Predicting and Interpreting Bipartite

Temporal Networks
MSc Thesis

Version of March 26, 2024

Stanislav Mironov

Predicting and Interpreting Bipartite

Temporal Networks
MSc Thesis

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Stanislav Mironov
born in Moscow, Russia

-
TUDelft

viultimedia Computing Group
Department of Intelligent Systems
Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2024 Stanislav Mironov. All rights reserved.

Predicting and Interpreting Bipartite
Temporal Networks

MSc Thesis

Author: Stanislav Mironov
Student id: 4457668

Abstract

A network, is defined as a collection of nodes interconnected by links. When
this topology changes through time, we call it a temporal network. A specific
class of networks, with only two types of nodes with no connections between one
kind, is the bipartite network. An example is a telecommunications network,
where nodes represent telecommunication base station and various mobile ser-
vices like web-browsing, streaming etc. A link may exist only between a base
station and a service. Moreover, each link is associated with a time-evolving
weight, which represents the volume of the traffic between the corresponding
base station and service over time. This weight associated with each link is
also called the activity weight, with the link considered active only when the
weight is non-zero. Predicting such a temporal weighted network in the future
is crucial for telecommunications engineers, allowing for e.g., better traffic man-
agement. Prediction of the unweighted temporal network one step ahead, at
time ¢+ 1, based on the network observed in the past between [t — L —1;¢], has
been studied recently in contact networks. However, the prediction of weighted
temporal networks, or equivalently, predicting the activity weight of each link,
in the future has not been explored yet. Moreover, we also aim to uncover the
mechanisms that enable the prediction of a weighted temporal network. We
achieve this by devising several strategies that help us select the most rele-
vant links within the network, whose activity weights in the past serve as the
input for the interpretable, statistical learning algorithm, LASSO Regression,
to predict the activity of a given target link at time ¢+ 1. The focus of the
strategies is to capture a relationship of activity weights between the selected
and target links. These selected links range from most active links (amount
of timesteps the link weight is non-zero), those with largest activity weights or
most similar to the target link using several metrics. In this thesis we apply this
general methodology to two bipartite networks sourced from real world data and

evaluate the performance of different strategies. Through the learned LASSO
coeflicients and prediction accuracy, we discover that past activity weight of a
link is the best predictor for it’s future weights. In terms of predicting power,
most is coming from the past weights of the link we want to predict and one or
two neighbouring links. Most of the selected links have minimal impact on the
prediction accuracy. While different strategies of link selection excel in specific
conditions, their improvement over the random link selection, is relatively low.
The proposed method could be further applied to predict other weighted tem-
poral networks with different properties to understand whether and how the the
performance of link selection strategies depends on properties of the network
to be predicted.

Thesis Committee:
Chair: Dr. H. Wang, Faculty EEMCS, TU Delft

University supervisor: Dr. H. Wang, Faculty EEMCS, TU Delft
Committee Member: Rob Kooij, Faculty EEMCS, TU Delft

ii

Preface

First of all, I would like to sincerely thank the Multimedia Computing Group and
Dr. Huijuan Wang for giving me the opportunity to pursue a study in a field of
my interest and helping me to pivot when the initial direction was being explored
by another student. It allowed me to get loads of hands-on experience and explore
various avenues of a quite novel and complex problem. This also forced me to really
apply all the diverse knowledge that I have acquired during my MSc studies at Delft
University of Technology in parctice, even though it might not have made the final
version of this thesis. My supervisors Huijuan and Omar Fernandez Robledo have
thoroughly helped me during this stretch, as well as other phd students like Li Zhou.
Despite my irregularities in working on this thesis, they alwyas found the time to
brainstorm and exchange ideas, which I am very thankful for. Besides that, I want
to thank my ex-classmates for helping me review certain parts of my thesis that
were close to their expertise. Lastly, I would like to thank my family and friends for
their support during my studies. Their faith in me helped me achieve my goals.

Stanislav Mironov
Delft, the Netherlands
March 26, 2024

iii

Contents

|List of Figures|

[List of Tables|

[1 Introduction|

[L.2 Research Question(s)|
1.3 Proposed Solutions|
T1 Conirbuiiond

Background|

2.1 Data Analysis|
[2.2 Timestep resolution|
[2.3 Preprocessing]

3__Related Work]
3.1 Weighted networks and link prediction|
3.2 Temporal link prediction methods|
13.3 Bipartite Link Prediction Methods|

4 Predictive Algorithms|

4.1 Lasso Regression|
A baseline to compare against|
Training and test data]
Neighbouring link selection|

Contents

iii

vii

ix

T U W =

ﬂ

CONTENTS

.2 Comparison to the Baseline|
5.3 Hyperparameters| o oo
0.4 Discussion| Lo e

6 Community Structure]
6.1 Community detection in projected networks|
6.2 Community detection in temporal bipartite networks|
6.3 Experiments followup| 0L,

|Bibliography|

|IA Supplemental notes and experiments|
|A.1 Implausible activity weights in SD|
IA.2 Exploratory deep dive on activity weights|
|A.3 Dynamic feature selection|

IB Background on traditional link prediction methods|
[B.1 Traditional link prediction methods|.

vi

31
31
32
33
38

41
41
42
43

47
47
48

51

57
o7
o8
62

63

List of Figures

1.1 Schematic overview of a temporal network at 7" = 4 timesteps|. 1
[1.2 'T'wo network graphs to illustrate the datasets used in our paper. Left is |
| otanford mobility network, right is KD telecom tower traffic.] 3
2.1 The metro areas captured in [7[. o 0L 8
2.2 | The link weight distribution of SD using a logarithmic Y-axis. A) |
| This is the semilog distribution plotted with an logarithmic Y-axis. B) This are |
| the log-transoformed link wetghts.| 10
[2.3 | The link weight distribution of KD using a logarithmic Y-axis. A) [
| This is the semilog distribution plotted with an logarithmic Y-axis. B) This are |
| the log-transoformed link weights.| 12
[2.4 Activiy weight distribution in SD with color highlighted bins. Note that |

the x axis has been truncated in order to fit all the bins into one plot. |

The first class stretches to link weight values in the order of 1072%3 . . . 14
[2.5 Activiy weight distribution with color highlighted bins| 15
[2.6 | The link distribution per AR class using a logarithmic Y-axis. A) |
[This is the distribution of SD links. B) This is the distribution KD links| . . . 17
[5.1 A visual guide to how the training and test sets relate to the whole datasets| 34
IA.1 Lineplot of average activation rates for links at a certain day, in SD, |
| across the whole time period| L. 58
[A.2 |Activation rates over all the mondays in KD A) shows us the ARs |
| on mondays through the KD timeframe. B) shows us the same plots but in |
| histogram form, where a monday 1s broken down wn 24 hours| 59
[A.3 |Correlation of activity weight in links aggregated over the physical [
| locations. A) shows the aggregated cross-correlations for links that share the |
| same physical location as a node. B) shows the autocorrelations (crosscorrela- |
[tions of a link’s activity weight time-shifted with itself]. 61

vii

List of Tables

[2.1 Average network metrics per timestep.o 9
[2.2° Counts for binned link weights| 15
2.3 Counts for binned link weights ot Stanford data.| 16
2.4 Counts for binned link weights ot Stanford data.| 17
4.1 Difterent link similarity measures explored.| 28
[5.1 Average baseline performance.|. oo 32
5.2 Comparison of mean performance for different training set lengths (20 |

link feature set).] 34
[5.3 Comparison of mean performance for different training set lengths (with [

100 link feature set).o 36
5.4 Comparison of mean performance for different feature selecting strategies |
| (2weeks).| 37
[5.5 Comparison of performance for difterent feature selecting strategies contd. |
| (2weeks).| 37
[5.6 Comparison of mean performance for different feature selecting strategies |
| (100 links, 2 weeks).| L 38
b7 Context metrics for results] L. 39
5.8 Lasso weight based metrics for SD (100 links).| 39
5.9 Lasso weight based metrics for SD (20 links).| 39
15.10 Lasso weight based metrics for KD.f. 40
6.1 Comparison of mean performance for community restricted teature selec- |

tion (2 weeks).| 44
6.2 Lasso weight based metrics for 100 links SD (community).|. 44
[A.1 Mean performance for dynamically updated features (20 link feature set).| 62

ix

Chapter 1

Introduction

Networks serve as a fundamental framework for understanding the intricate rela-
tionships and interactions between components of a system. These components are
denoted as nodes, while the relationships are represented by links. Among the vast
classes of networks, bipartite networks offer a unique lens through which one can
examine problems with an innate duality through the interactions between entities
of two distinct sets, each contributing to and dependent on the other in a nuanced
manner.

A bipartite network G = (S,U,E) is defined by two disjoint sets, S containing S
nodes and U containing U nodes, as well as the set E with E links. The key point
here, is that links exist only between a node in S and one in U. A weighted bipartite
network can be represented by its biadjacency matrix R, an S x U rectangular matrix
in which each element R, , represents the weight between nodes s and wu.

el

Figure 1.1 | Schematic overview of a temporal network at T = 4 timesteps.

When the topology of a network changes over time, we call it a temporal network.
One example of a bipartite temporal network is the following telecommunications
network where data transference between services and base stations, could be rep-
resented as a temporal weighted bipartite network[17] (see Figure . A temporal
bipartite network observed at discrete time T'=[1,2,...,T], and composed of a set S
of S services and a set U of U base stations can be represented by a S x U xT
temporal biadjacency matrix R. FEach element R;,: represents the amount of
data that has been transferred from service s to base station u at time ¢, where
s€[l,S],ue[1,U] and t € [1,T]. We will refer to this as the activity of a link. It has
an associated weight equal to R, for each moment ¢t € T'. Every nonzero weight

1

1. INTRODUCTION

is interpreted as the link being active, hence the term activity. Links refer to the
links in the time aggregated network where two nodes are connected by a link if
they have at least a non-zero activity weight at one time step over all the timesteps
€ [1,7] in the dataset. A temporal bipartite network can be represented equally by
its aggregated network and each link is further associated with a time series v;, ; ,
where each element v;, ;(t) = Ri, j-

Analyzing the activity evolution of such networks can be quite valuable [33],
[43]. There are many interesting properties of a network that can be examined, an
example is detecting dynamic communities as shown by Lorenz-Spreen et al. [26].
However it is important to note that most of such research has been addressing un-
weighted unipartite temporal network prediction problems, using classical similarity
indices[22]. While there exist bipartite modifications for such similarity metrics, as
well as probabilistic models, the focus is always on predicting missing links Lu and
Uddin [27]. The latest trend is based on learning-based solutions that learn the rep-
resentation of the network e.g., through network embeddings [21]. These black-box
algorithms have better accuracy but innately more challenging to explain. Since our
objective is not only to predict temporal weighted bipartite network, but also being
able to understand the underlying mechanisms of the prediction, new methods need
to be developed.

The focus of our research, lies in predicting the activity weights of a network
in the future, given the observation of the network in the past. Specifically, the
objective is to predict the activity weight of each link at a time t+4 1 based on the
weighted network observed in the past between [t — L — 1;¢], with L representing
the length of observation time. We consider two real-world weighted temporal bi-
partite networks: the traffic network between telecommunications base stations and
telecommunications services, the human mobility network of individuals between
the geographic locations where they live and venues they visit such as restaurants,
pharmacies, fitness centers and so on. Predicting the future traffic volume from
each telecommuncations base station and service and prediction the future mobility
volume between each location and public venue are crucial for the management of
traffic and control of epidemic spreading, respectively. Such prediction problems can
be modeled as the problem of predicting a weighted temporal bipartite network.

Our approach is as follows: For each link in the networks, we collect a set of
neighbouring links based on several strategies and use their past activity weights to
predict the future activity of the desired (target) link. We propose several strategies
to select links, which are based on properties of links in the network or their similarity
to the target link. For example, one strategy selects links with the highest activity
rat (the frequency with which the link is active i.e., has a non-zero weight).

Besides, we also select links that are more similar to the target link based on e.g.,
similarity metrics like euclidean and cosine distances between their accompanying
time series. These are discussed further in [£1l The selected subset of time series
of weights is then fed into the LASSO algorithm, which learns the best regression
from these weights and predicts a future weight of the target link. Reviewing the
regression performance and the learned coefficients from the LASSO algorithm, lets

1.1. Problem Statement

us compare the aforementioned properties and express the extent to which they
benefit the prediction of the network. The results suggest that every link has varying
degrees of influence in determining a given link’s weight. Taking this into account,
we analyse the networks for community structure and use it to limit the aggregated
network fed to LASSO to check if this improves the prediction.

/Left Righn /Left Righn

Weight
Weight

j ;: =]
3 (people) d]: 3 (MegaBytes) i

Mall 1
CBGA Browser Cell Amsterdam

= W | = i

!BGC 4@ / Q'he l /

Gym 1 Cell Leiden

4o

Figure 1.2 | Two network graphs to illustrate the datasets used in our paper.
Left is Stanford mobility network, right is KD telecom tower traffic..

1.1 Problem Statement

At a high level, the picture is quite clear. Predicting link activity has been a hot
topic within network science in the near past. A logical next step would be a foray
into weighted variations of these networks. Having access to two weighted bipartite
networks from real-world data has inspired us to explore the possibility of predicting
not just the activities of links but also their accompanied weights. In the context
of our real-world networks, an accurate prediction of the activity weights could help
the involved experts to better spend their resources in the future based on past
observations, some of which we collect in the current day. We propose a solution
for this problem that is also quite interpretable. This makes it so that even if we
can’t achieve the most accurate prediction we can still experiment with different
setups and reason on which factors benefit the prediction the most. Capturing this
information and putting it in context of other problems can lead to increased insights
and possible provide new solutions to previously unsolved problems.

A more mathematical formulation is as follows: The goal of this problem is to
predict the network structure at a time ¢+ 1 based on the observed weighted network
in the past between [t — L+ 1;t], with L representing the historical observed data.
This can also be done partially, where we select a subset of the network and focus

3

1. INTRODUCTION

on predicting only the links within that subset. This will lessen the computational
burden while still providing a blueprint for our proposed approach. This blueprint
consists of the weighted bipartite network prediction model as well as the various
strategies for optimizing the neighbouring links to learn the prediction from, all of
which can be extended to similar problems. We want to explore a white-box model
that can assist us with predicting activity weight classes in a bipartite temporal
network, based on the topological aspects of the aggregated network, together with
the temporal activity weight information of the whole network. Notice the mention
of activity weight classes - due to the properties of the datasets, we have adjusted
our preprocessing such that the links do not hold the raw activity weight but rather
are classified in one of ten classes based on the percentile of the weight from the
total pool of activity weights form the aggregated network. The reasoning for this
is explained further in

1.2 Research Question(s)

The research question investigated in this thesis is:

To what extent is it possible, to predict the weighted network struc-
ture at time t+1 within a (sparse) weighted bipartite temporal network,
based on historical temporal data, ¢t € [1,2,...,7— L], given a trainingset of
L timesteps?

This main research question can be further narrowed down into various sub-questions.
Each of these is addressed in it’s own section or chapter of the thesis.

e is it possible to apply Lasso Regression in such a way that we can predict
future activity weights of each link?

e What is the impact of link activity and actvity rate on the prediction quality?
e What is the impact of memory length on the prediction quality?
e What is the impact of sparsity of such networks on the prediction quality?

e Can community detection assist in predicting the network structure?

