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Abstract Identifying flood‐inducing processes remains a challenge in catchment hydrology due to the
complex runoff dynamics, particularly in semi‐arid regions where surface and subsurface mechanisms
alternatively drive streamflow across seasons. Tracer data can help identify hydrograph sources, but they are
often unavailable or lack sufficient temporal resolution. To aid process identification at the event‐scale, we
developed an integrated hydrological‐hydrodynamic framework and compared multiple model hypotheses
informed by hydrological signatures. We systematically tested these hypotheses through falsification, meta‐
evaluation, spatial validation, and posterior diagnostics, using the semi‐arid Salsola nested catchment in
southern Italy as case study. While all model structures performed well on common calibration metrics,
differences emerged in spatial transferability tests and alternative diagnostic assessments. Some models, despite
strong performance, exhibited inconsistent representations of internal runoff mechanisms, indicating that they
achieved good results for the wrong reasons. Furthermore, the choice of routing schemes significantly
influenced high‐peak estimations and overall model performance, particularly when Horton‐type overland flow
was considered. This underscores the need to treat routing methods as a key component in event‐scale modeling.
Our findings reveal that during consecutive storm events in the study catchment, surface processes dominate the
initial stages, whereas subsurface processes become more influential in later events, providing valuable insights
that may be applicable to similar semi‐arid regions. Overall, we emphasize the importance of hypothesis testing
in runoff process identification, which can compensate for the absence of hydrochemical data for hydrograph
separation. Additionally, our results highlight the value of a landscape‐based modeling approach for
distinguishing alternative runoff generation processes.

Plain Language Summary Predicting how runoff generates, sustains rivers, and triggers floods is
challenging. In this study, we investigate the processes driving runoff in a semi‐arid catchment and explore how
they can be identified with limited data. Rather than relying on a fixed model, we tested multiple model
structures, each representing different hypotheses about runoff generation. By evaluating how well these
hypotheses transfer to similar catchments, we identified the most effective ones based on both predictive
performance and physical consistency. Our results show that incorporating landscape heterogeneity improves
model predictions and enhances streamflow estimation. This approach provides valuable insights into flood‐
inducing processes, particularly in data‐scarce regions.

1. Introduction
Streamflow generation processes exhibit significant spatial and temporal variability across different landscapes
and storm events, making them challenging to identify and predict (Kirchner, 2024; McDonnell et al., 2007). In
humid catchments, hydrological responses are typically driven by catchment wetness, with processes such as
saturation‐excess overland flow and storage‐excess subsurface flow playing key roles (Dunne & Black, 1970;
Sayama et al., 2011). Conversely, in arid catchments, infiltration‐excess overland flow is more prevalent, with
streamflow responses primarily controlled by rainfall intensity (Horton, 1933; Tao et al., 2021). Pioneering
studies have developed distinct models for arid and humid regions, explicitly conceptualizing differences in
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runoff mechanisms (Zhao, 1977). More recently, multiple mechanisms and highly specific processes (e.g., fill‐
and‐spill subsurface behavior) have been modeled at the catchment scale using integrated surface‐subsurface
hydrological models (ISSHM) (Paniconi & Putti, 2015), namely the latest generation of physically based
models (Camporese et al., 2019; Maxwell et al., 2014; Zanetti et al., 2024). Complementary data to the
streamflow time series, such as stable isotopes or geochemical tracer concentrations, provide independent insights
and allow cross‐validation of modeled runoff contributions to flow hydrographs (Birkel et al., 2014; McMillan,
Tetzlaff, et al., 2012). However, such data are rarely available, and often lack sufficient temporal and spatial
resolution.

Characterizing and modeling catchment responses becomes increasingly difficult as one moves from coarser to
finer time scales (Atkinson et al., 2002) and from wetter to drier catchments (Wheater et al., 2007). As temporal
resolution increases, multiple surface runoff mechanisms become more apparent (McMillan, 2020), requiring
finer sampling to detect short‐duration processes (Kirchner et al., 2004). Concurrently, transitioning from long‐
term to event‐scale modeling requires more complex models to accurately capture fast runoff dynamics, such as
double peaked responses (Kavetski et al., 2011). Furthermore, detailed routing methods are necessary to improve
streamflow representation, particularly at sub‐daily scales (Cortés‐Salazar et al., 2023). Unlike humid areas,
where a large part of the hydrological models can accurately simulate flood processes (Sittner, 1976), event‐scale
modeling in arid and semi‐arid regions is considerably more challenging (Al‐Qurashi et al., 2008; Huang
et al., 2016). This challenge arises from the high variability of hydrological regimes in semi‐arid catchments,
which fluctuate between dry and wet states, along with seasonal changes in catchment properties. For instance,
soils may develop water repellency during the dry season, altering infiltration behavior (Doerr et al., 2000). This
variability results in seasonal shifts in overland flows types, complicating the commonly assumed relationship
between reduced infiltrability and increasing soil saturation.

From a modeling perspective, it is not always clear which specific runoff processes should be represented in semi‐
arid regions. In some cases, saturation‐excess and subsurface processes are considered negligible (Kidron, 2021),
while in others, they are thought to play a dominant role (Mul et al., 2008). When sufficient data exist for detailed
physical parametrization, combining isotope analysis with ISSHM provides a robust approach for disentangling
actual runoff generation mechanisms at the event‐scale (Chen et al., 2023). However, such analyses are typically
limited to well‐instrumented headwater catchments, as high frequency hydrochemical data remains scarce,
particularly in ephemeral stream networks, common to (semi) arid environments. It remains unclear whether
streamflow data alone are sufficient to fully distinguish between alternating runoff generation processes.

In the absence of detailed prior knowledge of hydrological processes in (semi) arid regions, hypothesis testing
through modeling becomes an essential, if not the sole, tool for inferring dominant processes at the mesoscale or
regional scale (Astagneau et al., 2022; Beven, 2018; Fenicia et al., 2022). The paradigm of flexible modeling is
particularly useful for exploring multiple testable hypotheses and retrospectively identifying the most likely
catchment behavior (Clark et al., 2011). This can be achieved by combining different model structures, repre-
senting a set of decisions and assumptions regarding catchment discretization, hydrological processes, consti-
tutive functions, mathematical methods, and free parameters used for calibration (Fenicia et al., 2016). Notable
flexible modeling frameworks include SUPERFLEX (Dal Molin et al., 2020; Fenicia et al., 2011), FUSE (Clark
et al., 2008), SUMMA (Clark et al., 2015) and MARRMoT (Knoben et al., 2019). These frameworks share the
ability to generate alternative model structures but differ in their scope of application. For example, SUPER-
FLEX, MARRMoT and FUSE are more oriented toward conceptual models, while SUMMA is designed for
physically based modeling.

Since runoff generation processes vary spatially and temporally, a distributed approach is essential for testing
alternative landscape controls on runoff generation. Surface topography is a key factor influencing runoff, as
many models incorporate it to explain spatial heterogeneity in hydrological responses. Conceptual frameworks
and similarity indices that often link geomorphic properties to hydrological behavior/functioning (Goudarzi
et al., 2023; Loritz et al., 2019; Nobre et al., 2011). However, multiple landscape classification approaches exist,
each defining distinct runoff types (Antonetti et al., 2016).

One of the most widely used theories is the topographic index approach, forming the foundation of TOPMODEL
and its evolutions (Beven et al., 2020). This theory posits that a location's contribution to streamflow increases
with catchment wetness and contributing area, while decreasing with local slope. Alternatively, Savenije (2010)
proposed that topographically similar areas within a catchment — such as wetlands, hillslopes, and plateaus —
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exhibit distinct hydrological behaviors, forming the basis of the FLEX‐topo model, which distinguishes between
various landscape units and identifies unique dominant processes associated with each (Gao et al., 2016; Gharari
et al., 2014).

Model evaluation plays a crucial role in identifying hydrological processes and ranking competing hypotheses
(Fenicia & Kavetski, 2021). Uncertainties in traditional quantitative metrics necessitate the use of system‐scale
metrics (meta‐metrics) that promote hydrologically consistent parameter sets rather than purely statistical ac-
curacy (Clark et al., 2021; Zhang et al., 2008). While split‐sample calibration/validation remains a widely used
hydrological modeling practice (Klemeš, 1986) it may be insufficient for rigorously testing multiple working
hypotheses (Shen et al., 2022). This highlights the need for more robust evaluation strategies, such as validating
model structures based on spatial transferability (Gao et al., 2016; Gupta et al., 2014).

