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Summary

Physical systems in the continuous domain are often solved using computer-aided software
because of their complexity. Preserving the physical quantities from the continuous domain
in the discrete domain is therefore of utmost importance. There is however a broad range of
techniques that can accomplish the translation between the continuous and discrete domain, e.g.
finite difference, volume and element techniques, fourth order Runge-Kutta or Störmer-Verlet to
name a few. Accompanied with the aforementioned come strengths and weaknesses but have the
common thread to try maintaining the physical behaviour of the continuous system closely. The
mimetic spectral element technique is used to develop an energy-conserving spectral element
scheme through a Lagrangian formulation. This new formulation of the mimetic spectral element
technique allows for solving time-dependent problems and the simple harmonic oscillator serves
as the sample problem in this thesis.

The solution has been derived from Lagrangian mechanics in a variety of ways. Discrete La-
grangian formulations have been investigated at first and their respective equations of motions
have been tested against the exact solution of the simple harmonic oscillator. This method
achieved marching in time and no damping of the solution, yet energy was only bounded and
not exactly conserved. The mimetic spectral element formulation of the Lagrangian formula-
tion showed difficulties when using variational analysis, i.e. boundary treatment in the future.
Arbitrary domain mapping was among the possible solutions, but this formulation was found to
be unreliable and unsuccessful. It was found that a more robust formulation, i.e. the spectral
marching method, was most suitable.

Throughout this thesis the focus was put on the conservation of energy using a Lagrangian
formulation. Except the spectral scheme using arbitrary domain mapping, all schemes kept the
energy of the system bounded, but no energy was conserved up to machine precision. Using
arbitrary domain mapping, the energy seemed to grow over time.
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Nomenclature

I time instant

L line

P point

S surface

T time interval

V volume

α infinitesimal increment factor

β infinitesimal increment factor

δ variational analysis operator

R reduction operator

π projection operator

Constants

A amplitude m

b end time s

c constant

d constant

k spring stiffness N m−1

m mass kg

ne number of elements

p polynomial degree

r constant

Continuous quantities

a start time s
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b end time s

E(t) total energy J

ei(t) edge basis function

H(p, x) Hamiltonian J

hi(t) nodal basis function

L(x, ẋ) Lagrangian J

li(τ) Lagrange polynomial

Lp(t) Legendre polynomial

p(t) momentum kg m s−1

S(p, x) action J s

T (ẋ) kinetic energy J

t time variable s

v(t) velocity m s−1

V (x) potential energy J

x(t) position variable relative to datum m

Discretised quantities

∆t time interval s

E incidence matrix

K spring stiffness matrix N m−1

M mass matrix kg

E edge basis vector

H nodal basis vector

Ei total energy J

pi (conjugate) momentum kg m s−1

ti discrete time s

xi position m

Subscripts and superscripts

¯ inner orientation

¨ double time derivative

˙ single time derivative



′ dual equivalent of primal basis function

h reconstructed quantity

0 initial value

i index

j index

ˆ known value

˜ outer orientation

~ vector quantity
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1 Introduction

Everyone remembers him- or herself at the playground swaying back and forth on a swing.
Would you not have moved your legs, eventually you would have come to a standstill. By
swaying your upper body and legs at the right moment, the swing kept going.

The event above is a clear, everyday example of a forced oscillator with damping. Lets
pretend that you do not move your legs and upper body and you stop swinging after some time
due to friction in the hinge above your head. The system’s energy is dissipated from the swing
and transformed into frictional energy, i.e. heat. Without the presence of friction, you would
have swung eternally.

1.1 Reason behind the choice of topic

Neglecting friction constitutes the simple harmonic motion that conserves energy and continues
forever. This real world example can be represented mathematically by means of an ordinary
differential equation. Its exact solution is widely known and can be analytically derived as
shown in Appendix A. The total energy of the system can also be calculated and can be shown
to be constant. A similar result is desired when treating this system at discrete level. However,
even for the simple problem mentioned above, discretising the continuous system is accompanied
with a loss of physics, i.e. energy may not be conserved. This means that bridging between the
continuous problem and the discrete problem is accompanied with a loss of information.

The example described above is a graspable example that everyone understands. There are
however many more applications that benefit from conserving energy at a discrete level. Think
for instance about fluid-structure interactions such as wing tip flutter. This example requires
the coupling between fluid and structure, with energy transfer from one to another. Calculating
the energy level too inaccurate means the other system lacks behaviour and so it continuous.

Another field of research that plays an important role in society nowadays is aeroaccoustics.
The field of aeroaccoustics also benefits from good energy behaviour and energy conservation.
Analyses involving sound go together with energy levels and therefore can only deliver mean-
ingful analyses when energy calculations are done properly. Furthermore, the computations of
many of these problems are done using computational fluid dynamics software, dealing with
chaotic, oscillatory or laminar flow.

As a result, many discretisation techniques have been developed to mimic the continuous
system as accurately as possible, yet still taking the loss of information for granted. This
thesis however, focuses on the use of a relatively new discretisation technique, i.e. the mimetic
spectral element technique. Using this technique it is attempted to keep an important part
of real physics intact at discrete level, i.e. to conserve energy. The reader may however still
not be convinced about the necessity to conduct research on yet a new discretisation technique
as there exist many different techniques already. The problem with many of the discretisation
techniques however, is the diverging behaviour of the solution over a long period, i.e. artificial
damping. This might result in problems, considering the wing tip flutter example mentioned
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above.

1.2 Research objective and research questions

The mimetic discretisation technique that will be evaluated has a promising history already.
The mimetic spectral element method has been applied to steady differential systems in one-
and multi-dimensional spaces. These steady systems however, had the benefit of being in-
dependent of time. The theoretical development of the mimetic spectral element problem to
time-dependent problems is the next step forward but faces some challenges. Without discussing
the details of these challenges, a small explanation is given. Unlike discretising space and its
boundary conditions, time is only bounded at one side. One would otherwise restrict the future
to a solution and solve only for what happens in-between the two time instants. This will be
explained more thoroughly in Section 2.3. To be precise, this thesis aims

Research Objective

to further develop the mimetic spectral element method in its fourth dimension time
by critically reflecting on the core concepts of differential topology, algebraic topol-
ogy and mimetic operators of the mimetic spectral element method and Lagrangian
and Hamiltonian mechanics.

Hand-in-hand with the research objective come research questions. The research questions
are stated below and will again be reflected on in Chapter 5. Chapter 5 will also answer the
research objective.

Research Questions

1) How does time-dependence fit in the mimetic spectral element method?

2) Why have not yet other engineers tried (or succeeded) to solve time-dependent problems
using the mimetic spectral element method?

3) Is it possible to discretise time in a similar way as space is discritsed according to the
mimetic spectral element method?

In this report, it is attempted to answer the above stated research objective and questions.
Furthermore, this report contributes to science by means of different derivations (e.g. Equation
(4.7)) and insights to use the mimetic spectral element method for time-dependent problems
(e.g. Sections 4.3 and 4.5).

1.3 Thesis outline

A concise literature review is provided in Chapter 2. It is found that few others dealt with the
same concept and tackled the problem using different perspectives. The mathematical building
blocks are described Chapter 3. Subsequently, the theories are then applied in Chapter 4 to
a fundamental problem in the field of mechanics, i.e. the simple harmonic oscillator. The
problem is approached with a variational integrator technique in Section 4.2 and known linear
and arbitrary linear t − τ mapping in Sections 4.3 and 4.4 respectively. The best results from
Sections 4.3 and 4.4 are taken together and a new spectral marching method is described in
Section 4.5. A conclusion is provided in Chapter 5 after which future work recommendations
are proposed in the same chapter.