1.3 Proposed Solutions

Using the available datasets, we streamline the inputs into weighted temporal bi-
partite networks of similar format. During this process we resample the link weight
distribution of both networks, such that it will become a uniform distribution, con-
taining 10 classes of active links. Each class is based on the original link weights
placed in one of 10 percentiles. One extra class is used to represent the inactive links
(sparse data). Then, for each link, we collect the activity weights of neighbouring

4

1.4. Contributions

links. Using carefully crafted strategies we select a fixed subset of neighbouring links
and using a fixed training period, achieved by using a sliding window on the activity
weights, feed the historical weights of selected links into a linear regression algorithm
known as LASSO. LASSO assigns a factor to the weight of each neighbouring link
and regresses all inputs to predict the future weight of the target link. We compare
performance across different datasets and try to further optimize different training
periods and proposed neighbouring links selection strategies to make use of phys-
ical attributes of the links, such as the total activity rate and total weight in the
aggregated network form. We also try to enhance the prediction accuracy using a
stricter definition of neighbours using community detection algorithms for bipartite
networks.

1.4 Contributions

The main contributions of this thesis are as follows:

o Creating a preprocessing pipeline to generate a structured and consistent
weighted bipartite network representation from a real-life (sparse) datasets.
This includes the scaling of weights from heterogeneous distributions to one
homogeneous distribution to allow for comparison of different datasets.

o Analyze ways to determine similarity between links of a network in terms of
their physical attributes, such as activity rates and activity weights.

e Determine if such similarities capture information that can help in improving
the prediction of (active) links.

e Research a white-box algorithm that can take sparse historical weighted bi-
partite temporal data and construct a model capable of predicting the activity
weights (and thus also the activity rate) of the network at a future time step.
This includes analysis on the impact of neighbouring links and their properties
on the prediction.

1.5 Thesis Structure

In this section we will lay out the thesis structure. First, the relevant technical
background needed for this report will be discussed Chapter 2. This includes a
brief introduction about the datasets that we evaluate upon in this thesis with all
the necessary preprocessing steps we take, a mathematical formulation of the prob-
lem, and a list of definitions used in this report, as well as a deep dive into the
sparsity of the datasets. Furthermore, we guide the reader through different lim-
itations, assumptions and decisions we have made when formulating the problem
statement and modelling the datasets. This is accompanied by the analysis of the
underlying data, helping us make and justify these decisions. Then, in Chapter

1. INTRODUCTION

3, we go through the history of the link prediction problem and how it relates to
our research. We gradually explore previous works showcasing the application on
weighted networks and extensions focused on incorporating the temporal dimension.
We cap this off by highlighting the differences when dealing with bipartite networks
and showcasing state-of-the-art solutions for similar problems. We try to explore
not only the weighted link prediction literature but also dive deep into the solutions
that inspired this thesis due to their similarity. In Chapter 4, we take a look at
our proposed method of predicting the link weights, namely the LASSO regression
algorithm and provide the assumptions and limitations of this approach. Chapter
5 gives an overview of the different experiments we conducted in order to evaluate
our proposed model. This includes the comparison of different error and accuracy
metrics along with context as to explain the logic behind the achieved performances.
Then in chapter 6, we discuss our proposed enhancement of the prediction algorithm
by incorporating community structure of one of the networks. Finally, Chapter 7
concludes the work we conducted as a whole while also extracting the most impor-
tant findings and outcomes and the philosophy behind them. Of course, we also
mention the limitations, as well as possible future improvements at the end of this
section. By the end of this paper, readers will gain a comprehensive understanding
of the state-of-the-art techniques for predicting future interactions in temporal bi-
partite networks and will be equipped with valuable insights to contribute to ongoing
research in this dynamic and evolving field.

Chapter 2

Background

Here we introduce the reader with additional background information related to the
thesis. Firstly, a short introduction is given on the datasets and the mathematical
formulations of the networks they represent, along with core concepts we will use in
this thesis. This is followed by a more in-depth look at the data contained in the
networks.

2.1 Data Analysis

In this section, an overview is given of data on which the study has been performed.
Two datasets were initially selected, both representing bipartite weighted tempo-
ral networks with the links representing a certain activity accompanied expressed
through a weight. To be specific, this is data (SD) used by the Stanford study [7]
on the mobility patterns of humans using cellphone tracking across various physical
locations in the US during the early onset of COVID-19. The dataset, derived from
cellphone data, according to Chang et. al[7] maps "the hourly movements of 98 mil-
lion people from neighborhoods (census block groups, or CBGs) to points of interest
(POIs) such as restaurants and religious establishments, connecting 57k CBGs to
553k POIs with 5.4 billion hourly edges” (Nature, Vol 589, page 82) , creating the
so-called mobility networks. The timespan of mobility networks ranges from March
1 to May 2, 2020.

This data is represented in the form of mobility networks. We use the definition
from the original paper [7]: "consider a complete undirected bipartite graph G =
(V,E) with time-varying edges. The vertices V are partitioned into two disjoint sets
C ={ci1,...,cm}, representing m CBGs, and P = {p;...,p,}, representing n POlIs.
The weight fwg) on an edge (c;,p;) at time ¢ represents our estimate of the number
of individuals from CBG ¢; visiting POI p; at the t-th hour of simulation.” (Methods

section, p. 1).

2. BACKGROUND

Metro area CBGs | POIs Hourly edges | Total modeled pop | Total visits
Atlanta 3,130 | 39411 | 540,166,727 | 7,455,619 27,669,692
Chicago 6,812 | 62,420 | 540,112,026 | 10,169,539 33,785,702
Dallas 4877 | 52,999 | 752,998,455 | 9,353,561 37,298,053
Houston 3,345 | 49,622 | 609,766,288 | 7,621,541 32,943,613
Los Angeles 8,904 | 83,954 | 643,758,979 | 16,101,274 38,101,674
Miami 3,555 | 40964 | 487,544,190 | 6,833,129 26,347,947
New York City 14,763 | 122,428 | 1,057,789,207 | 20,729,481 66,581,080
Philadelphia 4,565 | 37,951 304,697,220 6,759,058 19,551,138
(San Francisco 2,943 | 28,713 161,55,16? 5,137,800 10,?28,090)
Washington DC 4,051 | 34296 | 312,620,619 | 7,740,276 17,898,324
All metro areas combined | 56,945 | 552,758 | 5,411,028,878 | 97,901,278 310,905,313

Figure 2.1 | The metro areas captured in [7].

Due to the sheer size we limit ourselves to one of the 10 metro areas that are
contained in this dataset, namely San Francisco. The choice was based on the metro
area that had the smallest size of mobility network to speed up the calculations and
reduce the memory footprint. Every step and/or experiment we apply from this
point on wards could be easily performed on any of the other metro area’s using the
same methodologies.

The second dataset is a collection of up and downstream data at telecom tower
sites of a dutch telecom company we will refer to as KD. This data can be modelled
in the same way as the mobility networks from SD. In short, we model it as a
bipartite network between the sites and types of services that initiated the transfer
of data, services like music and video streaming, internet browsing, certain apps and
more. An exact definition cannot be publicly disclosed due to the sensitive nature
of the information. The link activity weight would represent the total amount of
bytes transferred at a specific site for a specific service, either up or down. As there
was no statistical difference we decided to focus on the download transfers. The
total dataset spans over the end of 2019 and the whole 2020 year but due to the
impact of COVID we decided to limit the data to the first 2 months (2019-11-16
until 2020-01-17).

While the raw data of SD is in form of sparse adjacency matrices, for KD this
data is in the edge list form contained in csv files.

From now on we will refer to the Standford data as SD and telecom data as KD.

2.1. Data Analysis

Table 2.1 Average network metrics per timestep.

Metric SD KD
Total number of nodes 31656 5419
Number of left-side nodes (locations) | 2943 5166
Number of right-side nodes 28713 253
Total number of edges 310041 | 524129
Average degree 19.59 | 193.69
Standard deviation degree 46.90 | 617.81
Minimum degree 0 0
Maximum degree 1226 5161
Link density 0.04 0.42

In[2.1] we show the most basic metrics of the temporal networks modelled through
the raw data. The degree of a node is defined as the number of connections a
node has to other nodes in the network. We see some stark differences between
the two datasets: KD has more edges and less total nodes than SD which leads
to a much higher degree as well as density. Keeping this context in mind, the
standard deviation for both graphs is relatively high, which means that the average
degree varies widely throughout. This is also expressed by the difference between
the minimum and maximum degree. Lastly, the link density reminds us that we are
dealing with sparse networks, with SD being an extreme case.

2.1.1 Link activity weights

First it’s important to determine the distribution of the link activity weights for
both networks, to know what kind of data we are working with. Below you will find
two plots for each dataset, that attempt to visualise the important aspects of the
distributions. We adjust the Y-scale to logarithmic in order to better visualize the
distribution of activity weights and decide to omit the linear y-axis plots, as it is
very hard to fit into one picture due to the effect of the sparsity of the dataset.

2.

BACKGROUND

1
1
1
1
10

5
-
G
5
4
3
2
1
10
0
0 50 0

100 150 20
Link activity weights

(a)

Frequency

0
0
0
0
10
10
0

250 300

10°

10

10°

10°
10*
10’
107
10!

-700 —600 -500 -400 -300 -200 -100
Log(link activity weights)

(b)

Figure 2.2 | The link weight distribution of SD using a logarithmic Y-axis.
A) This is the semilog distribution plotted with an logarithmic Y-axis. B) This are the log-

transoformed link weights.

Frequency

The main takeaways here are that activity weight of SD are very likely following
an exponential distribution. When applying statistical fits to well-known distribu-
tions, the Gamma(k,0) (or I'(k,0) with parameters k =0 and 6 = 1.549 was the best
fit. This is essentially an exponential distribution with a rapid rate of decay due
to the small scale indicated by 6. This is confirmed by where we see that the

10

2.1. Data Analysis

log-transformation of the weights results in a linear slope on semi logarithmic axes.
This is surprising as the situation modelled by these weights (human mobility) is
usually a very complex process, where distributions more akin to the power law. Yet
we see a very steep slope in SD compared to the KD dataset2.3b] The sug-
gestion would be that the amount of visitors would occur independently and with
a constant rate over time. The onset of COVID and the seasonality (daily activity)
of the visits could be important factors here.

11

2. BACKGROUND

1
1
1
1

10

Frequency

8
,
6
5
4
13
12
10'
" |||||||||I b o il
| AENNENEE ENN 0 RONDRNENEND |
00 05 10 15

E 20 25
Link activity weights) 1e10

(a)

10°
10°
10°
10°
102 |“
10' |IIII

5 10 15 20 2

5
Log(link activity weights)

(b)

Figure 2.3 | The link weight distribution of KD using a logarithmic Y-axis.
A) This is the semilog distribution plotted with an logarithmic Y-axis. B) This are the log-
transoformed link weights.

0
0
0
0
0
0
0

1

Frequency

For KD, the activity weight distributions are rather heterogeneous and do not
necessarily adhere to one well known distribution. It does resemble a log normal or
a powerlaw slope, but the left tail does not follow. This could have various expla-
nations, e.g., a boundry effect through the fact that some services monitored by the
telecom traffic have a certain required amount of data that needs to be exchanged.

12

2.2. Timestep resolution

On the other side, maybe the processes generating the activity weights are more
complex and thus require the interaction of multiple distributions to properly model
the real life scenario. Due to the large amount of datapoints we could not run a
large amount of statistical tests or RSS-fits in this case, hence we can only suggest
a few scenarios. This situation will impact our further processing of the data and
our eventual problem-definition, as we will discuss further in the next sections.

2.2 Timestep resolution

While both datasets are roughly of the same timespan, the choice of timestep can
impact the relative differences. In our case, looking at the smallest possible time
unit of granularity, we have the Standford dataset tracking the mobility at every
hour, while the KD data is updated every 5 seconds. That’s quite the difference, so
in order to streamline our experiments we decided to use an hourly granularity, as
it was compatible with both datasets. Another benefit is the reduction of noisiness
(randomness) of events that are often experienced when working with a timesteps
in the order of seconds. We will discuss this process in more detail in as well as
our further experiments were we aggregate the data even further in larger timesteps.

2.3 Preprocessing

In following sections we will take the reader through the steps we have taken to go
from the intial raw datasets and turn them into refined networks, show how we build
up a model that can perform predictions on such networks and eventually explore
various experiments that can further enlighten us as to what is important when
predicting a weighted bipartite network.

The first step in the preprocessing pipeline, was to streamline the representation
of the 2 datasets. For this the KD dataset had to be transformed into the adjacency
matrix representation at each unique timestep, just like the SD format. During
this conversion, consecutive matrices of lower timestep granulartiy where merged
together, by using datetime aggregation, to achieve the desired hourly representa-
tion. The output now is essentially in the form of a 3d matrix with the dimenstions
T,1,J. T is the total amount of (hourly) timesteps, 1512 and 1464 for SD and KD
respectively. For each such timestep, there is a matrix M, such that M = IxJ, with
I and J representing the 2 bipartite nodesets.

Both datasets can be classified as sparse due to the links not being activated
most of the time, meaning their weight would be equal to 0. This can be also seen
as a link being inactive, in other words the absence of a link. It is important for our
model to be able to also predict the absence of links at certain timesteps (activity
weight values of 0). But from our earlier findings about the link activity weights we
have seen that they span quite a large numerical space with a skewed distribution.
This could definitely impact a more simple model which we intend to deploy for the
prediction.

13

2. BACKGROUND

Our approach here is to keep the sparsity of the data to allow the model to learn to
predict the absence of links, while reshaping the activity weights to a more traditional
distribution. Common choices for this transformation are often either a uniform or
a normal distribution. We decided on using the first option for both datasets to
keep things simple. We divide the values into 10 bins each representing the 10%
percentile of the data. This way the definition of what we are trying to predict
changes slightly.

We no longer will be predicting the precise activity weight but instead will try to
predict a class in which the activity weight of the associated link would fall. The
classes in this scenario are simply the percentiles of the actual underlying data. This
slightly changes the problem definition.

Before we continue, it is important to mention that we scale the SD data by a
factor of 6.9 based on the on the ratio of the US population to the number of devices
used in collecting this data. Other considerations for SD are explained in

- 0%
;0%
- 0%
- 0%
0%
80%

TO%
B0%
0%

100%
0 0 0 1 o " 07 w0 10°

-
=
C)

Frequency

-
=]
-

-
=]
W

0—19

Link Waight

Figure 2.4 | Activiy weight distribution in SD with color highlighted bins. Note
that the x axis has been truncated in order to fit all the bins into one plot. The
first class stretches to link weight values in the order of 107283,

In the visualisations above and below, we have plotted the histograms with the
bins color coded as to show in which percentile of the data the fall. This is also
what the activity weight classes represent. Please note the logarithmic scale. Also,
the weights that are 0 are not plotted as this would skew the plot.

14

2.3. Preprocessing

KPN, Link weight distribution log scale(120 bins in [10**1; 10**11])

10 10" 10° 10°

Link Weight

- 0%
- 0%
- 0%
- 4%
- 50%
- 60%
0%
0%
- 0%
—100%

Eu

Ec

Freguency

3

2
10"

Figure 2.5 | Activiy weight distribution with color highlighted bins.