These considerations provide the premise for this study, which investigates the event‐scale runoff generation
processes in a semi‐arid region at sub‐hourly temporal resolution within a fully distributed modeling framework.
The Salsola nested catchment in southern Italy serves as a case study, utilizing high‐frequency rainfall‐radar and
streamflow data from four consecutive storm events, each yielding distinct hydrograph responses in time and
space. We present an integrated modeling framework that combines distributed model structures based on the
DREAM hydrological model (Perrini et al., 2024) for local runoff estimation with the Iber+ shallow water model
for flow routing (Bladé et al., 2014; García‐Feal et al., 2018). Unlike other flexible frameworks, our approach
integrates directly a 2D hydrodynamic model, allowing joint evaluation of various distributed hydrological hy-
potheses and different runoff routing methods.

The main objective of this research is to disentangle surface and subsurface runoff contributions across different
sub‐catchments and consecutive storm events while developing a realistic model structure for the region. In the
absence of isotope or geochemical tracer data, we employ multiple working hypotheses to determine the extent to
which streamflow data alone can distinguish alternative runoff generation mechanisms. Furthermore, we illustrate
how the relative merits of competing models depend on rigorous evaluation, which cannot be achieved solely
through conventional quantitative metrics. Four model architectures, informed by hydrological signatures and
prior catchment understanding, were tested. These structures represent different runoff generation assumptions,
ranging from exclusive surface or subsurface processes to a combination of both, with further refinements based
on landscape characteristics, consistent with the FLEX‐topo framework (Savenije, 2010). We evaluate these
hypotheses through a multi‐stage performance analysis, employing diverse metrics to assess the internal con-
sistency of the modeled processes.

1.1. Runoff Processes Taxonomy and Terminology

Motivated by the need for a unified taxonomy of hydrological processes (McMillan, 2022) and to prevent
confusion within the scientific community, we explicitly define the three main runoff generation processes
analyzed in this study. These processes are: Infiltration‐excess overland flow (Horton‐type overland flow, HOF),
Saturation‐excess overland flow (Dunne‐type overland flow, SOF), and Storage‐excess subsurface flow
(McDonnell‐type, SSF). The first two are classified as surface runoff processes, while the third is a subsurface
process. All play a significant role in flood generation, though surface runoff processes (HOF and SOF) typically
respond more rapidly than subsurface flow (SSF).

HOF occurs when rainfall intensity exceeds the soil infiltration capacity, leading to surface overland flow
(Horton, 1933). This process does not require prior soil saturation and is most common in areas with low‐
permeability soils or intense rainfall events.

SOF, as conceptualized by Thomas Dunne (Dunne & Black, 1970), occurs in areas where the soil is already
saturated, often near streams where a rising groundwater table reduces infiltration capacity. This process aligns
with the Variable Contributing Area (VCA) concept, which describes the dynamic expansion and contraction of
saturated zones that contribute to streamflow.

SSF is driven by subsurface dynamics under partially or fully saturated soil conditions (Weiler et al., 2006). It
consists of lateral preferential flow paths and/or macropore flow, often exhibiting fill‐and‐spill behavior
(McDonnell et al., 2021), where water accumulates in bedrock depressions and moves downslope once hydro-
logical connectivity is established. Hereinafter, we refer to SSF only as the net amount of water exfiltrating from
the subsurface and emerging at the land surface as a source of runoff.
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2. Study Area
This research was conducted in the Salsola catchment (Figure 1), a tributary of the Candelaro River one of the
largest rivers in the Apulia region located in southeastern Italy. The Salsola catchment covers approximately
430 km2 until the section where the surrounding land drops below the river level (as a result of land subsidence)
and no longer drains naturally to the main channel. Only 4% of the area is urbanized, with the primary land use
being extensive agriculture in the upper part of the basin and intensive agriculture in the lowlands (Figure 1d). The
top‐soil composition varies significantly, ranging from sandy‐clay‐loam to clay‐loam or clay. Whereas the
average elevation is about 300 m above sea level, ranging from 41 to 1,150 m (Figure 1a).

The catchment includes three gauged headwater tributaries that are particularly flash‐prone. One of these, the
SP109 gauge station, has discontinuous measurements preventing the use of its data in this case study. The
streamflow regime changes rapidly and closely follows the unevenly distributed precipitation. Orographic factors
significantly influence both the amount and pattern of rainfall, often resulting in short high‐intensity storm events.
Overall, the Salsola exhibits typical Mediterranean semi‐arid characteristics, with seasonal patterns of droughts
and flash floods. Like other watercourses in the Candelaro system, the Salsola is classified as a temporary river,
experiencing long periods of little to no flow (De Girolamo et al., 2015). The average streamflow at the Salsola
outlet (i.e., SS16 gauge station) in recent years (2022–2023) is approximately 0.30 mm/day, while in the
headwater catchments 0.80 mm/day at the SP18 station and 0.74 mm/day at the SS17 station.

Figure 1. Salsola study case: (a) Digital Terrain Model (DTM) with elevation in meters above sea level (m a.s.l.), streamflow gauge locations and corresponding
drainage area, (b) Horton‐Strahler stream ordering and corresponding sub‐catchments, (c) HAND‐based landscape classification, (d) main land use classes,
(e) Topographic wetness index (TWI), (f) rHAND index, (g) cumulated rainfall between the 16th and the 30 January 2023, (h) Soil Water Index (SWI) on the 16 January
2023.
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For the purpose and context of this study, which aims to identify the dominant sources of runoff generation at the
event‐scale, we selected a 15 days period of streamflow data from 16 to 30 January, 2023. During this time, four
distinct hydrographs were recorded at the Salsola SS16 outlet due to a series of consecutive storm events of
different intensity along the days that provoked multiple overflowing in the final reach of the mainstream. Further
details of this choice are explained in Section 4.1.

2.1. Data

All the hydrometric and meteorological data used for the construction of the data layers were provided by the
Civil Protection of the Puglia Region, while the Rainfall‐radar products are the one of the National departments of
the Civil Protection. The distributed rainfall field (Figure 1g) aggregated each 15 min was estimated merging rain‐
gauge measurement with the radar layers exploiting the Kriging with external drift (Jewell & Gaussiat, 2015;
Ochoa‐Rodriguez et al., 2019). The reference topography is the 1 m resolution Lidar‐based digital terrain model
provided by the Italian Ministry of the Environment and Energy Security—Mase (available online at https://sim.
mase.gov.it/). The grouped land uses classes were identified starting from the Corine Land Cover 2018 map, and
corresponding manning coefficients were assigned following Chow (1959). The distributed taxonomy, depth and
hydraulic parametrization of the soil is the one of the ACLA2 Apulian regional project (Caliandro et al., 2005),
while the organic content is based on the European LUCAS database (de Brogniez et al., 2015). Potential
evaporation has been estimated following the FAO procedure (Allen et al., 1998) interpolating the punctual
measurement of wind speed and temperature with the ordinary kriging procedure. Vegetation dynamic over time
has been considered variating the Leaf area index (LAI) every 4 days, namely the temporal resolution of the
reference LAI‐MODIS gridded products with 0.5 km spatial resolution (available online at https://lpdaac.usgs.
gov/products/mcd15a3hv061/). Finally, the satellite detected soil moisture contents (Figure 1h), mentioned in
Section 4.1, is the Soil Water Index T20 (ISWI; Bauer‐Marschallinger et al., 2018) with a daily 1 km resolution
which represent the normalized soil moisture content between the wilting point and the field capacity (available
online at https://land.copernicus.eu/en/products/soil‐moisture).

2.2. Hydrological Signatures and Prior Model Hypotheses

The value of incorporating certain (sub‐)processes into models relies on their significance within the study area
(Guse et al., 2021). To gain a deeper understanding of the spatial and temporal variability of streamflow responses
in the Salsola catchments, and their potential causes, we analyzed streamflow signatures in the area. This analysis
is also valuable during model development, as it helps inform the formulation of competing model hypotheses,
and during model evaluation, providing a foundation for designing effective diagnostic tests (Fenicia &
McDonnell, 2022).

Since some climate signatures have relevance over hydrologically significant timescales (years), we first assessed
the signatures for the years 2022 and 2023 using daily averaged streamflow measurements. Specifically, we
considered the Baseflow Index IB, the Flashiness index IF, the dryness index ID, the evaporation index IE, and the
runoff coefficients IC, computed as in Fenicia and McDonnell (2022) (Table 1).

