
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Affine Caps

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

Saskia B. Vertregt

Delft, Nederland
Juli 2015

Copyright c© 2015 door Saskia B. Vertregt. Alle rechten voorbehouden.





BSc verslag TECHNISCHE WISKUNDE

“Affine Caps ”

Saskia B. Vertregt

Technische Universiteit Delft

Begeleider

Dr. D.C. Gijswijt

Overige commissieleden

Dr. K.P. Hart Drs. E.M. van Elderen

Juli, 2015 Delft





Preface

This document is my bachelor thesis. This is the final report of my bachelor project ”Affine Caps”, for
the program Applied Mathematics of the Technical University Delft. I had the chance to choose a
project or invent my own project. I choose to do the first, the department of optimization had my
preference since I attended the courses ”Optimization” and ”Combinatorial Optimization”. As I like
to solve puzzles and play games, this final project about Set seemed perfect for me.
The project was more theoretical in some parts than I wished for, but after all I am glad I choose this
project. It showed me that I can do much more than I thought and it confirmed my preference for
optimization. It taught me how to write a thesis and how to work in a structured way.
First of all I want to thank my mentor Dion Gijswijt for his time and patience. He gave me the freedom
to think of new solutions and helped me with new questions if I did not know what to do. Second I
want to thank the optimization department for the seminars, the preparations for my presentations
and the feedback on my presentation were always very helpful. Finally I want to thank my friends, for
all the laughs, the distractions and the motivational speeches to work hard.

S.B. Vertregt
Delft, July 2015

ii



Abstract

This thesis concerns the proof that twenty points are a 4-cap and gives an upper bound for higher
dimensions. First I explain what the card game set is and give a mathematical interpretation for the
game. Then I introduce some concepts that will be used in the proof. Then I will explain some lower
dimension proofs to make more clear what the main structure is of the proof fo the 4-cap. In chapter
3 I will give the proof of the 4-cap and give the first found upper bound for higher dimensions. In
chapter 4 an other upper bound for higher dimension will be proven and we will compare both found
bounds for different dimensions.
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Chapter 1

Introduction

The card game Set is a game for quick thinkers. You can only win if you can find combinations faster
than your opponents. The main goal is collecting cards, by finding a ‘set’ before your opponents do,
you can collect the three cards of the set.
The game starts with 12 cards face-up on the table. If a set is found by one of the players, these cards
are removed by that player and 3 other cards are put face-up on the table, such that there are 12 cards
on the table.
If there is no set found at one point in the game, 3 other cards are put face-up on the table, until there
is a set found. The cards are not replaced until there are again 12 cards face-up on the table.
This continues until the stack of cards is empty. It is possible there are still cards face-up on the table
at the end of the game, that do not contain a set. Every player counts the number of sets, the player
with the most sets wins!

1.1 The card game Set

The card game Set is played with a deck of 81 cards, specially designed for this game. On each card is

Figure 1.1: All options in characteristics

a unique design with 4 characteristics.
The card shows one possible combination of 4 characteristics — number, filling, color, shape — and
each characteristic has 3 possible values.

number : One, Two, Three
filling : Open, striped, Solid
color : Red, Purple, Green
shape : Diamonds , Ovals, Wiggles
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The goal of the game is to collect the highest amount of cards. You can do this by searching for
combinations, that satisfy the following rule, in the cards on the table.

Rule ( Set Rule). Three cards are called a Set if, with respect to each of the 4 characteristics, the
cards are either all the same or all different.

Example 1. Figure 1.2a shows an example of a set. All cards have the same color, shading and shape
and all cards are different in number of shapes.
Figure 1.2b shows an example of a combination of three cards that do not form a set. The cards all
have the same shape and number. The cards are all different in color, but the filling of two cards are
the same (striped) and one is different (Open). Therefore, the filling characteristic does not satisfy the
Set rule.

(a) A set (b) Not a set

Figure 1.2

Although finding a set could take seconds, in other cases there will be 12 cards face-up on the table
that do not contain a Set. To continue the game, three more cards are drawn. But still with 15
cards on the table it is possible that there is no Set. Therefore the following problem is important for Set.

Problem. How many cards can be dealt without creating a Set?

We find that it is possible to draw 20 cards without creating a set(see Figure 1.3), whether this is the
maximum number of cards without creating a set is not yet proven.

Figure 1.3: Twenty cards without a set
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There is no really easy way to show that these cards do not create a set, other than systematically
searching for combinations. For instance, we only have two red cards, therefore we can not have an
entirely red set. Hence, you can check entirely green, purple and multicoloured sets until you have
checked all combinations. To solve this problem systematically, we make a mathematical interpretation
of a card.

1.2 Mathematical interpretation of Set

Set can be described in a mathematical manner. The 81 cards are the elements of the vector space F4
3.

The field F3 has three elements, for each characteristic there are 3 different options.

