
Analyzing the Applicability of Kubernetes for the
Deployment of an IoT Publish/Subscribe System

Maryam Tavakkoli

2

Analyzing the Applicability of Kubernetes for the
Deployment of an IoT Publish/Subscribe System

Master’s Thesis in Computer Science
EIT Digital Master’s Programme in Cloud Computing and Services

Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Maryam Tavakkoli

21st October 2019

Author
Maryam Tavakkoli

Title
Analyzing the Applicability of Kubernetes for the Deployment of an IoT Publish/Subscribe System

MSc presentation
31th October, 2019

Graduation Committee
Prof.dr.ir. D.H.J. Epema Delft University of Technology
Dr. Jan S. Rellermeyer Delft University of Technology
Dr. Fernando Kuipers Delft University of Technology
Dr. Kimmo Hätönen Nokia Bell Labs

Abstract

With the increased availability and affordability of miniature computing devices,
such as sensors, the era of Internet of Things (IoT) has arrived. Meanwhile, the de-
velopments of the cellular mobile technologies and emerge of 5G accelerated the
adoption of IoT scenarios within mobile networks. Rapid growth in the number
of IoT devices has resulted in greater volumes of data being generated and ex-
changed between various entities. This highlights the need for efficient data trans-
mission between data producers and consumers. To this goal, Nokia Bell Labs
has developed a distributed data dissemination system based on Publish/Subscribe
messaging protocol and according to the micro-service architecture.

Currently, the system is deployed on virtual machines (VM), where the corres-
ponding compiled Java file (Jar file) of each micro-service is running on a separate
VM. This approach for deployment might cause a problem, named ’Dependency
Hell’ for the continuous integration and continuous development (CI/CD) work-
flow. Moreover, one of the system’s limitations is that no service discovery is
present. Instead, services are connected through hard-coded IP addresses, defined
on their corresponding configuration files. Hence, IPs must be changed manually
per deployment according to the infrastructure.

To solve the present limitations, this thesis proposes a deployment based on
Kubernetes. Kubernetes is a container orchestration framework that introduces
several benefits for the deployment process including automation, management,
monitoring and scaling of multi-container packaged applications, such as the cur-
rent Pub/Sub IoT system. A proof-of-concept solution for the deployment of the
system using Kubernetes is presented and its implications on the system’s effi-
ciency and scalability are discussed.

iv

”What you seek is seeking you.”
- RUMI

v

vi

Preface

This thesis is made as a completion of the EIT Digital Master program in Cloud
Computing and Services. This work is the result of hard work during the last
semester of my master’s studies. As required by EIT Digital Master School, the
thesis was carried out in a company and resulted in a collaborated work between
academia and industry. More specifically, Nokia Bell Labs, located in Espoo, Fin-
land, provided me this internship opportunity. During this experience, I was able
to apply my academic knowledge to a practical project and it has been a stage of
intense learning for me. Therefore, I hope that it can provide insightful sources to
my colleagues for further research.

I have received a great deal of assistance and support from many people dur-
ing the writing of this thesis. I would therefore firstly like to extend the deepest
of gratitude towards my head supervisor at TU Delft, Prof.dr.ir. D.H.J. Epema,
for supporting me during the whole process. Applying his valuable guidance and
excellent feedback, have improved the quality of my work.

Secondly, I would particularly like to single out my daily supervisor at Nokia
Bell Labs, Dr. Kimmo Hätönen. I would like to thank him for trusting me and
providing me the opportunity to work on this research project and for his con-
structive guidelines and valuable insight into the topic. I am also grateful to all of
those with whom I have had the pleasure to work during this project at Nokia Bell
Labs.

I would also like to express my special gratitude to my best friend, my loving
husband, who has been a constant source of encouragement and support. Last but
not least, I would like to thank my parents and my sister who support me in every
step of my life. Without their love and support, it was not possible for me to excel
in my master studies and complete this thesis project.

Maryam Tavakkoli

Delft, The Netherlands
21st October 2019

vii

viii

Contents

1 Introduction 1
1.1 Motivation and Scenarios . 2
1.2 Research Questions and Goals 3
1.3 Research Approach . 4
1.4 Contributions and Thesis Structure 4

2 Background and Concepts 7
2.1 5G and Evolution of Mobile Technologies 7

2.1.1 Cellular Network Architecture 8
2.1.2 Evolution of Mobile Wireless Technologies 8
2.1.3 The Internet of Things in the Telecom Industry 9
2.1.4 5G . 10
2.1.5 Multi-access edge computing (MEC) 10

2.2 Publish/Subscribe Paradigm . 11
2.2.1 Publish/Subscribe Architecture 12
2.2.2 Apache Kafka . 13
2.2.3 Apache Zookeeper . 14

2.3 Micro-Service Applications . 14
2.4 Nokia Bell Lab’s Prototype System 16

2.4.1 Motivation of the Project 16
2.4.2 Introducing Components of Nokia’s System 17

2.5 System Virtualization . 18
2.5.1 Hypervisor Virtualization 18
2.5.2 Container Virtualization 20

2.6 Docker Container Engine . 21
2.6.1 Docker for Development and Operations 21
2.6.2 Docker Architecture and Components 22

2.7 Container Orchestration Frameworks 24
2.8 Kubernetes . 25

2.8.1 Kubernetes Architecture 25
2.8.2 Master Node Components 27
2.8.3 Worker Node Components 28

ix

3 Design And Implementation 29
3.1 Nokia’s IoT Pub/Sub System in Containers 29

3.1.1 The System’s Containerization Procedure 30
3.1.2 Setup a Private Docker Registry 31

3.2 System Deployment with Kubernetes 33
3.2.1 The Use-Case Scenario 33
3.2.2 System Architecture and Design Decisions 34

3.3 Setting Up the Kubernetes Cluster 35
3.3.1 Kubernetes Setup . 36
3.3.2 Master Node Installation 36
3.3.3 Worker Node Installation 39

3.4 Deployment and Service Definitions 39
3.4.1 Common Fields in the Deployment and Service Definition 39
3.4.2 Deployment Definition 40
3.4.3 Service Definition and Exposing Services 42

3.5 Kubernetes Dashboard . 46

4 Test and Evaluation 49
4.1 Experimental Setup . 49
4.2 Performance Analysis . 50

4.2.1 Runtime Speed . 50
4.2.2 Cost Efficiency . 51

4.3 Life-cycle Management . 52
4.3.1 System Updates . 53
4.3.2 Failure Recovery . 53

4.4 Resource Management . 56
4.4.1 Resource Consumption 56
4.4.2 Resource Optimization 57

4.5 Scalability . 58
4.5.1 Scaling Pods . 59
4.5.2 Scaling Services . 60

5 Conclusion and Future Work 63
5.1 Conclusions . 63
5.2 Future Work . 65

x

Abbreviations and acronyms

5G 5th Generation of Telecommunication Networks
BTS Base Transceiver Station
CI/CD continuous integration and continuous development
CN Core Network
DF Data Fetcher
DH Data Hub
DNS Domain Name System
DS Data Switch
GB Gigabyte
I/O Input/Output
IoT Internet of Things
KPI Key Performance Indicator
MEC Multi Access Edge Computing
NESC Nokia Engineering and Services Cloud
OS Operating system
PaaS Platform-as-a-Service
RAM Random Access Memory
RAN Radio Access Network
SSH Secure Socket Shell
TCP Transmission Control Protocol
UE User Equipment
VM Virtual Machine
YAML Yet Another Markup Language

xi

xii

Chapter 1

Introduction

We are in the era of the Internet of things (IoT) where billions of devices get con-
nected to the Internet and the generated data is rapidly growing. The number of
IoT devices is projected to surpass 75.4 billion by 2025 [1]. Meanwhile, Fifth-
Generation (5G) telecommunications technologies will bring faster mobile con-
nectivity, which makes the possibility of IoT scenarios even more feasible. Accord-
ing to Ericsson’s mobility report [2], there will be around 1.8 billion IoT devices
with cellular connections in 2023.

The rapid surge in the number of IoT devices has resulted in greater volumes of
data being generated and exchanged between various entities. This highlights the
need for a suitable message delivery solution in an IoT use-case. Among the pos-
sible approaches, publish/subscribe is one of the popular communication patterns
which allows the distribution of data to the interested entities in an efficient way.

A distributed transmission bus based on the Publish/Subscribe paradigm is being
developed in Nokia Bell Labs [3]. The microservice architecture design is used for
the development of this IoT data transfer system. This architecture structures an
application as a collection of small services, where each is running in its process
and is independently deployable. To take the current project one step further to the
real use-case implementation, we need to make it easily deployable.

Deploying a software application traditionally meant to have dedicated physical
servers that would run the entire application. This approach is already outdated
since it is very costly and time-consuming. As an alternative, virtualization tech-
nologies have been developed, where several new machines can be easily launched
to serve various needs. Resources can be consumed more effectively using virtu-
alization techniques compared to the bare-metal setups. However, still, efficiency
could be increased further [4]. Moreover, deploying and running applications dir-
ectly on the infrastructure might cause a problem known as ’Dependency Hell’ and
later will cause troubles for the CI/CD workflow.

The developments in the Linux kernel have led to the evolution of container-
based virtualization [5]. A lightweight virtualization, which has gained its mo-
mentum recently due to its efficiency and mobility [6]. Container virtualization

1

seems to be a viable alternative to the hypervisor for application infrastructure[4].
Using container-based virtualization, we can deploy each component of the

Pub/Sub IoT micro-service system as an independent separate service. Further-
more, containers can be run in any infrastructure without any dependency. How-
ever, the availability of these services becomes a concern when running multiple
different containers in a micro-service architectural style [7], and we need to make
sure that our system is always up and running.

A system is needed to manage the set of these containers, especially when it
comes to applications that might comprise hundreds of containers. This is where
a container management tool such as Kubernetes comes in, and provides mech-
anisms for deploying, maintaining and scaling of the containerized micro-services.
This way Kubernetes manages the availability of containers while it hides the com-
plexity of their orchestration [7].

Due to its micro-service architecture, each of the modules in the current IoT
pub/sub prototype system can be developed and executed separately. However, in
the current state of the system, these services are connected through hard-coded
IP addresses that are defined by the developers. These pre-defined addresses cause
deployment of the system to be dependent on the environment. Hence, the used
approach for the deployment should help for removing this dependency. The ap-
proach also should support the deployment of the system in the larger scales in the
future.

This thesis analyses the suitability of containerizing the current Pub/Sub IoT
microservice-based system and using Kubernetes for its deployment, while the
aforementioned demands of the system are met.

1.1 Motivation and Scenarios

This section emphasizes the motivation behind this thesis work. The main motiv-
ation comes from an innovation ecosystem, named ’Smart Otaniemi’ [8], which is
being evolved in Finland. The ecosystem brings researchers, experts, companies,
and technologies together to pilot novel projects on renewable and smart energy
with the aim of a sustainable future. The project is funded by Business Finland [9]
and Nokia Bell Labs is one of the piloting partners in the ecosystem.

Currently, there are several active pilot projects, while ’Platforms, connectivity
and enabling technologies’ is one of them. The main goal of this project is to
enable reliable and real-time connectivity and data sharing [10]. Intelligent data
services enable exchanging data, that comes from different data sources, across
different industry sectors. Moreover, 5G has introduced new communication op-
portunities and supports for scalable and cost-efficient data platforms that can be
used in energy, building, and communication market sectors.

As one of the vertical use cases within this project, Nokia’s Pub/Sub IoT system
serves such connectivity and data sharing. For instance, it can be used for remote
monitoring of heating, cooling and air conditioning (HVAC) [10]. Currently, the

2

development of Nokia’s system is finalized. However, it is still having limitations
to be deployed in a real-world scenario. Moreover, there are specifications that
should be considered towards an efficient deployment.

One of the current limitations is the absence of a service discovery mechanism to
connect the micro-services within the system. Hence, as a temporary solution, they
are connected with hard-coded IP addresses. Furthermore, adapting the features
of edge computing is a specification that must be met for the deployment of the
system. More specifically, one of the micro-services of the system is developed to
perform some data pre-processing. Hence, it would be fully utilized when it resides
at the edge of the network, where is closer to the data sources.

To be more precise on the motivation for this thesis work, we aim to study
whether Kubernetes can be used for the deployment of such a system and if it
removes the limitations and meets the specifications.

1.2 Research Questions and Goals

This thesis develops a proof-of-concept solution for the deployment of the current
IoT pub/sub system using state-of-the-art technologies and frameworks. A suitable
framework for the deployment of a micro-service architecture in a production level
must have an easy setup with minimum manual configurations and be scalable and
highly available. Moreover, it should not reduce the efficiency and performance of
the system. This thesis studies the feasibility of Kubernetes as a suitable framework
to satisfy the aforementioned requirements. The research topic is broken down into
the detailed research questions below.

• RQ1. How can we ease deployment of the Pub/Sub IoT system and elim-
inate system’s limitations for a large-scale deployment?
Currently, the Pub/Sub IoT system is deployed on different VMs. However,
running an application directly on the infrastructure might cause the depend-
ency hell problem.

Moreover, Nokia’s IoT pub/sub system has a micro-service architectural
design. This architecture is beneficial for the deployment, maintenance, and
further development of the system. However, these independent services are
connected via hard-coded IP addresses in the current state of the system.
This study aims to automate the deployment of the system and to minim-
ize manual configuration and installation work. This is especially import-
ant when we aim to deploy the system on a large-scale. In this thesis, we
study the applicability of Kubernetes and its service discovery mechanism to
achieve this goal.

• RQ2. Which containerization and Kubernetes mechanisms should be
used in the deployment procedure to serve the requirements of the sys-
tem?

3

In this thesis, we study the best approaches for containerizing the current
Pub/Sub IoT system and then, managing containers and deploying the sys-
tem using Kubernetes, as the applied container’s orchestration tool. The de-
ployment architecture is designed according to the requirements of the sys-
tem. An example of such requirements is to consider which micro-services
must be exposed externally and be accessible by whom. A prototype of such
deployment on a small scale is presented in this thesis.

• RQ3. What are the implications of the system’s deployment based on
Kubernetes for the efficiency of the system and its scalability?

Finally, we investigate the consequences and results of the proposed proof-
of-concept solution. We aim to answer questions, such as, how the deploy-
ment approach reduces the manual work, how it affects the performance of
the system and how scalable is the proposed solution.

1.3 Research Approach

To answer the RQ1, we conduct a literature review and study the containerization
technologies and the orchestration frameworks to find the best-suited approach for
the deployment of the current system. During this step, we specifically paid at-
tention to the ’service discovery’ to be included as a necessary feature in the used
framework.

To answer the RQ2, we implement a proof-of-concept solution for the deploy-
ment of the system using Kubernetes. To accomplish this, first, each of the mi-
croservices within the system is containerized separately and the corresponding
container images are created. Next, a private registry is set up to store these im-
ages. Later on, all the required steps from installing Kubernetes to the system’s
deployment using Kubernetes are discussed.

To answer the RQ3, we design different test scenarios based on various metrics
and present the results. Furthermore, we discuss the suitability of the proposed
approach using Kubernetes for the current Pub/Sub IoT system according to the
presented metrics.

1.4 Contributions and Thesis Structure

This thesis is divided into 5 chapters. After introducing the problem statement
and motivation for the research in Chapter 1, the rest of this thesis and the main
contributions are structured as follows.

In Chapter 2, we present the core concepts of the research topic in two main
parts. First, the essential background information about the Pub/Sub IoT microservice-
based system is provided. Then, the relevant technologies and terminologies that
are used for the deployment of the system are explained.

4

In Chapter 3, we present a proof-of-concept prototype solution for the deploy-
ment of the system. To this goal, first, we explain the steps taken for containerizing
the system. Then, we describe a use-case scenario and explain our prototype’s
design decisions according to that. Finally, we discuss the procedures for setting
up a Kubernetes cluster and deploying the Pub/Sub IoT system on top of it.

In Chapter 4, we design some test scenarios to evaluate the proposed proof-of-
concept solution. Furthermore, the results of the test-cases are discussed.

Finally, Chapter 5 is a conclusion on the thesis. Summary of the thesis and the
future possible works are discussed in this chapter.

5

6

Chapter 2

Background and Concepts

The purpose of this chapter is to provide a description of the main concepts and
technologies relevant to this thesis. The first four sections provide essential back-
ground concepts for the discussed IoT system. The rest of the sections in this
chapter explain the relevant terminologies and technologies that are used in this
work.

The chapter starts with a general introduction of 5G and the evolution of mobile
communication technologies in Section 2.1. The Publish/Subscribe paradigm is
presented in Section 2.2, in which Apache Kafka and Zookeeper are described as
the used Pub/Sub technologies being used in this project. As an approach for de-
veloping distributed applications, Micro-service architecture is used for the current
system. This architectural design is described in Section 2.3. Then, Nokia Bell
Labs’ proof of concept, which this thesis is based on, is discussed in Section 2.4.

Section 2.5 describes the concept of system virtualization, and introduces its two
different methods including hypervisor and container-based virtualization. Section
2.6 described features of docker container engine, a virtualization framework that
is built on top of Linux containers. Section 2.7 explains the concept of container
orchestration and the available orchestration frameworks. Finally, Section 2.8 dis-
cusses the most trending container orchestration framework, Google Kubernetes,
which is the backbone of this thesis.

2.1 5G and Evolution of Mobile Technologies

Mobile telecommunication networks have experienced a tremendous change dur-
ing the last few decades. Each generation of cellular networks has introduced new
standards, capacities and features and the evolution continue. 5G, the last advance-
ment in mobile technologies, has introduced an increased bandwidth, higher data
rates, lower latency and better QoS for the end-users. Hence, 5G’s evolution envi-
sions better support for IoT scenarios.

The background concepts of the mobile technologies and their evolution, 5G
and its specific features, such as Multi Access Edge Computing (MEC), and the

7

concept of IoT in the Telecom industry are discussed in this section.