3

3

=

Table 2.2 Counts for binned link weights.

Bin number Bin edges Value count
0 0 532 x 10°
1 (0.000,2.000 x 10?] 5.95 x 106
2 (2.000 x 102,4.680 x 10] 5.92 x 10°
3 (4.680 x 102,1.362 x 10%] 5.93 x 10°
4 (1.362 x 103,4.443 x 10?] 5.92 x 106
5 (4.443 x 103,8.183 x 10?] 5.92 x 10°
6 (8.183 x 103,1.517 x 10%] 5.92 x 106
7 (1.517 x 10%,3.159 x 104] 5.92 x 10°
8 (3.159 x 10%,7.877 x 10%] 5.92 x 106
9 (7.877 x 10%,3.260 x 10°] 5.92 x 106
10 (3.260 x 10°,2.284 x 10'9] | 5.92 x 10°

2.3.1 Activity rates

We have mentioned the sparsity aspect previously in this chapter as an important
factor for building the model, so we will try to give more context on this using

15

2. BACKGROUND

Table 2.3 Counts for binned link weights of Stanford data.

Bin number Bin edges Value count
0 0 128 x 10°
1 (0.000,4.981 x 10~2°] 16.2 x 10°
2 (4.981 x 10726,1.252 x 1078] | 16.2 x 10°
3 (1.252 x 1078,6.451 x 10~4] 16.2 x 10°
4 (6.451 x 1074,2.056 x 1072] 16.2 x 10°
5 (2.056 x 1072,1.075 x 10~ 1] 16.2 x 10°
6 (1.075 x 1071,3.298 x 1071 16.2 x 10°
7 (3.298 x 1071,8.433 x 1071 16.2 x 10°
8 (8.433 x 1071,2.128] 16.2 x 10°
9 (2.128,6.664] 16.2 x 10°
10 (6.664,2.160 x 103] 16.2 x 10°

activity of links as a descriptive term. Basically, due to the sparsity of our data, the
edge sets of the two networks are far smaller than a simple cartesian product of the
two bipartite nodesets. Here the term link density (or active links) comes in handy -
when filtering only for active links we see that this is a small percentage of the total
possible amount of links. For SD we have only 310041 active links, which is 0.4%
of the total possible links. For KD the number of active links is 524129, which is
equal to 42% of total possible links. Throughout this thesis, we use a shorthand
notation AR which we will define here:

1, if w(link,) > 0

. (21)
0, if w(link;) =0

|z
AR(link) = T Zact(t) — where act(t) = {
=0

These active links are the only ones that are interesting for our thesis, as pre-
dicting links that have never been active is extremely simple, you just assign a link
weight of 0 based on the historical data which is also always 0. Given this obser-
vation, we define the backbones of our networks using the active links. That is to
say the backbone will include all the nodes of those links that have been active at
least once during the timespan of the dataset. Another definition would be that the
backbone only includes those links whose actvity rate is bigger than 0.

Keeping in mind that we want to design a simple model to predict the link
weights, it is important we recognize that within this collection of active links there
can be some major differences still. It is quite different to predict a link that may
be active only once in all of the timesteps (a low activiy rate) compared to a link
that is active most of the timesteps (high activation rate).

In our study we want to make a distinction between such links to see how the
model deals with each case and hopefully extract the parameters that are most
interesting for each category. As such we define 5 different classes of links in the
backbone based on the activation rate. The first class covers the links that fall in

16

2.3. Preprocessing

the 0—20%, i.e, a link e € ARy if AR(e) € (0,0.20], the second covers the links with
AR between 20 —40% and so on ..., with the last class covering the most active
links with AR of 80 — 100%. Below you can find an overview of the amount of links

in each class for both networks:
08 08 1.0 o 02 04 06 08 1.0
(b)

10°

el

3

3,

E

10"
10°
10°
00 02 04 o
(a)

Figure 2.6 | The link distribution per AR class using a logarithmic Y-axis.
A) This is the distribution of SD links. B) This is the distribution KD links.

Table 2.4 Counts for binned link weights of Stanford data.

AR SD links | KD links
(0,0.20] 85145 456610
(0.20,0.40] | 123110 40127
(0.40,0.60] | 59214 16196
(0.6,0.80] | 35420 9630
(0.80,1] 7152 1566

From this we gather that most of the links are relatively less active within our
backbone. Still we want to continue our experiments with our current setup so in
other to facilitate meaningful results we decide to sample 1000 links from each AR
class on which we will perform further experiments. However, it is much more valu-
able to predict the more active links in real world application, so that will be the
focus when discussing the findings of our experiments.

We’ve done more exploratory work on the activities and their accompanying
weights in both of the datasets, especially with the intention to put them in the
proper real world context along with the context of the time period form which the
data was collected (COVID-19). These insights can be found in the appendix

17

Chapter 3

Related Work

Temporal link prediction is increasingly becoming a more explored domain in com-
puter science. This chapter discusses technologies related to the prediction of links
and weighted (bipartite) graphs. It is divided into 2 sections: temporal and bipartite
focused methods. Traditional methods for network prediction are omitted but can
be found in appendix [B] as these are the most widely studied methods that have
existed for some time. Temporal methods incorporate the temporal dimension that
accompanies real world data, adding a layer of complexity while also providing more
insight. Then lastly, the bipartite section discusses more intricate methods that are
designed with bipartite networks in mind. Within each section we will start off with
link prediction methods and slowly proceed towards work directed to explore link
weight predictions explicitly.

3.1 Weighted networks and link prediction

Most of the traditional methods (appendix [B]) are per definition intended to be used
with simple undirected and unweighted graphs for simplicity’s sake. However, with
some modification they can be applied on weighted and directed networks. For our
thesis we are mostly interested in the weight aspect and not so much the directional-
ity as our preproccesing produces networks that are undirected. The weight is often
treated as the significance of a given link and in some cases it is even used to pro-
vide an indication if a link exists or not. Given a certain threshold, if the predicted
weight will exceed the threshold the model assumes it will exist and vice versa. A
very popular approach is to equate the weight with similarity measures such that the
methods mentioned in can be adopted. Biitiin et al. [5] proposed a novel topo-
logical similarity metric that exploits temporal and weighted information in directed
networks, which reportedly provide improvements of accuracy. Their approach is ex-
tract all possible triad pattern features and combine them with various topological
similarity metrics discussed in the appendix (Common Neighbours, Jaccard Index,
AA index, Ademic/Adar Index and Resource Allocation Index). These features and
metrics were ingested by a supervised learning model to predict missing links.

19

3. RELATED WORK

A very cool approach is showcased in Hou and Holder [I8] where the authors
create Model S, a generic deep learning framework that performs link weight predic-
tion based on node embeddings. One of the contributions is the decoupled learning
process of node embedding learning and link weight prediction learning. They lever-
age the authors previous research where Model R was introduced and provide the
possibility to use different general purpose embeddings (which we covered earlier
in with the original link weight prediction which is based on the well-known
deep learning techniques of back propagation [35] and stochastic gradient descent
[24].

3.2 Temporal link prediction methods

The previous section covered fundamental methods, modified for link prediction in
weighted networks. They form the basis on which extensions of these algorithms
are developed to apply in more complex scenarios. A very common and important
extension is to include the temporal aspect of many networks that are rooted in the
real world, which we will refer to as Temporal Link Prediction (TLP). A good exam-
ple would be social networks where research shows that the networks are constantly
evolving and change is imminent over a given timespan. By leveraging temporal
information we can predict links using historical data which is very relevant for
recommender systems or information/infection spread in networks. We will discuss
existing literature that tackles this subset of link prediction problems to provide a
solid basis for us to build on.

Dunlavy et al. [I0] utilize matrix and tensor techniques in order to compress sev-
eral network snapshots into a unified matrix and compute link scores using truncated
Singular Value Decomposition (SVD) and extended Katz methods. The tensor part
is instrumental in computing link scores using heuristics and temporal forecasting
but this comes with substantial computational burden. Additionally, [14] proposed
a model grounded in latent matrix factorization, integrating content attributes with
structural data to illustrate the temporal dynamics of links in various networks.

Continuing on with GCN’s, we will discuss two very nice example papers that
align somewhat with the goal of this paper. Both Zhao et al. [46] and Ge et al.
[15] used GCNs to predict the traffic demand of a traffic network which is similar
to the problem explored in this thesis. Both problems have the temporal (e.g.
peak hours), as well as the spatial dependence (adjacent geographical locations).
Therefore these networks are called spatio-temporal networks. In our problem case,
it will be interesting to analyze if the network also contains any spatial dependence.
It could be reasoned that the flow transmitted from equal locations (POI’s or cell
towers) could influence each other.

Zhao et al. proposed a Temporal-Graph Convolution Network (T-GCN) model,
which consists of two parts. First, an GCN is used to capture the topological in-
formation. Then, the Gated Recurrent Unit (GRU) is used to capture the dynamic
change of the network over time. Ge et al. proposed a model called Graph Temporal

20

3.2. Temporal link prediction methods

Convolutional Network (GTCN). Besides the traffic data, this model can handle ex-
ternal data, such as social factors (e.g., holidays, peak hours), road network structure
(e.g., bridges), and points of interest (e.g., schools, restaurants) which can influence
the traffic volume of the roads nearby. Such external data is not available for our
datasets and thus will be omitted in this study. However, this approach can leverage
beneficial external factors for making predictions.

Lei et al. [25] focus mainly on weighted graphs. This approach is named Graph
Convolution Network - Generative Adversarial Network (GCN-GAN) and uses GCN
and GAN to predict the weighed links. The GCN is applied in the first step to
capture the topological structure of each snapshot, similar to Zhao’s and Ge’s ap-
proaches. This is followed by leveraging an LSTM, which captures the evolution
of the dynamic weighted network. Finally, GAN is used to generate high-quality
weighted links. In short, GAN is often used to deal with the sparsity and wide-value
range of observed link weights. Compared to encoding methods such as DeepWalk
and Struc2vec (hich have made significant strides in graph embedding sphere), GNNs
can improve the richness and depth of the embeddings Zhou et al. [48]. These meth-
ods are trained to capture non-linear transformation of the dynamic networks over
time. However, this also increases the complexity of these models.

3.2.1 Weighted link prediction in temporal graphs

Most existing Temporal Link Prediction (TLP) methods merely focus on the predic-
tion of unweighted graphs. There are some approaches we mentioned earlier, that
can provide the likelihood of a link appearing in future time steps, they are not
modified to predict the corresponding link weights. There exist some robust meth-
ods that are rooted in classifier and matrix factorization with the use of adjacency
matrices of the networks, but the results are rather lackluster. Concretely, a large
section of these methods are usually optimized as such that they minimize the recon-
struction error between the training ground-truth and prediction result. However,
this objective fails to effectively address the challenges posed by real-world datasets
used in weighted TLP problems, such as wide-value-range and link sparsity issues.

Wide-Value-Range Issue. In weighted networks, link weights may have a
broad value range, e.g., [0, 1000000]. Additionally, there might be a significant
number of links with small weights, e.g., 1 x 10—10, which cannot be dismissed.
However, the error minimization objective is sensitive to large link weights which
may lead to being unable to distinguish the scale difference between small weights.
For instance, the disparity in scale between (1, 2) is greater than that between (990,
1000), despite the latter producing a larger error.

Sparsity Issue. In a network, there is often substantial difference between
small and zero weights, especially in their physical meaning. Zero often indicates
that there is no link while a small weight implies the existence of a link, albeit with a
small (maybe insignificant) weight. The structure of some real-world often exhibits
sparsity, with a significant portion of zero weights. Given that error minimization
objectives tend to be sensitive to larger weights, methods relying on such optimiza-

21

3. RELATED WORK

tion strategies struggle to differentiate between zero and small weights. This is
somewhat alleviated by more advanced approaches such as GCN-GAN we discussed
earlier.

Both of these properties play a role in the networks selected for this thesis. As
such we must be aware of potential pitfalls and construct our model in a way that
can overcome these issues or at least take the produced results with the proper
context of lower performance if we can’t rely on a more advanced TLP framework
due to resource scarcity.

3.3 Bipartite Link Prediction Methods

Up until this point we have been focusing on link prediction methods in unipartite
networks, where links can exist between any pair of nodes. The networks we deal
with in this thesis are of the bipartite class, hence we will review the link prediction
problem for that specific context.We found a multitude of approaches in the liter-
ature, mainly because the solutions are some combinations of previously discussed
methods. We think that this logical progression from the straightforward link pre-
diction problems to specific and more complex scenarios will shed some important
clues for the problem in this thesis.

The first category of methods is the projection-based approach. The approaches
within this category create a unipartite network from the bipartite network. This
created network is called the projected graph. [I3], [40], [1] and [27] all proposed
methods (in different contexts) which solve the link prediction problem by relying on
projecting the bipartite network into a unipartite network. Based on this unipartite
graph, the models try to predict which links will occur in the future which did not
exist in the past. Lu et al. go as far as to apply GNN based learning methods onto the
weighted projected network in order to predict disease prognosis. Predicting new
links in a network is extremely popular and essential in medical and e-commerce
fields. However, in this project predicting new links is not the desired outcome.
Therefore we leave the projection based approach for now.

Kunegis et al. [22] examine the link prediction problem in bipartite networks and
note that most common neighbour based approaches (e.g., Common Neighbours,
Adamic/Adar, Resource Allocation, etc.) are not suitable for such networks. This
limitation arises due to the fact that adjacent nodes typically belong to different
clusters and are only connected through paths of odd lengths. As elaborated in the
appendix [B.1.1] it is demonstrated that only the Preferential Attachment similarity-
based approach is applicable to these networks in its native form, as it considers the
degree of neighbours. However, this is also the worst performing of the similarity
measures.

Moving one step further, there were studies that focused on embedding the
network structure and using both neighbour and path-based features along with
machine learning techniques (e.g., Naive Bayes, Support Vector Machines, Ran-
dom Forest) to learn on the features and produce a predicted structure at a future

22

3.3. Bipartite Link Prediction Methods

timestep. Unfortunately, the authors designed the study around merely predicting
the existence of new links.

Bipartite networks are common in the recommender system space, and while
the ultimate goal is clearly different from this thesis, a lot of the approaches share
similarities. Yoon et al. [42] have achieved positive results by extracting bipartite
network embeddings using random-walks and predicting future embeddings using
Kalman filtering method. The embeddings was a suitable approach to deal with the
sparseness in their datasets, which is encouraging. In their study they did consider
the weight of the links as the purchasing power so it was included in the embeddings,
as well as the temporal dimensions as they produced these embeddings at different
timesteps.

The difficult part was finding literature that represents the setup of our study.
Almost all the research using temporal bipartite graphs is rooted in predicting the
existence of links. The usual metric is then often AUC (Area Under ROC Curve).
This is a good representation of the predictive power of an algorithm but is rooted
in binary classification of positive and negative samples, e.g, presence of a link.
The weight is never considered, something to note for our methodologies moving
forward. From this we conclude that the problem of predicting a weighted network
structure including weight, especially in bipartite graphs, is highly under-researched
and means we are providing some novel insight with our setup of the experiments.