In terms of long‐term averages, IF increases when moving from the headwaters to the outlet, indicating higher
responsiveness to rainfall events in larger catchment areas. IB is similar for all catchments, showing a baseflow

Table 1
Long‐Term and Event‐Scale Hydrological Signatures: IB (the Ratio of Baseflow Over Total Streamflow), IF (the Ratio
Between the Sum of Absolute Changes in Streamflow Over Consecutive Time Steps and the Total Streamflow), ID (the Ratio
Between Average Potential Evaporation and Average Precipitation), IE (the Ratio Between Average Actual Evaporation,
Calculated as the Difference Between Average Precipitation and Streamflow, and Average Precipitation), IC (the Ration
Between Cumulated Rainfall and Streamflow)

Long term Event scale

Gauge station Drainage area (km2) IB IF ID IE IC IF IC

SS16 431 0.11 0.53 1.65 0.59 0.17 0.05 0.38

SS17 55 0.10 0.51 1.40 0.63 0.36 0.10 0.45

SP18 42 0.11 0.32 1.46 0.62 0.40 0.13 0.50
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contribution around 10%, which is considered relatively low (Smakhtin, 2001). IC decrease with increasing
drainage area. ID is significantly greater than one in all catchments while IE remains around 0.60, indicating
substantial evaporative fluxes with respect to incoming precipitation. Typical values of an arid or semi‐arid re-
gion, as previously mentioned.

At the event scale only the IF and IC were calculated, as the other signatures are not particularly meaningful over
such a short time span. Here, IF decreases with catchment area, showing a reverse trend compared to the long‐term
behavior. IC remains inversely dependent on the drainage area and is significantly higher than the long‐term. To
establish the existence or importance of baseflow at the event‐scale, we conducted a visual inspection of the
hydrographs as suggested byWrede et al. (2015). For the two‐headwater catchment, it is visible that the baseflow
contribution is very limited, especially at the beginning of the period meaning that quick flow is dominant. The
outlet instead, appears to have a more pronounced baseflow contribution, albeit still relatively low.

The event‐scale runoff coefficients show an irregular pattern, whereas the outlet runoff coefficients display a
continuous increase (Figure 2, bottom panel). Our prior interpretation is assuming reasonably that catchment
wetness increases progressively, given that the four events occur close in time, and evaporation is minimal during
the rainy winter season.

However, in the headwater catchments, infiltration‐excess processes are potentially occurring since the temporal
rainfall‐runoff relations are related more to rainfall intensity than to catchment storage. While for the SS16 outlet
we observed an always increasing rainfall‐runoff relationship which suggests that other processes like SOF or
SSF can be concurrent to the HOF (McMillan, 2020). These assumptions are also supported by a previous flood
frequency analysis conducted in the area, which identified HOF as the dominant runoff mechanism during severe
rainfall events (Iacobellis et al., 2011).

In summary, the analysis based on streamflow signatures and visual inspection described above suggests the
following hypotheses regarding runoff‐generating mechanisms for the events considered.

• The baseflow process is negligible compared to the quickflow contribution at the event‐scale;
• The headwater catchments are characterized by the presence of HOF;

Figure 2. Rainfall and streamflow at each streamflow gauge station. The bottom panel shows the runoff coefficients for each storm event.
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• The streamflow at the outlet is driven by multiple types of runoff;

These hypotheses will guide model decisions and inform the model comparison exercise, as outlined in
Section 3.2.

3. Methodology
3.1. Hydrological‐Hydrodynamic Framework

The modeling framework in this study integrates two components: a conceptual distributed hydrological model to
identify runoff sources, and a physically based two‐dimensional hydrodynamic model for routing. The hydro-
logical model is spatially distributed, providing grid‐based inputs for the hydrodynamic model. This allows it to
capture the spatial variability of intense rainfall, which can lead to localized responses that lumped models cannot
detect.

The use of a conceptual model keeps the process description simple, focusing on dominant processes. Specif-
ically, the grid‐based model simulates soil water budget using a bucket‐type approach, often referred to as a
distributed “integral” model (Clark et al., 2015). This approach uses a spatial assemblage of one‐dimensional
column models connected by lateral fluxes between individual columns.

Since it has been both theoretically and empirically shown that catchments responses exhibit significant vari-
ability to rainfall intensity (Grimaldi et al., 2012; Michailidi et al., 2018), instead of a hydrological routing
scheme, we employ a hydrodynamic code based on the 2D depth‐averaged Shallow Water Equations (2D‐SWE).
Indeed, the hydrodynamics is crucial for event‐based applications and short time scales, since simplified routing
methods struggle to predict the highly transient flooding caused by intense rainfall (Ming et al., 2020).
Conversely, physically based hydraulic routing improves model realism, reducing structural uncertainties related
to surface wave propagation. The considerations align with a growing branch of the hydrological community that
utilizes catchment‐scale models based on the 2D‐SWE for event‐based hindcasting or nowcasting (e.g., Cea
et al., 2024; Costabile et al., 2023) and for estimating travel times with a more physical basis (e.g., Barbero
et al., 2022; Garzon et al., 2023).

The overall framework proposed herein aims to balance realism in representing processes with the need to keep
model complexity manageable, particularly in terms of the number of parameters involved, as discussed later in
detail. In order to couple a grid‐based hydrological model with a 2D‐SWEmodel we adopted the recent developed
Runoff‐on‐Grid approach which embed the amount of the runoff generation processes computed by the hydro-
logical model as a spatiotemporal boundary condition of the 2D‐SWE model, to provide a fully integrated
hydrological‐hydrodynamic framework at the catchment scale (Perrini et al., 2024). Here, reference 2D‐SWE
model is the open source GPU‐enhanced software Iber+ (Bladé et al., 2014; García‐Feal et al., 2018), which
uses an efficient and stable finite volume solver, the DHD (Cea & Bladé, 2015), for catchment‐scale hydrological
applications. While the hydrological model is a modular framework which was built based on the MATLAB code
of the first version of the DREAM model proposed by Manfreda et al. (2005).

All the hydrological model structures, presented in the next section, use the same spatial discretization fixed to a
50 m uniform grid and a time‐step of 15 min, as well as the same computational set‐up, mesh geometry and
roughness parameters of the 2D‐SWE model. In particular, the Iber+ hydrodynamic model uses an unstructured
non‐uniform discretization differentiated between the main streams and external areas. To improve the accuracy
of the hydrodynamic results without increasing too much the total number of computational elements, we carried
out a preliminary sensitivity analysis of different mesh resolutions. A 5 m resolution for the main streams and
tributaries and 50 m for the external areas was adopted leading to a total of 800’000 computational elements.
Actually, in rural areas very little performance are gained by running simulations at resolutions finer than 50 m,
incurring unnecessary computational costs (Savage et al., 2016).

3.2. Model Structures

Four model structures of different complexities, that is, HORTONIAN, DUNNIAN, DREAM and FLEX-
DREAM, have been selected to represent multiple testable hypotheses for the different runoff generation pro-
cesses. It is worth noting that the term “model structure” refers to the hydrological model set‐up, which feeds the
2D‐hydrodynamic model that remains untouched.
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To test solely the different hypotheses of runoff production, all bucket‐type structures share the same climatic
input, soil‐vegetation‐land use parametrizations, and the same modules for interception, surface depression, and
actual evaporation. To reduce the number of calibration parameters while maintaining the spatial distribution of
the data, we used regularization functions that link local parameters to global hyperparameters, which is a
common procedure in distributed modeling applications (Fenicia et al., 2016; Pokhrel et al., 2008; Pokhrel &
Gupta, 2010). In this specific case, the hyperparameters act as linear scaling factors of properties directly taken
from the maps, while local parameters regulate the physical meaning of processes.

To simplify model description, all structures can be thought as being described by the same mass balance
equations, differing in the presence or absence of specific fluxes. Hereafter, all the storages are identified with S
[L], while all the fluxes with Q,P and E [LT‐1]. The mass balance of each landscape element (or pixel) of the
distributed model is described by three ordinary differential equations (ODEs) solved sequentially with an explicit
bounded Euler method. The state variables are SCan canopy storage, SDep surface depression storage and SSoil soil
storage. The ODEs are expressed as follows:

dSCan
dt

= PGross− PEff − ECan (1)

dSSoil
dt

= PEff − PNet − QPerc + QStorm,in − QStorm,out − QSSF − ESoil (2)

dSDep
dt

= PNet − QOF − EDep (3)

where PGross is the gross rainfall, PEff is the effective rainfall (gross rainfall minus canopy interception), ECan is the
direct evaporation from canopy, PNet is the net rainfall‐excess, QPerc is the percolation out of the soil column,
QStorm,in andQStorm,out are the subsurface fluxes entering and leaving the single grid cell,QSSF is the storage‐excess
subsurface flow, ESoil is the actual evaporation from the soil, QOF is the direct overland flow (i.e., either HOF or
SOF depending on the saturation degree of the single cell) and finally EDep is the direct evaporation from surface
depression. The soil water content at saturation (SSoil,max), at field capacity (SSoil,c), at wilting point (SSoil,wp) and
the residual (SSoil,r) are computed as the product of the corresponding volumetric soil moisture content (ϑ [‐]) and
the soil depth (D [L]).

