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Summary

Closure of Collar's triangle represents a complete framework of fluid-structure interactions
(FSI) enabling the comprehensive understanding of different design elements compromis-
ing aeronautical applications. Experimental methods such as tomographic particle image
velocimetry (Tomo-PIV) are proven to provide accurate acquisition opportunities of fluid
properties in three dimensional domains. However, not only the closure problem requires
simultaneous investigations of fluid and structure behaviors but also the maximum at-
tainable measurement volumes for characterizing these behaviors are severely limited for
conventional Tomo-PIV applications. Therefore, a large scale Tomo-PIV setup capable of
measuring simultaneous flow motion via Helium Filled Soap Bubbles (HFSB) and struc-
ture motion by means of surface markers is employed for experimental investigations of
turbulent boundary layer interactions with an unsteadily deforming elastic membrane.

Despite the aforementioned benefits of large scale tomographic PIV/PTV techniques,
available spatial resolution characteristics for time-resolved flow field measurements are
significantly restricted due to the tracer particle specifications of HFSB. This restriction
requires additional post-processing algorithms to be applied over the raw experimentally
acquired datasets in order to mitigate the effect of experimental trade-off between the
temporal and spatial resolution specifications, and allow instantaneous flow field charac-
terization. Although state-of-the-art data assimilation approaches provide the capability
of reconstructing high resolution flow features by interpolating the available scattered
particle tracking information for global time-resolved flow field reconstruction, drawbacks
due to the inability of resolving the viscous effects for near wall flow behavior, incapa-
bility of handling physical intrusions to the flow field and propagation of measurement
errors, compromise accurate characterization of flow structures in close proximity of the
FSI interface.

First of all, these algorithms are developed for reconstructing flow features involved
with engineering applications where the flow conditions are dominated by turbulent char-
acteristics. However, the fluid behavior in close proximity of walls are dictated by non-
negligible viscous forces. Hence, achieving dense interpolation of flow properties of near
wall features requires proper characterization of viscous effects for which the thesis pro-
poses the employment of wall function applications for appropriate boundary condition
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viii Summary

determination. Secondly, even though the available data assimilation methods are able
to handle flow behavior around objects, characterization of regions in direct interaction
with the object boundaries is not possible. Therefore, in order to handle non-uniform
solid boundaries, computational FSI frameworks of the Arbitrary Lagrangian-Eulerian
(ALE) and the immersed boundary treatment methods are utilized. Furthermore, as the
local closure of Collar's triangle demands fluid loading over the structural surfaces to be
determined, surface pressure information is required to characterize the aeroelastic inter-
actions. Hence, an alternative approach of non-intrusive surface pressure reconstruction
from PIV data over unsteadily deforming non-uniform boundaries is introduced via inter-
preting the ALE method with boundary fitted coordinate systems. Finally, measurement
and processing errors contained within the experimental procedures propagate through
the data assimilation algorithms. Therefore, to enable the the mitigation of experimental
measurement and processing errors, an alternative approach of governing equation based
dense flow field interpolation is developed using solenoidal and irrotational radial basis
functions (RBF).

Capabilities of the proposed methods within the thesis project are demonstrated with
various theoretical, numerical and experimental test cases. The wall function application
enabled accurate characterization of average streamwise velocity profiles as well as provid-
ing slight improvements on the fluctuating velocity components compared to the no-slip
boundary condition implementation. Both approaches introduced for handling of physical
intrusions resulted in increased coherence levels of flow behaviors within the respective
test cases, where the local variations of velocity components revealed promising improve-
ments against the state-of-the-art assimilation algorithms favoring the developed methods
in terms of providing greater agreements to the reference flow fields. The introduced sur-
face pressure reconstruction scheme with boundary fitted coordinates yielded relative
error levels confined below 4% compared to analytical flow field properties where the re-
sultant errors are computed to be related to the numerical truncation errors rather than
the discretizations of mesh deformations or vectorial transformations. The developed al-
ternative approach of dense flow field interpolation with solenoidal and irrotational RBFs
allowed inherent mass conservation for the velocity field reconstructions that significantly
increased the agreement of the interpolated velocity and vorticity fields with the refer-
ence flow field information while irrotationality imposition on the material accelerations
provided elevated accuracy levels for pressure field computations.

Consequently, the proposed methods of wall function implementation, ALE-VIC+
and ImVIC+ are utilized for experimental characterization of surface pressure variations
over the unsteadily deforming elastic membrane exposed to turbulent boundary layer
conditions. The instantaneously available low density particle tracking information is
assimilated towards dense interpolation of material accelerations to capture temporal
evolution of static pressure values at the central membrane location. The superior accu-
racy specifications of both ALE-VIC+ and ImVIC+ against linear interpolation owing
to the kinematic characterization of the influence of membrane motion on the flow field
properties provided greater agreements of the non-intrusive time-resolved pressure field
computations with the pressure tab measurements.
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Chapter 1

Introduction

The trend of engineering development is towards utilizing the lightest and highest per-
forming design elements to allow the most cost efficient solution to be obtained. Using
state-of-the-art material production techniques and enhancing the load bearing capaci-
ties of available forms, enables designers to further push the limits of performance and
cost-efficiency. In case of aeronautical applications, this is done in a sense that leads the
utilization of lower weight materials with improved resistance against loads only in the
necessary areas. In previous eras, determination of these regions are performed by various
departments composing different elements of aeronautical design. Although these depart-
ments were to work in collaboration, the internal work of analysis performed separately,
where the mainframe work of the design process relied on a comprehensive feedback mech-
anism around ”the Collar's Triangle” defining the main aspects of aeroelasticity (Collar,
1978). The Collar's triangle refers to the set of factors defining an aerodynamic body
composed of elastic forces, inertial forces and aerodynamic forces, Fig.1.1.

Figure 1.1: Collar's triangle of aeroelasticity (Cecrdle, 2015).
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2 Introduction

However, the line of progression on structural and aerodynamic requirements demands
a single framework capable of analyzing structural and aerodynamic components simulta-
neously to increase the fidelity of design elements and closing the Collar’s Triangle. This
requirement initiated the field of Fluid-Solid Interactions (FSI) where a complete investi-
gation scheme is to be created to analyze both aerodynamic performance and structural
integrity.

Figure 1.2: Numerical simualtions of 2D flow over an elastic beam mounted downstream
of a square cross-sectioned rigid block (Bazilevs et al., 2008)(top) and instan-
taneous vorticity distributions around a 3D flapping wings (Takizawa et al.,
2011)(bottom).

FSI, being a superior tool able to tackle a complete engineering problem, suffered
from various incompatibility issues especially over the surface of fluid-solid interaction,
due to the fact that fluid and solid computational domains, and their corresponding
numerical discretizations require different descriptions (Zienkiewicz et al., 2014). The
relation of fluid and structural domains over the interaction interface can be briefly ex-
plained as the surface pressure generated by the fluid determines the structural stresses
and the corresponding deformations, which in turn dictates the flow behaviour. Hence
providing a reliable and accurate method of information transfer over the interface of
fluid and solid domains has became the main stream of scientific concentration in the
field of FSI where various mathematical algorithms are proposed over a wide range of
scientific and engineering applications. Moreover, the region of FSI interface also pos-
sesses the greatest vulnerabilities against the capabilities of numerical methods to resolve
the most challenging problems of computational fluid dynamics (CFD), boundary layer
and wall interactions of flow features. Although many advance methods in CFD exists
to provide sufficient fidelity characteristics to achieve accurate representations of physical
flow behaviour in these regions, it is certain that not only their immense computational
expense but also the lack of reliability of their nature urges a strong need for calibration
and validation.

M.Sc Thesis Bora O. Cakir
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Figure 1.3: Experimental steady tip displacements of flexible hydrofoils exposed to turbulent
flow at Re = 106 (Zarruk et al., 2014).

Therefore the necessity of exploiting experimental techniques for enabling simultane-
ous acquisition and reconstruction of fluid and structure behaviors emerges. This urge
is further promoted by the capabilities of experimental methods to provide non-intrusive
global measurement possibilities such as volumetric techniques of particle image velocime-
try (PIV) and particle tracking velocimetry (PTV). Nevertheless, as the validation of FSI
simulations strongly depend on the information transfer through the fluid-structure in-
terface, being able to obtain the fluid information at the surface of interaction is still a
critical point. Since the interaction between fluid and solid domains refers to an itera-
tive procedure, it requires a capability of transient reconstruction of the pressure fields
over the structure surface. This necessity of time resolution might challenge the limits of
available spatial resolution specifications depending on the measurement technique in use,
reducing the reliability and accuracy of volumetric and surface information reconstruc-
tion. Thus, it is of utmost importance to utilize the available information most effectively
and increase the resolution of spatial information by means of data assimilation methods
for the purpose of elevating the accuracy of time-resolved surface pressure determination.

Accordingly, various data assimilation techniques are developed for utilizing statistical
analysis and flow governing equations for enhancing the characterization capabilities of
experimental measurement campaigns by increases the instantaneous spatial resolution
specifications. Nevertheless, there exists three main drawbacks of these approaches which
are significant for accurate characterization of FSI problems. Firs of all, these algorithms
are developed for reconstructing physical flow behavior of engineering applications where
the flow conditions are dominated by turbulent characteristics while the fluid behavior in
close proximity of walls are dictated by non-negligible viscous interactions between the
fluid and solid domains. Hence, achieving dense interpolation of coherent flow properties
for near wall features requires proper characterization of viscous effects. Thus, the first
objective of the thesis project emerges as;

To account the effect of viscous interactions in close proximity of
wall surfaces for determination of boundary conditions of available

M.Sc Thesis Bora O. Cakir



4 Introduction

data assimilation algorithms utilizing a wall function implementa-
tion.

Secondly, the available data augmentation methods are based on characterizing the
flow properties within regions of sole fluid presence. Hence, even though they are able to
handle the flow behavior around objects, characterization of regions in direct interaction
with the object boundaries is not possible. Therefore, the second objective of the thesis
is designated as;

To enable the handling of non-uniform solid boundary intrusions of
unsteadily deforming surfaces for available data assimilation algo-
rithms by employing computational FSI frameworks of the Arbitrary
Lagrangian-Eulerian and immersed boundary treatment methods,
providing the capability of determining the flow behavior in close
proximity of the FSI interface.

Furthermore, as the local closure of Collar's triangle demands fluid loading over the
structural surfaces to be determined, surface pressure information obtained from the ex-
perimentally acquired datasets plays an important role for proper characterization of FSI
problems. Although various approaches have been proposed for determining the pres-
sure distribution over non-uniform surfaces, these methods require individual handling of
the close surface elements for each time instant which inherently increases the computa-
tional cost of the numerical procedures. Hence the third objective of the thesis project is
determined;

To achieve non-intrusive surface pressure reconstruction from PTV
data over unsteadily deforming non-uniform boundaries via inter-
preting the Arbitrary Lagrangian-Eulerian method with boundary
fitted coordinate systems generated by means of radial basis func-
tion based mesh deformations.

Moreover, measurement and processing errors contained within the experimental pro-
cedures of PIV and PTV yield deviations of velocity fields from the physical laws of fluid
motion. As the available data from the experimental campaigns is employed in the assim-
ilation algorithms, the measurement errors propagate towards the dense interpolations
over the prescribed computational domains compromising the accuracy of resultant flow
field information. Therefore, the final objective of the thesis concentrates on developing
an alternative approach for the data assimilation frameworks of increasing time-resolved
spatial resolution characteristics of large scale Tomo-PIV experiments, while filtering the
errors contained within the measurements as;

To mitigate experimental measurement and processing errors for
time-resolved flow field characterization using governing equation
based dense flow field interpolation methods with solenoidal and ir-
rotational matrix valued radial basis functions.

M.Sc Thesis Bora O. Cakir
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Consequently, the thesis report is composed of 5 main chapters. Initially, Chapter 2
briefly overviews the available flow measurement methods in the field of PIV while refer-
ring to the developments enabled large scale measurement campaigns. It also documents
the state-of-the-art computational methods introduced for pressure reconstruction from
PIV and experimental data assimilation for PTV. Chapter 3 introduces the literature
background for advanced techniques employed in CFD for discretizing near wall proper-
ties of boundary condition definitions, handling non-uniform solid intrusions within the
flow field and their unsteady deformations present in FSI problems, and experimental data
assimilation methods proposed for solenoidal filtering applications in order to mitigate the
effect of measurement errors. Implementations of the proposed methods and their im-
plementations within the thesis project to achieve the aforementioned objectives of data
assimilation and surface pressure reconstruction are provided in Chapter 4 where their
validation studies performed over various cases of theoretical, numerical and experimental
datasets are presented in Chapter 5. Finally, Chapter 6 documents the experimental in-
vestigations of turbulent boundary layer interactions with an unsteadily deforming elastic
membrane while employing the developed approaches for time resolved characterization
of fluidic behavior as well as surface loading, towards enabling the local closure Collar's
triangle.

M.Sc Thesis Bora O. Cakir
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Chapter 2

Combining Computational Fluid
Dynamics and PIV

The work involved within the thesis project is of a multi-disiplinary nature for combining
experimental simulations with computational framework. Hence, the literature review
presented in this chapter starts with a brief background on the state-of-the-art optical
measurement methods of tomographic PIV/PTV and measurement approaches utilized
for experimental characterization of FSI problems. Then, it concentrates on the identi-
fication of the advantages and disadvantages of previously proposed experimental data
augmentation techniques for time resolved flow field characterization based on statistical
and physical fundamentals, and the pressure reconstruction schemes using PIV data in
order to draw concluding remarks that enabled the development introduced approaches
throughout the thesis.

2.1 Particle Image Velocimetry

Particle image velocimetry (PIV) refers to a non-intrusive optical measurement technique
for extraction of dynamic flow information by seeding the fluid domain with tracer parti-
cles that are illuminated with various light sources. Images of measurement domain are
recorded and the flow information is reconstructed by correlating the displacements of
tracers particles in a prescribed space (Raffel et al., 1998). It is considered to be a great
improvement on the flow measurement techniques where availability non-intrusive data
acquisition in a global manner on significantly larger domains highlights the main factors
of its superiority.

Following the fast development trend of digital data processing tools, illuminating
systems and cameras; PIV setups that are capable of resolving greater scales of turbu-
lence and capturing detailed flow characteristics at higher flow speeds became available
(Saarenrinne et al., 2001). These advanced level of experimental capabilities provided by
PIV allowed many researchers to diagnose detailed flow features in considerably challeng-
ing cases.
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8 Combining Computational Fluid Dynamics and PIV

Figure 2.1: Illustration of an experimental setup of particle image velocimetry (Kompenhans
et al., 1999).

2.1.1 Tomographic PIV

On the other hand, actual engineering applications are far from the simplified cases of two
dimensions. Most of the applications are well in the regime of turbulent flow conditions
where the definition requires a necessity of three dimensional considerations (Nieuwstadt
et al., 2016). Although, investigating flow behaviour in a reduced domain of two dimen-
sions establishes an ideal case which enables a basic understanding of flow features, it is
certain that simulation of real life scenarios in scaled models also requires not only ex-
periments designed to simulate the appearance 3D flow structures but also measurement
techniques able to provide three dimensional flow field information. In order to perform
this task in a non-intrusive manner, stereoscopic PIV is developed to acquire out-of-plane
velocity components in combination with planar velocity information. However, since it
is based on a planar projection of the measurement domain to a 3D flow field captured by
two cameras, an exact setting of the laser sheet at the origin of out-of-plane coordinate
axis is required (Wieneke, 2005). Therefore, tomographic PIV (Tomo-PIV) is introduced
by Elsinga et al. (2006) stood out with its performance of acquiring three dimensional
flow information over a three dimensional measurement domain.

Scarano and Ghaemi (2012) documented the detailed description of Tomo-PIV work-
ing principles where the step by step approach of its application is as follows,

• Thickness of the light sheet of illumination (a laser sheet for the initial applications
of Tomo-PIV (Elsinga et al., 2008)) is expanded to generate a 3D measurement
volume. Since the expansion procedure of the light sheet is performed from a single
source using optical tools, Fig.2.3, a greater light intensity is required.

• The tomographic image recording system composing of multiple cameras capturing
the illumination volume from various angles, where also single-camera based 3D
PTV applications are proposed by Peterson et al. (2012) and Aguirre-Pablo et al.
(2019), acquires the scattered light of the tracer particles.

• Three dimensional particle field is represented by processing the captured particle
images via the tomographic reconstruction algorithm which utilizes multiplicative

M.Sc Thesis Bora O. Cakir



2.1 Particle Image Velocimetry 9

Figure 2.2: Sketch of the Tomo-PIV setup demonstrating the illumination volume (Casey
et al., 2013).

algebraic reconstruction techniques (MART)(Atkinson and Soria, 2007), resulting
in a three dimensional distribution of scattered light intensity of the tracer particles
within the measurement volume.

• Then via three-dimensional cross-correlation of volumetric intensity distributions,
particle motion within the measurement volume is obtained.

It should be noted that the relation of particle locations in recorded images to the physical
space is established by means of calibration procedures. Hence, a precise calibration of the
experimental setup appears as a fundamental step for accurate measurement campaigns.

Nevertheless, the application of Tomo-PIV is accompanied with certain drawbacks
originated by its lack of capability to measure large volumes due to dispersed intensity
of light illumination, light scattering performance of tracer particles and resolution char-
acteristics of recorded images. Furthermore, since the optical aperture of the cameras
are adjusted to be small in order to capture the complete depth of measurement volume,
the recorded intensity of scattered light of tracer particles is mitigated especially com-
pared to planar PIV applications (Tokarev et al., 2013). Consequently, there exists an
inverse relationship between the scattered and captured light intensity magnitudes and
the depth of the measurement volume which puts strict limitations on the maximum al-
lowable measurement volume for Tomo-PIV applications. Elsinga et al. (2006) performed
the introductory Tomo-PIV experiments with a measurement volume of 13 cm3. Further
applications by Schröder A (2009), Violato et al. (2011) and Ghaemi and Scarano (2011)
were only be able to reach 20 cm3 while the maximum measurement volume size attained
is documented to be 6 × 22 × 8 cm3 while limiting the acceptable signal-to-noise ratio
distribution to a depth of 5 cm (Fukuchi, 2012).

2.1.2 Large Scale Tomo-PIV/PTV with HFSB

Use of larger diameter tracer particles with superior light scattering characteristics is a
possible solution for performing PIV measurements over larger volumes. Nevertheless,
the size of tracer particles limits its flow tracing capabilities, thus reducing the coherence
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10 Combining Computational Fluid Dynamics and PIV

Figure 2.3: Schematic illustration of tomographic PIV reconstruction framework (Scarano
and Ghaemi, 2012).

of its motion with the flow of interest. Since the fundamental working principle of PIV
relies on the capability of tracer particles to represent the actual flow behavior throughout
the complete measurement domain, the density deficit between the tracer particles and
the working fluid originates a primary source of error due to the influence of gravitational
forces on the tracer particles (Adrian, 2005). In analogy to Stoke’s drag law, the slip
velocity, which is the velocity lag between tracer particles and the working fluid in a
continuously accelerating flow, refers to the essential parameter of representing the scale
of error owing to the density difference between the tracer particles and the working fluid.

The slip velocity is defined as follows,

Uslip = Up − U = d2p
ρp − ρ
18µ

a (2.1)

where ρp is density of tracer particles, ρ is density and a is the acceleration of fluid
medium the tracer particles are seeded in. Therefore, as the difference of density between
the tracer particles and the working fluid decreases, the quality of tracer particles can be
maintained even for large tracer particle sizes (Melling, 1997). In that regards, the use
of neutrally buoyant Helium Filled Soap Bubbles (HFSB) as tracers of flow visualization
methods and also for PIV experiments in aerodynamics is proposed (Caridi, 2018).
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2.2 Experimental Investigations Fluid-Structure Interactions

Development of scientific facilities for the sole purpose of conducting aeroelastic exper-
iments requires new measurement techniques both for structural and fluidic responses.
Although there were available methods for acquiring data from both domains, perform-
ing the acquisition procedures simultaneously in a non-intrusive manner was necessitated
for accurate characterization of aeroelastics phenomena. Hence, previously empoyled
strain gages for measurements of structural loads and deformations, and pressure tabs
for obtaining pressure information revealed unpreferable characteristics as they tend to
modify the structural response of the solid bodies, while surface orifices or pitot tubes
caused the fluid to deviate from the desired model behaviour. In order to minimize the
influence of measurement devices on the experimental simulations, small pressure trans-
ducers for surface pressure fluctuation measurements (Patterson and for Aeronautics,
1952), electronically scanning pressure sensors for obtaining both steady and unsteady
pressure information (Malon, 1977) and thin surface-films to determine boundary layer
characteristics were developed (Stack et al., 1987). For non-intrusively determination of
the global flow behaviour in aeroelastic circumstances, Schlieren flow visualization meth-
ods are utilized for capturing the shock movements due to aileron buzz (Settles, 1986)
and laser velocimetry techniques are applied to resolve vortical structures occurring over
wing bodies at high angle of attack operation (William Sellers and Kjelgaard, 1997).

2.2.1 Benchmark Case Studies

The introduction of high fidelity numerical solvers that are to characterize simultaneous
fluid and structure kinematics was associated with the necessity of validation to prove the
capabilities of the developed computational packages. Most of the experiments conducted
for this purpose are documented in combination with a numerical solution scheme since
their sole objective was to validate the computational simulations in which the aforemen-
tioned intrusive techniques and their advanced versions are employed. Strain gauges are
used by many researches for deformation measurements of structural components. They
are employed by Tang and Dowell (2001) over an elastic high-aspect ratio wing with a
slender body for measuring the flutter response and characterizing the limit-cycle oscilla-
tions to evaluate the accuracy limitations of theoretical models proposed by Patil et al.
(2001) and Tang and Dowell (2004), and Augier et al. (2015) for obtaining twisting defor-
mation information of complaint hydrofoils integrated on a Mirage derive system mounted
on an instrumented kayak. The presented data acquisition techniques of surface mounted
devices, accompanied with the pressure probes to determine flow velocity distributions,
not only affected the measurement in terms of intrusiveness, but also required corrections
to represent the accurate structural characteristics of the solid bodies under fluid forces.
Moreover, the quantitative measurement methods were only be able to provide localized
information within the measurement domains and the global flow visualization techniques
utilized in these experiments were limited in terms of providing quantitative results.

Following the development of digital image recording and processing techniques, op-
tical measurement methods are utilized in PIV setups for global acquisition of flow field
information which also enabled the measurements surface displacements without altering
the structural characteristics of elastic bodies. Many benchmark studies introduced novel
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measurement techniques for simultaneous acquisition of non-intrusive flow and structural
motion data. Espinosa et al. (2006) used pin-type velocity sensor and dynamic membrane
pressure transducers to record fluid velocity and pressure history while determining the
panel deformations utilizing image correlations of shadow moire for evaluation unsteady
structural deformations of solid panels loaded by underwater blasts. Gomes and Lienhart
(2006) employed planar and 3D PIV images for the determination of flow field characteris-
tics and structural deformations on an experimental setup of flow over a circular cylinder
with an elastic plate mounted facing rearward direction in which an adaptive time-phase
resolution detection algorithm is introduced for compatibility of temporal resolution spec-
ifications with the periodicity of structural motion. Furthermore, Zarruk et al. (2014)
employed cross-correlation of spanwise oriented images to derive steady tip displacements
and deformation modes of flexible hydrofoils exposed to turbulent flow conditions.

Figure 2.4: Schematic illustration and pictures of the cavitation tunnel test setup for flexible
composite propellers (Maljaars et al., 2018)(left) and free surface evolutions
captured with experimental and computational investigations of buoyant bodies
(Facci et al., 2019)(right).

More recently, Maljaars et al. (2018) used digital image correlation (DIC) over the
images obtained using stereo-photography to reconstruct the deformed shapes of flexible
composite propellers in a water cavitation tunnel for validation of the developed Blade
Element Method (BEM)-Finite Element Method (FEM) and Reynolds Averaged Navier
Stokes (RANS)-FEM coupled analytical and numerical solvers. Also, Mella et al. (2019)
used DIC in comparison with Lucas-Kanade (LK) optical flow method (Patel and Upad-
hyay, 2013) to reconstruct the prescribed oscillatory motion of shakers where the accuracy
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limits of the methods are analyzed for various image acquisition frequencies and special
resolutions. Proceeding the accuracy superiority of LK obtained with lower tracking error
over the benchmark case, both methods are applied on an experimental setup of an elastic
cylindrical stick clamped from one edge exposed to a range of turbulent water flows to
measure spatio-temporal variation of cylinder’s location. Furthermore, Facci et al. (2019)
used Spectrasymbol thinpot linear potentiometers, accompanied with an accelerometer
mounted inside the cylinder, for determining the motion of a buoyant cylinder for water
entry and exit conditions. Even though in all of these studies PIV based experimental
techniques are employed for quantification of flow velocity fields, the absence of a non-
intrusive pressure determination method obligated the use of surface mounted devices
such as pressure transducer or piezoelectric pressure sensor in case the surface pressure
information is desired.

2.3 Pressure from PIV

The pressure information of a flow field possesses an important role of determining the
scales FSI both for fluid and solid domains. Surface pressure dictates the loading distribu-
tion over objects which in case of non-rigid bodies, determines the deformations and hence
the associated shape. The shape variation of aerodynamic surfaces in turn influences the
flow characteristics which stabilizes when a certain degree of equilibrium in this iterative
procedure is achieved. Capturing pressure information over the flow field and over the
surface interacting with the flow is performed by means of various methods including
orifices over the experimental models acting as pressure tabs, pitot tubes measuring pres-
sure over prescribed locations within the measurement volume or pressure transducers
and microphones determining the acoustic variations caused by the variations in pressure
fields. However, their capabilities to resolve instantaneous pressure variations in the flow
field or over surfaces is limited not only due to the intrusiveness of their nature and the
corresponding deviation of fluid characteristics (Yu et al., 2005), but also owing to their
inability to provide global information over the measurement volume and their restricted
dynamic response capabilities (Morris and Langari, 2016).

Figure 2.5: Interior of leading edge structure equipped with pressure taps (Rufolo et al.,
2007)(left) and pitot-static tube located within the wind tunnel (Assato et al.,
2005)(right).
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Considering the superiority of PIV in terms of global non-intrusive velocity field de-
termination and its broad spectrum of applicability, a pressure reconstruction approach
relying on the acquired velocity data and the flow governing equations proposes a great
opportunity of obtaining simultaneous time-resolved velocity and pressure information on
a global scale. In that regards, many velocity-based pressure and surface loading com-
putation procedures are proposed over the years. Prior to the modern era of digitized
PIV, the simplest method of pressure calculations related to velocity information is rep-
resented by the Bernoulli equation which is valid for steady, incompressible and inviscid
flow regimes while irrotaionality is also necessitated for its global application within the
flow field rather than on specific streamlines. However, since the underlying assump-
tions that provide the validity of Bernoulli equation are far from ideal for engineering
applications, a more generalized approach utilizing the set of equations defining the flow
behaviour is required. In that regards, Imaichi and Ohmi (1983) obtained distribution of
pressure information by numerically integrating two dimensional Navier-Stokes equations
on a velocity data of flow past cylinder. Although the overall accuracy of the results
revealed a significant degree of correlation with the expected flow physics of von Karman
vortex-streets downstream of the sphere, neglecting the unsteady terms in the original
NS equations appeared as a major source of error analyzing the instantaneous flow field
information.

Upon the availability of digital image and data processing capabilities for flow mea-
surement setups, detailed acquisition and processing experimental velocity information
facilitated the computation of pressure fields. In early applications of pressure field de-
termination from velocity information, Jakobsen et al. (1997) computed pressure fields of
wave experiments by calculating acceleration of fluid particles, which is directly related
to the pressure gradients through NS equations, using both the Lagrangian and Eulerian
approaches. Additionally, Gurka et al. (1999) employed a two step algorithm for calculat-
ing pressure fields from Poisson equation relating pressure to velocity after computing the
pressure gradients from NS equations in order to set the Neumann boundary conditions,
that are stated to be the correct representation of boundary layer characteristics (Gresho
and Sani, 1987).

2.3.1 Theoretical Framework

The relation of velocity and pressure can be represented by one of the most fundamental
theorems of fluid dynamics. Bernoulli’s principle relating velocity and pressure in a steady,
inviscid and incompressible flow domain yields a considerably simplified methodology for
computation of pressure information from velocity data (Anderson, 2010).

p+
1

2
ρV 2 = p∞ +

1

2
ρV 2
∞ (2.2)

However under realistic circumstances involving turbulent flow features, satisfying the
conditions that validate Bernoulli principle would be exceptional. Therefore, the relation
between velocity and pressure should be established over more generalized mass and
momentum conservation laws. Considering Navier-Stokes equations under incompressible
flow assumption, which is sufficiently valid for flow speeds under M < 0.3 (Marchioro and
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Pulvirenti, 1994), instantaneous velocity and acceleration fields yield the spatial variation
of static pressure.

∇p = −ρDu

Dt
+ µ∇2u (2.3)

From the Navier-Stokes equations where the velocity pressure relation is set, the pres-
sure field is computed either by constructing a Poisson equation over the static pressure
or directly integrating the pressure gradients along the locations of interest. Applying the
divergence operator to both sides of Eq.2.5, the Laplacian of pressure becomes related to
the variations in the velocity field as follows,

∇2p = ∇ · (∇p) = ∇ ·
(
−ρDu

Dt
+ µ∇2u

)
(2.4)

As referred in Eq.2.4, the pressure gradient is composed of two main components, the
divergence of particle acceleration on a Lagrangian frame of reference and the divergence
of viscous diffusion of momentum. The influence of the viscous terms on the pressure gra-
dient computation is notably referred to be negligible especially in cases of high-Reynolds
number, turbulent flow conditions where the superiority of inertial forces over viscous
effects is apparent (Murai et al., 2007). An order of magnitude comparison between the
acceleration and viscous contribution also highlights the validity of the assumption of
neglecting the viscous influence where especially in case of investigation performed with
airflow, the viscosity order of O(10−5) drives the viscous effects to be insignificant.

Consequently, the computation of pressure distribution over the measurement do-
main is performed by spatially integrating the pressure gradients by means of solving
the Poisson equation accompanied with the proper boundary conditions. Even though
various numerical methods are present for the integration of pressure gradients over the
computational domain, Poisson equation is shown to yield the most accurate results es-
pecially for external flows which refers to the field of aerodynamics (Charonko et al.,
2010). Moreover, since the effect of viscous contribution is proven to be insignificant for
the overall pressure reconstruction procedure, calculation of accurate pressure gradients
is dominated by the combination of spatial and temporal variations in particle’s velocity
represented by Du/Dt. The term Du/Dt is the material derivative of velocity vectors
which refers to the Lagrangian acceleration of a fluid particle corresponding to a frame of
reference attached to the particle (Voth et al., 1998).

2.3.2 Determination of Material Accelerations

According to the physical definition of the acceleration terms and their mathematical
interpretations, there exists two main approaches dictating the evaluation of tracer par-
ticle motions in terms of the track they follow and how their properties vary along those
paths. Even though in terms of the mathematical expressions, both Lagrangian and Eu-
lerian approaches correspond to the same physical terms, their implementation are based
on different physical interpretations of particle motion. This difference yields various or-
ders of error propagation throughout the pressure computation procedure depending on
the velocity variation definitions in temporal and spatial domains.
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Eulerian Approach

Eulerian perspective refers to a stationary frame of reference in space where the motion
of particles are observed from. The definition of a non-moving frame for capturing flow
information facilitates the representation of a flow field on a specific region of interest
which is or can be considered stationary with respect to the motion of the fluid particles
passing through. Since the observation frame is stationary, the flow features are attributed
to a steady grid structure defined in compliance with the structural surfaces.

The computation of material acceleration terms using an Eulerian approach requires
decomposing the to its local and convective components,

Du

Dt
=
∂u

∂t
+ (u · ∇)u (2.5)

where the temporal variation of velocity at each location is computed over at least two
time instants and the spatial variation of the velocity vector components are calculated
over the structured grid locations using various numerical algorithms.

Relying on the dominance of two dimensional flow features represented by in-plane ve-
locity information, Jensen et al. (2001) computed acceleration fields of waves using an ex-
tended two camera planar PIV system (Chang and Liu, 1998). Additionally, Christensen
and Adrian (2002) introduced particle image accelerometry for time resolved measure-
ment of acceleration fields utilizing the Eulerian approach by numerically differentiating
unsteady velocity data on a structured grid. Employing the Eulerian approach for deter-
mination of material acceleration terms, Fujisawa et al. (2005) evaluated the instantaneous
pressure fields and the related forces acting on a circular cylinder of stationary and oscil-
lating conditions exposed to uniform flow by the solution of Poisson equation using the
velocity information obtained via planar PIV images to construct the system of equations
and the suitable boundary conditions. Also, Murray et al. (2007) utilized the solution
of Poisson equation to estimate surface pressure loads over 2D PIV data obtained over
a rectangular cavity, revealing the dependence of pressure on various sources of velocity
fluctuations. Moreover, Panciroli and Porfiri (2013) assessed the Poisson equation based
non-intrusive pressure field determination using velocity information by comparing the
pressure fields of a water entering rigid body with the analytical potential flow solution
(Wagner, 1932).

