oats, maize (corn), rice, grain sorghum,
and iron ore (and concentrates, including roasted iron pyrites).5 Histor-
cal bilateral trade data obtained from Trade Map (Trade Map, 2024)

(2015–2021) are used in econometric models to measure trade elas-
ticities for each commodity. The analysis uses bilateral data, including
the GDP of both exporting and importing regions, distance, fuel prices,
and, for grains specifically, the area of exporters’ agricultural land use,6
to estimate trade flows by region and commodity, using 2020 as the
baseline year. A fixed effect component is included to account for the
bilateral trade momentum.

Similar to the approach for energy cargo, the dataset is divided into
a training set (80%) and a test set (20%), with k-fold cross-validation
implemented to enhance the reliability of the results. The general
approach remains consistent, as the production and consumption of
these commodities are also generally influenced by GDP. Including GDP
as a determinant variable in the models prevents redundancy while
addressing the key factors driving trade flows. The primary differences
lie in the specific variables selected and the estimation methods used,
guided by the results of the VIF test. The OLS estimation method is used
here because multicollinearity does not exist in these datasets.

5 The HS code for iron ore is 2601, and for grains, it ranges from 1001 to
008.

6 Food and Agriculture Organization of the United Nations (2024).
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2.1.3. Minor bulk & containerized cargo
This study utilizes econometric models to estimate bilateral trade

flows of containerized cargo, using data from Clarkson’s SIN database
(Clarkson Research Services, 2024) covering regional exports and im-
orts from 2002 to 2021, supplemented with regional GDP figures

and global average fuel prices for each year. We employed OLS re-
gression to quantify the coefficients of trade flows to GDP and fuel
prices, represented by coefficients (betas). The core equation includes a
general trade model, which predicts trade volumes using GDP and fuel
prices, and another function that distributes the trade among regions to
form bilateral trade. Specifically, the general trade equation models the
relationship between trade (imports or exports), GDP, and fuel prices,
while the bilateral trade equation calculates the trade volume between
an origin and destination region over time, factoring in the proportional
allocation of trade.

𝑇 𝑟𝑎𝑑 𝑒𝑋∕𝐼 (𝑡, 𝑂∕𝐷) = 𝛽0𝐼∕𝑋 × 𝐺 𝐷 𝑃 𝛽1𝑋∕𝐼 × 𝑓 𝑝𝑟𝑖𝑐 𝑒𝛽2𝑋∕𝐼 (3)

𝑇 𝑟𝑎𝑑 𝑒𝑂 𝐷 ,𝑡 = 𝐼 𝑚𝑝𝑜𝑟𝑡𝐷(𝑡0) × exp
(

𝛽1𝐼 ⋅ ln
(

𝐺 𝐷 𝑃𝐷(𝑡)
𝐺 𝐷 𝑃𝐷(𝑡0)

)

+ 𝛽2𝐼 ⋅ ln
(

𝑓 𝑝𝑟𝑖𝑐 𝑒(𝑡)
𝑓 𝑝𝑟𝑖𝑐 𝑒(𝑡0)

)

)

×
𝐴𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂(𝑡)

∑

𝑂 𝐴𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂(𝑡)
(4)

𝐴𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂(𝑡) = 𝛽0𝑋 × 𝐺 𝐷 𝑃 𝛽1𝑋 (𝑡) × 𝑓 𝑝𝑟𝑖𝑐 𝑒𝛽2𝑋 (𝑡) (5)

The trade equation for modeling containerized cargo flows con-
sists of three main multiplicative components. The first component,
𝐼 𝑚𝑝𝑜𝑟𝑡𝐷(𝑡0), represents the base-year import volume at the destination.
The second component predicts the import growth by considering the
GDP and fuel price change from the base year 𝑡0 to the current year
𝑡. The coefficient 𝛽1 represents the elasticity of trade flow to GDP,
and 𝛽2 represents the elasticity to fuel price. The third component,

𝐴𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂 (𝑡)
∑

𝑂 𝐴𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂 (𝑡) , allocates the predicted import volume to various ex-
porting regions based on economic factors at the origin. In this term,
𝑙 𝑙 𝑜𝑐 𝑎𝑡𝑖𝑜𝑛𝑂(𝑡) is a function of the origin’s GDP and fuel price, capturing

the proportion of total imports attributed to each origin. Together,
these components provide the model for estimating containerized cargo
trade flows, incorporating base-year data, growth predictions, and
import allocation among exporting regions.

Regarding the minor bulk, time-series data of total global trade are
vailable (Clarkson Research Services, 2024). A similar equation as

containerized cargo applies to this category as well. Afterward, bilateral
trade is allocated based on the economic growth of each region at each
time step. The approach is quite similar to containerized cargo, with
the difference in the non-differentiating regional coefficients due to a
lack of data.

2.1.4. Models’ validation
The econometric models were validated using recently released

ata from 2022 and 2023. Initially trained on data up to 2021, the
odels were tested against this holdout set to assess their predictive
erformance. This approach ensures the models can generalize to new
bservations, reflecting their applicability in dynamic trade environ-
ents. Validation metrics, including R-squared (R2), mean squared

rror (MSE), root mean squared error (RMSE), and mean absolute error
MAE), were computed to evaluate the models’ predictive accuracy.

Additionally, actual versus predicted trade values were plotted for vi-
sual inspection. The validation results demonstrate strong performance
across all model categories, with high R2 values and minimal errors ob-
served in key metrics. The models successfully captured trade dynamics
across diverse cargo types. For further validation, this study includes a
comparison with similar works that predict global shipping demand.