2



2 Literature review

In spite of the mimetic spectral element method being relatively new, its fundamental concept
can be traced back to 1971 [1]. The relation between geometric objects and physical quantities
was first researched in [1]. This relation meant for instance the connection between position in
space and nodal points but also the connection between velocity and line segments, as

ti+1∫
ti

[~v(t)] dt = ~x(ti+1)− ~x(ti) (2.1)

indicates that velocity is nothing else but the difference between two spatial points divided
by the time difference [2]. Although the example above might be obvious, in [1] it is concluded
that to every physical quantity a geometric object is related. With this concept in mind and
a proper choice of nodes and basis functions, the spectral method has evolved to be a pow-
erful discretisation technique. The subsequent paragraphs of this chapter elaborate more on
the historical background of the mimetic spectral element technique and the discretisation of
time. In Section 2.1 one finds the necessary historical events in chronological order that de-
fine the mimetic spectral element method, followed by an enumeration of performed studies in
Section 2.2. The history of discretising time is treated in Section 2.3 and other discretisation
techniques are elaborated upon in Section 2.4.

2.1 History in chronological order

As was previously mentioned, the concepts by Tonti in [1] created the first building blocks of the
mimetic spectral element method. Just as with space, physical quantities that are timelike are
also related to objects. Once an orientation is assumed, known as inner- or outer orientation, 32
different relations between space and time are found. Tables 2.1 to 2.4 indicate all possibilities
between space and time elements. The spatial possibilities are listed column-wise, whereas the
timelike possibilities are listed row-wise. P , L, S and V refer to a point, a line, a surface and
a volume in space and I and T represent the time instant and time interval [3]. The inner
orientation is represented by ¯ and the outer orientation is indicated by means of ˜. They
indicate whether a quantity moves for instance along a line (L̄) or a quantity moving through
a surface (S̃). Other inner- and outer orientations are shown in Figure 2.1.

In 1976, [4] was published by Dodziuk in which the importance of “inner products of co-
chain spaces” was stressed. Later, the potential of the new method was applied to the theory
on electromagnetic field problems in [5] and a dual mixed method was established. Bossavit
et al. later published a technique that separated metric-dependent and metric-independent
operations [6]. The separation of the aforementioned enabled it to narrow the discretisation error
to only metric-dependent operations as the metric-independent operations are exact. Lastly,
in [7] it was mentioned once more that physical quantities and geometric objects needed to be
related to each other by “a common structure”.
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Figure 2.1: Representations of P̄ , L̄
and S̄ on the top row indicating inner
oriented spatial objects. Representa-
tions of outer oriented spatial objects
S̃, L̃ and P̃ shown at the bottom row.

t

x

L̃

T̃

T̄

L̄

Ĩ

Ī

P̄

P̃

Ī, P̄

Ĩ, P̃

T̄ , P̄

Ī, L̄

Ĩ, L̃

T̃ , P̃

Figure 2.2: Illustrations of various
space-time elements.

Table 2.1: Eight oriented space-time ele-
ments with inner oriented space and time
elements [1, p. 3].

Ī T̄

P̄ [Ī, P̄ ] [T̄ , P̄ ]
L̄ [Ī, L̄] [T̄ , L̄]
S̄ [Ī, S̄] [T̄ , S̄]
V̄ [Ī, V̄ ] [T̄ , V̄ ]

Table 2.2: Eight oriented space-time ele-
ments with outer oriented space and time
elements [1, p. 3].

Ĩ T̃

P̃ [Ĩ, P̃ ] [T̃ , P̃ ]

L̃ [Ĩ, L̃] [T̃ , L̃]

S̃ [Ĩ, S̃] [T̃ , S̃]

Ṽ [Ĩ, Ṽ ] [T̃ , Ṽ ]

Table 2.3: Eight oriented space-time ele-
ments with inner oriented space and outer
oriented time elements [1, p. 3].

Ĩ T̃

P̄ [Ĩ, P̄ ] [T̃ , P̄ ]

L̄ [Ĩ, L̄] [T̃ , L̄]

S̄ [Ĩ, S̄] [T̃ , S̄]

V̄ [Ĩ, V̄ ] [T̃ , V̄ ]

Table 2.4: Eight oriented space-time ele-
ments with outer oriented space and inner
oriented time elements [1, p. 3].

Ī T̄

P̃ [Ī, P̃ ] [T̄ , P̃ ]

L̃ [Ī, L̃] [T̄ , L̃]

S̃ [Ī, S̃] [T̄ , S̃]

Ṽ [Ī, Ṽ ] [T̄ , Ṽ ]

4



2.2 Performed studies

There are plenty of studies performed over the recent years that use the mimetic spectral
element method. Problems suchs as the the generalised convection-diffusion problems [8], the
Darcy’s problem [9, 10], Stokes flow [11, 12], the Grad-Shafranov equation [13, 14], anisotropic
diffusion [15], elliptic problems [16,17], Hamiltonian systems [18], linear elasticity [19], potential
flows [20] and the Laplace’s equation [19] are among them. Furthermore, it has been extended
to three-dimensional problems, including periodic incompressible Euler flows [21].

Recent performed studies show a growing interest in time-dependency being incorporated in
the mimetic spectral element method. Where stationary problems were focused on in the past,
time-dependence is increasingly mentioned in future research sections of papers and reports [19,
p. 96]. Space-time models have already been treated in the past, see for example [16]. The
one-dimensional convection-diffusion equation was treated in [8, p. 19], but lacked significant
detail in the treatment of the time variable. Lastly, the paper of Palha, [18], comes closest to
the subject of this thesis - applying the mimetic spectral element method to time-dependent
problems. Another field of studies that is currently investigated regarding the mimetic spectral
element method is the expansion to three dimensional spaces [21].

2.3 Discretisation of time

Recall (2.1), which is an exact relation between position and velocity. Discretising the continuous
equation can be done in various ways. Throughout history, different time-marching methods
have been created. Among the latter is the discretisation technique that uses a Taylor series
approximation. A first order Taylor approximation around ti can be written as

x(ti+1) ≈ x(ti) +
ẋ(ti)

1!
(ti+1 − ti), (2.2)

which mimics (2.1) when rewritten in the form

ẋ(ti)∆t ≈ x(ti+1)− x(ti), (2.3)

which can be deduced from (2.1) when ~v(t) is constant in the interval t ∈ [ti, ti+1]. The
necessity to conduct research in the field of time-dependent problems in combination with the
mimetic spectral element method is best explained when looking at (2.2). Assume an exact
solution of the form

x(t) = 2 cos(t), (2.4)

v(t) = ẋ(t) = −2 sin(t), (2.5)

which means that exact position and velocity are known. In Figure 2.3, one finds the exact
solution plotted for t = 0 until t = 0.2. Equation (2.1) suggests that once position and velocity
are known at t = ti, x(ti+1) can be calculated.

It is directly noticed that the approximated solution does not capture the exact physics of
the problem. It is also immediately seen that energy of the discrete system will not be constant

5



0.00 0.05 0.10 0.15 0.20
t

1.960

1.965

1.970

1.975

1.980

1.985

1.990

1.995

2.000

x
(t

)

Figure 2.3: Exact and discrete solution of (2.4) with ∆t = 0.1 (×) and ∆t = 0.05 (∗), x0 = x(0)
and ẋ0 = ẋ(0). Exact solution shown as − · −. Equation (2.5) is substituted in (2.2).

over time. Recalling (2.4) and (2.5), at a continuous level this system conserves energy through

E(t) =
1

2
x2(t) +

1

2
ẋ2(t),

=
1

2
(2 cos(t))2 +

1

2
(−2 sin(t))2 ,

= 2 cos2(t) + 2 sin2(t),

= 2,

(2.6)

indicating that the energy level is independent of time. In consequence this means that

dE

dt
= 0. (2.7)

On the contrary however, this is not the case for the discretised system. The difference
between exact and approximated position is an indication that energy will not be conserved.
∆E at discrete follows through

∆E = Ei+1 − Ei,

=
1

2
x2
i+1 +

1

2
ẋ2(ti+1)− 1

2
x2
i −

1

2
ẋ2(ti),

(2.8)

which will not be zero for positions xi. Many researchers have tried capturing the physical
behaviour using more sophisticated time discretisation methods, e.g. variational integrators [22]
or geometric integrators [23]. Others approach the problem from a different perspective and
use Lagrangian mechanics. Noticing explicit time independence, the equations of motion that
conserve energy follow [24,25].