2.1.1 Cellular Network Architecture

The mobile wireless communication network is distributed over areas called cells,
which typically are represented as a hexagonal. Each cell includes at least one,
but more normally, three fixed-location transceivers known as a cell site or base
transceiver station (BTS) [11]. These base stations provide network coverage for
cells. By joining them together, these cells ultimately provide radio coverage over
a wide geographic area for end-users [12].

Base stations are connected to the core network (CN) through a physical or radio
link, while the last link connectivity between the network and user equipment (UE)
is wireless through the base stations. This wireless connection is done based on the
radio access network (RAN). A RAN resides between user equipment, such as a
mobile phone, and provides its network connection through its core network [13].
A high-level architecture of the cellular network is shown in Figure 2.1.

Figure 2.1: High-level architecture of cellular networks.

2.1.2 Evolution of Mobile Wireless Technologies

Telecommunication networks have gone through several evolution phases and gen-
erations over the last few decades. The main motivation behind this rapid devel-
opment is achieving more bandwidth and lower latency for transmitting data [14].
Each generation of mobile communications introduces specific standards or fea-
tures in terms of data capacity, speed, frequency, latency, etc., which differentiates
it from the previous ones [15].

8

The first generation (1G) of mobile networks was deployed in the 1980s [15]. 1G
was analog and made only voice calls possible. The second-generation (2G) were
digital systems and supported text messaging. Higher data transmission rate and
more data capacity were results of mobile technology advancement to 3G, which
supported multimedia and allowed real-time video calls [14][15][16].

The fourth-generation (4G) of mobile networks presented an enhanced version
of 3G networks. 4G is an IP-based network system mainly aimed at providing
higher speed, quality of service and security to handle more advanced multimedia
services over IP [16]. LTE, Short for ’Long Term Evolution’, and A-LTE (Ad-
vanced LTE), which are considered as 4G technologies, offered enhanced network
capacity, higher bit rates, and lower delay, to make wireless access possible, any-
time and anywhere [14]. As the result, the data rate has improved from 64 kbps in
2G to 2 Mbps in 3G and 50–100 Mbps in 4G [14].

However, at the time of developing 4G, the efficiency of the traditional point-
to-point link between the user equipment and base station was approaching its the-
oretical limits [17]. Hence, in addition to improvements in the data transmission
capacity, there was a demand for more network coverage offered by the available
infrastructure. To this goal, an increased node density was needed. However, ex-
panding the number of high-power macro-cells was not a viable approach due to the
economical reasons [17]. To meet these requirements, small cell network (SCN)
was introduced as a potential solution to offer a better network coverage and higher
data availability in both fixed and mobile environments, while considering resource
optimization and cost-efficiency. Small cell is served by a low-power cellular base
station and provides a shorter range of network connectivity compared to the tradi-
tional macro-cell [18].

Small cells are categorized as femtocells (coverage up to 30 m range), picocells
(coverage up to 200 m range), and microcells (coverage up to 2 km range) [19].
While traditional macro-cells are usually used in rural areas, a microcell can be
used in a populated urban area. Picocell is suitable for a large office or a mall, and
finally, a femtocell covers the smallest area such as a home or a small office.

2.1.3 The Internet of Things in the Telecom Industry

The explosive growth in mobile data traffic and the number of mobile-connected
devices were results of evolution in mobile technologies. As it is reported by Cisco
Visual Networking (Cisco VNI) [20], mobile data traffic has risen 18 times over
the 5 recent years. Still, it is expected to keep growing, and by 2021, it will reach
nearly seven times as much as it was in 2016.

Furthermore, the number of mobile-connected devices is predicted to become
11.6 billion by 2021 [20]. Following this, the novel concept of IoT emerged, where
physical devices are enabled to talk and exchange data among each other. An
example of such devices is the collection of sensors, which produce different types
of data, to be used for various use-case scenarios including smart home, smart
industries, self-driving assistance for vehicles, etc. [21].

9

Popularity and growth of the IoT concept demand higher data rates, lower latency,
and mobility support. To meet IoT application’s demands, mobile operators have
been trying to find new solutions to boost the capacity of services and provide a
higher quality of service in such scenarios. The development of small-cells such as
femtocells is a beneficial deployment in this regard. Using femtocells, considerable
amount of data traffic would be offloaded from macro-cells. This will reduce the
cost significantly from the operator’s side and results in lower power consumption
in user’s devices [20].

Therefore, the 4G has undoubtedly improved the capabilities of cellular net-
works to make IoT scenarios possible, and cellular networks are already being
used in many IoT scenarios. However, 4G is not fully optimized for IoT applic-
ations [22]. We are witnessing an exponential rise in the amount of multi-media
data being generated by new IoT scenarios, and today’s usage is a burden on the
current cellular networks [23]. Hence, there is a demand for higher data rates and
lower latency to transmit such data faster and cheaper. The next mobile generation,
5G, will be able to support the transmission of 1000 times more mobile traffic than
3G and 4G [20]. Hence, it is expected to act as the backbone of IoT applications
in the future.

2.1.4 5G

4G provides the foundation for the next generation of cellular mobile networks,
5G. 5G is initially deployed alongside 4G LTE [24]. The fifth generation of wire-
less mobile technology envisions an extended network coverage, higher data rates,
lower latency, increased bandwidth and considerable improvement in the quality
of service (QoS) which is received by user [25][23].

With a focus on IoT and low latency systems, 5G aims to connect everything.
To meet this goal, data rates up to 20 Gbps, 1000 times increase in the capacity,
latency lower than one millisecond, 10,000 times more data traffic and support for
ultra-low-cost and reliable IoT applications are promised [24]. To achieve all 5G’s
targets, new technologies including new network architecture, antenna technolo-
gies, spectrum, and network slicing are needed [24]. MEC, as an important feature
of 5G, which further enables the possibility of IoT scenarios, is discussed in the
following section.

2.1.5 Multi-access edge computing (MEC)

To deliver the promised 5G, mobile network providers adapt and utilize Multi-
access edge computing (MEC) architecture along with the development of 5G net-
work [26]. MEC offers computation and storage capabilities at the edge of the
network, within the RAN, and very close to the end-users.

The motivation behind the development of this technology is to provide low-
latency, high-bandwidth, scalable and reliable access to radio network resources for
applications that demand highly real-time and efficient service delivery [27][28].

10

Moreover, being geographically distributed, MEC provides high-quality of service
and broad support for mobility [29]. Considering the benefits MEC introduces,
there is tremendous potential for third-parties to make use of mobile operator’s
services and develop their new and innovative applications utilizing caching capab-
ilities at the edge [28]. IoT use-cases and scenarios are among these new business
opportunities being enabled through emerge of MEC and 5G. Facilitating com-
puting and storage resources at the edge of the network, very close to where data
generates, ensures a fast response to user’s request and supports critical IoT applic-
ations, which require data transmissions with low-latency.

The current project can be considered as an example of where MEC architecture
assists in developing an IoT scenario: A local IoT gateway, which acts as a MEC
platform, receives data from a set of IoT devices, performs some data aggrega-
tion or big data analytics on it, and finally sends the acquired information to the
associated cloud servers for further functionalities.

Therefore, the new decentralized architecture provided by MEC, enables many
IoT applications that need to be served with geo-distribution, location-awareness,
scalability, and low-latency features [29]. A high-level architecture of MEC setting
can be seen in Figure 2.2.

Figure 2.2: High-level architecture of MEC Settings.

2.2 Publish/Subscribe Paradigm

Publish/Subscribe model is a message-oriented middleware (MoM) [30], which
acts as an alternative to the traditional client-server architecture. In the traditional
model, client communicates directly with an endpoint.

Pub/Sub model provides distributed and loosely coupled communications between
its two main entities: Client that sends a message is called producer (publisher)

11

and the client or clients that receive the messages is called consumer (subscriber).
There is also a third component, the broker, which routes messages between pub-
lishers and subscribers. Role of the broker is to distribute incoming messages to
the correct subscribers [31]. A more precise architecture overview of the Pub/Sub
messaging model is provided in the next sub-section. Moreover, Kafka and Zoo-
keeper, as the Pub/Sun technologies that have been used in this work, are discussed
in the following sub-sections.

2.2.1 Publish/Subscribe Architecture

Figure 2.3 depicts the general scheme of the Pub/Sub model. Publishers send mes-
sages (publish data) to the event bus which is including a broker. The publisher
does not specify any address of the receiver. Instead, the event bus decides, which
subscriber should receive the data, and to let the event bus know this, subscribers
subscribe for those messages which they are interested in. Publishers deliver data
to the broker only once, and then it is the broker, who distributes the same data to
different subscribers, considering the subscriptions of each user.

Figure 2.3: General scheme of Publish/Subscribe communication.

The strength of publish/subscribe model communication style lies in the three
types of full decoupling that it provides [32], namely decoupling in space, time
and synchronization between publishers and subscribers. Space decoupling means
messages are not specifically sent for a particular receiver, but any entity who is
willing to receive a particular message can subscribe to it. Hence, the sender is
required to know neither the exact receiver nor the number of them. Similarly, the
receiver does not need to know who was the source of the received message. This
feature is called space decoupling.

Time decoupling is the second type of decoupling, which states that message
producers and consumers do not need to be connected at the same time to be able
to send or receive data. In other words, message delivery is not dependent on
the presence of both entities. Messages can be sent even when receivers are not
connected at that moment, and consumers will be able to receive messages even if
senders are not available.

Lastly, Pub/Sub offers decoupling in synchronization, which means events of
sending and receiving messages are asynchronous and non-blocking in this model.

12

Hence, there is no need for senders to wait for acknowledgments from receivers
after they sent a message. Providing decoupling features that support the independ-
ence of the sender and receiver, Pub/Sub model brings more scalability, and hence
makes it a well-suited option for large-scale IoT deployments [33]. Moreover, Sup-
porting asynchronous communications better addresses requirements in distributed
systems, which are asynchronous by nature [32].

Matching between publishers and subscribers can be done based on different
design types of filtering in a Pub/Sub system, mostly topic-based or content-based
[33]. The way that subscribers describe which messages they are interested in
depends on the chosen design. Topic-based or subject-based is the earliest Pub/Sub
design type which has been used in many industrial solutions [32]. Also, most of
current popular Pub/Sub systems such as Apache kafka [34], IBM MQ [35] and
Message Queuing Telemetry Transport (MQTT) [36] work based on this filtering
design scheme. Topics can be considered as individual key-words, and subscribers
are allowed to subscribe for one or more topics. Publishers should assign each
message a topic or topics. So, when the event bus receives a message, it first
checks its assigned topic/topics. If there were subscribers who subscribed to that
topic/topics, the message will be routed to them.

This very basic performance of the topic-based solution introduces some limita-
tions in the implementation. A topic may be too general and a subscriber may not
be interested to receive all data being covered under that topic but is only interested
in a specific part. So, in this way subscriber has to filter the part of the received data
to find its specific part, and also disregard the other additional parts. This is also
not beneficial in network usage since some data is delivered, which is not going to
be used. To solve the described drawback, the topic-based scheme is developed by
various systems.

Content-based is the second design type which allows subscribers to subscribe
for the actual content of a messages. So, consumers can announce their interest
only to a subset of events, and to do that they should define some filters and con-
straints for part of the event’s content that are interested [37]. This filtering is
usually described as a pair of attribute and value. Attributes are defined based on
content and a logical function will be evaluated as the attribute’s value. When a
message is received by the event bus, its content will be evaluated against each
subscription, and if the result was positive message will be sent to the corres-
ponding subscriber. Considering a topic as an attribute in this approach, we can
even conclude that a content-based solution will cover the topic-based design of
Pub/Sub systems. Among current industrial Pub/Sub systems IBM MQ provides
content-based architecture [35].

2.2.2 Apache Kafka

Apache Kafka [34], an open-source software platform, is a distributed and fault-
tolerant message delivery system based on publish/subscribe architecture. Fol-
lowing topic-based design and written in Scala and Java programming languages,

13

it was initially developed by LinkedIn to provide efficient message delivery to
multiple users [38]. Currently, Kafka is maintained by Apache foundation and
is widely used in Big Data solutions for building real-time data pipelines [38].

The arbitrary number of messages come from different processes called produ-
cers. Then, Kafka groups received data into different topics based on their data
stream category. Each topic, later, will be divided to partitions of equal size. Kafka
runs on top of a server or a cluster of servers, called brokers. Partitions of all
topics are distributed over these cluster nodes. Furthermore, partitions will be rep-
licated to multiple brokers, which will result in a fault-tolerant message delivery
system. Brokers are responsible for maintaining published data and sending it to
the subscribers later. Other processes, called consumers, who wish to receive data
corresponding to a topic, will initiate a subscription request, and it can finally read
messages from partitions.

The overall architecture of Kafka and its components are depicted in Figure 2.4.

Figure 2.4: General architecture of Apache Kafka.

2.2.3 Apache Zookeeper

Apache Zookeeper [39], an open-source project developed by Apache, provides
centralized service for maintaining naming and configuration data as well as flex-
ible and robust synchronization over large clusters in distributed systems [39].
providing coordination and synchronization service, Zookeeper acts as a depend-
ency for running Kafka. Zookeeper brings a coordination interface between the
broker and consumers. It also keeps track of Kafka cluster nodes, topics and parti-
tions.

2.3 Micro-Service Applications

The micro-service architecture, which has gained momentum during the last few
years, is an architectural style for designing software applications as a set of small,

14

lightweight independent services. Each of the services runs in its independent
process, and they all communicate with a lightweight mechanism. [40].

An opposite approach for software development, which is the traditional one, is
called monolithic architecture. In a monolithic design, the entire application logic
is written as a single unit. Any changes to a small part of such a system demand for
building and deploying a new version of the entire application [41]. This feature of
the monolithic architecture causes difficulty in the further development of a system,
especially when the application is large.

This is while continuous delivery and deployment are much easier in a micro
service-based architecture [42]. Compiling of the whole application is not needed
upon every small change in the microservice application. As a result, bugs and
security vulnerabilities of the application can be found and fixed easier. Hence,
deploying changes and delivering updated versions of the application to the pro-
duction environment can be performed faster, and this allows the development team
to conduct smaller and more frequent releases. Furthermore, scaling of an applic-
ation developed with monolithic design, requires the whole of the application to
be scaled, while in a micro-service approach, every single component or service is
isolated and is scalable without any dependency to the other parts.

Moreover, different services in a micro-service architecture can be distributed
on multiple physical hosts. To let different micro-services, which are deployed on
different hosts, talk to each other, a service discovery protocol is required [43]. In
contrast, all modules in a monolithic application must be deployed as a single unit
in the same physical environment. Because of this, the same hardware character-
istics, such as RAM and CPU, would be followed for all modules of the mono-
lithic application. However, in a micro-service application, these features could be
defined separately. For example, more CPU can be assigned to a service, while
more RAM is allocated for the other one.

Figure 2.5: Monolithic and Microservice-based architecture [41].

15

Figure 2.5 illustrates the differences between monolithic and micro-service ar-
chitectures. Despite all the benefits of the distributed microservice-based archi-
tecture, it also introduces new challenges. The internal communications among
services, which is accomplished via remote network calls, generate network over-
head. So, the bandwidth and latency requirements should be considered while
developing such an application. Besides, these inter-communications demand for
a reliable and secure network [43].

As the microservice-based application grows and turns into a system with a large
number of services, it becomes more fault-prone [44] and monitoring of the whole
application becomes a difficult task. Hence, an effective automation and monitor-
ing system is required for the deployment of such a system.

2.4 Nokia Bell Lab’s Prototype System

A distributed data dissemination system based on the Pub/Sub messaging architec-
ture is being developed in Nokia Bell Labs. The main idea behind the project is to
provide effective data transmission between data producers and data consumers. To
this goal, content-based design type for Pub/Sub messaging is used, which offers
an efficient routing for transferring messages. Furthermore, functionalities such
as data compression and aggregation are distributed to the edge of network [45],
where data is generated. Motivation for the project and possible use-cases are dis-
cussed in the next sub-section. Then, architecture of the system and its components
are explained in the following sub-section.

2.4.1 Motivation of the Project

The initial motivation of the project was to develop a distributed management plane
data communication to be delivered in the cellular networks [45]. However, later,
a wider range of applicability for the project was found. Currently, this prototype
system can be used as a general distributed transmission bus to serve different
IoT scenarios, where several geo-distributed IoT devices generate data, acting as
producers, and different data consumers can access this data if they subscribe for
it. The system is developed based on the microservice architecture, where TCP/IP
protocol is used for handling communications among services. The current system
is written in the Java programming language.

As mentioned earlier, Nokia’s system is designed based on Pub/Sub messaging
pattern. Those who want to consume data will issue subscriptions to describe type
of data they need. Then, the system starts to receive the corresponding data and
delivers it to the matching subscriber. In the next section, each service is described
in more detail.

16

2.4.2 Introducing Components of Nokia’s System

A general overview of Nokia’s proof of concept system is illustrated in Figure 2.6.
Dashboard, Coordinator, Data Fetcher and Data Hub are the main services, which
are described as follow:

Figure 2.6: General overview of Nokia’s prototype system

• Data Fetcher

Data Fetcher is responsible for retrieving data from external data sources into
the system. It also performs some pre-processing on data before delivering
it to the corresponding consumer. The current data processing includes KPI
calculation. However, this module could be developed with further function-
alities in the future. Compression and encryption of data are from the other
currently available capabilities of data fetcher. Considering the abovemen-
tioned features, data fetcher will act more appropriate when it is resided at
the edge of the network, where it is closer to the data sources.

• Data Switch

Data switch is not a microservice by itself, instead, it resembles two separate
microservices, namely Kafka broker and Zookeeper, which together provide
one of the main functionalities of the system: the actual Pub/Sub messaging
pattern. Data switch receives the pre-processed data from data fetcher and
then routes it to the right consumer or consumers who have subscribed for it.

• Data Hub

Data hub, which has a corresponding UI, is a gateway for subscribers. End
users who aim to consume data, subscribe for their specific data type, being

17

shown as a list in the data hub. Upon receiving requests, made by sub-
scribers, data hub forwards them to the coordinator. Later, data hub receives
corresponding data for each subscription and forwards it to the end-user.

