
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2013

MSc THESIS

Implementation of Bio-Informatics Applications
on Various GPU Platforms

Amora Amir

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2013-15

As of 2012, the world creates 2.5 quintillion (2.5 × 1018) bytes of data
every day. Much of this data generated is what we refer to as Big
Data. To explore how Big Data can create potential value and show
the technical challenges accompanied with Big Data applications, we
choose an application from bio-informatics: the Smith Waterman ge-
netic database alignment algorithm, which is used for finding optimal
genetic sequence alignments. The continuous increase in the volume
of data in genetic databases leads to the exponential increase in the
time required for comparing these genetic sequences. This thesis in-
vestigates the acceleration and optimization of the Smith Waterman
algorithm using GPU platforms. The thesis uses DOPA, an existing
implementation, which was optimized for the GTX275 GPU platform
from NVIDIA. DOPA resulted in a huge performance gain compared
to other implementations running sequentially on CPU. Our thesis
aims to study and improve the behavior of this implementation on
different NVIDIA GPUs: the Tesla C2075 and the GeForce GT640.
We improved the cores occupancy of DOPA on different GPU cards
resulting in an efficient workload distribution, thereby improving the
performance by about 14% to 61%. We achieved 25 GCUPS perfor-

mance on the C2075 and 11 GCUPS on the GT640 compared to a straight forward DOPA port on the
same cards achieving 21.9 and 6.8 GCUPS, respectievly. To achieve considerable performance for Big Data
application for different platforms, two important factors have to be taken into account: increase the paral-
lelism in the software and increase the utilization on the hardware side. We evaluated and presented other
metrics such as the cost in terms of euro and watt to be considered along with GPU performance.

Implementation of Bio-Informatics Applications

on Various GPU Platforms

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Amora Amir

born in Baghdad, Iraq

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Implementation of Bio-Informatics Applications

on Various GPU Platforms

by Amora Amir

Abstract

As of 2012, the world creates 2.5 quintillion (2.5 × 1018) bytes of data every day. Much of
this data generated is what we refer to as Big Data. To explore how Big Data can create potential
value and show the technical challenges accompanied with Big Data applications, we choose an
application from bio-informatics: the Smith Waterman genetic database alignment algorithm,
which is used for finding optimal genetic sequence alignments. The continuous increase in the
volume of data in genetic databases leads to the exponential increase in the time required for
comparing these genetic sequences. This thesis investigates the acceleration and optimization
of the Smith Waterman algorithm using GPU platforms. The thesis uses DOPA, an existing
implementation, which was optimized for the GTX275 GPU platform from NVIDIA. DOPA
resulted in a huge performance gain compared to other implementations running sequentially on
CPU. Our thesis aims to study and improve the behavior of this implementation on different
NVIDIA GPUs: the Tesla C2075 and the GeForce GT640. We improved the cores occupancy of
DOPA on different GPU cards resulting in an efficient workload distribution, thereby improving
the performance by about 14% to 61%. We achieved 25 GCUPS performance on the C2075
and 11 GCUPS on the GT640 compared to a straight forward DOPA port on the same cards
achieving 21.9 and 6.8 GCUPS, respectievly. To achieve considerable performance for Big Data
application for different platforms, two important factors have to be taken into account: increase
the parallelism in the software and increase the utilization on the hardware side. We evaluated
and presented other metrics such as the cost in terms of euro and watt to be considered along
with GPU performance.

Laboratory : Computer Engineering
Codenumber : CE-MS-2013-15

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Member: Zaid Al-Ars, CE, TU Delft

Member: Andre Bossche, EI, TU Delft

i

ii

Contents

List of Figures v

List of Tables vii

Acknowledgements ix

1 Big Data 1

1.1 Introduction . 1

1.2 Characteristics of Big Data . 2

1.2.1 Volume . 2

1.2.2 Variety . 3

1.2.3 Velocity . 3

1.3 Big Data challenges . 4

1.4 Big Data opportunities for emerging domains 5

1.5 Big Data supply chain . 6

2 Computer architectures of Big Data 11

2.1 Processor . 12

2.1.1 Multi-core processors . 12

2.1.2 Graphics processors GPGPU . 13

2.2 Memory systems and cache hierarchy . 13

2.2.1 Replacement policy and cache organization 14

2.2.2 Processing In Memory (PIM) technology 14

2.2.3 Reconfigurable cache technology 15

2.2.4 Techniques for reconfigurable caches 16

3 Big Data in bioinformatics 25

3.1 Cells, DNA and proteins . 26

3.2 Genetic sequences alignment . 27

3.3 DNA and protein databases . 28

4 Implementation of Smith Waterman algorithm 37

4.1 Sequential implementation . 37

4.2 Streaming SIMD Extensions (SSE) . 38

4.2.1 Straightforward SSE2 implementation 39

4.2.2 Optimized SSE2 implementation 40

4.3 GPU implementation . 42

4.3.1 Straightforward GPU implementation 43

4.3.2 Optimized GPU implementation 44

4.4 Summary . 45

iii

5 Performance analysis and benchmarking 49
5.1 Experimental setup . 49
5.2 Sequential vs. parallel implementations 50
5.3 Performance analysis of DOPA on different GPUs 52
5.4 Performance versus cost, power and flexibility 58

6 Summary and future work 61
6.1 Thesis contribution . 61
6.2 Future work . 62

iv

List of Figures

1.1 3Vs model based on [17] . 2
1.2 Created data vs. available storage [14] 3
1.3 Big Data supply chain based on [11] . 6
1.4 IBM Big Data platform based on [10] . 7
1.5 Oracle Big Data platform based on [12] 7

2.1 Multi-core architecture . 12
2.2 Conventional cache organization based on [1] 17
2.3 Reconfigurable cache organization based on [1] 18
2.4 Conventional 4-way set associative cache based on [4] 19
2.5 4-way set associative cache using selective cache ways based on [4] . . . 19
2.6 Tournament cache technique state digram based on[7] 21

3.1 Representation of cell, chromosome and DNA based on [12] 26
3.2 Blosum62 scoring matrix . 29
3.3 UniProt entries based on [15] . 29
3.4 Sequence length based on [15] . 30
3.5 Matrix initialization . 32
3.6 The F matrix . 32
3.7 The E matrix . 32
3.8 The H matrix . 33

4.1 Data dependency of the Smith Waterman algorithm 38
4.2 Sequential order memory . 39
4.3 SSE registers file . 40
4.4 Interleaved order in the memory . 41
4.5 SSearch stripped pattern based on [8] . 41
4.6 Equal length segments based on [8] . 42
4.7 Lazy F based on [8] . 43
4.8 Query profile based on [11] . 45

5.1 SSE2 performance . 51
5.2 Performance of DOPA on different platforms 53
5.3 Performance of DOPA with different configurations for both Tesla C2075

and GT640 . 56
5.4 Performance growth of Smith Waterman algorithm 57

v

vi

List of Tables

2.1 Summary of different reconfigurable cache techniques 22

3.1 Standard 20 amino acid abbreviations 27

5.1 Performance of our C implementation. 50
5.2 Properties of three different graphics cards 52
5.3 Sequential vs. straightforward GPU implementation 52
5.4 An overview of the performance of DOPA on different platforms, where

number of blocks is 4 multiples of the number of multiprocessors 53
5.5 An overview of the architectures of the experimenting platforms 54
5.6 Theoretical calculations on how the scheduler could distribute the work-

load over the multiprocessors (considering the configurations in Table
5.4) . 54

5.7 An overview of the performance on different platforms, where number
of blocks is 120 with 64 threads per each 55

5.8 Theoretical calculations on how the distributor could distribute the
workload over the multiprocessors (considering the configurations in Ta-
ble 5.7) . 55

5.9 Performance on Tesla C2075 with different configurations 56
5.10 Performance on GT640 with different configurations 57
5.11 Properties of three different graphics cards 58

vii

viii

Acknowledgements

I would like to thank Prof. Koen Bertels and Dr. Zaid Al-Ars for their supervision and
allowing me to do work I found interesting. Without their help, it would not have been
possible to complete this work. I would like to thank my husband Raad Al Moussawy
and my mother and sisters for their encouragement and support in spite of the difficulty
of reconciling between study and my children. I especially appreciate the support i had
from my professors and classmates during my study. I would specifically like to thank
my classmate Kim Wai Tang. Im really grateful for all.

Amora Amir
Delft, The Netherlands
September 4, 2013

ix

x

Big Data 1
1.1 Introduction

Big data in information technology is a new technology that deals with huge quantities
of information digital data. It is so big and complex in such that it cannot be processed
or analyzed using the traditional database, software tools and processors. This data
generates from everywhere, posts on social media sites, digital photo and videos, sensors,
bank transaction, mobile phone, GPS signals and much more. Big Data is sized in peta-
(1015), exa- (1018) and in zetta-(1021) byte.

The number of Internet users have grown dramatically in the last decade, from 361
million users in December 2000 to 2406 million users in December 2012 according to
Internet Worlds stats. Consequently, in 2005, man made data was estimated to be 150
exabytes (exabyte is a billion gigabytes). While in 2010 there were 1200 exabytes data
information and 95% of this data was unstructured [1]. IBM expects that in 2020, 35
zettabyte of data will be produced. International Data Corporation’s (IDC) forecast
shows that the Big Data technology and services market is expected to increase to $16.9
billion in 2015 [13].

The Big Data era is in full force today because the world is changing. The trend of
Big Data productivity is basically coming from three factors. Firstly: instrumentation [2]
is an important factor for Big Data. Instrumentation such as information-sensing mobile
devices, digital cameras, telescope and environmental sensory technologies, radars and
wireless sensor networks. Secondly advances in communications technology is another
factor for producing Big Data. People are becoming increasingly interconnected. Social
media networking like Facebook, Twitter and Internet search engine are good examples
for inter connectivity. Finally, the third contributing factor for increasing Big Data is
that the hardware and storage -cost have decreased dramatically. Therefore intelligence
system will be required almost everywhere [2].

Data-driven decision-making in business intelligence and the passion for the notion
of Big Data notice widely. The hope of Big Data is actual, for example, an estimation
shows that Google alone contributed 54 billion dollars to the US economy in 2009 [9],
there is now a broad gap between Big Data potential and its recognition. Decisions that
earlier were based on guesswork, or on agilely constructed models of reality, can now be
made based on the data itself.

As stated in research at [3] Big Data is considered as the next frontier for innovation,
competition and productivity. McKinsey states several important points regarding Big
Data. Extract insight and mining, identify trends and use the data to improve pro-
ductivity, gain competitive advantage and create substantial value for the world wide
economy. Data is expected to increase in the world by 40% per year while the spending
in IT sector is only 5%. Therefore, a major investment in Big Data is urgently needed.

1

2 CHAPTER 1. BIG DATA

That will facilitate the speed of discovery in science, education, engineering, security,
and health and inlarge the workforce needed to develop and use Big Data technologies.

1.2 Characteristics of Big Data

Three characteristics define Big Data: Volume, Variety, and Velocity or simply known
as ”3Vs” model as shown in Figure 1.1. However, some people are talking about the
4th V - Value. These 3Vs characteristics together define and view the nature of the Big
Data and the manner in which the value can be discovered from. Let’s define each term
explicitly.

Figure 1.1: 3Vs model based on [17]

1.2.1 Volume

The sheer volume of data being produced nowadays is fairly obvious. The volume de-
scribes the amount of the generated data. It is the size of the data from kilo, mega,
peta or even zettabytes. Figure 1.1 shows how the volume of the data is varying e.g. a
text file is a few kilobytes, a data base is gigabytes while a social media web streaming
is petabytes. In the year 2012, around 2,7 zettabytes of global data has been created
[14, 16, 17]. According to IDC (Figure 1.2) the amount of produced data today has ex-
ceeded the conventional available storage. There is an evident gap between the produced
data and the storage available today. As a result, of course, it is not possible to store
all this data much of this data will be discarded. IBM expects this amount of data will
be increased dramatically. Twitter produces every day about 7 terabytes (TB) of data,
Facebook 10 TB and some enterprises produce terabytes of data each hour of every day
of the year. More sources of data with larger quantities have increased the volume of
data set. Therefore enterprises of most domains are urgently required to find ways to

1.2. CHARACTERISTICS OF BIG DATA 3

handle the ever-increasing data volume that is being created every day. Peta-byte data
sets are common these days and zettabyte is not far away.

Figure 1.2: Created data vs. available storage [14]

1.2.2 Variety

The volume of Big Data phenomena introduces another challenge: the variety of the
data. Data has become complex with the burst of smart phone devices, sensors, social
media and other technologies. This complexity is because the data includes not only
the conventional data, but also raw, semi structured and unstructured data [16]. The
problem with such kind of data is the traditional database technology can struggle to
store and analyze this data to get understanding and insight from the contents of these
logs. Data variety will not be possible to handle with the traditional analytics plat-
forms. However the success of an organization will depend on its ability to discover the
insights from different kinds of data available today. To get benefit from the Big Data
opportunity, enterprises should be able to analyze all types of data.