2.4 Other discretisation techniques

Discretisation methods that are widely used nowadays are for example the finite difference
method, the finite volume method and the finite element method. The finite difference method
approximates the derivative through nodal differences. Together with appropriate boundary
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conditions, the finite difference formulation of the original differential equation is found [26].
The finite volume method uses the integral formulation of the differential equation, reducing
therefore the order of the problem by one [27]. Lastly, the method known as the finite element
method can be seen as one of the predecessors of the mimetic spectral element technique as
this technique also requires a functional formulation. Finding its minimum results in the weak
formulation of the differential equation and is thereafter solved using basis functions [27].

More sophisticated discretisation techniques suitable for solving ordinary differential equa-
tions are for instance the classic Runge-Kutta method or the basic Störmer-Verlet technique.
As these techniques are more sophisticated, an explanation follows hereafter. The Runge-Kutta
method uses the Euler method to solve differential equations [28]. The most common and most
widely known Runge-Kutta method is the fourth order Runge-Kutta method which reads [29]

ẋ = f(x, t),

x(t0) = x0,

and using the discretisation

xi+1 = xi +
4∑
i=1

wiki,

ki = hnf

x+ αihn, t+
i−1∑
j=1

βijkj

 ,

w1 = w4 =
1

6
and w2 = w3 =

1

3
,

and the values for αi and βij are retrieved from a Butcher tableau [30].
The Störmer-Verlet discretisation method is, next to the Runge-Kutta method, one of the

most widely known discretisation techniques in the field of engineering [31]. The method uses a
Taylor approximation and central differences formulation to discretise a second order differential
equation. As an example, a system

ẍ = f(x, t),

x(t0) = x0,
(2.9)

is solved using the approximation

ẍ(t) ≈ xi+1 − 2xi + xi−1

∆t2
(2.10)

and an appropriate initial condition related to velocity.
In the next chapter, the building blocks of the mimetic spectral element technique are

discussed and the procedure for time-dependent energy conserving spectral element schemes is
derived.
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3 Mathematical background

This chapter focuses on the mathematical background of the mimetic spectral element method.
As the equations of motion are derived from Lagrangian and Hamiltonian mechanics, these
two concepts are treated in Section 3.1, followed by an explanation of variational analysis
in Section 3.2. The derivation for exact energy behaviour at continuous level is treated in
Section 3.3. Before diving into the basics of the mimetic spectral element method, coordinate
transformation of the time variable is treated in Section 3.4.

The elementary building blocks of the mimetic spectral element methods are treated in
Sections 3.6 to 3.8.

There is different notation used in this chapter, among them are not only the continuous
and discrete equations, but also vector and matrix notations. To distinguish between the
aforementioned, the different notation is hence used. The explanation of all variables is given
in the nomenclature at the beginning of this thesis.

3.1 Lagrangian and Hamiltonian mechanics

Classical Newtonian mechanics can be seen as the all-round mechanical system that is used
in everyday life. From a historical point of view it brought people great achievements. The
equations of motion that define the problem at hand are often related to inertial reference frames
and can be traced back to Newton’s three laws of motion, i.e. Newton’s first, second and third
law.

A more general field of studies, Lagrangian mechanics, was founded by Joseph-Louis La-
grange [25]. As a reformulation of classical Newtonian mechanics, Lagrangian mechanics is a
more generalised formulation that can be best described by the two principles

• that a state of a mechanical system is expressed in minimal coordinates and

• that a mechanical system min- or maximises a so-called action.

Let a Lagrangian be formulated as

L(x(t), ẋ(t), t) = T (ẋ(t))− V (x(t)), (3.1)

i.e. the difference between kinetic energy and potential energy of the system. Equation (3.1)
is dependent on x and ẋ but can also depend on t. The remainder of this section treats the
most general version of the Lagrangian.

The Lagrangian equations of motion is found through substituting (3.1) in

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0, (3.2)

8



which is the Euler-Lagrange equation that is derived from the action

S(x(t), ẋ(t)) =

t2∫
t1

[L(x(t), ẋ(t), t)] dt, (3.3)

by means of variational analysis [24]. Variational analysis is treated more thoroughly in
Section 3.2, in which also (3.2) is derived. With the introduction of the conjugate momenta

pk =
∂L

∂ẋk
(x(t), ẋ(t), t) ,

Hamilton simplified the Lagrangian and defined the Hamiltonian through

H(p(t), x(t), t) ≡ ẋ(t)
∂L

∂ẋ
(x(t), ẋ(t), t)− L (x(t), ẋ(t), t) . (3.4)

Through the Hamiltonian, (3.2) is written as a first order system like

ṗ = −∂H
∂x

(p(t), x(t), t) and ẋ =
∂H

∂p
(p(t), x(t), t) ,

defining the equations of motion. For the case that will be treated in Chapter 4, the
Hamiltonian can be written as

H(x(t), ẋ, t) = ẋ(t)
∂L

∂ẋ
(x(t), ẋ(t), t)− L (x(t), ẋ(t), t) ,

= ẋ(t)
∂L

∂ẋ
(x(t), ẋ(t), t)−

(
1

2
mẋ2(t)− 1

2
kx2(t)

)
,

= ẋ(t)mẋ(t)−
(

1

2
mẋ2(t)− 1

2
kx2(t)

)
,

=
1

2
mẋ2(t) +

1

2
kx2(t),

where T (ẋ(t)) = 1
2mẋ

2(t) and V (x(t)) = 1
2kx

2(t) are substituted in (3.1). Since the Hamil-
tonian is defined by position and its conjugate momenta, it is rewritten as

H(p(t), x(t), t) =
p2(t)

2m
+

1

2
kx2(t),

defining the total energy of the system.

3.2 Variational analysis and its applications

The main idea behind variational analysis is to find a minimum of some functional by infinitesi-
mally distorting its minimum. Let (3.3) serve as an example. If S(x̂(t)) is its minimum at curve
x̂(t), it follows that S(x̂(t) + αδx(t)) ≥ S(x̂(t)). Here δx(t) is considered a perturbation in any
direction in space. From minimisation procedures it is known that a minimum (or maximum)
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is found when its first derivative is 0 for all perturbations δx(t) or

0 =
d

dα
S(x̂(t) + αδx(t))

∣∣∣∣∣
α=0

,

=

t2∫
t1

[
d

dα
L(x̂(t) + αδx(t), ˙̂x(t) + αδẋ(t), t)

∣∣∣∣∣
α=0

]
dt,

=

t2∫
t1

[
∂L

∂x

dx

dα
+
∂L

∂ẋ

dẋ

dα

]
α=0

dt,

=

t2∫
t1

[
∂L

∂x
δx+

∂L

∂ẋ
δẋ

]
α=0

dt.

(3.5)

Note that x(t) = x̂(t) + αδx(t) and ẋ(t) = ˙̂x(t) + αδẋ(t) were used. Furthermore, rewriting
δẋ(t) = d

dtδx(t) enables it to write (3.5) as

0 =

t2∫
t1

[
∂L

∂x
δx(t) +

∂L

∂ẋ

d

dt
δx(t)

]
α=0

dt,

=

t2∫
t1

[
∂L

∂x
δx(t)− d

dt

(
∂L

∂ẋ

)
δx(t)

]
α=0

dt+ δx(t)
∂L

∂ẋ

∣∣∣∣∣
t2

t1

,

=

t2∫
t1

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
α=0

δx(t) dt.