Appendix A.3.
Validation plots and a metrics table are provided in

5 
2.2. Coupling with the integrated framework

After creating models for each cargo type and estimating each pre-
dictive variable’s impact on bilateral trade, the models are integrated
nto an Integrated Assessment Model to develop scenarios and evaluate
olicies. The following sections provide a detailed explanation of the
AM framework and the scenarios.

2.2.1. Integrated Assessment Model (IAM)
IAMs describe key processes in the interaction of human develop-

ent and the natural environment. Typically, they are designed to
assess the implications of achieving climate objectives, such as limiting
global warming to 2◦ or 1.5◦ (Müller-Casseres et al., 2023; Riahi et al.,
2021; Weyant, 2017). These models are crucial for exploring future
climate actions and informing policy decisions (Van Beek et al., 2020).
MO relies on these models for future projections of the sector.

This study employs the WITCH IAM, a renowned model featured
in the IPCC Assessment Reports (Mastrandrea et al., 2011; Byers et al.,
2022). The model integrates a hybrid structure that combines top-down
macroeconomic intertemporal optimization with bottom-up technologi-
cal insights into the energy sector. It emphasizes optimal mitigation and
adaptation strategies for climate change, accounting for regional wel-
fare, free-riding behaviors, and externalities. A social planner approach
maximizes regional utility, considering fossil fuel and GHG mitigation
costs. A key strength lies in its detailed representation of energy and
economic sectors. However, the international shipping module was in
its early stages and highly aggregated (Müller-Casseres et al., 2023).

he model operates with a time horizon extending to 2100 and utilizes
ntertemporal optimization with perfect foresight. It adopts a general
quilibrium solution concept and applies a flexible discount rate based
n the Ramsey rate, typically ranging from 3.0 to 5.0 percent per
ear. The current version, WITCH 5.0, encompasses 17 regions defined
y geographic, income, and energy demand characteristics. Fossil fuel
xtraction is handled by requiring a capital investment for production,
hich depreciates over time. Costs increase with resource depletion,
ith different oil grades having varying costs and emissions. The
odel uses fossil fuel availability curves for coal and gas extraction,

ligning production with international prices and market demand.
urther technical details are available in the WITCH 5.0 Documenta-
ion (WITCH Model Development Team, 2024; Integrated Assessment

Modeling Consortium (IAMC), 2024).

2.2.2. Ports and distances
To approximate the distances involved in international trade, we

identified the largest ports in each region as proxy ports; for Sub-
aharan Africa, the USA, and Canada, both east and west coast ports
ere used to capture diverse shipping routes. Sea distances between

hese ports were obtained from an online tool (Sea Distances, 2024),
hich provides multiple route options—ranging from shortest to

longest. The routes pass through chokepoints such as the Panama Canal
nd Suez Canal, subject to ship-size limits, and through passages such
s Cape Horn and the Cape of Good Hope, which impose no vessel-size
onstraints. The permissible vessel sizes for each route were extracted
nd matched with the proportions of different vessel types, as reported
n the IMO’s 4th GHG study, along with corresponding cargo categories.
 weighted average distance was then calculated based on the shortest

easible route for each ship-size class and cargo type, ensuring that
he respective size limitations and vessel shares were accounted for.
ore data used to form the spatial matrix of distances, and sources

re provided in the Appendix A.2. An illustrative example is the route
etween Europe’s Port of Rotterdam and Japan’s Port of Chiba; where
he shortest distance (11,195 nautical miles) is via the Suez Canal, but

oil tankers larger than Suezmax (i.e., ULCC or VLCC) must travel via
the Cape of Good Hope, which extends the route to 14,511 nautical
miles. Since 61% of tanker capacities can still pass through the Suez
Canal, the weighted average distance is calculated as:
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Fig. 2. Representative regions and proxy ports.
𝐴𝑣𝑔 .𝐷 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 ∶[0.61 × 11195 + 0.39 × 14511] = 12488 nautical miles

Although this approach involves rough assumptions, it provides a
sufficiently accurate estimate, as the primary need is for an average
distance. A calibration process will subsequently align these estimates
with actual 2020 shipping data. Fig. 2 shows the regions and proxy
ports for each region. Route and port traffic congestion is neglected in
this study.

2.2.3. Scenario selection
The shared socioeconomic pathways (SSPs) are scenarios designed

to depict global socioeconomic developments throughout the 21st cen-
tury. The climate change research community created these scenarios to
provide a unified framework for analyzing long-term climate impacts,
vulnerabilities, and strategies for adaptation and mitigation (Riahi
et al., 2017; O’Neill et al., 2017; Samir and Lutz, 2017). SSP2, or
middle-of-the-road, is used as the baseline of scenarios. In the SSP2
narrative, a sort of midpoint between the other SSPs, socioeconomic
indicators progress compatibly with historical trends, and there are no
major technological disruptions (Fricko et al., 2017). The key distinc-
tion between the scenarios lies in the portfolio of the global carbon
tax. In the non-MIT scenario, no carbon tax is implemented. So, the
global tendency is to continue using fossil fuels and invest less in renew-
able energy. In this scenario, the average global surface temperature
increases by 3.5◦ by the end of the 21st century. In scenario MIT-A, a
uniform carbon tax is implemented to align with a 2◦ global temper-
ature increase. Meanwhile, scenario MIT-B portrays a more rigorous
carbon policy to limit the temperature increase to 1.5◦. The MIT-B-EU
scenario mirrors MIT-B, with the notable difference being that Europe
adopted carbon tax two decades earlier than other regions. The details
of the scenarios are presented in a Table A.11 and Fig. A.19 in the
Appendix A.4.