1.2.3 Velocity

Velocity ”describes the frequency when the data is produced, captured and shared” [16].
Basically, organizations analyze data using batch processing [17] (Figure 1.1). ”Batch
processing [15] is the execution of a series of programs on a computer without manual
intervention. This is in opposite to interactive programs which push the user for such
input”. The flood sources of Big Data such as social media, streaming and smart phone
applications breaks down the batch process. The data is now streaming continuously
into the server in real time. So the traditional existing system of data analysis should
be reconstructed by adopting new infrastructure, we will see in the next sections the
components of Big Data platform.

There are many examples of Big Data in our daily life, including but not limited to:

• 30 billion RFID (radio frequency ID) tags produced/year.

4 CHAPTER 1. BIG DATA

• 10,000 payment card transactions are made every second around the world.

• Walmart handles more than 1 million customer transactions an hour.

• 340 million tweets are sent per day. That’s nearly 4,000 tweets per second. Bin
Laden’s death: 5106 tweets/second.

• Facebook has more than 901 million active users generating social interaction data.

• More than 5 billion people are calling, texting, tweeting and browsing web sites on
mobile phones.

• Falcon Credit Card Fraud Detection System protects 2.1 billion active accounts
world-wide.

• Large Hadron Collider generates 40 terabytes/second

• Airbus 380 has 1 billion lines of code each engine generate 10 TB of data every 30
minutes.

• Oil drilling platforms have 20k to 40k sensors.

1.3 Big Data challenges

Big Data has common challenges. Such challenges are, not limited to, heterogeneity,
timeliness, scale, complexity, and privacy problems which impede progress at all phases
of analysis. The information in this section largely comes from [9].

• Heterogeneity most of data today is produced in an unstructured format, such
as text or video. However, machine analysis algorithms expect homogeneous data,
and cannot understand unstructured data. It is a challenge to convert such data
into a structured format for further analysis.

• Timeliness is a challenge associated with Big Data. It is a challenge to capture
and link the required data as it happens and deliver that to the right people in
real-time.

• Scale and complexity is another challenge to store and analyze data with given
its size and using traditional computational capacity resources.

• Privacy is another challenging concern that increases the public’s fear regarding
their personal data. However, there are strict laws and regulatory compliance gov-
erning what can and cannot be done with personal data, there is apprehension of
inappropriate use of personal data, particularly through linking and the accumula-
tion of data from multiple sources. Managing privacy is an effective problem which
must be considered seriously to return the promise of Big Data.

1.4. BIG DATA OPPORTUNITIES FOR EMERGING DOMAINS 5

1.4 Big Data opportunities for emerging domains

Big Data has potential benefits [3]. The challenges with Big Data are bounded if it is
compared to the potential benefits, which are bounded if we are working hardly and try
to make connection between these huge available data.

Through comprehensive analysis of the wide volumes of data that are becoming
available, there is a potential for rapid developing in many disciplines. But before that
these technical challenges described previously and others must be fixed before this
potential can be achieved fully. This section will view the potential benefits of Big Data
in several domains. Much of this section based on [3, 4, 5, 6, 9]

• Scientific research, discovery and education have been altered and reformed by
Big Data [4]. In the biological sciences, for example, there is now orientation to
computerized biology which is known as bio-informatics domain. Biologists use
the tools of data analytic such as advanced algorithms, pattern recognition, data
mining, machine learning, and data visualization as well as new computation tech-
nology approaches to conclude and validate the accuracy of the tests and increase
the speed of experiments of related biological systems.

• It is widely believed that the use of smart health prevents disease and minimizes
the overall cost of health care while improving its quality [5]. This demand is
deployed by making care more preventive and personalized and basing it on real
time home-based continuous monitoring. McKinsey shows an estimation [3] that a
savings of 300 billion dollars every year through applying smart health care in the
US alone.

• Big Data also has the potential to improve education [6]. For example, a recent
quantitative comparison study developed for 35 charter schools (charter schools are
a kind of school developed to serve as an R&D engine for traditional public schools)
in New York has found that one of the best five policies related with ”measurable
academic effectiveness” was the use of data to guide instruction [8]. The study
was collecting performance of student for different education levels starting from
primary school until university. This is helped to develop several models. Efforts to
digitalized the education and using web deployment will produce a large quantity
of detailed data about students’ performance.

• In addition, there have been shown the benefit of Big Data for several domains.
Such domains are smart transportation [7], urban planning, financial risk analysis
system, protecting the environment and security and computer security and much
more.

• Employees and engineering also benefit from Big Data. McKinsey [3] predicts a
great outcome of Big Data in employment sector, where 140,000-190,000 employees
with deep analytical experience will be needed in the US; additionally, 1.5 million
managers will need to become data-literate.

6 CHAPTER 1. BIG DATA

1.5 Big Data supply chain

Big Data supply chain shows how an organization gathering, managing, processing,
analyzing and acting on data within a particular time for large data sets (Figure 1.3).
Our interest in this thesis is on the hardware related components like platform in order
to shed light and discuss their challenges with Big Data applications. The information
in this section largely comes from[11].

Figure 1.3: Big Data supply chain based on [11]

There are several examples of Big Data platforms, following the components of the
IBM and Oracle Big Data platform that addresses the spectrum of Big Data business
challenges are presented. The trend of the IBM Big Data platform provides the ability
to easily adapt it’s components to the existence enterprise information architectures.
Figure 1.4 shows the components of IBM Big Data platform [10].

The common components of IBM Big Data platform are divided into two approaches,
one is InfoSphere Streams and the other is InfoSphere BigInsight. Both approaches are
designed for Big Data analytics but the first approach is for data in motion and the
second is for data at rest [10, 11]:

• Visualization and Discovery: discover, explore, understand, search, gather and
navigate different sources of data.

• Hadoop-based Analytics: store and analyzed any type of data (structured, semi
and unstructured) in Hadoop engine which has a potential to lower the cost of
processing and analyzing massive volumes of data.

• Stream Computing: analyze massive volumes of streaming data with ultra low
latency to take action in real-time.

• Data Warehousing: store and analyze large amount of structured information with
deep deliver insight for system operational analytics.

The services that supporting the platform are:

1.5. BIG DATA SUPPLY CHAIN 7

Figure 1.4: IBM Big Data platform based on [10]

Figure 1.5: Oracle Big Data platform based on [12]

• Accelerators: performing pre-packaged analytical and application accelerators.

• Application Development: control the process of developing Big Data applications.

• Information Integration and Governance: integrate, protect, cleanse, govern data
quality, deliver trusted information and manage information life cycle.

• Systems Management: monitor and manage a Big Data system for secure and
optimized performance.

Oracle offers a broad and integrated Big Data platform. It has potential, like IBM, to
integrate the platform with existing deployed enterprise data analysis system. Further-
more, it helps to acquire and organize the diverse data sources and analyze them to find
new insights. The infrastructures of Oracle Big Data platform cover data acquisition,
data organization and data analysis (Figure 1.5). During the acquisition and organi-
zation phase, distributed parallel processing architectures adopted to process data sets
[12]. There are different technology for real-time distributed parallel processing. Apache
Hadoop and Map Reduce are common technologies that organize and process large data

8 CHAPTER 1. BIG DATA

sets. Afterward, when the data is discovered and organized, it can be analyzed. Differ-
ent methodology and tools are used for analyzing these data sets for example, statistical
analysis using spreadsheets.

Bibliography

[1] National Institute of Standards and Technology (NIST)

[2] Book: Charis Eaton, Tom Deutsch, Dirk Deroos, George Lapis, Paul Zikopoulos.
Understanding Big Data. IBM. 2012.

[3] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela Hung Byers. Big data: The next frontier for in-
novation, competition, and productivity. McKinsey Global Institute. 2011.

[4] Advancing Discovery in Science and Engineering. Computing Community Consor-
tium. 2011.

[5] Smart Health and Wellbeing. Computing Community Consortium. 2011.

[6] Advancing Personalized Education. Computing Community Consortium. 2011.

[7] A Sustainable Future. Computing Community Consortium. 2011.

[8] Will Dobbie, Roland G. Fryer, Jr.Harvard. Getting Beneath the Veil of Effective
Schools: Evidence from New York City. University November 2011.

[9] Alexandros Labrinidis, Ann Arbor. Challenges and Opportunities with Big Data.
2012.

[10] Book: Paul Zikopoulos, Dirk Deroos, Krishnan Parasuraman, Thomas Deutsch,
David Corrigan, James Giles. Harness The Power of Big Data. IBM Big Data Plat-
form. 2013.

[11] Book: Planning for Big Data. OReilly Radar Team. ISBN: 978-1-449-32967-9 March
2012.

[12] Oracle: Big Data for Enterprise. January 2012.

[13] Sachchidanand Singh and Nirmala Singh. Big Data Analytics. International Con-
ference on Communication. Oct 2012.

[14] http://www.idc.com/

[15] Batch processing. http://www.wikipedia.org/wiki/Batch-processing

[16] R Ray Wang. Mondays Musings: Beyond The Three Vs of Big Data Viscosity and
Virality. 2012.

[17] Diya Soubra. The 3Vs that define Big Data. posted on Data Science Central. 2012.
http://www.datasciencecentral.com/forum/topics/the-3vs-that-define-big-data

9

10 CHAPTER 1. BIG DATA

Computer architectures of Big

Data 2
Parallel computing is a sort of computation where a task is divided into sub tasks that can
be solved concurrently on multiple processing elements. Each sub task is then divided
into a series of instructions. Instructions from each sub task execute simultaneously on
different processing elements [13].

There are several different forms of parallelism: instruction-level, data-, and task-
level parallelism. Parallel computing approaches can be approximately categorized as
either data-intensive or computation-intensive [14].

Data-intensive computing is a data parallel approach used to process huge amount
of data basically terabyte or petabytes in size, under which Big Data can be classified.
Whereas computationally-intensive computing is another approach which dedicates the
majority of the execution time to computational requirements and typically requires
small volumes of data [14].

The characteristics of Big Data are represented by the 3Vs (volume, velocity and va-
riety) as mentioned earlier in Section 1.2 pose fundamental challenges for businesses and
academia in many different domains. Such challenges are forming because the Big Data
supply chain is not in line with the technologies that are currently available. Big Data
applications require such peta, exa and zetta FLOPS-level machine. As a consequence
the architectures used in the computer in terms of CPU, memory and interconnect should
be taken into consideration.

Fortunately, research and the industry landscapes have started to change hardware,
software and existing computational techniques to address these issues since the com-
plexity, speed and scalability of data production reached available hardware and software
limits. According to HPC Advisory Council, exaFLOPS (1018 operations) system will
be built between 2018 and 2020 [15].

The TOP500 list certified Titan in November 2012 as the world’s fastest supercom-
puter per the LINPACK benchmark, at 17.59 petaFLOPS. It was developed by Cray Inc.
combines AMD Opteron processors with ”Kepler” NVIDIA Tesla graphic processing unit
(GPU) technologies [16, 17].

Nevertheless, existing data-intensive computational techniques can be applied for Big
Data applications but with sophisticated algorithms that can be compatible or solvable
for current Big Data problems. For example, a relational databases management system
(RDMS) relies on structured data while Big Data is unstructured, therefore, developers
are migrating Big Data to parallel database management systems instead. Similarly, SQL
a standard popular language used to express various database queries is being replaced
with NoSQL for Big Data application.

Parallelism is a key design feature for Big Data computing at various levels of ab-
straction. For an effective use of the available hardware parallelism on systems, several
parallel programming models and languages are developing. To this end, various tech-

11

12 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

nologies are being introduced to exploit parallelism. To name a few: CUDA, OpenCL,
OpenMP.

This chapter gives background information about todays parallel computer architec-
tures. We explores distinct parallel processor architectures. In order to cover relevant
components of the most conventional processor architectures available today, we expose
core organization, memory architectures and their associated solutions. Much of the fol-
lowing sections present the information about computer architecture is basically derived
from computer architectures books like [10].

2.1 Processor

2.1.1 Multi-core processors

The tendency to replicate multiple processor cores on a single die established when
the application developers were heavily looking for advanced hardware technologies to
boost the applications performance while keeping costs at a minimum. The paradigm to
increase performance was by increasing the clock frequency per a single-core processor.
However increasing clock frequency implied increasing in power consumption, therefore,
the efficiency of the system in term of performance per watt and the problem of heat
dissipation from transistors hampered the continuation of this paradigm. An estimation
and projections technology shows that clock-speeds will remain near 1-2 GHz [20].

This problem led us to scale parallelism by increasing the number of processing units
per system (i.e. multi-core processors). Therefore, the migration in 2001 to the first
general-purpose processor that dedicate multiple processing cores on the same chip was
produced the POWER4 processor of IBM.