(3.6)

To go from the penultimate phrasing to the last required no end point variations, i.e.
δx(t1) = δx(t2) = 0. This is the case when then end points x(t1) and x(t2) are fixed. For
(3.6) to be 0 for all possible variations δx(t) finally results in

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 ∀t ∈ [t1, t2] . (3.7)

Note that (3.2), the Euler-Lagrange equation has been derived [24].

3.3 Energy conservation and Noether’s theorem

Another interesting aspect regarding the Lagrangian formulation was found by Amalie Emmy
Noether. In 1918 it was stated that with every invariant of the Lagrangian a conservation law
was related [24, p. 55]. Relating this to the common thread of this work means that whenever
time invariance is found, total energy is conserved.

Once again, let L(x, ẋ, t) be the general expression of the Lagrangian. In the subsequent
paragraphs, using the procedure of variational analysis, a formulation for energy conservation
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is found. Variational analysis of the Lagrangian is written as

δL(x, ẋ, t) =
d

dα
L(x̂+ αδx, ˙̂x+ αδẋ, t)

∣∣∣∣∣
α=0

,

=

[
∂L

∂x

dx

dα
+
∂L

∂ẋ

dẋ

dα

] ∣∣∣∣∣
α=0

,

= δx

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
+

d

dt

(
δx
∂L

∂ẋ

)
,

(3.8)

where the product rule of differentiation is used in the last rewriting of the equation [24].
The first expression on the right-hand side is known as the Euler-Lagrange equation as described
in Section 3.2 and equals zero if and only if the equations of motion are obeyed. Variational
analysis of the Lagrangian can hence be written as

δL(x(t), ẋ(t), t) =
d

dt

(
δx(t)

∂L

∂ẋ
(x(t), ẋ(t), t)

)
. (3.9)

From another perspective, as t is the only independent variable, time-like variations of the
Lagrangian results in

0 = δ

t2∫
t1

[L] dt,

=

t2∫
t1

[
δL+ δt

∂L

∂t

]
dt+

t2∫
t1

Ldδt,

=

t2∫
t1

[
δL+ δt

∂L

∂t

]
dt−

t2∫
t1

δt dL+ Lδt

∣∣∣∣∣
t2

t1

,

=

t2∫
t1

[
δL− δt

(
dL

dt
− ∂L

∂t

)]
dt,

(3.10)

in which no end point variations were allowed [24]. For (3.10) to be 0 it follows that

δL(x(t), ẋ(t), t) = δt

(
dL

dt
− ∂L

∂t

)
. (3.11)

At this moment there are two expressions ((3.9) and (3.11)) to the same variation of the
Lagrangian. Setting both to be equal to each other and rewriting the resulting expression leads
to

d

dt

(
δx
∂L

∂ẋ

)
= δt

(
dL

dt
− ∂L

∂t

)
,

δt
d

dt

(
ẋ
∂L

∂ẋ

)
= δt

(
dL

dt
− ∂L

∂t

)
,

d

dt

(
ẋ
∂L

∂ẋ
− L

)
= −∂L

∂t
,

(3.12)

in which the expression δx = ẋδt is used to proceed from the first line to the second [24].
Equation (3.12) is known as Euler’s second equation for the Lagrangian and becomes an energy
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conservation equation when the Lagrangian is explicitly independent of time, i.e. the right-
hand side equals zero. The same result can also be obtained considering the derivative of
L(x(t), ẋ(t), t) with respect to t. This is done through

dL

dt
=
∂L

∂t
+
∂L

∂x

dx

dt
+
∂L

∂ẋ

dẋ

dt
,

=
∂L

∂t
+
∂L

∂x

dx

dt
+

d

dt

(
∂L

∂ẋ
ẋ

)
− d

dt

(
∂L

∂ẋ

)
dx

dt
,

=
∂L

∂t

(
∂L

∂x
− d

dt

(
∂L

∂ẋ

))
dx

dt
+

d

dt

(
∂L

∂ẋ
ẋ

)
,

∂L

∂t
=

d

dt

(
L− ∂L

∂ẋ
ẋ

)
,

in which the Euler-Lagrange equation is used to go from the penultimate expression to the
last. In other words, the Lagrangian is time invariant if and only if

∂L

∂t
= 0, (3.13)

meaning that the Lagrangian does not explicitly depend on time. If and only if this is
the case, then energy is conserved. Equation (3.13) will be used later on in Chapter 4 to
assess energy behaviour. The Hamiltonian, (3.4), may be recognised in (3.13). Substituting the
Lagrangian

L(x(t), ẋ(t), t) =
1

2
mẋ2(t)− 1

2
kx2(t), (3.14)

into (3.13), it follows that the energy of the system is conserved through

d

dt

(
ẋ
∂L

∂ẋ
− L

)
=

d

dt

(
ẋ(t)mẋ(t)−

(
1

2
mẋ2(t)− 1

2
kx2(t)

))
,

=
d

dt

(
1

2
mẋ2(t) +

1

2
kx2(t)

)
,

= 0,

(3.15)

which indicates that L(x(t), ẋ(t), t) from (3.14) is invariant under time translations.

3.4 Coordinate transformation of the time variable

A time-line may be solved directly or a time-line may be split up into a distinct amount of
sections, after which each section is solved separately. The latter is known as h-convergence.
Let [a, b] in Figure 3.1 be an arbitrary time interval and let this time interval be one of the
distinct sections. Mapping this interval onto the reference interval τ ∈ [−1, 1] can most easily
be done using linear interpolation, i.e. through

τ(t) = 2
(t− a)

b− a − 1, (3.16)

or vice versa

t(τ) =
b− a

2
(τ + 1) + a. (3.17)

Equations (3.16) and (3.17) are used in Section 4.3, where a known mapping is used. Sec-
tion 4.4 deals with an arbitrary mapping and arbitrary dt

dτ (t). These two sections will be
compared to each other.
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t
a b

τ
−1 1

Figure 3.1: Coordinate transformation of an arbitrary time interval t ∈ [a, b] to τ ∈ [−1, 1].

3.5 Intermediate summary

All mathematics that was treated in Sections 3.1 to 3.4 dealt with mathematics at a continuous
level. Since continuous domains cannot be solved using computer software, these need to be
transformed to discrete variables. All subsequent sections that follow deal with discrete math-
ematics. It is therefore sensible to put the continuous mathematics in sequence. This is done
in Figure 3.2. The penultimate block in Figure 3.2 results in the equations of motion of the
system, known as the Euler-Lagrange equations. Knowing this equation, energy conservation
can be derived at continuous level.

Lagrangian
Section 3.1

Action
Mapping
Section 3.4

Variational
analysis
Section 3.2

Energy
conservation

Section 3.3

Discretise
variables

Figure 3.2: Block diagram showing the procedure at continuous level.

The subsequent sections elaborate on the basis functions (Section 3.6), the primal grid and
its invisible dual grid (Section 3.7) and the incidence matrices (Section 3.8) that allow for the
conversion between nodal and edge functions.

3.6 One- and two-dimensional primal basis functions

The mimetic spectral element technique uses the Legendre-Gauss-Lobatto nodes and Lagrange
polynomials li(τ) to discretise the continuous quantities. The Legendre-Gauss-Lobatto nodes,
τi, more thoroughly explained in [32], are all p+ 1 root locations of the polynomial

f(τ) = (1− τ2)
dLp(τ)

dτ
. (3.18)

The p+1 root locations have a symmetric layout on the domain τ ∈ [−1, 1] and are depicted
in Figure 3.3. The Legendre-Gauss-Lobatto nodes are symmetric around τ = 0. The Legendre
polynomials are defined through

Li(τ) =
1

2ii!

di

dτ i
(
τ2 − 1

)i
, i = 0, 1, . . . , p, (3.19)
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indicating, among others, that L0 = 1 and L1 = τ . Reducing the Lagrange polynomials
li(τ) leads to a special property, dictating

Rl0i (τ) = l0i (τp) = hi(τ) =

{
1 for i = p

0 for i 6= p
. (3.20)

−1.0 −0.5 0.0 0.5 1.0
τ

1

2

3

4

5

6

7

8

9

p

Figure 3.3: p+ 1 root locations of (3.18) using (3.19) for different p on τ ∈ [−1, 1].