Definition 1 (Field). A field is a finite set F , with two maps addition + : F×F → F and multiplication
· : F × F → F such that the following hold;

1. The maps + and · are associative, (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

2. The maps + and · are commutative, a+ b = b+ a and a · b = b · a

3. The maps + and · are distributive, a · (b+ c) = a · b+ a · c.

4. F has a unit element for addition (+), which we denote with 0, and a unit element for multiplication
(·), which we denote with 1, with 1 6= 0.

5. Every a ∈ F has a inverse for addition.

6. Every 0 6= a ∈ F has a inverse for multiplication.

In this case, we work in the field F3. More general we can define Fp, with p a prime number, as the set
of the elements {0, 1, · · · , p− 1}, with addition and multiplication modulo p.
Every Set card has 4 characteristics, therefore a card is an element of F4

3. An element of F4
3 can be

described as a 4-tuple of the form (x1, x2, x3, x4), each coordinate corresponds to one characteristic
and can assume 3 different values: 0, 1, 2.

Example 2. The element (1, 0, 2, 1) can correspond to ”Two Open Green Ovals”

We can desribe the set rule also mathematically, three points form a set if and only if a+ b+ c = 0 or
three points form a set if and only if a, b and c are collinear.

Definition 2 (Line). We define a line as the set {a+ λb | a, b ∈ F4
3, b 6= 0, λ ∈ F3}.

Proof. Suppose we have three points x, y and z lie on one line, with the definition of a line, we know
we can write the points as; 

x = x+ 0 · (y − x)
y = x+ 1 · (y − x)
z = x+ 2 · (y − x)

Adding up all points gives; x+ y + z = x+ x+ (y − x) + x+ 2(y − x) = 3y = 0 mod 3.
Suppose x + y + z = 0, then we can rewrite this a x − y + z = −2y ⇔ x − y = y − z. The
difference between x and y is the same as the difference between y and z, thus x, y and z lie on a line
{x+ λ(y − x) | a, b ∈ F4

3, b 6= 0, λ ∈ F3}.
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Example 3. Suppose we have the following 3 points a = (1, 0, 2, 1) , b = (1, 2, 1, 1) and c = (1, 1, 0, 1).
We know a, b and c are a Set, because a+ b+ c = (3, 3, 3, 3) = (0, 0, 0, 0) mod 3. Therefore a, b and c
are collinear.
We can also find the missing point to form a Set. Suppose we have point a = (1, 0, 2, 1) and b = (1, 2, 1, 1).
We know that a and b can be in the same Set.We add up point a and b; a+ b = (2, 2, 3, 2), for a set
holds a+ b+ c = (0, 0, 0, 0). (2, 2, 3, 2) + (1, 1, 0, 1) = (3, 3, 3, 3).therefore using modular 3 arithmetics
we can find the third point to form the Set; c = (1, 1, 0, 1).

To define the problem in a mathematical manner we introduce de Cap of a dimension.
Definition 3 (d-Cap). A d-cap is a subset of Fd3 not containing any lines, therefore the d-cap does not
contain 3 collinear points. A maximum d-cap is a largest d-cap possible in Fd3.

Problem. How many elements of F4
3 form a maximal 4-cap? Or more general; How many elements

of Fd3 form a maximal d-cap?

In the following chapters we will give a proof that twenty is the maximum size of a 4-cap, we have seen
that 20 is a possibility, but what we do not know yet if 21 is also a possibility. We will explain some
definitions that we need for the proof. Last we will look at an upper bound for higher dimensions.
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Chapter 2

Geometry in a vector space

This chapter is about the geometry and properties of the vector space F4
3. Since a Set is defined as a

line, we also need to know how a plane is defined in a vector space. Also the space is affine and not
linear, therefore we have to redefine certain basic properties and definitions.

2.1 Affine spaces

The vector space F4
3 is called an affine space, this means the vector space is shifted.

Definition 4 (Affine space). Let L ⊂ V a linear subspace and p ∈ V , then we call A = L + p =
{v + p such that v ∈ L} an affine subspace.

There is no unit element in a affine space, but every element can become the unit element. We use
affine transformations, that keep the collinearity between the elements, to make the unit element.
A set is defined as a line through the vector space. Next we want to define planes and subspaces. To
define a basis for such a k-dimensional space we also need the following definitions.

Definition 5 (Affine independent). Vectors v1, · · · , vn are affine independent if ∃λ1, · · · , λn such that
λ1v1 + · · ·+ λnvn = 0 and λ1 + · · ·λn = 0 and not all λi equal to zero.

In terms of linear independence, v1, · · · , vn are affine independent if and only if

[
v1
1

]
, · · · ,

[
vn
1

]
are

linear independent.
Definition 6 (Dimension). The dimension of a linear space L is defined as the number of basis vectors
to span the whole linear space. The dimension of a affine space A is defined as the number of basis
vectors of the corresponding linear space L.