3. Econometrics results

3.1. Energy cargo

The Table 1 presents elasticity estimates and model performance for
coal, LNG, and oil products, focusing on the drivers of seaborne trade.
Production is the most influential factor for coal trade in the exporting
country, with a positive elasticity of (0.619), while distance has a
significant negative impact (−0.287). LNG shows similar dynamics,
6 
with a robust positive elasticity for production in the exporter country
(0.807) and a significant negative effect from distance (−0.589). In
oil products, the key drivers are production in the exporter country
(0.426) and consumption in the importer country (0.453). Only for oil
and oil products is the elasticity of exporter consumption positive, as
the transformation of crude oil into petroleum products is recorded as
crude oil consumption in the data, even though it reflects petroleum
product production. Price negatively impacts all cargoes, and GDP
elasticities vary depending on whether they apply to exporters or
importers. The model performs well, with R2 scores ranging from 0.802
for coal to 0.949 for oil products, indicating robust predictive accuracy.
These results emphasize that production and distance are the main
determinants of energy trade, with varying degrees of sensitivity across
different cargoes.

3.2. Major bulk cargo

The Table 2 presents the effects of various factors on the grain and
iron trade. Grain imports are highly sensitive to the GDP of importing
countries (elasticity 0.259), while distance negatively affects trade
(−0.197), and the exporter’s GDP has less impact. In iron trade, the
exporter’s GDP is the dominant factor (0.474), while the importer’s
GDP and distance play a more minor role. The models perform well,
with high R2 scores of 0.902 for grain and 0.941 for iron and low error
metrics, indicating predictive solid accuracy.

3.3. Minor bulk & containerized cargo

The Table 3 displays coefficients (𝛽0, 𝛽1, 𝛽2) for the import and
export of each region. It also shows the model performance metrics for
containerized cargo trade across different regions. The elasticity values
indicate how sensitive trade volumes are to changes in price and GDP.
Economic growth in all importing and exporting regions substantially
impacts trade volumes, with the highest impact observed in Europe
and MENA. On the other hand, the price elasticity for most imports
and exports is negative, indicating that higher prices reduce import
volumes. The R2 values range from 0.822 to 0.991, showing the models’
strong ability to explain variations in trade volume. The performance
metrics further confirm the models’ good fit and accuracy.

Regarding the minor bulk, log–log multiple regression results re-
vealed that a 1% increase in GDP is associated with a 0.83% rise in
trade, while a 1% increase in fuel price results in a 0.15% decrease
in trade. The model has high explanatory power (R2 = 0.97) and
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Table 1
Elasticity estimates and model performance for energy cargoes.

Coal Coal Std. Dev LNG LNG Std. Dev Oil products Oil products Std. Dev

Elasticities

Production exporter 0.619 (0.075) 0.807 (0.045) 0.426 (0.024)
Consumption importer 0.300 (0.015) 0.429 (0.020) 0.453 (0.030)
Production importer −0.092 (0.012) −0.301 (0.016) −0.006 (0.010)
Consumption exporter −0.335 (0.084) −0.541 (0.038) 0.154 (0.022)
Fprice −0.322 (0.083) −0.030 (0.009) −0.036 (0.008)
Distance −0.287 (0.019) −0.589 (0.015) −0.709 (0.013)
GDP importer 0.219 (0.047) 0.375 (0.022) 0.258 (0.037)
GDP exporter −0.329 (0.039) −0.063 (0.029) −0.174 (0.046)

Metrics

Average R2 score 0.802 (0.088) 0.819 (0.088) 0.949 (0.012)
Average RMSE 0.500 (0.113) 0.428 (0.113) 0.322 (0.033)
Average MSE 0.263 (0.128) 0.184 (0.128) 0.105 (0.021)
Average MAE 0.402 (0.077) 0.308 (0.077) 0.256 (0.025)
t
B
d
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Table 2
Elasticity estimates and model performance for grain and iron.

Grain Grain Std. Dev Iron Iron Std. Dev

Elasticities

GDP exporter 0.148 (0.006) 0.474 (0.050)
GDP importer 0.259 (0.008) 0.177 (0.114)
Distance −0.197 (0.012) −0.168 (0.019)
Fprice −0.089 (0.018) −0.103 (0.013)
Agricultural land-use exporter 0.149 (0.007) – –

Metrics

Average R2 score 0.902 (0.008) 0.941 (0.007)
Average RMSE 0.257 (0.026) 0.272 (0.026)
Average MSE 0.067 (0.013) 0.075 (0.014)
Average MAE 0.151 (0.013) 0.145 (0.012)

accurately predicts trade values with low errors (MAE = 0.03, RMSE
0.043). Due to a lack of detailed data, the estimated elasticities are

lobal and aggregated over all regions for this category.