3.3.1 Summarizing

From this hefty summary of literature, one issue sticks out as a thorn. Namely, the
fact that temporal link prediction specifically in bipartite networks mainly focuses
on predicting new links. This could be explained by the prominence of user-item
networks when research is classified as focusing on bipartite networks. In these net-
works, it is of high value knowing when a user will connect to an item. Another
interesting observation is that applying some of the methods discussed in the previ-
ous section on bipartite networks will probably not result in the expected prediction
accuracy as proved by Jin et al.. Therefore, before selecting and implementing a
model for the task at hand, it is important to know which data will be used and
how it is used.

To conclude, in this chapter several types of methods for (weighted) temporal
link prediction have been discussed. The complexity of these approaches differs
significantly. There is a glaring preference amongst the scientific community for
simple solutions that can eventually be tweaked and enhanced to complete more
complex tasks. By focusing on the basics of the data and networks at hand, we can
more fundamentally describe network evolution and perform various experiments
to acquire isights into the most valuable features of such networks.Further down
the line, one might fancy implementing the more complex models and compare the
performances to the simpler approaches to gain a sense of efficiency. Because the
performance of the models depends highly on the network structure, it is impossible
to conclude which models are most suitable beforehand.

23

Chapter 4

Predictive Algorithms

In this section, we introduce our methodology, which enables link activity weight
prediction in weighted temporal networks and helps facilitate the exploration of
the relationships between activities of links in a network G . Specifically, we aim to
understand to what extent a link’s activity weight at a given time step is determined
by the activities of other links as well as its own activity at the previous time step.

4.1 Lasso Regression

Our approach is applicable to a generic temporal network with N nodes and M links
(node pairs with at least one non-zero link weight) whose activities are recorded
within a time window [1,7]. The activities of the M links are recorded by a M x T
matrix X. The state or activity of link 7 at time ¢t+1 is x;(¢+1)(t € [p,p+ L —1]),
which takes on a value w € W (with W being the set of all observed link activity
weights) when link 7 is active, and equals 0 otherwise. We assume that the activity
of link ¢ at time t+1 is a function of the activities of all the links at time ¢, i.e.,

a:,(t—i—l):fi(xl(t),xg(t),...,mM(t)) (4.1)

The mapping function f; is unknown and unique to each link. It can be inferred
from the activities of all links, i.e., [z;(p),z;(p+1),...,2;(p+ L)] where i € [1,M]
within a time window [p,p+ L], and denoted as f”. In total, we construct L
training samples for each link ¢ based on the temporal network observed between
[p,p+ L]: we use link i’s state at each time step t+1 € [p+1,p+ L] as the target
and the corresponding features are the activity weights of all links at time step ¢.
The training samples for a nodepair i is expressed as the set D;(p, L):

Di(p,L) ={zi(t+1);z1(t),z2(t),. .. ,xM(t)}f;r;*l (4.2)

The objective of this predictive algorithm is to learn the function f7? L from the
training set D;(p,L). By learning this function, we can determine the extent to
which x;(t+1) can be estimated by the activity of each link at time t.

25

4. PREDICTIVE ALGORITHMS

Lasso Regression is one such algorithm. It assumes f; to be a linear function

M
zi(t+1) =Y z;(t) B +ei (4.3)
j=1

We want to minimize the following with respect to S;:

p+L+1

M M
mln{ Z (1’i(t+ 1)—ij(t)ﬁij—ci)Q—i—aZ]ﬁij\} (4.4)
QR — j=1 =1

where L is the number of training samples, M is the number of features which is
also the number of links used for prediction, ¢; is the intercept and 8; = {81, Bizs - - -, Bins }
are the regression coefficients of all the features for link 7. A large coefficient f3;; in-
dicates that feature z;(t) exerts influences or in other words, has a significant share
in determining the target value of z;(t+1).
We use L1 regularization, which adds a penalty to the sum of the magnitude
of coefficients Z]M:ﬂﬁm. The parameter o controls the penalty strength. The
regularization forces some of the coefficients to be zero and thus lead to mod-
els with few non-zero coefficients (relevant features). If a is zero, Lasso Regres-
sion reduces to the classical linear regression algorithm. Given a training data set
Di(p,L) = {zi(t +1);21(t),22(t), ..., x2r () Y¥TL™ | the coefficients S;(p,L) of the

t=p
Lasso Regression model for each node ¢ can be learned.

4.2 A baseline to compare against

In order to gauge the performance we also need some kind of a baseline algorithm to
provide the necessary context outside of the absolute error values. As we deal with
quite a novel problem statement in this thesis, there aren’t any clear favorites that
we can take from existing literature for example. There are other methods that can
be adapted to our problem definition, which we briefly cover in [3], but such methods
are quite complex and can take a whole thesis to implement and explore. Hence
for our baseline method, we keep to the mantra that we have mentioned previously
- to keep things as simple as possible. We decide to predict the weight of a link
by sampling from the overarching distribution of the link weights in our backbone
network. Important to note that we include the absence of a link (the 0 value) in
the distribution and given our sparse networks the predicted value will be heavily
skewed towards 0.

This is a choice we made to not add unnecessary complexity which in turn
could make it more difficult to trace and explain the results we will get from our
experiments. However, other choices could definitely be made which could provide
a more realistic comparison to the chosen predictive algorithm, which in our case is
LASSO.

Such choices are to exclude the weights that are 0 when sampling from the
distribution or fixate the probability of 0 occurring, for example based on specific

26

4.3. Training and test data

heuristic or more in general, the behaviour we want our baseline to exhibit. That is
to say if we the compared algorithm will never predict the absence of link weight, it
doesn’t make sense to have a baseline that will, especially if that is also the median
predicted value.

Another interesting limitation for this baseline is to sample only from the distri-
bution of link weights observed in the backbone at the timestep we want to predict,
or in several timesteps before which could act as an active memory window. As you
might guess there are a lot of ways to design and constrict such a baseline prediction
to achieve desired behaviour. For our case the simplest way is enough as first and
foremost we want to see if an algorithm like LASSO is capable to provide an sizable
performance boost at all, as this is a novel way as far as we know to tackle such a
problem.

4.3 Training and test data

In each time interval [p,p+ L], where p is in the range of [1,7 — L — 1], the observed
temporal network is treated as a training set.The model function learned from this
dataset is then evaluated for its predictive performance on the temporal network
observed at p+ L. When applying Lasso regression on the outline framework, one
can use the learned the coefficients {3;(p,L)},i=1,2,..., M, from each training set
D;(p,L) to predict the activity and the associate weights of the links in the test
set Yi(p,L) =zi(p+L+1);21(p+L),x2(p+L),....,xps(p+L). In total, T —L—1
training sets, together with their corresponding test sets, will be considered for each
of the two bipartite temporal networks we employ in our experiments.

4.4 Neighbouring link selection

In a perfect world one would use all the possible links from a temporal network
during the Lasso regression runs to produce unbiased results and shed light on the
possible relationships between all links. But due to the size of the temporal networks
this would take much more processing power than there is available to us. It also
might be a little overkill in the sense that Lasso is designed to limit the regression
to handful of links (this depends on the a parameter). The results would omit most
of the features used in training. Intuitively it also makes sense to look at a selection
of all the possible links based on their characteristics like the topology for example.
It probably doesn’t make sense to predict a link with values of other links that
topologically far away from the target.

Because of the above we decided to design a strategy for selecting link activity
weights that would be used as features while training the Lasso algorithm, to limit
the computational overhead. We propose a selection based on the concept of neigh-
bouring links in the aggregated network. Recall that the aggregated network has a
link between the nodes if that link was active (had a nonzero link weight) at least
once during the total time span of the temporal network. Using this we find all the

27

4. PREDICTIVE ALGORITHMS

links that have at least one node in common with the target link (which we will
call neighbours) and use those as the features. If no such links exist we skip the
prediction of that link entirely.

The neighbouring quality is, in essence, just one form of many measures of
similarity in the topological dimension. In [3] we mentioned various other studies
that successfully extracted useful information for prediction based other measures
of similarity. To optimize our choice, we experiment with various similarity measures
within the subset of neighbouring links.

We'’ve also added two measures that are not based on similarity but rather
maximizing a certain property. These properties are the total activity weight value
and the total activity frequency of links. As these are innate, physical properties of
links and in turn the networks, we wanted to see if neighbouring links that maximize
these values could be a better predictor in our sparse scenario.

The intuitive explanation for the activity weight is that links that have a larger
value over the total timespan are transmitting more flow or information within the
network. As such these links contain more information and can be more useful
for our predictions. Similar explanation also works for the activity frequencies, the
higher the activity of a link the more timesteps with a nonzero activity weight
for a particular link. Whenever you want to predict a link that is also of higher
activity, such links should provide a good reference. Obviously this method might
not perform too well when predicting lower activity links.

Table 4.1 Different link similarity measures explored.

Measure Short description Equation
Pearson correlation Most common form of similarity, COV (z,y) /o0y
measures the linear correlation.
Cosine similarity The distance between the link activity ﬁ
weights
in Euclidean space
Euclidean distance The distance between the link activity 2 —yll2

weights
in Euclidean space

Highest total weight The sum of the link activity weights MATy, ZtT:O w(linky)
over time

Highest activity The total activity over time max(AR(link))

In[4I]you can see the total overview of measures we experimented with. One note
on the distance based measures, we've settled on the euclidean and cosine variants
as they are commonly found in literature and simple and lightweight to compute,
but there are a handful other variants like the cityblock, mahalanobis and hamming

28

4.4. Neighbouring link selection

distance, all with their own usecases. The same applies to the correlation based
metrics, while the pearson coefficient is most common there are others like Spearman,
Kendall and Kruskall as well as the possibility to focus on cross-correlations. For
our example we deal with the cross-correlation with lag 1, by offsetting the target
link weight timeseries by 1 step into the future.

In the second part of the table we also list several measures that were explored
during the thesis but eventually left out for the final experiments and results. These
boil down to 2 main reasons: 1) These methods are more computationally expensive
than the previous measures. 2) These measures perform best in special conditions,
such as time offset patterns or comparing links with different time granularity. We've
alleviated most of these in the preprocessing steps in [2] so this will only add com-
plexity to our setup. One note for Node2Vec specifically, we've found good results
using this technique but due to it being a deep learning model, which are essentially
black-box models, we decided to leave it out of this thesis.

All in all, there are many other ways to create embeddings and find similarity of
time-series based data, the methodologies listed in this chapter are only mentioned
to provide a brief overview of the common measures. For different problems there are
more advanced and specific measures like the Ratanamahatana et al. [34]. A good
resource on similarity measures in link prediction is written by Lii and Zhou.[28]

With this setup, the intial collection of neighbours for a given link could vary
significantly, if we recall the global degree values for the networks. To get a feeling
for how this can impact the predictions, we construct different train and test sets
where we conditionally sample 1000 links for prediction from each activity class,
selecting only those which have sufficient neighbouring links and discarding those
that are below a certain threshold. Considering that the smallest average degree
of the two networks is 19.59 we consider a scenario where we employ a neighbour
threshold of 20, with it being incremented to 60 and 100 in subsequent experiments.

29

Chapter 5

Model Evaluation

In this section, we will discuss the results of our experiments with the Lasso model.

5.1 Evaluation metrics

But first a little bit about the evaluation metrics we will use to score our models.
Because we treat this link prediction problem as a simple regression problem we
can use classic metrics as pertains to regression. Most of these metrics are quite
common because they are simple and easily applicable, but place the burden on the
interpreter to interpret them correctly. Here is a rundown:

e (Root) Mean Squared Error or (R)MSE, quantifies the average prediction er-
ror made by the model per observation. Mathematically, the RMSE is the
square root of the mean squared error (MSE), which calculates the average
squared deviation between observed actual outcomes and predicted values by
the model. When the data consists of many outliers, then MSE could incor-
rectly represent the model’s performance because the outlier errors would skew
the evaluation. This is where taking a square root of MSE will dampen this
effect, hence the popularity of RMSE.

S (i —yi)?

n

MSE = (5.1) RMSE=vMSE (5.2)

o Mean Absolute Error (MAE), akin to RMSE, assesses prediction error. It
quantifies the average absolute deviation between observed and predicted out-
comes. MAE demonstrates robustness against outliers compared to RMSE,
thus complementing it effectively for result interpretation. Additionally, its
error scale matches that of the input data, making it more intuitive to under-
stand the error’s significance.

> i1 |9 — il
n

MAE = (5.3)

31

5. MODEL EVALUATION

o Accuracy, not a regression metric in nature, it does have the ability to provide
a slightly different but still relevant insight for our specific problem. Because
the model, predict floating values with a lot of decimal places, the predictions
made by the model should be first discretized to one of the 10 classes. Then, the
accuracy can be computed by [5.4 where I represents the Boolean indicator
function which is equal to 1, if §; = y; is true, and 0 otherwise, where §;
represents the discretized prediction.

1 n
Accuracy = - E:I(gZ =) (5.4)
i=1

5.2 Comparison to the Baseline

Before we proceed we want to set the baseline to which we will be comparing our
model. As our model tries to be as simple as possible we wanted to compare it with
even simpler methods. So for the baseline we chose to simply predict the link weights
by sampling from the total distribution of the link weights. By the total distribution
we mean the distribution of all link weights contained in all of the adjacency matrices
of the respective dataset.

Table 5.1 Average baseline performance.

Dataset AR MAE RMSE Accuracy
(0,20] 0.602 1.974 0.904
(20,40] 1.334 2.800 0.763
SD (40,60] 2.396 3.721 0.548
(60,80] 3.026 3.957 0.332
(80,100] 3.057 3.677 0.135
(0,20] 0.318 1.405 0.942
(20,40] 1.576 3.182 0.700
KD (40,60] 2.645 4.100 0.501
(60,80] 3.968 5.177 0.312
(80,100] 4.637 5.461 0.150

Because we include the absence of link (weights of zero) in the matrices, sampling
from the distribution will almost always result in a value of 0. This was intentional
but can be tweaked depending on the desired properties, which we discussed in
detail previously in [4.2] obviously the performance is very good in the bottom AR
class as low activity frequency means a lot of zeros. The more nonzero weights we
need to predict the worse the performance. Accuracy is a good metric to show this,
as it drops down heavily when we are dealing with very active links. If we would
macro-average this score per class i.e, calculate raw accuracy where each sample is
weighted according to the inverse prevalence of its true class, we would see that the
performance of all but the first AR class are similar. It would however be interesting

32

5.3. Hyperparameters

to see if our model can deal with the ever increasing error rate, despite the accuracy
performance.