3D Flow Effects

The simplified flow fields of two dimensions only appear to represent scientific benchmark
cases created to set the foundation of the methodology and the development of its theo-
retical background. On the other hand, practical engineering applications contain three
dimensional elements not necessarily dictating the primary flow direction but affecting
the flow characteristics severely. Therefore, although 2D simplified flows recorded by
planar PIV are dominated by two dimensional velocity components, especially in cases
of turbulence indicating out-of-plane motion, neglecting its presence may lead to signifi-
cant deviations from the actual flow features (Baur and Kongeter, 1999; Lorenzoni et al.,
2009). In case the plane of 2D data set is not aligned with the main flow direction where
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Figure 2.6: Airfoil-rod experimental setup (top-left), material acceleration (top-middle),
fluctuation of static pressure (top-right) at y/c=-0.125 computed from 2D and
3D velocity measurements. Mean velocity components in x-direction (bottom-
left) and in y-direction (bottom-middle), and normalized turbulent kinetic energy
(bottom-right) over the midplane of measurement volume (Violato et al., 2011).

the order of magnitudes of out-of-plane velocity vectors compared in-plane velocity mag-
nitudes increased considerably, up to 100% relative errors with respect to the pressure
fields of 3D reconstruction procedure are obtained (Violato et al., 2011).

With the development of Tomo-PIV (Elsinga et al., 2006), the complete 3D velocity
field reconstruction has become possible which in turn enabled the determination of 3D
pressure gradients for the construction of Poisson equation (van de Meerendonk et al.,
2018). Since Tomo-PIV is a volumetric technique rather than a planar one that requires
its application on multiple planes for the determination of out-of-plane pressure gra-
dients, the pressure gradients composing the complete three dimensional measurement
domain can be extracted directly from the acceleration computation (Pröbsting et al.,
2013). Hence, the availability of three dimensional volumetric setup of Poisson equation
led the reconstruction of 3D volumetric pressure fields from PIV data sets (de Kat and
van Oudheusden, 2012). Ghaemi et al. (2012) evaluated the pressure distribution of a
fully developed turbulent boundary layer using instantaneous velocity fields attained with
Tomo-PIV and compared it with the pressure fields computed using a two camera PIV
setup. Both pressure fields are validated with pressure measurements performed using mi-
crophones where the superiority of Tomo-PIV based pressure reconstruction is concluded
over 2C-PIV.
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Particle Tracking Velocimetry

In addition to the fact that accurate pressure computation from velocity information
is strongly affected by the presence of out-of-plane velocity components Jakobsen et al.
(1997) noted the accuracy difference between the two approaches of Eulerian and La-
grangian perspectives for material acceleration determination which also dictates the
pressure gradients within the flow field. The aforementioned applications of 2D and
3D pressure computation schemes employed Eulerian approach for the determination of
material acceleration term, due to fact that they were based on velocity fields obtained
with various PIV techniques. However, many studies referring to the difference between
the application of these two approaches result in notable accuracy differences favoring
Lagrangian approach over an Eulerian one, specifically when the time scales of the flow is
smaller than the temporal resolution of the experimental measurements (Pan et al., 2016;
Huhn et al., 2016; Van Gent, 2018).

There exists two main approaches that could be utilized for obtaining acceleration
information of a flow field from a Lagrangian perspective. The natural way would be
considered as tracking and reconstructing the trajectory of the particle’s motion and
differentiating the temporal variation of its velocity over that trajectory. This is obtained
via the particle velocimetry methods (Agui and Jimenez, 1987) where their application
in three dimensional flows is introduced by Maas et al. (1993) and Malik et al. (1993).
Further on, Lagrangian approach is used to reconstruct particle accelerations from Tomo-
PTV which reduced the precision errors on the material derivatives up to a factor of 2.5
compared to PIV-based Eulerian approaches (Novara and Scarano, 2012). Moreover, since
tomographic techniques are independent of image correlation and particle identification
opposed to 3D-PTV methods, they provide a higher level of robustness especially against
high density seeding of tracers (Novara and Scarano, 2013). Nonetheless, in the 3D-
PTV techniques and iterative particle reconstruction methods (Wieneke, 2012), the post
processing of particle distributions is performed individually for every single snapshot of
a time series and require a large number of iterations to reach convergence. Therefore in
order to take advantage of available processed data from previous time instants for the
processing of the current time step in case of sufficient temporal resolution, a Lagrangian
particle tracking algorithm of Shake-The-Box is introduced by Schanz et al. (2016). In
spite of the fact that it increases accuracy of particle position, velocity and acceleration
determination, the time requirement for processing a complete time set is lowered with a
factor of 5 to 8 compared to Tomo-PIV processing algorithms.

Due to the limited tracer particle densities available for large scale 3D tomographic
measurements, utilization of particle tracking approaches provided an opportunity of el-
evated particle track identification which increased the accuracy of material acceleration
determination. As an illustration of the accuracy difference between time-averaged and
instantaneous pressure field reconstruction with direct interpolation of PTV data on a
cartesian grid, Schneiders et al. (2016b) reconstructed volumetric and surface pressure
fields of flow past a circular cylinder. The scattered particle tracking data is interpo-
lated on a uniform cartesian grid using Adaptive Gaussian Windowing (AGW)(Agui and
Jimenez, 1987) where the standard deviation of the Gaussian was set to be equal to the
spatial resolution of the interpolated grid. The computed surface pressure information is
compared with the pressure transducers mounted on the surface downstream of the ver-
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Figure 2.7: Time averaged surface pressure measurements with pressure transducers (top-
left) and pressure reconstruction from PTV (bottom-left), at z=0 mm (top-
middle) and at z=53.3 mm (bottom-middle), RMS of surface pressure fluctua-
tions at x=150 mm (top-left) and at x=100 mm (bottom-left)(Schneiders et al.,
2016b).

tical cylinder. The use of HFSB enabled expansion of the measurement domain up to a
factor of 2 compared to conventional Tomo-PIV applications and employment of particle
tracking rather than particle imaging yield reasonably accurate reconstruction of mean
and instantaneous pressure fields in comparison with surface pressure transducers even in
a field with low seeding densities of tracer particles.

Figure 2.8: Reconstructed experimental pressure fields around an impulsively accelerating
NACA0012 airfoil at three different particle densities (Neeteson and Rival, 2015).

Moreover, Neeteson and Rival (2015) proposed a novel solution approach of utilizing
Poisson equation for pintegration of pressure gradients on scattered Lagrangian domains
by constructing the numerical computational domain using Voronoi tessellation (VOR)
(Hirata, 2005) and Delaunay triangulation (Blazek, 2005). The Delaunay triangulation
generates tetrahedral volumetric cells when applied to a field data of node locations in
a three-dimensional space. Then VOR is employed to gather a set of tetrahedral cells
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that would correspond to a set of associated node locations to create polyhedrons with
faces belonging to the neighboring tetrahedral volumes of the data locaitons associated
with each Voronoi cell (Aurenhammer, 1991). Hence, with the proper definition of un-
structured grid formation based on the scattered particle locations, the Poisson equation
is iteratively integrated over internal domains with the Laplacian of pressure defined us-
ing numerical discretizations derived by Sukumar and Bolander (2003). The algorithm
both tested on an analytical case of Hill’s spherical vortex which represents a simplified
solution the NavierStokes equations (Hill, 1894), and on an experimental test case of an
impulsively accelerating NACA0012 airfoil. While the pressure field reconstruction of an-
alytical vortex revealed the insensitivity of quantitative pressure variation throughout the
reconstruction domain to spatial density of particle information, the experimental results
are compromised in cases of low spatial resolution due to the presence of turbulent flow
structures.

Figure 2.9: Transonic base flow pressure distributions with ZLES (top-left), 3D B-spline par-
ticle track reconstruction (top-middle) and Voronoi based unstructured iterative
Poisson integration (top-right). Sketch of base flow geometry (bottom-left).
RMS of pressure error distributions obtained with 3D B-spline (bottom-middle)
and VOR (bottom-right) compared against the reference flow field (van Gent
et al., 2017).

However, in a comparative assessment of various pressure reconstruction techniques,
van Gent et al. (2017) demonstrated the superior accuracy levels associated with the
solution of Poisson equation on gridded data by comparing the reconstructed pressure
fields obtained from a zonal detached eddy simulation (Deck, 2012) of an axisymmetric
base flow at Mach 0.7. The 3D B-spline particle track detection Gesemann et al. (2016)
for pressure determination caused rms errors reaching approximately 7% of the maximum
pressure variations on the reference pressure field and VOR exceeding rms error levels of
13% while with pressure field computed over uniformly gridded data the relative rms error
levels were bounded with a maximum percentage of approximately 3%.
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2.3.3 Surface Pressure Reconstruction

In FSI frameworks, it is desirable to approximate the surface loading directly due to the
fluidic influences. There are two main approaches introduced to accomplish this task.
One considers a control volume approach for utilizing the momentum balance for which
only the far field pressure information is required that can be obtained from the Bernoulli
principle provided that the far field flow conditions do not violate certain assumptions
(Oudheusden et al., 2007; Ragni et al., 2009; Mcclure and Yarusevych, 2019). The second
approach is the calculation of pressure information along the boundaries of the interaction
interface by means of various pressure gradient integration methods (Murai et al., 2007;
Violato et al., 2011; de Kat and van Oudheusden, 2012). The letter method reveals a
more broad spectrum of applicability as not only the overall loading yielded by the fluid
is computed but also its local distribution information is attained. However, due to the
numerical discretization orders and non-uniformity of geometric planforms, computing
pressure distributions over the surfaces is prone to severe accuracy issues.

The pressure computations in regions surrounded by non-uniform surfaces where
the existing reconstruction approaches of pressure from PIV data are utilized generally
performed in computational domains defined certain distances away from the surfaces at
the nearest neighboring grid locations (de Kat and van Oudheusden, 2012; Liu et al.,
2016; Jeon et al., 2018). The reasons for this procedure are documented either referring
to the structured uniform velocity data obtain from the measurement techniques which
causes loss of data points especially in cases of moving boundaries or due to the scarcity
of spacial resolution for near surface regions specifically for instantaneous calculations
(Fujisawa et al., 2005; Kunze and Brücker, 2011; Auteri et al., 2015). However this
approach introduces significant error to the pressure estimation procedure owing to the
significant dependency of the reconstruction process to the boundary conditions (Pan
et al., 2016).

Following the immersed boundary treatment methods that define the fluid properties
on Cartesian grid systems following a Eulerian approach of flow characterization (Mittal
and Iaccarino, 2005), Shams et al. (2015) proposed a ghost cell approach that assign fluid
properties to the grid nodes fall inside the physical intrusions that would satisfy the proper
boundary conditions. Although the approach diminished the possible requirement of a
boundary fitted coordinate system that would yield increased computational cost levels,
the reconstructed pressure fields yield significant deviations from the analytical pressure
distributions. Furthermore, it is also stated that the presence of ghost cells would arise
problems of numerical stability in case finite difference method discretizations.

Avoiding the reduced particle density specifications associated with employment of
HFSB based measurements by means of time averaging the particle traking data within
he stationary domains, Jux (2018) evaluated applicability of three different interpolation
methods of the linear extrapolation, the quadratic interpolation with the von Neumann
boundary condition, and the stagnation model approach for calculating the surface pres-
sure values from the Cartesian pressure distribution obtained via the solution of Poisson
relation with the velocity data of PTV obtained performing coaxial volumetric velocime-
try (Schneiders et al., 2018) measurements around a sphere. However, the comparison of
pressure interpolations over the spherical surface with the surface pressure tabs revealed
the incapability of these algorithms to meet the actual pressure distributions.
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Figure 2.10: 2D demonstration of surface pressure reconstruction in the rotational fluid
domain (Jux, 2019).

Therefore, Jux (2019) proposed a partitioned domain approach separating the fluid
domain to its rotational and irrotational regions where the pressure information over
the irrotational domain is obtained via applying the Bernoulli equation and the Poisson
equation is solved for the integration of pressure gradients within the rotational domain.
Then the surface pressure is computed considering smaller kernels of neighboring grid
locations close to the surface of interest. Specific lines of integration are defined to relate
the pressure gradient information between the already computed Cartesian grid locations
and the surface boundary. As the method is applied to reconstruct surface pressure
information over a sphere as well as a 3D cyclist model, its capability of handling complex
geometric contours intruding the flow field is demonstrated (Jux et al., 2020).

Figure 2.11: Schematic illustration of nearest-neighbor (left) and cut-cell (right) approaches
where the full grid nodes are demonstrated by the block dots, the nearest
neighbor nodes are via the grey dots and the hollow dots with dashed lines
represent the interior nodes of the solid structure (Pirnia et al., 2020).

Furthermore, Pirnia et al. (2020) employed a finite element approach for computa-
tion of two-dimensional pressure information via integrating the pressure gradients using
the Poisson equation. They proposed the cut-cell approach for handling the immersed
boundaries with appropriate boundary condition definitions. The integral form of Pois-
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son equation allowed proper definition of boundary conditions over the exact interface
surfaces.

2.3.4 Dirichlet Boundary Condition Determination

Furthermore, since Poisson equation is solved for the pressure distribution using fully
homogeneous Neumann boundary conditions, the result of such a solution is not unique
due to the absence of a Dirichlet boundary condition implementation,. Hence, the pressure
field information is obtained with respect to an indeterminate constant defined to be the
average value of static pressure calculated over the solution domain. Therefore, with
the known pressure value at a certain location of the computational domain, a relative
shift is applied for the unique solution of the pressure field information. In that regards,
various approaches are proposed in the literature for defining an exact pressure value. The
most common approach is referred to equip the experimental setup with an additional
pressure measurement tool to determine a reference static pressure value (Jaw et al.,
2009). However, this is not always applicable due to the intrusive nature of the pressure
measurement devices. Employing pressure probes for this purpose introduces a set of
challenges such as the presence of the tool modifying the flow behavior in close proximity
of the measurement device (Robey, 2001) and elevating the level of difficulty for the
optical methods to capture accurate flow behavior around the probe location which is
aimed to be mitigated by means of employing miniature static pressure probes (Kawata
and Obi, 2014). Therefore, the use of pressure transducers for measurements in near
wall regions provided a more reliable approach. As a set of wall pressure transducers
are placed over the surface of interest, static pressure readings of a single transducer is
utilized to unify the pressure field distribution in terms of exact values and the rest of
the set is used to validate the PIV based pressure reconstruction over the wall surface
(Scarano and Ghaemi, 2012).

Nevertheless, depending on the experimental setup specifications, employing an ad-
ditional pressure measurement tool to determine the exact static pressure value at a
reference pressure location might not be possible. This condition might originate due to
the inability of reconstructing pressure from the PIV data over the exact surface loca-
tions where the readings of surface pressure tabs become uncorrelated with computational
grid locations (Terra et al., 2017). Additionally implementation of any surface pressure
measurement devices might alter the structural characteristics of the interface elements
which cause deviations from the actual physical behavior determining the FSI problem
(Jeon and Sung, 2011). Therefore, various researchers employed the Bernoulli equation to
determine a reference pressure value based on the velocity measurements captured within
the flow regions that validate the usage of Bernoulli theorem for incompressible flows
(de Kat and van Oudheusden, 2012; Dabiri et al., 2014; Jux et al., 2020; Gunaydinoglu
and Kurtulus, 2020).

2.4 Particle Tracking Data Assimilation

Despite the fact that particle tracking approach reveals a greater level of accuracy in terms
of determining particle location, velocity and acceleration information especially with low
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seeding densities of tracer particles, the data obtained from PTV is scattered over the
measurement domain. Since interpolating the scattered data on a grid system would in-
volve certain numerical errors that propagate through the steps of pressure reconstruction
procedure, alternative approaches for dense flow field interpolations over structured grid
formation are proposed.

2.4.1 Statistical Data Augmentation Approaches

Initially, the AGW was proposed by Agui and Jimenez (1987) where scattered informa-
tion in a measurement volume is captured on a predefined grid using a Gaussian weight
averaging over the windows of Euclidean distances defined with respect to the grid loca-
tion of interest. Furthermore, the computed Gaussian average is scaled with a standard
deviation commonly chosen to be the spatial separation of grid locations.

u(x) =

∑
i αiui∑
i αi

(2.6)

where αi is defined by the exponential function containing the Euclidean distance of
particle locations with respect to the grid nodes and the standard deviation, σ.

αi = exp

(
−|x− xi|2

σ2

)
(2.7)

Furthermore, a more advanced algorithm based on Gaussian windowing is developed
by Casa and Krueger (2013), where a Gaussian radial basis function (RBF) derived by
Weiler et al. (2005) is utilized with an iterative optimization procedure to obtain the best
fit of data interpolation on a grid structure with respect to the original scattered data.

uj(x) =
N∑
i=1

bj,iexp

[
−‖x− xi‖2

2σ2j,i

]
(2.8)

The method contained two optimization procedures performed separately on the
Gaussian weights bj,i and standard deviations σj,i. First the Gaussian weights are op-
timized by minimizing the difference between the velocity distributions obtained using
the RBF interpolation and the velocity information of particle tracking data using a
least-squares approach to ensure manageable computational cost levels while standard
deviations are implemented as an initial guess based on half the spatial resolution of the
grid formation. Then, the second optimization is performed over the standard deviations
using the optimized Gaussian weights. The method is compared with Taylor expansion
(TE) interpolation (Malik and Dracos, 1995) and AGW schemes for boundary layer re-
construction on a uniform grid from scatter particle information against the theoretical
velocity profiles of a steady-state solution for a flow near an infinite rotating disk (White,
2006). The Gaussian RBF based interpolation method yielded superior agreement with
the theoretical results, especially compared to TE.

Although these methods are able to accurately represent the flow information on user
defined grid systems, reliable interpolation procedures require sufficient particle densities
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Figure 2.12: Velocity boundary layer profiles over an infinite rotating disk obtained with
RBF, AGW, TE and analytic solution of simplified Navier-Stokes equations
(Casa and Krueger, 2013).

where large scale Tomo-PIV applications with HFSB results in lower spatial resolution
specifications than the computational grid description. Therefore, various interpolation
methods are introduced utilizing the incompressibility condition of divergence free flow
fields as an additional constraint. Vedula and Adrian (2005) presented an ’optimal’ in-
terpolator determination in which the cost function is constructed similar to the RBF
approach of Casa and Krueger (2013), using the RMS of the difference between the in-
terpolated values and the scattered velocity information. The interpolation of scattered
data is performed such a way that would ensure a divergence free velocity distribution
over the grid.

2.4.2 Fluid Dynamics Based Data Augmentation Approaches

In that regards, Gesemann et al. (2016) introduced the use of 3D cubic B-splines for
increasing signal-to-noise ratio of particle information reconstruction over particle velocity
and accelerations. The method includes two main steps referred as TrackFit and FlowFit.
TrackFit initiates the reconstruction algorithm with a noise reduction of the particle
intensity signals similar to Wiener/Kalman filter (Cohen Tenoudji, 2016) by calculating

Figure 2.13: Vorticity reconstruction over 6554 particles with linear interpolation (letft), 3D
B-spline (middle) and DNS results (right)(Gesemann et al., 2016).

B-splines over particles tracks which also provides the first and second order gradients
of particle velocities since the least order of the spline is considered to be 2 using three
particles of different time instants. Then, 3D B-splines are calculated for velocity and
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acceleration (or pressure) information by FlowFit where an iterative minimization of a
cost function is performed to reach a certain degree of convergence between the particle
locations, velocities and accelerations while enforcing divergence free field constraints for
incompressible flows. Furthermore performance of the method is evaluated in comparison
with DNS results of ”Forced Isotropic Turbulence” of John Hopkins Turbulence Database
(Li et al., 2008) where the significance of considering temporal information by means of
particle accelerations is highlighted both in terms of the proximity of the reconstructed
flow field to the DNS simulations and the improved signal to noise ratio.

2.4.3 Vortex-in-Cell Simulations for Dense Velocity and Acceleration
Interpolation

The ability of using the temporal domain to enhance the statistical characteristics of
spatial information provided the opportunity of elevating both the accuracy specifiations
of flow field reconstruction and the resolution levels. In that regards, Schneiders et al.
(2015) developed the VIC+ method, based on Vortex-in-Cell (VIC) model presented by
Christiansen (1973). The VIC+ method provides an alternative algorithm to the previ-
ously introduced flow physics based data assimilation approaches in order to reconstruct
the low density scattered distribution of instantaneously acquired particle tracking in-
formation on a regular mesh formation with elevated level of spatial resolution. Hence,
when the raw PTV data that cannot be directly utilized to represent the time-resolved
flow behavior within limits of the required fidelity specifications, it can be assimilated
by means of the VIC+ approach to meet the necessary resolution characteristics while
enabling the representation of the fluid behavior on a global sense over the prescribed
computational domain.

The VIC method is proposed as a solution of Navier-Stokes equations by defining the
vorticity transport equation.

Dω

Dt
= (ω · ∇)u− ω(∇ · u) +

1

ρ
∇×∇p+∇× ∇ · τ

ρ
+∇× B

ρ
(2.9)

for which the initial condition for the vorticity field is discretized by computing the curl
of the velocity field obtained from PIV data,

ω = ∇× u (2.10)

where the velocity field is in turn related to the vorticity vectors by Possion equation
(Koumoutsakos, 2005). Applying the curl operator to both sides of Eqn.4.7 and expanding
the vector identity on curl of a curl one obtains,

∇× ω = ∇× (∇× u) = ∇(∇ · u)−∇2u (2.11)

considering the incompressible flow conditions, which yields ∇ · u = 0, 2.11 reduces to,

∇2u = −∇× ω (2.12)
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Accordingly the vorticity transport equation allows the computation of local time
derivative component for the Lagrangian acceleration term only by means of velocity
and vorticity fields via eliminating the contribution of pressure gradients through the
mathematical identity of ∇× (∇φ) = 0, in which φ refers to any scalar field i.e. pressure.
Hence, neglecting the contribution of viscosity, considering conservative body forces and
applying incompressibility condition, the local time rate of change of vorticity can be
expressed as

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u (2.13)

Hence, VIC+ also provides an opportunity to increase the resolution of material
derivative information as its optimization procedure is based on maximizing the proximity
of not only the velocity vectors to the measured values but also accelerations. Thus, the
VIC+ algorithm refers to the contribution of material acceleration terms over Vortex-
in-Cell framework where the velocity-vorticity formulation of the momentum transport
equation enables the calculation of temporal velocity derivatives in absence of pressure
information (Schneiders and Scarano, 2016).

Du

Dt
=
∂u

∂t
+ (u · ∇)u (2.14)

while the spatial gradients of velocity field are computed from the gridded data, the
unsteady term is computed using the Poisson relation of velocity field with vorticity
vectors.

∇2∂u

∂t
= −∇× ∂ω

∂t
(2.15)

Figure 2.14: Reconstruction framework of VIC+ scheme where the input from the PTV
measurements are provided (green box) from which an initial estimation for
the velocity field is calculated (gray box). The initial estimate is used to start
the VIC+ optimization procedure (blue boxes). The velocity and material
derivative fields are optimized towards minimizing the cost function generated
by comparing the flow field information to the PTV measurements (orange
box)(Schneiders and Scarano, 2016).
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Numerical Implementation

The VIC+ algorithm provides a pseudo hybrid particle-mesh treatment for the flow field
information by means of defining pointwise vortex blobs (Draghicescu and Draghicescu,
1995) and projecting their contribution on a grid-base system using Gaussian RBFs.
Accordingly the computational grid for the VIC+ procedure is equipped with weights
of RBFs which are employed to represent a vorticity field that corresponds to the dense
reconstruction of measured particle information. The RBFs are defined as,

φ(r) = e−
r2

2σ2 (2.16)

where the support radius σ is defined with a slight relaxation of 1.1 of the grid spacing
h, σ = 1.1h. Hence, the vorticity field is defined as,

ωh =
1

h3

∑
Γiφ(||x− xi) (2.17)

in which Γi refers to the RBF weights, or in other words the circulation strengths of the
vortex blobs. The corresponding velocity and acceleration fields are computed following
the aforementioned procedure and two main cost functions are defined over the velocity
and Lagrangian acceleration terms with respect to the actual particle information obtained
directly from the measurements, and combined to a single cost function to be minimized
via a weighted sum. The optimization problem of minimizing the resultant cost function
is solved by employing the limited-memory Broyden Fletcher Goldfarb Shanno method
(L-BFGS, (Liu and Nocedal, 1989)).

The optimization problem requires a gradient for the computed cost function to be
determined, ∂J/∂ξ. Although there exists various numerical methods for the gradient
to be calculated, the VIC+ procedure embarks an adjoint gradient method due to lower
computational resource requirements (Plessix, 2006). The adjoint gradient procedure
enables the calculation of the exact optimization gradients while performing this task with
an equal computational cost to the determination of the cost function at each iteration.
The reader is referred to Schneiders and Scarano (2016) for a full description of the VIC+
procedure, whilst formulations of only the relevant components of the complete algorithm
are extensively provided in the following sections.

The compliance of increased spatial resolution by means of VIC+ is tested using
turbulent boundary layers PIV measurements against DNS simulations of Bernardini
and Pirozzoli (2011) and sub-sampled Tomo-PIV measurements of jet in water against
measured velocity and acceleration information. The VIC+ method is comparatively
assessed against other interpolation techniques in both cases. For the turbulent boundary
layer, VIC+ was able to provide significantly increased details in chaotic flow structures
with 40% reduced rms error levels at y/δ99, while proving its superiority over linear
interpolation and solenoidal filtering on reconstructions of dense particle tracks of jet
flow.

The performance characteristics of VIC+ method is further demonstrated using the
experiments performed by Jodai and Elsinga (2016) on creation of hairpin vortices in
turbulent boundary layers (Schneiders et al., 2017). The DNS compared results revealed
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Figure 2.15: Isosurfaces of vorticity distribution (top) accompanied with instantaneous in-
plane velocity vectors at x+=-35 (bottom) obtained from Tomo-PIV measure-
ments (a) and VIC+ (b)(Schneiders and Scarano, 2016).

an increase of agreement up to a tolerance of 5% for y+ > 25 compared to the 50% of to-
mographic PIV measurements. Furthermore, VIC+ and VIC without the implementation
material derivatives are compared in terms of velocity and vorticity field reconstructions
over Tomo-PIV measurements of turbulent boundary layers provided by Pröbsting et al.
(2013) with the DNS simulations performed by Bernardini and Pirozzoli (2011). The
RMS of velocity fluctuations in the normal direction to the wall and velocity components
in the spanwise direction are captured with 5% relative errors to the DNS reference us-
ing VIC+, while pure PIV data yielding around 20% and VIC method without Du/Dt
reaching even slightly higher values.

Further Advancements of Data Assimilation Schemes with VIC Framework

Furthermore, although the application of VIC+ is proven to be successfully increasing the
spatial resolution of flow field information using scattered measurement data, the data
utilized for the optimization procedure is based on a single time instant. Nevertheless,
in case of its application over the data sets processed with Shake-the-Box algorithm, the
material acceleration information is computed over various time instants which provides
the opportunity of considering the temporal evolution of particle motions while the veloc-
ity field utilized represents a single time instant. Therefore, in order to take advantage of
recorded temporal history of particle tracks, the optimization procedure of VIC+ based
on the velocity and vorticity distributions is expanded over Lagrangian particle trajec-
tories reconstructed over multiple time instants (Schneiders et al., 2016a). The method
introduced is referred as VIC++ where the main objective is set to utilize the full po-
tential of the temporal range of two dimensional measured data to increase the density
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of velocity information over the specified measurement domain in consistence with the
temporal evolution of particle tracks. Accuracy characteristics of VIC++ is strongly
dominated by the number of time instants considered for the optimization procedure as
increased track lengths over time provided a better correlation between the densified flow
field information and the measured data by elevating the number of particles received
from the measurements which are also used to compute a more precise cost junction.

(𝑎) (𝑏) (𝑐) (𝑑)

Figure 2.16: x-component of velocity vectors for 2D Gaussian vortex reference (a) and,
VIC+ with Nt = 2 (b), Nt = 10 (c) and Nt = 40 (d)(Schneiders et al.,
2016a).

Further on, an extended version of VIC++ is introduced as Time-Segment Assimi-
lation (TSA) where the optimization problem of reconstructing a dense field of velocity
information is performed on three dimensional measurement domains (Schneiders and
Scarano, 2018; Gonzalez Saiz et al., 2019). Based on a minimum of 4 time consecutive
velocity distributions, TSA performs an iterative optimization procedure using the ve-
locity information of a particle along with its propagation over a chosen time segment.
The instantaneous vorticity distributions and the corresponding velocity fields are again
computed using the vortex-in-cell framework (Christiansen, 1973) by solving the Poisson
equation for velocity with the source terms being −∇ × ω. Finally, the cost function is
constructed by interpolating the velocity distributions at each iteration on the measured
data locations over the complete set of time instants.

2.5 Concluding Remarks

Despite the fact the VIC+ is proven to yield accurate dense reconstruction of flow field
information even in the near wall region which also contains a viscous sublayer, actual
validity of the algorithm is only consistent above the buffer layer due to the fact that vis-
cosity is neglected throughout the employed physical formulations of acceleration terms.
Nevertheless, as the optimization parameters of velocity and acceleration errors in com-
parison to the measured particle data are scaled in accordance to the relative variance of
PTV velocity and acceleration measurements, the contribution of acceleration informa-
tion on the cost function determination is deteriorated compared to the contribution of
velocity errors. The non-dimensional form of the cost function J∗ is expressed as follows,

J∗ =
1

σ2u
Ju +

1

σ2Du
JDu (2.18)
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Figure 2.17: Schematic of Time-Segment Assimilation (TSA) reconstruction framework
(left). Isosurfaces of time resolved Q ·D2/U2

e = 7 (green) and velocity mag-
nitude U/Ue = 0.8 (grey) with trilinear interpolation (top-left), TSA over 3
samples (middle-left) and TSA over 13 samples (bottom-left) for the experi-
mental investigation of a multichannel swirling jet flow (Gonzalez Saiz et al.,
2019).

while the Ju and JDu corresponds to the individual cost function values of velocity and
acceleration terms respectively, σu and σDu are defined by means of the standard deviation
of PTV data.

σu =

√√√√ 1

nPTV

nPTV∑
p=1

||up − up||2 σDu =

√√√√ 1

nPTV

nPTV∑
p=1

||Dup
Dt
− Dup

Dt
||2 (2.19)

Therefore, in case the application of VIC+ is performed with the availability of par-
ticles within the viscous sublayer, accurate reconstruction of velocity information is also
possible although the computed acceleration terms are compromised because of the ne-
glected effect of viscosity which is more influential in the viscous sublayer (Cebeci, 2013).

Considering the application of VIC+ for instantaneous dense volumetric reconstruc-
tion of velocity and acceleration information from large scale Tomo-PTV measurements,
the low density of tracer particles yields considerably lower spatial resolution specifica-
tions within the near wall region. Hence, not only the invalidity of VIC+ framework
but also the absence of measured particle tracking information to drive the optimization
procedure prohibits accurate reconstruction of viscous sublayer properties. This condi-
tion causes the implementation of a no-slip boundary condition over exact wall surface
to yield inaccurate reconstruction of flow field information not only at the wall neighbor-
ing cells but also the adjacent 3∼4 grid layers in the wall normal direction. Therefore,
the boundary condition definitions for velocity values at the near wall regions require a
specific treatment other than the exact no-slip condition naturally existing on the wall
surfaces due to the influence of viscosity (Rapp, 2017).

Furthermore, the nature of FSI problems contains non-uniform domains which origi-
nate another set of challenges in terms of not only the reliability of numerical computation
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procedure but also exact conformation of the surface of interest. Without proper defini-
tion of solid boundaries, accurate determination of fluid properties along the structural
surfaces becomes significantly problematic as boundary conditions for and the information
transfer between fluid and solid domains are strongly dependent on the interface descrip-
tion. Since aeroelastic problems generally include unsteadily changing structure forms,
their motions and deformations in time should be captured and implemented on the com-
putational domain for accurate correlation of FSI. The current pressure reconstruction
and data augmentation algorithms are introduced on uniformly structured computational
grids where the accuracy orders of the numerical schemes kept uncompromised. Thus,
computation of fluid information in cases of non-uniform surfaces introduces significant
drawbacks in terms of numerical accuracy and appropriate surface definition for implemen-
tation of adequate boundary conditions. More recently proposed methods for managing
non-uniform solid intrusions, separate the computational domain in to multiple regions
where close surface locations are handled by varying the integration direction for pressure
reconstruction algorithms. Although these methods provide accurate results in compar-
ison with the extrapolation techniques, the improvements are associated with increased
levels of complexity and computational cost.

Moreover, as the measured flow field information is used for numerical simulation
aided assimilation algorithms, the errors related to the measurement data propagates
throughout the numerical processes as well as significantly affecting the accuracy of the
assimilation procedures. Especially, considering the application of VIC+ where the ex-
perimentally acquired information is to be the exact representative of physical flow field
features within the prescribed computational domains and the optimization procedure is
set to define the objective function over the measurement information, the optimization
is driven towards the erroneous flow field information. Even though the VIC+ bases the
dense field interpolation algorithm over the Navier-Stokes equations, the velocity com-
putation procedure do not impose any restriction on the mass conservation which corre-
sponds to the divergence freedom of velocity vectors for incompressible flows. Hence, not
only the divergence errors present in the measurement data are propagated throughout the
VIC+ procedure but also an additional component of continuity errors are imposed due
to the mathematical foundation of the algorithm. Although FlowFit method proposed
by Gesemann et al. (2016) contains cost function terms penalizing the non-divergence
components within the velocity field, constructing an objective towards minimizing the
divergence of velocity vectors may lead to optimization points that deviate from the ac-
tual flow behavior since the problem definition of divergence free velocity vectors reveals
a singular system with infinitely many solutions (Dong and Egbert, 2018).