The property mentioned in (3.20) enables it to discretise 0-forms (related to nodal points)
as Lagrange polynomials are 0-forms as well. Through

πha
0(τ) =

p∑
i=0

aihi(τ), (3.21)

the definition of the nodal basis function is created. The nodal basis functions for p = 3 are
plotted in Figure 3.4a. Edge basis functions are derived from nodal basis functions through

ej(τ) = −
j−1∑
i=0

dhi(τ), (3.22)

as proved in [33]. The edge basis functions encompass the property that the integral quantity

τi∫
τi−1

[ej(τ)] dτ =

{
1 for i = j

0 for i 6= j
. (3.23)

The primal edge basis functions are shown in Figure 3.4b for p = 3. The choice of primal and
dual nodes is explained in Section 3.7. The extension to multidimensional domains, like space-
time is easily done by means of the tensor product [34]. Using (3.22), 1-forms are discretised
as

πha
1(τ) =

p∑
i=1

aiei(τ), (3.24)
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in which

ai =

τi∫
τi−1

a1 dτ. (3.25)

−1.0 −0.5 0.0 0.5 1.0
τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

h
(τ

)

(a) Nodal basis functions for p = 3 on the
primal grid.

−1.0 −0.5 0.0 0.5 1.0
τ

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

e(
τ

)

(b) Nodal edge functions for p = 3 on the
primal grid.

−1.0 −0.5 0.0 0.5 1.0
τ

−1
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1

2

3

4

5

6

h
′ (
τ

)

(c) Nodal basis functions for p = 3 on the
dual grid.

−1.0 −0.5 0.0 0.5 1.0
τ

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

e′
(τ

)

(d) Nodal edge functions for p = 3 on the
dual grid.

Figure 3.4: Primal and dual basis functions for p = 3.

3.7 Primal and dual grid construction

As indicated by Figure 3.3, the polynomial degree p defines the gridpoints. Let for instance
p = 2. The corresponding grid is shown in Figure 3.5. For clarity the dual space is also given.
The dual space follows from the choice of primal basis. By limiting the basis to a canonical
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basis, this means that

1∫
−1

[
H̄T H̃

]
dt = I, (3.26)

and

1∫
−1

[
ĒT Ẽ

]
dt = I, (3.27)

in which the vectors of basis functions H = [h0(τ), · · · , hp(τ)] and E = [e1(τ), · · · ep(τ)] have
been introduced. In [34] a more thorough derivation is found constituting the dual basis. In
short, the exact locations of the dual nodes are unknown, but are computed using

H̃T = H̄T
(
M0
)−1

, (3.28)

as explained in [34]. M0 is shorthand notation for

M0 =

1∫
−1

[
H̄T H̄

]
dt. (3.29)

In a similar fashion, the dual edge basis functions are constructed. This is done through

ẼT = ĒT
(
M1
)−1

, (3.30)

where

M1 =

1∫
−1

ĒT Ē dt. (3.31)

The use of both the primal and dual basis functions results in a sparse matrix that contains
sub-matrices containing the entries 0, 1 and −1. These sub-matrices are called incidence ma-
trices and will be addressed in Section 3.8. The nodal and edge basis functions on the dual grid
are shown in Figures 3.4c and 3.4d.

−1
τ

1

x0 x1 x2

−1 1
τ

p1 p2

Figure 3.5: One-dimensional primal and dual grid for p = 2. Arrows indicate default positive
orientation.
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3.8 Incidence matrices

Derived from (3.22), derivatives of 0-forms include incidence matrices, i.e. the relation between
0-forms and 1-forms. From (3.22) it follows that [33,34]

dhj
dτ

= ej(τ)− ej+1(τ). (3.32)

Relating this to our 0-forms, its derivative is thus

dπha
0(τ) = d

p∑
i=0

aihi(τ),

=

p∑
i=0

aidhi(τ),

=

p∑
i=0

ai (ei(τ)− ei+1(τ)) ,

=

p∑
i=1

(ai − ai−1) ei(τ).

(3.33)

Transforming (3.33) to vector calculus results in the establishment of the incidence matrix
through

dπha
0(τ) = Ē(1,0)~̄a~̄e. (3.34)

The same derivation can be followed for the incidence matrix on the dual grid, Ẽ(1,0). Using
the chosen orientation as shown in Figure 3.5 however, Ẽ(1,0) and Ē(1,0) are related through

Ẽ(1,0) = Ē(1,0)T . (3.35)

Using the theory described above, the incidence matrix related to the primal grid reads
−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

 . (3.36)

Similarly, the incidence matrix related to the dual grid reads

−1 0 · · · 0

1 −1
. . .

...

0 1
. . . 0

...
. . .

. . . −1
0 . . . 0 1


. (3.37)

3.9 Summary

This chapter is concluded with a summary about the mimetic spectral element discretisation
method. In Section 3.5 the procedure at continuous level was already discussed. This section
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Discretise
variables

Mass
matrices
Section 3.7

Incidence
matrices
Section 3.8

Boundary
equations

System
matrix

right-hand
side vector

Solve
A~x = ~b

Mapping
Section 3.4

Variational
analysis
Section 3.2

Post
processing

Figure 3.6: Block diagram showing the procedure at discrete level.

elaborates upon the procedure at discrete level. In Figure 3.6 the discrete procedure is shown.
The block at the top-right corner solves for the degrees of freedom at both the primal grid and
dual grid. Through post processing, visualisation and error computation is performed.

It is found that the discretisation was solely dependent on the construction of the primal
grid, i.e. the dual grid is entirely dependent on the primal grid.

Moreover, it was is found that the derivative with respect to time can be exactly represented
by the incidence matrix Ē on the primal grid and Ē on the dual grid.
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4 Simple harmonic oscillator

The simple harmonic oscillator mainly serves as a sample problem for ordinary differential
equations in university text books. Either with or without damping it is an understandable
phenomenon that can be encountered in everyday life. Recall for instance the swing example
in Chapter 1. Because of this relatability, it is also regarded as a meaningful starting point for
the new time-dependent mimetic spectral element technique. This chapter commences with the
problem statement and the continuous solution to the simple harmonic oscillator in Section 4.1.
A discrete Lagrangian and its variational integrator technique are treated in Section 4.2 and a
first starting point towards mimetic spectral elements for time-dependent problems is treated in
Section 4.3. A slightly more sophisticated approach is considered in Section 4.4 and a spectral
marching method is explained and tested in Section 4.5.Everything is summarised in Section 4.6.

4.1 Problem statement

Let the problem be defined as follows. Let there be a concentrated mass m at one end of a
spring with spring constant k. Furthermore, let the other side of the spring be attached to
an immovable wall, as shown in Figure 4.1. This problem is known as the simple harmonic
oscillator. The well known equation of motion for this equation of motion reads

mẍ(t) + kx(t) = 0. (4.1)

k

m x

Figure 4.1: Undamped mass spring system.

Equation (4.1) is a second order ordinary differential equation and integrating twice requires
two initial conditions x(0) and ẋ(0). The well-posed problem that is being treated in this chapter
is to find x(t) such that
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mẍ(t) + kx(t) = 0,

x(0) = A and

ẋ(0) = B, with

A = 1,

B = 0,

m = 5 and

k = 1.

The general solution to (4.1) can be found by assuming

x(t) = ert.