Multi-core processor is an integrated circuit where two or multiple independent pro-
cessing units (cores) plug onto a single processor (chip). The processors in multi-core
architectures can be considered either as a homogeneous or a heterogeneous.

Figure 2.1: Multi-core architecture

2.2. MEMORY SYSTEMS AND CACHE HIERARCHY 13

A homogeneous architecture Figure 2.1 (a) consists of two or more identical cores. An
example of a homogeneous multi-core processor is the Intel Core 2 Duo. In contrast, a
heterogeneous architecture Figure 2.1 (b) consists of two or more different kinds of cores
that may differ in functionality and performance. The most wide spread example of a
heterogeneous multi-core processor is the Cell BE architecture, developed by IBM, Sony
and Toshiba and has been used in gaming and video devices like in Sony PlayStation 3.

The tendency of multi-core processors for a better utilization of hardware resources by
effective exploitation of simultaneous multithreading (SMT) (Intel brand names hyper-
threading) within the applications, which is increasing applications overall system per-
formance.

The performance of multi-core processors is bounded by the memory wall problem.
The memory wall is defined as the gap between the speed of the processors and the speed
of memory. However, the latency gap is minimized by increasing the number of cores
and emerging the on-chip memory technology.

2.1.2 Graphics processors GPGPU

Other paradigm shifts towards increasing parallelism that is attracting hardware devel-
opers during the past few years is General Purpose Graphics Processing Unit (GPGPU).

Recently, GPU is being used for the calculation of computer graphics whereas GPU
was initially designed to exploit and accelerate the memory-intensive calculation of tex-
ture mapping and geometric like rotation calculation [18, 21]. GPU is physically located
in the personal computer on a video card or on the motherboard. The computation
nature behind GPU have rapidly encouraged hardware developers to adapt GPUs for
non-graphical calculations. Simply, they developed heterogeneous computations applica-
tions using both the CPU and GPU. Both NVIDIA [18] and ATI [19] are the main GPU
vendors landscape. They develop different GPU models, platforms and programming
model in order to employ parallel computing architectures to utilize the GPU’s stream
processors. NVIDIA developed CUDA programming models and ATI produced CTM.

Besides, GPUs are widely involved in large-scale computers. According to Top5oo 3
of the 10 most powerful supercomputers in the world use GPU technology [17].

2.2 Memory systems and cache hierarchy

Today microprocessor memory architecture consists of a number of processors connecting
with registers, caches and memory. Over the years, the size of the memory has dramat-
ically increased because of the new technology. The speed of the memory is increasing
by 10% per year [10]. While the performance of a microprocessor has improved and the
processor speed has increased about 55% per year. The processor-memory performance
gap has increased and this problem is referred to as memory wall [10]. Therefore the
computer designers conducted the memory hierarchy to hide the latency of accessing
large memory. Level 1 and 2 caches (SRAM) are the fastest, smallest, and most expen-
sive memory modules in the system. While the main memory (DRAM) is much slower
and much larger than the caches, and it is located far away from the processors. External

14 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

storage is far larger than the cache, and the main memory but also operates at extremely
slow rates relative to processor speeds.

Each processor in the typical architecture has an accompanying level 1 (L1) for both
data and instruction cache. Level 2 (L2) cache may be implemented among the processors
either as private or share. Some architecture considers an ample on-chip level 3 memory.
When the processor requests data from memory, the level 1 (L1) cache is the first place
to serve this request. If the requested data does not exist in the L1 cache, then the cache
will request the data form the subsequent levels of the cache. If the requested data does
not exist in any of the cache levels, then the main memory receives the request. After
that the main memory will forward the requested data to the higher levels of the memory
hierarchy and to the processor. In order to maximize the chance that the requested data
is existing in the highest level of the memory hierarchy, the level 1 cache must have the
appropriate data before the processor requests it. To achieve this, a replacement policy
is required. Replacement policy decides which data to keep and which data to evict from
the caches. The following explain the replacement policy and cache organization.

2.2.1 Replacement policy and cache organization

Initially when a processor requests data or instructions from a cache, there are two
possibilities: either the requested data exists in a cache and (this attempt is referred as
hit) the processor can immediately access the data, or the requested data does not exist
in a cache (this attempt will fail and miss cache occur) and the processor must wait until
the cache forwards the request to the lower level of the memory hierarchy. Replacement
policy decides how the cache reacts to a cache miss.

Two principles are behind the replacement policy: temporal locality and special
locality. Temporal locality states that the data that is currently being accessed has a
high probability that it will be accessed again during the lifetime of the program. The
temporal locality is related to a time. While the special locality on the other hand
depends on the location of a data. Special locality states that when a processor accesses
a particular data there is a high probability that a processor will access neighboring
locations during the lifetime of the program. There are several replacement policies.
Least-recently-used (LRU) is one example. LRU keeps track of a data in a cache. The
data that has not been used for long time is most likely not needed in the near future.
Therefore when a new data enters a cache, the LRU evicts the old data that is least
recently used by a processor.

Cache organizations basically vary between direct mapped and N-way set associative.
Direct mapping strategy maps each location in main memory to exactly one entry in the
cache. This strategy has fast access and it does not have a replacement policy. The other
type of a cache organization is N-way set associative. This strategy maps each location
in main memory to one of N places in the cache. There might be 2, 4 or 8 ... -way set
associative cache design. Direct map is 1-way set associative.

2.2.2 Processing In Memory (PIM) technology

PIM, sometimes called a processor in memory, is the integration of a core processor,
with usually, a DRAM (dynamic random access memory) on a single die. Sometimes

2.2. MEMORY SYSTEMS AND CACHE HIERARCHY 15

referred to as a PIM chip. Processing in memory is one approach to improve memory wall
problem by combining logic and memory on a single chip. The data-intensive architecture
(DIVA) project exploits PIM chips as smart memory coprocessors [12]. This technology
exploits considerable memory speedup. Jeffrey et. al stated that [12] PIM architecture
get its benefits from the implicit memory bandwidth for target several bandwidth-limited
applications, such applications are multimedia applications, pointer-based and sparse-
matrix computations. To demonstrate the benefit of PIM approach DIVA project used
PIM chips in their prototype system instead of standard DRAMs. Jeffrey et. al stated
that their work reported a speedup of 35x on a matrix transpose operation.

2.2.3 Reconfigurable cache technology

Current processor designs assign(50%- 80%) of the on-chip transistors to caches [1]. Big
Data applications like media processing and video encoding do not use these large caches
efficiently because of the streaming nature of data accesses and the large working sets in
these applications. Moreover, the real-time applications require guaranteed cache access
times, in a multithreading technology might not these application get these guarantees
because the memory references pattern have less temporal locality [2, 3, 6].

The cache configuration basically depends on the application requirements constrain,
like performance, power, area, or price which has led to the different cache design archi-
tecture can be seen in different processors [9]. There is no cache organizations achieves
all the requirements of all applications, therefore the approach of reconfigurable cache
memory is raised.

Researchers at MIT University, NC State, the University of Rochester and others
like at [1, 2, 3, 4, 5, 6, 7, 8, 9] have studied and proposed new cache organizations which
are referred to as reconfigurable caches. The concept of conventional reconfigurable
architectures is not new [1]. A reconfigurable architecture basically requires large changes
in both hardware and software. The configurable cache design of the aforementioned
researchers were extended a conventional cache design with minor changes in a hardware
and a software.

The research conducted in the reconfigurable caches can be categorized according to
the researcher’s major concerns. [1, 2, 3, 7, 9] are focused on cache utilization that is
leading to overall better system performance while [4, 5, 6] are focused on low power
consumption. For example, the finding of Ranganathan et. al [1] by using reconfigurable
caches for instruction reuse of media processing reported IPC (inter-process commu-
nication) improvements ranging from 1.04x to 1.20x in simulation across eight media
processing benchmarks. Likewise, Albonesi’s approach [4] demonstrated a 40% reduc-
tion in overall cache energy dissipation for 4-way set associative caches with less than 2%
overall performance degradation. While Chen et. al [8] proposed a model that improved
both the overall performance and energy consumption in embedded system.

Initially, the overall cache size is determined by multiplying the line size, the number
of sets, and the associativity [10]. The line size, the number of sets, and the associa-
tivity are the main design parameters of traditional caching techniques [7, 9, 10]. In
current cache design these parameters are static during the lifetime of the processor. In
order to reconfigure a cache, techniques must be developed to change one or all of these

16 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

parameters during program execution [7].

Changing the line size and the number of sets poses a problem [7]. Changing the
cache line size affects the number of tag bits. The cache line size and the number of tag
bits are inversely related [7, 10]. The cache looks in the tag fields to compare one tag with
another to find if the wanted data is located in the cache. Therefore the complexity of the
tag comparison model will increase dramatically if the number of tag bits is dynamically
changed. Nevertheless the same problem will accrue if the number of sets is varying too.
When the number of sets will change, the number of tag bits that is needed for each
cache line will also change. Therefore most researchers leave these two parameters (line
size and number of sets) static during a program life cycle while they have utilized a
variable associativity parameter to reconfigure a cache [1, 7].

2.2.4 Techniques for reconfigurable caches

Several studies and approaches like at [1, 4, 5, 7] have been conducted to reconfigure a
cache. In this section, we present these approaches and techniques in more detail and
we report their performance.

Ranganathan et. al [1]. developed an associative-based partitioning technique. Their
design dynamically divides the cache (SRAM) arrays to multiple partitions. These par-
titions can be used for different processor activities that is requiring storage. Two key
design challenges are determined: First, how to partition the cache SRAM array and
secondly, how to address the different partitions as to not affect the access time.

They exploit the conventional set-associative cache organization and they reconfigure
it with minor hardware and software changes. Figure 2.2 shows the block diagram of
conventional 2-way set-associative cache organization. A 2-way set-associative cache is
divided into 2 (data and tag) arrays and it has 2 ways either way 1 or way 2. The ”Tag”
part of the input address is sent to the comparators of all the 2 ways to check if there is
a match with any tags that might come from the tag array [1]. If a match occurs then
a hit is signaled on the output line and the data will move from the corresponding data
array and is sent onto the output data line. The ”Index” part of the input address is
used to index the 2 ways of the data and tag array [1].

The associative-based partitioning technique for reconfigurable cache as shown in Fig-
ure 2.2 is constructed on the conventional cache organization with a number of changes.
The modifications on the original design are colored in orange as shown in the Figure 2.3.
A reconfigurable cache with n partitions must duplicate the address input ”Address in”
n times and duplicate data out and hit/miss signals n times. A conventional cache with
n-ways can be dynamically reconfigured into n-partitions.

A special hardware register is required for the associative-based partitioning tech-
nique. This register is called the cache status register. It is responsible to track the
number and the sizes of the partitions and control the routing of the hit/miss signals [1].

Ranganathan et. al [1] used cache scrubbing technique for data consistency. This ap-
proach ensures that after reconfiguration, the correct data resides in a correct partition
or the data is moved from the cache to lower levels of memory. Scrubbing techniques use
the partitioning information in the cache status register. Another issue with reconfig-
urable cache organization is the detection mechanisms for deciding when to reconfigure.

2.2. MEMORY SYSTEMS AND CACHE HIERARCHY 17

Figure 2.2: Conventional cache organization based on [1]

Detection mechanism can be either software or hardware controlled.
A software controlled approach can be controlled through the compiler. Alternately,

a hardware controlled approach could use hardware support to automatically determine
when and how to change the partitions. Ranganathan et. al [1] used a software controlled
approach.

The results (using CACTI version 2.0 an analytical model of the cache access and
cycle time model) show that a reconfigurable cache organization can increase the cache
access time by between 1% and 15 %. They have concluded that the small number
of partitions (2-way), reconfigurable caches usually increase the access time over tra-
ditional cache (non-configurable) by less than 5% (4% for a 128KB cache and 1% for
a 1MB cache). While larger number of partitions (4-way and 8-way) have the ability
to increase the cache access time. For smaller cache sizes (128KB cache) the increased
access time is varying between 7-15% and 2-6% for the 1MB cache. They also evalu-
ated media processing applications and obtained an IPC (inter-process communication)
improvement ranging from 1.04X to 1.20X across eight different benchmarks [1].

Albonesi [4] developed a selective cache ways technique. Albonesi approach has the

18 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

Figure 2.3: Reconfigurable cache organization based on [1]

ability to disable a subset of the ways in a set associative cache when this cache does
it’s work, while the full cache stay working for more cache-intensive periods. Albonesi
attempted to reduce the cache energy wasting by utilizing a conventional set associative
cache design and exploited the principle of cache partitioning. Figure 2.4 shows the con-
ventional 4-way set associative cache. The data array is partitioned into four subarrays.
Each subarray is associated with its own decoder and the sense amplifier.

Moreover, there are two tag subarrays and they are also associated with its own
decoder and the sense amplifier.