Consequently, the state-of-the-art data augmentation algorithms do not contain any
viscous considerations which requires the viscous terms to be included within the formu-
lations of governing equations. Nevertheless, CFD frameworks contain approximate tech-
niques of viscous influence characterizations for appropriate boundary condition determi-
nation which provides a cost-efficient solution in order to account for the effect of viscous
forces. Furthermore,the available data assimilation and pressure reconstruction methods
utilizing flow field information obtained by non-intrusive measurement techniques should
be modified to enable the handling of non-uniform solid boundaries. This can be achieved
by interpreting advanced computational frameworks introduced for the numerical investi-
gations of FSI problems. Moreover, the presence and propagation of measurement errors
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yield a significant challenge for the data assimilation methods to reconstruct the dense
flow field interpolations in coherence with the physical flow features. The noise canceling
methods introduced to filter out errounous flow field information acquired throughout the
experimental campaigns, provide an outstanding opportunity for modifying the available
data assimilation frameworks and developing alternative approaches.
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Chapter 3

Advanced Computational Techniques
for Numerical and Experimental

Data Processing Frameworks

In accordance to the conclusions drawn from the literature overview provided in Chapter
2, modifications and alternative approaches of the available experimental data assimilation
algorithms and surface pressure reconstruction schemes involve fundamentals established
over the techniques developed for computational fluid dynamics (CFD) frameworks. Ac-
cordingly, characterization of near wall fluid properties for boundary condition definitions
beyond the laminar regime of turbulent boundary layers is commonly performed in CFD
simulations via the use of wall function applications. Treatment of unsteadily deform-
ing non-uniform boundaries encountered in fluid-structure interaction (FSI) problems are
performed by means of various methods where two main approaches can be discretized
with respect to the mesh formation procedure they adapt. Boundary fitted coordinate
systems and their deformations in relation to the structural response of the elastic sur-
faces are employed for the Arbitrary Lagrangian-Eulerian method whereas the immersed
boundary treatment methods are proposed to satisfy the appropriate boundary condi-
tions while preserving uniform mesh formation. Last but not least, there exists multiple
approaches introduced over the coarse of experimental data augmentation literature in or-
der to elevate the physical coherence of measurement data to the actual flow behavior via
filtering errors introduced throughout the experimental data acquisition and processing
procedures. Hence, this chapter provides an extensive background on the computational
frameworks introduced for numerical simulations and experimental data assimilation ap-
plications which create the basis for the developed methods in this thesis work.

3.1 Wall Function Applications

Implementation of wall functions for determination of velocity values at the wall neigh-
boring finite volume cells is a popular approach among numerical simulation frameworks
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for viscous flow solutions. Resolution of exact flow behavior within the close wall re-
gion requires extremely high spatial resolution specifications with significantly fine grid
spacing definitions, i.e. DNS and LES. Employing wall functions for near wall velocity
approximations offers a cost-efficient opportunity in cases where the major emphasis is
on accurate characterization of large scale flow features, i.e. RANS (Craft et al., 2002).

Figure 3.1: Near wall normalized velocity profile with respect to the wall normal units of a
turbulent boundary layer (Marinus, 2011).

3.1.1 Law of the Wall

The Law of the wall, first introduced by von Kármán (1930), refers to a logarithmic
relation between the wall normal distance units and the average normalized velocity profile
over the overlap region of inner and outer layers of a turbulent boundary layer. The
applicability of the logarithmic law is only valid within the close proximity of the wall
surface as well as its application is entitled to severe constraints of flow conditions (Afzal,
2001). The formulation for the velocity profile in compliance with the Law of the wall is
expressed as follows in terms of non-dimensional velocity and wall distance units,

u+ =
1

κ
ln(y+) + C u+ =

u

uτ
y+ =

yuτ
ν

(3.1)

where uτ and ν refer to the shear velocity and kinematic viscosity respectively. The κ, the
von Karman Constant, and C are documented to be κ 0.41 and C = 5 for smooth walls
according to the empirical studies of von Karman himself. Even though these constants
and the logarithmic law are valid strictly for well-developed equilibrium boundary layers
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(Mellor and Gibson, 1966), its implementation as an approximation for the velocity values
is proven to be reliable for a wide range of applications within certain ranges of accuracy
tolerances (Mandal and Mazumdar, 2015).

As represented in Eq.(2.13), the determination of the velocity information by means
of the Law of the wall is dictated via the value of shear velocity, uτ . Although in specific
cases of measurements, i.e. turbulent flow over flat plate, this value can be computed
theoretically and known a priori, treating this term as a constant inherently diminishes any
possible variations of the velocity components that are present throughout the spanwise
plane (Weyburne, 2011). Hence, even though the logarithmic law is a representative of
the averaged velocity profiles for the turbulent boundary layers, in order to capture the
distributions of local velocity profiles as well as time varying components of streamwise
velocity, the approximation procedure of velocity values using the Law of the wall can be
performed over the instantaneously available local velocity profiles.

3.1.2 Clauser Chart Method

The friction velocity uτ is an important parameter for characterization of turbulent bound-
ary layers since many scaling laws as well as skin friction contribution is related to uτ .
However, its direct measurement in the experimental environment is not always possi-
ble unless specific equipment dedicated for shear stress measurement over surface is used
(Haritonidis, 1989). Hence, its deduction generally requires an indirect method to be
applied over experimentally acquired information.

Figure 3.2: Velocity profile approximations for experimentally acquired boundary layer data
with various skin coefficient values (Trumper et al., 2018)(left). Superposed
Clauser plot for an experimental velocity profile reconstructed via LDA mea-
surements (Zanoun et al., 2014)(right).

In that regards, a common method of choice is the Clauser chart method among
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experimental researchers (Fernholz and Finleyt, 1996). Proposed by Clauser (1956), the
Clauser chart method utilizes the measured mean velocity profiles in the wall normal
direction to fit an extrapolation function over the log-layer region, Fig.3.1. The method
assumes the universal logarithmic law, namely the Law of the wall, within the overlap
region of inner and outer layers of the turbulent boundary layer profile and performs a
fitting on the measured velocity values using Eq.(2.13). Although the values of κ 0.41
and C = 5 are considered to be independent of the Reynolds number, there exist common
applications of the Clauser chart method in literature with variations of these constant
within the ranges of 0.38 < κ < 0.45 and 3.5 < B < 6.1 (Zanoun et al., 2003). It is
referred that, in many situations these variations are to obscure the experimental data
uncertainties (Wei, 2005).

3.2 The Arbitrary Lagrangian-Eulerian Method

The computational modelling of FSI problems contains unsteady deformations of bound-
ary contours for which a great set challenges emerge for accurate description of boundary
conditions and information transfer between the solid and fluid domains. Hence, treat-
ing these problems numerically requires appropriate description of kinematics for both
regions. In fact, this description fundamentally determines the the nature of FSI sim-
ulations where it reflects the accuracy and reliability characteristics of the introduced
numerical schemes for task of preserving high level of robustness throughout large scales
of boundary distortions.

The conventional approaches of continuum mechanics reveal two main frameworks for
discretizing the physical behavior of fluid and solid mechanics, referred as Eulerian and
Lagrangian descriptions. While Eulerian perspective defines the continuum motion over
a fixed computational grid formation, Lagrangian description refers to individual track-
ing of particle motions with a non-stationary mesh structure. Regarding the respective
advantages and drawbacks of these approaches, Eulerian description, widely employed for
fluid dynamics problems, provides a computationally efficient approach for characterizing
fluid behavior with large distortions of contiuum motion. Numerically handling these
circumstances requires significantly high spatial resolution specifications and accurate de-
scription of boundary conditions. On the other hand, Lagrangian approach provides a
physical description of tracking particle motions which significantly increases the accu-
racy of the characterization procedures for highly time dependent problems. Nonetheless,
consistent preservation of the elevated accuracy levels demands persistent adaptability of
non-stationary mesh structures.

In order to avoid the individual shortcomings of pure applications of Eulerian and
Lagrangian perspectives while benefiting from their respective advantages, a technique re-
ferred as the Arbitrary Lagrangian-Eulerian (ALE) method is introduced by Noh (1963)
for numerical solution of hydrodynamic problems containing of fluid motion enclosed with
unsteadily moving bundaries. The initially referred name of Coupled Eulerian-Lagrangian
description provided a two-dimensional description of the appropriate boundary condi-
tions within the finite difference framework. Further on its application is demonstrated
to be employed for numerical simulations of a wide range of fluid speeds by Hirt et al.
(1974) where the name of the approach is updated as Arbitrary Lagrangian-Eulerian.
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The ALE method enabled the extension to three dimensions for unsteady simulations
of blast loading of structures interacting with shock waves (Stein et al., 1977). More-
over, the ALE method is implemented with a finite element framework by Belytschko and
Kennedy (1978) where the first application of a non-linear simulation for the FSI frame-
work is presented. As within the ALE formulation the structural domain is analyzed with
a Lagrangian method while the flow is characterized with an Eulerian description, the
separate implementation of finite volume or difference methods for the fluid side and the
finite element method for the structural domain allowed the numerical models to preserve
their individual favorable properties for different kinematic behaviors of each domains
(Hughes et al., 1981).

3.2.1 Boundary Fitted Coordinate Systems

Generation of boundary fitted coordinate systems for exact surface shape conformation
is a common approach in CFD where its implementation is used in a large variety of
numerical algorithms as it allows the generation of a mesh structure which coincides
with the boundary of the interacting domains (Pardo et al., 2012; Romeiro et al., 2018).
Thus, the relative numerical approximations of integral and differentiation terms can be
represented on these grid locations (Thompson et al., 1985; Anderson et al., 2016).

The straightforward idea lying behind a boundary fitted coordinate system is keeping
a coordinate value constant following the curvature of a boundary during which the other
coordinate values belonging to the curvilinear coordinate system will follow a monotonic
variation.The overall structure of the curvilinear coordinate system is constructed with
a unique correspondence with the cartesian coordinate system to allow one-to-one map-
ping between the coordinate systems. The generated boundary fitted coordinate system
must comply with the condition of avoiding crossing coordinate lines of the same coordi-
nate axis, so that a unique mathematical transformation can be established between the
physical and computational spaces (Johnson and Thompson, 1978).

Simply and Multiply-Connected Regions

Generation of boundary fitted computational grids with the property of one-to-one map-
ping of the physical coordinate systems requires the computational domain to be consist-
ing of simply connected regions. A simply-connected region is defined if any contour within
the domain surrounded by closed boundaries can be reduced to a theoretical zero volume
in absence of any hanging nodes (Jenkins, 2002). Hence, simply-connected domains do
not contain re-entrant boundaries when mapped on a coordinate system. In case of most
general simply-connected regions, the generation of a boundary fitted coordinate system
is fairly natural as the boundary surfaces or edges are described by segmentation for which
the smoothness of the boundary definition depends on the grid resolution, Fig.3.3. The
generation of a mapping function for these grid formations is relatively straightforward
as they correspond a smooth deformation of Cartesian coordinate systems.

On the other hand multiply connected regions contain re-entrant boundaries and in-
ternal gaps that prevent the exact collapse of the computational domain to a theoretical
zero volume. Although, the definition of multiply-connected regions allows treatment of
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Figure 3.3: Simply-connected (left) and multiply-connected (middle& right) regions (Ah-
mad, 2007).

geometries with further increased complexity levels, the mapping procedure that con-
structs the link between the computational and physical coordinate systems is rather
complicated as well. Thompson et al. (1985) refers to an extensive survey on handling
such geometries especially on three dimensional computational domains. Nevertheless, the
boundary fitted coordinate systems introduced for the work content of this thesis only
considers simply-connected regions that provides a volumetric mapping on a uniformly
structured computational grid.

3.2.2 Grid Generation Systems

Generation of a boundary fitted coordinate is performed via constructing a mapping
function describing the computational coordinates by means of the physical coordinates.
Hence, each computational coordinate location, (η, ψ, φ), is defined using a combination
of Cartesian coordinates, (x, y, z). This task can be accomplished by employing an ellip-
tic partial differential equation and solving the constructed equation for the coordinate
variables of (η, ψ, φ).

Introduced by Thompson et al. (1974), utilizing a system of elliptic PDEs for the
generation of a boundary fitted coordinate system inherently prevents any overlapping
or collapsing grid cells provided that the extremums of the generated curvilinear grid
structure appear over the boundaries of the computational domain. Furthermore, as the
elliptic PDEs provide an inherent diffusion due to the order second derivatives terms,
the resultant computational grid structure is off any discontinuities that may appear
over the domain boundaries and propagate towards the inner regions (Sonnemans, 1992).
Accordingly, the employed Laplace equation for the mesh generation procedure is in the
following form,

∇2ψi = 0 i = 1, 2, 3 (3.2)

The Laplace equation is solved for each dimensions individually in which the control
of grid smoothness is establish by means of the Euler equations defined for a functional
minimization. However, the absence of any control parameters imposed on the mesh
generation algortim yielded severly lowered mesh quality characteristics throughout the
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tranformed grid domains. Hence, Thompson et al. (1976) proposed the use of a Poisson
equation in order to define the transformation layout within the grid structure where the
source terms are utilized as control parameters of mesh quality.

∇2ψi = P i (3.3)

in which the source terms P i are employed to control the mesh specifications such as
orientations and density of the grid lines by enforcing spatial resolution parameters. In
that regards, various source term formulations are suggested depending on the desirable
quality specifications (Thompson et al., 1975; Ghia et al., 1976).

Moreover, further control parameters can be added in form of additional source terms
to the generation procedure of the grid system as orthogonality of the coordinate lines
can be induced. Alternatively grid orthogonality can be achieved by elevating the order of
the partial differential equation to 4, thus constructing a system of biharmonic equations
which indeed requires additional boundary conditions to be provided (Haussling, 1979).

3.2.3 Mesh Deformation

In most cases of unsteady motion of solid boundaries, a natural approach can be intro-
duced as completely regenerating the grid structure to meet the surface definition require-
ments at each time step. However, this process generally requires considerable scales of
user interaction for ensuring the mesh quality is not compromised and stay within the lim-
its of the initially created form. Moreover, since the mesh must be updated in each time
step on an unsteady or iterative manner, an efficient and reliable deformation method is
necessary in terms of performance and computational efficiency. Therefore an accurate
grid deformation algorithm without altering the initial mesh properties drastically, pro-
vides a valuable solution for unsteady simulations for which many methods are proposed
and can be ordered in two main categories as physical analogy based and interpolation
based schemes (Luke et al., 2012).

Physical Analogy Based Mesh Deformation Algorithms

One of the first physical analogies established with mesh deformation is the torsional
spring introduced by Farhat et al. (1998). It is proposed as an advancement over the
linear spring theory applied on mesh cells to deform the mesh structures based on their
connectivity information with respect to each other. Hence, it introduces additional
torsional springs at the node locations to prevent colliding of mesh vertices and collapsing
cells. However, with the addition of torsional springs to the system of equations to be
solved for a new equilibrium state, the computational expense of the method (Degand and
Farhat, 2002) is increased. Additionaly, in case of large deformations hanging nodes may
appear which require either implementation of extra spring elements or direct removal of
those imperfections from the system of equations (Niu et al., 2017). Moreover, Löhner and
Yang (1996) used solid body elasticity as constraints on mesh deformations by assuming
the mesh forms to be represented as elastic solid bodies and the deformations as the
strains. The introduced model solved the strain energy equation for the equilibrium
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positions of updated mesh locations that results in the minimum attainable strain energy
levels. Although the it yields more accurate deformations of the mesh structure, this
is achieved at the expense of increased computational time (Wick, 2001). Furthermore,
Helenbrook (2003) proposed the use of a biharmonic operator, ∇4, to diffuse the mesh
deformation information captured at the boundaries of the computational domain to the
interior regions. By employing a Galerkin finite element procedure for the numerical
implementation, it enabled direct size manipulation of mesh cells over the boundary.
However, even thought it provided a comparatively similar level of accuracy of mesh
deformations with spring analogy, the computational cost levels of are elevated with a
factor of ∼2.

Figure 3.4: Mesh formation of the flow domain around a suspension bridge (top-left)(Farhat
et al., 1998), original and deformed grid structures for a generic store with
body and fin (top-right)(Tsai et al., 2001). Free-surface mesh deformations at
amplitudes of A=0.1 & A=0.25 with Laplacian (bottom-left) and biharmonic
operators (bottom-right)(Helenbrook, 2003).

Interpolation Based Mesh Deformation Algorithms

Interpolation based schemes consider the computational domain as a numerical problem
where the boundary conditions are provided in terms of the motion or deformation of
structural surfaces. Hence, the corresponding numerical problem is solved for the inter-
polation of the deformation of boundary nodes into the interior domains. Since these
methods are independent of any connectivity requirements between the mesh cells, they
can easily be applied on arbitrary mesh structures without any specific consideration
of hanging nodes. Accordinly, an unsteady grid motion method is introduced by Wang
and Przekwas (2012), in which at each time step the computational grid of the fluid is
remapped using the pre-defined deformation functions based on a transfinite procedure
(Chawner, 1990). Initially, the transformation of the grid locations are implemented on
the moving boundary nodes depending on the fluid physics computed at previous time
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steps. Then the motion information is interpolated to the interior grid locations to influ-
ence the complete computational domain.

Also for multidisciplinary design optimization combining fluidic and structural com-
putational domains and their iterative solution, structured mesh formation algorithms
based on trans finite interpolation (TFI) methods are proposed by Jones and Samareh-
Abolhassani (2012). However, a significant defect of TFI based mesh regeneration algo-
rithms appears as the computational domains are constructed around curved boundaries
that causes the method to fail by resulting in intersecting and/or overlapping mesh cells
in case of large deformations. Also a Delanuay triangulation based interpolation ap-
proach is proposed by Liu and Katz (2006) in which a simple barycentric interpolation
algorithm is used. Although the interpolation of boundary deformations into the interior
domain revealed considerably accurate and high quality cell forms, the near boundary
mesh structures suffered from inconsideration of orthogonality preservation (Wang et al.,
2014).

3.2.4 Radial Basis Function Based Mesh Deformations

The employment of radial basis functions (RBF) is well established on FSI applications
as they are already utilized for schemes of information transfer over the fluid-structure
interface where the matching of mesh locations is an exceptional case (Smith et al., 2000;
Beckert and Wendland, 2001). Their utilization for mesh deformation algorithms is first
introduced by de Boer et al. (2006, 2007) for which the mesh motion calculated on the
boundary nodes by a point-by-point algorithm is interpolated on the internal domain using
RBFs. Already with its first application, RBF based mesh adaptation method shown to
be able to generate high quality mesh formations even in case of large deformations. A
high variety of RBF’s are tested within this method, where CP C2 RBF with a compact
support is proven to be of best performance with the choice of support radius appearing
as an important factor of resultant mesh quality (Rendall and Allen, 2010).

Comparative Applications of RBF

Since the RBF based deformation methods rely on the solution of a linear system of
equations constructed over the known displacement locations, computational efficiency of
the methods is strongly dominated by the linear system size which is determined by the
selection of known displacement locations. In order to make this decision wisely to reduce
the computational costs without compromising accuracy of the method, Rendall and
Allen (2009) employed the greedy method to restrict the constraint points to a reduced
number of surface locations which are selected by a procedure of error minimization
over the interpolated locations of the interaction surface. Despite its increased cost-
efficiency in terms of computational expense, the problem of not being able to capture the
surface deformations exactly except the selected constraint locations arose accuracy issues
which required corrections to be applied to the mesh structure after the deformations are
performed. Even though various correction algorithms are introduced for this purpose,
alternative approaches for ensuring appropriate selected of the reduced number of surface
locations are introduced such as re-determining the constraint locations at every time
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level (Sheng and Allen, 2013) or employing an adaptive selection algorithm (Gillebaart
et al., 2016).

Accordingly, a multiscale RBF interpolation method is presented by Kedward et al.
(2017) that uses multiple interpolations performed over different scales of restricted sur-
face locations to guarantee the exact surface representation while preserving the compu-
tational efficiency. The method is used to enable adaptations of 2D and 3D structured
mesh forms under large deformations with a capability of preserving the initial mesh or-
thogonality within 1%. Moreover, the assessment of a multi-scale RBF based deformation
algorithm is extended to three dimensional complex unstructured mesh and deformation
configurations by Wang et al. (2018), where a double-edge greedy algorithm is combined
with the mesh deformation algorithm to accelerate point selection procedure at each scale.

Figure 3.5: Original (top-left) and deformed (top-right) structured mesh formations employ-
ing RBF based mesh deformation algorithms (de Boer et al., 2007). Mesh quality
for an undeformed portion of the tetrahedral volume mesh (bottom-left) and the
deformed grid structure for horizontal tail deflection of 12o (bottom-right) as
well as surface meshes on fuselage panels (Michler, 2011).

Many applications of RBF based mesh deformation schemes revealed their superiority
in terms of reducing the computational cost of deforming a complete computational do-
main while preserving mesh quality characteristics. Michler (2011) employed RBF based
mesh deformations for simulating the unsteady control surface deflcetions of a fighter
aircraft in which the computational cost of the mesh deformation procedure is reduced
by restricting the deformation volume to close proximity of the control surfaces. Bos
et al. (2013) used both Laplacian, solid body rotation stress (Sakr et al., 1995) and RBF
based models for mesh adaptation where for the Laplace equation is solved similar to the
biharmonic operator with a variable diffusion coefficient as a mesh quality control. The
cell orthogonality and skewness metrics are utilized to assess the resultant mesh quality
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properties for which the computational domains updated by means of RBF based mesh
deformations resulted in significantly superior quality levels over the other two algorithms.

Radial Basis Functions

There exist a vast spectrum of RBFs in literature, well document for interpolation of mul-
tivariate information. The overall categorization of the RBFs can be made by separating
them into two main groups. The first one is the RBFs with ca ompact supports which
yield a piecewise function formulation for the interpolation operation as follows,

φ(x) =

{
f(x) 0 ≥ x ≤ 1

0 1 < x
(3.4)

where φ(x) corresponds to the interpolation function that is commonly represented in a
normalized form, φ(x/r), with a support radius r (Fornefett et al., 2001). In case of a
RBF with compact support, the computed value at a certain location is only influence
by a number of surrounding nodes whose count is determined by a prescribed support
radius. Hence, as the support radius is increased, more information is captured for the
interpolation which generally yields more accurate results, although there are some ex-
ceptions (Porcu, 2013). Nevertheless, with the increasing number of data considered for
the interpolation, there exists a cost penalty in terms of the computational effort caused
by dense and large linear systems. A variety of RBFs with compact support are provided
in Tab.3.1.

Table 3.1: Radial basis functions with compact support.

No. Name f(ξ)

1 CP C0 (1− ξ)2
2 CP C2 (1− ξ)4(4ξ + 1)
3 CP C4 (1− ξ)6(353 ξ

2 + 6ξ + 1)
4 CP C6 (1− ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)
5 CTPS C0 (1− ξ)5
6 CTPS C1 1 + 80

3 ξ
2 − 40ξ3 + 15ξ4 − 8

3ξ
5 + 20ξ2log(ξ)

7 CTPS C2
a 1− 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ2log(ξ)

8 CTPS C2
b 1− 20ξ2 + 80ξ3 − 45ξ4 − 16ξ5 + 60ξ2log(ξ)

The second kind of RBFs are defined with a global support where the interpola-
tion function obtains information from the complete set of available data points. Even
though, globally supported RBFs benefit from continuous function definition and utiliza-
tion of all available data for the construction of the interpolation function, the previously
referred computational cost deficiencies are even more amplified due to the requirement
of handling large systems without any sparsity of data entries. A set of popularly em-
ployed globally supported RBFs are provided in Tab.3.2, while more detailed descriptions
of their individual performance characteristics can be found in Wendland (1998, 1999);
Buhmann (2003).
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Table 3.2: Radial basis functions with global support.

No. Name Abbreviation f(x)

9 Thin plate spline TPS x2log(x)

10 Multiquadric biharmonics MQB
√
a2 + x2

11 Inverse multiquadric biharmonics IMQB
√

1
a2+x2

12 Quadric biharmonics QB 1 + x2

13 Inverse quadric biharmnics IQB 1
1+x2

14 Gaussian Gauss e−x
2

3.2.5 Arbitrary Lagrangian-Eulerian Method for Vortex Simulations

As its application is commonly referred for flow simulations based on velocity-pressure
formulations using finite volume or finite elements methods, conformal mapping is also
employed in case of vortex simulations to accurately handle solid boundaries within the
computational domains. Thames et al. (1977) used boundary fitted coordinate systems
for numerical simulations of viscous and potential flows around two dimensional arbi-
trary bodies where the flow governing equations of incompressible vorticity transport and
streamfunction-vorticity relations are described in curvilinear grid formations, conform-
ing various body shapes of airfoils and arbitrary objects. Furthermore, Bernard (1999)
referred to the use of boundary fitted coordinate systems for simulations of complex ex-
ternal flows for which the conformal mapping allowed the introduction of a thin layer of
computational grid in order to advance the surface vortex sheets created at each time
step.

Regarding their employment for Vortex-in-Cell (VIC) simulations, Cottet and Poncet
(2004) utilized a conformal mapping approach for three dimensional direct numerical
simulations of wall bounded flows in which the particle-mesh hybrid approach involved a
grid structure fitted to the surface shape of a sphere in close proximity of the solid object.
Hence, the advantage of an Eulerian treatment for lowering the high computational cost
enabled efficient discretization of an immense number of vortices located closer to the
wall surfaces without losing accuracy. Also, Kudela and Kozlowski (2009) employed a
boundary fitted coordinate system for flow simulations around arbitrary shaped objects
using the VIC framework where fourth order interpolation kernels used by Cottet and
Koumoutsakos (2000); Sagredo and Tercero (2003) are modified for the near wall regions
as one sided interpolation functions for particle-mesh switching of vorticity distributions.

3.3 Immersed Boundary Treatment in CFD

Vortex methods have a proven value of predicting complex unsteady flow features via
removing the necessity of grid generation methods commonly employed for conventional
Eulerian approaches as their formulation is based on discretizing a vorticity field cor-
responding the Lagrangian description of Navier-Stokes equations (Sarpkaya and Ihrig,
1986; Sethian and Ghoniem, 1988; Slaouti and Stansby, 1992; Ould-Salihi et al., 2001).
However, as the number of particles included for the determination of a flow field increases
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which also relates to higher fidelity and resolution capabilities, a significant deficiency of
computational resource utilization arises. In that regards, an alternative hybrid mesh-
particle approach such as the VIC framework introduced by Christiansen (1973) allows
the fast FFT based Poisson solvers to be employed over a predefined computational grid
(Wu and JaJa, 2013).

Accordingly, as the fast Poisson solvers are utilized to characterize the rotational
component of the flow behavior on a regular structured mesh, physical intrusions within
the flow field are required to be handled employing additional velocity or forcing terms.
The additional boundary treatment is introduced to modulate the dynamic behavior
of the flow for the boundary condition enforcement of immersed surfaces enabling the
complete numerical simulation to be performed on a fixed Cartesian grid. Therefore, the
need for boundary fitted coordinate systems and introducing transformation operations
between computational and physical coordinate systems is obliterated, as well as the mesh
adaptation requirements for moving boundaries of FSI problems.

3.3.1 Immersed Boundary Methods for Velocity-Pressure Formulations

Velocity-pressure based immersed boundary treatment approaches base the mathematical
formulation of additional dynamics terms for kinematic boundary condition satisfaction
on the Navier-Stokes equation where the velocity distribution over the spatial and tem-
poral domain is determined by pressure distributions and viscous effects. Hence, within
the velocity-pressure framework of momentum conservation equation, variation of fluid
properties is enforced by additional source terms to alter the flow behavior according to
the prescribed solid boundary formations.

Continuous Forcing Approach

The immersed interface methods, first proposed by Peskin (1972) for viscous flow sim-
ulations around human heart valves, compute an additional kinematic or dynamic term
in order to allow the satisfaction of appropriate boundary conditions over the immersed
interface locations. Peskin (1972) introduced additional forcing terms to be added to the
Navier-Stokes equations in the form of body forces calculated in accordance to the elas-
tic response of flexible leaflets where the spatial discretization of the additional forcing
distributions is determined via a force density function (Peskin, 2002).

The application of countinous forcing terms as immersed surface treatment is suc-
cessfully emloyed among a large variety of numerical flow simulations including laminar,
turbulent, multiphase and compressible flow conditions (Tu et al., 2013). Proceeding the
applications of Peskin (1982) for investigating the fluid behavior interacting with heart
valves, Beyer (1992); Beyer and LeVeque (1992) employed the immersed boundary method
for development of a computational simulation model for aeroacoustic characterization of
cochlear dynamics. Further on, as Unverdi and Tryggvason (1992) developed a front
tracking method for analyzing bubble dynamics in two-dimensional multi-fluid flows, Zhu
and Peskin (2003) numerically simulated various modes of flexible filament motion in a
flowing soap film experimentally characterized by Zhang (2000).
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Figure 3.6: Forcing introduced by a Lagrangian boundary discretization point (left) and
forcing intensity distributions over the surrounding grid location by means of
different distribution functions (right)(Mittal and Iaccarino, 2005).

Discrete Forcing Approach

Another approach for treating immsersed boundary on a fully Cartesian grid formation is
proposed as cut-cell method where the conformation of non-uniform boundary contours
is performed via irregularly shaped grid cells introduced in the vicinity of the immersed
boundaries (Leveque and Calhoun, 2001). Application of the cut-cell method is commonly
employed among the numerical flow simulation throughout a wide range of problem defi-
nitions and Reynolds numbers (Tu et al., 2013).

Figure 3.7: Treatment of immersed boundary locations and the cells in close proximity of the
immersed interface in which the filled circles represent the grid locations with
forcing application based on the methods proposed by Fadlun et al. (2000)(left)
and Balaras (2004)(right).

Accordingly, Ghias et al. (2004) used the immersed boundary method to provide
numerical simulation solutions around complex geometries for flow conditions of subsonic
compressible flow speeds. The boundary conditions over the interface surface are satisfied
employing a ghost cell approach in combination with a bilinear interpolation scheme.
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In order to satisfy the exact boundary conditions at the immersed boundary surface,
the flow variables are calculated over the ghost cells located inside the immersed object.
Furthermore, Mittal et al. (2002) used a sharp-interface based numerical solver employing
a cut-cell approach for investigation of single and dual paired wing flapping modes which
allowed the simulation of moving boundaries of the flapping wings without modifying
the global grid structure. The same approach is utilized for numerical characterization
of diaphragm-driven synthetic jets (Utturkar et al., 2002) as well as flutter and tumble
characteristics of free falling objects (Rajat Mittal and Udaykumar, 2004).

3.3.2 Immersed Interface Methods for Vortex Simulations

Implementation of immersed boundary methods for vortex simulations is also a popular
approach for utilizing vortex dynamics in the purpose of numerically characterizing fluid
behavior especially in cases of complex FSI problems.

Since models such as VIC framework allow the significant improvement sover the
trade-off of fidelity and computational efficiency, immersed boundary methods allow the
Eulerian grid structure of the VIC framework to be preserved while presence of non-
uniform physical objects within the computational fields are handled with appropriate
boundary condition definitions.

Boundary Conditions for Particle Vortex Methods

Using the Lagrangian based vortex particle methods, Ploumhans and Winckelmans (2000)
employed the formulations of integral boundary equations in order to impose appropriate
boundary conditions over the interaction surfaces for high fidelity simulations of viscous
flows around generic bluff bodies. The no-through and no-slip boundary conditions arising
due to the aforementioned flow conditions are handled by means of surface singularities
assigned over the immersed boundary surfaces. In case of the no-through boundary
condition, a distribution of vortex sheets over the interface surface allows the cancellation
of penetrating velocity components through the boundary surface. However, the resulting
integral boundary equation corresponds a Fredholm integral equation of first kind that
yields a ill-posed numerical problem when discretized for the surface normal velocity
vectors. Hence, instead the vortex sheet strengths over the immersed interface surface are
determined via expressing the no-through boundary condition in terms of the tangential
velocity components yielding a Fredholm integral equation of second kind (Beale and
Greengard, 1994). Nonetheless, in order to obtain a well-conditioned system with a unique
solution for multiply connected regions, Kelvins theorem of circulation conservation or
Kutta condition is required to be introduced as an additional constraint to achieve an
overdetermined linear system of equations (Cottet and Koumoutsakos, 2000).

Panel Methods

The numerical implementation of boundary integral equations for adequate description of
boundary conditions over the interface surfaces is performed using the panel method in-
troduced by Hess and Smith (1967). The panel method allows discretization of boundary

M.Sc Thesis Bora O. Cakir



50
Advanced Computational Techniques for Numerical and Experimental Data

Processing Frameworks

surfaces by means of quadrilateral or triangular shaped panels (for three dimensional ap-
plications) over which a distribution of singularity elements is placed. Hence the boundary
integral components over the boundaries are computed either analytically or numerically
by constructing a linear system to determine the singularity strengths in relation to the
boundary conditions.

Accordingly, Ploumhans et al. (2002) extended the implementation of boundary inte-
gral equations in use of immersed boundary treatments to three dimensions. The numeri-
cal tool developed for direct numerical simulations of bluff body flows using particle vortex
methods is utilized for simulation of flow around a sphere at various Reynolds numbers.
The slip velocity appearing on the surface of the immersed boundary of the sphere is
canceled using a vector valued vortex sheet distribution whose orientation required only
two components paralel to the quadrilateral surface as canceling the tangential velocity
components inherently satisfies the no-slip boundary condition due to the linked boundary
conditions (Prabhakara, 2004).

Immersed Boundary Treatment for VIC

The approach of immersed boundary treatment for taking advantage of the fast Poisson
solvers is implemented to the VIC method by Walther and Morgenthal (2002) where a
two dimensional implementation for flow simulations around complex geometries in com-
bination with a local particle-particle correction algorithm for resolving subgrid scales is
proposed. The immersed boundary surface is discretized with vortex sheets of linearly
varying strength to yield a second order accurate method for boundary condition en-
forcement at the central locations of the panels, namely the collocation point, and the
additional equation for the linear system to be unique is derived from the Kelvin’s theo-
rem of circulation. The proposed approach is tested by simulating the impulsively started
flow behavior around a circular cylinder and a 12 leaf cactus (Morgenthal and Walther,
2007).