4. Scenario results and discussion

4.1. Future of international shipping demand

Global seaborne trade is projected to grow throughout the cen-
tury, with the extent of growth heavily influenced by carbon policies.
Shipping activity demands are expected to grow by 34%–66% by
mid-century, with 2020 as the base year. In the non-MIT scenario,
which lacks carbon regulations, trade could exceed 150 trillion ton-
miles per year by 2100. In contrast, the MIT-A scenario, aligned with
limiting global temperature rise to 2 ◦C, shows moderated growth,
reaching around 125 trillion ton-miles. The MIT-B scenario, targeting
a 1.5-degree limit, leads to even slower growth, just over 100 trillion
ton-miles, driven by strict carbon regulations that reduce fossil fuels
trade while boosting cleaner energy sources. In the MIT-B-EU scenario,
where Europe enforces carbon taxes earlier, trade growth initially
surpasses even the non-MIT scenario due to shifts in trade flows, which
is explained later. However, it converged with the MIT-B results after
the mid-century, reaching slightly below 100 trillion ton-miles.

Fig. 3 shows the amount of projected aggregated seaborne trade in
mass and transport work in four scenarios. Fig. 4 shows the same but
ndexed and disaggregated by different cargo.

4.2. Trade in energy cargo

The non-MIT scenario projects the highest trade of fossil fuel energy
commodities due to the absence of carbon policies. In this scenario,
raditional exporters, such as the Middle East and the USA, maintain
heir dominance throughout the century, with stable trade patterns
 d
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reflecting continued reliance on fossil fuels.
Interestingly, in the early years of the MIT-B-EU scenario, where

only Europe enforces a carbon tax, there is initially higher trade in
oil products compared to the non-MIT scenario. This paradox arises
because Europe’s carbon tax reduces domestic oil consumption, causing
an excess supply that lowers global oil prices. Lower prices make
oil more affordable for countries without carbon taxes, boosting their
consumption. Additionally, reduced European demand shifts the invest-
ments to non-taxed regions, enhancing their oil production. As a result,
global oil consumption and extraction initially rose despite Europe’s
reduced usage, driven by increased demand and production in regions
without carbon taxes. However, as other regions implement carbon
axes, global trade patterns shift towards convergence with the MIT-
 scenario, characterized by reduced fossil fuel trade and increased
iversification of energy sources.

As shown in Fig. 5, there is a marked divergence in trade route
trends for oil products depending on the scenario. Major routes such
as MENA (Middle East and North Africa) to India and Seasia show a
steady increase in trade volumes under the non-MIT scenario before
it reaches a plateau, suggesting sustained demand for oil in these
regions. In contrast, trade volumes along these routes decline sharply
under the MIT-B and MIT-B-EU scenarios. China imports are peaking
around 2045 and then declining, while in the MIT scenarios, the peak
happens even sooner. These indicate that stricter climate policies could
significantly reduce oil demand, particularly in Asia, where energy
policies may shift away from fossil fuels. The most influenced routes
through these scenarios are MENA-India, TE-Europe, and MENA-Seasia.
Additionally, the MENA to SSA (Sub-Saharan Africa) route shows an
upward trend across all scenarios, with a spike in the non-MIT scenario,
highlighting SSA’s growing role as a significant oil importer due to
increased industrial activity and energy consumption.

In Fig. 6, LNG trade routes reveal stable or shifting patterns de-
pending on the region and scenario. Routes such as MENA to India
and MENA to Europe display significant growth in trade volumes under
the non-MIT scenario, indicating higher future demand for natural gas
s a transitional energy source. However, under the MIT-B and MIT-B-
U scenarios, trade volumes along these routes will stabilize or decline
lightly by 2050, suggesting a shift towards renewable energy sources
nd reduced reliance on natural gas. This trend is particularly evident

in the MENA to Europe route, where trade volumes decrease under
stricter scenarios, indicating potential changes in Europe’s energy im-
port strategies and consumption patterns. Some routes, such as MENA
to Jpnkor, trend upward or downward depending on the scenario,
reflecting the variability caused by carbon policies. The most influenced
routes through these scenarios are MENA-Europe and MENA-China.

Coal trade flows show a clear and consistent decline across all
cenarios, with the steepest drops occurring under the MIT-B and MIT-
-EU scenarios. The competitiveness of alternative sources primarily
rives the decline in coal consumption and production for energy
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Table 3
Elasticity estimates and model performance for containerized cargo by region and trade direction.
Region Trade direction Constant Price elasticity GDP elasticity R2 MSE MAE

Oceania Import 2.201 −0.327 0.882 0.956 0.003 0.050
Export 1.323 −0.211 0.597 0.956 0.002 0.033

North America Import 0.894 −0.064 0.865 0.864 0.005 0.056
Export 0.340 0.168 0.554 0.886 0.003 0.042

MENAa Import 1.817 −0.350 1.233 0.991 0.001 0.034
Export 1.194 −0.429 1.210 0.950 0.007 0.071

LACAb Import 1.197 −0.252 0.910 0.902 0.007 0.061
Export 1.529 −0.250 0.613 0.663 0.011 0.091

Indian sub-continent Import 1.313 −0.056 0.831 0.986 0.003 0.038
Export 0.966 −0.008 0.692 0.986 0.002 0.031

Far-East Import 1.802 −0.063 0.865 0.979 0.003 0.042
Export 2.159 −0.039 0.822 0.962 0.004 0.053

Europe Import 0.017 −0.196 1.595 0.892 0.006 0.066
Export 1.737 −0.135 1.678 0.760 0.014 0.102