In the next subsections, each model architecture is described in order of complexity, with emphasis on the singular
peculiarities and assumptions. Figure 3 provides a conceptual illustration of the buckets and fluxes, aiding the

Figure 3. Generalized illustration of the ODEs.
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interpretation of the ODEs, while in Figure 4 the main differences of each model configuration are represented
more schematically with respect to the sole soil bucket. For a detailed description of all the fluxes, some of which
are not covered in this manuscript, readers should refer to Perrini et al. (2024). Of note, the total runoff routed in
the hydrodynamic code is intended as the summation of QOF and QSSF.

3.2.1. HORTONIAN

The HORTONIAN structure mainly produces HOF across the entire catchment. The infiltration‐excess mech-
anism is triggered when the rainfall rate exceeds a specified threshold (Ktop). In the absence of this condition, the
bucket continues to fill until saturation is reached, resulting eventually in SOF. The mathematical implementation
of this process is derived from the modified rational formulation proposed by De Smedt et al. (2000), that can be
adapted as follows:

PNet =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

PEff · Cp · (
SSoil

SSoil,max
)

α
, if SSoil < SSoil,max & if PEff > Ktop

0, if SSoil < SSoil,max & if PEff ≤ Ktop

PEff , if SSoil = SSoil,max

(4)

QInf = PEff − PNet (5)

Figure 4. Schematization of the different structures, calibration parameters and processes simulated in each structure. Q∗
OF contrary to QOF does not have Hortonian

characteristics, while Q∗
Perc contrary to QPerc can occur if the soil moisture content is higher than the wilting point.
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where Cp (− ) is the potential runoff coefficient, parametrized as a function of the terrain slope, soil type and
macro‐classes of land use following Liu and De Smedt (2004), α (− ) is the exponent used as calibration
parameter. QOF is later estimated subtracting to the PNet the retention in the surface depressions estimated as in
Linsley Jr et al. (1975).

To evaluate the triggering of surface ponding before complete saturation of the soil columns, the saturated hy-
draulic conductivity of the topsoil (Ks [LT− 1]) is generally adopted as a threshold in different hydrological models
(see e.g. Francés et al., 2007; Maxwell et al., 2014). To account for the Ks parametrization uncertainties a
correction factor (2nd calibration parameter) is considered, namely a simple multiplier (mKtop) to increase or
decrease the Ktop threshold at the catchment scale starting from the spatial map of Ks.

In wet conditions, also the percolation out of the soil bucket is triggered. This process is assumed to be driven only
by gravity and it is computed following Eagleson (1978):

QPerc =

⎧⎪⎨

⎪⎩

Kperc · (
SSoil

SSoil,max
)

2+3m
m
, if SSoil > SSoil,c

0, if SSoil ≤ SSoil,c

(6)

where a Kperc is the exponentially decreased Ks with the depth (in meters) and m the pore‐size distribution index
estimated as a function of the soil texture and organic content as in Rawls and Brakensiek (1985). Note that the
HORTONIAN model computes merely a vertical soil water budget, hence QStorm and QSSF in Equations 2 and 3
are excluded from the computation, and the entire SSoil is static storage with respect to the horizontal fluxes.

3.2.2. DUNNIAN

The DUNNIAN model generates SOF and SSF throughout the catchment. It represents a falsification of the
HORTONIAN hypothesis and of our prior perceptual understanding of the catchment. Each grid within the
domain behaves like a Dunnian bucket, allowing rainfall to infiltrate until soil capacity is exceeded and SOF is
triggered. In the DUNNIAN structure the PNet , triggered by the rainfall intensity as consequence of Equation 4, is
replaced with:

PNet = {
0, if SSoil < SSoil,max

PEff , if SSoil = SSoil,max
(7)

and therefore loses the characteristics of a Horton‐type overland flow.

Nevertheless, the DUNNIAN structure is governed by a redistribution equation proposed by Manfreda
et al. (2005) to simulate SSF. This soil water redistribution process mimics subsurface water dynamics using a
threshold mechanism and a reference index of hydrological similarity (ϕred), namely the Topographic Wetness
Index (ITWI) computed as:

(8)

where a is the drainage area per unit contour length [L], and the slope.

The grid‐based soil water contents, exceeding a certain soil water content threshold (Sred) , are transferred for each
timestep to those cells where the redistribution index is higher, until local exfiltration occurs. This process is
modeled within standalone subdomains of the catchment with no exchange of lateral fluxes between each other,
namely the subbasins of different Horton‐Strahler order (Figure 1b). This means that the subsurface connectivity
is guaranteed at the subbasins scale. The redistribution equation can be written as:
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QStorm,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

ϕred,i∑
N(t)
i=1 max[c(SSoil,i − Sred,i), 0]

∑
N(t)
i=1 ϕred,i

⎞

⎟
⎟
⎟
⎠
− max[c(SSoil,i − Sred,i), 0], if SSoil,i > Sred,i

⎛

⎜
⎜
⎜
⎝

ϕred,i∑
N(t)
i=1 max[c(SSoil,i − Sred,i), 0]

∑
N(t)
i=1 ϕred,i

⎞

⎟
⎟
⎟
⎠
, if SSoil,i ≤ Sred,i

(9)

where the subscript i indicate any cell of the subbasin and N(t) is the number of cells that at time t excees Sred,i.
While c [T− 1] is the redistribution coefficient, a calibration parameter that regulates how much water exceeding
the Sred threshold (i.e., part of the dynamic storage in Figure 3) must be redistributed for each time step within each
sub‐catchment. For mass conservation c ranges from zero to the unity. Thus, updating the soil water contents, the
SSF is described by the constitutive equation:

QSSF = {
QStorm, if SSoil = SSoil,max

0, if SSoil < SSoil,max
(10)

Notably, this structure assumes that the active cells for SSF generation encompasses the entire catchment, while
the SSF itself is localized in areas with higher ITWI, which directly influences the VCA for SOF.

In the original version of the DUNNIANmodel (Manfreda et al., 2005) the Sred was a fixed value corresponding to
the soil water content at field capacity (SSoil,c). Recognizing the uncertainties in soil parametrization but
conserving the philosophy of parsimonious parameter selection, we added here a simple multiplier (mSred) as a
2nd calibration parameter of the DUNNIAN model to regulate the redistribution initialization, as:

Sred = max(SSoil,wp,min(mSred·SSoil,c,SSoil,max)) (11)

where the SSoil,wp is the lower limits for the activation of the mechanisms (i.e., static storage in Figure 3).

This kind of abstraction tries to conceptually emulate the water dynamic through the soil‐matrix using ϕred as a
descriptor of the preferential flow paths. While replacing the SSoil,c with a calibrated value (generally decreased)
seeks to emulate various others minor and fuzzy subsurface processes, as for instance, the macro‐pore flow, pipe‐
flow, the fill and spill flow behavior, fairly independent from the continuum soil matrix properties and yet difficult
to simulate rationally. For the DUNNIAN structure, deep percolation occurs in the same conditions of Equation 6.

3.2.3. DREAM

The third hypothesis considers the potential concomitance of HOF, SOF and SSF processes in the catchment. This
can be done combining in a single model structure the abovementioned computations of theQOF in Equation 4 and
the QSSF in Equations 9 and 10.

This structure follows the last version of the DREAMmodel proposed in Perrini et al. (2024), which computes in
cascade surface runoff processes first, followed by subsurface runoff, depending on rainfall intensity and soil
saturation, but sharing the same soil bucket. The DREAM uses entirely the ODEs reported in Equations 1–3, and
its calibration parameters are both the ones of the HORTONIAN and of the DUNNIAN: α, c,mSred and mKtop.