Figure 3.8: Schematic illustration for the boundary element designation of immersed bound-
ary treatment with surface singularity elements assigned as vortex sheets for a
two-dimensional application (left) and hybrid meshing strategy where the outer
region is discretized with regular mesh formations while the close proximity re-
gion is not meshed due to the already available large density pointwise vortices
(right)(Morgenthal and Walther, 2007).
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The extension of immersed boundary treatments in vortex simualtions to three di-
mensional fluid simulations is performed by Cottet and Poncet (2004) where the panel
discretization of the immersed surfaces is performed by reconstructing the object shape
by assigning the boundary conditions for the zero normal velocity characterization at the
closest computational grid cells. The no-through boundary condition at these locations
is satisfied by solving an additional Possion equation for a scalar potential function of
φ whose Laplacian yields a function g that vanishes outside the immersed object. For
achieving greater surface conformation and increasing accuracy of flow characterization
in close proximity of the interface surfaces, Kim et al. (2012) redesigned the immersed
interface method with a scalar potential function, φ∗, assigned to the exact surface lo-
cations that yields a Laplace equation ∇2φ∗ = 0 within the fluid domain. Furthermore,
unlike their previous efforts of combining vortex simulations with panel methods for flow
simulations around axisymmetric bodies where the geometric definitions of the object are
divided into rectangular panels (Kim et al., 2005), they utilized triangular panels assigned
with linear distribution of singularity strengths in order to increase the fidelity for surface
representations of complex geometries.

Flows with Moving Boundaries

Investigating fluid behavior interacting with moving boundaries, the previously described
Eulerian-Lagrangian approach is also employed for the framework of immersed interface
methods. As the flow features are discretized via the Eulerian form of flow governing
equations, the motion of the boundaries are traced following a Lagrangian approach
(Udaykumar et al., 1999). Since the immersed boundary methods allow a stationary
Cartesian grid to be used for the calculation of fluid properties, the need for computa-
tionally expensive mesh deformation algorithms are diminished. Hence, not only the grid
motion requirements are deteriorated but also the numerical accuracy deficiencies due
to the mitigated mesh qualities of the computational grids, vectorial transformations and
the need for kinematic contributions of the grid-related quantities are removed (Tezduyar,
2001).

3.3.3 The Helmholtz Decomposition

The Helmholtz decomposition corresponds to a decomposed velocity field to a irrotational
and a solenoidal component which is unique up to a constant (Joseph, 2006).

u = uω + uφ + u∞ (3.5)

where uω represents the rotational solenoidal field such that

ω = ∇× u = ∇× uω (3.6)

when the Curl operator is applied to both sides of Eq.(3.6) and the incompressibility
constraint is considered to drive the velocity field divergence free, ∇ · uω, we obtain the
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velocity-vorticity relation also employed by the Vortex-in-Cell framework.

∆uω = −∇× ω (3.7)

On the other hand, the irrotational component of velocity is defined by means of a
scalar potential function φ which yields a curl-free velocity field by mathematical identity,

∇× uφ = ∇× (∇ · φ) = 0 (3.8)

Again introducing the incompressibility constraint on the irrotational velocity com-
ponent, one obtains the Laplace’s equation for the scalar potential φ

∆φ = 0 (3.9)

It is observable that the velocity field defined by the Helmholtz decomposition in
Eq.(3.5) is not unique as any scalar potential field can be added to the vector field. Thus,
the uniqueness of the irrotational velocity field is induced by means of appropriate kine-
matic boundary conditions for the flow field to represent accurate physical fluid behavior
in contact with a physical object. A velocity field interacting with an impermeable solid
boundary needs to satisfy the no through boundary condition regardless of its viscosity
specifications.

u · n = (uω + uφ + u∞) · n = ub · n (3.10)

where ub represents the motion of the solid boundaries.

Solution of the Laplace equation for the scalar potential φ is proposed following
two different approaches. The first one is referred as the grid-based method where the
Laplacian is discretized over the complete computational domain by means of finite-
difference or finite-element methods and the resulting linear system of equations is solved
for the unknown distribution of the scalar potential function φ. Although for simple
geometries this approach would provide fast solutions using simple inversion techniques,
the computational cost significantly increases with increasing complexity of geometric
contours.

The second approach is to define the Laplace equation for the scalar potential in terms
of Green’s function formulation which yields a set of boundary integral equations when
the kinematic boundary conditions are enforced (Mengaldo et al., 2017). The boundary
integral equations represent an unknown distribution of singularities over the interface
surfaces discretized numerically by means of panel methods which result in a set of algebric
equations to be solved for the unknown strength distributions of surface singularities to
satisfy the required boundary conditions.
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3.4 Solenoidal Filtering Applications for Assimilation of Ex-
perimental Data

Volumetric quantitative flow visualization techniques such as 3D particle tracking ve-
locimetry (PTV)(Maas et al., 1993; Malik et al., 1993) and tomographic particle image
velocimetry (Tomo-PIV)(Elsinga et al., 2006) yield three components of the velocity vec-
tors which not only allow more accurate characterization of coherent structures within
the fluid domains, but also provide a greater level of accuracy in terms of reconstructed
pressure field by removal of errors due to the out-of-plane velocity or acceleration in-
formation (Ponchaut et al., 2005). Nevertheless, there exists various sources of errors
over the procedures of image acquisiton and flow field reconstructions. As these errors
are characterized by means of spurious nonzero divergence of measured velocity vectors,
mass conservation is violated for incompressible flows (de Silva et al., 2013). Various
algorithms are proposed to filter out the divergence errors for volumetric velocity mea-
surement techniques where approaches are generalized in three main groups depending
on the base principle them embrace.

3.4.1 Helmholtz Representation

Named after Hermann von Helmholtz, the Helmholtz representation refers to a vectorial
decomposition in which a vector field, finite and yielding continuous 1st & 2nd order
derivatives, composes of a solenoidal (divergence free) and an irrotational elements as
represented in Eq.(3.5) (Joseph et al., 2007). Then, applying the divergence operator to
both sides of Eq.(3.5) and considering the solenoidal property of ∇ · usol = 0 yields the
Poisson relation in the form of,

∇2φ = ∇ · u (3.11)

Hence, the the solution of Eq.(3.11) provides the scalar potential φ from which the
solenoidal velocity field can be computed utilizing the Eq.(3.5). However, properly defin-
ing a well-conditioned problem for the solution of the Poisson equation is relatively difficult
especially since in absence of wall bounded flow domains the boundary conditions are de-
fined in terms of velocity rather than a scalar potential. Even though there are possible
formulations that allow defining the boundary conditions by specifying various constraints
on the velocity gradients, since the measured velocity data is prone to mass conservation
errors at the first place, not only these methods yield ill-conditioned numerical problems
but also the divergence errors contained within the measurements propagate throughout
the solenoidal reconstruction algorithms (Kudela and Regucki, 2002).

Accordingly, Song (1993) introduced a projection method of volumetric velocity mea-
surements onto divergence free fields to eliminate spurious divergence errors which is
treated as noise. The algorithm, referred as PSDF, suppresses the measurement noise
levels to improve the accuracy of the quality of phase-contrast MR angiograms. Yang
et al. (1993) used the method of projection onto convex sets (POCS) to reconstruct vol-
umetric velocity field information from gappy & noisy data sets acquired via Magnetic
Resonance (MR) flow visualization. The POCS, similar to PSDF, finds a divergence free
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velocity field as a combination of multiple solenoidal velocity fields that representing the
measured velocity distribution with the greatest agreement (Gubin et al., 1967; Sezan
and Stark, 1982). Furthermore, Suzuki (2009) developed a hybrid approach for vortex
shedding simulation of a fully separated flow over an airfoil with a linear combination
of PTV measurements and DNS velocity fields updated by a time marching procedure.
The hybrid algorithm not only acted as a noise filter, suppressing the spurious spanwise
velocity components but also improved the fidelity of unsteady flow fields.

3.4.2 Least-Squares Variational Filters

Another approach employed by Liburdy and Young (1992) and Sadati et al. (2011) is
introducing a unconstrained minimization problem composed of three different objective
functions;

(i) The root mean square of the difference between the filtered solenoidal velocity field
and the measured one.

(ii) Velocity gradient smoothness which can be expressed by a strain-rate tensor (Chicone,
2017).

(iii) The divergence of the velocity field(∇ · u).

where the last two cost parameters are to be weighted according to the user-defined in-
puts for which a generalized cross-validation algorthim is employed in order to obtain the
optimum-weight distribution among these three parameters (Sadati et al., 2011). More-
over, de Silva et al. (2013) re-defined the optimization on a constraint basis which inher-
ently dismissed the requirement of providing weights over the optimization parameters
and named their approach as divergence correction scheme (DCS).

3.4.3 Reconstruction with a Solenoidal Basis

The third approach is the employment of a solenoidal basis for the reconstruction of the
velocity fields which inherently satisfies the divergence free condition. Various choices
are proposed in literature in terms of defining a solenoidal basis. Battle and Federbush
(1993) introduced divergence free wavelets for construction of vector fields with vanishing
divergence components for direct imposition of divergence-free condition representing the
mass conservation for incompressible flows. Schiavazzi et al. (2014) utilized the concept
of solenoidal wavelets to introduce solenoidal waveform reconstruction (SWR) for sup-
pression of continuity errors within the three dimensional velocity field measurements.
The measurement volume of velocity vectors is equipped with vortices around the grid
edges which reconstructed a solenoidal velocity distribution via converting the measured
velocity values to face fluxes ensuring mass conservation at a finite volume level.

Furthermore, Narcowich and Ward (1994) derived matrix valued RBFs formulating
the scalar valued RBFs on a vector space and applying the curl operator in order to dimin-
ish the divergence of the resultant vector field inherently due to the mathematical identity
of ∇·(∇×u) = 0 where u is an arbitrary vector field. Moreover, the approximation of any
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sufficient smooth divergence-free vector fields by means of superimposing solenoidal RBFs
is proven by the density theorem of (Lowitzsch, 2005). Additionally, Azijli and Dwight
(2015) introduced solenoidal Gaussian progress regression (SGPR) to filter out non-zero
divergence components by reconstructing the velocity field information over solenoidal
RBFs. The proposed filter application is formulated within the Bayesian framework in
order to include the measurement uncertainty information naturally. The numerically
and experimentally validated applications of SGPR demonstrated the improved accuracy
characteristics of the divergence free reconstructions over DCS and SWR methods.

3.4.4 Solenoidal Radial Basis Functions

The exploration of divergence-free radial kernels for data interpolation starts with the
vector spline approximation method proposed by Amodei and Benbourhim (1991) where a
spline minimization problem is defined over the vectorial coupling achieved by divergence
and curl operators. Then Handscomb (1991, 1993) performed local interpolation and
differentiation of divergence-free vector fields by employing surface and thin-plate splines.
Furthermore, Dodu and Rabut (2002, 2004) extended the use of radial interpolation
formulations to obtain both divergence free and irrotational free vector fields individually
to complete the Helmholtz-Hodge decomposition (Ribeiro et al., 2016).

In terms of constructing the interpolation framework via RBFs, Narcowich and Ward
(1994) introduced the matrix-valued RBFs to provide generalized approximations to in-
terpolation problems on scattered information. As stated previously, the proposed diver-
gence free formulation applied a discrete curl operator on any scalar RBF chosen by the
user in the following form,

Φ(x) = [∇∇T −∇2I]φ(x) (3.12)

where I and φ corresponds to the 3 × 3 identity matrix for the three dimensional for-
mulation and the scalar radial basis function respectively. As the mathematical identity
dictates divergence of a curl is zero, the resultant interpolated field also corresponds to a
solenoidal vector field.

Solenoidal radial basis functions are employed in various occasions throughout the
computational fluid dynamics literature for solution of incompressible flows. Schräder
and Wendland (2011) developed a mesh-free discretization algorithm for approximating
solutions to Darcy’s problem (Fanchi, 2002). The algorithm based on the collocation of
solenoidal positive definite interpolation kernels, allows the production of analytical in-
compressible flows while its application is independent of problem order, dimensions and
geometric forms. Moreover, Wendland (2009) proposed an algorithm composed of linear
combination of analytical solenoidal approximation spaces for the solution of Stokes equa-
tions. The matrix-valued kernels are used to construct the divergence free interpolation
functions which provided arbitrarily smooth high order approximations irrespective of the
space dimensions.

Among the applications of these methods for reconstruction of velocity fields that sat-
isfy mass conservation, Busch et al. (2013) introduced the use of normalized convolution
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and solenoidal RBFs in synergistic combination, for divergence-reduction of 3D phase-
contrast flow data. Using reference computational simulations, a reduction of 87% of
measurement imperfections in terms of the velocity divergence is obtained for erroneous
image reconstructions. Also, Vennell and Beatson (2009) employed a two-dimensional
divergence-free interpolator constructed by means of solenoidal RBFs where a greedy fit
(Marchi, 2009) approach is proposed to increase computational efficiency of the algorithm
whilst preserving numerical accuracy of the described interpolation surface. The proposed
interpolation function provided direct enforcement of physical coherence of velocity vec-
tors via satisfying continuity.
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Chapter 4

Numerical Implementations

The computational frameworks developed within the thesis project concentrates on re-
search objectives provided in Section 1.

Firstly, the numerical discretizations of governing equations employed for the data
assimilation algorithms are formulated to represent flow features dominated by turbu-
lent structures with negligible influence of viscosity. However, in close proximity of wall
boundaries, FSI interfaces, turbulent boundary layer profiles contain sublayers of influen-
tial viscous force presence. Hence, the present data assimilation algorithms fail to cohere
with the appropriate flow physics not only due to the physical formulations they are
based on but also because of the scarcity of particle tracking information for large scale
Tomo-PTV measurements in near wall regions. Therefore, in order to provide appropriate
boundary condition definitions for computational domains in contact with the interface
surfaces a wall function approach is implemented for the VIC+ algorithm in Section 4.1.

Moreover, referring to the discussions on the treatment of unsteadily deforming non-
uniform boundaries encountered in FSI problems, both ALE, Section 4.2, and immersed
boundary treatment, Section 4.3, methods are implemented individually for VIC+ in
accordance to their respective advantages and disadvantages. Additionally, the ALE
approach is also utilized for a surface pressure reconstruction scheme with boundary
fitted coordinate systems, Section 4.4.

Furthermore, the propagation of measurement errors as well as the additional error
sources originating due to the theoretical framework structure and numerical procedures
of the data assimilation algorithms, amplifies the deviation of the resultant flow field
information from the actual flow behavior. In order to solve this problem, two different
methods employing solenoidal, Section 4.5, and irrotational, Section 4.6, radial basis
functions for reconstructing the velocity and acceleration fields are proposed for increasing
the accuracy of dense flow field interpolations for time-resolved flow characterization of
3D-PTV.
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4.1 Wall Function Approach for VIC+

There exists many turbulent wall function approaches which are of a complex mathemat-
ical nature composed of modelling parameters and formulations accounting for the effects
of smaller scale turbulent structures on the overall flow behavior. Nonetheless, simplified
approaches of approximating turbulent boundary layer profiles can provide a sufficiently
reliable opportunity for VIC+ as the algorithm optimizes the overall flow field towards
the actual measurement information. Therefore, for the present wall function approach
the general logarithmic law of equilibrium turbulent boundary layers developed over flat
wall surfaces is employed.

The steps of the wall function implementation for determining the boundary condition
values for the stream velocity component is as follows,

Step 1: Computational domain generation

Since the grid spacing for the computational domain of VIC+ approximately corresponds
to spatial resolution specifications 4 times greater than input of PTV extracted directly
from the experimental campaigns instantaneously, reconstruction of the physical flow
behavior within the sublayers of a turbulent boundary layer is quite unlikely. Hence, the
computational domain is created with a small displacement from the physical wall surface,
to exclude the inner layers of the TBL structure from the problem definition and describe
the domain boundary closest to the wall starting from the logarithmic region directly.

Step 2: Initial velocity field reconstruction

The scattered particle tracking information over the computation domain are gridded by
binning the particle data of velocity and accelerations using spherical bins of radius 2h,
thus capturing particle information within a volume of 6πh3. The binning procedure is
performed using the AGW method in accordance to the Eq.(2.8)

Step 3: Local wall function reconstruction

For each individual streak of grid locations in the wall normal direction, the Clauser chart
method is employed to perform a non-linear data fitting via defining an optimization
problem of matching measurement data profiles. The optimization variable is either set
to determine the skin friction coefficient or the shear velocity that represents the linear
profile of logarithmic variation of velocity values with respect to the wall units, Eq.(3.1).

Step 4: Velocity boundary condition computation

The velocity values at the displaced computational grid locations of the near wall region
whose measured particle information cannot be captured due to the absence of particle
tracks are approximated using the logarithmic law for which the shear velocity is computed
following the above steps.
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Figure 4.1: Determination of velocity boundary condition with the wall function implemen-
tation over the raw STB data (left). The representative velocity boundary layer
profiles with and without the wall function implementation on VIC+ in compar-
ison to the reference DNS data (right).

Step 5: Complete boundary layer velocity field interpolation

After the VIC+ is applied with the computed boundary conditions for velocity at the dis-
placed locations of the computational domain in the near wall regions, the gap remaining
between the computational domain and the exact wall surface is filled with locally ap-
proximated velocity profiles based on the dense reconstructed fields obtained from VIC+
by means two different interpolation formulations over the viscous sublayer and buffer
layer.

• Viscous Sublayer: The linear relationship of non-dimensional wall normal dis-
tance and normalized velocity is used to approximate the velocity profile within the
viscous sublayer. The Clauser chart method is applied again over the reconstructed
velocity fields of VIC+ locally for each location over the horizontal plane to de-
termine the corresponding shear velocity values. Then the relation of u+ = y+ is
applied within the range of 0 < y+ < 7.

• Buffer Layer: Due to the fact that, an analytical expression for a theoretical
buffer layer is absent and the general form is derived through various interpolation
methods between the viscous sublayer and the turbulent logarithmic layer, a third
order polynomial is fitted using the last two approximated velocity values of viscous
sublayer for 0 < y+ < 7 and the first two available velocity values of logarithmic
layer for y+ > 20. Hence, the uniquely defined polynomial of order third by means
of 4 data points (Li et al., 2020) is used to calculate an approximate velocity profile
for the buffer layer region.

It is worth mentioning that as the presence of non-zero pressure gradient disturb-
ing the equilibrium condition of the turbulent boundary layer do cause the Clauser-chart
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method to yield deviations of velocity profiles from the physical flow behavior. In that
regards the, it is shown by means various empirical studies that the relation of stream-
wise velocity component and the wall-normal distance is a result of overlapping inner
and outer layers of a TBL structure which are defined by different scaling parameters
(Millikan, 1938). Furthermore, Dixit and Ramesh (2008) demonstrated that the match-
ing of overlapping inner and outer layers can be expressed by extending the relation
order to higher degrees of approximations which provides a pressure-gradient scaling of
log law parameters used to reconstruct the streamwise velocity profile in the wall-normal
direction.

Therefore, a non-universal pressure-gradient depending scaling for the log law can be
expressed in terms of varying constants as,

1

κ
=

1

κ(∇p)
C = C(∇p) (4.1)

In that regards, Dixit (2009) proposed a modified Clauser-chart method which utilizes
pressure gradient based polynomial formulations of κ and C in order to perform a opti-
mization over the aforementioned constants to generalize the use of universal logarithmic
laws under various conditions of pressure gradients for equilibrium and near-equilibrium
turbulent boundary layers. Nevertheless, the application of such a modified method for
extraction of local shear velocity values is outside the scope of this thesis and the appli-
cation of a general Clauser-chart method is considered to be appropriate as both numer-
ical validation cases and experimental measurement campaign consisted of either zero or
relatively small pressure gradients that wouldn’t compromise the accuracy of boundary
velocity approximations beyond to required tolerances.

4.2 Arbitrary Eulerian-Lagrangian Method for VIC+

The implementation of ALE method for the Vortex-in-Cell simulations composes of two
main steps in which a computational grid is generated according to the surface information
and the flow governing equations within the VIC framework are solved over the generated
boundary fitted coordinates. Accordingly, the modified version of VIC+ algorithm with
the ALE implementation is referred as ”ALE-VIC+”.

Step 1: Boundary fitted coordinate system generation.

Depending on the availability of the surface information, two different approaches can be
followed to reconstruct the corresponding boundary shapes. If the immersed boundary
shape is known a priori, it is directly provided as an input to the grid generation schemes
along with the appropriate volume dimensions for the boundary fitted coordinate system
to be created. In case where the unsteady motion of the solid boundary is captured by
means of optical measurement methods, the captured structural motion is instantaneously
provided to the grid generation algorithms. Hence, after an initial boundary fitted grid
structure is generated according to the structural boundary profile, the generated mesh is
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deformed by means of the RBF deformation schemes with regards to its instantaneous mo-
tion so that the exact interaction between the fluidic and solid domains can be expressed
in a time-resolved manner.

The formulation of RBF based mesh deformation interpolation method is described
by de Boer et al. (2007). The interpolation function, s, defining the interpolation of
surface displacements to the internal fluid domain, is approximated by a sum of basis
functions φ,

s(x) =

nb∑
j=1

αjφ(‖x− xbj‖) + p(x) (4.2)

where xbj =
[
xbj , ybj , zbj

]
represents the boundary nodes of the interaction surface for

which the displacements values are known. nb refers to the number of nodes defining the
interaction surface while the basis functions φ are constructed based on the Euclidean dis-
tance of internal mesh locations to the boundary nodes. Then, the following interpolation
conditions determine the basis function and polynomial coefficients αj and p.

s(xbj ) = dbj (4.3)

in which db refers to the known displacement values of the boundary nodes. Moreover,
an additional requirement for the closure of the mesh deformation interpolation is defined
for the polynomial q to an order not exceeding the one of polynomial p.

nb∑
j=1

αjq(xbj ) = 0 (4.4)

While the choice of basis function formulations, φ, dictates the degree of p, in case
the φ is selected to be conditionally positive definite, a unique interpolant is associated to
the polynomial q. In fact, provided that the φ are conditionally positive definite with a
polynomial order of smaller or equal to 2, q can be assigned as a linear function (Beckert
and Wendland, 2001). Hence, utilizing this condition enables the exact recovery of the
solid boundary deformations over the interaction surface. Accordingly, a linear system of
equations over the known displacement values of the solid boundaries is constructed to
obtain the coefficients of the basis functions, αj and the linear polynomial.

[
db
0

]
=

[
Mb,b Pb
P Tb 0

] [
α
β

]
(4.5)

where α and β include the basis function and polynomial coefficients respectively. The
matrix Mb,b represents the basis functions computed over the surface boundary locations
with respect to each others and Pb, an nbx4 matrix with row j given by

[
1, xbj , ybj , zbj

]
,

corresponds to the coordinates of each node. The linear system is solved for the coeffi-
cients of the basis function and the polynomial separately for each dimension employing
a Gauss elimination rule (Attenborough, 2003). Finally, internal deformations of the
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computational domain are computed using the basis functions and polynomials whose
coefficients are calculated through the aforementioned steps.

dinj = s(xin,j) (4.6)

There are many choices of radial basis functions to be employed for the mesh de-
formation algorithm. Nevertheless, with the superior accuracy of mesh deformations in
terms of the mesh quality metrics provide by de Boer et al. (2007), CP C2 RBF is utilized
to update the computational grid as the immersed surface deforms or moves within the
measurement domain.

f(ξ) = (1− ξ)4(4ξ + 1) (4.7)

Step 2: Computation of transformations variables for vector operations on
curvilinear coordinates.

According to the updated boundary fitted coordinate system, a one-to-one mapping be-
tween the physical and a computational coordinate systems for the solution of flow gov-
erning equations is performed. This mapping provides the transformation variables to
be used for accurate description of mathematical operators constructing the link between
the two computational grids.

Figure 4.2: Two dimensional representation of the physical curvilinear coordinates (left) and
the corresponding computational coordinates (right)(Fosas de Pando, 2012).

The location of a point as well as a vector in a three-dimensional space is described
means of an appropriate coordinate system. In terms of the physical interpretation of
particles motions, the general convention is to employ the Cartesian coordinates in which
the flow field properties are provided by PIV/PTV measurements. Nevertheless, with
regards to the solid boundary contours interacting with the flow field, the conformation of
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the interaction surfaces may yield curvilinear formations. Therefore, to be able to perform
mathematical calculations of fluid properties on curvilinear grid systems, a transformation
between the computational grid structure and physical coordinates is required.

The computational grid locations of a curvilinear system can be expressed as function
of position vectors defined in Cartesian coordinates,

x2 = x2(x1, y1, z1) y2 = y2(x1, y1, z1) z2 = z2(x1, y1, z1) (4.8)

where subscript 1 and 2, refer to the Cartesian and curvilinear coordinates respectively.
In Cartesian coordinates, the coordinate differentials dx, dy, dz correspond to infinites-
imal distances measured in each directions of the coordinate system. Accordingly, the
transformation variables defining the link between the two coordinate systems can be
expresses by means of a Jacobian matrix,

∂(x2, y2, z2)

∂(x1, y1, z1)
=


∂x2
∂x1

∂x2
∂y1

∂x2
∂z1

∂y2
∂x1

∂y2
∂y1

∂y2
∂z1

∂z2
∂x1

∂z2
∂y1

∂z2
∂z1

 (4.9)

Futhermore, description of a Laplacian operator in boundary fitted coordinate sys-
tems by means of applying the chain rule for derivative terms results in a lengthy expres-
sion with multiple appearances of cross derivatives. Nevertheless, since the Laplacian is
performed over a scalar value, or a single component of a vector, it can be expressed in
terms of the local coordinates of the conformal grid structures with relative ease. In order
to formulate the Laplacian operator in boundary fitted coordinates, local properties of
the conformal grid shall be determined to describe the linkage between the physical and
computational meshes. In that regards, the metrical coefficients of the local curvilinear
coordinate system are calculated considering the coordinate differentials of boundary fit-
ted grid structure. Let the distance between two neighboring points of the curvilinear grid
referred as dlx which corresponds to the Eucledian distance between points (x2, y2, z2) and
(x2 + dx2, y2, z2). Then the metrical coefficients are defined as follows,

hx =

∣∣∣∣dx2dlx

∣∣∣∣ hy =

∣∣∣∣dy2dly

∣∣∣∣ hz =

∣∣∣∣dz2dlz
∣∣∣∣ (4.10)

Hence, these properties are defined for each grid location of the curvilinear mesh and
expressed as a function of the boundary fitted grid coordinates,

hk = hk(x2, y2, z2) k = x, y, z (4.11)

Utilizing the metrical coefficients for the derivative descriptions of the Laplacian op-
erator,

∇2 = hxhyhz

[
∂

∂x2

(
hx
hyhz

∂

∂x2

)
+

∂

∂y2

(
hy
hxhz

∂

∂y2

)
+

∂

∂z2

(
hz
hyhx

∂

∂z2

)]
(4.12)
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Step 3: Vortex-in-cell+ on boundary fitted coordinates.

The calculated transformation variables are utilized for performing gradient and Laplacian
operators for the flow field properties on the physical computational grid of boundary
fitted coordinates while preserving the orientation of the velocity and acceleration vector
on the Cartesian descriptions, which deteriorates the requirement performing vectorial
transformations for multiple instants in each step of the optimization procedure.

Step 4: Cost-function computation.

As the orientation of velocity and acceleration vectors are preserved on the Cartesian
descriptions, the resultant variables over the ALE-VIC+ framework are linearly interpo-
lated at the original particle locations for calculating the error between the dense flow
field interpolation and the measurement data, Eq.(2.18).

Step 5: Adjoint gradient computation and optimization.

Following the exact procedure of adjoint gradient computation introduced for VIC+ with,
additional modifications are implemented to take into account the link between the phys-
ical and computational grid structures. Hence, the adjoint gradient for the proceeding
steps of the optimization procedure is calculated and the optimization procedure is per-
formed until a specified convergence criteria is achieved.
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Figure 4.3: ALE-VIC+ reconstruction framework. The PTV measurements for the structural
component is provided (purple box). The rectangular structured computational
grid is deformed for boundary fitted coordinate generation (black box). The
PTV measurements for the flow is provided (green box). An initial velocity
estimate is made (gray box), which is input into the VIC+ iterative procedure
(blue boxes) to find the optimization variables that yield a velocity and material
derivative distributions of minimum discrepancy with the PTV measurements
(orange box).
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4.3 Surface Pressure Reconstruction with Boundary Fitted
Coordinates

Deforming surfaces within the measurement volume yield non-uniformly shaped solid
bodies that interact with fluid particles and dictate their motion. Treating these surfaces
with uniformly structured grids and defining a computational domain accordingly, not
only compromises the numerical definition of pressure reconstruction process but also but
also leads to the loss of proper surface description (Pan et al., 2016). Hence, in order
to handle the unsteady deformations, the complete computational domain defining the
pressure reconstruction region is to be deformed over an initially uniform structured grid
by implementing suitable mesh deformation algorithms.

4.3.1 Interpretation of the Arbitrary Lagrangian-Eulerian Method

The ALE framework for FSI problems refers to the characterization of fluid properties
over a predefined grid system complying with the Eulerian perpective while the motion
ofthe interaction interface is identified following a Lagrangian approach (Noh, 1963). In
case of planar or tomographic particle image velocimetry providing gridded velocity fields
directly after the image processing procedures, the acceleration can be computed following
an Eulerian approach or pseudo-particle tracking methods. Whereas, the tomographic
particle tracking techniques or recently developed Shake-the-Box (STB) algorithm provide
scattered particle information of particle locations, velocities and material accelerations
which is required to be gridded on the prescribed computational grid to represent flow
field properties.

Furthermore, motion of the structural surfaces is generally captured in terms of a
Lagrangian approach where the surface motion traced using various methods of surface
tracers (Hwang et al., 2007). Hence the acquired particle tracking information, describing
the motion of immersed boundaries, is preserved on the Lagrangian perspective in order
to impose the corresponding deformations to the computational grid. Moreover, the
accelerations of surface boundary tracers are incorporated with the fluid behavior to
represent the exact pressure gradients over the interaction interface, which are to be
integrated for reconstructing the pressure distributions over the immersed surfaces.

Step 1: Generation of the computational grid.

There exists a various number of well established approaches for boundary conforming
grid generation. Although these algorithms are commonly employed in many computa-
tional studies, the specific purpose of the boundary fitted surface pressure reconstruction
approach proposed in this thesis is to handle unsteady deformations of the immersed
boundaries for characterization of FSI problems. Among the many methods that have
been introduced for efficiently updating the grid structure in between time steps of bound-
ary deformations/motions, the present algorithm of pressure reconstruction employs a ra-
dial basis function based mesh deformation scheme. Similar to the ALE-VIC+ approach,
the choice of radial basis function type for the mesh deformation scheme is made in favor
of CP C2 RBF, Eq.(4.7).
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Step 2: Determination of pressure gradients.

Considering the form of Navier-Stokes equations for incompressible flows, the pressure
gradients over a measurement volume can be expressed in terms of the material acceler-
ation terms, body forces and viscous stresses. Among these various contributing factors,
the practical applications of engineering products are mainly dominated by turbulent flow
behavior where the inertial forces reveal a significant superiority over the viscous influ-
ence. Therefore, referring to the aforementioned discussion on the negligible contribution
of viscosity in Subsection 2.3.1, the viscous effects can be omitted without any significant
impact observed within the uncertainty limits of pressure reconstruction schemes from
PIV data. Furthermore, under the assumption of conservative body forces, its contribu-
tion to the pressure gradients is also removed from the momentum transport equation.

According to the various comparative review studies, the superiority of Lagrangian
methods for determination of material acceleration in terms of accuracy and reliability is
comprehensively documented. Therefore, the current method also utilizes the Lagrangian
acceleration information either captured by particle tracking approaches such as STB or
reconstructed by means of various data augmentation methods. Therefore, the material
derivatives of velocity vectors are provided to the divergence of Navier-Stokes equation,
Eq.(2.4), in order to determine the pressure gradients.

Step 3: Transformation of the coordinate system.

The conformal mapping provided by means of the previously mentioned grid generation
schemes enables the direct or assimilated experimental flow information to be represented
over the exact boundary contour. However, constructing a Poisson equation for the inte-
gration of pressure gradients over a curvilinear grid structure not only requires an exten-
sive derivation of transformation variables in order to preserve the physical orientation of
flow properties, but also prevents the use of Fast FFT solvers for increased computational
efficiency.

The pressure gradients assigned to each computational grid location possesses a phys-
ical orientation which is in compliance with the Cartesian coordinate system. However,
in order to express the pressure gradients over the computational grid, the local transfor-
mation variables between the physical and computational grid formations are determined
according to the vector transformation Jacobian. Hence, employing the chain rule to
represent the pressure gradients over the computational grid with indicial components of
x2, y2, z2,

∂p

∂x2
=

∂p

∂x1

∂x1
∂x2

+
∂p

∂y1

∂y1
∂x2

+
∂p

∂z1

∂z1
∂x2

∂p

∂y2
=

∂p

∂x1

∂x1
∂y2

+
∂p

∂y1

∂y1
∂y2

+
∂p

∂z1

∂z1
∂y2

∂p

∂z2
=

∂p

∂x1

∂x1
∂z2

+
∂p

∂y1

∂y1
∂z2
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(4.13)

Accordingly, a FFT based Poisson solver can be employed in consideration of a fully
rectangular structured grid formation. Finally, as the pressure gradients are integrated
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over the computational grid, the resultant scalar variables of static pressure distribution do
not necessitate any additional transformations between the computational and physical
grid structures, thus the pressure information possesses an exact one-to-one mapping
between the two grids.

Step 4: Integration of pressure gradients.

The integration of pressure gradients within the measurement domain is performed using
the Poisson equation constructed in Eq.(2.4) is solved for the pressure distribution using
homogeneous Neumann boundary conditions at each face of the computational domain.