Africa Import 2.484 −0.379 1.327 0.947 0.009 0.082
Export 0.966 −0.036 0.391 0.910 0.002 0.034

a Middle East and North Africa.
b Latin America and the Caribbean.
Fig. 3. Aggregated global sea trade of four scenarios.
Fig. 4. Global sea trade growth of four scenarios by cargo categories.
8 
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Fig. 5. Major sea routes of oil & products trade shifts over time and scenarios.
Fig. 6. Major sea routes of LNG trade shifts over time and scenarios.
generation. Renewable energy has become cost-competitive, decreasing
coal demand, particularly in advanced economies. It is expected that
global coal demand will continue to fall. Additionally, The aging coal
infrastructure further increases the cost of coal, making investments in
renewables or natural gas more attractive. These factors contribute to a
sustained decrease in coal usage even under current measures without
requiring stricter climate policies (International Energy Agency, 2023).
Also, in all scenarios of the IPCC 6th report, Achakulwisut et al. (2023)
9 
compiled all coal projections and concluded that the global coal supply
will rapidly decline, with coal use without CCS largely phased out
entirely by 2040.

According to Fig. 7, key routes, such as Indonesia to China and
Indonesia to Japan and Korea, exhibit a sharp reduction in trade
quantity, reflecting a global move away from coal in favor of cleaner
energy sources. Exports from Oceania are also significantly affected,
similar to Indonesia, as demand for coal diminishes. In the non-MIT
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Fig. 7. Major sea routes of coal trade shifts over time and scenarios.
scenario, trade of routes involving Oceania exports is lower compared
to the MIT scenarios. This is because the importer’s reduced coal
consumption has a more significant impact on the MIT scenarios. The
most influenced routes through these scenarios are TE-Seasia and TE-
Jpnkor. An interesting point is the upward trend of exports from TE to
SSA after 2060 in the non-MIT scenario, driven by high consumption
and growth in SSA. This is not happening in MIT scenarios, as the
region’s demand is satisfied by cleaner energy sources.

4.3. Trade in major bulk cargo

Iron ore and grains trade is projected to increase steadily as popu-
lation growth and economic expansion drive higher demand. However,
in mitigated scenarios with stricter carbon policies, the growth rate is
slightly lower due to higher average fuel prices and higher abatement
costs, which raise transportation costs and represent the economic cost
of climate mitigation. The results show that grains and iron ore trade
are less sensitive to climate policies and more driven by the combined
effects of population and economic development. By 2100, shipping
demand for grains is expected to remain between 9 and 11 trillion ton-
miles, while iron ore demand is projected to stay between 20 and 24
trillion ton-miles. The divergence of scenarios usually starts to build up
after around 2040.

Grain main trade routes in Fig. 8 show significant increases in trade
volumes, particularly to Sub-Saharan Africa and MENA. For example,
the Europe to SSA route demonstrates continuous growth under all
scenarios, with the highest increases observed in the non-MIT sce-
nario. This trend reflects rising food import needs driven by population
growth and economic development. Similarly, grain trade volumes to
MENA increase steadily, highlighting the region’s dependency on grain
imports to meet food security requirements. Notably, some routes,
such as USA to JPNKOR under the MIT-B-EU scenario, show higher
trade volumes, even slightly surpassing the non-MIT scenario, due to
the lower global fuel prices explained earlier. The relatively uniform
growth across scenarios suggests that grain trade is influenced mainly
by demographic and economic factors rather than climate policy alone.
The most influenced routes through these scenarios are TE-MENA and
TE-SSA.
10 
As shown in Fig. 9, Iron ore trade remains robust across all sce-
narios, particularly on major routes such as Oceania to China. The
trade volumes on this route increase steadily, even under the MIT-B
and MIT-B-EU scenarios, although the growth rate is more moderated
than in the non-MIT scenario. This suggests that demand for iron ore,
driven by infrastructure development and construction in regions like
China, remains strong despite potential shifts towards sustainability
and environmental regulation. The most influenced routes are Oceania-
China and Brazil–China, reflecting their significant roles in meeting
China’s iron ore demand.

4.4. Trade in containerized cargo and minor bulk

Minor bulk and containerized cargo are projected to increase
steadily and faster than other types of cargo due to their strong de-
pendence on economic growth and population expansion. By 2100, the
demand for containerized cargo is expected to range between 35 and
45 trillion ton-miles, while the demand for minor bulk is projected to
be between 23 and 30 trillion ton-miles. This reflects their heightened
sensitivity to economic activity and the overall expansion of the global
economy.

In Fig. 10, trade routes for containerized goods consistently show
strong growth across all scenarios, particularly routes to Sub-Saharan
Africa. For instance, the Europe to SSA route experiences a continuous
rise in trade volumes, reflecting SSA’s expanding economic integra-
tion and increasing demand for consumer goods and manufactured
products. Despite stringent climate policies like MIT-B and MIT-B-EU,
these routes demonstrate upward trends, although the growth rate is
slightly lower than in the non-MIT scenario. Interestingly, routes such
as China-USA and Jpnkor-China peak around 2050–2060 and then
decline, with the peak occurring sooner under the MIT scenarios. The
Jpnkor-USA route is the only route showing a general decline across
all scenarios. The most influenced routes through these scenarios are
those where SSA is an importer as well as the China-Europe route.
The robust growth in containerized goods trade to SSA and other
emerging markets suggests a shift in global trade hubs and a move
towards more diversified trade networks driven by economic growth
and infrastructure development in these regions.
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Fig. 8. Major sea routes of whole grains trade shifts over time and scenarios.
Fig. 9. Major sea routes of iron ore trade shifts over time and scenarios.
Illustrated by Fig. 11, Trade flows for minor bulks, which include
a variety of bulk goods, depending on the scenarios. Regarding the
shifting patterns, the China-Jpnkor route peaks around 2050 and then
declines, with the peak occurring sooner under the MIT scenarios. A
similar pattern is observed for the China-USA and Jpnkor-China routes.
Some routes, such as SSA-Europe and SSA-USA, show sharp increases
that are almost inelastic to the scenarios. Other routes’ behavior en-
tirely depends on the scenario, such as Europe-USA and USA-Europe,
which decline in the MIT-B and MIT-B-EU scenarios but increase in the
non-MIT and MIT-A scenarios. The most influenced routes are China-
Jpnkor, both ways around, reflecting their significant role in minor
bulk trade flows. The overall trends remain consistently upward across
11 
scenarios.