3.2.4. FLEXDREAM

This structure combines the DREAM framework with the FLEX‐topo model proposed by Savenije (2010),
referred to as FLEXDREAM. FLEX‐topo is based on the concept that topographical features influence dominant
runoff generation processes, differentiating major landscape units with distinct hydrological behaviors. This
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approach leads to models that not only use distributed parameters but also have distributed structures, based on the
presence, absence, or extent of the identified landscape units.

The original perceptual model, developed for central European landscapes, included three primary landscape
classes—wetlands, hillslopes, and plateaus—identified using the Height Above Nearest Drainage (HAND) index
(Rennó et al., 2008) and local slope. Given that the HAND index is sensitive to stream network extraction, the
reference streamlines were obtained from the Apulian Civil Protection, as they offer the most accurate repre-
sentation of real streams, effectively bypassing the limitations of automated threshold‐based extraction from
Digital Terrain Models. FLEX‐topo can be implemented using the Hydrological Response Units (HRU) concept
(Leavesley, 1984), resulting in semi‐distributed models with a limited number of HRUs (three in the original case)
and few state variables. This approach is less suitable for the present study, where the fine temporal resolution
needed to capture localized HOF processes requires a more detailed spatial discretization.

In this application, the FLEX‐topo concept is adapted to a grid‐based approach. This allows for the integration of
detailed spatial data—such as digital elevation models, land use maps, soil texture and hydraulic properties, and
vegetation parameters—into each grid cell, providing a finer level of spatial resolution. The FLEXDREAM uses
the HAND‐based landscape classification (Gharari et al., 2011; Nobre et al., 2011) to account for dominant runoff
generation sources for each macro‐landscape according to the FLEX‐topo hypothesis (Figure 1c). Based on
experience in other catchments (Fenicia &McDonnell, 2022; Gharari et al., 2011), locations with HAND < 10 m
were treated as wetlands, locations with HAND > 10 m and slope < 0.1 were classified as plateau and locations
with HAND > 10 m and slope > 0.1 were regarded as hillslopes.

Hence, these various landscapes are associated with individual grid‐based model architecture (Figure 4).
Following Savenije (2010), in the plateau areas the deep percolation is the main hydrological process and the HOF
in occurrence of high rainfall intensities is its supporting process. In hillslope the dominant hydrological process
is generally the SSF, but according to Savenije (2010) in arid climates with extensive eroded crop surfaces, a
potential supporting mechanism on hillslopes is the HOF. In wetland the dominant process is the SOF with
supporting mechanisms the groundwater flow, that is, either SSF or baseflow (here neglected). Here, percolation
out of the soil substrate is discouraged due to the water table potentially close to the ground surface. Therefore, we
choose to implement for the plateau areas the HORTONIAN structure with no restriction for the percolation on
soil wet condition (QPerc∗ in Figure 4), for the hillslope areas the full DREAM, while for the wetland the
DUNNIAN omitting the percolation process.

As the FLEX‐topo implicitly uses the HAND index to describe hydrological similarity, the ITWI (Figure 1e) is
replaced with a HAND‐based index (i.e., IrHAND) for the “constrained” redistribution mechanism that here occurs
only on hillslope and wetland. Unlike the DUNNIAN and DREAM hypotheses, where the SSF generation
encompassed each grid cell of the catchment, the FLEXDREAM excludes the entire plateau landscape. To make
the IrHAND (Figure 1f) comparable to the ITWI, namely high values for the expected saturated areas and low values
for dryer areas, we rescaled and inverted the values with a natural logarithm as follows:

IrHAND = max(ln(HAND)) − ln(HAND) (12)

IrHAND attains high values in areas near the stream, indicating that the VCA of SSF and SOF are primarily located
in wetlands rather than on hillslopes, which remain active areas for the generation of both the processes. This is a
reasonable assumption, as the similarity index used in the redistribution equation is meant to identify the most
likely areas of catchment where soil water exfiltration occurs.

Of note, although the FLEXDREAM complicates and somehow constrains the distributed structure of the
catchment behavior, it continues to have the same set of calibration parameters of the DREAM.

4. Model Evaluation
4.1. Calibration and Validation Strategy

Calibrating event‐based models using a single peak flow hydrograph is relatively simple, as a few well‐chosen
parameters can replicate the shape of both rising and falling limbs depending on an accurate rainfall forcing.
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For event‐based hindcasts, a more robust way to understand runoff generation, is to select consecutive events
over a short period. In these cases, as the catchment state evolves during multiple events, different dynamics
and processes are activated, providing a better test of the model ability to dynamically simulate streamflow
variability.

Event based models can strongly be dependent on initial storage conditions, which need to be carefully deter-
mined. In this case, each model structure underwent a warm‐up period used to estimate both the Antecedent Soil
Moisture (SSoil,t=0) as well as the soil water capacity (SSoil,max). Taking as reference the satellite‐detected ISWI on
the 16th of January 2023, the distributed soil water contents were derived as follows:

SSoil,SWI = SSoil,wp + ISWI (SSoil,c − SSoil,wp) (13)

Here using a multiplier on the map derived soil depth, we calibrated the SSoil,max minimizing the absolute‐PBIAS
between the SSoil,SWI for each sub‐catchment and the SSoil,t=0 produced from the different model structures
(Table 2). The warm‐up period was of approximately 6 months to ensure that the SSoil,t=0 was independent from
the initial soil moisture specified at the start of the warm‐up (Kim et al., 2018), here the SSoil,wp. From this prior
assessment the SSoil,max over the entire Salsola catchment was found to be averagely of 170 mm, in line with other
distributed and semi‐distributed models of literature (Bouaziz et al., 2021).

To assess the explanatory power of different hypotheses within the entire nested catchment, the transferability of
each structure was tested through a multi‐stage operational flowchart that involved calibrating a single headwater
catchment (i.e., SS17) and validating spatially on both a catchment of the same order (i.e., SP18) and a higher‐
order catchment (i.e., SS16). This kind of spatial validation provides a stringent test of model performance,
generally considered more challenging that the split‐sample temporal validation of models (Andréassian
et al., 2009; Fenicia et al., 2016).

Recognizing that the hydrological‐hydrodynamic framework operates on different processes and that even GPU‐
enhanced shallow water models are inadequate for scenarios requiring numerous model runs (Bermúdez
et al., 2019), we implemented a three‐stage evaluation process:

• The first stage of the evaluation consisted of the optimization of each structure using a simplified routing
method, namely the flowtime routing detailed in Appendix A. Calibration was conducted through an auto-
mated search using the Shuffled Complex Evolution (SCE‐UA) algorithm (Duan et al., 1992) by optimizing a
predefined meta‐objective function, detailed in Section 4.2.

• In the 2nd stage, we used the calibrated hydrological model and substituted the simplified routing with the
hydrodynamic model, which simulates the routing process based on the 2D‐SWE. The meta‐objective
function is recomputed without recalibration, which allows to assess differences in model performance
attributable to the choice of routing method, namely the structural error embedded in the simplified flowtime
scheme.

• Finally, in the 3rd stage, the parameters of the donor catchment (SS17) were transferred to the two recipient
catchments (SS16 and SP18) to spatially validate the model structure along with the hydrodynamic routing.
The workflow representation of the model evaluation is provided in Figure 5.

It is important to emphasize that the 2D SWE model is employed to achieve a deterministic evaluation of surface
water routing. While roughness coefficients can be adjusted to calibrate catchment‐scale hydrodynamic models
(Sanz‐Ramos et al., 2021), this study utilizes standardized roughness coefficients to bypass equifinality in relation
to other runoff‐related parameters, which will be discussed later (Section 5.3). This approach also facilitates the
identification of structural deficiencies in the simplified routing scheme compared to the more rigorous hydraulic
method.

4.2. Meta‐Objective Function

Since is widely recognized that a single metric does not adequately summarize model performance (Crochemore
et al., 2015; Fenicia et al., 2007; Gauch et al., 2023), four objective functions were selected to capture various
aspects of the streamflow time series, including high flow dynamics, low flow dynamics, single‐hydrograph
dynamics, and non‐parametric metrics.
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These four objective functions were combined into a unique meta‐objective function for model optimization, but
were assessed individually for model diagnostics. In particular, we used the Kling‐Gupta Efficiency (FKGE) and
three variants of it, which were averaged with equal weights to compute the meta‐objective function (Fmeta − KGE)
used for model calibration. Because the time accuracy of the streamflow gauges data was 30 min, the same
iteration time step was used for parameter optimization.