-1
0

1X [m] -1

0

1

Y [m]

0

0.5

1

Z 
[m

]

Neumann	Boundary	
Condition

Dirichlet Boundary	
Condition

Figure 4.4: Schematic of boundary condition implementation for the pressure reconstruction
procedure with the light blue surfaces representing the Neumann boundaries
while the red dot corresponds to the reference pressure location for uniqueness
of exact static pressure values.

Step 5: Dirichlet boundary condition determination.

For the validation studies the exact pressure information at a specified location is provided
from the reference cases while the determination procedure of a reference pressure value for
the experimental measurement campaign is performed over the velocity values captured
at a reference pressure location. The corresponding velocity magnitude is utilized to
calculate the exact static pressure value via the Bernoulli principle.

4.4 Immersed Boundary Treatment for VIC+

Implementation of the immersed boundary treatment for VIC+ method is based on the
theory of vector decomposition provided via the Helmholtz theorem. As the VIC method
allows rotational component of the flow behavior to be characterized by means of dis-
tributed vortices and their respective velocity induction over a prescribed domain, the
potential flow component of the velocity field due to the presence of a non-uniform sur-
face intrusion is characterized by superimposing an additional velocity field to satisfy the
appropriate boundary conditions. The proposed modification is named ”ImVIC+”.
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Assignment	of	
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Figure 4.5: ImVIC+ reconstruction framework. The PTV measurements for the flow is pro-
vided (green box). An initial velocity estimate is made (gray box). The PTV
measurements for the structural component is provided (purple box). Surface
elements are assigned with singularities (black box). The resultant velocity fields
is used as an input into the VIC+ iterative procedure while velocity fields are cor-
rected with immersed boundary treatment (blue boxes) to find the optimization
variables that yield velocity and material derivative distributions of minimum
discrepancy with the PTV measurements (orange box).

Step 1: Solid boundary characterization.

In case of experimental campaigns composed of a FSI problem where a physical solid
boundary is intruding the fluid domain, there exist two options for the determination of
locations and surface contours of the solid object. For a vast majority of experimental
campaigns, the solid object location and shape are known apriori since the experiment
is planned accordingly including the object location, its aerodynamic form and various
possible orientations with respect to the flow direction. Another approach recently being
test over the course of this thesis project as well, is to provide simultaneous measurements
of the solid boundary tracers in order to determine the location and shape of the structure
interacting with the fluid. Considering the structural information is obtained by means of
either one of the aforementioned approaches, the solid boundary surface is characterized
by means of quadrilateral panels each equipped with singularity elements of sources and
doublets to introduce a scalar potential influence of the physical intrusion.

Step 2: Surface singularity attachment and potential influence determination.

With the singularity elements attached to the solid boundary surface by means of quadri-
lateral panels, the scalar potentials induced by each source and doublet element are com-
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Surface	tracers

Collocation	points

Figure 4.6: Surface description for the periodic hill structure with surface tracers indicated
with black dots and collocation points with red dots for the corresponding quadri-
lateral panels.

puted both over the surface elements and the complete computational domain. Elaborat-
ing on the potential induced by a single surface element composed of a quadrilateral source
and a quadrilateral doublet, the respective influences of both singularity components are
computed via following the formulations of (Katz and Plotkin, 2001).

Figure 4.7: Coordinate system representation for the quadrilateral panel.

First of all, collocation point for the panel of interest is calculated at the central
location of four points composing a quadrilateral surface,

cx =
x1 + x2 + x3 + x4

4
cy =

y1 + y2 + y3 + y4
4

cz =
z1 + z2 + z3 + z4

4
(4.14)

and the corresponding unit vectors for the panel surface are computed to generate a local
coordinate system.

ux =
x1 + x2 − (x3 + x4)

2
uy =

y1 + y2 − (y3 + y4)

2
uz =

x1 + z2 − (z3 + z4)

2

px =
x3 + x2 − (x1 + x4)

2
uy =

y3 + y2 − (y1 + y4)

2
pz =

x3 + z2 − (z1 + z4)

2

(4.15)
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then the final unit vector o is determined by the cross product of n and u. Proceeding the
generation of a local coordinate system for the quadrilateral panel, the scalar potential
induced by a constant source panel

Φ =
−σ
4π

[(
(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

d12
ln
r1 + r2 + d12
r1 + r2 − d12

+

(x− x2)(y3 − y2)− (y − y2)(x3 − x2)
d23

ln
r2 + r3 + d23
r2 + r3 − d23

+

(x− x3)(y4 − y3)− (y − y3)(x4 − x3)
d34

ln
r3 + r4 + d34
r2 + r3 − d34

+

(x− x4)(y1 − y4)− (y − y4)(x1 − x4)
d41

ln
r4 + r1 + d41
r4 + r1 − d41

)

−‖z‖

(
tan−1

(
m12e1 − h1
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)
− tan−1

(
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zr2

)
+
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(
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zr2

)
− tan−1

(
m23e3 − h3

zr3

)
+

tan−1
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m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)
+

tan−1
(
m41e4 − h4
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))]

(4.16)

and a quadrilateral dipole, whose equivalent is a vortex ring,

Φ =
µ

4π

[
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)
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zr2

)
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)
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)
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)
+
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(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
(4.17)

at a point P of coordinates (x,y,z,) are computed following aforementioned equations
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where,

m12 =
y2 − y1
x2 − x1

m23 =
y3 − y2
x3 − x2

m34 =
y4 − y3
x4 − x3

m41 =
y1 − y4
x1 − x4

rk =
√

(x− xk)2 + (y − yk)2 + z2 k = 1, 2, 3, 4

ek = (x− xk)2 + z2 k = 1, 2, 3, 4

hk = (x− xk)(y − yk) k = 1, 2, 3, 4

(4.18)

in which the parameters σ and µ refer to the strengths of sources and dipoles respectively
whose values are to be determined according to the appropriate boundary conditions
imposed over the solid boundary surface.

Step 3: Vortex-in-Cell method application for rotational component calcula-
tion.

The initial estimation for the velocity field information is provided in terms of a freestream
velocity value which is composed of an irrotational component of vorticity absence. Hence,
the computational grid locations are equipped with pointwise vortices of zero strength and
the vorticity distribution over computational domain is utilized to compute the velocity
distribution in accordance to the boundary conditions containing the freestream condi-
tions for the velocity vector magnitudes using the Vortex-in-Cell method.

Step 4: Determination of potential flow component.

The calculated velocity field based on the initial estimation yields a flow field that pene-
trates through the physical intrusion surfaces for which a no-through boundary condition
applies physically. Therefore, the normal velocity components for each panel are calcu-
lated via a dot product of the local velocity vectors with the surface normals and equated
to the relative source strengths of the corresponding panels.

σi = ni ·Vi (4.19)

where i indicates the corresponding panel of interest. The reason for equating the source
strengths to the normal velocity magnitudes is referred to the fact that for non-lifting flows
especially, the wall penetration of the flow in counteracted directly by means of source
elements and it allows to reduce the strengths of the dipoles for numerical uniqueness
(Tarafder et al., 2010).

Furthermore, since the self induced scalar potential should vanish at collocation points
over a surface of singularities (Lewis, 1991), the dipole strengths are calculated by con-
structing a linear system of equations that total sum of potential induction at the central
locations of the quadrilateral panels equals to zero.

N∑
i=1

aiµi +

N∑
i=1

biσi = 0 (4.20)
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where N represents to the total number of panels, ai and bi correspond to the influence
coefficients of constant dipoles and sources at the panel i respectively. Even though,
equating source strengths directly to the normal velocity magnitudes at each panel surface
provides an elevated numerical uniqueness for the linear system, depending on the surface
shape and flow state, there exists a possibility of singularity for the coefficient matrix.
Hence, in order to guarantee solubility of the linear system of equations, two different
physical conditions of Kutta condition (Houghton et al., 2017) and Kelvin’s theorem
of total circulation conservation (Panton, 2020) can be defined to confine the doublet
strengths. In order to establish a higher level of genericity including both lifting and
non-lifting flows, conservation of total circulation is utilized to drive the system to be
overdetermined and imposes the corresponding vortex rings (dipoles) to comply with the
conversation of circulation while their strengths are being determined. The corresponding
overdetermined linear system is solved employing a least squares method (Soifer, 2013).

Step 5: Potential velocity component computation.

The determined strengths of the surface singularity elements are employed to compute
the scalar potential field over the complete computational domain utilizing the influence
coefficients computed at Step 2. The calculated scalar potential field is differentiated in
all three dimensions to determine the corresponding velocity vector components.

uφ =
∂φ

∂x
vφ =

∂φ

∂y
wφ =

∂φ

∂z
(4.21)

Step 6: Resultant velocity and acceleration field determination.

The velocity fields of rotational and irrotational components are superimposed to calculate
the resultant velocity field distributions.

u = uω + uφ (4.22)

The corresponding velocity vorticity fields are utilized to calculate the material deriva-
tive distributions over the computational domain in accordance to the inviscid Navier-
Stokes formulation.

Step 7: Cost function determination and optimization procedure.

The cost function for the optimization procedure is determined over the error accumula-
tion of velocity and material acceleration values at the original particle track locations in
comparison to the measured data. For the optimization procedure, it is assumed, due to
the dependence of the potential flow component to the rotational elements, that the errors
directly relate to the Vortex-in-Cell base which is dictated by the vorticity distributions.
Hence, for each step of the optimization procedure, the gradient is calculated in terms of
the vorticity strengths and the corresponding potential flow component is calculated to
correct the velocity field distributions in order to satisfy the physical boundary condition
of no penetration through the solid surfaces.
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4.5 Solenoidal Basis Reconstruction of Dense Velocity Fields
with Material Accelerations

Unlike the the Vortex-in-Cell model where the vorticity distribution is determined over a
distribution of circulation strengths and the velocity field in computed using the Poisson
equation, the velocity field is reconstructed by means of a divergence free matrix-valued
radial basis function formulation. Hence, the optimization variables are assigned to be the
RBF weights for the velocity distribution. The solenoidal basis reconstruction algorithm is
christened as ”Sol+” where the sign ”+” refers to the fact that the material accelerations
are also included over the momentum conservation equation to the optimization problem.

The framework of the dense flow field interpolation with solenoidal basis functions is
constructed in the following manner.

Step 1: Matrix valued RBF computation for solenoidal basis.

The matrix-valued radial basis functions are computed using a scalar RBF of Gaussian
type over the computational domain for the interpolation procedure.

Φ(r) = [∇∇T −∇2I]e−
r2

2σ2 (4.23)

where r2 = ‖x‖ and σ refers to the global support for the Gaussian scalar radial basis
function.

Step 2: Initial weight computation for solenoidal RBF interpolation.

The initial weights of the matrix-valued radial basis functions are determined from the
initial condition for the velocity distribution either provided via a linear interpolation of
the scattered measurement data or a predefined initial condition of freestream velocity
value.

u = ΦΓ (4.24)

Step 3: Velocity field reconstruction by solenoidal RBF interpolation.

The velocity distribution is computed using the solenoidal RBF interpolation over the
computational domain. Hence complying with the density theorem of Lowitzsch (2005),
the linear combination of arbitrary number of matrix-valued radial basis function which
individually satisfy the divergence free condition, yields a solenoidal velocity field that
provides consistent imposition of mass conservation throughout the optimization proce-
dure.

u1(x)
u2(x)
u3(x)

 =
m∑
i=1

φyy + φzz −φxy −φxz
−φxy φxx + φzz −φyz
−φxz −φyz φxx + φyy


i

Γi (4.25)
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where the velocity vector u is defined at an arbitrary point x and Γi corresponds to the
radial basis function weights. φ refers to the scalar valued Gaussian radial basis function,

φ = e−
r2

2σ2 (4.26)

Then the vorticity distribution is computed by applying the discrete curl operator
to the velocity field using second order finite difference approximations for the velocity
gradients.

Step 4: Material acceleration field reconstruction.

The local time derivative of vorticity is computed using the vorticity transport equation
where the previously calculated velocity and vorticity fields are employed to compute its
components, Eq.(2.13). Then, the local time derivative of velocity is computed similar
to VIC+ procedure via applying the temporal derivation on both sides of the Poisson
equation relating vorticity to velocity for which the resultant equation is solved with the
Dirichlet boundary conditions at all faces. Then, the complete Lagrangian acceleration
terms are obtained by combining the local time derivative component of velocity data
with the convective terms of the velocity field, Eq.(2.14).

Step 5: Adjoint gradient computation for the optimization procedure.

For the optimization procedure to drive towards the experimental data of velocity and
acceleration information, a gradient of the cost function J is required. As the opti-
mization procedure is performed over a large number optimization variables, namely the
particle strengths of the solenoidal velocity distribution, an efficient gradient computation
procedure is required in order to maintain the computational resource requirements at
acceptable levels. Therefore, the adjoint gradient procedure discretized within the VIC+
algorithm of Schneiders and Scarano (2016) is employed.

In terms of computing the adjoint gradient contribution of the solenoidal matrix
valued radial basis functions, the self-adjoint definition of Hermitian matrices is used
where a complex square matrix, in this case of a real square matrix since there is no
imaginary part for the interpolator, that is equal to its conjugate transpose is referred
as a Hermitian matrix, thus is self-adjoint (Frankel, 2004). Therefore, throughout the
adjoint gradient comptutation, the direct gradient term for the particle strength vector
is computed by applying the matrix operation of the solenoidal interpolation function to
the penultimate gradient vector.

4.6 Solenoidal Basis Reconstruction of Dense Velocity Fields
with Irrotational Material Accelerations

With regards to the formulation of inviscid Navier-Stokes equations, the Lagrangian ac-
celeration terms are equal to the pressure gradients. Since the static pressure is a scalar
variable, the vector identity of gradient of a scalar component refers to an irrotational
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Figure 4.8: Sol+ reconstruction framework. The PTV measurements for the flow is provided
(green box). An initial velocity estimate is made (gray box). The initial strengths
for the vector valued divergence free radial basis functions are calculated where
the resultant velocity fields is used as an input into the VIC+ iterative procedure
(blue boxes) to find the optimization variables of vectorial velocity strengths that
yield velocity and material derivative distributions of minimum discrepancy with
the PTV measurements (orange box).

vector field. Therefore, the consistent formulation of NS equations demand the material
acceleration vector field to be curl free. Therefore, acceleration fields computed with the
elements of velocity and vorticity constructed by means of the steps introduced for Sol+,
are regressed with an irrotational Gaussian basis to increase the mathematical coherence
of the material acceleration terms with the flow governing equations. The addition of
the irrotational Gaussian process regression over the Sol+ algorithm yielded the modified
name of ”ISol+”.

4.6.1 Irrotational Gaussian Process Regression

Employing the Gaussian process regression approach introduced by Azijli and Dwight
(2015) using solenoidal radial basis functions for cancellation of divergence errors accumu-
lated within experimental data acquisition and processing techniques, the matrix valued
radial basis function formulation is modified to yield a curl free structure. The resultant
method is referred as the Irrotational Gaussian process regression (IGPR). IGPR is used
to filter non-zero curl vector components on the material acceleration fields considering
the contribution of the viscous terms are negligible in most practical applications where
the fluid behavior is associated with turbulent flow features at relative high Reynolds
number values.

Φ(x) = −∇∇Tφ(x) (4.27)

Accordingly, the matrix-valued RBFs can be formulated in relation to the objec-
tive vector field. As demonstrated for the solenoidal reconstruction basis, the relevant
treatment of scalar valued interpolation function can yield irrotational vector fields. In-
troduced by Fuselier and Wright (2015), the curl-free RBF interpolation is formulated by
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applying the divergence operator to the scalar valued RBF which results in a scalar inter-
polation field, then the gradient operator is applied to obtain the matrix-valued RBF with
three dimensional vectorial components that construct an irrotational vector field. Hence,
Eq.(4.27) determines an analytically irrotational vector field via the function weights in
accordance to the density theorem of Lowitzsch (2005) which proves the reconstruction
of a curl-free vector field by means of multiple curl-free vector fields.

PTV	Measurements
Fluid

RBF	Strengths

Γ Γ Γ Γ
Γ Γ Γ Γ
Γ Γ Γ Γ

Apply	IGPR	on	Duh/Dt

Figure 4.9: ISol+ reconstruction framework. The PTV measurements for the flow is pro-
vided (green box). An initial velocity estimate is made (gray box). The initial
strengths for the vector valued divergence free radial basis functions are cal-
culated where the resultant velocity fields is used as an input into the VIC+
iterative procedure (blue boxes) to find the optimization variables of vectorial
velocity strengths that yield velocity and material derivative distributions of
minimum discrepancy with the PTV measurements (orange box).

The numerical implementation procedure follows a similar approach to Sol+ where
the only modification is made posterior to the material acceleration field computation.
Hence, the corresponding adjoint gradient calculation procedure is modified accordingly.

Computation of Velocity and Material Acceleration Distribution

• Following the exact steps of Sol+ algorithm throughout the velocity calculation
procedure from the solenoidal matrix valued radial basis functions, the resultant
velocity field prior to the acceleration computation is ensured to be mass conserva-
tive.

• The correct vorticity field corresponding to the solenoidal velocity distribution is
computed via applying the curl operator.

• The resultant velocity and vorticity fields are utilized over the vorticity transport
equation to obtain local time derivative for vorticity evolution in time, which is used
to construct the Poisson relation to be solved for local time derivative of velocity.
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• As the convective and temporal terms for the material accelerations are computed
using the available velocity and vorticity information, IGPR is applied on the resul-
tant Lagrangian acceleration distribution to ensure of its irrotationality.

Computation of Adjoint Gradient

The adjoint gradient computation procedure is modified to include the IGPR method for
the material acceleration field computation. The modified algorithm proceeds with the
steps introduced for Sol+ exactly while only implementing the IGPR over the gradients
computed for the material acceleration for their contribution to the optimization variables.
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Chapter 5

Validation Studies

The performance specifications of the proposed algorithms of combining computational
frameworks with experimental post processing procedures in Chapter 4 are characterized
by means of various theoretical, numerical and experimental cases. First of all, DNS
simulations of a well-developed turbulent channel flow is employed for the verification of
the wall function implementation where a preliminary characterization of the base VIC+
algorithm is also performed without any modifications to the reference dataset towards
stimulation of realistic large scale experimental conditions, Section 5.1. Then, DNS sim-
ulations of a flow over periodic hill case is utilized for the verification of both ALE-VIC+
and ImVIC+ methods in Section 5.2 and Section 5.3 respectively. Moreover, for the char-
acterization of accuracy specifications of surface pressure reconstruction approach with
boundary fitted coordinate systems, the exact fully 3D solutions for the unsteady incom-
pressible Navier-Stokes equations defined by Ethier and Steinman (1994) are used where
the uncertainty quantification is performed with Monte Carlo simulations (Metropolis and
Ulam, 1949), Section 5.4. Finally, the comparative assessments of Sol+ and ISol+ algo-
rithms with the present VIC+ method are established over a theoretical flow field of wave
lattice forms and the experimental investigation of a transitional circular jet performed
by Violato and Scarano (2011), Section 5.5.

5.1 Wall Function Approach for VIC+

The wall function approach for approximating the streamwise velocity component for
the application of VIC+ procedure for the purpose of reconstructing time-resolved dense
velocity and acceleration fields from scattered particle tracking data is validated over
direct numerical simulations of a well-developed channel flow.

The DNS simulations for the well-developed channel flow is generated over a domain
of 3 × 2 × 3 h3 where h corresponds to the channel height. The inflow conditions are
stated to compose of a non-dimensional velocity of 2/3 at a Reynolds number of 2× 105.
The time step size is given as ∆t = 0.085 in non-dimensional time units. The flow field
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information is extracted after the well-developed conditions for the turbulent boundary
layers are established for which pressure gradients within the boundary layer where zero.

Table 5.1: Simulation and boundary layer parameters for the DNS simulation of well-
developed channel flow.

Bulk flow velocity ubulk 2/3
Bulk Reynolds number Rebulk 20,000
Friction Reynolds number Reτ 550
Friction velocity uτ 0.0367

In order to provide an accurate representation of scattered particle track information
the DNS results are randomly sampled with various concentrations (500 par/h3, 1000
par/h3 and 2000 par/h3) of particles throughout the computational domain with respect
to various concentration specifications employed for the initial validation studies of VIC+
(Schneiders and Scarano, 2016). Simulation of particle tracking velocimetry data struc-
ture of particle tracks providing Lagrangian flow information with velocity and material
acceleration properties is achieved via a pseudo-particle tracking approach applied over
the instantaneously extracted flow field data. The procedure is initiated with random
downsampling of high density flow information of the DNS data field in accordance to
the prescribed particle concentrations for a selected time instant. Then a Runge-Kutta
4 (Zheng and Zhang, 2017) time integration procedure is followed to compute the par-
ticle propagation in time for an interval of 2 time units where the first consecutive time
instant is utilized as a intermediate step to increase the accuracy of the numerical integra-
tion processes. In order to minimize the truncation error propagation due to the numerical
approximations, the integration procedure is applied in both forward and backward direc-
tions in time. In accordance to the preferred track lengths documented to yield accurate
fluid properties for Shake-the-box algorithm, the tracks selected to be composed of 7 par-
ticles whose motion is reconstructed over 13 time instants centering the time instant of
interest. Then the particle track locations are equiped with 0.2 voxels of Gaussian noise
in all three dimensions to stimulate measurement and reconstruction errors. Finally, the
corresponding particle tracks are normalized with polynomials of order 2 to compute ve-
locity and material acceleration properties. Moreover, in order to account the fact that
presence of particles in the near wall region is a rare situation, particles within the close
proximity of the wall are removed from the analyzed data sets wit y+ ∼50 considered to
be the threshold for track removal, Fig.5.1.

Each individual case of particle densities are reconstructed with VIC+ using various
grid spacing specifications according to the relative track concentrations available in the
computational domain. Three main interpolation approaches are evaluated in comparison
to each other. The AGW and trilinear interpolation methods are initially performed both
to provide a baseline of reconstruction improvements as well as for boundary condition
determination. Secondly, VIC+ is applied considering the full computational domain
starting from the exact wall surface, hence the velocity values comply with the no-slip
boundary condition at the wall locations. Finally, the available particle track informa-
tion is binned in order to capture flow physics independent of any possible errors linear
interpolation introduces which is used as the input of wall function approach. Thus, the
computational domain is displaced in the wall-normal direction with y+ ∼20 and the
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Figure 5.1: Downsampled particle tracks with concentrations of 500 par/h3 (top-left),
1000 par/h3 (top-middle) and 2000 par/h3 (top-right) colored with the non-
dimensional streamwise velocity, u+. Particle distribution of available tracks
(white) and removed tracks (red) at C= 2000 par/h3 (bottom-left). Particle
distributions of full and reduced particle tracks along the wall-normal direction,
plotted with averaged DNS streamwise velocity profile (bottom-right).

boundary condition for the streamwise velocity component is obtained from the recon-
structed local log law profile following the aforementioned procedure. Finally, proceeding
the application of the VIC+ algorithm, the resultant velocity field information is utilized
to reconstruct the streamwise velocity profiles throughout the viscous and buffer layers
of the TBL structure.

The results of these different approaches are compared in terms of instantaneous
streamwise vorticity fields as well as the spatial statistics of velocity profiles in compar-
ison to the reference DNS data. As an initial demonstration of VIC+’s capability for
dense reconstruction of flow field information, it is applied directly to the downsampled
scattered DNS data at different particle concentrations without performing any of the
aforementioned manipulations for realistic measurement stimulation.

According to the well-developed turbulent boundary conditions established within
the channel walls the vortical structures observed for the reference DNS solution reveal
a forest of hairpin vortices that form arch-like structures in the outer layer as the large
vortical structures shed by unstable streaks disturb the containment of quasi-streamwise
vortices in the near-wall region. The resultant flow behavior is characterized by the
reorganization of near-wall streaks with the pattern of well-known wall turbulent of vortex
streak appearances with a spacing of y+ ∼100 non-dimensional wall units, (Eitel-Amor
et al., 2014). The computational domain for the VIC+ application is selected to be
constructed around a near-wall vortex streak located at Z/h=0.35 (illustrated with ωx =
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Figure 5.2: Instantaneous non-dimensional streamwise vorticity profiles of ωx = -2.5 (blue)
and ωx = 2.5 (yellow) with reference DNS results (top), AGW (1st column),
trilinear interpolation (2nd column), VIC (3rd column) and VIC+ (4th column)
with C= 500par/h3 (1st row), C= 1000 par/h3 (2nd row) and C= 2000 par/h3

(3rd row).

2.5, yellow) where the roll up hairpin vortices are illustrated with both vorticity isosurface
levels of ωx = 2.5 (yellow) and ωx = −2.5 (blue).

As demonstrated by the vorticity distributions over the computational domain (Fig.5.2)
and the velocity profiles for mean and fluctuating velocity components (Fig.5.3), the ap-
plication of VIC+ elevates the accuracy of the dense reconstruction of velocity fields
using flow governing equations to approach to the objective of measured data informa-
tion establishing a greater level of correlation with the physical features of the flow while
increasing the spatial resolution characteristics of the instantaneous flow field. For the low
concentration case of C= 500 par/h3, the AGW, linear interpolation and VIC completely
fails to capture any of the vorticity features represented for the reference solution of the
DNS simulations while application of VIC+ enables the reconstruction of local vorticity
presence even though their resemblance to the physical flow behavior is barely acknowl-
edged. Nevertheless, as the particle concentration is increased, the agreement of both the
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linearly interpolated and VIC+ applied initial low resolution data with the reference field
is increased since it provided more particles to approach to the reference case in terms of
shorter distances for linear interpolation and in terms of greater number of optimization
objectives driving the VIC+ procedure closer to the resultant flow fields.
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Figure 5.3: Profiles of mean streamwise and fluctuating velocity components reconstructed
with reference DNS, linear interpolation, VIC and VIC+ over particle concen-
trations of with C= 500 par/h3 (1st row), C= 1000 par/h3 (2nd row) and C=
2000 par/h3 (3rd row).

Similarly, the boundary layer velocity profiles relate to the comparative accuracy
characteristics of VIC+ against the aforementioned set of interpolation methods. While
the lowest particle track density over the prescribed computational domain yielded similar
profiles fluctuating velocity components for all reconstruction approaches with inadequate
levels of agreements with the reference profiles, increasing particle concentrations revealed
the superiority of VIC+ for enabling the resolution of instantaneous flow features espe-
cially for the secondary flow structures in comparison to VIC. Finally, in terms of the
spanwise average of streamwise velocity profiles, small improvements obtained with the

M.Sc Thesis Bora O. Cakir



84 Validation Studies

application of VIC+ whereas VIC and linear interpolation yielded similar accuracy spec-
ifications, Fig.5.3.

Figure 5.4: Instantaneous non-dimensional streamwise vorticity profiles of ωx = -2.5 (blue)
and ωx = 2.5 (yellow) with reference DNS results (top), trilinear interpolation
(1st column), VIC+ no-slip BC (2nd column) and VIC+ with wall function
application (3rd column) with C= 500 par/h3 (1st row), C= 1000 par/h3 (2nd

row) and C= 2000 par/h3 (3rd row).

For the cases that necessitate the employment of wall function approach for velocity
boundary condition approximation due to the absence of particles close to wall, there
exists a clear underestimation of the velocity magnitudes below the threshold of y+ ∼50
where the particles from the downsampled reference data set are removed, Fig.5.20. This
is due to two main reasons. First of all, the velocity profiles within the viscous sub-
layer represent a linear relationship between u+ and y+. As the normal distance to the
wall is increased the relation transitions towards a logarithmic one over the buffer layer.
Therefore, when the linear interpolation of scattered particle information is performed on
the structured computational domain providing the information of a non-slip boundary
at the wall surface, the linear interpolation in the region of absence of particles causes
the velocity profiles fall short of the actual flow velocities. Moreover, the absence of any
particles within that regions leaves the optimization procedure absent of any objective
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measurement information for which the VIC+ algorithm cannot define a suitable gradi-
ent to modify the vorticity distribution accordingly, Fig.5.4. Even though, the Gaussian
distribution of radial basis function weights for pointwise circulation strength definition
encapsulate more than one neighboring points for its modification throughout the opti-
mization cycle, the scaling of its relative influence with the distance to a error definition
location is considerable small to perform necessary modifications on the radial basis func-
tion weights to capture the physical flow behavior. Hence, the initially provided velocity
profiles remain mostly unchanged which reveals the deteriorated velocity profiles recon-
structed by the linear interpolations to persist even when the VIC+ is applied.
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Figure 5.5: Profiles of mean streamwise and fluctuating velocity components reconstructed
with reference DNS, linear interpolation, VIC+ no-slip BC and VIC+ wall func-
tion application over particle concentrations of with C= 500 par/h3 (1st row),
C= 1000 par/h3 (2nd row) and C= 2000 par/h3 (3rd row).

Utilizing the wall function approach implementation for VIC+ enabled proper charac-
terization of the unresolved regions of viscous and buffer layers, due to the aforementioned
reasons of invalidity of adapted flow governing equations and absence of particle tracks.
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As the local velocity profiles for the turbulent boundary layer specification captured via
binning the available particle information are used to compute the skin friction coefficients
for the logarithmic law equations, the spanwise average of streamwise velocity profiles are
reconstructed with a great agreement to the reference velocity profiles in comparison to
the standard VIC+ method. However, owing to the fact that the Law of the wall provides
an universal representation for the turbulent boundary layer profiles of average streamwise
velocity specifications, fluctuating components revealed significantly low magnitudes to
meet the reference profiles although the logarithmic profiles are computed locally in the
wall normal direction. Nevertheless, a slightly improved fluctuation profiles are attained
over the sublayers with the wall function implementation in terms of the streamwise ve-
locity, as the interpolations for sublayer velocity profile reconstruction utilized available
particle information above y+ ∼ 50 whereas for the standard algorithm of VIC+ with the
application of no-slip boundary condition at the exact wall location a retarded velocity
variation from the surface to the first particle available region is caused by the smooth
gradients of velocity variation in absence of any objective variables.

Furthermore, due to the fact that the wall function application only handles the
streamwise velocity components as boundary conditions while the spanwise and normal
velocity components are computed based on the same linear interpolation used for the
no-slip boundary condition implementation, the spatially averaged fluctuation levels yield
similar profiles to the with the VIC+ results of no-slip boundary condition. The major
difference is observed below 0.4 with which the computational domain of the wall function
applied VIC+ is displaced. Hence, whilst the VIC+ with no-slip boundary condition in-
cluded that region within the computational grid of the VIC+ which slightly modifies the
velocity values of the secondary components according to the viscosity transport equation,
for the case of the VIC+ with wall function application that region is filled proceeding
the VIC+ application using linear interpolations in terms of the secondary velocity com-
ponents between the initial layer of the computational grid and the no-slip boundary of
the wall surface. Thus, this linear interpolation introduces a slight underestimation of
those velocity components compared to the full computational grid including the exact
wall surface for the VIC+ with no-slip boundary condition.

5.2 Arbitrary Lagrangian-Eulerian Method for VIC+

Validation studies of the proposed ALE-VIC+ method are performed with a direct nu-
merical simulation (DNS) of flow over periodic hills. The simulations are conducted with
a computational domain composed of two consecutive hill forms connected over a region
of 144 h3, where h represents the non-dimensional heights of the hills. Hence, the length
dimensions of the domain in Cartesian coordinates are provided over normalized values
with h. The numerical simulations are performed with periodic boundary conditions
connecting the inflow and outflow boundary conditions while the non-uniform surface
contours of the hills are treated by means of an immersed boundary method to account
for their influence over the fluidic domain (Chen et al., 2014). The inflow conditions are
adjusted with a non-dimensional initial velocity distribution of u = 1 which corresponds
to a hill height based Reynolds number of Reh = 10, 595 as the non-dimensional kinematic
viscosity is prescribed to be ν = 9, 45× 10−5.
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Figure 5.6: Instantaneous non-dimensional streamwise vorticity profiles of ωx = -10 (purple)
and ωx = 10 (white) with non-dimensional streamwise velocity distribution over
Z=0 plane for reference DNS results.

In order to simulate the PTV data structure for the validation dataset, the previously
employed pseudo-particle tracking approach for the DNS simulations of the well-developed
channel flow case is utilized. Concentration specifications for the downsampling of DNS
data is determined in accordance to the experimental measurement campaigns performed
for a case of turbulent boundary layer interaction with unsteadily deforming membrane,
Chapter 6. The ALE-VIC+ method is initially applied over the central region of the
DNS computational domain, Fig.5.6, in absence of any hill structures to enable a com-
parison with the original VIC+ algorithm. Hence, the vectorial transformations and
mathematical formulations of the flow governing equations are verified with a rectangular
computational grid structure where the conformal mapping do not necessitate curvilinear
mesh formations. Furthermore, the comparisons performed for the velocity magnitude
distributions of streamwise, spanwise and normal components with the DNS results also
included the statistical data processing approaches of AGW and trilinear interpolation.
Then, the computational domains prescribed for the aforementioned data assimilation
approaches are modified to include the upstream hill structure so that the ALE-VIC+
method is utilized for dense flow field interpolation in regions where flow interaction with
a non-uniform surface occurs.

The spatial resolution for the dense flow field reconstruction procedures are selected
to have compatible grid spacing specifications with the DNS simulations for which the
AGW failed to provide almost any fluidic information due to the lack of particles to be
binned for each grid location. Hence, a clear view of the raw available particle tracking
information and the corresponding need for a interpolation approach is provided. The
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Figure 5.7: Non-dimensional streamwise velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosurfaces
of u=1 (yellow) and u=-0.2 (blue) with reference DNS (top), AGW(middle-
left), linear interpolation (middle-right), VIC+ (bottom-left) and ALE-VIC+
(bottom-right).

initial comparisons of VIC+ based approaches against the linear interpolation revealed
similar profiles of differences for all three velocity components between the two meth-
ods, Fig.5.7, Fig.5.8 and Fig.5.9. First of all, both linear interpolation and VIC+ based
methods adequately provide coherent information of the instantaneous structures with
respect to the reference simulations in an overall sense where the high and low velocity
magnitude regions can be identified. Nevertheless, the major improvements obtained with
VIC+ based approaches are identified as the detailed flow structures are resolved with
greater agreements to the reference solution compared to the linear interpolation.
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Figure 5.8: Non-dimensional normal velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosurfaces
of v=0.3 (red) and v=-0.3 (blue) with reference DNS (top), AGW (middle-
left), linear interpolation (middle-right), VIC+ (bottom-left) and ALE-VIC+
(bottom-right).