4.5. Discussion

• Stricter carbon policies and higher carbon taxes are projected
to reduce global seaborne trade mainly due to mitigation-
related economic loss and shifting fossil fuel production and
consumption patterns. This decrease in trade is particularly sig-
nificant for fossil fuel cargoes. These trends highlight the im-
portance of cautious investment strategies for port infrastructure.
Specifically, facilities heavily reliant on fossil fuel cargoes should
plan for reduced volumes while opportunities may arise to adapt
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Fig. 10. Major sea routes of containerized trade shifts over time and scenarios.
Fig. 11. Major sea routes of minor bulk trade shifts over time and scenarios.
infrastructure for cleaner energy products and resilient trade
flows in non-energy sectors.

• The total trade share of different cargoes is expected to
shift, with oil products, containerized cargo, minor bulk, and
iron ore dominating by end-century across all scenarios. The
trade of minor bulk goods and iron ore remains less sensitive
to climate policies and is driven more by economic activity and
manufacturing needs. Stakeholders should monitor these trends
12 
and invest in adaptable logistics and handling facilities to ac-
commodate traditional and emerging cargoes. Shipowners might
consider diversifying their fleets to include vessels capable of
transporting various cargo types [Fig. 12]. There is potential for
new trade markets, such as biomass and hydrogen, to emerge,
although these are not explicitly covered in this study.

• If Europe implements a carbon tax before other regions, it
is expected to increase the seaborne trade, especially oil
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Fig. 12. The range of projected shipping demand of cargoes across scenarios.
products. This is because Europe will likely reduce its consump-
tion of oil products, resulting in an excess oil supply in the
global market and subsequently causing a reduction in global oil
prices. Low-cost producers like those in the Middle East main-
tain or even expand production. Additionally, the increase in
the export of fossil fuels from Europe to the non-taxed regions
will stimulate seaborne trade. The trade of other cargoes also
increases slightly due to lower global fuel prices. This will change
when other regions implement carbon taxation starting in 2035
[Fig. 13]. Policymakers should aim to coordinate global efforts
in implementing carbon taxes to avoid unintended regional trade
imbalances and ensure fair competition. A harmonized approach
to carbon taxation would prevent market distortions and unin-
tended emission increases. As the first to implement a carbon tax
in shipping, Europe should invest taxation revenues in dual-use
port infrastructure and vessels adaptable to alternative energy
cargoes while subsidizing cleaner shipping technologies such as
carbon-neutral fuels and energy-efficient vessels. This strategy
would future-proof trade routes, accelerate the global energy
transition, and position Europe as a leader in decarbonizing mar-
itime trade, balancing short-term economic gains with long-term
climate goals.

• Regardless of the scenario or the level of carbon tax imposed,
shipping demand is expected to rise across multiple regions.
Sub-Saharan Africa stands out with the most substantial growth
due to economic and demographic expansion. On the import
side, China, Mexico, India, Canada, and LACA also show notable
increases, but Sub-Saharan Africa outpaces them the all by end of
the century. On the export side, Brazil and Oceania are projected
to see expansion due to strong iron ore shipments and limited
alternatives. LACA’s diversified cargo exports and India & Mex-
ico’s focus on minor bulk cargoes further sustain overall trade
growth. Because these trends persist across various scenarios,
stakeholders can view these markets with higher certainty. Poli-
cymakers should prioritize investments in port infrastructure and
strengthen regulatory frameworks to support these expansions.
Industry leaders and investors can capitalize on the heightened
certainty by adopting advanced logistics solutions and forging
strategic partnerships (see Fig. 14).

• China maintains its upward trajectory as a major importing re-
gion across all scenarios. Its role as an exporter, particularly in mi-
nor bulk cargoes, continues to strengthen, even under mitigated
13 
scenarios. The USA’s position as an exporter remains resilient,
though oil exports decline in mitigated scenarios. As an importer,
the USA’s trend — whether upward or downward — is highly
dependent on the ambition level of policy measures. A similar
pattern is observed in Southeast Asia, where import trends are
also closely tied to policy severity.

• Based on all scenarios, it is anticipated that coal trade will
decrease over time, while there is a likelihood of an increase in
the trade of grain, iron ore, containerized cargo, and minor bulk.
As for LNG and oil products, there is a high level of uncertainty,
and there are more observed fluctuations in response to the global
carbon tax (see Fig. 15).