4.2.1. KGE

The Kling‐Gupta Efficiency (Gupta et al., 2009) is increasingly used in hydrological studies. Its main motivation
was to compensate some perceived limitations of the well‐known Nash‐Sutcliffe Efficiency (FNSE) (Nash &
Sutcliffe, 1970), including its tendency to underestimate streamflow variability, its low sensitivity to water
balance errors in catchments with highly variable flows, and the inadequacy of using mean flows as a benchmark
in such catchments (Schaefli & Gupta, 2007). The FKGE metric, based on the decomposition of the mean squared
error, defines the Euclidean distance computed using the coordinates of bias, standard deviation, and correlation.
Its original version is:

FKGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − β)2 + (1 − αKGE)
2 + (1 − r)2

√

(14)

β = µsim/µobs (15)

Figure 5. Schematic workflow of the multi‐stage operational testing.
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αKGE = σsim/σobs (16)

r =
∑

n
i=1(Qobs(i) − µobs) (Qsim(i) − µsim)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∑
n
i=1 (Qobs(i) − µobs)

2
)(∑

n
i=1 (Qsim(i) − µsim)

2
)

√ (17)

where r is the Pearson correlation coefficient, αKGE is the standard deviations (σ) ration between the simulations
(sim) and observations (obs) and β is the ratio of the means (µ).

4.2.2. KGE of Box‐Cox Transformed Streamflow

The FKGE, as all the least squares methods, tend to prioritize parameter sets that match hydrological behaviors
during high‐flow periods. To reduce residual skewness, and focus more on low flows, system‐scale metrics
include variable transformations such as the log‐transform or Box‐Cox transform (Pushpalatha et al., 2012).
However, the logarithmic transformation can have problems with near‐zero flows. Moreover, when used in
conjunction with the FKGE, transformations such as logarithmic and Box‐Cox generate dependency with respect to
the flow unit chosen (e.g., L/s rather than m3/s). To overcome these issues, Santos et al. (2018) developed a
peculiar Box‐Cox transformation where the streamflow are rescaled adopting the following expression:

fBC(Q) =
Qλ − (0.01µobs)

λ

λ
(18)

where λ is usually equal to 0.25 for hydrological studies (Vázquez et al., 2008). Therefore the Box‐Cox KGE
(FBCKGE) is computed starting from the FKGE but replacing the original streamflow timeseries Qobs(i) and Qsim(i)
with the transformed variables fBC (Qsim(i)) and fBC (Qobs(i)).

4.2.3. Non‐Parametric KGE

Pool et al. (2018) suggested that calculation of the original FKGE implicitly relies on the assumptions of data
linearity, normality, and the absence of outliers. To address these limitations, they reformulated the αKGE and the r
terms of the FKGE in a non‐parametric form. The Non‐parametric KGE (FNPKGE) can be expressed as:

FNPKGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − β)2 + (1 − αNP)
2 + (1 − rs)

2
√

(19)

The new variability term is built considering the normalized flow duration curve (FDC) to remove the volume
information and keep only the distribution signal:

αNP = 1 −
1
2
∑
n

k=1

⃒
⃒
⃒
Qsim(I(k))

nµsim
−

Qobs(J(k))
nµobs

⃒
⃒
⃒ (20)

where I(k) and J(k) are the time steps when the k th largest flow occurs within the simulated and observed time
series respectively. Introducing the FDC means that the αNP becomes insensitive to errors in the timing and
magnitude of individual flood peaks. The Pearson correlation coefficient is replaced with the Spearman rank
correlation which generally considers more carefully the mean and low‐flow conditions, and can be calculated as
follows:

rs =
∑

n
i=1(Robs(i) − Robs) (Rsim(i) − Rsim)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∑
n
i=1 (Robs(i) − Robs)

2
)(∑

n
i=1 (Rsim(i) − Rsim)

2
)

√ (21)

where Robs and Rsim are respectively the rank of the observed and simulated discharge time series and the R its
means.
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4.2.4. Split KGE

The abovementioned metrics rely on full‐time span moments statistics, which can obscure especially for event‐
based analysis the performance of a model over shorter, more variable periods. This can result in an error
compensation where discrepancies in different periods might balance each other out masking poor performance in
certain stages of the full timespan. This phenomenon is linked to the amalgamation paradox, which describes how
statistical relationships can change (increase or decrease) depending on data combinations.

In hydrology, a special case of this statistical paradox has been recently termed “Divide And Measure Non‐
conformity (DAMN)” since has been proved empirically that FNSE values can be higher than those of individ-
ual subsets, and similar effects are also envisaged for the FKGE (Klotz et al., 2024). This aligns also with the need
of more nuanced metrics that account for temporal dynamic conditions in hydrological behavior (Gharari
et al., 2013). In order to provide a representative assessment of model performance, Fowler et al. (2018) proposed
a Split KGE (FSKGE) for long‐term hydrological assessments, where the FKGE is computed for each individual year
and then averaged.

Here, we follow a similar approach for our event‐scale assessments. To better capturing dynamic variations in the
multi‐event simulation, we chose a fuzzy temporal window that follows the observed flow hydrographs for
splitting the FKGE into independent evaluations. Since four clear independent hydrographs were observed at the
SS16 outlet, the timespan was divided into four sub‐periods (p) to compute first the FKGE(p) for each window
and later the averaged FSKGE.

5. Results and Discussions
5.1. Models Performance

Figure 6 illustrates the performance of the four models tested at each stage of the calibration process while the
optimal set of parameters obtained with the SCE‐UA algorithm is reported in Table 2. In the first stage, the
HORTONIAN and DUNNIAN models achieved the lowest and nearly identical Fmeta− KGE values, whereas
FLEXDREAM performed the best. The poorer‐performing models exhibited the weakest results in terms of

Figure 6. Meta‐objective function and individual performance metrics values for each model structure.
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FBCKGE, emphasizing deficiencies in low‐flow conditions. Although the DREAM and FLEXDREAM models
showed similar performance in terms of FKGE, FLEXDREAM outperformed DREAM on other metrics. If
evaluated solely based on FKGE, all four model structures would appear to demonstrate comparable skill in fitting
the observed hydrographs, with FKGE values always exceeding 0.82. Hence, relying only on FKGE obscures key
differences between the models, highlighting the importance of using multiple performance metrics and justifying
the selected evaluation criteria.

In the second stage, the calibrated runoff from each model structure in the first stage was transferred to the 2D
hydrodynamic model. Here, a slight general decrease in Fmeta− KGE was observed for the HORTONIAN and
FLEXDREAM models, while the other models showed slight increases. This shift was primarily due to signif-
icant changes in FKGE values, caused by overestimation of certain peak flows (see Section 5.2), with the best
performances achieved by DREAM and DUNNIAN. Notably, FSKGE, which averages multiple FKGE( p) values
for different events, was highest for FLEXDREAM. In contrast, FNPKGE, which accounts for flow duration curves,
remained consistent with first‐stage results, indicating that it assigns similar weight to different streamflow
magnitudes. Still, FLEXDREAM retained the highest FBCKGE and Fmeta− KGE.

In the third stage, we validated the models spatially by transferring the calibrated parameters from the SS17 donor
catchment to two recipient catchments: SP18 (a similar‐sized catchment) and SS16 (a larger catchment)
(Figure 8). Unlike traditional regionalization techniques that identify patterns after independently calibrating each
catchment, our approach accounts for heterogeneous data layers (e.g., precipitation, land use, soil moisture,
vegetation, soil texture) and assumes parameter similarity across the fully nested catchment. This approach allows
us to assess the structural validity of each hypothesis by simulating runoff processes calibrated in the first
evaluation stage. In the SP18 catchment, the HORTONIAN and DUNNIAN models produced the lowest
Fmeta− KGE values, this time also with negative FBCKGE scores. Furthermore, despite the FKGE values are above 0.60,
all the structures produced much lower FSKGE performance always below 0.60, due to under‐ and over‐estimations
of flow peaks across different events. In contrast, at the SS16 catchment, all performance metrics were relatively
high, including FSKGE and FBCKGE which had previously been the lowest metrics. This suggests that many least‐
squares‐based metrics remain dependent on flow magnitude, with higher flows generally yielding better per-
formance. Nevertheless, as observed in the second stage, HORTONIAN had a higher FSKGE than DREAM,
despite the opposite ranking in FKGE. Once again, FLEXDREAM produced the highest Fmeta− KGE scores in both
recipient catchments.

Overall, some observations can be drawn from multiple hypothesis testing based on meta‐performance
evaluation.

• FLEXDREAM consistently outperformed the other models in FBCKGE, indicating that the other three models
struggled to simultaneously reproduce both peak and recession portions of the hydrograph, likely due to
unresolved structural issues.