2.2 Planes in Fd3

In chapter 1 we have defined that 3 points, that are a set, lie on one line or {a+ λb | a, b ∈ F4
3, b 6=

0, λ ∈ F3}. Because of the definition of a set, we know that three points on a line is the maximum,
because of uniqueness of the cards. Therefore if we have two of those points, we know what the third
point has to be. Thus a basis for a line is 2 points.
If we want to define a plane we need 3 points, suppose we have three points, a, b and c, such that a, b
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and c are not collinear. Another definition for a plane is the collection points {a+λ1b+λ2c | a, b, c ∈
F4
3, b, c 6= 0, λ1, λ2 ∈ F3}. Than that plane defined by a, b and c will have following points;

a a+ b a+ 2b
a+ c a+ b+ c a+ 2b+ c
a+ 2c a+ b+ 2c a+ 2b+ 2c

We know that that these points are all the points in the plane because of uniqueness of the points. In
terms of vectors we can define that the plane is spanned by the two vectors ab and ac.

2.3 Hyperplanes in Fd3

We defined what a plane is as basis for larger dimensions, because We are interested in different d-caps,
we want to expand this plane more generally. Therefore we are interested in hyperplanes. Instead of
looking at our whole space, we decompose our space into three parallel hyperplanes.

Definition 7 (Hyperplane). A hyperplane is a subset of the vector space such that ∀x in Fd3 the
following holds: {x ∈ Fd3 : a1x1 + a2x2 + · · ·+ adxd = b}. In other words; A hyperplane is the solution
set of {a 6= 0, x ∈ Fd3 : a ·x = b}. The whole vector space can be decomposed in three parallel hyperplanes
with b = 0 or b = 1 or b = 2.

Therefore a hyperplane is d− 1 dimensional, because the dimension of a solution set {a 6= 0, x ∈ Fd3 :
a · x = b} is equal to dimension of x minus rank of A. We know that a is a vector, thus the rank of a is
1. As x is an element of Fd3, x has dimension d, therefore we find dimension d− 1 for a hyperplane.
Definition 8 (k-flat). A k-dimensional affine subspace of a vector space is called a k-flat.

To proof that there a twenty points in the 4-cap, we will count cap points on different lines and planes.
Therefore we will need the following proposition;

Proposition 1. The number of hyperplanes containing a fixed k-flat in Fd3 is given by 3d−k−1
2

Proof. Suppose {v1, · · · , vk} are a basis B for the k-flat. We want to expand this basis B to a basis for
a hyperplane of dimension d− 1. Suppose we find the following basis for our hyperplane of dimension
d− 1; {v1, · · · , vk, uk+1, · · · , ud−1}. Counting combinations we find;

⇒ (3d − 3k)(3d − 3k+1) · · · (3d − 3d−1)

(3d−1 − 3k)(3d−1 − 3k+1) · · · (3d−1 − 3d−2)

= 3d−1−k · (3d − 3k)(3d − 3k+1) · · · (3d − 3d−1)

(3d − 3k+1)(3d − 3k+2) · · · (3d − 3d−1)

= 3d−1−k · 3d − 3k

3d − 3d−1

= 3d−1−k · 3k−d+1 · 3d−k − 1

2
=

3d−k − 1

2
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2.4 Basic proof of small caps

Now we will use all the definitions to give a basic proof and clarify the structure used in the proof. We
will count points of the cap on certain k-flats.
Proposition 2. A maximum 2-cap has four points.

We know that {(0, 0), (0, 1), (1, 0), (1, 1)} is a 2-cap, adding any other point will give a Set. To prove
this we can add up all possible combinations of points and show that this is a maximal cap, but this
wil not prove that there is no other combination of points that can be of size greater than 4. Therefore
we will make a more systematically proof.

Proof. We show by contradiction that no larger cap exists. We have seen that a cap can have four
points. Suppose there is a 2-cap with five points, x1, x2, x3, x4, x5. We can decompose F2

3 into three
parallel lines. Each line can contain at most 2 points of the cap. We have 5 points, so two lines with 2
points and one line H with one point of the cap. Suppose x5 is located on H. There are exactly 4
lines through x5 (see proposition 1), L1, L2, L3, H. We know x1, x2, x3, x4 are not located on H, so
x1, x2, x3, x4 must be located on L1, L2, L3.
We have four points that are located on three lines. By the pigeon hole principle, we know that there
are two points xj , xk located on Li. Therefore Li contains three points xj , xk, x5. This contradicts that
x1, x2, x3, x4, x5 can be a 2-cap.

We can use Proposition 2 to determine the maximum size of 3-cap. We will prove by counting cap
points on different planes.
Proposition 3. A maximum 3-cap has nine points.

We know that {(0, 0, 0), (2, 0, 0), (0, 2, 0), (2, 2, 0), (1, 1, 1), (0, 1, 2), (1, 0, 2), (1, 2, 2), (2, 1, 2)} is a 3-cap,
adding any other point will give a set.