• Strengthening policy measures for decarbonization can de-
liver significant emissions reductions but must be balanced
against potential economic impacts. As shown in Fig. 16,
stricter decarbonization measures significantly raise policy costs
and drive shipping demand declines beyond what GDP losses
alone would suggest. This extra drop is due in part to reduced
fossil fuel trade and higher fuel prices, not just slower economic
growth. The trade-off between ambitious emission targets and
economic impacts is clear: stricter policies lead to deeper emis-
sions cuts but come with significant costs to global trade and
economic activity.
Stricter taxation and the rising costs of clean technologies put
pressure on the overall economy and make it harder for smaller
or less financially strong companies to enter the market. As a
result, larger companies that can handle these costs more eas-
ily will likely gain an advantage in challenging market condi-
tions. Additionally, as expenses and operational challenges grow,
other shipping sectors might start adopting business plans and
strategies commonly used in the container shipping industry, like
standardizing processes and using advanced technology, to stay
competitive in this stressed market.

5. Uncertainty and future work

Scenarios and models inherently involve uncertainty due to their
projective nature, as emphasized by Refsgaard et al. (2007), who
differentiate between unrecognized knowledge gaps and acknowledged
limitations. Walker et al. (2003) categorize this uncertainty into key
areas: context and framing, input, model structure, and parameter
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Fig. 13. Comparison of MIT-B-EU scenario with respect to baseline non-MIT scenario.
Fig. 14. Global seaborne trade in the scenarios breakdown by importing region.
uncertainties. These uncertainties complicate the assessment of sce-
nario projections as definitively right or wrong, suggesting that some
elements may be less feasible than others. Rather than focusing on
absolute values, such studies should prioritize identifying trends and
understanding potential impacts, offering a more actionable and strate-
gic perspective on future developments. These models should be viewed
as comparative tools rather than purely predictive ones. Despite these
inherent uncertainties, this study mitigates risks by validating against
existing datasets while keeping the assumption of unchanged bilateral
dynamics between regions. It focuses exclusively on changes driven
by climate policy without altering other relationships. The emphasis
remains on understanding broader patterns, not precise predictions,
which can provide valuable insights into energy transition pathways
and impacts.

Several recommendations are proposed to enhance the robustness
and relevance of future studies. Firstly, there should be a greater focus
on exploring new trade corridors, particularly those that may emerge
14 
for renewable fuels and other cargo types that are not currently promi-
nent, such as hydrogen and biomass. This forward-looking approach
will help identify and analyze emerging trends. Secondly, applying the
econometric model to multiple Integrated Assessment Models could
provide a more comprehensive multi-model analysis, enabling compar-
isons that yield more profound insights into trade dynamics. Lastly,
it is interesting to investigate the non-economical parameters such
as political instability, ports’ regulations, and geopolitical tensions to
understand how these factors influence trade. This exploration will
provide a more accurate understanding of trade patterns, but it is out
of this research’s scope.

Following this study, the next phase involves converting shipping
demand into energy requirements. We aim to create a fuel supply
model that assesses the energy needs and fuel mix of the maritime
industry, offering a more transparent view of shipping’s contribution
to the energy transition from integrated perspectives.
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Fig. 15. Global seaborne trade in the scenarios breakdown by group of products.
Fig. 16. Global policy costs, emission reduction, and shipping demand decline relationship.
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Appendix

A.1. Econometric model details

See Tables A.4–A.7.
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Table A.4
Table of model specifics.

Category Econometric model Determinant variables Estimation method Data source and span

Energy Augmented & disaggregated
gravity model

GDP, Consumption, Production,
Distance, Fuel price

RIDGE bpstats 2014–2021

Non-energy Major bulk Disaggregated gravity model GDP, Distance, Fuel price OLS Trademap 2015–2021
Minor bulk and containerized Gravity application based model

& allocation distribution
GDP, Fuel price OLS Clarksons 2002–2021
Table A.5
Variance Inflation Factors (VIF) for different variables across energy models.
Variable Coal Gas Crude oil Petroleum product

(VIF) (VIF) (VIF) (VIF)

Production_x 60.79 48.83 4.28 2.48
Consumption_i 48.77 57.83 25.68 22.73
Production_i 47.61 34.05 2.04 2.21
Consumption_x 54.15 73.10 19.72 26.14
fprice 8.54 7.26 9.11 9.56
Distance 4.78 5.49 4.91 5.09
GDP_i 3.33 8.80 15.51 14.07
GDP_x 2.47 8.20 11.10 14.99
Table A.6
Number of observations used for each cargo model.
Cargo type Grains Iron ore Coal LNG Oil & Products Containerized Minor bulk

Observations 1292 1408 216 284 720 680 20
Table A.7
Variance Inflation Factors (VIF) for iron ore and grain models.
Variable Iron ore (VIF) Grain (VIF)

GDPX 1.84 1.74
GDPI 1.67 1.68
DISTANCE 5.84 5.62
FPRICE 5.74 5.31
Table A.8
Passability of chokepoints and canals by ship type and size. references: EIA (2017, 2024), Alexander (1992) and IEA (2024).