• Coordinator

Coordinator is considered the main component responsible for managing and
orchestrating all other components and services. The whole process of a sub-
scription, creation, and cancellation of a subscription is handled by coordin-
ator. For example, as mentioned earlier, to receive relevant data from data
switch, data hub first needs to send its requests to the coordinator. Then, co-
ordinator processes this request and asks data fetcher to publish appropriate
data, and finally, data hub will receive the corresponding data.

• Dashboard

Dashboard acts as a user interface for monitoring the state of the system.
Currently, it illustrates the state of main microservices, if they are up and
running and how much traffic they generate.

2.5 System Virtualization

Virtualization, one of the key concepts in cloud computing, which has been well
established for decades [46], refers to creating a virtual version of a resource, such
as operating system, hardware, storage or network, in a layer abstracted from the
actual one.

These emulated virtualized systems could be configured, maintained and replic-
ated easier and on-demand [47]. Furthermore, by virtualizing, computing infra-
structure is assigned to users and applications based on their real needs and hence,
resources are much better utilized. This leads to a decrease in the upfront oper-
ational costs, as well as a reduction in carbon emissions. Due to these benefits,
which not only have economical impacts but also are environmentally friendly,
virtualization is seen as one of the green IT technologies [48].

In terms of Linux, virtualization refers to running one or more virtual machines
operated by Linux operating system on a single physical computer. The two pre-
valent Linux virtualization technologies include hypervisor-based and container-
based virtualizations, which are described in the following sections.

2.5.1 Hypervisor Virtualization

The first well-know virtualization technology that has been around for decades, is
hypervisor, also called Virtual Machine Monitor (VMM). In a hypervisor, com-
puter hardware or software will be the host and provides full abstraction for one
or several virtual machines acting as the guests [49]. The host machine splits and
allocates its locally available resources to the guest machines. This way each guest
VM will have its OS and operate isolated from others. Hence, multiple machines

18

with different operating systems can execute on a single physical host at the same
time.

Figure 2.7: Hypervisor-based virtualization architecture.

Two different architectures are shown in Figure 2.7 are differentiated for a hy-
pervisor.

Type 1 hypervisors, called native or bare-metal hypervisors, run directly on hard-
ware to control it and manage operating systems for guests [50]. The most well-
known examples of this architecture include Oracle VM [51], VMWare ESX [52],
Microsoft Hyper-V [53], and Xen [54]. Type 2 hypervisors, called embedded or
hosted hypervisors, on the other hand, require a host operating system to run their
operations on top of it [50]. Hence, these type of hypervisors are dependent on
the host OS for their resource allocation. Some popular hypervisor tools coming
from this architecture are Oracle VM VirtualBox [51], VMWare Workstation [55],
Microsoft Virtual PC [56] and QEMU [57].

Despite differences in types, hypervisors introduce several benefits. Isolation
for guest machines is the main one. Isolation guarantees that consequences of
any operation within one VM will not affect the other VMs or the host. This
prevents any crash, failure or security threat caused by one environment disturb
functionality of the other machines. Moreover, running a hypervisor, enables users
to have multiple machines with different operating systems on top of a single host
machine. Additionally, this introduces various business opportunities for service
providers since they will be able to provide a wide range of customer’s needs with
limited resources.

Despite their benefits, hypervisors have several drawbacks. Firstly, dependency
of guest VMs to booting up of the host machine causes a slow startup time. Each
VM also needs to be booted up like a normal operating system, which makes it
even slower. Upfront costs and possible security vulnerabilities are considered as
the other disadvantages.

19

2.5.2 Container Virtualization

Container-based virtualization, also known as operating system level virtualization,
is a lightweight alternative to the hypervisors. This type of virtualization utilizes
host’s kernel features to creates multiple isolated user-space instances, called con-
tainers [49]. Container architecture is shown in Figure 2.8.

Figure 2.8: Container-based virtualization architecture.

A container, from point of view of processes running inside it, looks like a real
separate machine, while in reality they are running in an isolated space inside the
host OS and share their resources. Hence, despite hypervisors, containers do not
have their own virtualized hardware and OS but they use resources of their host.
This way, each container acts as an independent OS without any intermediate layer
and guest virtualized OS as it is in hypervisors.

Since there is no emulated hardware in containers, they do not need a time for
booting an entire OS. This leads to a fast startup, in milliseconds, which is more
efficient than the conventional hypervisors [50]. A container encapsulates all pack-
ages, which it might need such as libraries, binaries, runtimes and other system-
specific configurations [58]. However, it is still more lightweight than a virtual
machine, which contains a set of toolchains to run an entire OS, including kernel
and drivers. This small resource fingerprint in containers introduces better per-
formance, enhanced security and a good scalability [50].

Container-based virtualization can be implemented on top of any OS, how-
ever the current popular techniques such as Docker rely on Linux kernel features.
In Linux, resource management for containers is accomplished through Control
Groups (Cgroups). Cgroup limits and prioritizes usage of host’s hardware re-
sources, such as memory, CPU and I/O, for containers [59]. Moreover, Linux
namespaces provide isolation for containers so that each process will have its spe-
cific view of the system. An example of this controlled view is to allow a container
to see parts of host’s file system and not all of it. Also, it controls the list of visible
processes in container’s process tree.

Due to the all above-mentioned features of containers, they have gained more

20

popularity during past few years. Realizing advantages of containers compared
to the classical hypervisor-based virtualization, developers have just started to use
them more widely. To benefit these advantages, in this thesis we use Linux con-
tainers for the implementation of our solution.

2.6 Docker Container Engine

Docker, an open-source project in the category of Linux containers, is one of the
most popular container virtualization technologies [60]. It is a lightweight platform
for developing, deploying and running applications within the containers. Being
one of the most powerful technologies at the moment, it is even considered syn-
onymous with containerization in some terminologies. The benefits that Docker
brings for deployment and operations are discussed in the next sub-section. Then,
in the second sub-section, its architecture and the most important components are
explained.

2.6.1 Docker for Development and Operations

Docker provides a fast and automated approach to deploy an application inside
portable containers. This way, the application would be suitable for any environ-
ment, it can be scaled, and will be configured to interact with the outside world.
Moreover, the application, which is built with Docker, will be independent from in-
frastructure and could be run on any platform. This feature solves the ’dependency
hell’ for developers [61] and makes deployment, shipment and test of application
easier and faster and shortens the lifecycle for releasing applications. This is spe-
cifically beneficial for CI/CD workflows [62].

Additionally, Docker gives the possibility of configuring infrastructure compon-
ents, such as CPU, memory or networking, to the user through its config files.
Hence, developers are able to manage infrastructure the same way they treat to
applications. To arrange such characteristics, docker introduces a kernel and an
application-level API to the Linux container, which will run processes such as
CPU, I/O and memory in isolation [60]. Furthermore, to deploy and run contain-
erized applications, Docker utilizes two most important features of Linux kernel,
cgroups and namespaces, as described in Section 2.5.2.

Applications can be run in a secure and isolated space within Docker contain-
ers. Hence, using Docker, multiple applications or micro-services could be run
simultaneously within different containers on top of the same physical host. Ac-
cording to this possibility, developers can break a huge system to smaller set of
services, each deployable as a separate Docker container. This way debugging,
managing and updating of each component would be easier. In addition, the ap-
plication could be scaled horizontally only with the services which are needed.
Also, being more lightweight than the conventional hypervisors, Docker can utilize
hardware resources more efficiently and it can manage its workload dynamically.

21

2.6.2 Docker Architecture and Components

Providing a simple tooling, Docker uses a universal packaging approach to wrap
up all application dependencies within a container, which will be run on the Docker
Engine [61]. Docker engine is built based on client-server architecture. The Docker
Daemon, which runs on the host system, manages the images and containers. Addi-
tionally, it is responsible for monitoring state of the system, enforcing policies, ex-
ecuting client’s commands and determining namespace environments for running
containers. The Docker Client is where users interact with Docker. A command-

Figure 2.9: Docker Engine architecture.

line tool, which connects to the Docker Daemon, is responsible for managing oper-
ations related to images, containers, networks, the swarm mode and Docker engine
configurations. Using sockets or RESTful APIs, Docker daemon and Docker client
communicate with each other. The Docker architecture is illustrated in Figure 2.9.
The rest of Docker components are described as following.

• Docker Image
A Docker image is the main building block of Docker. It provides the source-
code for creating and running containers. An image contains all the neces-
sary libraries and binaries to build and run an application. There are pre-built
Docker images, which developers can download and use, however they can
build their own images as well. To do so, one should write the required in-
structions in a Docker File. The image template (Docker file) starts with a
base image. An image is a series of data layers built on top of the base im-
age. To combine different layers of an image and treating them as a single
layer, Docker uses a special file system called Union File System (UnionFS)
[63]. Union File System allows combining files and directories of different
file systems into a single consistent file system [63]. Upon applying any
changes to the image, a new layer will be added on top of the existing ones.

22

Hence, despite the traditional approach based on the hypervisors, rebuild-
ing of the whole image is not needed. This process makes the rebuilding of
images quite fast [64].

• Docker File

Docker file is a template, which contains all the required instructions to cre-
ate a Docker image. The Docker engine acquires the required information for
configuring a container or executing the containerized applications from this
file. These instructions will be executed in order by conducting a ’Docker
build’ command issued by a user. In case any of these instructions result in
a change to the current content of the image, changes will be applied to a
new layer based on the layering approach, which described before. The base
image is specified with the ‘FROM’ command written in the very first line
in the Docker file. This is where the entire image will be built upon.

• Docker Container

Docker containers are the running instances created and deployed from docker
images and the allocated system resources, which are manageable through
Docker client tool. While several containers can be launched from the same
or different images on the same host, they are all isolated from each other
and act separately.

Figure 2.10: Multiple Docker containers on top of one Docker image.

As shown in Figure 2.10, upon starting a container, a new writable layer,
namely ’container layer’, is created on top of its used image [65]. Any
changes that occurs within the running container only applies to the container
layer. When different containers run on top of the same image, they write
their changes to their own writable layers. When the container stops, all
of changes made in its container layer will be lost. This way the images

23

will remain immutable and several containers could be made out of a single
Docker image.

• Docker Registry

Docker registry is where Docker images can be stored. The main purpose of
a registry is to simplify distribution of images. Hence, developers can make
Docker images and store them in the registries. Then, upon access to the
registry using Docker client, other users can download and use the available
images. We can consider these registries similar to the source-code reposit-
ories [66]. The Docker registry can be either public or private. Docker Hub
[67] is the most popular public Docker registry, where you can freely sign up
and get access to a huge image storage system for uploading and download-
ing images. Docker Registry [68], an open-source project lead by Docker,
provides private Docker repository for organizations with authenticated ac-
cess, which lets them control access to their images.

2.7 Container Orchestration Frameworks

With the growth of virtualization technologies, especially launch of Docker, and
with the increased interest of PaaS providers, application virtualization became
popular [69]. This popularity is because containers, according to their nature, po-
tentially solve many known problems of application development and deployment:
Encapsulating an application with all its dependencies as a self-contained soft-
ware, which can be executed on top of any platform, they solve the ’dependency
hell’ problem. This also makes the application portability much easier. Being more
lightweight than VMs, they improve the performance overhead and cut down the
startup time [69].

Considering the abovementioned benefits, cloud industry has already adopted
the container technologies [69]. However, operating with containers at scale in-
creases the demand for a management and orchestration tool. Multiple contain-
ers, which build a distributed architecture, are required to interact with each other
smoothly. Hence, as the footprint of the application grows, demand for an auto-
mation process increase. Dynamic deployment, automation, management, scal-
ing and monitoring of multi-container packaged applications can be achieved by
a container orchestration framework [69]. Such a framework deploys and distrib-
utes processes across several physical hosts, monitors them and keeps track of host
health. To do so, a container management framework employs a software layer,
which abstracts complexity of hosts and displays the entire cluster as a single pool
of resources. Furthermore, containers within a cluster are able to communicate
with each other regardless of the physical host that they are deployed on. For this
purpose, the management framework creates virtual networks between containers.
Some of the current framework even offer more and provide load-balancing and
service discovery mechanisms. Several orchestration frameworks are being de-

24

veloped, while Kubernetes is one of the most popular ones that we conducted our
study based on it is and is discussed more in the next section.

2.8 Kubernetes

Kubernetes is an open-source cluster manger, which initially developed and intro-
duced by Google at the June 2014 Google Developer Forum [60]. Kubernetes’s
origin has adopted many ideas from Google’s first internal container management
technology, called Borg [70]. Applications of Google were internally run and man-
aged at scale using Borg. Later, many external developers became interested in
Linux containers and Google developed its public cloud infrastructure. These ad-
vances motivated Google to develop its open-source container management frame-
work, know as Kubernetes.

Kubernetes can be used for effective deployment, updating, managing, resource
sharing, monitoring and scaling of multi-container applications in a highly distrib-
uted environment.

2.8.1 Kubernetes Architecture

A high-level architecture of Kubernetes is shown in Figure 2.11. As it is depic-
ted, each Kubernetes cluster consists of a master node and one or more worker
nodes. This structure allows Kubernetes to optimize power of cluster computing
by distributing containers over different worker nodes, while managing them by
the master node. Master node includes components such as API server, control-
ler manager, scheduler and etcd. Worker node has only two components namely
kubelet and kubeproxy. Each of these modules are further discussed in detail.

The key components of Kubernetes are described as follows.

Figure 2.11: High-level architecture of Kubernetes.

25

• Master and Worker Nodes

Following a master-slave type of architecture [71], Kubernetes consists of
master and worker nodes. A node, in general, refers to the host device,
which is either a virtual or a physical machine. Worker nodes run the pods
and will be managed by the master node. The master node within a cluster
is responsible for managing containers and consists of three processes, kube
APIserver, kube controller manager and kube scheduler [72].

• Pods

The smallest deployable unit of computing in Kubernetes is called pod [73].
Each pod consists of one or more application containers, which are deployed
on the same physical host, and share the same set of resources such as stor-
age and networking. In other words, a pod models an application-specific
’logical host’ and includes different containers which are tightly coupled
[74]. Hence, pod places and operates one level higher than the individual
containers [75].

Kubernetes applies its scheduling and orchestrating mechanisms on top of
pods instead of containers. This allows developers to deploy several con-
tainers out of their closely related micro-services and then package them
into a single pod to act as a single application. A unique IP address would
be assigned to each pod. While containers on the same pod can see each
other on localhost, containers on different pods communicate using pod’s IP
addresses. Additionally, containers on a single pod share the same volume
directories and resources. Hence, a pod resembles a virtual host machine
including all resources needed for its containers.

• Replication Controller

Replication Controller, is often abbreviated as ’rc’, is responsible to make
sure that the specified number of pods are always up and running, and if not,
it will replicate required number of pods [76]. It also terminates some of
the pods if too many of them are running. Each pod’s replication is called
a replica. Replicas will be managed based on the rules defined in the pod’s
template. A pod, which is created manually, can be evicted in case of any
failure, while using a replication controller, we can define pods that will be
replaced if they fail or be deleted for any reason. Hence, it would be a good
practice to define a replication controller instead of manual pod creation.
This will assure health of the application even if it contains only one pod.

• ReplicaSet

ReplicaSet is an API object in Kubernetes, which manages scaling of pods.
It checks state of pods and maintains desired number of them at any given
time. According to the Kubernetes documentation [77], ReplicaSets are the
next generation of Replication Controllers and provide more features.

26

• Deployment

Deployment is a higher-level concept than replicaSet and pod. Defining a de-
ployment, we can declare updates for Pods and ReplicaSets. In other words,
we describe a desired state and deployment controller checks the actual state
against the desired state. Instead of using pods or ReplicaSets directly, it is
recommended to define them by deployments.

• Services

A service is an abstract way to expose applications running on the pods to
the users. As mentioned earlier, a unique IP address is assigned to each pod
within a cluster. However, since pods can be created or removed by replic-
ation controller, their IP addresses are not stable. Each newly created pod
will receive a new IP; hence it would not be a suitable approach for users to
connect to the applications via pod’s IPs. This is where Kubernetes services
solve the issue offering an endpoint API, which lets services being accessible
externally. Moreover, assigning a single DNS name to each service, Kuber-
netes provides an internal service discovery mechanism and developers do
not need to utilize an external approach for that [78].

2.8.2 Master Node Components

Master node, the controlling unit of Kubernetes cluster, is responsible to maintain
and mange the state record of all objects in the system. To do this, it performs
continuous control loops to respond to the changes.

Hence, the control plane is where users and system administrators interact with
Kubernetes [72]. It will accept client requests and make sure to take the actual
state of cluster towards its desired state as described by users via the Pod Lifecycle
Event Generator (PLEG) [79]. The Kubernetes master node adopts a collection
of processes, which manage cluster’s state. These components are described as
follows:

• API Server

The API Server exposes a REST API, which makes communications of all
cluster components possible. It also allows users to configure and validate
all cluster objects such as pods, replication controllers, services etc. [80].
Furthermore, the API server handles communications between the master
and worker nodes.

• Controller Manager

A controller manager is a control loop, which runs on the master, and using
the API server checks the state of cluster. If any change arises, controller
manger moves the current state of cluster towards the desired state. There
are different controllers in the Kubernetes including replication controller,

27

namespace controller, endpoint controller and service-accounts controller
[81].

• Scheduler
Scheduler acts as a resource controller and handles the workload of a cluster.
More precisely, it is responsible for assigning pods to the different worker
nodes based on several metrics such as nodes computing resources, policy
constraints of pods and quality of service requirements. To this goal, sched-
uler also keeps track of the general overview of resources to see which are
free or occupied.

• etcd
etcd is a lightweight, consistent, highly available and distributed key-value
data store, which is used to store all cluster data including configurations and
state information of cluster. To operate as a data-store, etcd acts based on the
Raft consensus algorithm [82].

2.8.3 Worker Node Components

Worker nodes are the machines on which the application would be running. User
often has no interaction with these nodes and master node controls each of them.
Each worker node consists of a few components described as follows.