5.3 Hyperparameters

We decided to lay out our experiments and the results in such an order that we can
provide an answer to a certain sub-question. In a way we are really tuning different
(hyper)parameters to see what the significance might be on the overall performance.
As we recall from one natural hyperparameter is the alpha (a)) parameter innate
to the LASSO algorithm. It assigns a weight to all the input features (neighbouring
links), with some being set to 0 i.e., not used at all. This is the shrinking parameter
that dictates the rate of the penalization but in general the more features we provide
the more non-zero weights given « is the same. We performed a grid search along
five logarithmically spaced points within [1073,10] which consistently performed
best for values of either 0.1 and 1, for every subset of experiments. Please not that
this is not an extensive grid search and we can not with full confidence say that these
values will perform the best in every scenario. What we do hop to highlight with this
is that any future method relying on similar regression algorithms should properly
explore a (semi-)optimal shrinking parameter for their specific data. Because this is
a computationally expensive operation and we were only using a personal machine
to run these experiments we decided to cut corners where possible and converge
more quickly, by deciding to further zoom in between the aforementioned alphas.
The eventual values for the alpha that we considered were: [0.1,0.25,0.5,0.75,1]. We
calculate the optimal a based on the average error for a specific test set of 1000 links.
This is done because of implementation specific considerations. In the sections of
this chapter we will limit the shown metrics to the optimal alpha, while providing
the complete results in the appendix. We will start this off by exploring the effect
of the training sets we use to train our LASSO model, the so called history.

5.3.1 Training history

We settle on testing 3 different training set lengths that represent one, two and three
weeks of data, which is 168, 336 and 504 individual timesteps of 1 hour respectively.
We provide a simple visual explanation in [5.1

33

5. MODEL EVALUATION

Training set length

168

959 & 1007
1127 & 1175

3
TUDelft

Figure 5.1 | A visual guide to how the training and test sets relate to the whole
datasets. Yellow block represents 1 week of training data, orange is 2 weeks and red is 3
weeks.

Table 5.2 Comparison of mean performance for different training set lengths (20 link
feature set).

1 week 2 weeks 3 weeks
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(0,20] 0.805 1.741 0.662 0.691 1.588 0.696 0.647 1.538 0.715

(20,40] 1.279 2.053 0.456 1.216 1.988 0.477 1.182 1.962 0.487

SD (40,60] 1.435 2.087 0.352 1.396 2.059 0.358 1.376 2.038 0.362
(60,80] 1.097 1.602 0.375 1.082 1.583 0.376 1.072 1.572 0.379

(80,100] 0.935 1.383 0.439 0.926 1.372 0.441 0.923 1.371 0.442

(0,20 0.204 0.734 0.918 0.200 0.706 0.916 0.199 0.694 0.917

(20,40] 1.896 2.595 0.260 1.798 2.490 0.221 1.786 2.465 0.205

KD (40,60] 2.302 2.832 0.158 2.232 2.774 0.126 2.223 2.757 0.116
(60,80] 2.269 2.808 0.140 2.247 2.787 0.124 2.238 2.776 0.120

(80,100] 1.883 2.420 0.180 1.843 2.390 0.184 1.840 2.387 0.185

Dataset AR

Here we decided to show off the whole range of our experiments in terms of
the AR classes and it can be clearly seen that the performance is better than the
baseline in all cases except for the (20,40] AR class, where both datasets dip
under the baseline’s MAE. This class is still mostly sparse for most of the timesteps
yet has increasingly more nonzero weights which the model struggles to predict. It
is important to note that the model in general struggles more with outliers given the
RMSE values being larger than MAE, due to the fact that RMSE is more sensitive
to outlier weights.

34

5.3. Hyperparameters

Next if we isolate our attention on the performance progression along a bigger
training set, we can see that the performance does improve in terms of the errors, the
more training data we provide for the model, but this is in the order of 2 x 1072 for
MAE and 5 x 10~2 for RMSE at each level of training set length. Given that we want
to predict different classes of weights instead of precise weights, these improvements
seem negligible. Interestingly the accuracy for the KD is actually worse the more
training data we provide, although the errors do shrink. This indicates that the
model is coming closer to predict the true weight class on average yet has less correct
predictions. This could be due to the greater variance of link weights which cause
the regression to produce more nuanced weights which fall in the wrong weight class
in the discretisation step at the end of the prediction.

When performing further the grid search experiments, we will notice that the
spread of errors between choices of the shrinkage parameter is bigger than the mem-
ory length difference although not as consistent. One trend we can pick up is the fact
that with bigger training sets, performance improves for stricter shrinkage settings,
while 1 week of memory tends to prefer looser shrinkage. That has an intuitive ex-
planation due to the amount of data points available to train on. Please remember
our earlier remark on the validity of the chosen shrinkage parameter alpha. With
a more extensive grid search, bigger improvements could be had in general for all
experiments we performed. It is also important to bring up the notion of our dataset
constraints in terms of the total timespan we can use, which hampers our ability
to really pinpoint where exactly the performance increase might fall off in term
of the error statistics and maybe even increase in accuracy. The caveat obviously
being that the bigger the training set will be the higher the space, but also time,
complexity will be.

5.3.2 Feature set length

For the next few experiments we will be looking at how the different strategies to
select the features (neighbouring links), as well as, how the overall size of this set
will impact the performance. We will start off with the latter. In the previous
experiment we shown the optimal values for a feature set of 20 neighbouring links
chosen randomly. Let’s see how it compares to the same setup but now evaluating
links that have 100 neighbouring links as features. This way we can also test if our
hypothesis earlier holds for the 100 link feature set.

35

5. MODEL EVALUATION

Table 5.3 Comparison of mean performance for different training set lengths (with
100 link feature set).

1 week 2 weeks 3 weeks
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(0,20 0.800 1.695 0.661 0.677 1.539 0.700 0.677 1.539 0.700

(20,40] 1.207 1.917 0.476 1.134 1.844 0.495 1.134 1.844 0.495

SD (40,60 1.310 1.929 0.380 1.266 1.889 0.398 1.266 1.889 0.398
(60,80] 0.991 1.460 0.410 0.964 1.429 0.426 0.935 1.407 0.435

(80,100] 0.800 1.214 0.492 0.783 1.198 0.504 0.767 1.183 0.509

(0,20] 0.204 0.734 0918 0.198 0.719 0.919 0.191 0.698 0.922

(20,40] 1.896 2.595 0.260 1.852 2.552 0.263 1.820 2.524 0.268

KD (40,60] 2.302 2.832 0.158 2.251 2.770 0.167 2.228 2.759 0.162
(60,80] 2.269 2.808 0.140 2.219 2.753 0.143 2.220 2.747 0.139
(80,100] 1.883 2.420 0.180 1.842 2.375 0.184 1.838 2.369 0.185

Dataset AR

As we can see, the prediction quality overall has improved a bit but the differences
are rather minuscule. It is important to consider the optimal alpha impact on these
results as well. More feature links lead to a smaller error, given the shrinkage
parameter is strict enough. The looser this parameter gets, the better the results
get for lower feature links (20) as we can see in Otherwise the bigger feature set
is the better performing strategy, although obviously the complexity is increased.

Regarding the KD results, we see that the accuracy of the 1 week training set is
being overtaken by the 2 week training set results in the 40% to 80% range and 3
weeks in other cases. Obviously the performance still is quite close with the largest
training set providing us the best results in terms of the error metrics. In case
of SD everything points in favor the larger training set experiments. We conclude
that increasing training set has positive impact on the performance, albeit with a
complexity cost to pay for performance. Further experiments we will show, all have a
training set of 2 weeks unless stated otherwise. This is because on a personal machine
where these experiments were executed, the gain in prediction quality wasn’t worth
the increased ruinning times.

In further experiments 2 weeks training set has been chosen as the performance
is comparable (and sometimes better) than the 3 week case while being less resource
intensive. We will also focus on the higher AR classes, as these are the most valuable
to predict in the real world scenarios we described in

5.3.3 Feature set selection

Up until this point the feature sets where just randomly sampled based on the
neighbours of the target link. In[4.4] we have mentioned other strategies. Below you
will find an overview of these strategies for the training set size of 2 weeks and a
feature set of 20 links.

36

5.3. Hyperparameters

Table 5.4 Comparison of mean performance for different feature selecting strategies
(2 weeks).

Random Max total AR Max total weight
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(60,80] 1.082 1.583 0.376 1.034 1.540 0.405 1.047 1.562 0.402
(80,100] 0.926 1.372 0.441 0.926 1.375 0.443 0.923 1.370 0.444

(60,80] 2.247 2.787 0.124 2.234 2.784 0.136 2.224 2.778 0.141
(80,100] 1.843 2.390 0.184 1.837 2.392 0.185 1.822 2.377 0.186

Dataset AR

SD

KD

Table 5.5 Comparison of performance for different feature selecting strategies contd.
(2 weeks).

Euclidean Pearson correlation Cosine
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(60,80] 1.140 1.650 0.339 1.146 1.657 0.336 1.127 1.635 0.354
(80,100] 0.959 1.426 0.429 0960 1.424 0.426 0.994 1.447 0.408

(60,80] 2.159 2.727 0.140 2.181 2.741 0.133 2.167 2.740 0.151
(80,100] 1.803 2.355 0.189 1.802 2.355 0.190 1.804 2.357 0.189

Dataset AR

SD

KD

From these we can clearly see that for the higher AR class links, strategies that
incorporate physical properties of the neighbouring links tend to perform better,
atleast for SD. Here both the total activity as well as it’s weight come out on top.
As far as KD goes, total activity weight is well performing approach in general for
this dataset (especially when also considering the lower AR classes, not shown in
the table . But the actual best performance comes when selecting neighbouring
links that have either the lowest euclidean distance or the highest correlation to the
activity weight vector of the target link.

While there are winners and losers in this exercise, we must also keep the bigger
picture in mind. The improvements are numerically quite modest. It’s hard to claim
that the performance significantly impacts the eventual predicted activity weight in
most cases, at least not for the current setup and chosen datasets.

Having said that, we still want to continue with showcasing other experiments.
Let us cover the comparison between the random sampling base strategy and those
of selecting based on the activity, namely neighbouring links with biggest weight
and AR, as these were the best performing strategies for SD and still quite good for
KD but now selecting a bigger feature set of 100 links.

37

5. MODEL EVALUATION

Table 5.6 Comparison of mean performance for different feature selecting strategies
(100 links, 2 weeks).

Random Max total AR Max total weight
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(60,80] 0.964 1.429 0.426 0.933 1413 0.442 0.933 1.407 0.439
(80,100] 0.783 1.198 0.504 0.778 1.199 0.508 0.771 1.187 0.509

(60,80] 2.219 2.753 0.143 2.202 2.748 0.147 2.194 2.745 0.148
(80,100] 1.842 2.375 0.184 1.835 2.379 0.185 1.822 2.368 0.186

Dataset AR

SD

KD

Overall we see similar behaviour for SD: the more active the links become the
better the other strategies become. Middling AR classes lend themselves more to-
wards selecting features based on the top AR neighbours while in the upper AR
classes, selecting based on top weight is best. As a result, we see that LASSO is
able to predict the correct activity class of the link in question with roughly 50%
accuracy. But we also see that performance is very similar to the random selection
strategy. The one thing both strategies always have in common is the inclusion of
the previous timestep of the link we are tryiung top predict. We will expand on
this in the next section For KD, the copnclusions aren’t too different. The
top weight selecting strategy is always just a bit better then the random and top
AR ones. The overall accuracy for this dataset is quite poor however, a reoccurring
observation following from all the experiments we have shown.

5.4 Discussion

In order to provide more context to the raw error and accuracy metrics, we decided
to keep track of the internal weights of the LASSO model which could help us explain
how the features are contributing to the end result. For this we have created a list
of metrics:

Since we saw that using a feature set of 100 neighbouring links based on those
that have the highest total activity weight, leads to a slightly better accuracy and
smaller errors we will focus on this configuration from now on, while still using 2
weeks of training data and the optimal alpha values explored earlier in this chapter.

Lasso is also quite strict (in the optimal configuration) in terms of involving
neighbouring links as om average it only assigns a coefficient weight to 12 and 9, for
links of their respective AR classes, selected from the 100 link feature set. It seems
that a lot of information is not really related to the target link’s activity weight.
Furthermore, we can conclude that the higher the activity rate is of a link, the higher
the influence of it’s past timestep activity weight becomes. In the highest AR class,
over 50% of the timestamps the links past weight had the highest lasso coefficient.
When looking at the actual Lasso parameter weight maximum value is more than
twice the size of the average parameter weight assigned to the link we are predicting.

38

5.4. Discussion

Table 5.7 Context metrics for results.

Measure Short description
Number of nonzero Lasso Equal to the amount of features lasso selects to fit
coefficients the regression

The value of the TL coefficient | The weight Lasso assigns to the past data of the TL
itself (feature). This helps to track the importance
of the TL as a feature.

The maximum of all the Lasso | The maximum weight of the coefficients. This gives
coefficients more context to the TL coefficient weight and gives

a bit more insight into what features were most
important in the regression.

% of timesteps TL is the max Using the above 2 metrics we can track how often
coefficient TL was the most important feature with the fit.

Table 5.8 Lasso weight based metrics for SD (100 links).

Measure (averaged) | AR(60,80] | AR(80,100]
Number of nonzero Lasso coefficients 11.807 8.642
The value of the TL coefficient 0.042 0.070
The maximum of all the Lasso coefficients 0.197 0.167
% of timesteps TL is the max coefficient 0.384 0.533

In other words, the links past weight history always plays a role in the prediction
but may not be the strongest predictor on a case by case basis.

Table 5.9 Lasso weight based metrics for SD (20 links).

Measure (averaged) | AR(60,80] | AR(80,100]
Number of nonzero Lasso coefficients 6.132 5.085
The value of the TL coefficient 0.166 0.204
The maximum of all the Lasso coefficients 0.291 0.278
% of timesteps TL is the max coefficient 0.487 0.642

Compare this to the 20 link LASSO numbers and we can make an interesting
observation: The extra links selected by LASSO when we expand the feature set
to 100 links, seemingly increase the regression performance. Even though, in 20
neighbouring links case, we have more emphasis put onto the historic activity weights
of the target link (TL) itself, the inclusion of more neighbouring activity weights
is beneficial to the prediction. This is what inspired us to delve deeper into the
neighbouring link selection process, more on this in [f]

Flipping over to KD, we see a bit of a different story. First of all, here Lasso

39

5. MODEL EVALUATION

Table 5.10 Lasso weight based metrics for KD.

Measure (averaged) ‘ AR(60,80] ‘ AR(80,100]
Number of nonzero Lasso coefficients 24.011 18.418
The value of the TL coefficient 0.270 0.290
The maximum of all the Lasso coefficients 0.281 0.297
% of timesteps TL is the max coefficient 0.879 0.897

includes a little more neighbouring predictor links for the regression. The rest of
the metrics are univocally in agreement on the situation for this dataset. The past
timestep activity weight of the link we are trying to predict is the most influential in
close to 90% of the timestamps. The value of the parameter weight is really close to
the maximum average value as well, meaning that the reliance on the prediction is
heavily inspired by a link’s past observations. All the extra neighbouring links don’t
contribute much even though we acknowledge that for this dataset Lasso involves
more links.

40

Chapter 6

Community Structure

From our preliminary experiments we found that there is little benefit to selecting
feature links based on similarity to it’s neighbouring links or innate weight and ac-
tivity rates. The random strategy is dominant in most cases. Given all the literature
that we discussed in the [3|it is possible that we need to extract the similarity in a
different way. A working strategy seems to be to include structural information of
the networks. One popular approach is to group the links (or the nodes of links)
based on some factor. There exist plenty of community structure discovery algo-
rithms, both for simple [I1] and bipartite graphs [6][45] specifically. Fortuitously, a
fellow Phd student from the same research group had already explored one of such
methods. A good overview/survey is explored by Fortunato and Hric [12],s0 for the
interested reader we recommend to follow up there, as we will merely explore the
specific algorithm we ended up using, which is routed in modularity optimisation
proposed by Newman [31]. While this was intended for unipartite graphs, we will
show how it is possible to apply the method onto a weighted temporal bipartite
graph, which is the class of networks we are dealing with in this study.