• The DUNNIAN model proved inadequate, yielding the lowest average Fmeta− KGE in the transferability test
(Table 2), reinforcing the need to reject this hypothesis for the nested catchment under investigation.

• Although some FKGE(p) values spuriously exceeded the aggregated FKGE, FSKGE values were lower than FKGE
across all evaluation stages and model structures. This confirms the anticipated DAMN− like behavior
of FKGE.

Table 2
Optimal Parameters, Mean‐Absolute‐PBIAS, Meta Performance

α (range
0–3)

mKtop (range
0–2)

c (range
0–1)

mSred (range
0.75–1.25)

PBIAS
(%)

Fmeta− KGE (1st
stage) SS17

Fmeta− KGE (2nd
stage) SS17

Fmeta− KGE (3rd
stage) SP18

Fmeta − KGE (3rd
stage) SS16

HORTONIAN 0.35 0.01 – – 5.53 0.57 0.51 0.34 0.62

DUNNIAN – – 0.70 0.75 7.15 0.56 0.57 0.34 0.50

DREAM 0.78 0.34 0.27 0.78 7.83 0.75 0.76 0.52 0.72

FLEXDREAM 0.15 0.33 0. 02 0.87 5.25 0.89 0.85 0.72 0.81
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• Within the context of multiple working hypotheses, DAMN can alter the ranking of the best models (e.g., as
seen in the second stage, Figure 6), potentially misrepresenting model fitness. For event‐scale modeling, we
strongly recommend using FSKGE over the traditional FKGE.

5.2. Consequences of the Routing Methods and the Value of Meta‐Metric

The impact of surface routing via strict momentum conservation on simulated streamflow, and consequently on
model performance, is not negligible at the SS17 station (Figure 7). Despite identical surface roughness
parameterization (i.e., Manning coefficients) in both routing schemes, replacing flowtime routing with the 2D‐
SWE leads to an overestimation of peak flows and a shorter time‐to‐peak.

While the flowtime routing scheme assumes time‐invariant flux velocities, like most convolutional routing
methods, the unsteady nature of surface wave propagation becomes significantly more influential at higher flows
when computing depth‐dependent flow velocities in 2D‐SWE. Furthermore, whereas the Iber+model employs a
refined, non‐uniform mesh resolution to simulate the hydrodynamics of main channels accurately, the flowtime
routing approach maintains a uniform 50 m spatial discretization. Upscaling the reference topography generally
reduces slopes, which, in turn, lowers the static flow velocities calculated by the flowtime scheme.

Such effects have already been recognized in continental‐scale studies, where simulated peak discharges and time‐
to‐peaks vary significantly depending on the routing scheme used (Mizukami et al., 2016, 2021; F. Zhao
et al., 2017). These findings have critical implications for parameter inference and model optimization. Parameter
search processes often compensate for the limitations of simplified routing by adjusting other fluxes and state
variables to enhance streamflow‐oriented performance metrics (Khatami et al., 2019). Additionally, routing
methods can significantly impact performance metrics focused on high flows, such as FKGE, suggesting that
parameter recalibrationmay be necessary depending on the routing scheme employed (Cortés‐Salazar et al., 2023).

Automatic optimization of fully hydrological‐hydrodynamic models (García‐Alén et al., 2024) could potentially
address this issue, but such techniques remain computationally prohibitive as they require thousands of simu-
lations. Since these discrepancies are limited to peak magnitudes and timing, a meta‐optimization approach—
which considers multiple aspects of the streamflow time series—offers a more balanced method for model

Figure 7. Observed and simulated hydrographs at SS17 station (donor catchment) with both flowtime and hydrodynamic
routing.
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evaluation and comparison, independent of the routing scheme. Supporting this, the FLEXDREAM model
consistently achieved the highest Fmeta− KGE, across all three evaluation stages.

However, automatic calibration of hydrological‐hydrodynamic models does not guarantee improved results or
success in spatial transferability tests. Unlike at SS17, employing hydrodynamic routing at SS16 and SP18
resulted in an underestimation of peak discharges, particularly for events that were overestimated in the second
stage. This suggests unresolved structural issues in the tested hypotheses—not only related to routing processes
and runoff generation but also stemming from uncertainties in input data, such as rainfall measurements, spatial
rainfall distribution, and rating curves for gauged river stations (McMillan, Krueger, et al., 2012; Renard
et al., 2011).

Despite these challenges, spatial transferability performance remained high. Since the study was not intended to
develop an operational model for the area, no further parameter optimization was pursued. It is worth noting that a
full hydrodynamic simulation of 15 days over the entire Salsola catchment was completed in just 30 min (720
times faster than real time) using an HPC cluster equipped with an NVIDIA A100 GPU (40 GB). This dem-
onstrates the potential of the Iber+ model for real‐time flood forecasting and designing storm events with
assigned probabilities of occurrence. Although flood inundation modeling was not the primary focus of this study,
the presented framework inherently possesses such capabilities.

Interestingly, the DUNNIAN model was the only hypothesis that produced similar peak magnitudes and
streamflow shapes regardless of the routing method used. This outcome aligns with theoretical expectations: HOF
has short travel times and is more sensitive to routing methods, whereas SSF involves much longer travel times
and is less affected by surface routing. An important implication of this analysis is that in catchments lacking
HOF, highly specific routing approaches may not be essential for achieving accurate flow simulations. What

Figure 8. Observed and Simulated hydrographs in the two recipient catchments.
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remains clear is that routing schemes in event‐based hydrological applications must be carefully selected, as they
represent a significant source of model uncertainty.

5.3. Parameters Interpretability and Processes Realism

As part of the post‐model diagnostic, we examined the significance of the optimal parameter sets and the spatial
consistency of SSF and SOF source areas. Models incorporating HOF achieved their best performances by
significantly reducing the mKtop and setting the α to values lower than the unity (Table 2). These findings may be
linked to “soil water repellency”, a phenomenon common in arid regions, which can drastically reduce infil-
trability and contradict the typical assumption that dry soils have higher infiltration rates than wet soils (Cerdà &
Doerr, 2007; Doerr et al., 2003). Indeed, the calibrated values suggest that Horton‐type processes activate much
earlier than expected based on reference topsoil saturated hydraulic conductivity, and infiltration rates are weakly
dependent on the degree of soil saturation. The mSred SSF‐related parameter, indicates that horizontal fluxes
initiate before field capacity is reached. Instead, c values are less interpretable, as they depend on the spatial
distribution of the similarity index used to emulate subsurface flow dynamics.

Focusing on the two best‐performing models, DREAM and FLEXDREAM, we further analyzed the spatial
variability of surface and subsurface runoff partitioning alongside the HAND‐based landscape classification
(Figure 9). In FLEXDREAM, SOF and SSF are predominantly generated in wetland areas rather than on hill-
slopes, with streamflow contributions from wetlands and SSF closely aligned. In contrast, DREAM generates

Figure 9. Surface‐subsurface and landscape‐based streamflow partitioning referred to the DREAM and FLEXDREAM structures. Acronyms in the legend are detailed
in Section 1.1.

Water Resources Research 10.1029/2024WR039394

PERRINI ET AL. 20 of 27

 19447973, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
039394 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [09/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SSF across the entire catchment, with a notable portion originating from plateau regions at the SS16 outlet. This
process representation in DREAM appears physically inconsistent, as following Savenije (2010), subsurface
runoff and saturation‐excess processes should be minimal in plateau areas.

Unlike FLEXDREAM, which differentiates macro‐landscapes, DREAM employs ITWI to model soil water
redistribution at the sub‐basin scale. ITWI can yield high values in low‐contributing areas with gentle slopes,
erroneously identifying upland areas as potential wet regions. This issue is avoided in FLEXDREAM, where
subsurface dynamics are restricted to wetlands and hillslopes, and would have been heavily discouraged even
without constrained redistribution due to the use of IrHAND as the similarity index. Although ITWI is a standardized
and widely used hydrological similarity index, its explanatory power in describing saturated areas is generally
limited to wet regions (Ali et al., 2014; Güntner et al., 2004). Indeed, previous studies have already shown that
HAND‐based models provide better representations of saturated areas than TWI‐based models in various case
studies (e.g., Gao et al., 2019).