• Container Runtime
As the first component, a container runtime is required be installed on each
worker node. Container runtime is the software responsible for running con-
tainers. Several container runtimes are supported by Kubernetes; however,
Docker is the most popular one.

• Kubelet
Being responsible for management of pods and their containers in each node,
makes Kubelet the most important component of worker nodes. Kubelet re-
ceives its instructions from master node and interacting with etcd, it updates
the configurations. Based on acquired information, it makes sure that pods
are healthy and are running properly. Then, it also reports status of nodes to
the cluster.

• Kube-Proxy
Kube-Proxy is a network proxy, which takes care of network rules on each
worker node. These rules allow network communications to the pods from
inside or outside of the Kubernetes cluster. In other words, with mapping
containers to the services and utilizing load-balancing mechanisms, it provides
access to the deployed application from the external world. These network
proxies work based on TCP and UDP streams.

28

Chapter 3

Design And Implementation

To study the suitability of Docker and Kubernetes for the deployment of the cur-
rent IoT system, a practical proof-of-concept is conducted. This chapter explains
the steps taken towards the implementation of this proof-of-concept. The overall
procedure is divided into five main sections.

First, the containerization of the system and the applied approach using Docker
is described in Section 3.1. Section 3.2 studies the requirements for deploying
the system using Kubernetes. A possible use-case scenario is described and the
relevant architecture details and design decisions are discussed according to this
use-case. General steps for setting up a Kubernetes cluster and detailed instructions
are provided in Section 3.3. This includes guidelines for deploying the cluster, and
follows with detailed explanations for installation phases in the master and worker
nodes separately. The rest of required configurations to accomplish deployment of
the system are discussed in Section 3.4. Deployments and service definitions, and
also the used approaches for exposing the services are explained in this section.
Finally, the required steps for deploying the Kubernetes Dashboard, which is a
useful tool for monitoring the state of the cluster, are explained in Section 3.5.

3.1 Nokia’s IoT Pub/Sub System in Containers

Currently, the Pub/Sub IoT microservice-based system is deployed on different
VMs. Since the system is designed based on the micro-service architecture, each
of the services could be run separately on a VM. However, the current approach of
deploying has two disadvantages.

Firstly, as discussed in Section 2.5.1, a VM needs to be booted up like a normal
OS and this makes it slower compared to the containers. Secondly, the team en-
countered still another issue in the process of deployment of the project on top of
VMs. The system is developed with Java programming language. The first round
of development and deployment has been completed on machines with CentOS as
their operating system. When another team member tried to deploy the project
with the same created ‘Jar files’ on other machines with Ubuntu operating system,

29

it failed. The reason was the different Java versions on different machines, where
jar files were built and were run. Also, the OS might have an impact in some
cases. These are known as the ’dependency hell’ problem in software development
and CI/CD workflows could be solved using containers. A containerizing tool,
such as Docker, bundles up an application and it’s dependencies together in a self-
contained unit. Hence, a containerized application can be executed in any platform
and has no dependency on the infrastructure.

All the above-mentioned problems motivated us to take a step further in the
deployment and containerize the current system.

3.1.1 The System’s Containerization Procedure

In this section, first, we present the current deployment architecture of the system.
Then, the new containerized design and the steps taken for its implementation are
discussed in detail.

The current deployment of the system is conducted on five virtual machines,
where each is assigned to one of the services, Kafka-Zookeeper, Dashboard, Co-
ordinator, Data Fetcher and Data Hub. The related architecture is shown in Figure
3.1. These VMs are managed by Nokia based on OpenStack, a free and open-
source software platform for cloud computing [83]. Jar file of each component is
built and runs on a single machine, and machines know each other and communic-
ate via their IPs, which are defined in the configuration files of each module. To
get rid of running jar files, which can be a platform-dependent approach, we aim
to containerize these services.

Figure 3.1: The current deployment of the system in VMs.

Docker, as one of the most popular available technologies, is utilized for our con-
tainerization purpose. Due to the micro-service architecture of the system, making
docker images out of each service is not so complicated. First, we make a Docker

30

file for each service, and from the file, we create the Docker image. For Kafka and
Zookeeper, we use the well-known public Docker images.

As the next step, to check if images are built properly and the system works upon
containers, we run all containers on the same machine using Docker-Compose.
Figure 3.2 illustrates the proposed architectural design of the containerized system.

According to the Figure, Docker-Compose creates a single shared network, where
all containers can join. Different services running on the same Compose network
are reachable by other containers, and they are discoverable at a hostname defined
by the container name [84].

To start Docker-Compose, we create a YAML file to configure our services.
Image name, network name, the ports that should be exposed for the service, and
hostname are among components, which should be defined in this file, for each
service. Since our services are dependent on each other for their run times, we
only include Kafka and Zookeeper services in the compose file.

Starting the Docker-Compose, we bring up Kafka and Zookeeper as is shown on
the left side of the Figure. Then, we run each of other services separately on the
same Docker-Compose’s network. This way, we locate all of the system’s micro-
services under a shared network. Finally, we can access two of our services, which
have a UI, namely ’Dashboard’ and ’DataHub’ on the localhost and their exposed
ports.

Figure 3.2: The architectural design of the containerized system.

3.1.2 Setup a Private Docker Registry

As described in Section 2.6.2, there are two ways to keep and share Docker images.
Public and private Docker registries. For the former, there is a ready-to-use registry,
where you only need to sign up and freely use the available images or share your

31

own images. However, to use the latter, we need to set up it ourselves on top of
Docker’s open-source project, named ’Docker Registry’. Since Nokia’s system
is private, we cannot keep its corresponding Docker images in a public registry.
Hence, in this section, we explain how we set up a private Docker Registry in one
of the Nokia’s servers.

The open-source Docker Registry acts as a storage and distribution system for
Docker images and holds various versions of the same image, which are tagged
differently [85]. The registry stores its data locally by default, hence, users can
pull their images from its local filesystem and push new images to it as well.

It is possible to set up such a registry without any security restrictions. However,
the better approach is to use the available mechanisms to make our registry secure.
To this goal, we apply three main features that are provided by Docker. These
features are explained as follows.

1. Get a Self-Signed SSL Certificate

Without a certificate, we need to configure the client machines (machines
which aim to use the Docker registry) and the Docker engine to trust our
registry. There is a specific parameter, namely ‘insecure-registries’, which
should be defined for this purpose. However, we do not set such a parameter.
Instead, we add our self-signed certificate to either the client machines or
the Docker engine. Generating a certificate results in the creation of a public
and a private key.

We copy the corresponding public and private keys to the Docker engine.
This way, Docker trusts our certificate. Later, to use the registry from a
remote client, we need to copy registry’s certificate in that machine as well.

2. Create Login Credentials

The next possibility to provide more security is to define credentials and
make the Docker Registry password protected.

3. Setup the Docker Registry

After adding SSL encryption support and defining basic authentication for
the Docker Registry in the two previous steps, we can run the registry. The
registry service will be run as a container itself. Also, another container, cor-
responding for UI of the registry, will be run separately. Users can interact
and access data from the registry using their browsers. Instead of running
each of these services separately, we use the Docker-Compose. Two dif-
ferent containers namely ’registry’ and ’registry frontend’ are defined in the
Docker-Compose configuration file as two separate services and then, are
linked together.

32

3.2 System Deployment with Kubernetes

In this section, firstly, we describe a use-case scenario for deployment of the Pub/Sub
IoT system. Next, the architecture for the deployment using Kubernetes is ex-
plained and the design decisions are discussed.

The micro-service architecture of the current system and containerizing each
service separately, bring several advantages for the deployment, however man-
aging multiple independent containers might cause even more challenges espe-
cially when we aim to scale the system. Ensuring network connectivity of the
containers to each other and to the external world, constant monitoring of their
state, resource optimization for each and finally, scaling the number of containers
are from the challenges.

Making sure to meet all the requirements for managing containers, means to
have an eye on hundreds of containers at the same time. This is fault-prone and
difficult task. Kubernetes is a container orchestration tool, which will take care of
managing containers and their connectivities. Using its self-healing mechanism,
Kubernetes makes sure that all required services are always up and running. Fur-
thermore, Kubernetes gives fine-tuned control over utilizing cloud resources for
each of the containers. Finally, with Kubernetes, we can scale the system with
more similar services with minimum effort.

Apart from the challenges that managing containers bring, deploying the sys-
tem considering its current architectural state is challenging. Currently, the micro-
services in the system are introduced to each other in a manual process. Each
service has one or more configuration files, where the IP address of its related
components are defined. This way each service knows the next destination that
it should get connected. Deployment of such a system in scale, for different cus-
tomers and in different infrastructures, demand for a long manual process, where
we have to go through various files and change the defined IP addresses. Using
containers, this means even more work since we need to rebuild the docker images
after any change being applied to the configuration files of services.

Hence, eliminating this workload in the deployment is one of our biggest mo-
tivations to use Kubernetes in this thesis. Providing an internal service discovery,
Kubernetes allows us to define names for the micro-services instead of IPs.

3.2.1 The Use-Case Scenario

For simplicity and keeping the consistency of the work, we explain one of the
possible use-cases of Nokia’s system. The rest of this thesis is explained based on
this use-case.

The main goal of Nokia’s IoT Pub/Sub system is to let one group of users publish
their data, while another group subscribe their favorite ones from the available data
catalogs. Such a general definition can be extended to a real business example. A
company (Company X) generates some valuable data in its office. Then, it decides
to make some profit out of such data using Nokia’s IoT system. This company

33

installs different IoT gadgets all around its office and data will be fetched from
these devices using the ’DataFetcher’ module. Other business units (Company Y)
could become its customers and be willing to use this data. They only need to have
access to the ’DataHub’ module of the system.

A general overview of such a use-case is shown in Figure 3.3. Keeping this
business use-case in mind, we deploy the system using Kubernetes.

Figure 3.3: General overview of the use-case scenario.

3.2.2 System Architecture and Design Decisions

The current system is developed in a way to benefit from capabilities offered by
MEC architecture. To be more precise, the Data Fetcher module is supposed to
be established on an IoT gateway. An IoT gateway acts as the connection point
between IoT devices and the cloud. The pre-processing and aggregation of data
can be executed locally at the edge before sending it to the cloud. This will reduce
the volume of transmitted data as well as the network overhead [86]. Hence, it
is reasonable that a gateway be placed close to where IoT devices reside and it is
supposed to have some computation power as well as network connectivity.

To deploy the system considering such an architecture, the host infrastructures
for Data Fetcher and the rest of the modules are separated. However, we do not
use an actual gateway in the scope of this thesis. Instead, we have used a separate
machine that is assigned specifically to the Data Fetcher. This way, we study and
showcase the possibility of such a scenario with Kubernetes, while it can be later
followed by other settings and equipment.

Moreover, the host infrastructure for the Data Hub module is also separated. The
reason for such a design is the way we expose this service for the end-user. More
details are provided in the next section, which explains service definitions.

34

To implement this proof-of-concept, we have used Nokia’s private cloud infra-
structure; Nokia Engineering and Services Cloud (NESC) [87]. NESC, being based
on the OpenStack, provides a fully functional IaaS cloud. A general architectural
overview of the proposed scenario using Kubernetes is demonstrated in Figure 3.4.

Figure 3.4: Architectural overview of the proposed deployment scenario with
Kubernetes.

According to the architecture, we have four virtual machines, which together
form our Kubernetes cluster. One of the machines acts as the master node and
the three others are the worker nodes. We deploy each of the different modules
of the system as a separate service within the Kubernetes cluster. Hence, we have
services including Kafka, Zookeeper, Dashboard, Coordinator, all deployed in the
’Worker Node 1’, the Data Fetcher in the ’Worker Node 2’ and the Data Hub in the
’Worker Node 3’.

In Figure 3.4, processes related to the configuration of the Kubernetes cluster
can be seen as separate white and blue boxes in each machine. The white boxes
show processes, which are specifically for Kubernetes master node, while the blue
boxes show the common Kubernetes processes in all machines. These processes
are previously described in Section 2.8. Furthermore, each machine has its own
Kubernetes Deployment(s), and they are represented in blue boxes all within an-
other box with the title ’Deployments’.

3.3 Setting Up the Kubernetes Cluster

All steps required for the deployment of our proof-of-concept scenario are de-
scribed in this section. First, the conducted procedure for setting up a Kubernetes
cluster is explained. This includes different instructions for master and worker
nodes, and each is discussed separately. After that, we explained all configurations

35

needed to deploy our micro-services on the different nodes in a Kubernetes Cluster.

3.3.1 Kubernetes Setup

There are several approaches to set up and start with Kubernetes. Minikube [88]
is one of the easiest ones. It runs a single-node cluster inside a VM and helps
users to install Kubernetes locally. It might be the best and fastest suggestion for
those who want to try out Kubernetes for the first time. However, Minikube is
not a production-ready tool and is developed for specific use-cases. Moreover,
creating only one single node, Minikube does not allow us to explore the required
conditions for our scenario. Hence, this tool is not the most suitable approach for
us. Instead, we will use Kubeadm to set up a single control-plane cluster. We can
install Kubeadm on any type of device either a server or a gateway with different
architecture [89]. This makes it very well-suited for our scenario.

To start the implementation, we create four virtual machines on the NESC cloud
environment. Since we would need to access these machines from the outside
world, we assign each machine a public IP. Then, to make our machines ready to
act as nodes in the Kubernetes cluster, we need to apply some prerequisites on all
the nodes. This procedure starts with setting a unique hostname for each node and
also adding IPs and corresponding hostname of each node to the other ones. Next
step is to open specific ports on the nodes. To do so, we need to add rules to the
established firewall system. The list of ports, which must be opened, is different
for master and worker nodes. As the other requirements, the swap memory for all
Linux machines must be disabled. Moreover, since we are using CentOS operating
system, the SELinux, which is active by default, must be disabled.

After making sure of applying these perquisite on all nodes, is the time for in-
stalling a container runtime, which for Kubernetes is Docker by default. Docker
version 18.09, which is the most stable version compatible with Kubernetes at the
time of writing this thesis, is chosen and installed on all machines. Finally, we
install Kubernetes on all machines. This includes installing three different tools in-
cluding Kubeadm, Kubelet, and Kubectl [90]. Kubeadm is the tool, which allows
us to bootstrap a cluster in the master node and to join the created cluster in the
worker nodes. Kubelet, which is described in Section 2.8.3 and introduced as one
of the important processes being run on each worker node, is used to start pods
and containers. Kubelet runs on all nodes of the cluster. Lastly, Kubectl is the
command-line tool for users to interact with the Kubernetes cluster. These tools
should have the same version to prevent any version skew occurring.

3.3.2 Master Node Installation

Upon having Kubeadm installed on all nodes, we can initialize our control-plane
node. Before explaining the initialization process for control-plane, we will explain
some prerequisite concepts as follows:

• Cluster Networking

36

Based on the networking model in Kubernetes, each pod gets a unique IP.
This way, pods on one node can communicate with all pods on the other
nodes. Since IPs are assigned to pods, all containers within a pod share the
same IP and communicate with each other using localhost. In Kubernetes,
this is called the ’IP-per-pod model’ [91]. Kubernetes does not provide a
default network implementation. Instead, it only defines the model and other
tools must be used for the implementation. There are multiple ways to imple-
ment such a networking model for Kubernetes. These solutions are offered
by external network plugins and interfaces, also known as network add-ons.
The Kubernetes Add-ons are described next.

• Kubernetes Add-ons

In general, add-ons are used to extend the functionality of Kubernetes [92].
Different add-ons are served for different purposes. Network plugins such as
Flannel or Calcio, DNS service managers such as coreDNS, and Kubernetes
Dashboard, which is Kubernetes UI, all are examples of Kubernetes add-ons.
While installing some of these add-ons is a must to run a Kubernetes cluster
properly, there are several optional ones that provide additional services. In-
stalling a network add-on is one of the required steps in the Kubernetes setup.
There is a long list of such add-ons listed in [92] and we choose Flannel for
our work.

• Flannel

Flannel creates a virtual network, which runs over the host network, and is
called an overlay network. This network is responsible to assign unique IPs
to the pods. It does this running a small agent called ’flanned’ on each host
node. This agent allocates a unique IP subnet (by default /24) to each node
from a larger address space. Then, all pods within a node use an IP from this
range. Using these IPs, pods can communicate with each other in a cluster.
To explain this further, we can refer to Figure 3.5, which shows the over-
lay network architecture and IPs assigned. All our VMs are created in the
network subnet 192.168.1.0/24 and they have been assigned IPs within this
range. Flannel overlay network has a default subnet range (10.244.0.0/16),
which must be stated while initiating the control-plane. From this large sub-
net, flannel assigns another smaller subnet to each host node. As it can be
seen in the Figure 3.5, master node is assigned with subnet 10.244.0.0/32,
worker node 1 is assigned with 10.244.1.0/32 and worker node 2 has the
subnet 10.244.2.0/32. Next, each pod within a node will be allocated with
a unique IP from its host node’s IP subnet. The containers within one host
node can communicate with each other using the docker bridge docker0.
Moreover, flannel’s architecture makes the cross-node pod-to-pod commu-
nications possible. This means that pod 1 with IP 10.244.0.1 can see pod 6
with IP 10.244.2.2 through this overlay network.

37

Figure 3.5: The overlay network architecture in Flannel.

• DNS manager - CoreDNS

Service discovery is the process of automatically detecting available services
on a network. Kubernetes has a built-in DNS service that will be launched
automatically by the add-on manager. This internal service discovery is one
of the main motivations that we chose Kubernetes for the deployment of our
system. It will let us connect micro-services of our system by names instead
of IPs.

As of Kubernetes version 1.12, CoreDNS is the default DNS server being
used with kubeadm. CoreDNS is one of the Kubernetes add-ons that monit-
ors the Kubernetes API and automatically creates DNS records for any new
services. Services are the objects that get a DNS name in a Kubernetes
cluster. This enables service discovery across a cluster and pods are able to
perform name resolution automatically for all services. According to this
definition, we need to deploy each of our components as a service in the
Kubernetes cluster. This way, all services across a cluster can reach each
other by name, and it does not matter on which host node they are located.