Differentiating twice with respect to variable t and applying the initial conditions x(0) and
ẋ(0) eventually results in the continuous solution

x(t) = A cos

(√
k

m
t

)
. (4.2)

The full derivation can be found in Appendix A. Equation (4.2) is plotted in Figure 4.2a.
Figure 4.2b shows momentum, defined as

p(t) = mẋ(t)

= −A
√
km sin

(√
k

m
t

)
.

(4.3)

Total energy at each timestep is given by

E(t) =
1

2
mẋ2(t) +

1

2
kx2(t),

=
1

2
mA2

(
−
√
k

m
sin

(√
k

m
t

))2

+
A2

2
k

(
cos

(√
k

m
t

))2

,

=
1

2
kA2,

(4.4)

and shown in Figure 4.2c. Figure 4.2d shows the exact position-momentum plot, which
over time should not spiral in- or outwards. In the subsequent sections, the exact solutions of
position, momentum and energy are plotted as a reference.
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Figure 4.2: Exact solution (− · −) to (4.1) using (4.2) to (4.4).

4.2 Discretising using the variational integrator technique

Let the variational integrator technique be the first technique to be considered that tries to
capture all relevant physics. Equation (4.1) can be discretised straighforwardly using a Taylor
series around x(t). This section however, takes a different route by looking at the related discrete
Lagrangian Ld(x0, x1,∆t) and continues from there. A block diagram is found in Figure 4.3.
Let the continuous and discrete Lagrangian be defined in (4.5) and (4.6) as

L(x(t), ẋ(t), t) =

b∫
a

[T (ẋ(t))− V (x(t))] dt,

=

b∫
a

[
1

2
mẋ2(t)− 1

2
kx2(t)

]
dt

(4.5)
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and

Ld(x0, x1,∆t) = ∆t

[
1

2

(
x1 − x0

∆t

)T
M
(
x1 − x0

∆t

)
− 1

2
xT0 Kx0

]
, (4.6)

where [24]

Ld(x0, x1,∆t) ≈
∫ x1

x0

L(x(t), ẋ(t), t) dt.

M and K are diagonal matrices containing m and k on their diagonal as

M =


m 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 m

 and K =


k 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 k

 .
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Equation (4.5)

Discrete
Lagrangian
Equation (4.6)

Discrete
Action

Equation (4.7)

Discrete
variational
analysis

Variations
δx0 = 0
δxN = 0

Initial
conditions

Explicit time
marching

Equation (4.9)

Post
processing

Figure 4.3: Block diagram showing the variational integrator technique.

The derivative ẋ(t) is approximated by a first order accurate Taylor series. The discrete
action of (4.6) is a summation over the domain. Requiring this action to be stationary results
in

0 = δ
N−1∑
i=0

(
∆t

[
1

2

(
xi+1 − xi

∆t

)T
M
(
xi+1 − xi

∆t

)
− 1

2
xTi Kxi

])
,

=

N−1∑
i=0

δ

(
∆t

[
1

2

(
xi+1 − xi

∆t

)T
M
(
xi+1 − xi

∆t

)
− 1

2
xTi Kxi

])
,

=
N−1∑
i=0

([
−M

(
xi+1 − xi

∆t

)
−∆tKxi

]
· δxi +

[
M
(
xi+1 − xi

∆t

)]
· δxi+1

)
∀δxi

=
N−1∑
i=1

([
−M

(
xi+1 − xi

∆t

)
−∆tKxi + M

(
xi − xi−1

∆t

)]
· δxi

)
+

[
−M

(
x1 − x0

∆t

)
−∆tKx0

]
· δx0 +

[
M
(
xN − xN−1

∆t

)]
· δxN ∀δxi.

(4.7)

Forcing δx0 = δxN = 0 results in

0 = −M
(
xi+1 − xi

∆t

)
−∆tKxi + M

(
xi − xi−1

∆t

)
,

= M
(
xi+1 − 2xi + xi−1

∆t2

)
+ Kxi.

(4.8)
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Equation (4.8) is widely known as a discrete representation of the harmonic oscillator. For
M = mI and K = kI this system enables explicit time marching through

xi+1 =

(
2− k

m
∆t2

)
xi − xi−1,

= xi − xi−1 +

(
1− k

m
∆t2

)
xi,

if the first two positions are known. It is however uncommon to specify two subsequent
positions x0 and x1, rather an initial position x0 and initial velocity ẋ0. This is done through
a first order accurate Taylor series. The resulting solution for position is

xi+1 =

{(
1− k

m∆t2
)
xi + ẋ(0)∆t for i = 0(

2− k
m∆t2

)
xi − xi−1 for i > 0

. (4.9)

Similar to (4.3), discrete momentum is defined as a multiplication of velocity at time instant
i, ẋi and mass m through

pi = mẋi,

= m
xi+1 − xi

∆t
.

(4.10)

Equation (4.10) directly follows from (4.9). Discrete total energy at time instant i, Ei is
calculated through

Ei =
1

2

(
xi+1 − xi

∆t

)
m

(
xi+1 − xi

∆t

)
+

1

2
xikxi,

=
1

2

( m

∆t2
(
x2
i+1 − 2xixi+1 + x2

i

)
+ kx2

i

)
,

(4.11)

which is not always equal to 1
2kA

2 (total energy as calculated in (4.4)). Hence, in discrete
sense and using the variational integrator technique, energy is not exactly conserved. Figure 4.4
shows the discrete solution using the variational integrator method.

Figure 4.4b shows discrete momentum with respect to discrete time. A striking difference
observed from Figure 4.4b is the mismatch in momentum right at t = 0. This is a result
of the explicit time-marching scheme, i.e. the definition of discrete velocity, ẋi = xi+1−xi

∆t
and recognising that position is first solved for and velocity afterwards. Following, discrete
momentum and discrete energy lack one solution at the very last discrete time instant compared
to discrete position. This is, once again, a consequence of the definition of discrete velocity.

Figure 4.4c displays discrete energy with respect to discrete time. From Figure 4.4b, it is
immediately clear that energy is not exactly conserved. Discrete energy oscillates around the
exact energy. The question remains whether the oscillating behaviour damps out, amplifies or
is bounded over time. The answer is found in Figure 4.4d.

Figure 4.4d displays, in discrete sense, momentum versus position at multiple time instants.
Would energy amplify or decay over time the position momentum plot would spiral out- or
inward over time. However, it keeps its circular shape, indicating oscillatory behaviour without
damping. This plot is shown for t ∈ [0, 1600].

The overall conclusion is hence that from this variational integrator perspective, discrete
energy is not conserved but oscillates over time. Moreover, discrete velocity and hence discrete
momentum, do not obey the continuous initial condition related to velocity. The oscillating
behaviour might be addressed to the velocity calculation through the first order accurate Taylor
series. As a matter of fact, the velocity calculation is not calculated at point ti, rather ti+

1
2 .
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This means that calculating the energy behaviour of the system always has two components,
i.e. potential energy at ti and kinetic energy at ti+

1
2 . In attempting to solve this issue, another

formulation of discrete velocity is used. Using

xi+1 − xi−1

2∆t
= ẋi (4.12)

and likewise

x1 − x−1

2∆t
= ẋ(0), (4.13)

the solution for position in (4.9) is rewritten to

xi+1 =

{(
1− k

2m∆t2
)
xi + ẋ(0)∆t for i = 0(

2− k
m∆t2

)
xi − xi−1 for i > 0

. (4.14)

The results are found in Figure 4.5. Position is shown in 4.5a and calculated using (4.14).
Using (4.12) and (4.14), momentum is found through

pi = m
xi+1 − xi−1

2∆t
, (4.15)

of which its result is shown in Figure 4.5b. Energy is shown in Figure 4.5c and calculated
through

Ei =
1

2

(
xi+1 − xi−1

2∆t

)
m

(
xi+1 − xi−1

2∆t

)
+

1

2
xikxi. (4.16)

This time, it is shown that both its kinetic energy and potential energy have been used
at the same moment ti. The error between the discrete and the exact solution has decreased
significantly in comparison to Figure 4.4c. However, its mean energy has decreased with respect
to the former derivation as well. The discrete energy does not oscillate around the exact energy
anymore. Only the crests of the discrete energy match the exact energy solution.