6.1 Community detection in projected networks

Community detection (CD) algorithms intended for static unipartite graphs can be
applied to the static projected graphs of a bipartite graph, as it is also unipartite.
When adding the temporal dimension, one could simply apply the CD algorithm
at each time step, on a specific projected graph to detect the communities. Let’s
consider an undirected weighted graph G that is composed of only one type of nodes.
It can be represented by a weighted adjacency matrix A. Given a weighted graph,
if we partition all the nodes into non-overlapping communities, the quality of this
community partition can then be measured by the modularity

1 ki -k
Q - i Z[Aw - T]éci,cw (6'1)

/L?]

where k; = }>; A; ; is the sum of weights of all the links that are connected to

41

6. COMMUNITY STRUCTURE

the node i, also called the node strength; c¢; is the community label to which the
node i belongs; the Kronecker delta d., ., =1, if ¢; = c¢; , and 0 otherwise; at last
L= %Zz} ; Ai j represents the total weight in the network. In essence, the modularity
of a partition aims to describe the extent to which the weight of links within each
community is bigger than the weight of those between communities. The modularity
Mod(G)e[0,1] of a graph is the maximal modularity that could be obtained via
community detection. However, computing the modularity of a given graph is a
NP-hard problem. The good news is that there exist various methods to obtain an
approximate optimal modularity, a classical one being the Louvain algorithm[4].

6.1.1 Louivain

The Louvain algorithm[4] is a popular community detection algorithm used to iden-
tify communities or clusters in complex networks. The algorithm is based on a
heuristic method that locally optimizes unipartite modularity. Modularity measures
the difference between the actual number of edges within communities and the ex-
pected number of edges in a random network. Higher modularity values indicate a
stronger community structure. Louvain is a two-phase iterative process. In the first
phase, each node is assigned to its own community. Then, the algorithm iterates
over all nodes and evaluates the modularity gain that would result from moving the
node to its neighboring communities. The node is moved to the community that
maximizes the modularity gain. This process is repeated until the modularity can
not be improved further.

In the second phase, the communities obtained in the first phase are treated as
nodes, and the process is repeated to identify new communities at a higher level of
hierarchy. This hierarchical approach allows the algorithm to detect communities
at different scales. One of the advantages of Louvain, is that it is computationally
efficient and can handle large-scale networks with millions of nodes and edges. It is
also deterministic, meaning that it will produce the same results for a given network.

Due to Louvain’s popularity, it has been widely used and applied in fields like
social and biological network analysis, recommendation systems, and network visu-
alization. It provides insights into the modular structure of complex systems and
helps understand the organization and functionality of networks.

6.2 Community detection in temporal bipartite
networks

In the previous section, we have shown how to detect the communities of a tem-
poral bipartite graphs through their projected graphs by using CD algorithms for
unipartite graphs. This is not the only approach though, as we can also apply CD
algorithms intended for static bipartite networks to each snapshot G; of the tem-
poral bipartite network. The modularity definition for a static bipartite weighted
network has been adapted by Barber [3] with the idea of redefining the null model

42

6.3. Experiments followup

to which we compare the weights within each community. It is expressed as

1 L ki-d;
Q = EZZ[RLJ - T](Sci,t:jv (62)

i=1j=1

which considers a random weighted bipartite network, with the same node strength
as the given bipartite network, as the null model.

6.2.1 Bi-Louvain

Zhou et al. [47] have proposed a community detection algorithm for static bipar-
tite networks based on the Louvain method and the modularity definition It
optimizes the aforementioned modularity in a greedy manner. Just like the uni-
partite Louvain algorithm it encompasses two steps; the assignment step and and
aggregation step. These steps are iterated until convergence. The Bi-Louvain algo-
rithm performs the same steps but twice, for each bipartite nodeset iterating after
another. These steps are repeated until convergence. The assignment step follows
the principle of the unipartite Louvain, except that the gain of modularity is com-
puted according td6.2] and that the neighbors of a node are of the opposite nodeset.
For the aggregation step,it is imporant to note that only the nodes of the same
community and of the same nodeset are merged together.

6.3 Experiments followup

With the performance of our model being sub optimal in various scenarios and with
the fact that the LASSO coefficients predominantly focus on the target links previous
history for the prediction at the next timestep, we decided to try to improve the
features we select. Instead of selecting from the whole link neighbour space, we
now first partition the backbone into various communities, before then limiting the
neighbour space to only the links that have at least one of the nodes of the same
community as the one of the nodes of the target link. The idea behind it is that
we would shrink the neighbour space to more relevant links which in turn could
provide LASSO with better input in order to apply the regression and have a better
prediction.

First we sample our target links in 5 AR classes with each having 1000 target
links, just as before. This includes only sampling the links that have at least 20, 60
and 100 neighbouring links within their community or communities (depending on
if the nodes of a the target link share their communities) for their respective classes.
Using this target set we also generate the a target set using the old approach without
taking the communities into the account, which will serve as our control group. For
these experiments we again perform multiple grid searches with the same set of
hyperparameters as mentioned in We focus on 3 feature selecting strategies of
random, maximum AR and maximum weight. Each link will be tested with the
same alphas as before.

43

6. COMMUNITY STRUCTURE

The results for the 20 and 100 neighbour link sets are shown in the tables below
6.1

Table 6.1 Comparison of mean performance for community restricted feature selec-
tion (2 weeks).

Random Max total AR Max total weight
MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

(60,80] 1.106 1.603 0.360 1.081 1.584 0.375 1.084 1.590 0.374
(80,100 0.937 1.384 0.436 0.938 1.387 0.437 0.935 1.382 0.437

100 links (60,80] 0.982 1.444 0417 0.962 1436 0.426 0.962 1.430 0.424
(80,100 0.800 1.212 0.493 0.792 1.205 0.497 0.794 1.205 0.496

Dataset AR

20 links

We can conclude that the performance in every case is very similar to the unre-
stricted experiments we conducted at first in[5] Yet, still numerically the community
restricted version consistently scored lower in terms of error. If we look at the re-
sults through the accuracy metric we still see a worse performance irrespective of
the chosen strategy. Regarding feature selection strategies, it is interesting to note
that the top AR strategy outperforms the top weight strategy slightly, contrary to
the non community based experiments where top weight was slightly better. It is
difficult to draw overarching conclusions with respect to other experiments as we
only experimented with 2 weeks of training data. Another gap in this exploratory
analysis is the fact that we calculate predetermined clusters based on the structure
of the backbone network. It would be interesting to calculate dynamic clusters as
the training data changes but such calculations are computationally extremely tax-
ing and thus unfeasible for this paper. Dynamic community detection is actually a
really novel branch of community detection and there is very limited amount of lit-
erature on this topic, but could definitely be interesting as streaming data becomes
the norm.

Table 6.2 Lasso weight based metrics for 100 links SD (community).

Measure (averaged) | AR(60,80] | AR(80,100]
Number of nonzero Lasso coefficients 12.650 9.544
The value of the TL coefficient 0.063 0.092
The maximum of all the Lasso coefficients 0.210 0.171
% of timesteps TL is the max coefficient 0.431 0.598

If we compare the LASSO based metrics of the community enhanced version
to the first experiment back in we notice that LASSO included roughly 1 more
link from the total pool of 100 links. The average weight TL weight as well as the
maximum weight are both higher then in the non community restricted experiment.
Lastly we see that the weight assigned to the TL is more often the maximum weight

44

6.3. Experiments followup

from all the links with weights. The same observations hold for the 20 link feature
set experiments as well.

How can we interpret this? It seems to us that by only including links that
are in the same community, LASSO sees more relationships between the predictor
activities and target activities, hence the increase in non-zero coefficients. This could
also be the reason why the prediction accuracy, as seen in 6.1} is worse than the non-
CD version. Another example can be found in Vervoorn [38] where the author also
observes this phenomenon - RMSE is inversely related tot the number of non-zero
LASSO coefficients.

All in all, it seems that restricting the possible feature space based on evident
community structure in the backbone network does not necessarily provide any tan-
gible benefit. Possibly, with networks that exhibit even more excessive community
structures this method would be more beneficial. Perhaps a more sophisticated com-
munity detection algorithm akin to the Leiden algorithm from Traag et al. [37] is
more suitable for these specific datasets. It is known that Louvain algorithm can
lead to arbitrarily badly connected communities, whereas the Leiden algorithm guar-
antees communities that are well-connected. The algorithm is designed to output
a partition in which all subsets of all communities are locally optimally assigned.
There are also runtime gains due to Leiden making use of the fast local move routine.

45

Chapter 7

Conclusions and Future Work

This chapter serves as the summary of the conducted research with all the forthcom-
ing conclusions presented. In addition, pointers for possible future angles of research
are suggested.

7.1 Conclusions

The core purpose of this project was to investigate if a simple model such as LASSO
regression could be used to predict weighted temporal bipartite networks. But even
more then that, we wanted to investigate how different configurations would impact
the prediction result, in order to get a better understanding of the most useful
link properties to consult when predicting the future activities. We defined an
activity weight class prediction problem and constructed a model that is able to
process traditional (sparse) data structures used for temporal bipartite networks and
perform a network prediction at a given time step. This prediction not only includes
the specific activity weight class but also per definition the existence (activity) of
said link in the future.

e To get the elephant out of the room, we see that the overall prediction power
and accuracy is not in a usable spot. The metrics show that for the most
interesting links, i.e., those with the highest activity, we are more often than
not 1 or 2 weight classes away from the actual weight class. In a real world
scenario this would obviously be unacceptable. Of course, the caveat is that
we have used a relatively small dataset compared to the data standards of
current time. We clearly can conclude that training set length improves the
performance proportionally irrespective of the dataset. The caveat being that
one needs to be on the lookout for possible sings of over-fitting when pumping
a lot of data into the model but this is alleviated with proper feature selection
process.

e On the flip side, the LASSO model proved quite instrumental by helping us
quantify and express the impact of what type of links lend themselves the best

47

7. CONCLUSIONS AND FUTURE WORK

to base the prediction on. As we have seen, the performance is definitely im-
pacted by the way we select neighbouring links to train the LASSO model. We
have explored a total of 6 different strategies which explore various similarities
between the links, some of which rooted in their physical properties. All have
their use and their effectiveness also varies based on the dataset which implies
that network structure and properties are important to the prediction.

e Furthermore, we also verified that the hyperparameters used by LASSO regres-
sion have a significant impact on the performance, emphasizing the importance
of hyperparameter optimization. We also conclude that training set length im-
proves the performance proportionally irrespective of the dataset. The caveat
being that one needs to be on the lookout for possible sings of over-fitting
when pumping a lot of data into the model but this is alleviated with proper
feature selection process.

e Because the networks provided by Stanford showed signs of community struc-
ture when explored using the Louvain algorithm, we tried to improve the
quality of the neighbouring link selection by selecting only activity weights
from those links, which resided in the same backbone community. Unfortu-
nately this did not lead to any improvements in terms of the prediction quality.
Like we mentioned in[6] a better community forming strategy or a dynamically
changing community structure could hold the key to unlock better predictions.
But it did change the internal coefficients of our LASSO model which might
lend to further inspection using techniques like stability selection [30].

7.2 Future work

In this study, we continuously made choices based on the data we wanted to base
our experiments on. These datasets definitely impacted the problem statement and
as such the eventual design of our solution. This results in a slightly specific deep
dive but we like to think that the thought process we outline in the thesis can be
use as a guiding principle in any (bipartite) weighted network prediction problem.

Because of this limited scope of this project, there are several research topics that
could be potentially explored to further the understanding of predicting temporal
bipartite networks. Therefore, in this section, a list of potential directions is given to
the interested reader which can build on this thesis. The following recommendations
are:

e First of all, the algorithm used for the prediction was LASSO regression. This
is a relatively lightweight method of regression which can be probably substi-
tuted for more advanced methods. With the advancements in Deep Learning
space, more and more models are designed and trained on graphs specifically.
One could keep the framework described in the [2] and substitute the method
for something like a GCN [25]. This also applies to the choice of the base-
line. When putting more performance-oriented methods against each other,

48

7.2. Future work

comparing with our simple baseline has no added value. Our LASSO imple-
mentation could take the spot for example but many different approaches like
markov chains or LSTM’s are possible.

Furthermore, the shrinkage parameter optimization of the model was not as
extensive as it could be. Given more time and/or resources, a larger grid-
search can be conducted with the possibility to compute and save an optimal
parameter for each link individually instead of a value that is based on average
performance over all the target links within an AR class.

If LASSO regression is kept as the prediction algorithm, one could also ex-
plore with various other strategies to uncover ”similar” links and use them
for prediction to improve the error scores. One such way would be to again
leverage some Deep Learning Frameworks, like the Node2vec model. While
outside of the scope of this project, the author has implemented a version
of this framework and conducted a few experiments. The results were very
promising despite keeping the same setup of this thesis.

Continuing building on LASSO is also a valid future direction. Stability
selection[30] is an extension which utilizes multiple runs of LASSO with the
same parameters, in order to capture the most stable features chosen in the
regression. Applying such a technique could lead to a better selection of pre-
dictive links and their weights. Promising results using this algorithm which
can directly be translated to more simple link prediction problems like shown
by Kwon et al. [23].

Performance of other existing approaches to community detection in bipartite
networks could be explored as to assert a more concrete conclusion whether
the prediction quality systemically is worse or dataset specific. We single out
the Leiden algorithm[37] as it has proven performance for bipartite networks
but other algorithms could be considered as well, even more traditional meth-
ods that could be mapped onto the bipartite structure using projection for
example.

Speaking of datasets, obvious extension could include a more vast set of real
world bipartite networks on which this model could be ran to see how the
performance stacks up against existing solutions in literature. Other telecom
datasets as well as the scientific publications and traffic data are prime exam-
ples that exhibit flow that could be represented with weighted links. Given
a more diverse set of results it would be possible to induce the impact of
network-specific properties on the prediction result. Another benefit would be
exploring the link weight class abstraction performance on different link weight
distributions.

Given datasets that span longer periods of time, different prediction granular-
ities could be analysed against each other. Hourly predictions could still be

49

7.

CONCLUSIONS AND FUTURE WORK

50

considered too noisy for many processes, especially if we have data that spans
years. More robust trends could be picked up and exploited to improve the
performance.

We limit the prediction of existence of links to a set limited from the backbone
of a network. This could be expanded to incorporate the more popular methods
in the field of link prediction that concern themselves predicting new links to
explore the possibility of assigning weight to hypothetical links in the future
network structure.

While the combination of our LASSO model together with sampling from
detected communities did not improve the raw prediction quality, we did notice
it had an effect on how LASSO extracted the related predictors. We think this
can be further explored by more stable feature selection algorithms like the
one by Meinshausen and Biithlmann [30] which has proven to help researches
select variables more intuitively with less parameter overhead [23].