Proof. We know 3-cap can be nine points. This proof will proceed by contradiction. Suppose there is a
3-cap with 10 points. We can decompose F3

3 in three parallel hyperplanes, these hyperplanes are all of
dimension two. Therefore we know that no hyperplane contains more than four points of the cap (see
Proposition 2). There is a hyperplane H with the least number of points of the cap, this hyperplane
must contain two or three points. (four points wil give a total of twelve points in the cap, zero or one
point wil give a total of at most 9 points in the cap). There are at least seven points in the cap not
contained in H, x1, x2, x3, x4, x5, x6, x7.
Let a and b be two points of the cap on plane H. There are four planes which contain a and b (see
proposition 1):

3d−k − 1

2
=

32 − 1

2
= 4

Let the four planes be H,P1, P2, P3. The points x1, x2, x3, x4, x5, x6, x7 are not contained in plane H,
therefore x1, x2, x3, x4, x5, x6, x7 have to be contained in P1, P2, P3. With the Pigeon hole principle, we
know that one Pi must contain three points xc, xd, xe, therefore Pi must contain a, b, xc, xd, xe and this
is in contradiction with Proposition 2. Therefore a maximal 3-cap contains 9 points.

This method will not work for larger dimensions, because the variation in number of cap points
distributed over the different hyperplanes grows significantly with larger dimensions and also the
number of different planes through two points grows significantly. Therefore we will prove proposition
3 again with a different method.
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Chapter 3

Counting hyperplanes and hyperplane
triples

To prove the maximum cap size for larger dimensions we introduce a counting method for hyperplane
triples [Davis and Maclagan, 2003]. In the previous chapter we counted cap points on a hyperplane.
Now we will count distributions of cap points over parallel hyperplanes. We call these distributions
hyperplane triples.

Definition 9 ((unordered) hyperplane triples). Given a hyperplane decomposition, a hyperplane triple
is the distribution of points in the d-cap over the three parallel hyperplanes. In other words, given
a d-cap C and hyperplane decomposition H1, H2, H3. The hyperplane triple is defined as follows,
{|C ∩H1|, |C ∩H2|, |C ∩H3|}, where |C ∩Hi| is the size of C ∩Hi.
The hyperplane triple is called unordered if we talk about affine hyperplanes. Then the hyperplane triple
{4, 4, 2} is equal to the hyperplane triple {4, 2, 4}. In this case we always look at affine hyperplanes and
unordered hyperplane triples.

To give an example of a proof with hyperplane triples, we will prove again that a maximum 3-cap has
nine points with this new method.

Proof. This proof will again proceed by contradiction. Suppose there is a 3-cap with 10 points. We can
decompose F3

3 into three parallel hyperplanes, H1, H2, H3. We know from Proposition 2 that a plane can
have at most 4 cap points, thus we find the following hyperplane triples; {4, 4, 2} or {4, 3, 3}. We want
to count the different ways to decompose F3

3 into three parallel hyperplanes. Let x442 be the number
of {4, 4, 2} hyperplane triples and x433 be the number of {4, 3, 3} hyperplane triples. Then the total
number of decompositions is x442 + x433. On the other hand the number of directions perpendicular
to one decomposition in three parallel hyperplane is equal to the number lines through the origin.
Therefore each non zero point determines a direction. The number of non zero points in F3

3 is equal
to 33 − 1. On each line through the origin are 3 points located, the origin and two others. Thus the
number of lines through the origin and number of directions is equal to 26/2 = 13. Therefore,

x442 + x433 = 13 (3.1)

To obtain another equation, we count 2-marked hyperplanes. The 2-marked hyperplanes are pairs of
the form (H, {x, y} ⊂ H ∩ C), with H a hyperplane and x 6= y. With proposition 1 we can check that
there are four planes containing two fixed points. Therefore the total number of 2-marked hyperplanes
is 4
(
10
2

)
= 180. Now counting the 2-marked hyperplanes in the hyperplane triples, we find the following

8



equation: [(
4

2

)
+

(
4

2

)
+

(
2

2

)]
x442 +

[(
4

2

)
+

(
3

2

)
+

(
3

2

)]
x433 = 180,

13x442 + 12x433 = 180. (3.2)

Solving this system of equations (3.1) and (3.2), we find x442 = 24 and x433 = −11. The number of
hyperplane triples for a given partition must be positive, therefore this is a contradiction.

3.1 4-caps

Proposition 4. A maximum 4-cap has twenty points.

Proof. we have seen in Figure 1.3 that a 4-cap can contain twenty points. It remains to be shown that
no 4-cap contains more than twenty points. We proceed by contradiction. Suppose the 4-cap contains
twenty-one points. We find the following possible hyperplane triples;

{9, 9, 3}, {9, 8, 4}, {9, 7, 5}, {9, 6, 6}, {8, 8, 5}, {8, 7, 6}, {7, 7, 7}

let xijk be the number of {i, j, k} hyperplane triples.