Represented by Figure 4.5d, it is indicated by the momentum versus position plot that the
system does not damp out nor amplifies. This plot is shown for t ∈ [0, 1600].
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Figure 4.4: Discrete solution to (4.1) using (4.9) to (4.11). Exact solution shown as − · −.
Figures 4.4a to 4.4c computed for for t ∈ [0, 16]. Figure 4.4d computed for t ∈ [0, 1600].
∆t = 0.1 (—), ∆t = 0.05 (—).
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Figure 4.5: Discrete solution to (4.1) using (4.14) to (4.16). Exact solution shown as − · −.
Figures 4.4a to 4.4c computed for for t ∈ [0, 16]. Figure 4.4d computed for t ∈ [0, 1600]. ∆t = 0.1
(—), ∆t = 0.05 (—).
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4.3 Discretising using the mimetic spectral element method
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Figure 4.6: Block diagram showing the mimetic spectral element technique with known dt
dτ (t).

In an attempt to improve on the variational integrator technique, this section solves the sim-
ple harmonic oscillator problem using the mimetic spectral element technique. A flow diagram
is found in Figure 4.6. Let the Lagrangian still be defined as (4.5). Unlike finding the discrete
action, a continuous action is sought at first, through

S(p, x) =

b∫
a

[L(x(t), ẋ(t), t)] dt+

b∫
a

[ṗ(t)x(t)] dt

=

b∫
a

[
p2(t)

2m
− kx2(t)

2

]
dt+

b∫
a

[ṗ(t)x(t)] dt

(4.17)

where the definition of momentum, p(t) = mẋ(t), has been used to replace ẋ(t). This means
that an additional combination of p(t) and ẋ(t) is necessary in order to close the system. The
latter will be made clear later in this section. Variational analysis with respect to p(t) results
in the definition equation between momentum and velocity through

∂S(x(t), p(t) + αδp(t))

∂α

∣∣∣∣∣
α=0

=

b∫
a

[
p(t)δp(t)

m

]
dt+

b∫
a

[x(t)δṗ(t)] dt,

=

b∫
a

[
p(t)

m
δp(t)

]
dt−

b∫
a

[ẋ(t)δp(t)] dt+ [x(t)δp(t)]ba ,

=

1∫
−1

[
p(τ)

m
δp(τ)

b− a
2

]
dτ −

1∫
−1

[ẋ(τ)δp(τ)] dτ

+ [x(τ)δp(τ)]1−1 ∀δp(τ),

(4.18)

in which integration by parts is used to convert δṗ(t) into δp(t). Moreover, dt
dτ = b−a

2 .
Variational analysis with respect to x(t) results in the equation of motion through
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∂S(x(t) + βδx(t), p(t))

∂β

∣∣∣∣∣
β=0

=

b∫
a

[−kx(t)δx(t)] dt+

b∫
a

[ṗ(t)δx(t)] dt, (4.19)

=

1∫
−1

[
−kx(τ)δx(τ)

b− a
2

]
dτ +

1∫
−1

[ṗ(τ)δx(τ)] dτ ∀δx(τ). (4.20)

The equations of motion follow from (4.18) and (4.20) when again the end points are fixed.
This means that again no end point variations are allowed. Furthermore, requiring that (4.18)
and (4.20) equal zero for all variations δp(τ) and δx(τ) results in

p(τ)
b− a

2
= mẋ(τ) and

ṗ(τ)− kx(τ)
b− a

2
= 0.

Equations (4.18) and (4.20) are discretised using the spectral element technique, in which
the variables are related to nodes and edges in one-dimensional space. For this problem, x(τ)
is discretised in nodes on the primal basis denoted as x̄h(τ) and p(τ) is related to nodal dual
representation, denoted as p̃h(τ). Equations (4.21) and (4.22) show the discretised variables
and are illustrated in Figure 4.7.

x̄h =

p∑
i=0

xihi(τ)

δx̄h =

p∑
i=0

δxihi(τ)

¯̇xh =

p∑
i=1

(xi − xi−1) ei(τ)

(4.21)

p̃h =

p∑
i=1

pie
′
i(τ),

δp̃h =

p∑
i=1

δpie
′
i(τ) and

˜̇ph =

p∑
i=0

(pi − pi−1)h′i(τ),

(4.22)

τ
x

p

ẋ

ṗ

Figure 4.7: Discretised variables from (4.21) and (4.22) displayed on the τ -axis.

Applying (4.21) and (4.22) to (4.18) and (4.20) results in a coupled system between position
and momentum. In matrix notation this can be written as[

M−1
m −Ē(1,0)

Ē(1,0)T −Mk

] [
~p
~x

]
=

[
~0
~0

]
. (4.23)
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Mm and Mk in (4.23) are shorthand notations for

Mm =

1∫
−1

[
mei(τ)ej(τ)

2

b− a

]
dτ and

Mk =

1∫
−1

[
khi(τ)hj(τ)

b− a
2

]
dτ.

The vector to be solved for includes ~p and ~x, which read

~p =

p1
...
pp

 and ~x =

x0
...
xp

 .

a t
b

x0 x1 x2

−1
τ

1

x0 x1 x2

−1 1
τ

p0 p1 p2 p3

Figure 4.8: Discretised primal and dual space for a ≤ t ≤ b. Figure examplifies mismatch
between equations and unknowns. Linear mapping used through (3.16).

Without loss of generality, Figure 4.8 shows the discretised primal and dual space for a ≤
t ≤ b. Here, x(t) is discretised using three primal nodes and p(t) is discretised onto two dual
nodes plus two dual nodes on the boundary to be able to calculate ṗ(t), adding up to seven
unknown values. As a consequence, two extra equations are needed to close the system. To be
more specific, the matrix in (4.23) has size 5× 7 which cannot be inverted to solve for ~p and ~x.
The additional two equations are added by means of initial conditions x̂0 and p̂0. The resulting
system is  M−1

m −E(1,0) 0

E(1,0)T −Mk NTx
0 X00 P10

~p~x
~λ

 =

 ~0~0
~Λ0

 , (4.24)

with

~p =

[
p1

p2

]
and ~x =

x0

x1

x2

 and ~λ =

[
p0

p3

]
Nx takes size 2×3. Single-entry-matrices P10 and X00 take sizes 2×2 and 2×3 respectively.

Their non-zero entry equals one. P10 and X00 read

P10 =

[
0 0
1 0

]
and X00 =

[
1 0 0
0 0 0

]
.
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~Λ0 contains the initial conditions of both ~p and ~x and Nx relates ~x to its boundary contrib-
utors. ~Λ0 and Nx read

~Λ0 =

[
x̂0

p̂0

]
and Nx =

[
1 0 0
0 0 −1

]
.

The reconstructed polynomials p̃h(t), x̄h(t) and Eh(t) are plotted in Figure 4.9 using (4.21)
and (4.22). The average time increment is ∆t = b−a

p = 0.1. Recall (3.13) from Chapter 3, i.e.
the energy conservation equation. Its spectral discrete equivalent is represented by

d

dt

(
p̃h

2

i (t)

2m
+
kx̄h

2

i (t)

2

)
= 0 or

p̃h
2

i (t)

2m
+
kx̄h

2

i (t)

2
= E(0),

and is shown in Figure 4.9c. It can be seen that discrete energy oscillates but stays between
bounds. This is seen in Figure 4.9c. In comparison to Figure 4.4c progression is made, yet no
exact energy conservation is found. Looking at Figure 4.9d it is found that for t ∈ [0, 1600] no
inward or outward spiralling is found, meaning that no damping or amplification of the energy
level is observed.