To initiate cluster on the master node we issue the ’kubeadm init’ command.
Since we aim to use flannel add-on as the cluster networking, we define the subnet
that flannel must use to create its virtual overlay network, which is 10.244.0.0/16,
while defining ’–pod-network-cidr’ parameter.

This will bring up all components of a master node, described in Section 2.8.2,
including etcd, apiservice, controller-manager, kube-proxy, kube-scheduler and
coreDNS. However, CoreDNS will not start up before we install a network add-
on. Hence, the next step is to install flannel applying its specific configuration
file on our cluster. After this, listing pods in the cluster, we should see all these

38

modules are up and running.

3.3.3 Worker Node Installation

While the master node is the control-plane that manages all interactions of a Kuber-
netes cluster, worker nodes are where the workloads such as containers, pods, and
services run. Now that we have our cluster with a master node ready, we must
add worker nodes to the cluster. Upon initialization, the master node issues a join
command. Running this command in our worker nodes will add them to the cluster.

After running this command on all the worker nodes, we can see all nodes are in
the ’ready’ state.

3.4 Deployment and Service Definitions

Now that we have our cluster ready and all nodes are up and running, it is the time
to deploy our system on top of the Kubernetes cluster. First, we need to define a
pod per component. However, instead of defining pods directly, as it is suggested
by Kubernetes documentations [93], we use Deployments. Using deployments,
we can describe the desired states, such as scaling, for a pod and the deployment
controller takes care of applying it.

Next, we need to define each component of our system as a service so that we can
benefit from the internal DNS service of Kubernetes. This way, Kubernetes will
automatically implement the service discovery that is required in the micro-service
architecture of our system. Moreover, through exposing services to the external
world, we will give access to the end-users to the corresponding UIs of the system.

The details for the definition of services and deployments for each component
of the system are described as follows.

3.4.1 Common Fields in the Deployment and Service Definition

The creation of different Kubernetes objects, such as deployments and services,
is done by Kubernetes API. The request body that is sent to the API, must have
a JSON including all the required information for creating an object. However,
we do not use the API directly. Instead, we provide the information in a YAML
file and use the kubectl tool to deploy objects. Kubectl converts the information
described in the YAML file to the JSON format and makes the API request.

The YAML file for defining Kubernetes objects includes several required para-
meters. Generally, the file starts with ’apiVersion’, which defines the Kubernetes
API version that we use to create the object. ’kind’ refers to the object type that
we aim to create such as Deployment, Service, Job, pod or else. Then, a name will
be given to the object using the ’metadata’. We have named all deployment ob-
jects with a ’-dep’ suffix and all service objects with a ’-svc’ suffix after their main
names. For example, we use ’zookeeper-dep’ and ’zookeeper-svc’ in the YAML
file definitions.

39

Finally, the ’spec’ illustrates the building components of the object. The precise
format of it, is different for various Kubernetes objects. This format is explained
in detail for deployment and a service object separately in the following sections.

3.4.2 Deployment Definition

The ’spec’ definition for a deployment object includes categories such as ’replicas’,
’selector’ and ’template’. Explanation of each and what we have set for our De-
ployments are discussed as follows.

• spec.replicas Using this parameter, a Deployment controller allows us to
specify the number of replicas (pods) that should always exist in the cluster.
We give the value of ’1’ to it in all our deployments.

• spec.selector Using selector, the deployment finds the Pods that it has to
manage. A label will be assigned to the Pods. Assigning the corresponding
label using ’matchLabels’, we let the deployment to find its related Pods.

• spec.template It has two sub-categories:

– metadata Using ’metadata’, we label Pods with ’metadata.labels’. In
our work, we label all Pods in the format: ’app:name’. For example,
in case of ’Zookeeper’, we have ’app:zookeeper’ under the field ’tem-
plate.metadata.labels’.

– spec The template’s specifications will be defined under this parameter.
Spec might include different sub-categories itself. Among them, ’spec.
containers’ and ’spec.nodeSelector’ are defined for all of our deploy-
ments. The ’spec.imagePullSecrets’ parameter is required to be defined
for those, which do not use a public container image.

∗ containers
name of the container, the image that it needs to use, correspond-
ing ports that should be exposed to the container and environ-
mental variables are among the information that will be provided
under this field. However, specifying the ports that should be ex-
posed is informative and not specifying a port here does not pre-
vent that port from being exposed.
For Zookeeper and Kafka, there are pre-built and public Docker
images that we use in our project. Among the available images, we
chose ’digitalwonderland/zookeeper’ and ’wurstmeister/kafka’.
Some important environment variables that should be mentioned
in the ‘kafka-dep’ includes KAFKA ADVERTISED HOST NAME
and KAFKA ZOOKEEPER CONNECT. As the value for the former,
we give name of Kafka service object and the latter should be spe-
cified with the name of Zookeeper service object and its used port

40

in the form Service name:Port. This is where we avoide specifying
IPs and instead, we use name of services. Kubernetes CoreDNS
will take care of resolving the corresponding IPs for these names.
For the rest of micro-services, information under this field are spe-
cified with name of corresponding images that we previously have
built and ports that they use. It is worth mentioning that docker im-
ages of Dashboard, Coordinator, DataFetcher and DataHub com-
ponents are re-built and are different from the ones that we used for
running the system locally with Docker. This is because, all IPs
are removed from the corresponding configuration files and are
replaced with name of Kubernetes services. This eliminates the
repetitive phase of changing IPs and re-building images according
to the different deployment infrastructures.

∗ nodeSelector
spec.nodeSelector specifies a map of key-value pairs. By using
it, we constraint running of our Pods to a specific node within
the cluster. If we are not aiming for such a constraining, we do
not need to specify this parameter at all. Then, Kubernetes will
automatically take the responsibility of distributing Pods to the
nodes based on their workload.
Before using this nodeSelector, we should make sure that nodes
are assigned a key-value pair as their labels. In Section 3.2.2, we
defined the required architecture for our Kubernetes cluster and to
follow it, we need to constraint each of our Deployments (Pods) to
its corresponding node. As explained before, Zookeeper, Kafka,
Coordinator and Dashboard must be run on the ’Worker Node 1’.
Data Fetcher on ’Worker Node 2’ and Data Hub on ’Worker Node
3’. Hence, as an example, the field ’spec.nodeSelector’ for the
Dashboard Deployment that has to be run on the ’Worker Node 1’
is defined as: ’dedicated:worker1’. The same procedure is taken
for the other Deployments corresponding to the architecture.

∗ imagePullSecrets
Kubernetes will automatically pull the specified image if it is pub-
lic. This works for Zookeeper and Kafka, but as mentioned in Sec-
tion 3.1.2, for the rest of our components we use private Docker
images.
To let Kubernetes access our private Docker registry, we need
to create a ’secret’ for Kubernetes based on the registry’s login
credentials. Using the ’spec.imagePullSecrets’, we define such a
secret in the Deployment definition for the corresponding image.

41

3.4.3 Service Definition and Exposing Services

Defining deployments, Pods can be created and destroyed dynamically. This causes
Pods to be changed frequently and hence, they will be assigned different IPs every
time. This way, the Pods cannot keep track of each other and provide functionality
to the other Pods. To overcome this issue, we use Services in Kubernetes. A
Service is an abstraction that defines a set of Pods and a policy that they can be
accessed through. As explained in Section 3.3.2, using an add-on, which currently
is CoreDNS, Kubernetes setups a DNS service for the service discovery purpose.
This way, Kubernetes implements an internal service discovery mechanism. The
Kubernetes cluster monitors Kubernetes API for new services and creates a set of
DNS records for each of newly created services. Each service will be assigned a
unique IP address and a DNS host name. Moreover, an internal load balancer on top
of a service will take care of load balancing traffic to the service’s corresponding
Pods.

A service definition starts with ’apiVersion’, ’kind’ and ’metadata’, which are
explained as the common parameters for all object’s definitions before. Hence,
we go straight to the ’spec’ definition. The ’spec’ for a service object includes
categories such as ’selector’, ’ports’, ’type’, and ’externalTrafficPolicy’ and each is
discussed as follows.

• spec.selector Assigning a key-value pair as the label of pods, this field spe-
cifies set of Pods that the service should target. Then, a continuous scan
will be done by the service selector controller to find those Pods, which
their label matches this definition. Upon finding such matches, the control-
ler POSTs the recent updates to them. As an example the ’spec.selector’ for
the Zookeeper Service is defined as ’app:zookeeper’. The same procedure is
followed for all other service objects.

• spec.ports Specifying a port or ports, we can expose the service internally
within the cluster on such port(s). In other words, the service becomes visible
on this port for the other services. Hence, the requests that are sent to this
specific port, will be forwarded to the pods that are selected by the service.

Furthermore, there are services that work with more than one port and are
called ’Multi-port Services’. In our system, Dashboard service is of this
type and we need to expose more than one port for it. Each ports defini-
tion includes some sub-categories such as ’ports.name’, ’ports.protocol’ and
finally ’ports.port’. We can assign any name to the port and the used pro-
tocol such as TCP or HTTP will be defined under ’ports.protocol’. Some of
our micro-services do not expose any port publicly, such as Coordinator and
Data Fetcher. In the service definition of such components, we do not need
to define any port.

• spec.type Service type specifies how we aim to publish each service. Some

42

of our services only need to communicate with the other services, while
some of the services should be exposed to an external IP and be accessible
from outside of the cluster. According to the publishing approach, we have
to define the service type. Possible types are explained as below:

– ClusterIP Using ClusterIP, we can expose a service on an internal IP
within the cluster. In other words, we do not give any external access
to the service and it will be accessible only from within the cluster. If
we do not specify any service type, the service will be assigned with
the ’ClusterIP’ type by default. For Zookeeper and Kafka, we do not
define any type and they will be assigned a ’ClusterIP’ service type by
default. This is because we do not need any external access to these
services from outside of the cluster.

– Headless Services Defining a service, Kubernetes assigns an internal
IP address to it by default. Then, through this IP, the service will proxy
and load-balance the requests to the service’s Pods. To define a ’Head-
less’ service, we assign value of ’None’ to this IP address, defined by
’ClusterIP’ service type. This way, it tells Kubernetes that this ser-
vice does not need proxying or load balancing over Pods. Instead, it is
enough that Kubernetes just route traffic to the first available Pod.
Two of the micro-services, namely Coordinator and Data Fetcher, do
not use any port and we cannot define any port in their service defin-
ition. To define services for such modules we need to define them as
’Headless’ services.

– NodePort Finally, we have the NodePort as a service type that allows
us to expose our service on an external IP for accessing from outside of
the cluster. NodePort exposes the service on the Public IP of all nodes
and a static port that is specified in the service definition. To specify
such port, we need to define an extra parameter under ‘spec.ports’ that
is named ’nodePort’. Hence, such a service will be exposed externally
over the address: NodeIP: NodePort.
Two of our micro-services namely Dashboard and Data Hub, which
have their corresponding UIs and are required to be exposed externally,
are defined from this type. For a service from this type, if we do not
define the ’spec.ports.nodePort’, Kubernetes automatically assigns a
port that the service can be exposed to it. However, the assigned port
would be different in each run time of the service. Since we aim to
give access to these services to the end-user, it is reasonable to define
the ports ourselves.
The default port range that Kubernetes has defined for this purpose
is between ’30000 – 32767’. According to this, we had a challenge
for our use-case. A specific port is hard-coded in the definition of the

43

Dashboard UI’s front-end code and for that reason, we need to expose
the Dashbord service on the same port that is used in the code. To solve
the problem, we have changed the Kubernetes’s default port range for
NodePort. After applying this change, we are able to expose the Dash-
board and Data Hub services on their specific ports.

– LoadBalancer NodePort is mostly used as the service exposure solu-
tion when Kubernetes cluster is built on-premise. Using loadBalancer
service type is another possible option if we deploy the Kubernetes
cluster on top of a public cloud provider’s infrastructure, which sup-
ports external load balancers. Defining a service from the type of load-
Balancer, Kubernetes sends a request to the cloud provider to provision
a network loadBalancer for the service. Upon receiving the request, the
cloud provider automatically deploys a load balancer to route traffic to
the service ports and return that information to Kubernetes. The load-
Balancer has an external IP that can be provided to users to access the
services. However, a separate loadBalancer is required for exposing
each new service. Hence, scaling can inversely affect the cloud bill.
A loadBalancer can also be supported by private clouds, such as Open-
Stack. However, activating a loadBalancer on OpenStack requires more
configurations and settings since a loadBalancer would not be assigned
by the cloud provider automatically.

Figure 3.6: Using Ingress for exposing services in Kubernetes [94].

– Ingress We can also use Ingress for exposing services. However, this
is not a service type. Ingress is an API object in Kubernetes that routes

44

HTTP and HTTPS traffic from outside of the cluster to the services
within the cluster. The traffic routing can be managed by defining
traffic rules on the Ingress resource [95]. In other words, Ingress is
a single entry-point to the cluster and acts as a reverse proxy. Figure
3.6 illustrates the relation of an Ingress with a Kubernetes cluster.
An ’Ingress Controller’ is required to satisfy an Ingress in Kubernetes.
One of the possible options is to use NGINX Ingress Controller. The
main function of Ingress is to route requests and provide externally-
reachable URLs for services. However, other functionalities can be
served behind an Ingress, such as load balancing traffic or handling
SSL/TLS termination.

• spec.externalTrafficPolicy After going through the explained procedure for
publishing our services externally, we still have another challenge. As ex-
plained in the previous section, the NodePort exposes our service on the
public IP of all nodes of the cluster and the defined port. In other words, to
access either of Dashboard or Data Hub services, we use any of the node’s
IPs.

Figure 3.7: General overview of exposing services.

However, this is not exactly what we are aiming for. According to the defin-
itions of micro-services of our system in Section 2.4.2, the Dashboard is a
UI for monitoring state of the system including all micro-services and the
data that is transferring among producers and consumers. Hence, access to
this service should only be given to the company X in the described use-case
(The company that we aim to deploy the system there and owns the data
sources). This is while the UI for the Data Hub service is designed for con-

45

sumers of data, meaning the company Y in the described use-case. There-
fore, we need to expose these services in a way that each is reachable on a
specific IP and port. As a solution, we define the ’spec.externalTrafficPolicy’
field in the service definition of these two services and assign ’Local’ as its
value. Assigning such value, Kubernetes only proxies requests to the local
endpoints and never forwards traffic to the other nodes of the cluster. This
way, Kubernetes preserves the client’s original source IP address.

Finally, the end-user in company X would be able to access the Dashboard
service on the ’Worker Node 1’s IP:Port’. Also, the end-user in company Y
has access to the Data Hub service on the ’Worker Node 3’s IP:Port’ using a
VPN to the company X’s internal network. Figure 3.7 shows an overview of
our approach for exposing Dashboard and Data Hub services externally.

3.5 Kubernetes Dashboard

Kubernetes has a web-based UI, called Dashboard. In general, we use it to get an
overview of running applications on the cluster. It provides a visual perspective
of the cluster, its nodes and all deployed services and containerized applications.
Moreover, we can monitor the resource usages by different components of the sys-
tem and troubleshoot possible problems. It is also possible to scale deployment or
initiate the rolling updates through Dashboard.

While creating a Kubernetes cluster, Dashboard is not initiated automatically.
We deploy it separately applying its specific configuration file on our cluster.

The usual way to access Dashboard, is to use kubectl command-line tool and
running command ’kubectl proxy’. This gives us access to the Dashboard UI on
the localhost. However, since we are using CentOS in our host machines, we
cannot see the UI locally and we need to expose the Dashboard service externally.
Exposing a service, as will be explained later, will give us access to that service
externally from outside of the Kubernetes cluster. To do so, we edit ’Kubernetes-
Dashboard Service’ to use ’NodePoet’ instead of ’ClusterIP’. This will expose the
Dashboard service to one of the cluster nodes’ IPs and a specific port. Hence,
we check to see on which node Dashboard is running. Then, we also checklist of
available services to find the port that this service is exposed on. Finally, we can
access Dashboard using this IP:PORT. The UI of the Dashboard is shown in Figure
Figure 3.8.

By default, the Dashboard will be deployed with minimum user role privileges.
This is due to protecting cluster’s information. To find admin access to Dash-
board, we need to define a user with such permissions. We create the user using
the ’Service Account’ mechanism of Kubernetes. Upon initializing a cluster us-
ing kubeadm tool, the ’ClusterRole’ of ’admin-Role’ already exists in the cluster.
We only need to bind it to the user. So, to combine these two steps, we define
a YAML file to create a ClusterRoleBinding for our ServiceAccount. We name
this file ’dashboard-adminuser.yaml’ and apply it to our cluster. Currently, Kuber-

46

netes only supports login to the Dashboard via a Bearer Token. Issuing a specific
command in Kubernetes, we can create such a token for our created admin-user.

Figure 3.8: Overview of Kubernetes Dashboard.

47

48

Chapter 4

Test and Evaluation

In this chapter, the proposed solution, to deploy the IoT system using Kubernetes,
is evaluated based on different metrics. The focus for choosing metrics and design-
ing test scenarios is towards the deployment process. Hence, some sections include
measurements, while some are discussion-based and focus on show-casing advant-
ages of the used method for deployment.

The discussed metrics include performance both in the runtime and the cost ef-
ficiency, lifecycle management including system updates and fault-tolerance of the
system, resource management and scalability of the solution. Moreover, a com-
parison with the previous deployment solution (where Kubernetes is not used, and
each micro-service is run in a separate VM) is conducted for some of the discussed
parameters.

4.1 Experimental Setup

The experimental setup for the proposed proof-of-concept is explained in this sec-
tion. The deployed Kubernetes cluster includes one master node and three worker
nodes. The VMs, which are hosted for the Kubernetes cluster, are created on top
of Nokia’s private cloud.

Kubernetes version 1.14.3, Docker version 18.09 and Docker-compose version
1.24.0, as the most stable versions at the time of writing this thesis, are installed on
all four machines.