A selective cache ways technique also partitions the data and the tag arrays into one or
more subarrays for each cache way. This technique requires minor software modifications
while several hardware modification is required [4]. The modifications on the original
design are colored in orange as shown in Figure 2.5. This figure shows a 4-way set
associative cache using selective cache ways. The ways 1-3 are similar to way 0 therefore
they are not depicted in this figure.

According to Albonesi [4] the following are the configurations that are required for
such design:

2.2. MEMORY SYSTEMS AND CACHE HIERARCHY 19

Figure 2.4: Conventional 4-way set associative cache based on [4]

• Decision logic and gating hardware for disabling the operation of particular ways.

• A software register, know as the Cache Way Select Register (CWSR), that inform
the hardware to enable/disable specific ways with specific instructions, WRCWSR
and RDCWSR, to write and read this register, respectively.

Figure 2.5: 4-way set associative cache using selective cache ways based on [4]

Albonesi stated that the selective cache partitioning technique can decrease the over-
all power consumption while produces high performance [7]. The results showed that a
40% reduction in overall cache energy wasting can be reported for 4-way set associative
caches and less than a 2% overall performance degradation.

20 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

Adam Spanberger [7] developed the tournament caching technique. The tournament
caching technique (TCA) has three modes of operation: normal mode, small tournament
mode and large tournament mode.

The simple idea behind TCA is to compare the current cache configuration to either
of these three modes configuration. These three different modes allow the cache to
dynamically change its size to save power while maintaining performance.

Tournament caching reduces power consumption by shutting down parts of the cache
without degrading performance. This technique utilizes a variable associativity param-
eter. Figure 2.6 depicts the working of the tournament cache technique. Each circle
performs a mode of operation, and each arrow performs a transition between modes [7].

To grasp the idea of tournament cache technique we explain in detail the work of
each mode. In normal mode, the tournament cache operates as a traditional cache would
operate and it is the initial state in the state diagram (Figure 2.6). In this mode the
number of consecutive misses is measured (miss saturation counter increases by 1 on
a cache miss, decreases by 1 on a cache hit and it never goes below 0). This number
(consecutive misses) suggests whether the cache enters the large tournament mode or
the small tournament mode.

If the miss saturation counter (transition ”E” in Figure 2.6) overcomes the max miss
saturation, the cache begins a large tournament mode. Alternately, the cache begins
small tournament mode if the tournament access counter (transition ”A” in Figure 2.6)
overcomes the accesses between tournaments.

In the large mode, the cache compares the current cache configuration to a larger
cache configuration by enabling extra way and the number of hits in this extra way
is measured. If the tournament hit counter (transition ”F” in Figure 2.6) overcomes
the hits to win, the cache reconfigures to the larger cache by enabling extra way. If
the tournament access counter (transition ”D” in Figure 2.6) overcomes the accesses
between tournaments, disables this extra way and keeps the existing configuration and
return to normal mode.

In the small mode, the number of cache hits in the least recently used (LRU) cache
block is measured. If the tournament hit counter (transition ”B” in Figure 2.6) over-
comes the hits to win, the existing configuration will be hold and return to normal
mode. Whilst, if the tournament access counter (transition ”C” in Figure 2.6) over-
comes the accesses between tournaments, it reconfigures to the smaller cache size by one
less associative than the existing associative and return to normal mode.

The benchmark results showed that tournament caching in the L1 instruction cache
decreased overall energy consumption by an average of 8.2% while the delay was increased
by 0.25%.

Zhou et.al [5] developed an adaptive mode control technique. This design allows
the processor to shut down specific lines of the cache in order to save power instead of
shutting down large partitions like what Albonesi did [4]. Their model requires a line idle
counter (LIC) and adaptive mode control to monitor accesses to each line of the cache. By
monitoring this, they can dynamically shut down the lines that have not been used for a
specified period [5]. Their approach shows large savings in power consumption, however,
the LIC and the adaptive mode control to check the counters produced considerable
overhead [7]. Table 2.1 shows the summary of the cache reconfigurable techniques of the

2.2. MEMORY SYSTEMS AND CACHE HIERARCHY 21

Figure 2.6: Tournament cache technique state digram based on[7]

researchers[1, 4, 7].

22 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

Table 2.1: Summary of different reconfigurable cache techniques

Researcher Technique Reconfigurable
cache level

Addressing
scheme

Data con-
sistency
technique

Performance Power con-
sumption

Detection
mechanism
when to
reconfigure

Ranganathan
et.al [1]

Associative-
based parti-
tioning

Any level of
caches Trade
off in terms
of the size,
granularity,
access time,
and usage
of the par-
titions will
determine
the level to
partition. [1]
reconfigured
L1 cache in
their design

based on
cache set-
associative

cache scrub-
bing

Reco. cache
can increase
the cache ac-
cess time by
between 1%
and 15 %

- Software
control

Almonesi [4] Selective
cache ways

- based on
cache set-
associative

cache scrub-
bing

- 40% re-
duction
in overall
cache energy
dissipation

Have special
instructions
inserted in
the code
that explic-
itly changes
the configu-
ration

Adam Span-
berger [7]

Tournament
caching
technique

[7] recon-
figured L1
cache in
their design

based on
cache set-
associative

- achieve op-
timal high
performance
by mini-
mizing the
energy cache
consumption

decreased
overall
energy con-
sumption by
an average
of 8.2%

tournament
three modes
scheme to
detect when
reconfigure

Bibliography

[1] Ranganathan, Parthasarathy, Sarita Adve, and Norman Jouppi. Reconfigurable
Caches and their Application to Media Processing. Proceedings of the 27th Inter-
national Symposium on Computer Architecture 2000.

[2] Chiou, Derek, Larry Rudoplh, Srinivas Devadas and Boon Ang. Dynamic Cache
Partitioning via Columnization. MIT Laboratory for Computer Science Computation
Structures Group. 1999.

[3] G. Edward Suh, Larry Rudolph and Srinivas Devadas Laboratory for Computer
Science. MIT. Dynamic Cache Partitioning for Simultaneous Multithreading Systems.
2001.

[4] Albonesi, David. Selective Cache Ways: On-Demand Cache Resource Allocation.
Journal of Instruction-Level Parallelism. 2000.

[5] Zhou, Huiyang, Mark Toburen, Eric Rotenburg, and Thomas Conte. Adaptive Mode
Control: A Static-Power-Efficient Cache Design. Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques 2001.

[6] Matthew Ziegler, Adam Spanberger, Ganesh Pai, Mircea Stan, Kevin Skadron. Dy-
namic Way Allocation for High Performance, Low Power Caches. Departments of ECE
and Computer Science, University of Virginia.

[7] Thesis: Adam Spanberger. Designing a Dynamically Reconfigurable Cache for High
Performance and Low Power. 2002.

[8] Chen, L., Zou, X., Lei, J., Liu, Z. Dynamically Reconfigurable Cache for Low-Power
Embedded System. Third International Conference on Natural Computation. 2007.

[9] Santana Gil, A. D, Benavides Benitez, J.I., Hernandez C., M. Herruzo G., E. Re-
configurable Cache Implemented on an FPGA. International Conference on Reconfig-
urable Computing. 2010.

[10] Book: Heuring, Vincent and Harry Jordan. Computer Systems Design and Archi-
tecture. Massachusetts: Addison-Wesley, 1997.

[11] Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues. The Characterization of
Data Intensive Memory Workloads on Distributed PIM Systems.

[12] Jeffrey Draper and J. Tim Barrett and Jeff Sondeen and Sumit Mediratta and Chang
Woo Kang and Ihn Kim and Gokhan Daglikoca. A Prototype Processing-In-Memory
(PIM) Chip for the Data-Intensive Architecture (DIVA) System, 2002.

[13] Blaise Barney, Lawrence Livermore. Introduction to Parallel Computing. National
Laboratory

23

24 CHAPTER 2. COMPUTER ARCHITECTURES OF BIG DATA

[14] Anthony M. Middleton, Ph.D. LexisNexis Risk Solutions. HPCC Systems: Data
Intensive Supercomputing Solutions. April 2011.

[15] Gilad Shainer, Brian Sparks, Richard Graham. Towards Exasclae computing. HPC
Advisory Council.

[16] Tibken, Shara. Titan supercomputer debuts for open scientific research Cutting
Edge - CNET News. News.cnet.com. Retrieved 2013-02-28.

[17] TOP500 Supercomputer Sites. http://top500.org/blog/lists/2012/11/press-
release/. Retrieved 2013-03-22.

[18] NVIDIA. http://www.nvidia.co.uk/page/home.html

[19] AMD. http://www.amd.com/uk/Pages/AMDHomePage.aspx

[20] BOOK: Palma, J.M.L.M.; Dayd, M.; Marques, O.; Lopes, J.C.. High Performance
Computing for Computational Science – VECPAR 2010: 9th

[21] GPU. http://www.wikipedia.org/wiki/GPU

Big Data in bioinformatics 3
We have seen in Section 1.4 the potential benefits of Big Data in several domains. To
explore how Big Data can create potential value and show the technical challenges ac-
companied with Big Data applications, we have decided to choose an application from
the bioinformatics domain: the Smith Waterman genetic database search tool. The
continuous increase in the volume of data in genetic databases leads to the exponential
increase in the time required for comparing these genetic sequences. The chapter starts
with an overview of the basics of molecular biology. Basic knowledge of the subjects
such as DNA and protein construction are important to understand. Such knowledge
is important to understand the relevance of sequence alignment: the algorithm of the
Smith Waterman database search tool for finding optimal sequence alignments. Much
of this thesis is based on this algorithm.

Bioinformatics is one of the relevant Big Data application domains. Bioinformatics
is a field that develops computational techniques to analyze the information of biological
data (molecular data). There are three major aims of bioinformatics [19]: First, bioin-
formatics arranges data that helps the researchers to find the required data and deliver
the new produced data. For example, 3D model simulation is used to visualize biological
structures. The second aim is to produce software tools that help the researchers in the
analysis of the relevant data. For example, having a DNA query sequence, it will be
interested to find and compare with existing reported and analyzed sequences. FASTA
and SSearch are tools developed for the alignment of genetic sequences. The third aim
is to use these tools to analyze the results.

In molecular biology, bioinformatics defines itself as a discipline [19] and it includes
several subject domains such as structural biology, gene expression and genetics stud-
ies [20]. In the sector of the structural biology, bioinformatics aids in the simulation
and modeling of protein structures, molecular interactions and DNA and RNA struc-
tures. While in the sector of genetics it helps by understanding and analyzing the gene
and protein sequencing by using the software tools and reporting any relevant observed
information.

”Biological data are being produced at a phenomenal rate” [1, 19] which results in
enormous quantity and variety of information that is being produced. For example as of
April 2013, the GenBank repository of nucleic acid sequences contains about 164 millions
entries [3] and the Swiss-Prot database of protein sequences contains about (release May
2013) 540 thousand sequence entries [4]. According to [5] these databases, on average,
are doubling in size every 15 months. As a result of this burst in data, computers have
become substantial to biological research as they are ideal to process huge amount of
data.

25

26 CHAPTER 3. BIG DATA IN BIOINFORMATICS

Figure 3.1: Representation of cell, chromosome and DNA based on [12]

3.1 Cells, DNA and proteins

Cells are ”the structural and functional units of all life forms” [17]. Organisms such as
bacteria consist of a single cell while humans have around 75 trillion cells. Cells vary in
appearance, size, complexity and functionality Figure 3.1. Virtually all cells of organisms
share a common component: genetic information DNA (Deoxyribo Nucleic Acid). DNA
is a double helix shaped molecule. On each backbone there are four types of nucleotides,
namely Adenine (A), Thymine (T), Cytosine (C) and Guanine (G). Adenine is always
paired with thymine; while cytosine couples with guanine. DNA is represented as a
sequence of the alphabet (A, C, G, T) [17].

The presence of proteins is important for cells to survive and reproduce. Pro-
teins are created within the cell itself after a complex biological operation. This op-
eration is directed by the genes producing those proteins. Humans have approxi-
mately between 20,000 and 25,000 different genes. The produced protein can con-
sist of 20 types of amino acids and can be represented as strings of an alphabet
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. The table below shows the standard
amino acid abbreviations which corresponds to these letters.