Again, we are counting the number of hyperplane triples and the number of planes or directions through
the origin and for the different hyperplane triples.
For the first equation, we look at all the ways to decompose F4

3 into 3 parallel hyperplanes. This is the
sum of all the number of hyperplane triples. There is an unique line through the origin perpendicular
to three parallel hyperplanes for each set of parallel hyperplanes. Counting these unique lines will give
the total sum of decompositions. We use Proposition 1 to find the first equation. Therefore the first
equation is

x993 + x984 + x975 + x966 + x885 + x876 + x777 = 40 (3.3)

For the second equation, we will count 2-marked hyperplanes. First we count how many different
2-marked hyperplanes there are for each hyperplane triple. We find the following;[(

9

2

)
+

(
9

2

)
+

(
3

2

)]
x993 + · · ·+

[(
7

2

)
+

(
7

2

)
+

(
7

2

)]
x777

Then we count the total number of 2-marked hyperplanes in F4
3 with Proposition 1. We find

34−1

2
·
(

21

2

)
= 13 ·

(
21

2

)
= 2730.

This gives us the following equation

75x993 + 70x984 + 67x975 + 66x966 + 66x885 + 64x876 + 63x777 = 2730 (3.4)

The third equation we will count 3-marked hyperplanes. First we count how many different 3-marked
hyperplanes there are for each hyperplane triple. We find the following;[(

9

3

)
+

(
9

3

)
+

(
3

3

)]
x993 + · · ·+

[(
7

3

)
+

(
7

3

)
+

(
7

3

)]
x777
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Then we count the total number of 3-marked hyperplanes in F4
3 with proposition 1. We find;

34−2

2
·
(

21

3

)
= 4 ·

(
21

2

)
= 5320

This gives us the last equation:

169x993 + 144x984 + 129x975 + 124x966 + 122x885 + 111x876 + 105x777 = 5320 (3.5)

To conclude the contradiction we need to solve the system of equations:
x993 + x984 + x975 + x966 + x885 + x876 + x777 = 40

75x993 + 70x984 + 67x975 + 66x966 + 66x885 + 64x876 + 63x777 = 2730

169x993 + 144x984 + 129x975 + 124x966 + 122x885 + 111x876 + 105x777 = 5320

We found that adding 3 times equation (3.5) to 693 times equation (3.3) and substracting 16 times
equation (3.4) gives;

5x984 + 8x975 + 9x966 + 3x885 + 2x876 = 0

All the coefficients have to be positive, therefore the only solution is x984 = x975 = x966 = x885 =
x876 = 0. When we substract 63 times equation (3.3) from equation (3.4), we find;

12x993 + 7x984 + 4x975 + 3x966 + 3x885 + x876 = 210

If we use both outcomes we find 12x993 = 210. This contradicts with x993 being an integer. Therefore
there is no solution to the system of equation that meets the requirements and therefore our hypothesis
can not be true.

3.2 Bound on 5-caps

We have seen in [Edel et al., 2002] that a 5-cap can contain fortyfive points. The proof for the 4-cap is
easy to set up for other dimensions. The things you need to know are the dimension, the maximum
cap size of the previous dimension and the expected size of the new dimension.

The entire proof is dependent on the equations. In four dimensions 3 equations were enough to give a
good upper bound, but this is not the case for higher dimensions. Therefore we need to count 4-marked
hyperplanes and that is the main reason this proof can not be generalized for more dimensions. We
know that for any three selected points we can define a plane through these points, because the three
points are in the cap, they are not on one line and the three points can only be in a plane.
If we select four points randomly, we need to distinguish two cases, namely the case that the four points
are in the same two dimensional space and the case that the four points are in a three dimensional
space. This makes counting 4-marked hyperplanes to difficult.
Therefore we choose the search for upper bounds with just three equations.

Proof of an upper bound . We proceed by contradiction. Suppose the 5-cap can contain fifty points.
We find the following possible hyperplane triples;

{20, 20, 10}, {20, 19, 11}, {20, 18, 12}, {20, 17, 13}, {20, 16, 14}, {20, 15, 15}, {19, 19, 12},
{19, 18, 13}, {19, 17, 14}, {19, 16, 15}, {18, 18, 14}, {18, 17, 15}, {18, 16, 16}, {17, 17, 16}

10



We use Proposition 1 to find the first equation to count the total number of ways to decompose F5
3 into

three parallel 4 dimensional hyperplanes. The first equation is;

x202010 + x201911 + x201812 + x201713 + x201614 + x201515 + x191912
+ x191813 + x191714 + x191615 + x181814 + x181715x181616 + x171716 = 121

(3.6)

Then we count the 2-marked hyperplanes, first for each hyperplane triple and again we use Proposition
1 to count the total number of 2-marked hyperplanes. We find;