VM Name OS Hardware Characteristics HostName IP
CPU RAM DISK Private Public

Master
Node

CentOS
7.6.1810. x86-64 2 6 GiB 32

GiB k8s-master 192.168.1.20 10.164.101.20

Worker
Node 1

CentOS
7.6.1810. x86-64 2 6 GiB 32

GiB k8s-worker1 192.168.1.21 10.164.101.21

Worker
Node 2

CentOS
7.6.1810. x86-64 2 6 GiB 32

GiB k8s-worker2 192.168.1.22 10.164.101.22

Worker
Node 3

CentOS
7.6.1810. x86-64 2 6 GiB 32

GiB k8s-worker3 192.168.1.23 10.164.101.23

Table 4.1: Hardware components used in the proposed architecture.

49

Table 4.1 illustrates the hardware characteristics of each VM and its public and
private IPs. (To preserve privacy of the company, real IPs are replaced with ex-
ample ones.)

4.2 Performance Analysis

The performance of the proposed deployment solution is evaluated based on two
metrics: The time, which it takes to issue a subscription in the Pub/Sub IoT system
and the cost management for the deployment approach. In both cases, we have
compared the results with the previous deployment solution, where Kubernetes is
not used. The conditions for each test case are discussed in detail in the following
sub-sections.

4.2.1 Runtime Speed

The time that it takes to issue and accomplish a subscription is measured in the
current and the previous deployment solution. By the previous deployment solu-
tion, we mean where containerization and Kubernetes, as the orchestration tool, are
not used, and we simply run the corresponding ‘Jar file’ of each micro-service in a
separate VM. According to the behavior of the system, before the actual data trans-
mission, consumers must subscribe to the data that they are interested in. More
precisely, Data Hub service acts as a data catalog for consumers where they can
see the available data and issue subscription. Upon issuing a subscription, there
would be some message communications between Data Hub, Coordinator, Kafka
and Data Fetcher.

Currently, we are provided with data from two different data sources. We have
repeated the subscription for both data sources and repeated the test five times for
each. The results are calculated as the average of these tests.

State Average Subscription Time (S)
Previous Deployment Setup 19.2
Current Deployment Setup 9.8

Table 4.2: Runtime Comparison between the previous and current deployment
setup.

Results show an average of 19.2 seconds as the time that takes for completing
a subscription in the previous deployment solution. Using the proposed deploy-
ment solution, this time has reached 9.8 seconds on average. The acquired results
are presented in Table 4.2. We can interpret such a decrease (about 9.4 seconds)
as a result of the designed architecture in the two solutions. In the previous ap-
proach, each micro-service is running in a separate VM. Hence, all traffic and
communications between them are external. This is while, we have three of these
micro-services namely Dashboard, Coordinator, and Data Switch resided on the

50

same VM in the proposed solution. This eliminates part of the external traffic since
communications among these three services are local. Finally, it results in faster
response time for a subscription accomplishment.

4.2.2 Cost Efficiency

One of the important factors for a deployment solution is its overall cost require-
ments. Ultimately, we aim to deploy such a system for different customers, and
the cost-efficiency of the proposed solution becomes notable. Especially when it
comes to scaling the system, for instance with more Data Hub services. Consider-
ing the technical requirements, we have calculated the overall cost for the proposed
deployment approach. Also, a comparison with the previous solution is presented
in case of cost management.

Azure cloud is considered as the provider of the required infrastructure for de-
ploying such a system. The minimum hardware requirements for setting up Kuber-
netes on a VM includes 2 cores CPU and 2 GB RAM [96]. Hence, we need to
choose machine instances that at least have these characteristics. The smallest unit
that provides our demand in Azure cloud is the ‘B2S’ instance that has 2 cores CPU
and 4 GB RAM. As explained in Section 3.2.2, for the proposed solution we would
need four machines, where one is specifically for the master node of the cluster
and three other machines acting as the worker nodes to host our micro-services.
Among the worker node machines, one is for hosting Data Fetcher service, one
for Data Hub service, and the last one will include Zookeeper, Kafka, Coordinator,
and Dashboard services.

If we consider the previous deployment solution, we would need five machines,
where each includes one of the micro-services (Kafka and Zookeeper reside in the
same machine). If we go further, we have suggested a better way of exposing
services in Kubernetes in the future works, Section 5.2. Using that approach, we
would not need an additional VM for the Data Hub service and hence, only three
VMs would be enough. The monthly cost for maintaining machines using these
three different approaches is presented in Table 4.3.

Solution Number of Instance Type Monthly Price ($)
Instances

Current Solution 5 B2S 164.25
(2 Cores, 4 GB RAM)

Proposed Solution 4 B2S 131.40
with NodePort (2 Cores, 4 GB RAM)
Future Work 3 B2S 98.55
with Ingress (2 Cores, 4 GB RAM)

Table 4.3: Deployment cost in the proposed solution with Kubernetes [97].

According to Table 4.3, the price difference for the previous and current de-
ployment approaches is 32.85 $ in a month. Comparing the previous approach

51

and possible edition of the current solution as the future work, even shows more
difference, about 65.7 $ in a month. This price difference might seem negligible.
However, if we think of the scalability of the solution, where we would need to
have more Data Hub services, the difference becomes significant.

Node Instance Type Monthly Price ($)
Master B2S 98.55

(2 Cores, 4 GB RAM)
Worker Hosting Data Fetcher B2S 98.55

(2 Cores, 4 GB RAM)
Worker Hosting the Rest B4MS 132.86

(4 Cores, 16 GB RAM)

Table 4.4: Monthly price for a scalable solution using Kubernetes and Ingress [97].

As discussed in the implementation chapter, Section 3.4.3, in this thesis work,
we exposed the Data Hub service externally using NodePort. Because of that, we
need one VM per Data Hub service. However, in future work, Section 5.2, we
discuss a better way of exposing services using Ingress. Doing so, we can deploy
multiple Data Hub services on only one VM. In other words, we can deploy the
whole of the services, except Data Fetcher, all in one node. This eliminates the need
for purchasing lots of VMs and has a huge impact on cost management. However,
we would need a VM with more computation and I/O power to host all services.
For this reason, an instance of type ‘B4MS’ with 4 cores CPU and 16 GB RAM
is chosen. For the rest of the machines, we have chosen the same type as before,
B2S. It results in 329.96 $ in total as the monthly cost for this scenario. The
corresponding details are shown in Table 4.4. We have calculated the total prices
considering these three while scaling the number of Data Hub services. The results
are shown in Figure 4.1. The figure also gives an overview of the total impact of
this scenario on the cost management. It is visible that a deployment solution with
Kubernetes in future works, where Ingress is used for exposing services, supports
both scalability and managing costs.

4.3 Life-cycle Management

To design a suitable deployment procedure, we should consider life-cycle of the
system, instead of focusing only on the first-time required actions. To this goal,
in this section, we study two metrics having an impact on the system’s manage-
ment during different phases of development. First, we investigate how the deploy-
ment approach is flexible with system updates. This is especially important for the
CI/CD workflow. Next, fault tolerance of the system is studied in two levels, for
Pod and Node failures. To do these test-studies we have considered Kubernetes
specifications since it is used for the deployment.

52

Figure 4.1: Price Comparison for Different Deployment Solutions .

4.3.1 System Updates

We deploy the system for any customer once. After that, the system might have
different updates and releases. This is highly possible especially since the system is
developed based on the micro-service architecture. Hence, any of the services can
be changed and there should be a possibility for a quick update based on the latest
releases. Kubernetes will give us such a possibility to update our micro-services
smoothly without disturbing a system that is already running. The latest Docker
image of each micro-service will be stored in the private Docker registry of the
project.

In Kubernetes, the updating procedure is done with ‘Rolling Updates’. We can
define new images in the ‘Deployment’ definition. Kubernetes, using ‘Rolling Up-
dates’, incrementally updates the running Pods instances with the new ones based
on the image version that is mentioned recently. This way deployments would
be updated with zero downtime while has no effect on the system’s availability.
Moreover, it is totally possible that deployments be reverted to their previous ver-
sions and this is called ‘Rollback’ in the Kubernetes terminology. We have tested
the rolling updates to different versions and rolling back to the previous ones for
all the micro-services. The average time that takes the new Pod corresponding for
the updated service be created is around 4.4 seconds that is reasonable. As a result,
we can make sure that the CI/CD workflow of the system could be done very fast
and with zero downtime.

4.3.2 Failure Recovery

A failure, for an intentional or unintentional reason, may happen any time after
deploying the system. Hence, monitoring the state of running services and corres-

53

ponding containers is one of the tasks that should be supported by the deployment
method. Moreover, a fast-enough mechanism for recovery of the failed compon-
ents is required. Kubernetes, as a container orchestration tool, supports monitoring
health of containers. Moreover, it provides mechanisms for their recovery.

Failure recovery in Kubernetes is supported in the Pod level, and each Pod usu-
ally contains one or more containers. However, Pods are not resilient to machine
failures by themselves and we use controllers to make them resilient. Pods, after
creation, do not disappear unless they are destroyed, or an involuntary disruption
happen. An involuntary disruption includes any kind of unavoidable hardware or
software error. For instance, the Pod or the node (that pod is running on) could
be deleted by mistake by the cluster administrator, or there might be a hardware
failure in the machines. Even, the node might disappear from the cluster due to a
cluster network problem.

To observe the effect of such disruptions on our scenario, the following test cases
are designed. Details of the tests and results of the failure recovery, provided by
Kubernetes, are discussed as follows.

• Pod Failure

In Kubernetes, Pods are not resilient to machine failures, but controllers,
such as deployment, are [98]. Deployment provides declarative updates for
Pods. Hence, in case of a pod-failure, deployment kills those pods that do not
respond and instead, it re-creates and restarts another corresponding Pod and
container that is defined by the deployment definition. To benefit from the
self-healing and failure recovery characteristics of Kubernetes, which can be
provided by the controller objects, we have used deployments. So, as men-
tioned in Section 3.4.2, to create corresponding container of each component
in the system, we define ‘Deployments’ instead of defining a Pod directly.
To make sure that such a failure recovery mechanism is present in our im-

Failed Pod Average Recovery Time (S)
Zookeeper 2.6

Kafka 2.4
Dashboard 3

Coordinator 2.8
Data Fetcher 2.4

Data Hub 3
Whole of the System 50.6

Table 4.5: Average recovery time for the failed pods.

plementation and to see the effect of it on the system, we simulated failures
by removing them on intention. First, for each component and then, for the
whole of the system together. In both cases, we measured the time that takes
for pods to be recovered. The simulated failures are repeated five times each

54

and results can be seen in Table 4.5. A delay between 2 to 3 seconds was the
usual case for recovering one single pod corresponding to one of the com-
ponents. Also, removing pods, corresponding for all components, together
at the same time, resulted in 50.6 seconds on average for the whole system
to be up and running again. This means that if in the worst case, whole of
the pods fail together, then the time that takes for the whole system to be
recovered is close to one minute.

• Node Failure

In Kubernetes, failure of a worker node to respond to the master node is
defined as the node failure. This would happen due to network failure, often
called a network partition [73]. The Pods that run on a node, will fail due to
node failure.

In Kubernetes, the controller manager is responsible for monitoring the state
of the nodes in the cluster. There are a few default metrics, which are con-
figurable, and have a role in determining the state of the nodes. First, based
on the ‘–node-monitor-period’ parameter, each worker node must respond
to the master node every 5 seconds, which is the default time. Then, if the
worker node fails to respond for a period of 40 seconds (it is defined by the ‘–
node-monitor-grace-period’ parameter as the default value), its state would
be marked as ‘Unknown’. The last effective parameter is ‘–pod-eviction-
timeout’ and is defined as 5 minutes by default. After this time, all Pods that
were running on this node would be deleted. After that, the scheduler will
re-assign them to another available node in the cluster that has the required
resources and is accordance with the specifications of the Pod. To observe
the effect of node failure on our scenario, we simulated failing one of the
worker nodes by shutting down its corresponding instance. To do so, we
chose the ‘Worker Node 2’ that hosts the Data Fetcher Pod.

Figure 4.2: Timeline of Pod life-cycle in case of node failure.

In Kubernetes, by default, any worker node that has the required resources
can host any running pod. However, as discussed in Section 3.4.2, to serve
the goals of our specific use-case, we have labeled each worker node. Then,
the deployments are constrained to be run on specific nodes using these la-

55

bels. Hence, to let the node recovery happen, we have created another VM,
joined it to our cluster and called it ‘Worker Node 4’. Then, the ‘Worker
Node 2’ and ‘Worker Node 4’ were attached with similar labels. We shut
downed the ‘Worker Node 2’. Initially, we did not notice any changes and
watching the list of running Pods, they all appeared to be running fine. After
about 40 seconds the state of ‘Worker Node 2’ was shown as ’NotReady’.
Finally, it took five minutes until we notice the corresponding Pod failed and
another one was created in 2 seconds on the ‘Worker Node 4’. The observed
life-cycle of node failure are shown in Figure 4.2.

4.4 Resource Management

Upon deploying a system, resource usage is one of the important metrics that can
be monitored and measured. Such information gives us deep insights into how
the system behaves. Having a real-time view of resource usage, we can prevent
errors related to the insufficient resources. Hence, such monitoring is crucial for
providing a reliable service and helps for scaling the system. Moreover, we would
be able to optimize the resource consumptions and control corresponding costs.

In the current version of Kubernetes, the resource usage metrics, such as CPU
and memory usage, are available through the Metrics API [99]. This API provides
information about the resources that are currently used by a Pod or a node. How-
ever, such metrics are stored in memory and are not accessible for a long time
period. The Metrics API would be available if the ‘Metric Server’ is deployed in
the cluster. In Kubernetes, the ‘Metric Server’ [100] is a cluster level component
that gets these metrics from all Kubernetes nodes via Kubelet through the Summary
API. Later, the metrics will be aggregated and stored in memory. Finally, they will
be served in the Metrics API format. To use the ‘Metric Server’, we deployed in
our cluster separately. Results that are observed through this tool is shown and
discussed as follows.

4.4.1 Resource Consumption

In Kubernetes, it is possible to monitor resource consumptions for each of the
micro-services. This monitoring helps us to understand how the system performs
on top of Kubernetes. It also allows us to prepare the proper hardware requirements
for a real-world scenario. For instance, monitoring nodes of the cluster, we observe
that one of the worker nodes has a higher resource consumption than the basic
requirements for a costume node in a Kubernetes cluster. This becomes important
especially when we aim to choose the right hardware resources.

We have observed and recorded amount of CPU and memory usage of cluster
nodes in the different phases of a runtime. This includes three stages: Before
deploying the system in the cluster, upon deployment and after issuing multiple
subscriptions on the running system. Results are shown in Table 4.6. The values are
calculated based on the maximum amount that is observed in each phase. Amount

56

Node
CPU (%) Memory (MB)

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3
Master 4 6 4 1689 1693 1714

Worker 1 1 99 7 789 2057 2100
Worker 2 1 91 27 567 1276 1931
Worker 3 1 71 7 594 1224 1629

Table 4.6: Resource usage in three stages of a runtime for different nodes.
Stage 1: Before deploying the system in the cluster; Stage 2: Upon deployment;

Stage 3: After issuing multiple subscriptions on the running system.

of the used CPU is based on the percentage, while memory usage is shown in
Megabytes.

Based on the results, almost all worker nodes use most of their CPU power in
stage 2, when the system is deploying. This is especially the case in the ‘Worker
Node 1’ since it hosts most of the micro-services. Then, in the stage 3, while we
use the system to issue subscriptions, ‘Worker Node 3’ has the most CPU usage,
about 27 percent. This is reasonable since it hosts the main active component upon
issuing a subscription, meaning the Data Fetcher.

The amount of memory consumption upon deploying the system reaches over
to 2 GB in the ‘Worker Node 1’. According to this result, a VM with 2 GB RAM,
which is mentioned as the minimum requirements previously, is not enough for
this use-case and should be considered in a real-world setup. The memory usage
in ‘Worker Node 2’ and ‘Worker Node 3’ reaches to around 1276 at maximum.
Finally, upon using the system and issuing subscriptions, memory usage in the
‘Worker Node 1’ goes even higher and reaches to 2100 MB. In the ‘Worker Node
2’, this number reaches to 1931 MB, which is close to the limitation of 2 GB.
This observation on ‘Worker Node 2’ is important for our use-case. According to
Section 3.2.2, the ultimate aim in this use-case is to deploy the Data Fetcher module
on a gateway, instead of running it on a VM. The gateway that we are planning to
use in the future has capabilities of 2 cores CPU and 2 GB RAM. Hence, studying
the possibility of such a scenario has been one of the goals of this research study.

4.4.2 Resource Optimization

In practice, containers have no upper bound on their CPU and memory usage. They
can consume all the resources that are available on the node, where it is running
on. In case of memory, this might invoke the ‘Out of Memory (OOM)’ killer and
there is a possibility for the container to be killed. To avoid this, Kubernetes gives
us the possibility to manage the amount of resources that would be consumed by
containers. By configuring resource limits for the containers running on our cluster,
we avoid losing jobs. Moreover, this way, we can make efficient use of the available
resources on our cluster’s nodes. We define such resource constraints in the Pod
definition, with two sub-categories: ‘requests’ and ‘limits’. In ‘requests’, we define

57

a reasonable value for the memory and CPU requests of the Pod to be running
properly. Defining this value is a help for scheduling of Pods in the nodes with
appropriate available resources. Then, in the ‘limits’ field, we define the upper
bound that the Pod can use. Hence, the containers would not be allowed to use the
whole of available resources on the node.

We have defined such constraints for the Data Fetcher Pod. The constraints are
defined only on memory usage. The motivation behind this is the low capabil-
ities that the real device (for running Data Fetcher) has and is discussed before.
While the memory request is defined by 1000 MB, the memory limit is tested with
different values. Results show that defining the limit with a low value causes the
corresponding Pod to fail. Finally, with a limitation value of 1200 MB, the Data
Fetcher Pod was working properly. To make sure that the system works fine under
such resource constrains, multiple subscriptions were issued, and the runtime was
observed for different periods of time.