In that regards, the dominant flow behavior in the streamwise direction characterized
by means of an accelerating fluid motion over the hills and a separation region down-
stream of the first hill structure. In terms of analyzing the streamwise velocity magnitude
distribution over the computational domain, a high momentum region closer to the upper
boundary due to the accelerations are observed. The recirculating flow features yield a
low speed region downstream of the first hill which is recovered to the velocity magnitude
levels of u = 0.7 for the streamwise component as the flow reattachment takes place at
X/h ∼4. Owing to these deterministic characteristics of the streamwise flow behavior,
identification of instantaneously fluctuating components of the flow is rather challenging
where the observed differences between linear interpolation and VIC+ based methods are
considerably small, Fig. 5.10.
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Figure 5.9: Non-dimensional spanwise velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosurfaces
of w=0.3 (red) and w=-0.3 (blue) with reference DNS (top), AGW (middle-
left), linear interpolation (middle-right), VIC+ (bottom-left) and ALE-VIC+
(bottom-right).

Nevertheless, the overestimation and underestimation errors captured for the planar
distribution of streamwise velocity magnitudes over the central streamwise plane (Z/h=0)
using linear interpolation correspond to larger regions of the local disagreements with
reference results compared to VIC+ based approaches, Fig. 5.11. Furthermore, normal
and spanwise velocity components providing a clear representation of the instantaneous
fluid behavior demonstrate the accuracy improvements achieved by the application of
VIC+ based methods where local peaks of low and high velocity magnitudes are resolved
with considerably elevated agreement levels to the reference simulations. The global error
levels documented in terms of the RMS of absolute velocity magnitude errors refer to
the accuracy superiority of VIC+ based approaches against linear interpolation for high
resolution flow field reconstruction, Tab.5.2.
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Figure 5.10: Planar distributions of non-dimensional streamwise (left), normal (middle) and
spanwise (right) velocity magnitudes at Z=0, with reference DNS (1st row),
AGW (2nd row), linear interpolation (3rd row), VIC+ (4th row) and ALE-VIC+
(5th row).

Furthermore, the central region of the computational domain is enclosed with a flat
wall boundary which allows the VIC+ to operate with proper boundary condition defini-
tions. Hence, the verification of the mathematical formulations for vectorial transforma-
tions of flow variables and mathematical operators for boundary fitted coordinate systems
employed for the ALE-VIC+ algorithm can take place to confirm its compatibility with
the VIC+ framework. Accordingly, the transformation matrices for the boundary fitted
coordinates correspond to identity matrices canceling all the cross derivatives referred for
the mapping relation between the computational and physical coordinate systems. In
other words, for a case of uniform boundaries the computational and physical coordinate
systems become identical so does the algorithms of VIC+ and ALE-VIC+. Thus, the
identical results of ALE-VIC+ and VIC+ demonstrated over the velocity magnitude and
corresponding error distributions confirm the verification of mathematical formulations
employed for the numerical discretizations of governing equations on boundary fitted
coordinates., Fig. 5.11.

The ALE-VIC+ variant enables the standard VIC+ method to handle unsteadily
deforming non-uniform surfaces by means of generating boundary fitted coordinate sys-
tems and, solving the flow governing equations utilizing mapping relations between the
computational and physical coordinate systems. Although the periodic hill case employed
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Figure 5.11: Planar distributions for absolute velocity error magnitudes of non-dimensional
streamwise (left), normal (middle) and spanwise (right) velocity components
at Z=0, with linear interpolation (1st row), VIC+ (2nd row) and ALE-VIC+
(3rd row).

Table 5.2: RMS of absolue velocity magnitude errors with linear interpolation, VIC+ and
ALE-VIC+ over the central region of the periodic hill structures.

εu [-] εv [-] εw [-]

Linear Interpolation 0.16 0.12 0.13
VIC+ 0.09 0.08 0.09

ALE-VIC+ 0.09 0.08 0.09

for the validation studies does not contain any unsteady deformations, it provides a well-
suited case study for the boundary fitted application of VIC+ framework. Therefore, the
computational domain composed of the two hill form wall structure is cropped to include
only the upstream hill to generate a boundary fitted coordinate structure and proceed
with the proposed ALE-VIC+ method. In order to increase the resemblance of the grid
generation procedure to the post-processing approach followed for the experimental cam-
paign, the boundary fitted grid structure is generated by means of radial basis function
interpolations considering a case of surface deformations starting from a rectangular uni-
form computational domain. Hence, the surface information referring to the coordinates
of the hill form are provided to the mesh deformation algorithm and the corresponding
curvilinear grid is obtained with the RBF based mesh motion algorithm.

Both linear interpolation and ALE-VIC+ are able to yield physically coherent struc-
tures compared to the reference results of the DNS simulation Fig.5.12, Fig.5.13 and
Fig.5.14. Previously denoted dominant flow behavior apparent for the streamwise ve-
locity magnitude distributions are accurately depicted as high speed flow elements are
concentrated over the hill structure and separated low momentum region is located down-
stream of the hill. The major differences between the linear interpolation and ALE-VIC+

M.Sc Thesis Bora O. Cakir



5.2 Arbitrary Lagrangian-Eulerian Method for VIC+ 93

Figure 5.12: Non-dimensional streamwise velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosurfaces
of u=1 (yellow) and u=-0.2 (blue) with reference DNS (top-left), AGW (top-
right), linear interpolation (bottom-left) and ALE-VIC+ (bottom-right).

Figure 5.13: Non-dimensional normal velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosur-
faces of v=0.3 (red) and v=-0.3 (blue) with reference DNS (top-left), AGW
(top-right), linear interpolation (bottom-left) and ALE-VIC+ (bottom-right).

are observed over the local variations of velocity components, Fig.5.15. The lower order
of planar variation for the secondary velocity component magnitudes demonstrated the
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Figure 5.14: Non-dimensional spanwise velocity profiles with planar distributions over the
streamwise and spanwise planes of Z=0.5 and X=7 respectively, and isosurfaces
of w=0.3 (red) and w=-0.3 (blue) with reference DNS (top-left), AGW (top-
right), linear interpolation (bottom-left) and ALE-VIC+ (bottom-right).

accuracy superiority of ALE-VIC+ over the linear interpolation. The peak fluctuation
magnitudes are resolved with a greater agreement to the reference simulations by em-
ploying ALE-VIC+ whereas the independency of linear interpolation from the relevant
flow physics caused overshoots and undershoots throughout the computational domain as
observed for the analysis performed in absence of hill forms, Fig.5.21. The global error
levels computed for the dense reconstruction of flow variables in terms of the velocity mag-
nitudes further elaborated the improved accuracy levels obtained with the application of
ALE-VIC+ compared to linear interpolation, Tab.5.3. Moreover, the planar error distri-
butions of individual velocity components extracted in close proximity of the hill surface
also demonstrated the lower orders of error magnitudes for the detailed flow structures
resolved by means of the ALE-VIC+ approach, Fig.5.17 where the significance of em-
ploying the ALE-VIC+ method is identified by not only its ability to enable the VIC+
framework to be employed for non-uniform surface intrusions but also its capability to in-
crease the physical flow coherence in near wall regions that corresponds the fluid-structure
interaction interface.

Table 5.3: RMS of absolue velocity magnitude errors with linear interpolation and ALE-
VIC+ over the upwind hill form of the periodic hill structure.

εu [-] εv [-] εw [-]

Linear Interpolation 0.19 0.13 0.14
ALE-VIC+ 0.11 0.10 0.11
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Figure 5.15: Planar distributions of non-dimensional streamwise (left), normal (middle) and
spanwise (right) velocity magnitudes at Z=0, with reference DNS (1st row),
linear interpolation (2nd row) and ALE-VIC+ (3rd row).

5.3 Immersed Boundary Treatment for VIC+

Validation studies of ImVIC+ method for providing the base algorithm of VIC+ with
the capabilities of handling unsteadily deforming non-uniform surfaces without introduc-
ing any mesh modifications are performed also over the DNS of flow over periodic hill
case. Specifications of the numerical simulations and the corresponding post process-
ing application for experimental data stimulation are provided in Section 5.2 where the
particle track concentrations are determined in at the same order chosen for ALE-VIC+
according to the experimental campaign conducted. The comparisons performed with the
velocity magnitude distributions of the DNS results including the statistical data process-
ing approaches of AGW and trilinear interpolation as well as the standard VIC+ method
quantifying the necessity of ImVIC+ for the case study of interest.

Obviously the initial comparisons of the velocity magnitude distributions reveal sim-
ilar results in terms of the overall coherence characteristics for both linear interpolation
and VIC+ based approaches as denoted previously where both methods identify the re-
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Figure 5.16: Planar distributions for absolute velocity error magnitudes of non-dimensional
streamwise (left), normal (middle) and spanwise (right) velocity components
at Z=0, with linear interpolation (1st row) and ALE-VIC+ (2nd row).
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Figure 5.17: Planar distributions for absolute velocity error magnitudes of non-dimensional
streamwise (left), normal (middle) and spanwise (right) velocity components
at close proximity of the hill surface, with linear interpolation (1st row) and
ALE-VIC+ (2nd row).
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Figure 5.18: Non-dimensional distributions of streamwise (left), normal (middle) and span-
wise (right) with reference DNS (1st row), AGW (2nd row), linear interpolation
(3rd row), VIC+ (4th row) and ImVIC+ (5th row).

gions of high and low velocity magnitudes in relation to the reference simulations, Fig.5.18.
Accordingly, the reconstructed streamwise velocity distributions using both approaches re-
veal accelerated flow behavior over the hill form and separation regions with recirculatory
flow characteristics downstream of the hill. Nevertheless, the detailed flow structures of lo-
cal high and low velocity magnitude variations are depicted with increased accuracy using
the VIC+ based methods as the separation effects are captured with greater agreement
to the reference solution due to the governing equation based formulations. Furthermore,
the superiority of VIC+ variants becomes even more apparent when the comparisons are
performed over the secondary velocity components of normal and spanwise flow elements.
In absence of a dominant flow behavior enforced by the immersed boundary forms, recon-
structions of secondary flow structures represent the ability of VIC+ based approaches to
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resolve the fluidic behavior with greater detail as well as preventing overestimation and
underestimation errors by means of appropriate boundary condition definition, which is
physically accurate for both VIC+ and ImVIC+ beyond X>2, Fig.5.19.
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Figure 5.19: Planar distributions of non-dimensional streamwise (left), normal (middle) and
spanwise (right) velocity magnitudes at Z=0, with reference DNS (1st row),
linear interpolation (2nd row), VIC+ (3rd row) and ImVIC+ (4th row).

Analyzing the influence of the immersed boundary treatment implementation for
VIC+ in terms of providing the necessary corrections to the flow properties by impos-
ing no-through boundary condition over the hill surface, it is observed that the correc-
tions provided by the ImVIC+ over the standard VIC+ algorithm are significantly small,
Fig.5.19. Considering the orientation of the surface elements for the hill form and the cor-
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responding normal vector directions, there are two velocity components of the flow motion
that induce penetration of fluid particles through the hill surface. Although the dominant
flow component causing the fluid motion to pass through the boundaries of the hill can be
considered as the streamwise velocity vectors, due to their relative magnitudes compared
to the normal velocity components, the contribution of normal velocity fluctuations to the
total velocity magnitudes penetrating the solid boundaries cannot be overseen. Accord-
ingly, the application of ImVIC+ provides modifications to the flow properties in terms
of the magnitudes of both streamwise and normal velocity components that allow the
reconstructed flow field properties to approach to the reference simulation results with
greater accuracy compared to VIC+, Fig.5.19. In that regards, an increased streamwise
flow speed over the top section of the hill and a decreased flow speed at the end of the
hill where captured, referring to an elevated level of agreement with the reference DNS
data. Moreover, since the spanwise velocity components do not affect the satisfaction of
no through boundary condition, the resultant superimposition of potential and rotational
flow field characterizations impose any alterations on the spanwise velocity magnitudes
which can be depicted when compared to the results of VIC+, Fig.5.19.

Table 5.4: RMS of absolue velocity magnitude errors for linear interpolation, VIC+ and
ImVIC+.

εu [-] εv [-] εw [-]

Linear Interpolation 0.25 0.17 0.17
VIC+ 0.14 0.12 0.12

ImVIC+ 0.13 0.11 0.12

Analyzing through the error distributions of velocity magnitudes, the dominant effect
of the immersed boundary treatment is observed for the streamwise velocity components
where decreased error levels in close proximity of the periodic hill surface refer to an
elevated level of accuracy over the VIC+ application without the immersed boundary
treatment, Fig.5.21. Nonetheless, mitigation of error levels observed for the normal ve-
locity components over the error distributions extracted in close proximity of the hill
surface denote the necessary moditifications implemented by the ImVIC+ tend to ap-
proach the resultant flow field reconstructions to the reference simulations, Fig.5.21. The
differences observed over the error distributions tend to decrease significantly in regions
away from the hill surface which is consistent with the theoretical formulations of sur-
face singularities where the influence of singularity elements decay with the Euclidean
distance, Fig.5.21.

Even though, the modulations achieved on the dense flow field reconstruction with
ImVIC+ observed to be relatively mild, this is due to the proximity of the periodic hill
structure to the computational domain boundaries as well as the potential component of
the flow to be inferior to the turbulent structures represented by means of the rotational
component over the Helmholtz decomposition owing to the separation effects downstream
of the hill. Accordingly, the corrections induced for the secondary flow structures of nor-
mal and spanwise flow components is relatively small, where slight modulations in close
proximity of the surface are observed for the surface normal flow elements to satisfy
the no-through boundary condition. Similarly, the effect of these modulations dimin-
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Figure 5.20: Planar distributions for absolute velocity error magnitudes of non-dimensional
streamwise (left), normal (middle) and spanwise (right) velocity components
at Z=0, with VIC+ (1st row) and ImVIC+ (2nd row).

ish for regions far away from the hill surface. Furthermore, although separation effects
correspond to a turbulent flow behavior which cannot be resolved via potential flow defi-
nitions solely, the appropriate combination of Vortex-in-Cell approach with the immersed
boundary treatment provides the superposition of necessary potential and rotational flow
components to reconstruct the flow field properties with increased coherence levels to the
physical flow behavior in close proximity of the FSI interface, Tab.5.4.

5.4 Surface Pressure Reconstruction with Boundary Fitted
Coordinates

The validation studies for the surface pressure reconstruction procedure using the mate-
rial acceleration information obtained from particle tracking velocimetry measurements
is performed using the exact fully 3D solutions for the unsteady incompressible Navier-
Stokes equations defined by Ethier and Steinman (1994). Being inspired from the 2D
analytical solution provided for unsteady Navier-Stokes equations yielding the time de-
pendent velocity and pressure fields for Taylor-Green vortices (Taylor and Green, 1937),
the proposed analytical solution generates a velocity field information where,

• The influence of viscous dissipation is diminished by the contribution of unsteady
terms.

• Mass conservation is satisfied by means of the divergence free condition.
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Figure 5.21: Planar distributions for absolute velocity error magnitudes of non-dimensional
streamwise (left column), normal (middle column) and spanwise (right column)
velocity components at close proximity of the hill surface, with VIC+ (1st row)
and ImVIC+ (2nd row).

• The remaining convection terms on the material derivative definition can be repre-
sent as the gradient of a scalar function which in turn corresponds to the negative
of pressure.

The resultant flow field is referred as a Beltrami flow (Wang, 1990) and corresponds
to a family of velocity and pressure fields whose unique determination is satisfied by the
choice of constants a, b, c, d which satisfy a2 + b2 = 0 and c = id. In case where a and d
is selected to be arbitrary real number the flow field reads as follows,

u = −a[eaxsin(ax± dz) + eazcos(ax± dy)]e−d
2t

v = −a[eaysin(az ± dx) + eaxcos(ay ± dz)]e−d2t

w = −a[eazsin(ax± dy) + eaycos(az ± dx)]e−d
2t

p = −a
2

2
[e2ax + e2ay + e2az + 2sin(ax± dy)cos(az ± dx)ea(y + z)

+2sin(ay ± dz)cos(ax± dy)ea(z+x) + 2sin(az ± dx)cos(ay ± dz)ea(x+y)]e−d2t

(5.1)

For the pressure reconstruction procedure the local and convective components of
the acceleration terms are determined by analytically differentiating the velocity terms
given above. As the computed material derivative terms are provided to the pressure
reconstruction algorithm, the Poisson equation is solved with fully homogeneous boundary
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conditions and the computed pressure field, which is unique up to a constant, shifted
according to an exact pressure value provided by the Eq.(5.1).

5.4.1 Pressure Reconstruction on Rectangular Computational Domain

Initially the numerical integration procedure of the pressure gradients utilizing a fast FFT
based Poisson solver is assessed over a computational domain of uniform rectangular shape
where the pressure gradients at the grid location are directly computed from the analytical
expressions. Accordingly, the computational domain is defined within the limits of (-1,1)
m in each three dimensions with a spatial resolution of 0.025 m. The reconstructed
pressure information is compared with the exact pressure fields calculated from Eq.(5.1)
at Z=0.225 m plane. As the relative error distribution revealed the difference between
the numerically calculated and the exact pressure fields, to possess maximum error values
below 0.15% where the errors concentrated on regions of high pressure gradients, Fig.5.22.
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Figure 5.22: Pressure fields with analytical solution (left) and numerical computation (mid-
dle) at Z=0.225 m. Relative error distribution of pressure at Z=0.225 m
(right).

5.4.2 Pressure Reconstruction on Curvilinear Computational Domain

Furthermore, the surface pressure reconstruction algorithm is tested with boundary fitted
coordinate systems providing exact solid boundary conformation over an artificially intro-
duced three dimensional hill form of various heights. The corresponding computational
domain is again assigned with the analytical solution of Navier-Stokes equation derived by
Ethier and Steinman (1994) which still represents a Beltrami flow (Wang, 1990) where the
present hill forms do not possess any influence on the flow characteristics. The objective
is set to demonstrate the compatibility of the mesh deformation schemes and accuracy
characteristics of the vectorial transformation procedures where the analytical vector field
of accelerations are defined and the corresponding pressure gradients are integrated on
the generated computational grid.

M.Sc Thesis Bora O. Cakir



5.4 Surface Pressure Reconstruction with Boundary Fitted Coordinates 103

The 3D hill form is acquired from the wind tunnel experiments of Hunt and Snyder
(1980) which is represented by the following formulation,

z(r) =
h+ c

1 +
(
r
L

)4 − c (5.2)

where h=0.155 m, L=0.388 m and c=0.01 m. The radius r is defined from the hill center
that indicates the region where the upward deflection of the hill is located. The introduced
upward deflections are confined within the region of r <0.775 m. In order to demostrate
the mesh adaption scheme of radial basis function based grid deformations, the maximum
hill height is incrementally increased from a flat surface to 0.12 m, 0.19 m and 0.31 m.
Hence, the initially generated uniform structured grid of rectangular form is deformed
according to the surface deformations introduced by Eq.(5.2). Horizontal planes of the
curvilinear grid formations at different stages of surface deformation are illustrated in
Fig.5.23. At each stage of the deformations, the transformation matrices are recalculated
according to the deformed grid structure to allow accurate transformations of the pressure
gradients over the curvilinear computational grid.
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Figure 5.23: Surface deflections at different height scales of three dimensional hill form and
samples horizontal planes for the corresponding deformed mesh structures.

Even though the amplitudes of relative error levels calculated for the reconstructed
pressure information over the hill surface yielded an increasing trend with the increasing
level of hill deflection, the maximum error levels are observed to be limited to of 4% for all
four cases, Fig.5.25. Considering the error levels captured for the numerical integration
procedure of pressure gradients, the vectorail transformations defined for the mapping
relations of computational and physical coordinate structures provide a significant level
of coherence for the pressure fields with the analytical flow field description. Nonetheless,
it can be seen there exists a distinctive region of error presence over the circumference
of the hill region, Fig.5.25. Although considerably small, below 1%, the errors encoun-
tered in these regions are associated with the numerical discretizations employed for the
determination the transformation matrices. Due to the fact that the hill deformation is
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defined with a partial function, the corresponding shape reveals a discontinuous form at
the boundary of r=0.775 m. Therefore, the employed central differencing approximations
for the computation procedure of vector transformations tend to cause underestimations
or overestimations in regions where deformation gradients are undefined. Nevertheless,
the problem can be easily solved by increasing the spatial resolution of the computational
grid definition. However, this option is not pursued in order demonstrate the accurate
surface pressure computation capabilities of the BFC approach in case of low spatial res-
olution in where the nearest neighbor methods utilizing uniform structured grids suffer
the most in terms of accuracy (Pan et al., 2016).
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Figure 5.24: Surface pressure fields with analytical solution (1st row), surface pressure re-
construction with boundary fitted coordinate systems over analytical pressure
gradients (2nd row) and relative error of pressure (3rd row) for maximum sur-
face deflection levels of h=0 m (1st column), h=0.12 m (2nd column), h=0.19
m (3rd column) and h=0.31 m (4th column).

5.4.3 Pressure Reconstruction on Curvilinear Computational Domain
from PTV data

Furthermore, in order to simulate experimental data structure, the theoretical flow field
information is employed to assign flow field properties to individual set of particles located
throughout the prescribed computational domain. Since the derivation of velocity and
pressure field solutions proposed by Ethier and Steinman (1994) utilizes the temporal
velocity derivatives to cancel out the viscous contribution, the pressure variation over a
specified domain is related to the convective terms that yield a steady state flow behavior.
Therefore, to comply with the analytical solution, the velocity vector fields are considered
to be steady even though they contain unsteady terms.

Hence, for the particle tracking approach a randomly distributed set of particles are
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provided to the computational domain where their motion for consecutive steps of the
simulated images are calculated using a pseudo-particle tracking approach similarly de-
fined for the pre-processing of DNS simulations employed in Sections 5.2 & 5.3. The
velocity fields are considered to be steady referring to the aforementioned discussion on
their derivations and their distribution is selected to be equal to their analytical formu-
lation at t=0.5 s. The generated particles are propagated for 7 time steps where the
∆t = 10−3 corresponding to a acquisition frequency of 1 kHz. The computed 7 particle
location over the tracks are regularized with a polynomial fitting of second order from
which the velocity and Lagrangian acceleration terms are calculated.

For introducing surface deformations in order to employ curvilinear boundary fitted
coordinate systems, artificial 3D fill forms utilized previously are defined with the exact
same deformation levels of 4 stages, starting from a flat surface and reaching to 60% of the
computational domain height. Accordingly, the computational grid structure is deformed
by means of RBF interpolations to provide exact surface corformation. Moreover, the ac-
celeration information scattered over the computational domain is binned at the updated
grid locations using AGW with spherical bins of 50% overlap. The assigned accelera-
tion information at the grid locations is transformed to switch the vectorial orientation
from Cartesian coordinates of the curvilinear physical grid structure to the rectangular
formation of the pressure integration mesh.
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Figure 5.25: Surface pressure fields with analytical solution (1st row), surface pressure re-
construction with boundary fitted coordinate systems over PTV data (2nd row)
and relative error of pressure (3rd row) for maximum surface deflection levels
of h=0 (1st column), h=0.15 (2nd column), h=0.25 (3rd column) and h=0.4
(4th column).

As the reconstructed pressure fields are compared with the analytical reference, no
visual difference in terms of the scalar pressure distribution is captured for all 4 hill forms.
Nevertheless, in relation to the vector transformations constructing the link between phys-
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ical and computational coordinate systems for the integration of pressure gradients, the
relative errors are slightly amplified while the maximum error value is bounded at 7%.
The differences in the error distribution observed between the various hill shapes are
mainly concentrated on the surrounding region of the hill formation which relates to the
numerical discretization errors of the central differencing approximations employed for
the calculation of transformation variables.

5.4.4 Error Estimation and Uncertainty quantification

In order to access the uncertainty specifications of the boundary fitted surface pressure
reconstruction scheme proposed to utilize Lagrangian acceleration information obtained
by the particle tracking algorithms, a series of Monte Carlo simulations (Metropolis and
Ulam, 1949) are performed with various levels of grid deformations introduced with the
artificial hill form.

Accordingly, a synthetic experimental data stimulation procedure is employed for
calculating the error propagation through the pressure reconstruction algorithm. The
generated particle locations along the reconstructed tracks of the analytical flow field are
equipped with 0.2 voxels of Gaussian noise in each 3 dimensions of the Cartesian domain
with random variations. Then, the resultant noisy particle locations along the tracks are
normalized with polynomial functions of second order to obtain the velocity and material
acceleration information. The resultant particle tracking data is processed with the afore-
mentioned procedure of pressure reconstruction with boundary fitted coordinate systems
to obtain the pressure field information. The Monte Carlo simulations are performed with
100 samples according to the sampling criteria proposed by Schneiders and Sciacchitano
(2017).

For each iteration of the simulations, the resultant pressure fields from the reconstruc-
tion algorithm are compared with the analytical pressure field information to extract the
error distributions over the computational volume by,

εj(xi) = PPTVj (xi)− PExactj (xi) (5.3)

where PPTV and PExact correspond to the pressure fields computed from particle tracking
data and the analytical solution respectively while j = 1, ..., N relates to the number of
samples for the Monte Carlo simulations. Moreover, the bias and random uncertainty in
the pressure reconstruction procedure are obtained by calculating the mean and standard
deviations of the error variation εj . Hence, following the general uncertainty estimation
approach of Benedict and Gould (1996), the bias and random uncertainties are computed
as,

Ub =
εsigma√
N

and Uσ =
εsigma√
2(N − 1)

(5.4)

where Ub and Uσ correspond to the bias and random uncertainties of the local pressure
reconstruction results respectively. The mean and standard deviation of the error terms
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are calculated via assembling the 100 samples of Monte Carlo simulations.

εb(xi) =
1

N

N∑
i=j

εj(xi) and εσ(xi) =

 1

N − 1

N∑
i=j

(εj(xi)− εb(xi))2
 1

2

(5.5)

The distorted particle tracking information with 0.2 voxels of Gaussian noise intro-
duced over the particle locations elevate maximum pressure reconstruction errors from
0.002 Pa to 0.1 Pa in terms of absolute magnitudes, Fig.5.26. The increase factor of 50
refers directly to the sensitivity of the material acceleration reconstruction performed by
the Shake-the-Box algorithm.

Average pressure fields calculated over 100 instances of the Monte Carlo simulations
revealed absolute error levels confined to a maximum value of 0.03 Pa which quantify the
effect of treating surface deflections with mesh adaptation procedures in terms of the bias
uncertainty, Fig.5.27. Evidently, increasing surface deformation is associated with a slight
increase of static pressure errors throughout the computational domain as represented
over the hill surface, Fig.5.28. The increased uncertainty with the increasing hill height
is computed to reach 0.02 Pa for a hill height of 60% compared to the complete vertical
length of the computational domain inducing severe deformations over the mesh structure,
Fig.5.23. On the other hand, random uncertainty levels are related to the unbiased errors
introduced by the artificial noise addition, thus they are independent of the deformation
state and the corresponding transformation variables, Fig.5.27. Accordingly, the random
uncertainty of the pressure reconstruction method is determined to be 0.08 Pa in average
while its distribution over the computational domain is mainly determined by the Dirichlet
boundary condition location, Fig.5.28.
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Figure 5.26: Surface pressure fields with analytical solution (1st row) and ensemble averaged
surface pressure reconstruction with boundary fitted coordinate systems over
PTV data from the 100 samples of Monte Carlo simulations (2nd row) for
maximum surface deflection levels of h=0 (1st column), h=0.15 (2nd column),
h=0.25 (3rd column) and h=0.4 (4th column).
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Figure 5.27: Bias (1st row) and random (2nd row)uncertainties for surface pressure recon-
struction with 0.2 voxels of Gaussian noise.
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Figure 5.28: Variation of bias (left) and random (right) uncertainties with respect to the
relative hill height normalized by the computational domain height.

5.5 Dense Flow Field Reconstruction of PTV Data with a
Solenoidal and Irrotational Basis

The validation studies for the proposed dense flow field interpolation algorithms of Sol+
and ISol+ are performed over a theoretical field of wave lattice formation and an ex-
perimental case of water submerged transitional circular jet measurements performed by
Violato and Scarano (2011).

5.5.1 Theoretical Validation

The theoretical validation study of dense flow field interpolation with basis reconstruc-
tion approaches is conducted by an unsteady three dimensional wave lattice formation.
The formulation for the synthetic flow field is embarked from the previously conducted
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validation studies of Schneiders (2017); Gonzalez Saiz et al. (2019) in the following form,

u =


ui = Asin

(
2πx
λ

)
sin
(
2πy
λ

)
uj = Acos

(
2πx
λ

)
cos
(
2πy
λ

)
uk = A

(5.6)

The simulated measurement volume is constructed to be composed of 500 voxels in
each directions, 500× 500× 500vox3. The wavelength of the lattice formation is set to be
λ = 200 while the maximum particle displacement is restricted at A=2 voxels. In order
to simulate a particle tracking approach with unsteady motion of particles, an iterative
approach for particle motion determination is followed.

Starting from an initial velocity field at t = t0, a random particle distribution of
concentration C = 5 × 10−5par/vox3 is obtained over the computational domain. The
generated scattered particles are displaced with the initial velocity field during the pseudo-
time variation of 4 ×∆t to their next assumed locations at t = t = t0 + (1, ..., 7)∆t and
the corresponding velocity vectors at each time step are computed employing Eq.(5.6).
Utilizing the RK4 numerical integration procedure for discretization of the displacement
of particles in each direction, the pseudo particle tracks are generated to represent the
velocity and acceleration properties of each particles’ propagation in time and space. Fur-
thermore, stimulating the polynomial track reconstruction approach of Shake-the-box for
velocity and acceleration computation along the particle tracks, a polynomial fit of second
order is applied to the computed particle locations over 7 time instants. The initial as-
sessments are performed with no artificial noise implementation on the synthetic dataset,
hence there exist no particle reconstruction errors for the particle tracking information.

Initial assessments performed for the reconstruction of flow field properties with lin-
ear interpolation revealed no resemblance of the resultant velocity information to the
theoretical flow behavior. Due to the scarcity of particle tracking information over the
computational domain, the linear regression cannot reconstruct the necessary gradient
of velocity components. Hence, the application of governing equation based approaches
enables the velocity gradients to be resolved more accurately to represent the theoreti-
cal flow features since the gradients are dictated by means of the vorticity distribution
and momentum conservation. However, the flow governing equations utilized for VIC+
approach do not contain a continuity equation that would satisfy the mass conservation.
Furthermore, even though momentum conservation provides a certain level of physical
coherence for the flow feature to meet the theoretical profiles, the weighting introduced
for the cost function determination inferiorizes the contribution of acceleration terms.
Therefore, the application of Sol+ where the continuity is inherently imposed by means
of vector valued radial basis functions, significantly increases the agreement of the dense
interpolation procedure with the analytical flow field by ensuring the conservation of mass
over the complete computational domain. Since the grid resolution for the dense inter-
polation procedure is selected according to the particle track density over the prescribed
measurement domain, which yields a stencil of 16 grid locations to be affected by a single
PTV data point, Sol+ amplifies the influence of individual particle tracking information
scattered throughout the computational domain in terms of introducing an additional
constraint on the velocity gradients, Fig.5.29.
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Figure 5.29: Particle track distribution over the computational domain (top-left). Velocity
field distributions at Z=0 of analytical solution (top-middle), reconstructed
over particle tracking data without artificial noise using linear interpolation
(top-right), VIC+ (bottom-left), Sol+ (bottom-middle) and ISol+ (bottom-
right).

Moreover, implementation of the irrotational Gaussian progress regression (IGPR)
performs a similar task for the material acceleration terms. The mathematical formula-
tions for the employed form of Navier-Stokes equations suggests that the material accel-
eration terms are required to be irrotational due to their direct relation to the gradient
of a scalar variable, static pressure. However, the material acceleration components are
calculated based on the velocity and vorticity fields determined throughout the previous
stages of the optimization procedure. Contrary to the conventional numerical simulation
approaches where the velocity field information for the proceeding time step or iteration
is calculated from the momentum conservation equation, there exists no correlation of the
acceleration terms to the physical satisfaction of momentum conservation which is rather
aimed to achieved within the optimization procedure. Furthermore, as the vorticity trans-
port equation is utilized to eliminate the necessity of defining pressure field information,
the scalar term that is to impose an irrotationality condition for the acceleration vectors
is absent for the present derivation of momentum conservation. Hence, the ISol+ method
combining the matrix based RBF definition to ensure imposition of mass conservation and
curl freedom of material accelerations similarly elevates the capabilities of the dense flow
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field reconstruction algorithm to accurately represent physical flow features by satisfying
the necessary physical constraints inherently. Even though, this feature of ISol+ do not
provide any significant improvement of accuracy for the dense interpolation procedure of
velocity terms owing to the fact that weighting of the respective cost function compo-
nents restricts the influence of acceleration terms on the velocity field optimization. The
major advantage of utilizing ISol+ is further elaborated on the experimental verification
procedure as not only the velocity and vorticity distributions but also the static pressure
distributions are compared to a reference profile, Fig.5.29.
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Figure 5.30: Particle track distribution over the computational domain (top-left). Velocity
field distributions at Z=0 of analytical solution (top-middle), reconstructed
over particle tracking data with artificial noise of 0.2 voxels using linear in-
terpolation (top-right), VIC+ (bottom-left), Sol+ (bottom-middle) and ISol+
(bottom-right).