[(
20

2

)
+

(
20

2

)
+

(
10

2

)]
x202010 + · · ·+

[(
17

2

)
+

(
17

2

)
+

(
16

2

)]
x171716 = 49000

425x202010 + 416x201911 + 409x201812 + 404x201713 + 401x201614
+ 400x201515 + 408x191912 + 402x191813 + 398x191714 + 396x191615

+ 397x181814 + 394x181715 + 393x181616 + 392x171716 = 49000

(3.7)

Lastly we count the 3-marked hyperplanes, for each hyperplane triple and with Proposition 1 to count
the total number of 3-marked hyperplanes. We find;[(

20

3

)
+

(
20

3

)
+

(
10

3

)]
x202010 + · · ·+

[(
17

3

)
+

(
17

3

)
+

(
16

3

)]
x171716 = 254800

2400x202010 + 2274x201911 + 2176x201812 + 2106x201713 + 2064x201614
+ 2050x201515 + 2158x191912 + 2071x191813 + 2013x191714 + 1984x191615

+ 1996x181814 + 1951x181715 + 1936x181616 + 1920x171716 = 49000

(3.8)

This gives us a system of fourteen unknown variables and three equations. Still there are two conditions
for each variable, namely they have to be positive and integer.
The integer linear program in Appendix A.2 was made to solve these equations. The ILP did not
return a solution to 5-cap is fifty points. This concludes our contradiction and now we know that forty
nine points is an upper bound to the 5-cap.

3.3 Matlab implementation

The proof is based on a contradiction, therefore you need to know a lower bound for which we know
the cap exists. We are searching for the smallest upper bound for which the equation gives a solution.
Previous I set up the equations myself and let matlab solve the equations I made. To set up the
equations, we need quite a lot of computations and to find such a smallest upper bound, we have to
set up at least to 2 sets of equations, but mostly more. As you can imagine, this is time consuming.
Therefore I made a function with Matlab (see Appendix C) that calculates the hyperplane triples and
solves the ILP. The function gave me the following results;

11



Dimension 3 4 5 6 7 8

Known bounds for caps 9 20 45 112 - -

Upper bound for the cap, no integer solution 9 21 50 114 292 773*

Upper bound for the cap, integer solution 9 20 48 114 291 771**
* We used 292 as previous cap size in the calculations
** We used 291 as previous cap size in the calculations

First we made calculations with the integer constraint for the solution, because in higher dimensions
the calcutation time significantly increased, we also made calculations without this constraint.
As you can see in the table, the calculated cap sizes are not far apart of each other. Therefore if you
use the best known previous cap size value, the non integer solution will have almost the same cap size
as with the integer constraint.

12



Chapter 4

Upper bounds

In [Bierbrauer and Edel, 2002] a more general upper bound for cap sizes is discussed. This bound is
dependent on dimension and size of . They do not only calculate the maximal cap size, but they look
at the ratio between the total number of elements in the set Fdq and the amount of elements of the cap

of Fdq .

Denote by Cd(q) the maximum size of a cap in the affine space Fdq and denote cd(q) = Cd(q)/q
d. The

number cd(q) gives the ratio between the number of cap points and the total number of points.
Theorem 1. Let q > 2 be a prime-power. If d ≥ 3, then

cd(q) ≤
q−d + cd−1(q)

1 + cd−1(q)

4.1 Proof of theorem 1

In this case, we only consider q = 3. This suffices for the prime-power. Let k > 3 and A ⊂ Fd3 be a cap.
Let F = |Fd3| = 3d. And at last, ζ is a complex primitive third root of unity. We look for an upper
bound for the cap size |A|. Consider the following complex number;

S =
∑

y∈Fd
3\{0}

∑
a1,a2,a3∈A

ζ(
∑

i ai)y (4.1)

Lemma 1. S = |A|(F − |A|2)

Proof. We consider the following;

S =
∑

y∈Fd
3\{0}

∑
a1,a2,a3∈A

ζ(
∑

i ai)y =
∑
y∈Fd

3

∑
a1,a2,a3∈A

ζ(
∑

i ai)y − |A|3

Because for y = 0, we have
∑

a1,a2,a3∈A 1 and this is equal to∑
a1∈A

1 ·
∑
a2∈A

1 ·
∑
a3∈A

1 = |A| · |A| · |A|

13



Now we consider two cases, first
∑

i ai 6= 0, we find ;

S + |A|3 =
∑
y∈Fd

3

∑
a1,a2,a3∈A

ζ(
∑

i ai)y =
∑

a1,a2,a3∈A

∑
y∈Fd

3

ζ(
∑

i ai)y

=
∑

a1,a2,a3∈A
ζai

∑
y∈Fd

3

ζ(a(y−ei)

Substituting z := y − ei gives the following;∑
a1,a2,a3∈A

ζai
∑
y∈Fd

3

ζ(a(y−ei) =
∑

a1,a2,a3∈A
ζai
∑
z∈Fd

3

ζ(az)

Therefore we know that
∑

y∈Fd
3
ζ(

∑
i ai)y = 0.