3.2. GENETIC SEQUENCES ALIGNMENT 27

Table 3.1: Standard 20 amino acid abbreviations

Amino Acid 3-letters 1-letter Amino Acid 3-letters 1-letter

Alanine Ala A Arginine Arg R

Asparagine Asn N Aspartic acid Asp D

Cysteine Cys C Glutamic acid Glu E

Glutamine Gln Q Glycine Gly G

Histidine His H Isoleucine Ile I

Leucine Leu L Lysine Lys K

Methionine Met M Phenylalanine Phe F

Proline Pro P Serine Ser S

Threonine Thr T Tryptophan Trp W

Tyrosine Tyr Y Valine Val V

3.2 Genetic sequences alignment

Genetic sequence alignment is defined as an arrangement of 2 or more sequences (DNA,
proteins or others) to identify the similar regions between these sequences and to in-
dicate the genetic relatedness between the organisms [17]. Typically, the similarity or
differences between these sequences may be a consequence of functional, structural or
evolutionary relationship between the sequences [14]. The similar sequences, in turn,
share a common ancestral sequence and their relative differences are the result of mu-
tations. To maximize the degree of similarity and minimize the mismatch between two
sequences, inserts, deletions or substitutions (known by the term indel) can be used. The
following is an example of two possible alignments. The base sequences are ACACACTA
and AGCACACA:

Alignment 1 (without gap)
A C A C A C T A
A G C A C A C A

Alignment 2 (with gap)
T A C C A G T - -
- A G C A C A C A

We can see that the alignment with gaps is more relevant to the similarities among
the sequences. In the first alignment (without gaps), there are two similar items in the
sequences which are A in the beginning and A in the end of the sequences. However, in
the second alignment (with gaps) three similar items A, C and A are aligned. Note that,
many other alignments are possible. In the following alignment (alignment 3) 7 similar

28 CHAPTER 3. BIG DATA IN BIOINFORMATICS

items are aligned.
Alignment 3

A - C A C A C T A
A G C A C A C - A

Obviously it makes sense to devise a way to rate and then select the best alignment(s).
An easy way to achieve this is using a scoring scheme. The best match is defined using
the formula bellow:

∑L
i=1

S(X(i), Y (i))

Where L is the length of the alignment, S is a scoring function, and X(i) and Y(i)
are the aligned sequences

The parameters can be set as follows:

• if two items are identical a match occurs and the scoring function S(X(i),Y(i)) gives
a value of, for example, +2.

• if two items are different a mismatch occurs and the scoring function S(X(i),Y(i))
gives a value of, for example, -1.

• for gap opening the scoring function S (X(i), -) or S (-, Y(i)) gives a value of, for
example, -3.

Using the aforementioned scoring system, the first none gapped alignment scores
+2-1-1-1-1-1-1+2=-2, the second gapped alignment scores -3+2-1+2+2-1-1-3-3=-6 and
the last alignment scores +2-3+2+2+2+2+2-3+2=8. We can see that the score for
alignment 3 is 8 which is larger than the score of alignment 2 which is -6. Alignment 3
achieves a better matching.

Scoring scheme for DNA can be performed out of 4 letters and 20 letters for proteins
(amino acids). For amino acids a standard 20 * 20 triangular substitution scoring matrix
such as BLOSUM62 or PAM is used as shown in Figure 3.2.

3.3 DNA and protein databases

Many databases and search engines for biological data, such as protein and DNA se-
quences, are available. The major DNA database sequences are the International Nu-
cleotide Sequence Databases (INSD). INSD have been developed and maintained collab-
oratively between DNA Data Bank of Japan (Japan), GenBank (USA) and the European
Nucleotide Archive (UK) for over 18 years

UniProt (Universal Protein Resource) is a protein sequence database; it contains
no DNA data. Uniprot contains two sub-databases: Swiss-Prot and TrEMBL. The
search engine in the UniProt database is SSEARCH. Our focus in this thesis is on
the Smith Waterman search tool for protein sequences. During the benchmarking in
this thesis we compare the query sequences with Uniprot database sequences and use
SSEARCH as reference for correctness of the maximum score of Smith Waterman for
relevant sequences. UniProt/Swiss-Prot release June 2013 contains 540261 sequence

3.3. DNA AND PROTEIN DATABASES 29

Figure 3.2: Blosum62 scoring matrix

Figure 3.3: UniProt entries based on [15]

entries (Figure 3.3). The average sequence length in UniProt/Swiss-Prot is 355 amino
acids. The shortest sequence is 2 amino acids and the longest sequence is 35213 amino
acids (see Figure 3.4).

Smith Waterman sequence alignment algorithm

The Smith Waterman algorithm was first proposed by Temple Smith and Michael Water-
man in 1981 [8]. The Smith Waterman algorithm compares and aligns common regions
of similarity between two strings of nucleotide (DNA) or protein sequences (amino acid)
[8]. Instead of looking at the complete sequence, the Smith Waterman method performs
optimal local alignment between two sequences. This algorithm is used by biologists to
search meaningful sequences in biological databases.

30 CHAPTER 3. BIG DATA IN BIOINFORMATICS

Figure 3.4: Sequence length based on [15]

The Smith Waterman algorithm basically proposed a linear gap penalty function
which assigns fixed gap penalty parameters for aligning different residue positions. One
year later (1982), Gotoh [10, 11] had proposed an affine gap penalty function for the
Smith Waterman algorithm. The affine gap penalty function assigns an initial penalty
for a gap opening, and an additional penalty for gap extensions.

The optimized Smith Waterman algorithm [8] can be gained computationally using
Dynamic Programming (DP) [9]. Smith Waterman algorithm has three phases: ini-
tialization, matrix fill and trace back. Consider a matrix H constructed with a query

sequence of length m lined up against the columns of a matrix, and a database sequence
of length n lined up against the rows. With the equations bellow, the H matrix will be
built.

Initialization

The top row and leftmost column of matrix H are initialized to 0. Then a matrix H has
(m + 1) * (n + 1) dimensions. Figure 3.5 depicts the initialization step.

Hi,0 = 0, i ≤ n

H0,j = 0, j ≤ m

3.3. DNA AND PROTEIN DATABASES 31

Matrix Fill

The H matrix is filled by calculating score for each cell with the recurrent Equations 3.1,
3.2 and 3.3. Three separate scores are calculated: the F (Equation 3.2) matrix is the
score resulting from vertical (upper) element with gap penalty and E matrix (Equation
3.3) is the score resulting from horizontal (left) element with gap penalty and W is a
match/mismatch (diagonal) score (similarity score) between the intersecting elements of
the query and database sequences (W is the substitution matrix such as Blosum62 for
protein alignment). The Ginit and Gext are the gap opening and extension penalties,
respectively. The maximum of these three scores (or a 0) is assigned to the cell. The
matrix fill step is the most computationally intensive task, accelerating Smith Waterman
is mainly proposed by speeding up this step.

Hi,j = max

0
Ei,j ,

Fi,j ,

Hi−1,j−1 +W (qi, dj)

(3.1)

Fi,j = max

{

Fi−1,j −Gext,

Hi−1,j −Ginit
(3.2)

Ei,j = max

{

Ei,j−1 −Gext,

Hi,j−1 −Ginit,
(3.3)

Trace Back

After the H matrix is completely filled, the trace back step starts at the maximum value
in the matrix. The optimal local alignment can be found by tracing back the path
resulting in the maximum value in the matrix. This step will be terminated if 0 is
reached in the matrix. The resulting alignment depends on the path. A diagonal trace
back results in a match, a vertical trace back results in an indel insert in the database
sequence, a horizontal trace back results in an indel insert in the query sequence.

The example bellow shows the three steps of Smith Waterman algorithm for
two sequences: the query sequence is AGCACACA and the database sequence is
ACACACTA. The match value is 2, the mismatch is -1, the Ginit is -1 and the Gext is
-1. The best alignment is
A-CACACTA
AGCACAC-A

All three matrices E, F and H, when they are calculated, are dependent on each
other (Figure 3.6, 3.7 and 3.8). Each cell in the matrix F is required to compare the
maximum values between the previous calculated cell in F, and the previous calculated
cell in H. The same scenario is for the E matrix, every cell in the E matrix is required
to compare the maximum values between the previous by calculated cell in E and the
previous calculated cell in the H matrix. In the Figure 3.8 we can see the trace back
starts at the cell (8,8) which contains the maximum number in the matrix which is 12

32 CHAPTER 3. BIG DATA IN BIOINFORMATICS

Figure 3.5: Matrix initialization

Figure 3.6: The F matrix

and trace it back to the cell (7,7) because it comes from the diagonal (for convenient
trace back the letters H, F, E are inserted beside each number in the cells to indicate
from where the maximum filled number came).

Figure 3.7: The E matrix

3.3. DNA AND PROTEIN DATABASES 33

Figure 3.8: The H matrix

34 CHAPTER 3. BIG DATA IN BIOINFORMATICS

Bibliography

[1] Reichhardt T. It’s sink or swim as a tidal wave of data approaches. Nature 1999.

[2] Nabeel Ahmad1, Akhilesh Bind, and Sanjiv Kumar Maheshwari. Bioinformatics
New Era: Introduction and Overview.Plant Molecular Biology Lab, Department of
Biotechnology, College of Engineering and Technology, IFTM Campus.India .

[3] http://www.ncbi.nlm.nih.gov/genbank/statistics.

[4] http://web.expasy.org/docs/relnotes/relstat.html.

[5] Benson DA, et al. GenBank. Nucleic Acids Res 2000.

[6] Bernstein FC, et al. The Protein Data Bank. A computer-based archival file for
macromolecular structures. Eur J Biochem 1977; 80 (2): 319-24.

[7] Berman HM, et al. The Protein Data Bank. Nucleic Acids Res 2000.

[8] T. F. SMITE AND M. S. WATERM. Identification of Common Molecular Subse-
quences. 1981.

[9] R. Giegerich. A systematic approach to dynamic programming in bioinformatics.
Bioinformatics, vol. 16, pp: 665-677.

[10] Gotoh, O. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162 (3), 705-708.

[11] Rolf Backofen. Sequence Alignment Gap Penalties. Gotoh’s Algorithm and Smith
Waterman’s Local Alignment.

[12] http://www.virtualmedicalcentre.com/anatomy/dna-deoxyribonucleic-acid/37C41.

[13] Rognes T. Smith waterman database searchs with inter-sequnces SIMD parallelisa-
tion. 2011.

[14] D. M. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY, 2nd ed., 2004.

[15] UniProtKB/Swiss-Prot protein knowledgebase release 2013-06 statistics.
http://web.expasy.org/docs/relnotes/relstat.html.

[16] Ali Khajeh-Saeed, Stephen Poole, J. Blair Perot. Acceleration of the Smith-
Waterman algorithm using single and multiple graphics processors.2010

[17] Book: William J., Thieman and Micheal A.Introduction to Biotechnology. Second
edition.

[18] http://en.wikipedia.org/wiki/SmithWaterman.

35

36 CHAPTER 3. BIG DATA IN BIOINFORMATICS

[19] N. M. Luscombe, D. Greenbaum, M. Gerstein. What is Bioinformatics? A Pro-
posed Definition and Overview of the Field. Department of Molecular Biophysics
and Biochemistry Yale University, New Haven, USA. 2001.

[20] Bioinformatics. http://en.wikipedia.org/wiki/Bioinformatics

Implementation of Smith

Waterman algorithm 4
This chapter explains different implementations of the Smith Waterman algorithm. First,
we take a look at our sequential implementation of the Smith Waterman algorithm and
how the Smith Waterman algorithm can be parallelized. Then, the accelerated imple-
mentations of Smith Waterman using Streaming SIMD Extensions (SSE) and GPU are
presented. We also present SSEARCH and DOPA which are accelerated and optimized
implementations of the Smith Waterman algorithm using SSE and GPU, respectively.

4.1 Sequential implementation

This Section discusses the steps taken to produce the straightforward sequential imple-
mentation of the Smith Waterman algorithm. We used a sequential way of calculating the
cell matrix values. In order to compare protein sequences, the BlOSUM62 substitution
matrix is implemented into our code.

The substitution matrix BlOSUM62 is implemented as a 26 * 26 matrix which in-
cludes all the alphabet characters. By using the ASCII code of each character in sequence
we can easily find the required indexes (Figure 3.2).

We have implemented [13] the algorithm for protein sequences so that the maxi-
mum score of optimal alignments can be found. An affine gap penalty version of Smith
Waterman has been implemented. The implementation returns maximum score of the
similarity matrix of the Smith Waterman algorithm not the actual alignments. Option-
ally our implementation returns the results matrix, as well as the performance measured
in GCUPs (Giga Cell Updates Per Second) and length of a sequence.

The program starts by reading the query sequence and database sequence files. The
query sequence includes only one sequence while the database sequence file includes
multiple sequences. The format of these files is in FASTA format. The FASTA format
is a text-based format for representing nucleotide sequences in which nucleotides are
represented using single-letter codes. Each sequence has a single description line which
is denoted by the first character of the greater than > sign. The end of the description
line is denoted by a return-line.

As we see in Figure 4.1 and the Equations 3.1, 3.2, 3.3 we need at least three matrices:
E, F, and H to calculate the algorithm. If the length of database and query sequences is
large, this will consume a lot of memory space. As we have mentioned before our goal
is simply to find the maximum score not the actual alignments, so the values of these
matrices are temporary. Therefore, to reduce memory usage, only the current value of
the E matrix is saved in a variable, and the previous values are overwritten.

After reading the query and database sequences the computation starts with the
initialization of the E, F and H (E i,j = F i,j = H i,j = 0 for all i = 0 or j = 0) to 0.