Furthermore, the proposed reconstruction approaches of Sol+ and ISol+ are also
tested in presence of measurement noise at different levels against the performance speci-
fications of linear interpolation and VIC+. The generated synthetic tracks and the corre-
sponding polynomial functions are deviated from the analytical flow field properties via
introducing an artificial Gaussian noise of 0.2 voxels to the analytically reconstructed par-
ticle locations over the 7 time instants. Corresponding noisy particle locations are fitted
with new second order polynomials to compute the velocity and Lagrangian acceleration
information for the noisy particle tracks.
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Considering the error propagation over the velocity and material acceleration terms,
there exists an increased level of violation of the mass conservation when both linear inter-
polation and VIC+ are applied to reconstruct the volumetric flow features. As these errors
are further amplified by the internal numerical errors and mathematical discrepancies of
continuity for VIC+, the resultant flow field information significantly divergences from
the theoretical reference. Therefore, the Sol+ method by imposing the mass conservation
allows the optimization procedure to convergence to a flow state that inherently satisfies
the continuity. Owing to the fact that the objective for the optimization procedure is
determined to be the exact measurement data which contains the artificially introduced
measurement errors, the resultant cost function value for the converged state reveals a
larger magnitude compared to the VIC+. This condition refers to the enforcement of mass
conservation preventing the dense interpolation to directly meet the erroneous measure-
ment information. Similarly, ISol+ extends the physical interpretation of flow governing
equations and the corresponding variables by imposing the irrotationality of the material
acceleration terms where the propagated over the accelerations are accommodated by
means the irrotational Gaussian progress regression, Fig.5.30..

5.5.2 Experimental Validation

The experimental validation process is performed over the Tomographic PIV data ob-
tained from the transitional circular jet experiments of Violato and Scarano (2011), where
a water jet installed at the bottom wall of a water tank with a diameter of D=10 mm. The
jet exit velocity is adjusted to 0.45 m/s resulting in a jet diameter based Reynolds number
of ReD=5000, for which the specifications of the data acquisition and tomographic image
processing procedures are given in Tab.5.5.

Table 5.5: Setup parameters for the transitional circular jet experiments of Violato and
Scarano (2011).

Jet exit velocity 0.45 m/s
Reynolds number ReD = 5, 000
Seeding Polyamide particles, 56 µm diameter
Illumination Quantronix Darwin-Duo Nd-YLF laser (2×25 mJ at 1 kHz)
Recording devices 4×Lavision HighSpeedStar 6 CMOS
Imaging f = 105 mm Nikon objectives
Acqusition frequency 1000 Hz
Measurement field (cylindrical) 30 mm (d) 50 mm (h)
Interrogation vol. 40× 40× 40 vox (2× 2× 2 mm3)
Vectors per field 61× 102× 61

The instantaneous organization of vorticity features for the reference dataset, visual-
ized using Q-criterion (Hunt et al., 1988), are demonstrated in Fig.5.33. There exist 5 dis-
tinguished vortex rings within the measurement volume extending to y/D>4 downstream
of the jet nozzle and the first vortex ring follows up on a upstream trace of a vorticity tube
(shear layers) occurring due to the significant difference of fluid velocity between the still
water and jet stream. The processing of acquired images is performed by Schneiders and
Scarano (2016) using the tomographic particle tracking algorithm of Novara and Scarano
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(2013) for calculating the Lagrangian acceleration terms to be utilized for pressure field
reconstructions. The performed reconstruction resulted in a corresponding particle con-
centration of approximately 700 particles per D3. The practical situation experienced
in large scale measurements with low densities of particle tracks reconstructed for time
resolved flow field information is simulated by means of downsampling the complete set
of available scattered information to 19 par/D3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Axial Velocity [m/s]

Figure 5.31: Axial velocity distributions over the vertical jet centerline and Q-criterion iso-
surfaces of Q=1000 1/s2 with linear interpolation (left), VIC+ (middle-left),
Sol+ (middle-right) and ISol+ (right).

Considering the theoretical assessments performed over the wave lattice field, linear
interpolation yielded similar results for the experimental case of water jet such that the
vorticity features are insufficiently resolved. Nonetheless, it should be noted that recon-
struction of the axial velocity distributions adequately identify the dominant flow behavior
of the jet. However, this due to the fact that axial characteristics of the jet stream are
characterized with physical flow features of relatively large correlation lengths.Hence, ab-
sence of particles has a less significant effect for determining the velocity gradients over the
computational domain for axial velocity profiles which allows their accurate reconstruction
with relative ease. In the contrary, the vorticity features closely related to the secondary
flow structures of radial velocity profiles are failed to be resolved since the scarcity of
particles significantly effects the sharp gradients of velocity distribution especially for the
shear layers generated over the entrainment regions. In order to accurately characterize
these features the need for governing equation based approach become apparent while
analyzing the results of VIC+ procedure. The formulation of the Vortex-in-Cell method
allows the accurate characterization of velocity gradients for all three velocity compo-
nents by combining the Navier-Stokes equations to benefit from the available acceleration
information.

Before analyzing the differences between the VIC+ and the proposed methods of Sol+
and ISol+, it should be noted that the experimental campaign performed within a water
tank, damps the measurement errors in terms of the diverge freedom since the inertial
resistance of water due to its higher density compared to air prevent large gradients of
velocity (Asher et al., 2012). Hence, the divergence errors the VIC+ method yields is
relatively small. Nevertheless, employing the divergence error description of Zhang et al.
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Figure 5.32: Divergence errors determined employing the definition of Zhang et al. (1997)
with linear interpolation (left), VIC+ (middle-left), Sol+ (middle-right) and
ISol+ (right).

(1997) proposed as,

δ =
(∂u∂x + ∂v

∂y + ∂w
∂z )2(

∂u
∂x

)2
+
(
∂v
∂y

)2
+
(
∂w
∂z

)2 (5.7)

the continuity errors become more apparent within the measurement domain domain,
Fig.5.32. Nevertheless, the error distributions over the results of VIC+ and the proposed
methods are within a considerably confined regime of computational domain boundaries.
Therefore, the resultant differences between different approaches in terms of the veloc-
ity and vorticity features are relatively small in comparison to the linear interpolation,
Fig.5.31.

Figure 5.33: Q-criterion isosurfaces of Q=1000 1/s2 with reference Tomo-PIV (top-left),
linear interpolation (top-middle), VIC+ (top-right), Sol+ (bottom-left) and
ISol+ (bottom-right).
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Starting with the vorticity features represented in terms of Q-criterion isosurfaces
(Kol, 2007), the improved accuracy with the flow physics based approaches is apparent
over the linear interpolation. However, for the VIC+ method there exists three small
features that are not resolved while their presence is captured with the application of
Sol+ and ISol+. First one is the completeness of the most upstream vortex ring for
which VIC+ reveals slightly deconstructed form whereas both Sol+ and ISol+ are able
to completely capture vorticity formation. Secondly, the second downstream vortex ring
in the reference field possesses small elements of vorticity features underneath which are
lost for the VIC+ results while small coherent structures to the aforementioned vorticity
features are captured with Sol+ and ISol+. Finally, the most downstream vortex ring
is completely absent over the results of VIC+ method whilst both Sol+ and ISol+ are
able to reconstruct the initial portion of the vortex ring contained within the prescribed
computational domain with an increased agreement to the reference results, Fig.5.33..

Figure 5.34: Static pressure isosurfaces of p − pref =14 Pa (red) and p − pref =-12 Pa
(blue) with reference Tomo-PIV (top-left), linear interpolation (top-middle),
VIC+ (top-right), Sol+ (bottom-left) and ISol+ (bottom-right).

The pressure reconstruction results clearly demonstrate the significance of utilizing
the irrotational Gaussian process regression over Sol+ method to yield ISol+. Due to the
low order of influence attributed for the material derivative terms over the optimization
procedure based on the weighting of cost function components, all three methods of VIC+,
Sol+ and ISol+ mainly utilize the acceleration terms to increase the physical coherence of
the resultant velocity fields. Hence, the corresponding material acceleration field is based
on the velocity distribution whose mathematical formulation do not induce any form of
irrotationality. Therefore, regression of the acceleration fields to represent a curl-free
vector field increases physical coherence of the material acceleration terms to meet the
flow behavior especially in regions of negligible viscous effects. Consequently, sequentially
increased physical validity of the vector fields with Sol+ initiating the satisfaction of
mass conservation in terms of divergence freedom of velocity vectors and ISol+ providing
irrotationality to the material acceleration fields improves the pressure reconstruction
accuracy in comparison to the VIC+ approach, Fig.5.34.
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Chapter 6

3D Characterization of Turbulent
Boundary Layer Interactions with an

Elastic Membrane

As a part of the Holistic Optical Metrology for Aero-Elastic Research (HOMER) project,
the experimental setup employed in this thesis work is are designed within the work
package 3 to investigate fluid-structure kinematics of turbulent boundary layer-unsteady
panel interactions where the experiments are conducted in the low-speed W-wind tunnel
of TU Delft High Speed Laboratory.

6.1 Experimental Setup

A schematic representation of the experimental setup is provided in Fig.6.1. The panel
to be deformed is a square elastic membrane with sufficiently high moment of inertia
to prevent any aeroelastic deformations and have full control over the membrane shape.
The membrane is clamped on a aluminum frame of 60 × 60 × 30 cm3 from all edges to
restrict its motion to only elastic deformations. A DC motor is connected to the center
of the membrane by means of a gear and rod mechanism, and actuated at three different
frequencies of 1 Hz, 3 Hz and 5 Hz with an amplitude of 30 mm from valley to crest. The
translation of the central location of membrane is defined as a cycle of vertical motion
between maximum and minimum deformation points. The measurements are performed
with steady and unsteady membrane deformations are performed where for the steady
cases the flow is analyzed with the membrane at neutral position, positive maximum
deformation and negative maximum deformation.

A black foil with a regular grid of light-grey dots (0.8 mm diameter, 10 mm distance
between adjacent dots, 36x36 dots grid) is applied to the upper face of the model to enable
the structural displacement measurements by means of LPT. A 120 cm long rigid plate is
installed upstream of the model to ensure well-developed turbulent boundary conditions
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LED Blue Light

Figure 6.1: Schematic representation of the experimental setup for turbulent boundary layer
interactions with unsteadily deforming elastic membrane.

at the test section. At 10 cm from the rigid plate leading edge, Lego blocks of 9.6 mm
height are applied to force the transition of the boundary layer from the laminar to the
turbulent regime.

Figure 6.2: Experimental setup in operation with HFSB illuminated by means of the three
LED light sources.

The flow is seeded with neutrally-buoyant Hellium Filled Soap Bubble (HFSB) trac-
ers, which are inserted into the flow via an in-house built seeding rake composed of 200 noz-
zles distributed over 12 wings. The LPT measurements are carried out via three Photron
FastCAM SA1.1 CMOS cameras (1024x1024 pixels, 12-bit, 20-m pixel size) mounted 40
cm above the moving panel positioned to form a 60o angle. Three blue LED light sources
are used for volumetric illumination of the flow and elastic membrane. Two of the LED
lights are mounted between the cameras projecting the blue light perpendicular to the
panel from above and one from the side to enhance illumination power for particles closer
to the membrane surface. The experimental setup is equipped with two TruStability R©

board mount pressure sensors; one located upstream and another located at the central
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Figure 6.3: HFSB generator (top-left), LED illumination devices and image recording de-
vices (top-right), elastic membrane at neutral position (middle-left), DC motor
installment to the elastic membrane (middle-right), turbulent boundary layer
tripping elements and HFSB nozzles (bottom-left) and elastic membrane at
upward deformed position with LED illumination (bottom-right).

membrane location in order to provide reference static pressure values for comparisons
against the results of on-intrusive surface pressure reconstruction algorithms.

6.2 Data Processing

The processing of raw images acquired throughout the experimental campaign for recon-
structing location, velocity and acceleration information of fluid and structural tracers,
is performed with the commercial software package DaVis version 10.0.5 from LaVision
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Table 6.1: Setup parameters for the experimental investigation of turbulent boundary layer
interactions with unsteadily deforming elastic membrane.

Freestream velocity 10 m/s
Reynolds number Rel = 500, 000
Seeding Hellium Filled Soap Bubbles
Illumination Three LED blue light sources
Recording devices Three Photron FastCAM SA1.1 CMOS
Acqusition frequency 3000 Hz

GmbH. Moreover, processing of the pressure tab data is conducted using Labview.

6.2.1 Calibration

As the experimental setup is composed of two different measurement systems of Tomo-
PIV and surface pressure tabs, each system is required to be calibrated in order to provide
the correct correlation of electrical signals and optical images with the physical features
of the fluid and structure dynamics.

Calibration of Tomo-PIV System

The calibration for the Tomo-PIV system is performed in two different steps by first
creating the orientation definition of the measurement domain referring to the relation
between the visual distances throughout the images to the physical coordinates. This
procedure is performed by utilizing a specifically developed calibration plate shown in
Fig.6.4 over which a grid of black markers with 1cm spatial resolution exists referred as
the pinhole model calibration plate. In total, 12 images of the calibration plate at various
locations and orientations (8 vertical levels, 2 horizontal rotations, 2 tilted angles) are
captured from which the optical transfer function constructed. Then via performing a
volume self-calibration over the images of the calibration plate and an initial run of the
experimental setup with HFSB, the coordinate system is mapped by means of 3rd order
polynomial functions.

Figure 6.4: Calibration plate and its orientation with respect to the illumination and image
acquisition system.
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Calibration of Pressure Tabs

The calibration of pressure tabs and the analog to digital data conversion scheme is per-
formed in two steps. First, the average pressure values obtained from the pressure tab
measurements in tunnel off conditions are set to be zero so that the dynamic conditions
and the corresponding pressure modulations can be quantified directly. Secondly, an arti-
ficial noise generation device, a pistonphone, is used to induce pressure waves of 119.2 dB
with sinusoidal profiles at 250 Hz which are confirmed with the digital pressure readings
in the frequency domain.

Figure 6.5: Pressure tab installment at the central location of the membrane (left) and
pressure tab ports (right).

6.2.2 Image Processing

One of the main objectives of the conducted experimental campaign is to obtain simulta-
neous dynamic information of both fluid and structural domains utilizing the exact same
experimental hardware. In that regards, the previously employed Direct Image Correla-
tion (DIC) setup for measuring the structural motions is removed from the experimental
setup. Thus, the structural information is reconstructed utilizing the same illumination
and image acquisition hardware used for the fluidic region. Hence, in order to attain
motion information of these two domains the deterministic step is referred as the image
processing procedure.

Flow Domain

For reconstructing fluid motion the acquired images are initially filtered using a Butter-
worth high-pass filter computed over 15 images for cancellation of background noise in
terms of illumination intensity. Then the resultant images are provided to the Shake-the-
Box (STB) algorithm for Lagrangian particle traking (Schanz et al., 2016). Throughout
the particle tracking procedure the two dimensional particle detection threshold is deter-
mined to be 10 particles where the triangulation errors were limited to 1.5 voxels. In the
iterative particle reconstruction procedure, particles are shaked within 0.2 voxels while
particles within the range of 8 voxels and/or possessing illumination intensities lower
than 10% of the average intensity levels are removed. Finally, proceeding to the tracking
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step, the particle tracks are reconstructed with a minimum length of 7 particles within
consecutive images. For the computation of velocity and Lagrangian acceleration infor-
mation, a minimum number of 5 particles are selected for fitting a 3rd order polynomial
for regularizing the particle motions in the temporal domain.

Structural Domain

As the membrane surface is equipped with tracer markers shown in Fig.6.5, surface mark-
ers possessed greater light intensities captured by the recording devices compared to the
HFSB tracers of the fluid domain. In order to remove the flow tracers from the images, a
high-pass time filter is applied to recorded images with a filter length of 3 images. Then,
a second non-linear filter is performed for removing the 2D sliding average of particle
intensities based on Gaussian distributions of light intensities with a filter length of 12
pixels. The resultant images are processed with the STB algorithm employing the same
minimum track length of 7 particles and the resultant particle tracks are reconstructed
with polynomial fits of 3rd order over a minimum number of 5 particles.

6.3 Steady Membrane Deformations

The steady flow characteristics are investigated with the membrane stationarily deformed
at three different locations; upward, neutral and downward. The steady membrane shape
is reconstructed by combining the location information of surface markers obtained from
the STB algorithm for 10,000 instantaneous fields. As the imaging range of recording
devices allowed accurate reconstruction of particle tracks for the surface markers within
a smaller area compared to the full size the black foil, the membrane surface shape is
represented with the dimensions of ∼150×150 mm2, Fig.6.6.

It should be noted that due to the fact that as the performed experimental campaign
is the second round of experiments performed with the exact same elastic membrane,
plastic deformations are observed to be occurred throughout the operational cycles of
steady and unsteady measurement configurations. These deformations yielded a certain
degree of slag to appear especially when the membrane is set to be resting still at its
neutral position. Nevertheless, neither the deformations due to this slag exceeded ∼3
mm nor it is an influential factor for the experiments to reach its objective since the
exactly controlled motion of the membrane central location is not compromised. Hence,
the experimental campaign is proceeded without making any modifications to the setup.

The steady flow field information of particle tracks are also treated in a very simi-
lar manner to the structural components as the instantaneous flow field information is
combined from two consecutive runs with 10,000 time instants. Then, the scattered par-
ticle tracking data is gridded by means of a binning procedure which proceeds with the
following steps,

• A structured grid is generated for the membrane at neutral position where mis-
matches between the exact membrane locations and the grid nodes occurred.
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Figure 6.6: Reconstructed membrane shapes with relative surface displacements at upward
(left), neutral (middle) and downward (right) deformed positions.

• In order to conform the various configurations of membrane surface shapes ex-
actly, the initially generated structured grid form is deformed by means of ra-
dial basis function (RBF) based mesh deformation schemes, following an Arbitrary
Lagrangian-Eulerian (ALE) approach where the Eulerian reference frame is created
for the fluid side using the Lagrangian information captured for the structure.

• Spherical bins with diameters of double the size of the grid spacing (50% overlap)
are employed to capture particle tracks that will be used to reconstruct the fluid
information over the measurement domain.

• An Adaptive Gaussian Windowing (AGW) approach is applied within each indi-
vidual bin for three dimensions of velocity and acceleration vectors to assign to the
corresponding flow field information to the grid locations.

Grid spacing for capturing the steady flow field information is defined to be 5 mm
which corresponds to the half of the separation distance between the surface markers.
Hence, the location information of membrane shape at the grid locations are supersampled
by means of trilinear interpolation.
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6.3.1 Velocity Field Reconstruction

The velocity field information for three different steady membrane deformation levels of
upward, neutral and downward forms reconstructed following the aforementioned proce-
dure of binning. The results are presented with planar profiles of the streamwise velocity
distributions accompanied with flow streamlines presenting the main flow direction in
order to demonstrate the fluid’s response to respective surface deflection levels.

Figure 6.7: Volumetric velocity (left) and pressure (right) field information for steady mem-
brane deformations of upward (top), neutral (middle) and downward (bottom)
positions.
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Considering the volumetric velocity profiles, two main conclusions are drawn regard-
ing the steady flow behavior. First of all, with increasing deflection level of the surface in
the upward direction, the flow remains fully attached to the membrane surface without
any case of separation observed. Hence, the corresponding flow behavior of streamlines
following the deformed membrane shape yields local contractions of flow cross-sections
the regions of high upward deformations that accelerates the flow in consideration of mass
conservation complying with the incompressible flow conditions. Furthermore, the scale
of the vertical flow motion is in direct correlation with the surface deformation magnitude
in the positive upward direction. In a general sense, as the flow approaches to the mem-
brane, it is deflected upward following the membrane surface aligning with the horizontal
axis over the central location of the membrane and deflecting downwards, downwind of
the deformation center to be aligned with the initial flow direction. The rate of deflec-
tion in the wall normal direction and the corresponding velocity component magnitudes
increase with in accordance to the deflection levels induced to the membrane.

6.3.2 Pressure Tab Measurements

The steady probe measurements at two different locations of upwind and central mem-
brane are analyzed by combining the measurement data of two consecutive runs as it is
performed for the optical measurements to increase the accuracy of time averaged pressure
values.

In order to increase the statistical convergence rate on the averaged pressure readings,
the time separation of statistically independent samples is determined by means of a time
correlation analysis (Hansen and McDonald, 2006). The first zero crossing of the time
correlation function is considered to be the integral time scale, T , for the statistically
independent samples (Ross, 2017), hence the sampling rate is determined as 1/2T . The
accurate measurement values are considered to be contained within the interval of 3
standard deviations from the time averaged values. Thus, the measured data outside of
this region is considered to be outliers which are removed to prevent any overestimation
of the fluctuations and to obtain unbaised statistical results (Tim et al., 2007). Finally
the measurement uncertainty is determined by,

up = k
σp√
N

(6.1)

where up, σp and N refers to the uncertainty in pressure measurements from the pressure
tabs, standard deviation of pressure fluctuations and the number of statistically indepen-
dent samples. k corresponds to the coverage factor which is selected to be 3 for 99.9%
confidence level.

To start with it should be noted that the neutral position for the membrane deforma-
tion corresponds to a slightly upward deformed shape in order to obtain a greater level of
deformation for the maximum deformation configuration. With the membrane deformed
in flow normal direction the cross-sectional area of the control volume of fluid motion
is contracted towards the central section of the membrane and expanded dowstream as
the membrane converges with the aluminum housing. Hence, with regards to the mass
conservation, the flow accelerates as it passes over the central membrane location and
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Figure 6.8: Pressure tab measurements of membrane at upward (top), neutral (middle) and
downward (bottom) positions for upwind (left) and central (right) pressure tab
locations.

decelerates downstream to reach the inflow flow speed. Therefore, in agreement with the
Bernoulli principle stating the inverse relation between static pressure and the square
of fluid velocity magnitude, pressure decrements is observed over the central membrane
location which reduces its amplitude with the decreasing levels of deformation imposed
to the membrane shape.

Regarding the pressure measurements obtained from the upwind pressure tab, it
should be stated that the membrane experiences a buckling effect in the region where
the upwind pressure tab is located due to the possible fatigue effects elastic membrane
might have experienced. Thus, especially in case of the upward and neutral positions
of the membrane deformations, the buckling creates a smooth cavity where the flow
experiences a local deceleration which yields higher static pressure values compared to the
ambient conditions. Therefore, in comparison to the expected measurements of similar
pressure variation profiles acquired with the central pressure tab at lower amplitudes,
it provides the opposite flow behavior. Furthermore, the disagreement of the observed
opposite characteristics can be captured by the pressure measurements for the membrane
at downward position whose reasoning is referred to the aforementioned sag observed for
the membrane form because of the possible plastic deformations, Fig.6.8.
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Figure 6.9: Volumetric and surface pressure reconstruction with boundary fitted coordinates
from STB data for membrane deformation levels of upward (top-left), middle
(top-right) and downward (bottom).

6.3.3 Pressure Field Reconstruction

Considering the decomposed description of material acceleration terms representing the
pressure gradients, it can be observed that the velocity gradients in the streamwise and
spanwise direction yield positive acceleration values of streamwise velocity components
towards the membrane central location where the largest magnitudes of streamwise ve-
locity are observed. Hence, the corresponding effect on the pressure with a minus sign
relating the material accelerations to the pressure gradients is a low pressure region over
the central location of the membrane. Furthermore, because of the flow deflections in the
wall normal direction, streamwise gradients of the wall normal velocity possess positive
values with greatest acceleration occur as the flow starts to interact with the deformed
membrane shape and immediately switches to negative values over the central location
of the membrane in order to follow the membrane shape in absence of any separation.
As the flow approaches to the downstream edge of the membrane, the magnitude of ac-
celeration in the negative normal direction diminishes and the flow gets aligned with the
horizontal plane, Fig.6.9. During this interaction period the variations in the wall nor-
mal velocity component induces negative pressure gradients in the wall normal direction
that increase over the central location of the membrane as the streamwise velocity values
increase due to the local contraction of the control volume cross sections and amplify the
pressure decrease observed over the central membrane location. The scale of this motion
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in terms of acceleration magnitudes and the corresponding pressure values correlates with
the membrane deformation levels. The reconstructed deformed membrane profiles reveal
upward directed hill forms at each level of deformation while changing its amplitude in
terms of the hill height, Tab.6.2.

Membrane Deformation Pressure Tab [Pa] PTV[Pa]

Upward −25.89 −25.77
Neutral −10.83 −10.98
Downward −0.80 −1.18

Table 6.2: Static pressure values at the central membrane location obtained from the pres-
sure tab measurements and pressure reconstruction algorthim.

6.4 Unsteady Membrane Deformations

The unsteady membrane deformations induced by the installed DC motor at three differ-
ent frequencies of 1 Hz, 3 Hz and 5 Hz are analyzed initially in terms of the instantaneous
variation of pressure measurements acquired via the pressure tabs. In order to increase
to the reliability of the periodic static pressure evolution obtained over two runs of mea-
surements, static pressure values are analyzed by means of ensemble averaging the static
pressure values representing the pressure variation induced due to the sinusoidal mem-
brane motion.

In addition to the unsteady pressure profiles illustrated in Fig.6.8, in order to investi-
gate the unsteady flow features at different steady membrane deformation configurations,
frequency spectrums of central pressure tab measurements are decomposed via fast fourier
transforming (FFT) the pressure signals which provides the quantification of oscillations
frequencies and their respective amplitudes.

Prior to the physical conclusions drawn from the FFT analysis, it should be noted
that two very dominant frequencies are observed for all three membrane shapes at similar
amplitudes. These frequencies of 120 Hz (Fig.6.12, A) and 240 Hz (Fig.6.12, B) are
determined to exist due to the wind tunnel operation specifications. Hence, they are
not representatives of the characteristic flow features which are being modified due to
the variations on the membrane form. Besides the uncorrelated oscillations within the
fluid flow exposed to different membrane shapes, the major variation in the amplitude
range of low frequency oscillations reveal a significant increase on the higher amplitude
unsteady effects in relation with the upward deformation level of the membrane. Thus, as
the intrusion of the membrane form towards the fluid domain is increased with positive
upward deformation, the strength of the unsteady fluctuations in terms of low frequency
oscillations follow an amplifying trend.

Furthermore, the pressure tab measurements for the unsteady membrane motion is
analyzed following an ensemble averaging procedure. The complete data set of 3 mea-
surement runs are partitioned to three periods, 3T , of pressure readings according to the
respective frequencies of membrane motion. Each 3T time period of measurements is
treated as a sample of membrane motion cycle and the unsteady pressure variations are
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Figure 6.10: Frequency spectrum analysis for instantaneous fluctuations of pressure tab
measurements.

computed by ensemble averaging while the uncertainty for the pressure measurements is
calculated using Eq.(6.1) over the individual measurement locations of t/T .

With regards to the influence of unsteady membrane motion on the pressure vari-
ations observed over the fluid domain which relates an amplification over the pressure
variation amplitudes observed over the period of membrane motion, the influence of such
an amplification effect cannot be captured due to the low reduced frequencies with re-
spect to the incoming fluid speed except the 5 Hz case. Nevertheless, as the membrane
motion frequency is increased, the acceleration of the membrane and its effect on the
surface pressure variations, slightly amplify the oscillation amplitude especially at the
peak locations of the membrane motion (upward and downward positions). However, the
setup operation conditions set to reach the 5 Hz of membrane motion frequency resulted
in severe mechanical oscillations on the aliminium housing of the membrane. Therefore,
even though theoretically expected results in terms of unsteady variation of pressure val-
ues are captured, considering the uncertainty limits shown in Fig.6.11, it shall be denoted
that these mechanical oscillations might be influencing the pressure measurements which
might be an influential factor for the amplification of oscillation amplitudes.

6.5 Phase-Averaged Flow Characterization

The phase-averaged flow information for the unsteady membrane motion is captured
following a similar procedure applied for the steady cases. Each cycle of membrane
motion is defined by means of 11 time instants for the respective frequencies and treated
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Figure 6.11: Ensemble averaged pressure tab measurements for unsteady membrane motion.

a quasi-steady assumption. Depending on the prescribed time intervals, phases of ∆T
time duration are determined for the particle track information to be combined. As
the structural measurements provided a greater level certainty and spatial resolution,
the fully instantaneous reconstruction of the membrane shape was possible. Hence, the
corresponding computational domain is created by starting from a uniformly structured
grid and deforming the generated mesh formation using the RBF based mesh deformations
based on the location information of membrane surface makers. Finally, the combined
particle tracks containing particle velocity and acceleration data are binned over the
deformed grid locations.
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Figure 6.12: Signal reconstruction for the velocity magnitude variation in time performed
via employing the FFT analysis on the velocity data acquired proceeding the
binning procedure.

The pressure reconstruction algorithm is provided with the material acceleration in-
formation captured by the binning procedure and, the corresponding pressure gradient
vectors are transformed according to the relation of physical and computational coordi-
nate systems. However, due to the noisy nature of measurement data and the velocity
profiles barely reaching the outer edges of the turbulent boundary layers within the reliable
measurement domain boundaries, the determination of a reference pressure value in order
to obtain a unique solution for the pressure reconstruction problem became non-trivial.
Since the expected velocity variations in correspondence to the membrane motion cannot
be captured by the binning procedure, the exact values of the reconstructed pressure in-
formation deviated from the physical flow behavior when the binned velocity magnitudes
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are directly employed within the Bernoulli equation.

Therefore the Dirichlet boundary condition for the pressure fields is computed by
performing a FFT analysis on the velocity signal captured by the binning procedure at
the reference pressure location. As the FFT analysis provided the amplitude of velocity
fluctuations at various frequencies, the frequencies of dominant oscillation amplitudes
and their respective harmonics are extracted in order to reconstruct the velocity variation
cycles at the reference pressure location.
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Figure 6.13: Phase averaged pressure reconstruction via ALE method in comparison to the
pressure tab measurements for 1Hz (top), 3Hz (middle) and 5Hz (bottom) of
unsteady membrane motion.

Utilizing the interpretation ALE method for pressure reconstruction over the exper-
imental PTV data, where at each time instant the Lagrangian information of surface
motion is used to deform the computational grid accordingly, the phase averaged flow
field information is captured according the quasi-steady state of pressure variations. Re-
ferring to the two main aspects of the time evolution of pressure values at the central
membrane location, the theoretical assumption of zero normal pressure gradients within
the turbulent boundary layer is observed reveal a superior effect for determining the am-
plitude of pressure variations as the reference pressure value computed using the FFT
signal analysis performed over the temporal trace of velocity values provided 70% of the
pressure variation amplitudes throughout the motion cycle of the membrane. On the
other hand, the integration of phase averaged pressure gradients over the computational
domains composed the 30% of the pressure variation amplitudes to reconstruct the total
variation cycle of pressure values which yield a significantly good agreement with the
pressure tab measurements within the respective uncertainty limits, Fig.6.13.
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Even in the case of 5 Hz of membrane motion frequency where certain unreliability
concerns arose due to the mechanical oscillations observed on the structural housing of
the experimental setup, the reconstructed pressure values are captured in close agreement
with the pressure tab measurements. Nevertheless it should be noted that the pressure
tab measurements at 5 Hz membrane motion frequency did suffer from larger measure-
ment uncertainties referring to the greater oscillation amplitudes captured especially at
the upward deformation point over the motion cycle due to the high impact forces of
membrane on the aluminum housing.

6.6 Instantaneous Flow Characterization

Referring to the aforementioned discussion on the complete unsteady nature of FSI prob-
lems, the local closure of Collar’s triangle of aeroelasticity demands a fully time-resolved
characterization of the flow state. As the employed large-scale experimental setup suffers
from scarcity of tracer particles which are scattered over the measurement domain, direct
usage of the particle tracks reconstructed via STB algorithm becomes inadequate to yield
deterministic results with regards to the velocity and acceleration distributions over the
region of interest due to the severely downgraded spatial resolution specifications for ac-
curate pressure distribution calculation. An average of ∼150 particles are captured within
the measurement domain yielding track concentrations of approximately 50 par/h, where
h refers to the maximum deflection height. In the previous chapters where the valida-
tion datasets are downsampled to meet the experimental conditions in which the particle
concentrations were adjusted according to the present measurement campaign, it is unde-
niably observed that the standalone processing of particle tracking information for fluid
flow characterization neither was able to offer a resemblance with the reference flow fields
nor captured any secondary flow effects such as cross flow components.

0 0.2 0.4 0.6 0.8 1
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0.5
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Figure 6.14: Available particle tracking information for phase averaged ensemble of STB
output (left) and instantaneous STB output (right).

Similarly, as the unsteadily available particle tracking information is captured at a
predefined grid structure by means of the aforementioned binning approach with the
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membrane unsteadily deforming at three different frequencies, even though bin sizes with
significantly increased overlapping characteristics are employed, both velocity and pres-
sure distributions do not provide any characteristic spatial variation while many of the
grid locations fall short of local particle densities to allow the binning procedure to assign
a flow information. Therefore, trilinear interpolation, VIC+ with Arbitrary Eulerian-
Lagrangian (ALE-VIC+) and immersed boundary treatment (ImVIC+) implementations
are employed to increase the spatial resolution of flow field information for time-resolved
reconstruction of surface pressure distribution over the elastic membrane. Both proposed
methods of ALE-VIC+ and ImVIC+ are individually compared against the linear inter-
polation approach to demonstrate the elevated physical coherence of the densely recon-
structed flow field information with the present physical features of the flow via utilizing
flow governing equations.
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Figure 6.15: Instantaneous pressure reconstruction of linear interpolation and ALE-VIC+
methods in comparison to the pressure tab measurements for 1 Hz (top), 3 Hz
(middle) and 5 Hz (bottom) of unsteady membrane motion.