Observing the memory usage of Data Fetcher Pod, before defining any con-
straints, shows that the Pod can use up to 1555 MB, while the memory usage of
the ‘Worker Node 2’, which hosts this Pod, reaches to 2023 MB at latest. This
result is recorded under a system runtime pressure, where about 20 different sub-
scriptions are issued with a low free time in between. After defining the memory
limit for 1200 MB, the maximum memory usage in the Data Fetcher Pod reaches
to 1157 MB, while the memory usage in ‘Worker Node 2’ goes up to 1628 MB.
Hence, according to the results, we are able to constrain resources while the system
continues to work properly.

Memory usage By Before Defining After Defining
Resource Limitations Resource Limitations

(MB) (MB)
Data Fetcher Pod 1555 1157
Worker Node 2 2023 1628

Table 4.7: Memory usage before and after defining resource constraints.

4.5 Scalability

In this section, we have studied and evaluated how the used approach for deploy-
ing the IoT system is scalable. We have categorized the section into two general
sub-sections: ‘Scaling Pods’ and ‘Scaling Services’. In the former, the goal is
to analyze the scalability of individual components of the micro-service system,
while the latter concentrates on the whole solution to be used on a larger scale in
the future.

58

4.5.1 Scaling Pods

In Kubernetes, we can scale the individual Pods corresponding to different micro-
services independently. This would be beneficial in case one of the Pods in the
cluster has more user traffic and requires more resources. Hence, resources would
not be wasted on scaling all the micro-services together, while scaling only one of
them is needed. To test how the system reacts to such scaling we have used two
possible approaches. First, we have tried a manual scaling and results are provided.
Next, the auto-scaling as the other possible option in the Kubernetes is activated
and the requirements are discussed.

• Manual Scaling

The manual scaling is possible through updating number of replicas in a
controller definition, for instance in the Deployment definition in our case.
This way, the number of Pods will be increased to the new desired state.

After deploying the system in the cluster, we scaled out each individual Pod
from 1 replica to 2 replicas and the time that takes for them to be deployed
is recorded as an average of five times repetition of such test scenario. The
test was repeated for scaling from one to 5 replicas. Then, we also calculated
the time for scaling in each Pod from 2 and 5 replicas to one. Finally, we
have repeated these test cases for scaling out and scaling in the whole of the
system’s Pods together at one attempt. Results show that the time, which
takes for scaling in, is always less than the time that takes for scaling out a
Pod and this makes reasonable. However, based on our observations, this is
not the case for the ‘Zookeeper’ Pod. Scaling in of this Pod always take a
longer time than its scaling out. This also affects the scale in time for the
whole system as the ‘Zookeeper’ Pod scales in very slowly. Hence, while it
takes 38.8 seconds for the whole Pods to be scaled out to 5 replicas each, the
time for scaling in is 58 seconds, in contrast of our expectation. However, no
reason has found based on our studies for this but should be studied in the
future.

• Auto-Scaling

In addition to the manual scaling, Kubernetes provides an auto-scaling mechan-
ism by implementing a ‘Horizontal Pod Auto-Scaler (HPA)’. The HPA is imple-
mented as a Kubernetes API and a controller. The controller periodically checks
the number of replicas in a deployment (or other types of controller). Then, it ad-
justs this number in order to matches the observed CPU utilization with the target
that is specified by the user.

To let HPA access the resource metrics and work in Kubernetes, the ‘Metric
Server’ should be deployed on the cluster. For HPA to work in Kubernetes, it
needs to have access to the resource metrics such as CPU and RAM. As explained

59

Scaled Pod Scale Out Time Scale In Time Scale Out Time Scale In Time
For 1 to 2 For 2 to 1 For 1 to 5 For 5 to 1

Replicas (S) Replicas (S) Replicas (S) Replicas (S)
Zookeeper 4.6 30 15 35

Kafka 5.6 2.8 12.8 7.8
Dashboard 2.6 1.8 6.6 4.6

Coordinator 3.8 2.8 9.6 6.2
Data Fetcher 2.8 1.8 4.8 3.2

Data Hub 2.6 1.2 4.6 3.2
All together 26.2 34.2 38.8 58

Table 4.8: Average time for scaling out and scaling in the Pods.

in Section 4.4, to get the resource metrics in Kubernetes, the ‘Metric Server’ must
be deployed on our cluster.

We have set up a horizontal auto-scaler for one of the deployment objects (the
Data Fetcher), in our cluster. The aim is to see how such HPA acts in presence of
a high workload and if it starts to work automatically in practice. In the definition
of the HPA, we have defined the minimum number of Pods as one, and maximum
as three. The condition for starting the HPA is defined by the CPU usage to be
reached to 10 percentage.

Firstly, watching the amount of CPU usage by the corresponding Pod, we have
observed that the CPU usage went above the 10 percent but the HPA did not apply
and the number of Data Fetcher Pods stayed at one. Later, we have noticed for
the HPA to work, it is required that a CPU request be specified in the Deployment
definition. This way, we could observe that the number of Data Fetcher Pods were
scaled from one to three when the target CPU usage is met. The time that it took for
such a scaling was not more than 5 seconds in different repetitions of the test-case.

4.5.2 Scaling Services

Apart from the scalability of each individual component, the whole approach should
be applicable for the same described use-case scenario in a larger scale. In our scen-
ario, which is explained in Section 3.2.1, we aim to give access to such Pub/Sub
IoT system to a company, such as company X, and it would be the producer of data
and has access to the corresponding UI of the Dashboard service. This is while this
company should let its customer, such as company Y, access and consume this data.
To do so, the company Y should have access to the corresponding UI of the Data
Hub service. In Section 3.4.3, we have seen that this is a possible scenario while
we expose these two services using NodePort. To prevent access to both services
on the same IP, we have used a separate VM for hosting each. Hence, they have
their specific IP:PORT.

In a real-world scenario, the company that produce the data aims to give ac-

60

Figure 4.3: General architecture for an scalable scenario.

cess to more than one consumer. Hence, we must be able to expose more than
one Data Hub service instead of only one. Such scalability has evaluated in this
section. Currently, different Data Hub services are distinguished with an ID and
using that, they communicate with the whole system. Hence, to add the second
Data Hub service, first, we have created its corresponding Docker image. Then, a
‘Deployment’ and a ‘Service’ definition is created correspondingly. We have used
another VM for hosting the second Data Hub service. However, trying to expose
it on the same port, which we have used for the first Data Hub service, was not
successful. Later, we have noticed that when we assign a port to a service using
NodePort, Kubernetes opens that specified port on all the worker nodes within the
cluster. Therefore, we can only expose one service per port using NodePort.

Finally, we were able to expose the second Data Hub service on the ‘Worker
node 4’ using a different port. The architecture of such a case is shown in Figure
4.3. Having two Data Hub services, the system was working properly, and the
approach is scalable. However, a downside to the used method is that we must use
one VM per Data Hub and it makes the approach expensive. In future works, we
have discussed a better way of exposing service in Kubernetes that will eliminate
the need for the additional hardware equipment.

61

62

Chapter 5

Conclusion and Future Work

Mobile telecommunication technologies are rapidly evolving. The shift from 4G
to 5G is a big advancement that enables new ecosystems. Introducing a trade-
off between speed, latency and cost by 5G opens opportunities especially for IoT
scenarios. Hence, widespread adoption of 5G, as the enabler of IoT, makes it
possible for IoT scenarios to become more feasible.

One of such scenario is an IoT system based on the pub/Sub messaging archi-
tecture that is being developed in Nokia Bell Labs. The system aims to provide
efficient data transmission between data producers and consumers in an IoT eco-
system and is designed based on the micro-service architecture. Development of
the system is finalized, however, its deployment in the real-world scenarios has
some challenges and introduces some research questions.

In this chapter, we summarize the main conclusions of the research questions in
Section 5.1 and discuss some ideas for the future works in Section 5.2.

5.1 Conclusions

We present the conclusions according to the research questions that are presented
in Section 1.2.

• RQ1. How can we ease deployment of the Pub/Sub IoT system and eliminate
system’s limitations for a large-scale deployment?

In this thesis, we studied that containerization bundles an application and
its dependencies together in a self-contained unit. Hence, as an alternative
to running the corresponding Jar file of each micro-service directly on the
infrastructure, we containerized the Pub/Sub IoT system.

Furthermore, we studied whether the deployment of the Pub/Sub IoT system
using Kubernetes will provide a service discovery among the micro-services
of the system to ease its deployment. Kubernetes has an internal built-in
DNS service, named CoreDNS, that is applied on the ’Service’ level. ’Ser-
vice’ is one of the Kubernetes object types that is defined by the Kubernetes

63

API. CoreDNS monitors the Kubernetes API and automatically creates DNS
records for any new services. This enables service discovery across a cluster
and pods are able to perform name resolution automatically for all services.

Hence, defining each of the micro-services in the current IoT system as a
’Service’ object type in Kubernetes, we can utilize Kubernetes’s service dis-
covery for our purpose. This allows us to change the hard-coded IPs to
the name of Kubernetes services. So, changing IPs per deployment is not
required anymore and this is especially beneficial for the large-scale deploy-
ments.

• RQ2. Which containerization and Kubernetes mechanisms should be used
in the deployment procedure to serve requirements of the system?

To containerize the Pub/Sub IoT system, Docker Container Engine is chosen
as the containerization tool, since it works well with Kubernetes. Then, to
preserve the privacy of the project and to keep the created Docker images
within the company, we decided to set up a private Docker Registry. We
have seen that setting up a private registry was a straightforward procedure,
using the Docker’s open-source project, named ’Docker Registry’.

To deploy the Pub/Sub IoT system using Kubernetes, we were required to
consider some specifications. One of such specifications is the location of
Data Fetcher service since it is developed to be performed at the edge of the
network. To serve such capability for DataFetcher, we must make sure that it
is running on a separate node within the cluster. To dedicate a micro-service
to be run in a particular node in the Kubernetes cluster, we labeled each node.
Then, defining ’nodeSelector’ in the Deployment definition of each micro-
service and assigning the right label, we could manage such dedication.

Public exposure of two micro-services, Dashboard and DataHub, is from
the other requirements of the Pub/Sub IoT system. To this goal, we defined
their corresponding Service definition from the NodePort type. However,
NodePort exposes a service on the specified port and IP address of all worker
nodes. This is not fulfilling requirements of the system since we aim to
give unique access of each service to a particular end-user. To solve the
issue, we defined the ’externaltrafficpolicy’ to be set as ’Local’ in the Service
definition of DataHub and Dashboard. As a result, Kubernetes only proxies
requests to the local endpoints and never forwards traffic to the other nodes
of the cluster.

Furthermore, the default port range of NodePort service type in Kubernetes
is between 30000-30767. For a service of type NodePort, if a port is not
specified, Kubernetes will assign a port within this range automatically. A
port is hard-coded in the front-end of the Dashboard micro-service. Hence,
we were required to expose Dashboard service on that particular port. Since
the port was not within the default NodePort range of Kubernetes, we have
configured this default port range in Kubernetes.

64

• RQ3. What are the implications of the system’s deployment based on Kuber-
netes for the efficiency of the system and its scalability?

Upon deployment and running the system, we evaluated the runtime for is-
suing a subscription. Results show a faster response time. This is because
there are less external communications in the Kubernetes-based approach
compared to the previous deployment method. Moreover, we calculated the
corresponding costs for each of the previous and proposed deployment ap-
proaches. We have seen that using Kubernetes for deployment, is cheaper
especially when the solution scales.

Kubernetes provides better life-cycle management for the deployment using
metrics, such as updating of the system and its failure recovery. For system’s
updating, Kubernetes uses concept of ’Rolling Updates’. Results show that
updating any of the system’s micro-services takes under 5 seconds.

Furthermore, using Kubernetes, it is possible to monitor resource consump-
tions and also utilize the resource usages for each of the services. We noticed
that the ’Worker Node 1’ has a higher resource consumption than the basic
requirements for a custom node. This is reasonable since most of the work-
load including four of the micro-services are running on this node. This
allows us to prepare proper hardware requirements for a real-case scenario.
Furthermore, we could manage the resource usage of the Data Fetcher ser-
vice. In the future, we aim to run the Data Fetcher on a gateway. Such
gateway has specific hardware requirements including 2 cores CPU and 2
GB RAM. Hence, we should make sure that we can keep Data Fetcher’s us-
age in this range. We saw that Kubernetes features allow for such resource
management. Finally, regarding scalability of the proposed approach, we
have seen that it is possible to define more than one Data Hub service and
each can be exposed on a separate IP and port.

5.2 Future Work

Our work shows several benefits as results of deploying the current Pub/Sub IoT
system using Kubernetes. However, there are still some limitations in the proposed
solution towards the deployment for a real-world scenario. Hence, we suggest the
following direction for future works.

1. While we defined an architecture for the proposed deployment solution in
Section 3.2.2, we discussed the important design decisions. One of such de-
cisions was related to the physical location of Data Fetcher service in our
infrastructure. Providing pre-processing and aggregation for data, this ser-
vice is designed to benefit from capabilities offered by MEC architecture.
Hence, in a real-world scenario, Data Fetcher’s container is supposed to be
established on an IoT gateway. An IoT gateway would be placed close to
where IoT devices are resided and acts as the connection point between IoT

65

devices and the cloud. Such a gateway has some computation power as well
as network connectivity.

The device that we had accessible at the time of writing this thesis, was
Nokia’s gateway with 1 core CPU and 1 GiB RAM. However, according
to the Kubernetes documents, the minimum requirements for a node to be
run in a Kubernetes cluster is 2 cores CPU and 2 GiB RAM. Hence, despite
using such gateway, in this work we simply used a VM to be the host for
Data Fetcher’s container. As future work, we plan to deploy Data Fetcher’s
service on a real gateway with the proper hardware requirements. During
our research, we learned that a multi-architecture Kubernetes cluster is re-
quired for this purpose. This is because the CPU architecture of the intended
gateway is different from the other nodes (VMs) in the cluster.

2. In the current Pub/Sub IoT system, two of the micro-services have their
corresponding UIs that must be accessible by the end-users. In a scalable
approach, we aim to have more than one DataHub service. Hence, the ad-
dresses of different DataHub URLs must not be the same. In Section 3.4.3,
we discussed the conducted approach for service exposure in Kubernetes
based on NodePort. NodePort exposes a service on a port and to access the
service, we use combination of IP of the VM and the specified port.

One limitation of this approach is that remembering IP and port is not easy
for users. As the solution, we can configure the DNS server to point a do-
main name to the IP of the ports. Moreover, if we expose more than one Data
Hub service on the same VM, we will have the same IPs and only ports will
change. Hence, to provide such scalability, we have used a VM per Data
Hub service in the proposed architecture with NodePort and the ’external-
trafficplocy’ is defined as ’Local’ for these services. in Section 4.2.2, we
discussed that this approach is not cost-efficient for scaling the deployment.

As an alternative approach, we suggest using a loadBalancer for exposing
services. LoadBalancer is another service type that is explained in Section
3.4.3. Using a loadBalancer for exposing services, we can deploy as many
Data Hub services as we like on only one VM, and instead, use different
LoadBalancers for each. This way, we will have different IP addresses to
access each service. However, this approach still has limitations. Firstly,
the DNS server should be configured for each newly added service and new
loadBalancer. Moreover, from the perspective of cost-efficiency, using a
loadBalancer per service still could inversely increase the cloud bill.

Finally, there is still another approach for exposing services in Kubernetes,
namely ’Ingress’ and we suggest it to be used as the best approach in the
future works.

The concept of ’Ingress’ is explained in Section 3.4.3. To satisfy an Ingress
in Kubernetes, an Ingress controller is required. NGINX Ingress controller is
one of the available options. Ingress will act as the single-entry point to the

66

Figure 5.1: Architecture overview of the proposed scenario with Ingress.

cluster. Then, defining different paths for each service, it routes the related
incoming external request to the right service. This way we do not need to
use multiple IP addresses per service as it is with loadBalancer. Hence, it
is very cost-efficient. Furthermore, Ingress will be configured as an internal
Kubernetes object and being the single entry-point to the cluster, it is the
only place that will be affected upon adding a new service.

Using an Ingress we can use a single domain name and assign each service
a separate path. Following this approach in the future works for deploying
the Pub/Sub IoT system still requires an improvement in the system devel-
opment’s level. Since the addresses will be unique only in their paths, an au-
thentication mechanism should be developed for accessing both Dashboard
and Data Hub services.

The architecture overview of the proposed deployment solution using NGINX
Ingress Controller is shown in Figure 5.1. An external loadBalancer can be
used to access the ingress controller, which is resided inside the Kubernetes
cluster. Ingress has the domain name of ’MyDomain.com’ and to access dif-
ferent services, different paths are defined.

67

68

Bibliography

[1] H. Singh, “Statistics that prove iot will become
massive from 2018.” http://customerthink.com/
statistics-that-prove-iot-will-become-massive-from-2018/,
2018. [Online; accessed 3-April-2019].

[2] Ericsson, “Ericsson mobility report.” https://www.ericsson.com/
en/mobility-report/reports/november-2018, 2018. [On-
line; accessed 3-April-2019].

[3] Nokia, “Nokia bell labs.” https://www.bell-labs.com/. [Online;
accessed 25-September-2019].

[4] M. J. Scheepers, “Virtualization and containerization of application infra-
structure: A comparison,” in 21st Twente Student Conference on IT, vol. 1,
pp. 1–7, 2014.

[5] A. M. Joy, “Performance comparison between linux containers and virtual
machines,” in 2015 International Conference on Advances in Computer En-
gineering and Applications, pp. 342–346, IEEE, 2015.

[6] S. Muralidharan, G. Song, and H. Ko, “Monitoring and managing iot ap-
plications in smart cities using kubernetes,” CLOUD COMPUTING 2019,
p. 11, 2019.

[7] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Kubernetes
as an availability manager for microservice applications,” arXiv preprint
arXiv:1901.04946, 2019.

[8] S. Otaniemi, “Smart otaniemi.” https://smartotaniemi.fi/. [On-
line; accessed 25-September-2019].

[9] B. Finland, “Business finland.” https://www.businessfinland.
fi/en/. [Online; accessed 25-September-2019].