37

38 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

Figure 4.1: Data dependency of the Smith Waterman algorithm

To compute matrix H (Figure 4.1) we start at i=1 and j=1 then scan through the end
of the row, then repeat this procedure for the next row until we reach to the last element
in the matrix. In every iteration the elements in the F matrix always use the element
from its left (previous) side element, while the elements in the E matrix always use the
element from its upper position element. Obviously, after the left and upper old values
are used, these will never be used again. Therefore, we make a variable to store these
temporary values. The H matrix will require the value from vertical (E), horizontal (F)
and diagonal directions. And each computed score will be used at most 3 times. So we
can also make them temporary. This specific implementation will align a query sequence
to every database sequences, effectively offering no parallelism at all.

In the sequential Smith Waterman algorithm the (intermediate) data are stored se-
quentially in the memory. In Figure 4.2 we can see how the cells for the H matrix are
stored in the memory. The arrows indicate the locations in the memory for two rows.
This sequential order is a consequence of the sequential nature of the Smith Waterman
algorithm, because in the H matrix the cells are computed and stored one by one.

4.2 Streaming SIMD Extensions (SSE)

In this section we will take a look at how to parallelize the Smith Waterman algorithm
since parallelization is an important aspect to accelerate the performance of database
search alignment. After that we present our straightforward SSE implementation [13].
Then we provide an overview of SSearch an optimized CPU implementation using SSE.
To parallelize the Smith Waterman algorithm two different forms of granularities can be
performed: fine-grained and coarse-grained parallelism.

4.2. STREAMING SIMD EXTENSIONS (SSE) 39

Figure 4.2: Sequential order memory

Fine-grain parallelism

In pair-wise sequence alignment, the query sequence is compared against one database
sequence and it is also called intra-task parallelization. A regular data dependency in
Smith Waterman algorithm is implied due to the recurrence of the Equations 3.1, 3.2 and
3.3. Compute Hi,j (Equation 3.1) depends on its left previous cell neighbors F (i,j−1), H
(i,j−1), upper neighbor E(i−1,j), H(i−1,j), and upper left neighbor H(i−1,j−1). Fine-grain
means that processors will work together in computing the H matrix, cell by cell [3]. In
Figure 4.1 the arrows represent the data dependency in the Smith Waterman algorithm
and the black dashed lines represent the elements that can be computed in parallel.

Matrix fill step of the Smith Waterman algorithm can be performed along rows or
along columns of the H matrix. If the matrix is filled along rows or along columns
then the computation will be performed serially. However, we can see in Figure 4.1
the elements that are located in anti-diagonals have no dependency among each other
and therefore, all cells along the anti-diagonal can be computed in parallel using the
previously computed anti-diagonal cells.

Coarse-grain parallelism

Aligning a single query against several database sequences in parallel is known as inter-
task parallelization or coarse-grained parallelization. The pair-wise alignment can be
performed independently [2, 3] and the query sequence and the substitution matrix are
shared data. Intra and inter -task parallelization give rise to many hardware platforms
implementations, like SIMD and GPU. The following section presents our implementa-
tion of streaming SIMD extensions for the Smith Waterman algorithm.

4.2.1 Straightforward SSE2 implementation

Streaming SIMD Extensions (SSE) is a method provided by modern processors to ac-
celerate computation intensive programs. SSE supports several types of instructions in-

40 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

cluding instructions for adding, subtracting and computing the maximum. Those three
instruction types are required in the Smith Waterman algorithm, therefore in princi-
ple the Smith Waterman algorithm can be implemented with SSE. In Streaming SIMD
Extensions 2 (SSE2) the data type ”short” is supported. In the Smith Waterman al-
gorithm this data type ”short” is preferred because it allows eights processing elements
simultaneously (Figure 4.3 (c)) being processed. This is a consequence of the fact that
there is a 128-bit register file available for SSE instructions. Using ”short” as the data
type in the Smith Waterman algorithm limits the maximum score not to be larger than
65536 however, the longest sequence in Swiss-Prot 35213 proteins and most sequences
being much smaller, making this acceptable. Figure 4.3 shows the different organization
models for the register file in SSE2.

Figure 4.3: SSE registers file

We propose in our implementation [13] inter-task parallelism for the Smith-Waterman
algorithm. Instead of aligning query sequence against one database sequence at a time,
items from eight multiple database sequences are retrieved and processed in parallel.

In order to achieve higher performance using SIMD instructions the data are stored
in memory in an interleaved way. When using parallel hardware the sequential order is
not convenient to use anymore because of the parallel hardware architecture. Figure 4.4
shows the interleaved order with two processing elements. In Figure 4.4 we can see the
H matrices for two different alignments where the first index in the subscript represents
the alignment number. The first cells from both alignments are sequentially stored in
the memory and then the second cells from both alignments are stored and so forth. The
arrows indicate the locations in the memory for the first rows. This interleaved order
can be extended for SSE2 with 8 processing elements.

4.2.2 Optimized SSE2 implementation

In this section we present the optimized method using SIMD instructions for Smith Wa-
terman CPU implementation which is known as the SSearch implementation [8]. The
SSearch implementation is an intra-task optimization approach which enables SIMD reg-
isters to access values parallel to query sequence in a striped pattern. See Figure 4.5.
Three major techniques are proposed by SSearch optimization: striped query profile,

4.2. STREAMING SIMD EXTENSIONS (SSE) 41

Figure 4.4: Interleaved order in the memory

SWAT optimizations [9] and lazy F evaluation. Following we briefly explain these tech-
niques.

Figure 4.5: SSearch stripped pattern based on [8]

Striped query profile

Striped optimization applied the similar approach of [9] by pre calculating the query
profile but with different layout. The query profile layout is a striped access parallel to
the query sequence (see Figure 4.5). The query is divided into equal length segments,

42 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

S (Figure 4.6). The number of segments is equal to the number of elements allowed in
a SIMD register. The major improvement when using striped query profile that data
dependencies are moved out of the inner loop and done just once in the outer loop [8].

Figure 4.6: Equal length segments based on [8]

SWAT optimizations

SSearch optimization considered SWAT optimization. SWAT optimization is an im-
proved approach of the Smith Waterman algorithm [10]. Most cells values in the matrix
F and E (Equations 3.2 and 3.3 respectively) are zero; consequently do not contribute
to H (Equation 3.1). According to [10] as long as Hi,j is not larger than the threshold
Ginit + Gext, E and F will stay at zero along a column or row in the matrix. Mostly
the cells values are not above Ginit + Gext. If all values in the SIMD registers are not
above the threshold then F can basically be ignored in the computation of H. Therefore,
removing data dependency and significantly simplifying the computations. The cells in
the SIMD registers can be checked simultaneously whether any of them are above the
threshold. If one or more of the register cell exceeds this threshold, then F values must
be recalculated and taking H values into consideration. The SSearch optimization moves
this correction step outside the inner loop. SSearchs method for F correction is presented
in the following section.

Lazy F evaluation

If Hi,j is larger than Ginit + Gext, then F should be considered in the calculations of
H. The computation of the lazy F evaluation starts after the inner loop to compute H is
completed. F is checked against the value of H by access the loop of Lazy F. The value
of F are shifted to the left by one (see Figure 4.7) and if any elements are greater than
the values of H - Ginit, then H is recalculated because F can change the value of H [8].

Advantage of this technique is that all conditional branches are moved out of the
inner loop to the outer loop therefore it reduces the impact of branching on the runtime.

4.3 GPU implementation

The GPU is a platform that is providing a high speed optimized implementation for
Smith Waterman algorithm. The following section focuses mainly on our straightforward
GPU implementation and DOPA optimizations.

4.3. GPU IMPLEMENTATION 43

Figure 4.7: Lazy F based on [8]

4.3.1 Straightforward GPU implementation

Our GPU implementation [13] is also proposed inter-task parallelism for the Smith Wa-
terman algorithm. We assigned each thread only one sequence from the database. There-
fore, there is no dependency among all the threads. The task of each thread is exactly
as in the sequential as well as in the SSE2 implementation, which is to calculate the
maximal score. Before we process the calculation, we transform the database sequences
from characters into integers hence we can only copy the integer array of database to
device. Gap penalty and gap extension values are temporary variables stored in shared
memory instead of registers to decrease register pressure. Usually, the maximal score
will not be larger than 65536 (see Section 4.2.1). This makes it possible to use data type
”short” for temporary variables. The ”short” data type only has 2 bytes while ”int”
data type has 4 bytes. So the access time of ”short” data type will be shorter. This is
also an optimization to memory access. Although the database sequence of each thread
is different and independent, the query profiling is the same for all database sequences.
Thus we implemented query profiles and allocated them to texture memory. It is a
read-only memory and it is faster than global memory. And it can be accessed by all
the threads within the grid. Its advantage is that it is able to cache data from ”near”
position. So the read can be fast. We calculate the query profile data in CPU then copy
them to GPU’s global memory. And finally, we bind the query profile data on global
memory to texture memory. After the calculation of Smith Waterman kernel is done
on the device, the result maximum score is copied back to the CPU. We flexibly specify

44 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

number of blocks and fixed the number of threads. Since the total number of database
sequences is constant, therefore, the required number of blocks is finding by dividing the
number of database sequences over number of threads per block.

4.3.2 Optimized GPU implementation

DOPA is an optimized implementation for the Smith Waterman algorithm implemented
for GeForce GTX 275. The optimizations of DOPA mainly deal with smart memory
utilization by reducing the number of memory accesses. DOPA improves performance
by optimizing the database organization as well as efficient way for work load distribution.
DOPA returns few of the highest scoring sequences of the database without performing
the trace back step on GPU. The following presents the implementation optimization
approaches which is considered by DOPA.

Database conversion

The FASTA format database is converted to a format that better suits the GPU ca-
pabilities. The converting process needs to be done once. This process involves separate
the sequence descriptions and store in other file, this file is not uploaded to the GPU and
therefore saving memory. Moreover, the database sequences are sorted by their sequence
length to minimize length differences between neighboring threads. Finally, sequence
items (characters) are replaced with numeric indexes to make lookup in substitution
matrix easier [11].

Memory coalescing

DOPA[11] stated ”Memory bandwidth represented a serious bottleneck while devel-
oping the GPU implementation”. DOPA greatly utilized memory bandwidth by coalesc-
ing memory accesses. Furthermore, the trace back step of Smith Waterman algorithm
is skipped on the GPU and is processed on CPU to save GPU memory utilization. In
a naive GPU implementation each thread uses a 32 byte memory access with 28 bytes
of bandwidth is wasted. With coalescing memory accesses the required data is stored
(aligned) in neighboring addresses and a single 64 byte load instruction is used to load
a data.

Efficient work load distribution The sorted sequences are grouped into sequence
sets. These sets are consisting of 16 sequences and half-warp of threads working on
them. Sorted sequences by length have almost equalized workload for threads inside
each set. To equalized work load for a half-warp working on a sequence set is achieved
by concatenated the sequences in the sequence sets with leftover sequences and form
sequence groups. The length of each sequence group within a set is roughly equal to the
length of the longest sequence in that set. Two types terminator are inserted. Sequence
terminators are inserted between the concatenated sequences to inform GPU kernel to
start new alignment. While, sequence group terminators are inserted at the end of
each group to indicate the end of a group of concatenated sequences and therefore, the
execution of the half-warp threads will be terminated.

Substitution matrix access

Substitution matrix BLOSUM62 is implemented in DOPA. Substitution matrix is
accessed frequently and randomly, every time two sequence items are aligned, hence its
access is significant to the performance of DOPA . Therefore, a query profile matrix is

4.4. SUMMARY 45

Figure 4.8: Query profile based on [11]

implemented in DOPA and it is generated once for every query sequence. Figure 4.8
depicts the query profile where the query sequence is used along the top row of the
matrix instead of the protein alphabet. The access for specific database items in a query
profile now become more deterministic and query sequence lookup is avoided.

4.4 Summary

This chapter described the sequential implementation of the Smith Waterman algorithm.
In addition, it highlighted how the Smith Waterman algorithm can be parallelized and
it presented our SSE2 and SSearch implementation and our GPU and DOPA implemen-
tation. Next chapter focuses on DOPA performance on different GPU cards NVIDIA
Tesla C2075, GTX 275 and GT640 and describes the performance of all discussed imple-
mentations and shows the variation in the performance and how other factors like power
and price contribute to the design decision.

46 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

Bibliography

[1] http://fasta.bioch.virginia.edu

[2] Qianghua Zhu, Fei Xia, and Guoqing Jin. Accelerating the Smith-Waterman Al-
gorithm for Bio-sequence Matching on GPU Electronic Engineering College, Naval
University of Engineering, Wuhan, P. R. China. 2012

[3] Vipin Chaudhary, Feng Liu, Vijay Matta, Laurence T. Yang. Parallel Implementa-
tions of Local Sequence Alignment: Hardware and Software.