The ALE-VIC+ algorithm proceeds with two main steps where the basis of the
method utilizes a boundary fitted coordinate system generated for the membrane which
is initiated considering the membrane to be positioned at a neutral position of zero defor-
mations. Then, according to the captured structural information of the membrane motion
acquired via surface tracers, the boundary conformation of the grid structure is preserved
as the complete computational mesh is deformed using RBF based interpolations over mo-
tion cycle of the membrane deformations. Hence, at each time instant the computational
grid is updated according to the structural information and the available particle tracking
information is augmented with a boundary fitted variant of VIC+ corresponding to the
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optimization procedure of ALE-VIC+. Contrarily, ImVIC+ method employs a structured
uniform grid structure for the dense interpolation of fluid properties whilst providing the
appropriate corrections to the velocity field reconstruction procedure to satisfy the nec-
essary physical conditions over the solid surfaces. As the linear interpolation approach
is employed to be compared against the ALE-VIC+ and ImVIC+ approaches, results of
the trilinear interpolation also employed to determine the boundary conditions for the
VIC+ based methods as well as setting an initial estimate to increase the convergence
speed. Therefore, with regards to the available particle track distributions concentrated
over the central membrane region the generated computational domains are localized over
the near proximity of the membrane central position in order to provide reliable boundary
condition definitions for the aforementioned post processing procedures.
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Figure 6.16: Instantaneous pressure reconstruction errors of linear interpolation and ALE-
VIC+ methods for 1 Hz (top), 3 Hz (middle) and 5 Hz (bottom) of unsteady
membrane motion.

The boundary fitted surface pressure reconstruction algorithm is also employed for
the pressure computations over the measurement domain from the densely interpolated
particle tracking information as the VIC+ based algorithms allow the reconstruction
of material derivatives. Whereas, the pressure reconstruction employing the results of
ImVIC+ method is performed over the uniform Cartesian grid with masking the internal
region of the solid intrusion. Hence, the static pressure values over the exact surface
locations are computed with an omni-directional integration procedure similar to the
approach proposed by Jux et al. (2020) where the linear system of equations for the
solution of Poisson equation for integrating the pressure gradients is constructed by means
of Taylor series approximations for unstructured mesh formations (Feng et al., 2018).
The Dirichlet boundary conditions for the unique pressure determination is performed by
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means of a sinusoidal fitting to the velocity readings at the pressure reference location
employing the FFT reconstruction algorithm explained previously. The resultant velocity
values are used to the compute the reference pressure value by means of the Bernoulli’s
principle.

Considering the physical behavior of a flow passing over a locally contracting control
volume cross-section, the aforementioned characteristics of local acceleration and decelera-
tion features hold in a general sense which can be obtained when multiple time instants are
combined and temporal fluctuations are inherently lost. As the fully time-resolved char-
acteristics are analyzed, these fluctuations become dominant factors determining the ve-
locity and pressure distributions over the measurement domain. In regards to the present
experimental conditions in which the turbulent boundary layer profiles are captured to
be larger then the previously conducted planar PIV measurements, the reconstructed
computational domains are barely able to reach to the boundary layer thicknesses as the
measurement domains are cropped to ensure reliable boundary condition deformations.

Table 6.3: Instantaneous pressure reconstruction errors [Pa] of linear interpolation and ALE-
VIC+ methods for 1 Hz, 3 Hz and 5 Hz of unsteady membrane motion.

1 Hz 3 Hz 5 Hz

Linear Interpolation 3.78 3.84 10.10
ALE-VIC+ 2.80 2.14 5.07

Nevertheless, even though time-resolved fields represent the instantaneous turbulent
boundary layer conditions over the computational domains, the influence of membrane
deformations are clearly observed when the time evolution of surface pressure at the
central membrane location is reconstructed over 21 time instants for each frequency of
motion representing the complete motion cycles of the membrane deformations. As the
corresponding reduced frequencies obtained with the membrane motion of 1 Hz and 3
Hz are k ≤ 0.05, the instantaneous impact the unsteady membrane motion imposes on
the flow conditions is rather insignificant since the flow profile proceeds over a quasi-
steady state, Figs.6.15 & 6.17 (1st and 2nd rows). Nevertheless, the reduced frequency
generated with 5 Hz membrane motion frequency corresponding to k ≈ 0.1 with the half
chord length of 0.25 m, falls in the regime of unsteady aerodynamic features (Leishman,
2016). Thus, in comparison to the pressure tab measurements the time-resolved surface
pressure, reconstructed pressure profiles yields almost identical pressure variations which
are in great agreement for 1 Hz and 3 Hz cases while the 5 Hz case exhibits underestimated
static pressure values for the time period where the membrane approaches its lower most
position, Figs.6.15 & 6.17 (3rd row). Even though with both time resolved reconstruction
methods of ALE-VIC+ and ImVIC+, the underestimation errors observed over the high
amplitude fluctuations of pressure tab measurements are observed to be lower compared
to the phase averaged pressure reconstruction approach performed by binning the STB
data directly.

Furthermore, comparing the reconstructed surface pressure information from trilinear
interpolation to ALE-VIC+ and ImVIC+, a clear difference between the trilinear interpo-
lation and VIC+ based methods is captured where the latter two methods approach the
pressure tab measurements significantly in both three frequencies. Although the overall

M.Sc Thesis Bora O. Cakir



136
3D Characterization of Turbulent Boundary Layer Interactions with an

Elastic Membrane

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T

-40

-20

0

P
re

s
s
u

re
 [

P
a

]

Pressure Tab Linear Interpolation VIC+ ImVIC+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T

-40

-30

-20

-10

0

10

P
re

s
s
u

re
 [

P
a

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T

-40

-20

0

20

P
re

s
s
u

re
 [

P
a

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T

-40

-20

0

20

P
re

s
s
u

re
 [

P
a

]

Figure 6.17: Instantaneous pressure reconstruction of linear interpolation, VIC+ and
ImVIC+ methods in comparison to the pressure tab measurements for 1 Hz
(top), 3 Hz (middle) and 5 Hz (bottom) of unsteady membrane motion.

pressure profiles of all three methods, including standard VIC+ without an immersed
boundary treatment, the variations between the different approaches are observed to be
relatively confined, both ALE-VIC+ and ImVIC+ enabled a greater agreement with the
pressure tab measurements by minor improvements. There exists three main reasons for
these minor variations between the different methods which can be deducted in accordance
to the validation studies.

First of all, the present flow conditions and the objective of reconstructing surface
pressure under these conditions include a relatively straightforward flow formation in
absence of major secondary flow structures, such as strong vortices. Hence, the spatial
variations of both velocity and pressure distributions are composed of mild gradients
of flow properties over the measurement domain where the overall flow profiles do not
contain any separation features as well as dominant vortices. Therefore, as the linear
interpolation is performed, these smooth gradients can be reconstructed without severe
loss of accuracy over the computational domain.

Secondly, as the flow behavior is determined by these smooth variations over the
measurement domain, the flow properties outside the turbulent boundary layer are in-
dependent of the fluctuations present within the turbulent boundary layers which yields
a dominant pressure variation determined by the Bernoulli principle. Considering the
fact that assumption of zero pressure gradients in the surface normal direction within
the turbulent boundary layers is violated in physical cases, pressure variation levels of
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Figure 6.18: Instantaneous pressure reconstruction errors of linear interpolation, VIC+ and
ImVIC+ methods for 1Hz(top), 3Hz(middle) and 5Hz(bottom) of unsteady
membrane motion.

approximately 6∼8 Pa are captured between the surface locations and the outer edges of
the turbulent boundary layers. Nonetheless, when these pressure variations are normal-
ized with the absolute pressure difference captured at highest and lowest points of the
membrane motion which is ∼30 Pa, the pressure modulations aimed to be reconstructed
with a superior accuracy by ALE-VIC+ and ImVIC+ correspond to ∼25%, Figs.6.16 &
6.18.

Finally, the boundary conditions for ALE-VIC+ and ImVIC+ methods are deter-
mined via linearly interpolating the STB data over the corresponding boundaries. Hence,
as the reference pressure location for the Dirichlet boundary condition is located consider-
ably close to the boundaries of the computational domain, the variation of velocity values
between the trilinear interpolation and VIC+ based approaches is significantly small.
Therefore, as the sinusoidal fitting is performed over these velocity values, the difference
between the three different algorithms is almost completely smoothened out. Thus, with
the dominance of Bernoulli principle over the temporal variation of pressure distributions,
the attainable improvements with the applications of ALE-VIC+ and ImVIC+ over the
trilinear interpolation is further reduced, Tab.6.3 & 6.4..

Finally, concentrating on the modifications observed with the implementation on an
immersed boundary treatment for VIC+ specifically, the resultant pressure profiles are
captured which is in direct correlation with the validation studies performed on the flow
over the periodic hills case. As the membrane surface and the corresponding the compu-
tational domain is enclosed by the boundaries of the grid structure the improvements ob-
tained in terms of the agreement with the pressure tab measurements are relatively small
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Table 6.4: Instantaneous pressure reconstruction errors [Pa] of linear interpolation, VIC+
and ImVIC+ methods for 1 Hz, 3 Hz and 5 Hz of unsteady membrane motion.

1 Hz 3 Hz 5 Hz

Linear Interpolation 5.44 5.24 7.32
VIC+ 6.27 4.96 5.22
ImVIC+ 1.71 2.08 3.64

compared to the complete modulation levels over the membrane motion cycle. Never-
theless, there are two important factors that yield the application of ImVIC+ promising.
First of all, the flow behavior is absent of any separation effects which correlates the ro-
tational component of the flow structure to the turbulent boundary layer characteristics.
Hence, the overall flow structure is characterized by the smooth fluid flow following the
membrane shape that relates the potential component to be the deterministic element.
Additionally, as the influence of surface singularities mitigate away from the surface, the
time evolution of velocity magnitudes at the pressure reference location is almost identical
with VIC+ without the immersed boundary treatment. Hence, due to the fact that the
dominant factor for pressure variation in the temporal domain is the reference pressure
values obtained utilizing the Bernoulli principle, the results of VIC+ and ImVIC+ reveal
a significant similarity compared with the pressure tab measurements. Nonetheless, there
exists certain time instants where major differences between VIC+ and ImVIC+ are ob-
served. This is due to the local presence of high velocity magnitudes of captured particle
tracks closer to the surface elements owing to the turbulent boundary layer structure,
that influence the surrounding flow behavior during the optimization procedure. Thus,
the corresponding influence of immersed boundary treatment provides the necessary local
corrections to the flow properties to satisfy the zero normal velocity condition and modify
the acceleration values accordingly. Consequently, the RMS of absolute error values in
terms of static pressure properties result in consistently lower values for implementation
of immersed boundary treatment over VIC+, ImVIC+.
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Chapter 7

Conclusions and Recommendations

Characterization of fluid-structure interactions (FSI) involves time-resolved determination
of fluidic behavior in relation to the structural deformations. In use of experimental sim-
ulations where the physical features of the fluid and solid domains are captured by means
of large scale tomographic PIV/PTV measurement techniques, instantaneous character-
ization requires further processing of the raw measurement data in terms of assimilation
and reconstruction of various fluid properties. Although there exists available methods
for this purpose, these methods do not provide specific capabilities of resolving wall ad-
jacent flow field properties, handling of non-uniform surface deformations and correction
of erroneous experimental data acquisitions. In that regards, Section 7.1 summarizes the
conclusions of the work content of the thesis project and, 7.2 provides recommendations
for possible future improvements of the proposed methods and introducing alternatives.

7.1 Conclusions

Available spatial resolution characteristics for time-resolved flow field measurements with
large scale tomographic PIV/PTV techniques are significantly restricted due to the tracer
particle specifications of Hellium Filled Soap Bubbles (HFSB). This restriction requires
additional post-processing algorithms to be applied over the raw experimentally acquired
data in order to mitigate the effect of experimental trade-off between the temporal and
spatial resolution specifications allowing instantaneous flow field characterization. In ac-
cordance to the literature review, governing equation based techniques such as FlowFit
(Gesemann et al., 2016) and VIC+ (Schneiders and Scarano, 2016) stand out in terms
of providing high resolution flow features by assimilating the available scattered particle
tracking information for global time-resolved flow field reconstruction. Nevertheless, as
accurate characterization of FSI problems requires proper determination of flow structures
in close proximity of the interaction interface, which significantly affects the reconstruc-
tion accuracy of the complete fluidic domain, three main drawbacks of these algorithms
arise.
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First of all, the near wall flow features for turbulent boundary layers are determined
in viscous force dominance for a thin layer of fluid particles where the VIC+ algorithm
does not contain the necessary governing equation details to cohere with the appropriate
flow physics. In combination with the scarcity of particle tracking information captured
within the sublayers of a turbulent boundary layer, the velocity profiles reconstructed
by means of VIC+ deviate from the physical flow behavior. In order to account for
the effect of viscous interactions in close proximity of wall surfaces for determination of
appropriate boundary conditions, a wall function approach for the VIC+ algorithm is
implemented, utilizing the universal logarithmic laws of turbulent boundary layers. The
introduced wall function approach for VIC+ is tested with numerical simulations of a well-
developed channel flow. The wall function application enabled accurate characterization
of average streamwise velocity profiles while owing to the fact that the Law of the wall
only refers to an empirical representation of average streamwise velocity characteristics,
the fluctuating components, as well as the spanwise and normal velocity profiles, revealed
underestimations within the regions of experimental data absence. Nevertheless, slight
improvements of streamwise velocity fluctuations are achieved due to the local applications
of the wall functions compared to the standard formulation of VIC+ with no-slip boundary
condition.

Secondly, FSI problems include unsteadily deforming non-uniform domains where
accurate determination of fluid and structure behaviors requires proper definitions of in-
terface conditions. Since, the VIC+ method is developed to be based on characterizing
the fluid properties for regions of uniform rectangular computational domains with sole
fluid presence, there exists no prior attempt to characterize kinematic interaction rela-
tions of solid boundaries intruding the fluid domain. Therefore, in order to enable the
handling of non-uniform solid boundary intrusions of unsteadily deforming surfaces for
the VIC+ approach, the well established computational FSI frameworks of the Arbitrary
Lagrangian-Eulerian (ALE) and the immersed boundary treatment methods are intro-
duced over the standard VIC+ algorithm, providing the capability of determining close
proximity flow behavior of the FSI interface.

The ALE approach is introduced to leverage from the individual advantages of Eu-
lerian and Lagrangian descriptions for optimizing the computational cost requirements
with high accuracy physical descriptions. Accordingly, an implementation of the ALE
method is proposed to formulate the standard VIC+ algorithm to operate with boundary
fitted coordinate systems for exact conformation of the FSI interface. The resultant ALE-
VIC+ method is designed to be equipped with a radial basis function (RBF) based mesh
deformation scheme to ensure the adaptability of the grid formations to the unsteady
deformations of the FSI interface. The proposed ALE-VIC+ method is tested with a nu-
merical simulation case of flow over periodic hills where the results are compared against
the Adaptive Gaussian Windowing and trilinear interpolation approaches. The initial
verification tests of the mathematical formulations of ALE-VIC+ are performed over a
rectangular uniform domain which confirmed the exact matching of the reconstructed
flow field characteristics with VIC+ in absence of curvilinear coordinates. Then, the
flow properties over the hill forms are utilized to evaluate the capabilities of ALE-VIC+
over trilinear interpolation of fluid variables. Even though, both linear interpolation and
ALE-VIC+ approaches resulted in coherent flow behaviors with the hill form, the local
variations of velocity components revealed major differences between the two, favoring the
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ALE-VIC+ in terms of accuracy where the amplitudes of velocity components are resolved
with greater agreements to the reference flow field information using ALE-VIC+.

Furthermore, the hybrid mesh-particle approaches such as the VIC framework, allows
fast FFT based Poisson solvers to increase computational efficiency using uniform prede-
fined computational grids. Hence, immersed boundary treatments proposed for numerical
investigation of FSI problems, introduce additional velocity or forcing terms to charac-
terize the influence of physical intrusions, while preserving the grid structure. In case
of vortex simulations, kinematic boundary conditions over the interaction interfaces are
satisfied by means of additional potential flow components. Accordingly, an implemen-
tation of the immersed boundary treatment is proposed for the VIC+ algorithm where
the no-through boundary condition over the non-uniform solid surfaces is satisfied by
means of representing the structural surfaces with singularity components, or commonly
referred as the panel method. The resultant approach of ImVIC+ computes the velocity
field information according to the Helmholtz decomposition where the vortex strengths
are used as optimization variables to capture the rotational flow properties while the sur-
face singularities introduce a potential flow component to satisfy the boundary conditions
over intruding surfaces. The ImVIC+ method is also tested with the numerical simula-
tions of a flow over periodic hills similar to ALE-VIC+. The ImVIC+ method enabled
improvements of reconstruction accuracy over the standard VIC+ algorithm for the flow
properties in close proximity of the hill surfaces in terms of streamwise and normal ve-
locity components composing the surface flow penetrations. The modifications achieved
on the flow field properties by means of the ImVIC+ approach are confined to the close
proximity of the FSI interface and do not affect the regions far away from solid boundaries
where the experimental particle tracking information accurately constructs an objective
function for the optimization procedure.

Moreover, the local closure of Collar’s triangle demands surface loading over the
structural elements to be determined according to the the fluid behavior. In that regards,
optical measurement techniques of PIV/PTV enables non-intrusive characterization of
surface pressure information over solid boundaries while tracking the corresponding struc-
tural deformations. Accordingly, the ALE method is interpreted to proposed an alterna-
tive surface pressure reconstruction scheme based on PIV data over unsteadily deforming
non-uniform boundaries with boundary fitted coordinate systems generated by means of
RBF based mesh deformations. Hence, the pressure gradients characterized using the
material acceleration values reconstructed via the Shake the box algorithm are integrated
on prescribed computational grids which are formed using the Lagrangian descriptions of
surface tracer motions. Therefore, the exact conformation of the deformed surface shapes
obliterated the necessity of any extrapolation methods for surface pressure distribution
determination. The resultant pressure field computations yielded relative error levels be-
low 4% compared to analytical flow field properties where the majority of the errors are
related to the numerical method of choice for the integration of pressure gradients rather
than the discretizations of mesh deformations and vectorial transformations.

Finally, experimental data acquisition procedures of PIV/PTV contain measurement
errors of different forms. As the reconstructed flow field information from the experimen-
tally acquired images used for the data assimilation procedures, these errors propagate
to yield physically devaint flow field properties. Throughout the state-of-the-art noise
canceling approaches, these errors are characterized with non-zero divergence of velocity
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vectors that correspond to continuity errors for incompressible flows. Nevertheless, VIC+
method neither contains a cancellation algorithm for possible mass conservation viola-
tions nor impose the continuity throughout its formulations. Therefore, an alternative
dense flow field interpolation method of Sol+ is proposed to mitigate the propagations
of measurement and numerical discretization errors for time-resolved flow field character-
ization using solenoidal RBFs. Similarly, the inviscid formulation of vorticity transport
equation yields a mathematical discretization of the acceleration fields which needs to be
rotational free. Hence, in order to ensure the resultant acceleration fields are irrotational,
the SGPR algorithm of Azijli and Dwight (2015) is modified with irrotational RBFs to
yield the irrotational Gaussian process regression (IGPR) where the ISol+ approach is
introduced to utilize the IGPR method for filtering out the rotational components of the
reconstructed material acceleration fields.

The proposed methods of Sol+ and ISol+ are tested with theoretical and experi-
mental cases where the theoretical assessment is performed with an artificial Gaussian
noise addition to simulate measurement errors contained within the input data of particle
tracking information. The mass conservative formulation of Sol+ inherently prevented
measurement errors to drive the optimization procedure away from the physical flow fea-
tures which increased the agreement of the resultant velocity fields with the analytical
flow field properties, especially in presence of artificial measurement noise. While the
ISol+ did not provide any noticeable accuracy improvement for the velocity and vorticity
field characterization due to the scaling specifications of cost function parameters, the
major advantage of enforcing irrotationality of material accelerations is observed in terms
of the pressure field reconstructions where the accuracy of the static pressure field infor-
mation obtained using the results of ISol+ revealed greater agreement with the reference
experimental data, compared to the standard VIC+ algorithm.

Consequently, the developed methods of wall function implementation, ALE-VIC+
and ImVIC+ are employed for the experimental investigations of turbulent boundary
layer interactions with unsteadily deforming elastic membrane. Initial assessments of the
volumetric flow field properties are performed over steady membrane deformations and
phase averaged unsteady characterizations of velocity and pressure field information in
accordance to a quasi-steady assumption of the flow features. The proposed methods
of ALE-VIC+ and ImVIC+ are utilized for fully time-resolved surface pressure recon-
structions where the instantaneously available low density particle tracking information
is assimilated towards dense interpolation of material accelerations to capture temporal
evolution of static pressure values at the central membrane location. The superior accu-
racy specifications of ALE-VIC+ and ImVIC+ methods against trilinear interpolation,
achieved by enabling the kinematic discretization of the unsteadily deforming membrane
motion, provided greater agreement of the non-intrusive instantaneous pressure field com-
putations with the pressure tab measurements.

7.2 Future Recommendations

Throughout the thesis report, certain short comings of the proposed methods are docu-
mented as the algorithms are tested against various reference datasets. Hence the recom-
mendations of future improvements are derived accordingly to compensate these short-
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coming and further evolve the introduced approaches.

First of all, the wall function implementation only handles the streamwise veloc-
ity components due to the descriptions of universal logarithmic laws. Therefore, actual
near wall flow properties are to be captured within the data assimilation algorithms by
proper means of viscous considerations over the governing equations. Hence, accurate
discretization of the viscous effects shall enable the implementation of physically exact
no-slip boundary conditions so that the flow field properties in close proximity of the FSI
interfaces can be reconstructed with increased accuracy. Furthermore, with the appropri-
ate formulation of governing equations including the consideration of viscous effects, the
immersed boundary treatment can also be modified with surface parallel vortex sheets to
satisfy the no-slip boundary condition as well as the no-through boundary condition over
solid physical intrusion surfaces.

Secondly, the alternative approach of dense flow field interpolations with matrix val-
ued RBFs revealed promising results towards employment of the proposed method in
experimental simulations. In that regards, the use of solenoidal RBF obliterated the need
for describing velocity boundary conditions. Nevertheless, boundary conditions for the
material acceleration computation procedure are still required to be provided in terms of
the temporal velocity derivatives (∂u/∂t) . Due to the fact that computation of accurate
values for ∂u/∂t is extremely challenging owing to the scattered flow field information
for large scale tomographic experiments, the use of optimization variables in terms of
the material accelerations by utilizing irrotational RBFs can remove this necessity and
improve the accuracy of the acceleration field reconstructions which also transfers to the
pressure field information. Alternatively, the ∂u/∂t values can be introduced as optimiza-
tion variables. Since for incompressible flows mass conservation corresponds to divergence
free velocity fields, the divergence of ∂u/∂t are also required to be equal to zero. There-
fore, reconstructing ∂u/∂t by means of solenoidal RBFs can also remove the obligation
of providing boundary conditions for the acceleration computation. Moreover, as ∂u/∂t
are computed using the vorticity transport equation and a corresponding Poisson relation
between the temporal derivatives of velocity and vorticity fields, using ∂u/∂t as opti-
mization variables shall reduce the number of numerical calculations which would yield a
reduction in the accumulation of numerical discretization and truncation errors.

Furthermore, taking into account the recent developments on Vortex-in-Cell based
data assimilation algorithms towards utilizing a sequence of time instants for increasing
the accuracy of instantaneous flow field reconstruction such as VIC++ and TSA, the use
of solenoidal RBFs with additional optimization variables defined for ∂u/∂t can be further
elaborated with elevated accuracy possibilities of material acceleration determinations.
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Löhner, R. and Yang, C. (1996). Improved ale mesh velocities for moving bodies. Com-
munications in Numerical Methods in Engineering, 12(10):599–608.

Lorenzoni, V., Tuinstra, M., Moore, P., and Scarano, F. (2009). Aeroacoustic Analysis of
a Rod-Airfoil Flow by Means of Time-Resolved PIV.

Lowitzsch, S. (2005). A density theorem for matrix-valued radial basis functions. Numer-
ical Algorithms, 39:253–256.

M.Sc Thesis Bora O. Cakir



References 155

Luke, E., Collins, E., and Blades, E. (2012). A fast mesh deformation method using
explicit interpolation. Journal of Computational Physics, 231(2):586 – 601.

Maas, H. G., Gruen, A., and Papantoniou, D. (1993). Particle tracking velocimetry in
three-dimensional flows. Experiments in Fluids, 15(2):133–146.

Malik, N. A. and Dracos, T. (1995). Interpolation schemes for three-dimensional velocity
fields from scattered data using taylor expansions. Journal of Computational Physics,
119(2):231 – 243.

Malik, N. A., Dracos, T., and Papantoniou, D. A. (1993). Particle tracking velocimetry
in three-dimensional flows. Experiments in Fluids, 15(4):279–294.

Maljaars, P., Bronswijk, L., Windt, J., Grasso, N., and Kaminski (2018). Experimental
validation of fluidstructure interaction computations of flexible composite propellers in
open water conditions using bem-fem and rans-fem methods. J. Mar. Sci. Eng.

Malon, J. R. (1977). A fifty channel electrically scanned pressure module. In Proceedings
of the 23rd International Instrumentation Symposium.

Mandal, B. and Mazumdar, H. (2015). The importance of the law of the wall. Interna-
tional Journal of Applied Mechanics and Engineering, 20.

Marchi, S. D. (2009). Geometric greedy and greedy points for rbf interpolation. In ro-
ceedings of the International Conference on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2009.

Marchioro, C. and Pulvirenti, M. (1994). General Considerations on the Euler Equation,
pages 1–58. Springer New York, New York, NY.

Marinus, B. (2011). Multidisciplinary Optimization of Aircraft Propeller Blades. PhD
thesis.

Mcclure, J. and Yarusevych, S. (2019). Planar momentum balance in three-dimensional
flows: applications to load estimation. Experiments in Fluids, 60.

Mella, D., Brevis, W., Higham, J., Racic, V., and Susmel, L. (2019). Image-based track-
ing technique assessment and application to a fluidstructure interaction experiment.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 233(16):5724–5734.

Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measure-
ment Science and Technology, 8(12):1406–1416.

Mellor, G. L. and Gibson, D. M. (1966). Equilibrium turbulent boundary layers. Journal
of Fluid Mechanics, 24(2):225253.

Mengaldo, G., Liska, S., Yu, K., Colonius, T., and Jardin, T. (2017). Immersed Boundary
Lattice Green Function methods for External Aerodynamics.

Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341.

M.Sc Thesis Bora O. Cakir



156 References

Michler, A. K. (2011). Aircraft control surface deflection using rbf-based mesh deforma-
tion. International Journal for Numerical Methods in Engineering, 88(10):986–1007.

Millikan, C. (1938). A Critical Discussion of Turbulent Flows in Channels and Circular
Tubes. GALCIT/P-114. Guggenheim Aeronautical Laboratory.

Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. Annual Review of
Fluid Mechanics, 37(1):239–261.

Mittal, R., Utturkar, Y., and Udaykumar, H. (2002). Computational modeling and anal-
ysis of biomimetic flight mechanisms.

Morgenthal, G. and Walther, J. (2007). An immersed interface method for the vortex-in-
cell algorithm. Computers & Structures, 85:712726.

Morris, A. S. and Langari, R. (2016). Pressure measurement. In Morris, A. S. and
Langari, R., editors, Measurement and Instrumentation (Second Edition), pages 463 –
491. Academic Press, Boston, second edition edition.

Murai, Y., Nakada, T., Suzuki, T., and Yamamoto, F. (2007). Particle tracking velocime-
try applied to estimate the pressure field around a savonius turbine. Measurement
Science and Technology, 18(8):2491–2503.

Murray, N., Ukeiley, L., and Raspet, R. (2007). Calculating Surface Pressure Fluctuations
from PIV Data Using Poisson’s Equation.

Narcowich, F. J. and Ward, J. D. (1994). Generalized hermite interpolation via
matrix-valued conditionally positive definite functions. Mathematics of Computation,
63(208):661–687.

Neeteson, N. J. and Rival, D. E. (2015). Pressure-field extraction on unstructured flow
data using a voronoi tessellation-based networking algorithm: a proof-of-principle study.
Experiments in Fluids, 56(2):44.

Nieuwstadt, F. T., Westerweel, J., and Boersma, B. J. (2016). Turbulence: Introduction
to Theory and Applications of Turbulent Flows. Springer International Publishing.

Niu, J., Lei, J., and He, J. (2017). Radial basis function mesh deformation based on
dynamic control points. Aerospace Science and Technology, 64:122 – 132.

Noh, W. F. (1963). Cel: A time-dependent, two-space-dimensional, coupled eulerian-
lagrange code.

Novara, M. and Scarano, F. (2012). Lagrangian acceleration evaluation for tomographic
piv: a particle-tracking based approach. In 16th Int Symp on Applications of Laser
Techniques to Fluid Mechanics, Lisbon, Portugal.

Novara, M. and Scarano, F. (2013). A particle-tracking approach for accurate material
derivative measurements with tomographic piv. Experiments in Fluids, 54.

Oudheusden, B., Scarano, F., Roosenboom, E., Casimiri, E., and Souverein, L. (2007).
Evaluation of integral forces and pressure fields from planar velocimetry data for in-
compressible and compressible flows. volume 43, pages 1–12.

M.Sc Thesis Bora O. Cakir



References 157

Ould-Salihi, M. L., Cottet, G. H., and El Hamraoui, M. (2001). Blending finite-difference
and vortex methods for incompressible flow computations. SIAM Journal on Scientific
Computing, 22(5):1655–1674.

Pan, Z., Whitehead, J., Thomson, S., and Truscott, T. (2016). Error propagation dynam-
ics of PIV-based pressure field calculations: How well does the pressure poisson solver
perform inherently? Measurement Science and Technology, 27(8):084012.

Panciroli, R. and Porfiri, M. (2013). Evaluation of the pressure field on a rigid body
entering a quiescent fluid through particle image velocimetry. Experiments in Fluids,
54(12):1630.

Panton, R. L. (2020). Kelvin’s circulation theorem.

Pardo, S. R., Natti, P. L., Romeiro, N. M. L., and Cirilo, E. R. (2012). A transport
modeling of the carbon-nitrogen cycle at igap i lake - londrina, paran state, brazil.
Acta Scientiarum. Technology, 34(2).

Patel, D. and Upadhyay, S. (2013). Optical flow measurement using lucas kanade method.
International Journal of Computer Applications, 61:6–10.

Patil, M., Hodges, D., and Cesnik, C. (2001). Limit-cycle oscillations in high-aspect-ratio
wings. Journal of Fluids and Structures, 15(1):107 – 132.

Patterson, J. and for Aeronautics, U. S. N. A. C. (1952). A Miniature Electrical Pres-
sure Gage Utilizing a Stretched Flat Diaphragm. Technical note. National Advisory
Committee for Aeronautics.

Peskin, C. (1982). The fluid dynamics of heart valves: Experimental, theoretical, and
computational methods. Annual Review of Fluid Mechanics, 14:235–259.

Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal
of Computational Physics, 10(2):252 – 271.

Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11:479517.

Peterson, K., Regaard, B., Heinemann, S., and Sick, V. (2012). Single-camera, three-
dimensional particle tracking velocimetry. Optics express, 20:9031–7.

Pirnia, A., McClure, J., Peterson, S., Helenbrook, B., and Erath, B. (2020). Estimating
pressure fields from planar velocity data around immersed bodies; a finite element
approach. Experiments in Fluids, 61.

Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradi-
ent of a functional with geophysical applications. Geophysical Journal International,
167(2):495–503.

Ploumhans, P. and Winckelmans, G. (2000). Vortex methods for high-resolution simula-
tions of viscous flow past bluff bodies of general geometry. Journal of Computational
Physics, 165(2):354 – 406.

M.Sc Thesis Bora O. Cakir



158 References

Ploumhans, P., Winckelmans, G., Salmon, J., Leonard, A., and Warren, M. (2002). Vortex
methods for direct numerical simulation of three-dimensional bluff body flows: Appli-
cation to the sphere at re=300, 500, and 1000. Journal of Computational Physics,
178:427–463.

Ponchaut, N. F., Mouton, C., Hornung, H. G., and Dabiri, D. (2005). Particle tracking
velocimetry method : Advances and error analysis.

Porcu, E., D. D. B. M. (2013). Radial basis functions with compact support for multi-
variate geostatistics. Stoch Environ Res Risk Assess, 27,:909922.

Prabhakara, S., D. M. (2004). The no-slip boundary condition in fluid mechanics. Reson,
9:6171.
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A., Jeon, Y. J., David, L., Schanz, D., Huhn, F., Gesemann, S., Novara, M., McPhaden,
C., Neeteson, N. J., Rival, D. E., Schneiders, J. F. G., and Schrijer, F. F. J. (2017).
Comparative assessment of pressure field reconstructions from particle image velocime-
try measurements and lagrangian particle tracking. Experiments in Fluids, 58(4):33.

Vedula, P. and Adrian, R. (2005). Optimal solenoidal interpolation of turbulent vector
fields: Application to ptv and super-resolution piv. Experiments in Fluids, 39:213–221.

M.Sc Thesis Bora O. Cakir



References 163

Vennell, R. and Beatson, R. (2009). A divergence-free spatial interpolator for large sparse
velocity data sets. Journal of Geophysical Research: Oceans, 114(C10).

Violato, D., Moore, P., and Scarano, F. (2011). Lagrangian and eulerian pressure field
evaluation of rod-airfoil flow from time-resolved tomographic piv. Experiments in Flu-
ids, 50(4):1057–1070.

Violato, D. and Scarano, F. (2011). Three-dimensional evolution of flow structures in
transitional circular and chevron jets. Physics of Fluids, 23(12):124104.
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