[10] S. Otaniemi, “Smart otaniemi.” https://smartotaniemi.fi/
pilots/platforms-connectivity/. [Online; accessed 25-
September-2019].

69

http://customerthink.com/statistics-that-prove-iot-will-become-massive-from-2018/
http://customerthink.com/statistics-that-prove-iot-will-become-massive-from-2018/
https://www.ericsson.com/en/mobility-report/reports/november-2018
https://www.ericsson.com/en/mobility-report/reports/november-2018
 https://www.bell-labs.com/
 https://smartotaniemi.fi/
 https://www.businessfinland.fi/en/
 https://www.businessfinland.fi/en/
 https://smartotaniemi.fi/pilots/platforms-connectivity/
 https://smartotaniemi.fi/pilots/platforms-connectivity/

[11] I. Global, “What is cellular network.” https://www.igi-global.
com/dictionary/cellular-network/3547. [Online; accessed 1-
August-2019].

[12] Wikipedia, “Cellular network.” https://en.wikipedia.org/
wiki/Cellular_network. [Online; accessed 1-August-2019].

[13] SearchNetworking, “radio access network (ran).” https:
//searchnetworking.techtarget.com/definition/
radio-access-network-RAN. [Online; accessed 1-August-2019].

[14] R. N. Mitra and D. P. Agrawal, “5g mobile technology: A survey,” ICT
Express, vol. 1, no. 3, pp. 132–137, 2015.

[15] R. S. Karki and V. B. Garia, “Next generations of mobile networks,” Inter-
national Journal of Computer Applications, vol. 975, p. 8887, 2016.

[16] A. Gawas, “An overview on evolution of mobile wireless communication
networks: 1g-6g,” International Journal on Recent and Innovation Trends
in Computing and Communication, vol. 3, no. 5, pp. 3130–3133, 2015.

[17] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
O. Song, and D. Malladi, “A survey on 3gpp heterogeneous networks,” IEEE
Wireless communications, vol. 18, no. 3, pp. 10–21, 2011.

[18] Wikipedia, “Small cell.” https://en.wikipedia.org/wiki/
Small_cell. [Online; accessed 1-August-2019].

[19] A. S. W. Marzuki, I. Ahmad, D. Habibi, and Q. V. Phung, “Mobile small
cells: Broadband access solution for public transport users,” IEEE Commu-
nications Magazine, vol. 55, no. 6, pp. 190–197, 2017.

[20] F. Al-Turjman, Smart Things and Femtocells: From Hype to Reality. CRC
Press, 2018.

[21] K. ISHIZU, H. MURAKAMI, K. IBUKA, and F. KOJIMA, “2-1 next gen-
eration mobile communications system to realize flexible architecture and
spectrum sharing,” Journal of the National Institute of Information and
Communications Technology Vol, vol. 64, no. 2, 2017.

[22] S. Li, L. Da Xu, and S. Zhao, “5g internet of things: A survey,” Journal of
Industrial Information Integration, vol. 10, pp. 1–9, 2018.

[23] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless net-
works: A comprehensive survey,” IEEE Communications Surveys & Tutori-
als, vol. 18, no. 3, pp. 1617–1655, 2016.

[24] Nokia, “5g new radio network.” https://onestore.nokia.com/
asset/205407. [Online; accessed 1-August-2019].

70

https://www.igi-global.com/dictionary/cellular-network/3547
https://www.igi-global.com/dictionary/cellular-network/3547
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Cellular_network
https://searchnetworking.techtarget.com/definition/radio-access-network-RAN
https://searchnetworking.techtarget.com/definition/radio-access-network-RAN
https://searchnetworking.techtarget.com/definition/radio-access-network-RAN
https://en.wikipedia.org/wiki/Small_cell
https://en.wikipedia.org/wiki/Small_cell
https://onestore.nokia.com/asset/205407
https://onestore.nokia.com/asset/205407

[25] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From iot to
5g i-iot: The next generation iot-based intelligent algorithms and 5g tech-
nologies,” IEEE Communications Magazine, vol. 56, no. 10, pp. 114–120,
2018.

[26] Qwilt, “The mobile edge cloud 5g and mec.” https://qwilt.com/
5g-mec/mec-and-5g/. [Online; accessed 1-August-2019].

[27] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[28] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys & Tu-
torials, vol. 19, no. 3, pp. 1657–1681, 2017.

[29] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Sur-
vey on multi-access edge computing for internet of things realization,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2961–2991, 2018.

[30] Q. H. Mahmoud, Middleware for communications, vol. 73. Wiley Online
Library, 2004.

[31] “Mqtt-essentials-part2-publish-subscribe.” https://www.hivemq.
com/blog/mqtt-essentials-part2-publish-subscribe/,
2015. [Online; accessed 23-April-2019].

[32] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM computing surveys (CSUR), vol. 35, no. 2,
pp. 114–131, 2003.

[33] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting
iot platform requirements with open pub/sub solutions,” Annals of Telecom-
munications, vol. 72, no. 1-2, pp. 41–52, 2017.

[34] “Apache kafka documentation.” https://kafka.apache.org/
documentation/. [Online; accessed 24-April-2019].

[35] “Ibm official page.” https://www.ibm.com/products/mq. [On-
line; accessed 24-April-2019].

[36] “Mqtt official page.” http://mqtt.org/. [Online; accessed 24-April-
2019].

[37] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-based
publish-subscribe over structured overlay networks,” in 25th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS’05), pp. 437–
446, IEEE, 2005.

71

https://qwilt.com/5g-mec/mec-and-5g/
https://qwilt.com/5g-mec/mec-and-5g/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://www.ibm.com/products/mq
http://mqtt.org/

[38] Wikipedia, “Apache kafka.” https://en.wikipedia.org/wiki/
Apache_Kafka. [Online; accessed 1-August-2019].

[39] Apache, “Zookeeper.” https://zookeeper.apache.org/. [Online;
accessed 1-August-2019].

[40] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Inter-
national Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27,
2014.

[41] M. Fowler and J. Lewis, “Microservices.” https://martinfowler.
com/articles/microservices.html. [Online; accessed 1-
August-2019].

[42] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture
enables devops: Migration to a cloud-native architecture,” Ieee Software,
vol. 33, no. 3, pp. 42–52, 2016.

[43] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing,
vol. 2, no. 3, pp. 24–31, 2015.

[44] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and ulterior software engineering, pp. 195–216, Springer,
2017.

[45] V. Kojola, S. Kapoor, and K. Hätönen, “Distributed computing of manage-
ment data in a telecommunications network,” in International Conference
on Mobile Networks and Management, pp. 146–159, Springer, 2016.

[46] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Ander-
son, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel virtualization
technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[47] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud
computing—the business perspective,” Decision support systems, vol. 51,
no. 1, pp. 176–189, 2011.

[48] S. Sharma and Y. Park, “Virtualization: A review and future directions ex-
ecutive overview,” American Journal of Information Technology.

[49] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring
container virtualization in iot clouds,” in 2016 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), pp. 1–6, IEEE, 2016.

[50] M. Eder, “Hypervisor-vs. container-based virtualization,” Future Internet
(FI) and Innovative Internet Technologies and Mobile Communications
(IITM), vol. 1, 2016.

72

https://en.wikipedia.org/wiki/Apache_Kafka
https://en.wikipedia.org/wiki/Apache_Kafka
https://zookeeper.apache.org/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

[51] P. Dash, Getting started with oracle vm virtualbox. Packt Publishing Ltd,
2013.

[52] A. Muller and S. Wilson, “Virtualization with vmware esx server,” 2005.

[53] A. Velte and T. Velte, Microsoft virtualization with Hyper-V. McGraw-Hill,
Inc., 2009.

[54] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in ACM
SIGOPS operating systems review, vol. 37, pp. 164–177, ACM, 2003.

[55] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor.,” in USENIX Annual
Technical Conference, General Track, pp. 1–14, 2001.

[56] J. Honeycutt, “Microsoft virtual pc 2004 technical overview,” Microsoft,
Nov, 2003.

[57] F. Bellard, “Qemu, a fast and portable dynamic translator.,” in USENIX An-
nual Technical Conference, FREENIX Track, vol. 41, p. 46, 2005.

[58] Docker, “What is a container?.” https://www.docker.com/
resources/what-container. [Online; accessed 1-August-2019].

[59] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security of os-level
virtualization technologies,” in Nordic Conference on Secure IT Systems,
pp. 77–93, Springer, 2014.

[60] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[61] Docker, “The industry-leading container runtime.” https://www.
docker.com/products/container-runtime. [Online; accessed
5-August-2019].

[62] Docker, “Docker overview.” https://docs.docker.com/engine/
docker-overview/. [Online; accessed 5-August-2019].

[63] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967,
2015.

[64] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32,
no. 3, pp. 102–c3, 2015.

[65] Docker, “About storage drivers.” https://docs.docker.com/
storage/storagedriver/#images-and-layers. [Online; ac-
cessed 5-August-2019].

73

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/products/container-runtime
https://www.docker.com/products/container-runtime
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/storage/storagedriver/#images-and-layers

[66] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices archi-
tecture by using docker technology,” in SoutheastCon 2016, pp. 1–5, IEEE,
2016.

[67] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[68] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native
architectures using microservices: an experience report,” in European Con-
ference on Service-Oriented and Cloud Computing, pp. 201–215, Springer,
2015.

[69] E. Casalicchio, “Autonomic orchestration of containers: Problem definition
and research challenges.,” in VALUETOOLS, 2016.

[70] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” 2016.

[71] Elastisys, “Setting up highly available kubernetes clusters.”
https://elastisys.com/wp-content/uploads/2018/
01/kubernetes-ha-setup.pdf. [Online; accessed 6-August-2019].

[72] Kubernetes, “Kubernetes concepts.” https://kubernetes.io/
docs/concepts/. [Online; accessed 6-August-2019].

[73] Kubernetes, “Pods.” https://kubernetes.io/docs/concepts/
workloads/pods/pod/. [Online; accessed 6-August-2019].

[74] CoreOS, “Overview of a pod.” https://coreos.com/kubernetes/
docs/latest/pods.html. [Online; accessed 6-August-2019].

[75] Kubernetes, “Viewing pods and nodes.” https://kubernetes.
io/docs/tutorials/kubernetes-basics/explore/
explore-intro/. [Online; accessed 6-August-2019].

[76] Kubernetes, “Replication controller.” https://kubernetes.
io/docs/concepts/workloads/controllers/
replicationcontroller/. [Online; accessed 6-August-2019].

[77] Kubernetes, “Kubernetes replicaset.” https://kubernetes.io/
docs/concepts/workloads/controllers/replicaset/.
[Online; accessed 19-August-2019].

[78] Kubernetes, “Services.” https://kubernetes.io/docs/
concepts/services-networking/service/. [Online; ac-
cessed 6-August-2019].

74

https://elastisys.com/wp-content/uploads/2018/01/kubernetes-ha-setup.pdf
https://elastisys.com/wp-content/uploads/2018/01/kubernetes-ha-setup.pdf
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://coreos.com/kubernetes/docs/latest/pods.html
https://coreos.com/kubernetes/docs/latest/pods.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

[79] Kubernetes, “Kubernetes control plane.” https://kubernetes.io/
docs/concepts/#kubernetes-control-plane. [Online; ac-
cessed 16-August-2019].

[80] Kubernetes, “Kubernetes api server.” https://kubernetes.
io/docs/reference/command-line-tools-reference/
kube-apiserver/. [Online; accessed 6-August-2019].

[81] Kubernetes, “Kubernetes controller manager.” https://kubernetes.
io/docs/reference/command-line-tools-reference/
kube-controller-manager/. [Online; accessed 6-August-2019].

[82] etcd, “etcd.” https://etcd.io/. [Online; accessed 7-August-2019].

[83] Wikipedia, “Openstack.” https://en.wikipedia.org/wiki/
OpenStack. [Online; accessed 20-August-2019].

[84] Docker, “Networking in compose.” https://docs.docker.com/
compose/networking/. [Online; accessed 20-August-2019].

[85] Docker, “About registry.” https://docs.docker.com/registry/
introduction/. [Online; accessed 20-August-2019].

[86] Whatis, “Iot gateway.” https://whatis.techtarget.com/
definition/IoT-gateway. [Online; accessed 20-August-2019].

[87] Nokia, “Nokia engineering and services cloud.” https:
//learningstore.nokia.com/employee/item/n.
1486421574681. [Online; accessed 20-August-2019].

[88] Kubernetes, “Installing kubernetes with minikube.” https:
//kubernetes.io/docs/setup/learning-environment/
minikube/. [Online; accessed 20-August-2019].

[89] Kubernetes, “Single control-plane cluster with kubeadm.” https:
//kubernetes.io/docs/setup/production-environment/
tools/kubeadm/create-cluster-kubeadm/. [Online; accessed
20-August-2019].

[90] Kubernetes, “Installing kubeadm.” https://kubernetes.io/
docs/setup/production-environment/tools/kubeadm/
install-kubeadm/. [Online; accessed 20-August-2019].

[91] Kubernetes, “Cluster networking.” https://kubernetes.io/docs/
concepts/cluster-administration/networking/. [Online;
accessed 20-August-2019].

75

https://kubernetes.io/docs/concepts/#kubernetes-control-plane
https://kubernetes.io/docs/concepts/#kubernetes-control-plane
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io/
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/OpenStack
https://docs.docker.com/compose/networking/
https://docs.docker.com/compose/networking/
https://docs.docker.com/registry/introduction/
https://docs.docker.com/registry/introduction/
https://whatis.techtarget.com/definition/IoT-gateway
https://whatis.techtarget.com/definition/IoT-gateway
https://learningstore.nokia.com/employee/item/n.1486421574681
https://learningstore.nokia.com/employee/item/n.1486421574681
https://learningstore.nokia.com/employee/item/n.1486421574681
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

[92] Kubernetes, “Installing addons.” https://kubernetes.io/docs/
concepts/cluster-administration/addons/. [Online; ac-
cessed 20-August-2019].

[93] Kubernetes, “Deployments.” https://kubernetes.io/docs/
concepts/workloads/controllers/deployment/. [Online;
accessed 08-September-2019].

[94] matthewpalmer, “Kubernetes ingress vs loadbalan-
cer vs nodeport?.” https://matthewpalmer.
net/kubernetes-app-developer/articles/
kubernetes-ingress-guide-nginx-example.html. [Online;
accessed 7-October-2019].

[95] Kubernetes, “What is ingress?.” https://kubernetes.io/docs/
concepts/services-networking/ingress/. [Online; accessed
29-September-2019].

[96] Kubernetes, “Installing kubeadm.” https://kubernetes.io/
docs/setup/production-environment/tools/kubeadm/
install-kubeadm/. [Online; accessed 20-September-2019].

[97] M. Azure, “Pricing calculator.” https://azure.
microsoft.com/en-us/pricing/calculator/
#virtual-machines90ea3354-5786-410d-b59b-c9bf638bf484.
[Online; accessed 17-September-2019].

[98] Kubernetes, “Pod lifecycle.” https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle/. [Online; ac-
cessed 20-September-2019].

[99] Kubernetes, “Resource metrics api.” https://github.
com/kubernetes/community/blob/master/
contributors/design-proposals/instrumentation/
resource-metrics-api.md. [Online; accessed 22-September-
2019].

[100] Kubernetes, “Kubernetes metrics server.” https://github.com/
kubernetes-incubator/metrics-server. [Online; accessed 22-
September-2019].

76

 https://kubernetes.io/docs/concepts/cluster-administration/addons/
 https://kubernetes.io/docs/concepts/cluster-administration/addons/
 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
 https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html
 https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html
 https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html
 https://kubernetes.io/docs/concepts/services-networking/ingress/
 https://kubernetes.io/docs/concepts/services-networking/ingress/
 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
 https://azure.microsoft.com/en-us/pricing/calculator/#virtual-machines90ea3354-5786-410d-b59b-c9bf638bf484
 https://azure.microsoft.com/en-us/pricing/calculator/#virtual-machines90ea3354-5786-410d-b59b-c9bf638bf484
 https://azure.microsoft.com/en-us/pricing/calculator/#virtual-machines90ea3354-5786-410d-b59b-c9bf638bf484
 https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
 https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
 https://github.com/kubernetes-incubator/metrics-server
 https://github.com/kubernetes-incubator/metrics-server

	Introduction
	Motivation and Scenarios
	Research Questions and Goals
	Research Approach
	Contributions and Thesis Structure

	Background and Concepts
	5G and Evolution of Mobile Technologies
	Cellular Network Architecture
	Evolution of Mobile Wireless Technologies
	The Internet of Things in the Telecom Industry
	5G
	Multi-access edge computing (MEC)

	Publish/Subscribe Paradigm
	Publish/Subscribe Architecture
	Apache Kafka
	Apache Zookeeper

	Micro-Service Applications
	Nokia Bell Lab's Prototype System
	Motivation of the Project
	Introducing Components of Nokia’s System

	System Virtualization
	Hypervisor Virtualization
	Container Virtualization

	Docker Container Engine
	Docker for Development and Operations
	Docker Architecture and Components

	Container Orchestration Frameworks
	Kubernetes
	Kubernetes Architecture
	Master Node Components
	Worker Node Components

	Design And Implementation
	Nokia’s IoT Pub/Sub System in Containers
	The System's Containerization Procedure
	Setup a Private Docker Registry

	System Deployment with Kubernetes
	The Use-Case Scenario
	System Architecture and Design Decisions

	Setting Up the Kubernetes Cluster
	Kubernetes Setup
	Master Node Installation
	Worker Node Installation

	Deployment and Service Definitions
	Common Fields in the Deployment and Service Definition
	Deployment Definition
	Service Definition and Exposing Services

	Kubernetes Dashboard

	Test and Evaluation
	Experimental Setup
	Performance Analysis
	Runtime Speed
	Cost Efficiency

	Life-cycle Management
	System Updates
	Failure Recovery

	Resource Management
	Resource Consumption
	Resource Optimization

	Scalability
	Scaling Pods
	Scaling Services

	Conclusion and Future Work
	Conclusions
	Future Work