[4] Wozniak, A.: Using video-oriented instructions to speed up sequence comparison.
Computer Applications in the Biosciences 13(2), 145-150 (1997)

[5] Rognes, T., Seeberg, E.: Six-fold speed-up of Smith Waterman sequence database
searches using parallel processing on common microprocessors.2000

[6] Arpith Jacob, Marcin Paprzycki, Maria Ganzha and Sugata Sanyal. Applying SIMD
Approach to Whole Genome Comparison on Commodity Hardware.2008.

[7] Thesis: M. Kentie. Biological Sequence Alignment Using Graphics Processing
Units.2010

[8] Michael Farrar. Striped Smith-Waterman speeds database searches six times over
other SIMD implementations.2006.

[9] Rognes T, Seeberg E: Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors. Bioinformatics 2000.

[10] Phil Green. SWAT Program http://www.phrap.org/phredphrap/swat.html

[11] Laiq Hasan, Marijn Kentie and Zaid Al-Ars. DOPA: GPU-based protein alignment
using database and memory access optimizations.2011

[12] Ligowski, L. Rudnicki, W. An efficient implementation of Smith Waterman algo-
rithm on GPU using CUDA, for massively parallel scanning of sequence databases.
2009.

[13] Amora Amir, Kim Wai Tang, Dongni Fan. Report Open Assignment. Advanced
Multicore Systems (ET4381) course.

47

48 CHAPTER 4. IMPLEMENTATION OF SMITH WATERMAN ALGORITHM

Performance analysis and

benchmarking 5
Throughout this thesis different implementations of one Big Data application; Smith
Waterman algorithm; on different GPU platforms for several problem cases have been
experimented. This chapter focuses on analyses and evaluates the experimental results
of SSE2, GPU and DOPA implementations. A detailed analysis is presented involving
measuring the execution time for Smith Waterman algorithm on different platforms, de-
termine memory transfer bottlenecks on the GPU. Section 5.1 shows the experimental
setups and performance of our sequential, SSE, GPU and DOPA implementation. Fur-
thermore Section 5.2 presents and evaluates DOPA in term of performance capability
and relative costs and power on three different graphics cards: NVIDIA Geforce GT640,
GeForce GTX 275 and Tesla C2075 GPU.

5.1 Experimental setup

In this section we explain the computer configuration that we have used during our
benchmarking for SSE, GPU and DOPA implementations.

System
OpenSUSE 11.3 Linux with a 2 cores processor Intel Core 2 Duo CPU with speed of
2GHz and total memory 3.9 GB. NVIDIA Geforce GT640 and Tesla C2075 graphics
cards.

Query sequences
During the benchmark we test protein sequences. The protein query sequences are used
in our test are the same as the other researcher have used in their benchmarking. We
tested the same benchmarking with SSearch [7] to be able to compare and also make sure
of the validity of the results. These query sequences are selected from UniProt/Swiss-
Prot database. The query sequences are P02232, P05013, P14942, P07327, P01008,
P03435, P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930 and Q9UKN1.
The length of these queries varies from 144 to 5478 items.

Database
For convenient benchmarking we have created a synthetic test database selected from
UniProt/Swiss-Prot database with a total length of 13432526 items (23299 sequences).
We used the synthetic test database we used it during testing our implementations
while we used Swiss-Prot release October 2010 and release July 2013 for DOPA test
experiments.

DOPA program settings
Substitution matrix is BLOSUM62. Gap penalty: -10 and gap extend penalty: -2.
NVIDIA’s Compute Visual Profiler profiling application. DOPA source code is derived
from [1].

49

50 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

Table 5.1: Performance of our C implementation.

Query Sequences Length Execution Time (sec.) Performance (GCUPS) Our Score FASTA Score

P02232 144 14.2 0.136217165 719 719
P05013 189 18.62 0.136345189 977 977
P14942 222 22.02 0.135423287 1135 1135
P07327 375 17.37 0.135517817 1957 1957
P01008 464 46.17 0.134994413 2392 2392
P03435 567 55.91 0.136223256 3048 3048
P27895 1000 99.18 0.135435834 5064 5064
P07756 1500 148.36 0.135810117 7713 7713
P04775 2005 198.23 0.135863465 10379 10379
P19096 2504 247.5 0.135899172 12924 12924
P28167 3005 297.24 0.135798481 15646 15646
P0C6B8 3564 352.68 0.135742097 19896 19896
P20930 4061 402.03 0.135685118 21359 21359
Q9UKN1 5478 541.34 0.13592821 27936 27936

Measuring method
The execution time of the application was timed using the C clock() instruction. The
execution time considered for the comparisons was the time spent on running the kernel
program thus loading the database sequences and copy to GPU are excluded from the
measured time. This way indicates the time required by the GPU compared to the time
required by the CPU to run the same part of Smith Waterman algorithm.

5.2 Sequential vs. parallel implementations

Table 5.1 shows the performance of our sequential implementation. The performance is in
giga cell updates per second (GCUPS). GCUPS is the total number of Smith-Waterman
score matrix cells that are calculated per second. The formula below is used to calculate
the performance.

GCUPS = query length * total database length /execution time/109

To validate the results of the maximum scores, we have tested the same benchmarking
(same query sequences and database) on SSearch/FASTA. Our naive Smith Waterman
implementation running on the multi-core CPU platform is achieved 0.13 GCUPS.

Table 5.1 presents the performance in term of GCUPS and the execution time of
the sequential implementation. The shortest sequence in our benchmarking is the se-
quence P02232 which consists of 144 items and it needs 14.02 seconds to be calculated
while the largest sequence Q9UKN1 with length of 5478 needs 541.34 seconds. The ex-
ecution time of the sequential implementation takes about 1 second for every 10 items.
The sequential implementation is very slow and therefore is hardly used especially with
larger databases like UniProt/Swiss-Prot. Our implementation using SSE2 technology
and tests were carried out on Intel Core 2 Duo CPU with speed of 2 GHz and total
memory 3.9 GB running on linux openSUSE 11.3. The implementation code is written
in C and compiled using the gcc compiler. In the tests, the local alignment score be-
tween two protein sequences was calculated without reconstructing the alignment. The
BlOSUM62 substitution matrix was used. We used a value of +7 for a gap open and

5.2. SEQUENTIAL VS. PARALLEL IMPLEMENTATIONS 51

+1 for gap extension penalties. The performance results of our SSE2 implementation

Figure 5.1: SSE2 performance

compared with the sequential implementation are shown in Figure 5.1. We can see that
the performance has improved and reached 0.22 GCUPS. However our implementation
is only straightforward there is no optimization considered in our design just exploited
the benefit of the instruction set architecture of SSE2. The implementation recorded
1.6x speedup over the sequential implementation. The reason behind this improvement
is the 8 processing elements performing 8 multiple alignments simultaneously.

The performance of the SSearch implementation is taken from [8]. Tests were done
on a 2.0 GHz Xeon Core 2 Duo processor with 2 GB of RAM running Windows XP. The
number of CPU cores had no effect on the execution time because the program was run as
a single threaded application. The database sequence was Swiss-Prot contains 75,841,138
amino acids (208,000 sequences) and 11 query sequences with length ranging from 143
to 567 amino acids. While we used in our benchmarking synthetic test database and the
total length is 13432526 amino acids (23299 sequences) and we used 14 query sequences
with length ranging from 144 to 5478. SSearch implementations tested the program
using different scoring matrices which are BLOSUM62 and BLOSUM50 and different
gap penalties. The values of scoring matrix and gap penalties affect the performance
of SSearch implementations; this is due to calculation of lazy F. The higher the value
of gap open and gap extension penalty the less iterations are required to be calculated.
Three tests were performed. First test used scoring matrix BLOSUM62 gap open 10
and gap extension is 1 and second test was used BLOSUM50 scoring matrix and gap
open 10 and gap extension is 1 while the last test used the same 11 query sequences
with the BLOSUM50 and BLOSUM62 scoring matrices, but now four different gap open
and gap extension values 10-1, 10-2, 14-2 and 40-2 were used respectively. For the first
test SSearch implementation completed the search in 113 seconds with an average of 2.5
GCUPS and a peak of around 3 GCUPS. In the second test was affected by the higher
values of H and therefore more time was needed to calculate F. This requires 159 seconds
to complete the search with an averaging of 1.8 GCUPS and a peak of 2.25 GCUPS.

52 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

Table 5.2: Properties of three different graphics cards

Device Properties Geforce
GTX 275

Geforce
GT640

Tesla
C2075

CUDA Capability 1.3 3 2

CUDA Cores 240 384 448

MEMORY Size 896MB 2GB 6GB

Memory Bandwidth 127GB/s 28GB/s 148GB/s

Memory Frequency 1.13 GHz 891 MHz 1.6 GHz

GPU Frequency 633MHz 928 MHz 1147 MHz

Finally the last test was used to test the efficiency of the inner loop when using the large
gap opening of 40 and gap extension of 2. Mainly most of the time required to calculate
F was skipped and SSearch implementation took 90 seconds to complete the search this
is as 20% to 40% improvement over the gap opening of 10 and gap extension of 1.

Table 5.2 depicts device properties of the three GPU cards GT640, Tesla C2075 and
GTX275. Our GPU straightforward implementation reported the performance of 0.47
GCUPS on GT640 and on Tesla C2075 achieved 0.80 GCUPS. Because we do not have
the graphics card GTX 275 in our lab we extract the required data from [3] and the
straightforward Smith Waterman implementation on GTX 275 achieved 0.54 GCUPS.

Table 5.3: Sequential vs. straightforward GPU implementation

Sequential performance
on Intel Core 2 Duo

Performance
on GTX275

Performance
on GT640

Performance on Tesla
C2075

0.13 (GCUPS) 0.54
(GCUPS)

0.47
(GCUPS)

0.80 (GCUPS)

speedup 4.2x 3.6x 6.1x

Basically, the implementation utilized inter-task parallelism without balancing the
workload. Because each thread will do the computation of one query sequence and
database sequence pair, the calculation time depends heavily on the length of both
query sequence and database sequence. This explains why when we use longer query
sequences for test, the time is increases. And also, we bind the database sequences on
texture memory. So when the size of the database is very large, we cannot execute
our program with exceeding the size of texture memory. Compared to our sequential
implementation, the performance has been improved achieving 0.80 GCUPS on the Tesla
C2075 (see Table 5.3).

5.3 Performance analysis of DOPA on different GPUs

DOPA [3] implementation was optimized and ported specifically for NVIDIA GTX275,
which resulted in a huge performance gain which is 21.4 GCUPS comparing to its coun-
terpart implementation that running sequentially on CPU. It could massively utilize the

5.3. PERFORMANCE ANALYSIS OF DOPA ON DIFFERENT GPUS 53

Table 5.4: An overview of the performance of DOPA on different platforms, where
number of blocks is 4 multiples of the number of multiprocessors

Platforms Num. blocks (threads) Throughput GCUPS Performance gain
vs. sequential
(0.13 GCUPS)

GTX275 120(64) 21.4 164.6x

GT640 8(960) 6.8 52.3x

Tesla
C2075

56(137) 21.9 168.5x

Figure 5.2: Performance of DOPA on different platforms

GPU computing power and benefit from its underlying features. So, this section studies
the behavior of this implementation on different graphics cards that have higher power
of computations. Initial expectations were to capture a better performance when the
number of the processing units (cores) increases.

DOPA is implemented to launch the kernel with 7680 threads in total, and recom-
mended to distribute those threads in (4 multiples of the number of multiprocessors)
blocks. Thereby, it used 120 Blocks (4 x 30 multiprocessors), with 64 threads per each.
Table 5.4 shows an overview of the performance with these settings.

From Teble 5.4 we can see (Figure 5.2) the performance of DOPA fluctuates and
according to this, two observations emerge:

1. the performance of DOPA on Tesla C2075 GPU is almost the same as on GTX
275.

2. the performance of DOPA is dramatically decreased on NVIDIA Geforce GT640.

Table 5.4 shows that the performance on Tesla C2075 is almost the same as on
GTX275 and both are about 3x better than on GT640 although the number of cores on

54 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

the Tesla C2075 is about 2x more than GTX275 and 1.5x more than GT640. That shows
that the computing capability of the hardware does not guarantee higher performance
when the code is optimized for a specific platform. That is due to the differences in the
hardware architecture (See Table 5.5), the memory bandwidth as well as the workload
distribution and number of the active threads that share the same set of resources, i.e.
registers and shared memory. Thus, to achieve a better performance, many other aspects
have to be taken into account like knowing the underlying features of a certain platform
to tune the CUDA configuration accordingly to increase the number of active threads
that can concurrently occupy the available cores.