Second we consider the case
∑

i ai = 0, this can only be the case when a1 = a2 = a3, because A is a
cap of Fd3.

S + |A|3 =
∑
y∈Fd

3

∑
a1,a2,a3∈A

ζ(
∑

i ai)y =
∑
y∈Fd

3

∑
a1,a2,a3∈A

1 = F |A|

Therefore we find: S = |A|(F − |A|2).

Definition 10. Let 0 6= λ ∈ F3 and let 0 6= y ∈ Fd3. Consider the complex number U(λ)y =
∑

a∈A ζ
(λa);y

and u(λ)y = |U(λ)y|. Define a real vector u(λ) of length F − 1 whose coordinates are parameterized by
0 6= y ∈ Fd3, the corresponding entry being u(λ)y.
Lemma 2. Let 0 6= λ ∈ F3 and 0 6= y ∈ Fd3. Then

u(λ)y ≤ 3 · Cd−1(3)− |A| = cd−1(3) · F − |A|

Proof. Define vc the number of elements a ∈ A, with A a cap, such that a · y = c. We know that u ∈ Fd3
that satisfy u · y = c form a hyperplane of dimension d− 1. It holds that vc ≤ Ck−1. Thus

u(λ)y = |
∑
c∈F3

vcζ
c| = |

∑
c∈F3

(Cd−1 − vc)ζc|

We can substitute cd−1 − vc for vc, because the affine space this gives the same result . We can rewrite
this further;

u(λ)y = |
∑
c∈F3

(Cd−1 − vc)ζc| ≤
∑
c∈F3

Cd−1 − vc = q · Cd−1 − |A|

Lemma 3. Let 0 6= λ ∈ F3. Then
‖u(λ)‖2 = |A|(F − |A|).

Proof. The definition of the norm for complex vectors is given by;

‖u(λ)‖2 =
∑
y 6=0

UyŪy

14



We use this definition and find the following;

‖u(λ)‖2 + U0Ū0 =
∑
y

UyŪy =
∑
y

(∑
a∈A

ζay
)(∑

a∈A
ζay
)

=
∑
y

(∑
a∈A

ζay
)(∑

a∈A
ζ−ay

)
=
∑
y

( ∑
a,b∈A

ζ(a−b)y
)

‖u(λ)‖2 =
∑
y

( ∑
a,b∈A

ζ(a−b)y
)
− U0Ū0

=
∑
y

( ∑
a,b∈A

ζ(a−b)y
)
− |A|2

There are two cases, first suppose that (a− b) = 0. Then the sum over a, b is equal to F · |A|. Second,
suppose (a−b) 6= 0. We know from the proof of lemma 1 that the sum over y is equal to zero. Therefore
we find;

‖u(λ)‖2 = F · |A| − |A|2 = |A|(F − |A|)

From Lemma 2 and 3 we find a lower bound for ck−1 − ck. We choose |A| = Ck. We know that the
norm can be written as follows;

‖u(λ)‖2 = |u(λ)y1 |2 + |u(λ)y2 |2 + |u(λ)y3 |2 + . . .

Now we use Lemma 2 to bound the |u(λ)yi |. We find;

‖u(λ)‖2 ≤ (F − 1)|u(λ)y| = (F − 1)(Fck − |A|)

From Lemma 3 we obtain;
Theorem 2. (ck−1 − ck)2 ≥ ck(1−ck)/F−1

We can define S in an other way, thus the next Lemma is an obvious result of definitions.
Lemma 4. We define S =

∑
y 6=0 U(λ1)yU(λ2)yU(λ3)y and this we can rewrite as;

S ≤
∑
y 6=0

u(λ1)yu(λ2)yu(λ3)y

To finish the proof of Theorem 1, we use all proven lemmas. First we start with using Lemma 2 to give
a bound for u(λ1)y.

|S| ≤
∑
y 6=0

u(λ1)yu(λ2)yu(λ3)y ≤ F · (cd−1 − cd)
∑
y 6=0

u(λ2)yu(λ3)y

Then we use Lemma 3. The remaining sum can be written as a dot-product and we use Cauchy
Schwarz inequality to apply Lemma 3.

|S| ≤ F · (cd−1 − cd)
∑
y 6=0

u(λ2)yu(λ3)y ≤ F · (cd−1 − cd) · ‖u(λ)y‖2 ≤ F · (cd−1 − cd) ·F · cd · (F −F · cd)
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Last we use Lemma 1 with |A| = Cd.

|F · cd · (F − F 2 · c2d)| ≤ F 3 · cd(cd−1 − cd) · (1− cd)
|(1− F · c2d)| ≤ F · (cd−1 − cd) · (1− cd)

F · c2d − 1 ≤ F · (cd−1 − cd) · (1− cd)
c2d − F−1 ≤ cd−1 − cd + c2d − cd−1 · cd

cd ≤
F−1 + cd−1

1 + cd−1

Thus, the proof of theorem 1 is complete.