Chokepoint/Canal Container ships (TEU) Bulk carriers (DWT) Oil tankers (DWT)

Strait of Hormuz No restrictions; all sizes (up to 24,000+
TEU)

No restrictions; all sizes (up to 400,000
DWT)

No restrictions; ULCCs (up to 500,000
DWT) can pass

Strait of Malacca Limited to vessels with draft ≤23 m;
20,000 TEU max

Capesize restricted; limited to 150,000
DWT

Limited to Suezmax (200,000 DWT); VLCCs
with lightering

Suez Canal Allows New Panamax (15,000 TEU) and
most ULCVs

Capesize allowed with constraints; VLOCs
restricted (200,000 DWT max)

Limited to Suezmax(200,000 DWT)

Panama Canal Limited to New Panamax (≤15,000 TEU) Capesize restricted; Panamax (80,000 DWT)
and smaller allowed

Limited to Aframax (120,000 DWT) and
smaller

Bab-el-Mandeb Strait No restrictions; all sizes (up to 24,000+
TEU)

No restrictions; all sizes (up to 400,000
DWT)

No restrictions; ULCCs (up to 500,000
DWT) can pass

Danish Straits Limited to vessels with draft ≤15 m;
5000 TEU max

Panamax (80,000 DWT) and smaller
allowed

Limited to Aframax (120,000 DWT) and
smaller

Turkish Straits Limited to vessels with draft ≤15 m;
5000 TEU max

Panamax (80,000 DWT) and smaller
allowed

Limited to Aframax (120,000 DWT) and
smaller

Cape of Good Hope No restrictions; all sizes (up to 24,000+
TEU)

No restrictions; all sizes (up to 400,000
DWT)

No restrictions; ULCCs (up to 500,000
DWT) can pass
A.2. Spatial matrix of distance estimation

See Tables A.8 and A.9.
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A.3. Validation of the models

See Figs. A.17, A.18 and Table A.10.
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Fig. A.17. Validation results for econometric models. Each panel shows the actual versus predicted values for a specific model or cargo category. 2022 and 2023 data are used
for validation.
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Table A.9
Distribution of Ship Types, Capacities, and Categories. Reference: IMO (2020).
Vessel type Vessel capacity Size category Distribution of

ships (Capacity)

Containership [TEU]

<3k Feeder 19%
3–6k Intermediate 23%
6–8k Intermediate 9%
8–12k Neo-Panamax 27%
12–15k Neo-Panamax 14%
>15k Post-Panamax 9%

Bulker [DWT]

<40k Handysize 12%
40-60k Handymax 24%
60-80k Panamax 25%
>80k Capesize 39%

Tanker [DWT]

<55k Handysize 22%
55–85k Panamax 6%
85–125k Aframax 19%
125–200k Suezmax 15%
>200k UL/VLCC 39%
Table A.10
Validation metrics for econometric models.
Model R2 MSE RMSE MAE

Oil and Petroleum products 0.859 0.289 0.538 0.401
Coal 0.792 0.359 0.599 0.475
LNG 0.818 0.240 0.490 0.356
Containerized cargo 0.987 0.017 0.132 0.109
Iron Ore 0.939 0.081 0.284 0.203
Grains 0.878 0.109 0.331 0.234
Fig. A.18. Comparison of results with those of similar works predicting future global shipping demand. References for data: GCAM IAM (Speizer et al., 2024b), TIAM UCL (Walsh
et al., 2019), IMAGE PBL (Müller-Casseres et al., 2021), IEA2024 (IEA, 2024).
A.4. Scenario definition

Table A.11 and Fig. A.19 show more details of the scenarios used in
the paper’s analysis. The temperature increase is bound to end of the
century (year 2100).
18 
A.5. Regions mapping

Table A.12 shows the regions in the model, the actual countries they
represent, and the proxy ports used for distance estimation. Canada,
USA, SSA, and TE regions include two ports, one on the west and the
other on the east.
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Table A.11
Scenarios and carbon tax details.
Scenario Carbon tax [$/tonCO2] Baseline Temp Mitigation

(2030, 2050, 2100) (Population & GDP) (◦C) capacity

Non-MIT Global: (0, 0, 0) SSP2 ∼3.5 Low
MIT-A Global: (9, 52, 135) SSP2 ∼2 Mid
MIT-B Global: (36, 239, 673) SSP2 ∼1.5 High
MIT-B-EU Europe: (36, 239, 673)Others: (0, 239, 673) SSP2 ∼1.5 High
Table A.12
Regions, representations, and proxy ports.

Regions in
the model

Representing Proxy ports

CANADA Canada Montreal(E), Vancouver(W)
EUROPE Western Europe Rotterdam
JPNKOR Japan, Korea Chiba
MEXICO Mexico Manzanillo
OCEANIA Australia, New Zealand Brisbane
USA United States of America Galveston(E), Los

Angeles(W)
BRAZIL Brazil Santos
INDIA India Mumbai
INDONESIA Indonesia Tanjung Priok
LACA Latin America & Caribbean Panama
MENA Middle East & North Africa Jebel Ali
SA South Africa Durban
SASIA South Asia (Afghanistan,

Pakistan)
Karachi

SEASIA South East Asia Singapore
SSA Sub-Saharan Africa Mombasa (E), Lagos (W)
TE Eastern European

Countries including Russia
Novorossiysk(W),
Vostochnyy(E)
Fig. A.19. Global projections under four scenarios. (A): Global CO2 emissions (GtCO2), showing the trajectory of emissions over time. (B): Temperature increase (◦C) in the
atmosphere, highlighting the impact of emissions on global temperature rise. (C): Total radiative forcing (W/m2), representing the net effect of all climate forcing components. All
panels compare the outcomes of the four scenarios included in the study.
19 
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Data availability

The datasets used and/or analyzed during the current study are
vailable from the corresponding author upon reasonable request.
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