Table 5.5: An overview of the architectures of the experimenting platforms

Platform Num. Multiprocessors Num. cores per multiprocessor Total num. cores

GTX275 30 8 240

GT640 2 192 384

Tesla C2075 14 32 448

Generally, for an optimal GPU utilization, the number of blocks is recommended to
be a multiple of number of multiprocessors and number of threads per block is recom-
mended to be a multiple of number of warp size. However, in Table 5.4, the workload
distribution was totally different from one platform to another. For instance, on GTX275
the workload was chosen to be 120 blocks, 64 threads per each, or in other words 240
warps in total, 2 warps per each block. Whereas on GT640, it was chosen to be 8 blocks,
960 threads per each. And on Tesla C2075, it was chosen to be 56 blocks, with around
137 per each. During the benchmarking we saw that DOPA required 63 registers and
when we do the theoretical calculation we determine the number of registers to be 63
and according to these settings theoretically, this workload is expected to be distributed
as in Table 5.6.

Table 5.6: Theoretical calculations on how the scheduler could distribute the workload
over the multiprocessors (considering the configurations in Table 5.4)

Platform Num. MP Num.
active
blocks/MP

Num.
active
warps/MP

Total active
blocks on
GPU

Num.
active
threads/MP

Occup.

GTX275 30 4 8 120 256 25%

GT640 2 1 30 2 960 47%

Tesla C2075 14 3 15 42 480 31%

This explains why the performance on Tesla C2075 was slightly better than GTX275
and considerably better than on GT640. Although GT640 has 192 cores per multipro-
cessor, and sustains about 30 active warps (as we can see in Table 5.6), however, all
these threads share the same resources (shared memory and registers). In addition, it
has only 2 multiprocessors that run in parallel. It is also possible to explain from Table
5.6 why the final performance of Tesla C2075 was not much higher than GTX275. Tesla
C2075 has 42 active blocks compared to 120 active blocks on GTX275, nevertheless the

5.3. PERFORMANCE ANALYSIS OF DOPA ON DIFFERENT GPUS 55

number of active warps is higher on Tesla C2075 and run on 32 cores compared to 8 cores
however they share the same resources. Moreover, the number of threads per block is
not a multiple of warp size on Tesla C2075. That means benefiting from the additional
number of cores in a multiprocessor can still be constrained by the available resources
that can be shared between the active warps. For efficient utilization it is better to keep
the cores and/or multiprocessors busy as much as possible, to avoid the time wasted for
idle cores.

Therefore, we tried to launch the kernel with tuned configurations. The second
experiment has fixed number of blocks to 120 and 64 threads and set the number of
registers to 63. Table 5.7 shows the performance with the tuned configurations.

Table 5.7: An overview of the performance on different platforms, where number of
blocks is 120 with 64 threads per each

Platform Throughput GCUPS

GTX275 21.4

GT640 10.20

Tesla C2075 25.03

Table 5.8 demonstrates how the workload was distributed on the GPUs with this
configuration. It shows that the number of active blocks that resides on the GPU was
increased and since the number of threads per block was a multiple of warp size that
improved the occupancy of the cores per multiprocessor. Thus, these results can still be
acceptable if we consider the other important factors like for instance memory bandwidth
and resources shared per multiprocessor.

Table 5.8: Theoretical calculations on how the distributor could distribute the workload
over the multiprocessors (considering the configurations in Table 5.7)

Platform Num. MP Num.
active
blocks/MP

Num.
active
warps/MP

Total ac-
tive blocks
on GPU

Num.
active
threads/MP

Occup.

GTX275 30 4 8 120 256 25%

GT640 2 16 32 32 1024 50%

Tesla
C2075

14 8 16 112 512 33%

Another important performance factor is memory bandwidth. DOPA [2] stated
”Memory bandwidth represented a serious bottleneck while developing the GPU imple-
mentation”. The maximum theoretical memory bandwidth for GTX 275 is 127 GB/s.
And during the benchmarking, [2] stated that with the test database about 50 GB/s of
bandwidth was used in practice. It can be concluded that memory accesses are not a
limiting factor for the GTX 275 platform. The maximum theoretical memory bandwidth
for Tesla C2075 is 144 GB/s and during the benchmarking we found about 50 GB/s of
bandwidth was used in practice. Again the memory accesses are not a limiting factor on
Tesla. While the maximum theoretical memory bandwidth for GT640 is only 28 GB/s

56 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

and 50 GB/s of bandwidth was required in practice therefore here on GT640 the memory
access is really a limiting factor on this platform.

Practically the kernel requires around 63 registers and as the author of DOPA men-
tioned that most of optimization that had been done increased the register pressure,
because too many query and database symbols need to be stored in registers to avoid
spilling these data in the slower memory. So there is a trade-off for DOPA implementa-
tion, increasing the performance depends on increasing number of registers which results
in decreasing the occupancy, while improving the cores occupancy to improve the per-
formance requires to decrease the number of registers.

Figure 5.3: Performance of DOPA with different configurations for both Tesla C2075
and GT640

We also experimented with another set of threads configurations on those platforms
(Figure 5.3) to find out the most optimum configuration, where the number of blocks
is a multiple of the number of multiprocessors and keeping the number of threads per
block a multiple of warp size. See Table 5.9 and 5.10.

Table 5.9: Performance on Tesla C2075 with different configurations

Num. blocks(thre.) Throughput GCUPS

240(32) 23.7

120(64) 25.03

60(128) 22.15

From Table 5.9 and 5.10, we can see that the performance noticeably changes when
the configuration is tuned based on the used architecture as this improves the threads
distribution and maximizes the GPU utilization. As a conclusion, these experiments
show that this application is portable and scalable. Finally, we experimented with the

5.3. PERFORMANCE ANALYSIS OF DOPA ON DIFFERENT GPUS 57

Table 5.10: Performance on GT640 with different configurations

Num. blocks(thre.) Throughput GCUPS

120(64) 10.20

40(192) 10.87

20(384) 9.03

10(768) 9.06

optimized implementation on these different platforms with the same configuration men-
tioned above but for different problem sizes, these experiments show that this application
is scalable.

Figure 5.4: Performance growth of Smith Waterman algorithm

Figure 5.4 depicts the performance of Smith Waterman implementations on several
platforms. Our naive Smith Waterman version running on CPU platform only achieved
0.13 GCUPS. The performance is improved gradually by using different optimization
strategies, such strategies are general compiler optimization O3 (option O3 is enabling
optimization to the speed of the code and it is recommended for code with loops and
perform much calculations or processing large data sets) and Streaming SIMD Extension
(SSE2), the performance reported 0.22 GCUPS. Our GPU straightforward implemen-
tation achieved 0.80 GCUPS on Tesla C2075 which is 6.1x speedup over the sequential
implementation. While DOPA implementation achieved 21.9 GCUPS on Tesla C2075
which is 168.5x speedup over the naive CPU based implementation. The performance
of our optimized DOPA is increased by nearly 14% to 61% reaching 25 and 11 GCUPS
on Tesla C2075 and GT640, respectively. Comparing our optimized DOPA running
on Tesla C2075 to the naive sequential Smith Waterman CPU based implementation
reported 192x speedup.

58 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

Table 5.11: Properties of three different graphics cards

Metrics Geforce GTX
275

Geforce GT640 Tesla C2075

Performance 21.4 GCUPS 10.87 GCUPS 25.03 GCUPS

Watt 219 65 215

Price(euro) 250 100 2000

5.4 Performance versus cost, power and flexibility

In this thesis we discussed two platforms, the CPU and the GPU, and their potential to
accelerate Smith Waterman algorithm. For DOPA running on fast PC with one of three
different NVIDIA GPUs cards (Geforce GT640 and Tesla C2075 and GTX 275) different
performance numbers have been reported but this is not only the competitive metric in
practice. Other metrics like cost, power consumption and flexibility play an important
role to purchase the product.

We can see from Table 5.8 that the hardware cost in terms of purchase price and watt
for these three cards varies considerably. DOPA can deliver different amount of GCUPS
per card. Different efficiency scenarios can be established depending on the bioinfor-
matics domain requirement. Note these cards should be plugged on a motherboard of a
CPU thus the price of a system (a CPU) must be taken in account along with a GPU
card price.

However we focus in our analysis on the price of the graphics cards and excluding
the CPU price. The information in Table 5.11 is derived from [4, 5, 6]. The prices are
checked and compared with many online computer web-shops.

DOPA produces performance in term of GCUPS on Tesla C2075 which is 17% higher
than on GTX 275 and 230% higher than on GT640 but on the other hand the cost of
the Tesla C2075 in terms of watt and euro is very high. Choosing now for GTX 275
with 17% less performance and tolerable payment in terms of euro than on Tesla but
GTX 275 is consuming much watt than on Tesla. So choosing between these two cards
is really a trade-off. It depends on the requirement of the consumer. In the research field
for example of bioinformatics where the budget is low, the price will be an important
issue. GT640 is a candidate for consumers that want to pay less in terms of watt and
euro but the performance gain in term of GCUPS is far less than the other cards.

Plugging three GT640 cards on a commodity motherboard will cost around 300
euro (see Table 5.11). With this amount of money we still can get performance as
much as on Tesla C2075 but the cost would be cheaper than on Tesla. However, the
problem that should be considered is the flexibility of debugging GPU code which is
not as common as debugging CPU code. For this, we probably need a skilled engineer
to manage optimizing the workload of the kernel among these three cards to get the
expected desired performance and to hide the interconnect latency. However, one card
of GT640 consumes at maximum 65 watt and with the aforementioned scenario three
cards then consume at maximum 195 watt which is still less than the power of Tesla
C2075 and GTX275.

Bibliography

[1] http://kentie.net/article/thesis/index.htm

[2] Laiq Hasan, Marijn Kentie and Zaid Al-Ars. DOPA: GPU-based protein alignment
using database and memory access optimizations.2011

[3] Thesis: M. Kentie. Biological Sequence Alignment Using Graphics Processing
Units.2010

[4] Tweakers.net Pricewatch, August 2013, http://tweakers.net/pricewatch

[5] Geforce GT640, August 2013, http://www.nvidia.com

[6] Tesla C2075, August 2013, http://www.nvidia.com

[7] http://fasta.bioch.virginia.edu

59

60 CHAPTER 5. PERFORMANCE ANALYSIS AND BENCHMARKING

Summary and future work 6
To achieve considerable performance for Big Data applications for different platforms,
two important factors have to be taken into account: increase the parallelism in the
software and increase the utilization on the hardware side. This thesis showed an example
of implementing a Big Data bioinformatics applications on different GPU platforms.
By increasing the parallelism of these applications a huge performance gain has been
achieved.

In this thesis, we load the same set of instructions with the same data structure and
same CUDA configurations on different GPU architectures.

The results were not as expected due to an inefficient distribution of the workloads.
Whereas, we improved the cores occupancy, the performance was improved by about 14%
to 61%. With improving the cores occupancy on used GPU cards, we achieved 25 GCUPS
performance on Tesla C2075 and 11 GCUPS on GT640 compared to a straightforward
port on these cards achieving 21.9 and 6.8 GCUPS, respectively. Further, the optimized
CPU based Smith Waterman implementation has significantly efficient performance by
re-ordering the sequence of instructions and removing data dependency.

In practice, the higher performance of the Smith Waterman algorithm in bioinfor-
matics is not only the demand. Other metrics are also important. The price of the
hardwares and the power consumption are important issues. So the requirements of the
applications determine the decision making for which card can be selected.

6.1 Thesis contribution

Here we present briefly what we have achieved in this thesis.

1. Studying the the state of the art of Big Data and specifying its challenges and
determine its potential in several domains.

2. Analyzing the sequential implementation of Smith Waterman from scratch.

3. Analyzing the accelerated Smith Waterman using SSE2.

4. Analyzing the accelerated Smith Waterman using GPU.

5. Ported DOPA to be run on Linux platform, Tesla C2075 and GT640 GPU graphics
cards.

6. Determining and analyzing the decrease of the performance of DOPA on GT640
GPU, and analyzing the reasons the performance on Tesla C2075 is the same as
on GTX 275.

61

62 CHAPTER 6. SUMMARY AND FUTURE WORK

7. Improving the cores occupancy configuration for DOPA on two GPU cards and
achieving higher performance.

8. Including several metrics during the analysis like power, price and flexibility.

6.2 Future work

Due to time and scope restrictions of this thesis, improving the occupancy was not the
main focus. So, for future work it is recommended to increase the parallelism of DOPA
if possible by finding a way to minimize the register pressure and as the Genebank
database is increasing in size the performance will increase for free by increasing the
number of blocks on CUDA configuration when tuning the code for the dedicated ar-
chitectures. Memory access in the GPU platform significantly affect the performance
of Smith Waterman algorithm. NVIDIA announced new technology (Volta 3D stacked
memory) around 2015-2016 and Maxwell virtual memory will see the light around 2014.
These promise to improve the performance of Big Data applications as well as reduction
in term of watt.

Our SSE2 implementation has improved the performance over the sequential imple-
mentation using SIMD instructions. Efforts should be investigated to exploit the benefit
of new technologies such as SSE3, SSE4 or even by using Advanced Vector Extensions
(AVX) which is an advanced version of SSE.