The FLEXDREAM structure simulates internal catchment processes in a way that is consistent with the con-
ceptual understanding of landscape behavior, reinforcing the idea that its superior performance is rooted in more
accurate modeling assumptions. The DREAM, however, remains a generalization of the FLEXDREAM, meaning
that in certain hillslope dominated landscapes the two hypotheses may be very similar. Despite its advantages, the
flexible structure still has room for improvement, as outlined in the next section.

5.4. Event‐Based Dominant Runoff Generation Mechanisms

By comparing streamflow patterns from different model structures (Figures 7 and 8), we gain key insights into
catchment behavior. Simulated hydrographs show that the HORTONIAN hypothesis effectively captures the
timing and magnitude of peak discharges but exhibits rapid recessions to zero flow, particularly after the second
storm event. This behavior likely stems from the model's inability to account for slower processes such as SSF.
Conversely, the DUNNIAN model, which only considers SOF and SSF, overestimates low flows and un-
derestimates high flows, especially during the first three storm events. Additionally, it completely fails to
reproduce the initial small hydrograph peak and distorts the double‐peak structure of the subsequent hydrograph,
producing a single, broader peak instead. Models incorporating HOF tend to overestimate the initial peak, likely
due to uncalibrated initial abstractions (e.g., interception and surface depression storage), which could be refined
in future analyses. Overall, the FLEXDREAM and DREAM models, which simulate HOF, SOF, and SSF,
provide a good match for both peak magnitudes and low flows, suggesting that both surface and subsurface
processes contributed to runoff generation during the four storm events.

Identifying runoff (macro)sources typically requires isotope or geochemical tracers from rainfall and streamflow.
Although such data were unavailable in this study, we retrospectively inferred the dominant runoff processes for
each storm event (Figure 10) as follows:

• At the first event, the poor performance of the DUNNIAN model, compared to the strong performance of the
other models, suggests that SOF and SSF were minimal or absent at this stage. Instead, HOF—driven by high
rainfall intensities—appears to dominate (Figure 9). This is further supported by headwater catchment time

Figure 10. Disentangled dominant runoff generation sources. Acronyms in the legend are detailed in Section 1.1.
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series, where high runoff magnitudes coincide with minimal recession volumes (Estrany et al., 2010), indi-
cating that even recessions at the outlet were primarily HOF‐driven.

• At the second & third events, a combination of surface and subsurface processes is more likely. This is
indicated by increasing recession volumes in the headwaters, with hydrograph tails rising above pre‐event
levels (see also Figure 2), signaling the activation of slower runoff processes as the catchment became
wetter. Nevertheless, high flow magnitudes remained strongly associated with intense rainfall.

• At the fourth event, HOF became marginal. The significant drop in runoff coefficients in headwater catch-
ments and the overestimation of gentle peaks by all models incorporating HOF suggest that the rainfall
threshold necessary to trigger infiltration‐excess was no longer exceeded. This is further supported by the fact
that the DUNNIANmodel produced a double‐peak hydrograph at SS17, closely matching observations, while
all HOF‐based models simulated a triple‐peak hydrograph. Similarly, at SS16, models with HOF produced an
irregular hydrograph responding to rainfall intensity (Figure 8), while the DUNNIANmodel, relying solely on
SOF and SSF, simulated a smoother double‐peak hydrograph, which aligned better with observed streamflow.

These findings suggest that after the first three storm events, as the catchment became wetter and rainfall in-
tensities decreased, soil connectivity pathways across the Salsola Catchment were already active, facilitating SOF
and SSF rather than HOF. This aligns with prior understanding, where the runoff coefficient for the fourth event at
the outlet increased, initially attributed to a combination of surface and subsurface runoff processes.

Despite recent skepticism in the literature, our analysis strongly reinforces the necessity of modeling both surface
and subsurface processes in semi‐arid regions, even at the event scale. While the alternation and evolution of
multiple runoff‐generating processes are complex and challenging to capture through modeling alone, consid-
ering them is essential to achieving reliable results over consecutive events. Future research should apply this
hypothesis‐testing approach in nested catchments, where hydrochemical data and saturated area detection are also
available to cross‐validate the dominant runoff mechanisms. Nevertheless, by combining and falsifying hy-
potheses, we successfully disentangled key processes through model outcomes and streamflow signatures.

For future modelers, these considerations on how to further develop and improve FLEXDREAM should be kept
in mind:

• Refine the Ktop threshold to reduce HOF occurrences as the saturation ratio increases, aligning with the soil
water repellency phenomenon described earlier.

• Enhance FLEXDREAM's representation of saturation areas and subsurface processes by incorporating a more
dynamic activation/deactivation of contributing areas.

• Account for plateau connectivity to wetlands, as subsurface connectivity increases under wet conditions,
linking larger portions of the catchment. During dry conditions, reduced connectivity limits flow transmission
and lowers flow volumes (Fenicia et al., 2014; Jencso et al., 2009).

• Distinguish between uplands and terraces, despite their shared HAND‐based landscape classification, as they
may exhibit different hydrological behaviors.

6. Conclusion
This study highlights the explanatory power of multiple working hypotheses in characterizing dominant runoff
mechanisms at the event scale. To address the structural limitations of lumped catchment‐scale models, we in-
tegrated bucket‐type hydrological models with a 2D hydrodynamic model, aiming to balance model complexity
and data availability. By extending the FLEX‐topo model to DREAM, we developed a grid‐based perceptual
structure to test catchment functioning, in combination with the Iber+ 2D‐SWE model. Among competing hy-
potheses, FLEXDREAM produced better results for better reasons, both in terms of performance metrics and
internal process consistency.

One of the key findings is that even minor improvements in quantitative metrics can signify substantial progress in
embedding more realistic processes into simulated streamflow. This underscores that without optimizing models
using meta‐performance metrics (Fmeta − KGE), the conclusions could have been markedly different, making it
difficult to unequivocally identify the best‐performing hypothesis.

For event‐based applications, the choice of routing methods proved crucial in influencing peak discharges,
emphasizing the need to treat routing as an integral part of model structural uncertainties and evaluation,
particularly in Horton‐type overland flow‐dominated catchments. This highlights the necessity of a balanced
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objective function that considers multiple aspects of the streamflow time series, rather than relying solely on least‐
squares‐based performance metrics. Indeed, the well‐known FKGE was found to be prone to the DAMN issue,
reinforcing the recommendation to use time‐consistent metrics such as FSKGE.

Overall, the proposed integrated modeling framework served as a valuable interpretive tool for evaluating
surface and subsurface processes that dominate runoff generation under varying conditions. It offers an
alternative to existing flexible frameworks, with the capability to test grid‐based hydrological hypotheses
alongside a 2D hydrodynamic model, making it also well‐suited for applications requiring flood inundation
estimation. Our findings reinforce the idea that simulating the rainfall‐runoff relationship in semi‐arid catch-
ments is challenging with a priori assumptions. However, we successfully disentangled a rapid alternation of
surface and subsurface processes that drive runoff generation in the nested Salsola catchment. Therefore, event‐
based hydrological models in semi‐arid regions should account for both processes, at least in their prior
assumptions.

Ultimately, the research reaffirms two key insights: the fundamental role of landscape in shaping hydrological
processes, which should remain central to model development, and the value of event‐scale hypothesis testing,
which compensates for the lack of additional observations beyond streamflow data.

Appendix A
The surface hydrological routing adopted for a fast calibration uses topographic, topological, and hydrologic
information from data layers of the catchment system. It can be categorized as a distributed convolution of the
wave propagation. For each grid, a flow path can be defined to the basin outlet, allowing for the calculation of the
corresponding flow time under the assumption that the local (cell) velocity is a static characteristic constant over
time. Flow directions are assigned using the D8 method based on the steepest downhill slope (O’Callaghan &
Mark, 1984). The flow velocity is calculated using Manning's equation:

(A1)

where is the slope, n is the roughness coefficient assigned in function of the land uses and the R is the hydraulic
radius is computed and calibrated as in Manfreda et al. (2005).

The grid‐based flow time ft is determined as the time it takes for water particles to travel along the flow path from
the cell to the basin (sub)outlet. The streamflow generated from the total runoff is then calculated as the
convolution from all cells, considering their respective ft, as expressed by the following equation:

QStreamflow,t =∑
τmax

d=1
Rt− ft( ft = d) (A2)

where QStreamflow,t represents the streamflow (m3/s), τmax is the maximum flow time in the basin, and d is the index
of the summation expressed as a multiple of the time step.

Data Availability Statement
All the data used in the study are mentioned and referenced in the manuscript. The numerical simulations were
done with the software Iber v3.2.2, which can be downloaded for free of charge from www.iberaula.com.
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