Bibliography

Serpil Aslan and Buket Kaya. Time-aware link prediction based on strengthened
projection in bipartite networks. Information Sciences, 506:217-233, January
2020. doi: 10.1016/j.ins.2019.08.025. URL https://doi.org/10.1016/5.1in
s.2019.08.025.

A.L Barabasi, H Jeong, Z Néda, E Ravasz, A Schubert, and T Vicsek. Evo-
lution of the social network of scientific collaborations. Physica A: Statistical
Mechanics and its Applications, 311(3):590-614, 2002. ISSN 0378-4371. doi:
https://doi.org/10.1016/S0378-4371(02)00736-7. URL https://www.scienced
irect.com/science/article/pii/S0378437102007367.

Michael J. Barber. Modularity and community detection in bipartite networks.
Physical Review E, 76(6), December 2007. doi: 10.1103/physreve.76.066102.
URL https://doi.org/10.1103/physreve.76.066102.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2008(10):P10008, October 2008.
doi: 10.1088/1742-5468/2008/10/p10008. URL https://doi.org/10.1088/
1742-5468/2008/10/p10008.

Ertan Biitiin, Mehmet Kaya, and Reda Alhajj. A new topological metric for link
prediction in directed, weighted and temporal networks. In 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 954-959, 2016. doi: 10.1109/ASONAM.2016.7752355.

Furong Chang, Bofeng Zhang, Yue Zhao, Songxian Wu, and Kenji Yoshigoe.
Overlapping community detecting based on complete bipartite graphs in micro-
bipartite network bi-egonet. IEEE Access, 7:91488-91498, 2019. doi: 10.1109/
ACCESS.2019.2926987.

Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Red-
bird, David Grusky, and Jure Leskovec. Mobility network models of covid-

51

https://doi.org/10.1016/j.ins.2019.08.025
https://doi.org/10.1016/j.ins.2019.08.025
https://www.sciencedirect.com/science/article/pii/S0378437102007367
https://www.sciencedirect.com/science/article/pii/S0378437102007367
https://doi.org/10.1103/physreve.76.066102
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008

BIBLIOGRAPHY

[10]

[11]

[12]

[14]

92

19 explain inequities and inform reopening. Nature, 589(7840):82-87, 2020.
doi: 10.1038/s41586-020-2923-3. URL https://www.nature.com/articles/
s41586-020-2923-3|

Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. Cluster-GCN. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, jul 2019.
doi: 10.1145/3292500.3330925. URL https://doi.org/10.1145%2F3292500.
3330925.

Yugchhaya Dhote, Nishchol Mishra, and Sanjeev Sharma. Survey and anal-
ysis of temporal link prediction in online social networks. In 2013 Interna-
tional Conference on Advances in Computing, Communications and Informat-
ics (ICACCI). IEEE, August 2013. doi: 10.1109/icacci.2013.6637344. URL
https://doi.org/10.1109/icacci.2013.6637344.

Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link predic-
tion using matrix and tensor factorizations. ACM Transactions on Knowledge
Discovery from Data, 5(2):1-27, February 2011. doi: 10.1145/1921632.1921636.
URL https://doi.org/10.1145/1921632.1921636!

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75-174, February 2010. doi: 10.1016/j.physrep.2009.11.002. URL https:
//doi.org/10.1016/7 .physrep.2009.11.002.

Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics Reports, 659:1-44, November 2016. doi: 10.1016/j.physrep.2016.
09.002. URL https://doi.org/10.1016/j.physrep.2016.09.002.

Man Gao, Ling Chen, Bin Li, Yun Li, Wei Liu, and Yong cheng Xu. Projection-
based link prediction in a bipartite network. Information Sciences, 376:158—
171, January 2017. doi: 10.1016/j.ins.2016.10.015. URL https://doi.org/
10.1016/j.ins.2016.10.015.

Sheng Gao, Ludovic Denoyer, and Patrick Gallinari. Temporal link predic-
tion by integrating content and structure information. In Proceedings of the
20th ACM international conference on Information and knowledge manage-
ment. ACM, October 2011. doi: 10.1145/2063576.2063744. URL https:
//doi.org/10.1145/2063576.2063744.

Liang Ge, Hang Li, Junling Liu, and Aoli Zhou. Temporal graph convolutional
networks for traffic speed prediction considering external factors. In 2019 20th
IEEFE International Conference on Mobile Data Management (MDM), pages
234-242, 2019. doi: 10.1109/MDM.2019.00-52.

Roger Guimera and Marta Sales-Pardo. Missing and spurious interactions and
the reconstruction of complex networks. Proceedings of the National Academy of

https://www.nature.com/articles/s41586-020-2923-3
https://www.nature.com/articles/s41586-020-2923-3
https://doi.org/10.1145%2F3292500.3330925
https://doi.org/10.1145%2F3292500.3330925
https://doi.org/10.1109/icacci.2013.6637344
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.ins.2016.10.015
https://doi.org/10.1016/j.ins.2016.10.015
https://doi.org/10.1145/2063576.2063744
https://doi.org/10.1145/2063576.2063744

Bibliography

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

Sciences, 106(52):22073-22078, December 2009. doi: 10.1073/pnas.0908366106.
URL https://doi.org/10.1073/pnas.0908366106.

Petter Holme and Jari Saraméki, editors. Temporal Network Theory. Springer
International Publishing, 2019. doi: 10.1007/978-3-030-23495-9. URL https:
//doi.org/10.1007/978-3-030-23495-9.

Yuchen Hou and Lawrence B. Holder. Link weight prediction with node em-
beddings, 2018. URL https://openreview.net/forum?id=ryZ3KCyOW.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30-37, 2009. doi: 10.1109/MC.2009.
263.

Artus Krohn-Grimberghe, Lucas Drumond, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Multi-relational matrix factorization using bayesian person-
alized ranking for social network data. In Proceedings of the Fifth ACM In-
ternational Conference on Web Search and Data Mining, WSDM ’12, page
173-182, New York, NY, USA, 2012. Association for Computing Machin-
ery. ISBN 9781450307475. doi: 10.1145/2124295.2124317. URL https:
//doi.org/10.1145/2124295.2124317.

Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas.
Link prediction techniques, applications, and performance: A survey. Physica
A: Statistical Mechanics and its Applications, 553:124289, 2020. ISSN 0378-
4371. doi: https://doi.org/10.1016/j.physa.2020.124289. URL https://www.
sciencedirect.com/science/article/pii/S0378437120300856

Jérdome Kunegis, Ernesto W. De Luca, and Sahin Albayrak. The link pre-
diction problem in bipartite networks. In Proceedings of the Computational
Intelligence for Knowledge-Based Systems Design, and 13th International Con-
ference on Information Processing and Management of Uncertainty, IPMU’10,
page 380-389, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3642140483.

Yonghan Kwon, Kyunghwa Han, Young Joo Suh, and Inkyung Jung. Stability
selection for LASSO with weights based on AUC. Sci. Rep., 13(1):5207, March
2023.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miiller.
Efficient BackProp. In Lecture Notes in Computer Science, pages 9-48. Springer
Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-35289-8_3. URL https://do
i.org/10.1007/978-3-642-35289-8_3.

Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min Yang. Gcn-gan: A non-
linear temporal link prediction model for weighted dynamic networks. In IEFEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pages 388—
396, 2019. doi: 10.1109/INFOCOM.2019.8737631.

93

https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1007/978-3-030-23495-9
https://openreview.net/forum?id=ryZ3KCy0W
https://doi.org/10.1145/2124295.2124317
https://doi.org/10.1145/2124295.2124317
https://www.sciencedirect.com/science/article/pii/S0378437120300856
https://www.sciencedirect.com/science/article/pii/S0378437120300856
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3

BIBLIOGRAPHY

[26]

[29]

32]

[33]

o4

Philipp Lorenz-Spreen, Frederik Wolf, Jonas Braun, Natasa Conrad, and
Philipp Hovel. Capturing the dynamics of hashtag-communities. pages 401-413,
11 2018. ISBN 978-3-319-72149-1. doi: 10.1007/978-3-319-72150-7_33.

Haohui Lu and Shahadat Uddin. A weighted patient network-based framework
for predicting chronic diseases using graph neural networks. Scientific Reports,
11(1), November 2021. doi: 10.1038/s41598-021-01964-2. URL https://doi.
org/10.1038/s41598-021-01964-2.

Linyuan Lii and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150-1170, 2011.
doi: 10.1016/j.physa.2010.11.0. URL https://ideas.repec.org/a/eee/phsm
ap/v390y2011i6p1150-1170.htmll

Amel Ben Mahjoub and Mohamed Atri. An efficient end-to-end deep learning
architecture for activity classification. Analog Integrated Circuits and Signal
Processing, 99(1):23-32, August 2018. doi: 10.1007/s10470-018-1306-2. URL
https://doi.org/10.1007/s10470-018-1306-2.

Nicolai Meinshausen and Peter Bihlmann. Stability selection. Jour-
nal of the Royal Statistical Society: — Series B (Statistical Methodol-
ogy), 72(4):417-473, 2010. doi: https://doi.org/10.1111/j.1467-9868.2010.
00740.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/
j.1467-9868.2010.00740.x.

M. E. J. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103(23):8577-8582, June
2006. doi: 10.1073/pnas.0601602103. URL https://doi.org/10.1073/pnas
.0601602103.

Jiajie Peng, Guilin Lu, and Xuequn Shang. A survey of network
representation learning methods for link prediction in biological net-
work. Current Pharmaceutical Design, 26(26):3076-3084, August 2020.
doi: 10.2174/1381612826666200116145057. URL https://doi.org/10.2174/
1381612826666200116145057.

Lucas J. J. M. Peters, Juan-Juan Cai, and Huijuan Wang. Characteriz-
ing temporal bipartite networks - sequential- versus cross-tasking. In Stud-
ies in Computational Intelligence, pages 28-39. Springer International Pub-
lishing, December 2018. doi: 10.1007/978-3-030-05414-4.3. URL https:
//doi.org/10.1007/978-3-030-05414-4_3.

Chotirat Ratanamahatana, Eamonn Keogh, Anthony J. Bagnall, and Ste-
fano Lonardi. A novel bit level time series representation with implication
of similarity search and clustering. In ”Advances in Knowledge Discovery
and Data Mining”, pages 771-777. Springer Berlin Heidelberg, 2005. doi:
10.1007/11430919_90. URL https://doi.org/10.1007/11430919_90.

https://doi.org/10.1038/s41598-021-01964-2
https://doi.org/10.1038/s41598-021-01964-2
https://ideas.repec.org/a/eee/phsmap/v390y2011i6p1150-1170.html
https://ideas.repec.org/a/eee/phsmap/v390y2011i6p1150-1170.html
https://doi.org/10.1007/s10470-018-1306-2
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.00740.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.2174/1381612826666200116145057
https://doi.org/10.2174/1381612826666200116145057
https://doi.org/10.1007/978-3-030-05414-4_3
https://doi.org/10.1007/978-3-030-05414-4_3
https://doi.org/10.1007/11430919_90

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533-536, Octo-
ber 1986. doi: 10.1038/323533a0. URL https://doi.org/10.1038/323533a0.

Tomasz M. Rutkowski, Rafal Zdunek, and Andrzej Cichocki. Multichannel
EEG brain activity pattern analysis in time—frequency domain with nonnegative
matrix factorization support. International Congress Series, 1301:266-269, July
2007. doi: 10.1016/].ics.2006.11.013. URL https://doi .org/10.1016/7.1ics.
2006.11.013.

V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden:
guaranteeing well-connected communities. Scientific Reports, 9(1), March
2019. doi: 10.1038/s41598-019-41695-z. URL https://doi.org/10.1038/
s41598-019-41695-z!

Amy Vervoorn. An alternative to standardizing predictors in the lasso with an
eye on selection psychology. URL https://www.universiteitleiden.nl/bi
naries/content/assets/science/mi/scripties/statscience/2019-2020/
final-version_thesis_amy-vervoorn.pdf. Accessed: 22-6-2022.

Haixia Wu, Chunyao Song, Yao Ge, and Tingjian Ge. Link prediction on
complex networks: An experimental survey. Data Science and Engineering, 7
(3):253-278, June 2022. doi: 10.1007/s41019-022-00188-2. URL https://do
i.org/10.1007/s41019-022-00188-2.

Tsunghan Wu, Sheau-Harn Yu, Wanjiun Liao, and Cheng-Shang Chang. Tem-
poral bipartite projection and link prediction for online social networks. In 201/
IEEFE International Conference on Big Data (Big Data), pages 52—-59, 2014. doi:
10.1109/BigData.2014.7004444.

Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neu-
ral network for image deconvolution. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper/2014/file/1c1d4d
£596d01da60385f0bbl7a4a9e0-Paper.pdf|

Yiyeon Yoon, Juneseok Hong, and Wooju Kim. Item recommendation by pre-
dicting bipartite network embedding of user preference. FEzpert Systems with
Applications, 151:113339, August 2020. doi: 10.1016/j.eswa.2020.113339. URL
https://doi.org/10.1016/j.eswa.2020.113339.

Xiu-Xiu Zhan, Alan Hanjalic, and Huijuan Wang. Information diffusion back-
bones in temporal networks. Scientific Reports, 9(1), May 2019. doi: 10.1038/
s41598-019-43029-5. URL https://doi.org/10.1038/s41598-019-43029-5.

95

https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.ics.2006.11.013
https://doi.org/10.1016/j.ics.2006.11.013
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/statscience/2019-2020/final-version_thesis_amy-vervoorn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/statscience/2019-2020/final-version_thesis_amy-vervoorn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/statscience/2019-2020/final-version_thesis_amy-vervoorn.pdf
https://doi.org/10.1007/s41019-022-00188-2
https://doi.org/10.1007/s41019-022-00188-2
https://proceedings.neurips.cc/paper/2014/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf
https://doi.org/10.1016/j.eswa.2020.113339
https://doi.org/10.1038/s41598-019-43029-5

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

o6

Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link pre-
diction. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, August 2017. doi: 10.1145/
3097983.3097996. URL https://doi.org/10.1145/3097983.3097996.

Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan.
Clustering coefficient and community structure of bipartite networks. Physica
A: Statistical Mechanics and its Applications, 387(27):6869-6875, December
2008. doi: 10.1016/j.physa.2008.09.006. URL https://doi.org/10.1016/j.
physa.2008.09.006.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng,
and Haifeng Li. T-gen: A temporal graph convolutional network for traffic
prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9):
3848-3858, 2020. doi: 10.1109/TITS.2019.2935152.

Cangqi Zhou, Liang Feng, and Qianchuan Zhao. A novel community detection
method in bipartite networks. Physica A: Statistical Mechanics and its Appli-
cations, 492:1679-1693, February 2018. doi: 10.1016/j.physa.2017.11.089. URL
https://doi.org/10.1016/j.physa.2017.11.089.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:
A review of methods and applications, 2018. URL https://arxiv.org/abs/
1812.08434.