4.2 Application of the upper bound

We find that Theorem 1 provides us with a much faster and less complicated upperbound, than the
proof of Proposition 4 in Chapter 3. Comparison with Proposition 4 gives us;

Dimension 3 4 5 6 7 8

Known bounds 9 20 45 112 - -

Upper bound, no integer solution 9 21 50 114 292 773

Upper bound, integer solution 9 20 48 114 291 771

Upper bound theorem 1* 9 21 50 126 324 847

Upper bound theorem 1** 9 21 48 114 292 771
*calculated with the previous calculated cap size value

** calculated with the best known previous cap size value

The results show that Theorem 1 is almost just a good as Proposition 4 if we apply the integer
constraint. In terms of calculating time Theorem 1 is much faster than Proposition 4 with the integer
constraint. The upper bound of theorem 1 will not take more calculating time with higher dimensions,
while Proposition 4 will take more time with higher dimensions. If we compare the results of Theorem
1 and Proposition 4 (without the integer constraint), we find that Theorem 1 is even better than
Proposition 4, while the calculating time is the same. Thus overall the upper bound of theorem 1 is a
better upper bound.

In terms of ratio, we find the following with theorem 1;

Dimension 3 4 5 6 7 8

Previous cap size 4 9 20 45 112 291

Ratio of theorem 1 0.3333 0.2593 0.2013 0.1574 0.1336 0.1176

We can see that the ratio between the cap size and the size of the total space reduces quikly. Thus far
it is not know how fast this ratio will tend to zero. The rate at which the total space grows with one
extra dimension is significantly larger then the rate at which the d-cap size grows.
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Appendix A

Matlab implementation

A.1 ILP 4-cap = 21

f = ones(1,7);

intcon = 1:7;

A = [] ;

b = [] ;

Aeq = [1 1 1 1 1 1 1; 75 70 67 66 66 64 63;169 144 129 124 122 111 105];

beq = [40; 2730; 5320];

lb = [0;0;0;0;0;0;0];

ub = [Inf;Inf;Inf;Inf;Inf;Inf;Inf];

intlinprog(f,intcon,A, b, Aeq,beq,lb,ub)

A.2 ILP 5-cap = 50

f = [1;1;1;1;1;1;1;1;1;1;1;1;1;1];

intcon = 1:14;

A = [] ;

b = [] ;

Aeq = [1 1 1 1 1 1 1 1 1 1 1 1 1 1;

425 416 409 404 401 400 408 402 398 396 397 394 393 392;

2400 2274 2176 2106 2064 2050 2158 2071 2013 1984 1996 1951 1936 1920];

beq = [121; 49000; 254800];

lb = [0;0;0;0;0;0;0;0;0;0;0;0;0;0];

ub = [Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf];

intlinprog(f,intcon,A, b, Aeq,beq,lb,ub)
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Appendix B

Matlab functions

B.1 Counting triples

function [ m ] = triptel( c,e )

m = 0;

for i = e:-1:1

for j = i:-1:1

k = c - i - j;

if k <= j && k>= 0

m = m+1;

end

end

end

end

B.2 Combinations

function res = kies(n,k)

if k>n || k<0

res = 0;

else

res = nchoosek(n,k)

end

18



Appendix C

IPL for solving equations Chapter 3

function [ a ] = Cap2(d,c,e)

t = triptel(c,e);

B = zeros(t,3);

m = 0;

for i = e:-1:1

for j = i:-1:1

k = c - i - j;

if k <= j && k>= 0

m = m+1;

B(m,:)= [i,j,k];

end

end

end

f = ones(1,t);

intcon = [1:t]; % Integer constraint

A = [];

b = [];

Aeq = zeros(3,t);

for i=1:t

x = B(i,1);

y = B(i,2);

z = B(i,3);

Aeq(1,i)= 1;

Aeq(2,i) = kies(x,2) + kies(y,2) + kies(z,2);

Aeq(3,i) = kies(x,3) + kies(y,3) + kies(z,3);

end

g = (3^(d-1)-1)/2;

h = (3^(d-2)-1)/2;

l = (3^(d)-1)/2;

beq = [l,g*nchoosek(c,2),h*nchoosek(c,3)];
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lb = zeros(1,t);

ub = zeros(1,t);

for i = 1:t

ub(1,i)= inf;

end

a = intlinprog(f,intcon,A, b, Aeq,beq,lb,ub);

end
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Appendix D

Solving upper bound with inequality in
Chapter 4

function [ k,e ] = bb(d,c)

k = (3^(-d) + (c/3^(d-1)))/(1 + (c/3^(d-1)));

e = (3^d)*k;

end
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