Yajian Zhou, Jiale Li, Junhui Chi, Wei Tang, and Yuqi Zheng. Set-cnn: A
text convolutional neural network based on semantic extension for short text
classification. Knowledge-Based Systems, 257:109948, 2022. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2022.109948. URL https://www.scienc
edirect.com/science/article/pii/S0950705122010413.

https://doi.org/10.1145/3097983.3097996
https://doi.org/10.1016/j.physa.2008.09.006
https://doi.org/10.1016/j.physa.2008.09.006
https://doi.org/10.1016/j.physa.2017.11.089
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://www.sciencedirect.com/science/article/pii/S0950705122010413
https://www.sciencedirect.com/science/article/pii/S0950705122010413

Appendix A

Supplemental notes and
experiments

A.1 Implausible activity weights in SD

It is important to recognize the actual numerical data found in the Stanford mobility
network dataset, which is publicly made available. There a large proportion of SD
link activity weights are decimal values between 0 and 1. These are represented by
the first few AR classes we introduce in Physically that doesn’t make sense
within the context of the data, as there can’t be a third of a human present at a
certain timestep - so it is important to know the explanation on why such values are
contained within the dataset.

In order to not go too deep in to the details (see appendices on Iterative Proportional
Fitting Procedure (IPFP) in [7] for more information), the algorithm used estimate
the visitors matrix (from which we construct the bipartite network for SD), also
known as biproportional fitting, is a mathematical algorithm used to adjust joint
probability distributions to match given marginal distributions. IPFP is particularly
useful in situations where only marginal distributions are known or observed, but
the joint distribution needs to be estimated. These marginal distributions describe
visitng patterns of citizens from a certain demographic group (CBG) to physical
geolocations in US cities (POI), which are the two nodesets in SD. This algorithm
iterates on data which time period exceeds that of the mobility data we construct
our bipartite networks from, so we treat this phenomenon mostly as noise produced
by the algorithm used. Moreover, the authors themselves note that despite the effec-
tiveness of IPFP in estimating the visitors, this comes with challenges, particularly
in cases where the sparsity of data makes it difficult to reconcile the underlying
SafeGraph data.

o7

A. SUPPLEMENTAL NOTES AND EXPERIMENTS

A.2 Exploratory deep dive on activity weights

Due to our data being source from real world situations it is important to take into
account any factors that are specific to that time period. As such we know that
COVID-19 was spreading around the world in early 2020. We can actually see the
impact of quarantine when looking at the activity. One interesting angle we can
take when analysing the activity of the links, is to see if we can spot any patterns
by aggregating on a larger timescale. Below we have plotted the aggregated activity
rates (ARs) over the days of the week. We also took a look at how the ARs evolve
during consecutive weeks.

Average activation rates per hour per day

—— mondays
tuesdays
wednesdays

—— thursdays

fridays

saturdays
sundays

06

05

% Active of total nz links
)
S

o
w

0.2

01

Hours

Figure A.1 | Lineplot of average activation rates for links at a certain day, in SD,
across the whole time period.

o8

A.2. Exploratory deep dive on activity weights

Activation rates per hour for mondays

mondays Ne

% Active of total nz links

(a)

Activation rates per hour for mondays

¥

®

w0

m
o - ~ © w © ~ ©

02
00 ”
<
Consecutive mondays

Figure A.2 |Activation rates over all the mondays in KD
A) shows us the ARs on mondays through the KD timeframe. B) shows us the same plots
but in histogram form, where a monday is broken down in 24 hours.

g

em~aasem-og

TRRRRRRRRnnnnnnnnnnnnnnng

% Active of total nz links
BN

We’ve also explored the notion of cross- and autocorrelations of the timeseries
vectors of the links. For this we decided to approach the question from a physi-
cal point of view - by aggregating the correlations along the CBG (SD) and cell

59

A. SUPPLEMENTAL NOTES AND EXPERIMENTS

towers/sites (KD).

60

A.2. Exploratory deep dive on activity weights

Avg crosscorrelations (T=1512, 720, zero=False)

—+— cbhg 1h
015 —s— sites 1h
0.10
L —
5 005
Q
2]
w
2
&) -
0.00 - :
\\...._.// \\h..../'/
-0.05
-0.10
0 10 20 30 40
Lags
(a)
o5 Avg autocorrelations (T=1512, 720, zero=False)
' —e— cbg 1h
—s— sites 1h
04 3
0.3
5 |
8 02 \
5
< \

0.1 .
\

~.
-‘“"‘""---.-.... s /./
0.0 =t
~————
01 5 10 15 20 25
Lags
(b)

Figure A.3 |Correlation of activity weight in links aggregated over the physical
locations.
A) shows the aggregated cross-correlations for links that share the same physical location as a
node. B) shows the autocorrelations (crosscorrelations of a link’s activity weight time-shifted
with itself.

61

A. SUPPLEMENTAL NOTES AND EXPERIMENTS

We can clearly see the daily pattern for SD come into play here again. The
correlations spike at multiples of 24 hours, meaning that the activity weight at a
point in time is similar to the activity weight at the exact time, in previous days.
This is also what inspired us to proceed with the experiments and exploration of
one-step prediction trained on multi-week training sets.

What is a little puzzling is the lack of correlations in the KD dataset. Although
it is not out of the question that data traffic at cell towers is a lot more random by
nature, you still would expect some correlation day to day due to the natural cycle
of day and night.

A.3 Dynamic feature selection

All the experiments up until this point have been facilitated by a feature selection
strategies that select neighbours based on the backbone network of the datasets over
the total timespan. This allows us to determine the feature links in advance, but
it does diminish the application of this technique to real time situations where you
might not have enough data to extract a proper backbone. It might be the case
that you have a continuous stream of data and you want to dynamically update the
features you select in hopes of capturing more relevant information. This is obvi-
ously a more computationally expensive approach as one has to repeatedly generate
the backbone for the network over the training history timespan. Given the time
constraints we have not performed this process on all the strategies we outlined in
our single backbone experiments. The results are also aggregated among all the
AR’s due to a different methodology when these experiments were executed.

Table A.1 Mean performance for dynamically updated features (20 link feature set).

top AR top weight
MAE RMSE MAE RMSE

(0,20] 0.845 1.684 0.846 1.684
(20,40] 1.296 2.019 1.265 1.976
SD (40,60] 1.512 2.141 1.481 2.094
(60,80] 1.158 1.593 1.157 1.587
(80,100] 0.619 1.484 0.619 1.487

(0,20] 0.265 0.697 0.269 0.716
(20,40] 1.855 2480 1.850 2.480
KD (40,60] 2.289 2.764 2.225 2.686
(60,80] 2.283 2772 2271 2.763
(30,100] 1.874 2.372 1.872 2.373

Dataset AR

62

Appendix B

Background on traditional link
prediction methods

B.1 Traditional link prediction methods

In recent years, there has been a growing interest in link prediction within networks,
particularly complex networks. Link prediction is a fundamental problem that at-
tempts to guage the likelihood of a link existing between two nodes Lii and Zhou [2§],
which makes it easier to understand the associations between nodes and shed light on
the evolution of networks. Over time, researchers have introduced a multitude of link
prediction techniques, leading to numerous surveys and literature reviews exploring
this broad spectrum of methods, often within specific contexts such as social [9] or
biological networks[32]. This taxonomy gets updated the more aThese methods span
from simple heuristic approaches, like common neighbor counting, to the more con-
temporary network embedding-based methods. Many of these techniques compute
similarities or probabilities of link formation by capturing the structural attributes
of the network. In this section we will touch upon techniques like similarity-based,
path-based, probabilistic and statistical models-based, classifier-based, and network
embedding-based methods.

Before 2010, the traditional link prediction methods, such as similarity-based and
path-based methods, were widespread because of their simplicity, interpretability,
efficiency, and high accuracy. One downside of this approach however, is that these
methods are not designed to make full use of network structure information.

B.1.1 Similarity based

Similarity-based metrics rely on a similarity score S(x,y) between nodes x and v,
which based on the structural or node’s properties of the chosen link. This score
is proportional to the probability that an edge exists between x and y. One can
intuitively assume that two nodes z and y are more likely to form a link in the
future, if their neighbors have large overlap. Not surprisingly, the simplest technique
of measuring similarity is counting the shared neighbors directly which is called

63

B. BACKGROUND ON TRADITIONAL LINK PREDICTION METHODS

Common Neighbors, but there are many others similarity indices that can be used,
like the Jaccard Index, the Ademic/Adar Index or the Resource Allocation Index.
One point of note is that these measures are all rooted in local measurements around
the link and it’s nodes.

To end this section, we want to highlight Preferential Attachment (PA) [2]. The
idea is that a new link associated with node x is proportional to the degree of the
node, deg(z). This metric is quite simple as it requires the least information. Due
to this aspect, it can be used in a non-local context (Common Neighbours can’t for
example. The downside is that it has the worst performance on most networks, per
the authors. This point will be relevant later in |3.3

B.1.2 Path based

The similarity measures discussed earlier focus solely on limited, local structural in-
formation and do not consider global similarities between nodes. In contrast, path-
based methods incorporate similarity measurements based on paths between nodes,
thus accounting for higher-order information and capturing more of the network’s
structural features compared to the previous methods. Hence the term ”global” sim-
ilarity is often with these methods, as we are still trying to find similarities between
links, only now using information from the entire network The downside is that the
computational complexity of these methods is higher than the local based metrics.
Most of these methods rely on transforming the relation between the paths (often
the length of the path) between two nodes into a similarity score. Common measures
are the Katz Index, Leicht—Holme—Newman Global Index, Average Commute Time
and Matrix Forest Index.

There also several methods of similarity that try to restrict the complexity of the
aforementioned global metrics by limiting the scope. They create a trade-off between
performance and complexity. Such ”quasi-local” metrics include Local Path Index,
Local Random Walk and Path of Length 3.

B.1.3 Probabalistic and statistical models

Moving on, probabilistic and statistical methods come in to the frame, as they pro-
vide a way to extract information of the underlying network structure. Their modus
operandi consists of building a model that optimizes an objective function, which
then will help simulate the network. This is done by estimating the parameters
which best fit the observable data of the network. Using the model’s parameters
it is possible to deduce the probability of forming new or missing links. Because
of this reliance on a model, a large chunk of this approach resides in training the
model, rendering it impractical for large networks due to the time investment in-
volved. Most common model in this class of methods is the stochastic block model
(SBM). Here, the nodes are organized into distinct groups or communities, where the
likelihood of connection between two nodes depends solely on the groups to which
they belong. Generally, a combination of mechanisms is at play when looking at

64

B.1. Traditional link prediction methods

(complex) networks - factors like modularity, role structure, community structure,
and more. In SBM, partitioning nodes of a network can be catered to one or more of
such mechanisms, such that different block models will capture different correlations
of the network. An interested reader can follow up on these methods in Guimera
and Sales-Pardo [16].

B.1.4 Classifier based

Now, when we move closer to the present time, we encounter a slightly different
approach for addressing the problem of predicting missing links. Rather than calcu-
lating a score based on similarity or probability, learning-based models are employed
to leverage the topological features of the network. These models typically take the
form of supervised or semi-supervised learning tasks. Numerous classification al-
gorithms have been tailored specifically for link prediction. Selecting appropriate
features is considered crucial in these supervised learning algorithms, akin to many
other machine learning solutions. Again we must note, the time complexity and the
space complexity of these type of approaches are quite high, making it unsuitable
for large networks.

B.1.5 Network embeddings

As Internet technology and big data continue to advance, the scale of the networks
continues to expand, leading to what is often termed as ”"dimensionality explosion”.
Network embedding-based methods are designed for this problem, as they aim to
reduce the dimensionality while also capturing the characteristics of the network
at the same time. Different from the traditional adjacency matrix, network em-
beddings aim to effectively preserve rich topological and structural information, in-
cluding links, neighbouring nodes, and high-order proximities by embedding nodes
into a low-dimensional space to predict the potential future links. Transforming
high-dimensional but sparse feature vectors into low-dimensional, dense embedding
vectors, facilitate more efficient representation of network properties.This class can
be subdivided further into matrix factorization based, random walk based, graph
neural network based, and other methods.

Matrix factorization

Matrix factorization is one of the older approaches, which has been applied in a lot
of papers on link prediction problem in the last decade. It is a technique used to
capture the underlying patterns of a network, embedded in the form of a matrix
(often the adjacency matrix). By decomposing the matrix into the product of two
lower dimensional matrices which represent the embedding vectors. Typically, the
latent features are extracted and using these features, each node is represented in
the latent space. These representations are then used in a supervised or unsuper-
vised frameworks built for link prediction. It is proven to be successful in many

65

B. BACKGROUND ON TRADITIONAL LINK PREDICTION METHODS

different domains (e.g., social network analysis [20], recommender systems [19], neu-
roscience [36]). Dunlavy et al. Dunlavy et al. [L0] used the above-defined techniques
to predict links in temporal networks. In their paper, the performance of matrix
factorization is compared with tensor factorization. The main difference between
these two techniques is the dimensionality of the input matrix. Since matrix factor-
ization can only deal with a matrix of the form m x n, it is less suitable when dealing
with temporal networks . On the contrary, tensors can incorporate an extra tempo-
ral dimension. The conclusion of the comparison was that the tensor factorization
approaches slightly outperform the matrix factorization approaches. In practical
applications, nonnegative matrix factorization (NMF) and singular value decompo-
sition (SVD) are the go-to methods to get the approximation of the original matrix,
mainly because of the lesser time-complexity due to the use of extra constraints.

Random walks

Decomposition based on the adjacency matrix has the limitation of encoding only
the information of direct neighbors of the node in question. Another approach is
to incorporate random walk based techniques. Herein, a random walk is used to
generate the context of nodes where the appearance of two nodes within the same
random walk, leads to more similarity between the embeddings of those nodes. The
node sequences can be treated as sentences to take advantage of natural language
processing methods to get node embeddings. A few notable methods within this
category are Deepwalk, Node2vec and Struct2vec.

The approaches discussed here merely provide the embedding vectors which still
need to be leveraged for subsequent analysis tasks. Steps where similarity is calcu-
lated between the embeddings are necessary for link prediction. We discussed the
different distance metrics to achieve this in According to Wu et al. [39] there is
very little notable difference among the distance metrics.

GNN

A very modern approach is rooted in Graph neural networks (GNNs), which are
based on convolutional neural networks (CNNs) and graph embeddings. GNNs have
demonstrated remarkable success in analyzing Euclidean input data, such as images
[41] and text[49]. However, traditional CNNs cannot handle non-Euclidean input
data, while GCNs can and thus have received much attention thanks to this aspect.
These neural networks learn hidden layer representations that encode both local
graph structure and node features, enabling the exploitation of these characteristics
for tasks like node and graph classification, as well as link prediction, among others.
Several specific frameworks tailored for link prediction include WLNM [44], DCGNN
[29] and Cluster-GCN [g].

66

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Question(s)
	Proposed Solutions
	Contributions
	Thesis Structure

	Background
	Data Analysis
	Timestep resolution
	Preprocessing

	Related Work
	Weighted networks and link prediction
	Temporal link prediction methods
	Bipartite Link Prediction Methods

	Predictive Algorithms
	Lasso Regression
	A baseline to compare against
	Training and test data
	Neighbouring link selection

	Model Evaluation
	Evaluation metrics
	Comparison to the Baseline
	Hyperparameters
	Discussion

	Community Structure
	Community detection in projected networks
	Community detection in temporal bipartite networks
	Experiments followup

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Supplemental notes and experiments
	Implausible activity weights in SD
	Exploratory deep dive on activity weights
	Dynamic feature selection

	Background on traditional link prediction methods
	Traditional link prediction methods