Moreover, the definition equation p(t) = mẋ(t) and the constitution equation ṗ(t)+kx(t) = 0
are shown in Figure 4.10. For p = 3 and a timeline split into two segments, the exact and
discrete solution are plotted. Figure 4.10a displays both the left-hand-side and the right-hand-
side of the definition equation, including its difference in green. The difference is also plotted
in Figure 4.10b. It shown that its difference is up to machine precision.

Like Figures 4.10a and 4.10b, Figures 4.10c and 4.10d show the relation between p(t) and
kx(t). Again, it is observed that their difference is up to machine precision. From this, it can
be concluded that the dual representation of the primal grid can be used to create additional
degrees of freedom and that their relation is up to machine precision.

Lastly, p-convergence and ∆t-convergence is performed for the system described above. This
p- and ∆t-convergence is computed for t ∈ [0, 16] for multiple polynomial degrees and a variety
of ∆t increments. The error between the exact values and approximated values is computed
using the Euclidean norm. It is defined as

∥∥∥ exact − h
∥∥∥

2
=

√√√√√ b∫
a

[(
exact − h

)2]
, (4.25)

in which equals the quantity of interest. The p-convergence regarding the variables x(t),
p(t) and E(t) is found in Figures 4.11a, 4.11c and 4.11e respectively. ∆t-convergence regarding
the variables x(t), p(t) and E(t) is found in Figures 4.11b, 4.11d and 4.11f.

In Section 4.4 yet another approach is taken in order to conserve energy. This is because
it is attempted to conserve the symmetry of the matrix as this is lost by imposing an initial
condition on momentum. By allowing an arbitrary mapping between t and τ it is thought to
overcome this issue, which will be explained in Section 4.4.
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Figure 4.9: Discrete solution to (4.1) using (4.21), (4.22) and (4.24) using p = 3. Exact solution
shown as − · −. Figures 4.9a to 4.9c computed for t ∈ [0, 16]. Figure 4.9d computed for
t ∈ [0, 1600]. ∆t = 0.1 (—).
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(c) ṗh(t) � and −kxh(t) N elements from
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Figure 4.10: Equations of motion p(t) = mẋ(t) and ṗ(t) + kx(t) = 0 and differences between
the left-hand side and right-hand side. Exact solutions p(t) and ṗ(t) shown by − · −. Exact
solutions x(t) and ẋ(t) shown by · · ·. Discrete ph(t) and ṗh(t) represented by �. Discrete xh(t)
and ẋh(t) represented by N. Exact differences plotted using —. Discrete differences plotted
using �. ∆t = 2.29 using p = 3 and ne = 2.

32



2 4 6 8 10 12
p

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

||x
h
(t

)
−
x

(t
)||

(a) p-convergence for ~x at ∆t = 0.1 (�),
∆t = 0.1 (�) and ∆t = 0.05 (�).

10−2 10−1

∆t

10−12

10−10

10−8

10−6

10−4

10−2

||x
h
(t

)
−
x

(t
)||

3.5

4.8

5.8

(b) h-convergence for ~x at p = 2 (�), p = 3
(�) and p = 4 (�).

2 4 6 8 10 12
p

10−13

10−11

10−9

10−7

10−5

10−3

||p
h
(t

)
−
p(
t)
||

(c) p-convergence for ~p at ∆t = 0.2 (�),
∆t = 0.1 (�) and ∆t = 0.05 (�).

10−2 10−1

∆t

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||p
h
(t

)
−
p(
t)
||

1.5

2.7

3.7

(d) h-convergence for ~p at p = 2 (�), p = 3
(�) and p = 4 (�).

2 4 6 8 10 12
p

10−13

10−11

10−9

10−7

10−5

10−3

||E
h
(t

)
−
E

(t
)||

(e) p-convergence for ~E at ∆t = 0.2 (�),
∆t = 0.1 (�) and ∆t = 0.05 (�).

10−2 10−1

∆t

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

||E
h
(t

)
−
E

(t
)||

1.6

2.7

3.7

(f) h-convergence for ~E at p = 2 (�), p = 3
(�) and p = 4 (�).

Figure 4.11: p- and ∆t-convergence for ph(t), xh(t) and Eh(t) of the simple harmonic oscillator
problem using (4.21), (4.22) and (4.24). Time interval used: t ∈ [0, 16].
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4.4 Arbitrary linear t− τ mapping
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Post
processing

Figure 4.12: Block diagram showing the mimetic spectral element technique with unknown
dt
dτ (τ).

In Section 4.3 a solution to the simple harmonic oscillator was found through a combination
of the mimetic spectral element method and a linear transformation between t and τ , through
(3.16), based on polynomial degree p and ∆t. Improved energy conservation was found in
comparison to Section 4.2, yet no exact energy conservation was found when a low polynomial
order was used. This section elaborates upon the possibility of adding an unknown to the system
in the form of dt

dτ (τ). An interesting phenomenon occurs when this procedure is followed, of

which the flow diagram is found in Figure 4.12. As the a-priori unknown variable dt
dτ (τ) is

incorporated in matrices Mm and Mk, the solution is found through an iterative process. In the
paragraph below Figure 4.12 is explained.

Recall Figure 4.8. Let the initial conditions x(a) and ẋ(a) at t = a be known. Through the
mapping from t to τ the problem is mapped onto the reference domain τ ∈ [−1, 1], introducing
dt
dτ (τ). A position value is guessed at the end of the domain in order to have a well-posed
problem. Do note that time t at which this position is reached is unknown as the mapping is
unknown. As the trajectory of the simple harmonic oscillator can be calculated exactly, x2 is
guessed through

x2 = x̂0 + ˆ̇x0∆t+
ˆ̈x0

2
∆t2, (4.26)

in which ˆ represents a known value.The system is then solved using an initial dt
dτ (τ). After

reconstruction, the value of p̃h(t) at t = a is compared to the value of mx̂0. When

p̃h
∣∣∣∣
τ=−1

−mˆ̇x0 = 0 (4.27)

reaches machine precision, the value for dt
dτ (τ) at that moment is used to calculate b in t = b.

The method used to reach machine precision in (4.27) is the Nelder-Mead minimisation method.
In short, the Nelder-Mead method uses a (p+1)-dimensional simplex on a p-dimensional domain
[35]. For the one-dimensional harmonic oscillator problem the simplex is a line, containing two
endpoints a and b. The objective is evaluated at both endpoints and sorted. The worst result
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is reflected through centroid of all other points, presumably moving the simplex to a minimum.
As time is irreversible, dt

dτ (τ) is restricted to only positive values through

dt

dτ
(τ) ≥ 0. (4.28)

For a more thorough explanation of the Nelder-Mead method, please see [35]. Following the
explanation of this arbitrary linear t− τ mapping, the mathematical derivation is given below.
Let the action of the Lagrangian be formulated as

S(x(t), ẋ(t), p(t)) =

b∫
a

[T (ẋ(t))− V (x(t))] dt,+ [x(t)− x̂] p(t)

∣∣∣∣
t=a

+ [x(t)− x̂] p(t)

∣∣∣∣
t=b

,

=

b∫
a

[
1

2
mẋ2(t)− 1

2
kx2(t)

]
dt+ [x(t)− x̂] p(t)

∣∣∣∣
t=a

+ [x(t)− x̂] p(t)

∣∣∣∣
t=b

,

(4.29)

leading to restrictions formatted through x(t = a) = x̂|t=a and x(t = b) = x̂|t=b by means
of Lagrange multipliers p(t)|t=a and p(t)|t=b. Mapping to the reference domain by means of yet
an arbitrary mapping results in

S(x(τ), ẋ(τ), p(τ)) =

1∫
−1

[
T (ẋ(τ))

dτ

dt
− V (x(τ))

dt

dτ

]
dτ,+ [x(τ)− x̂] p(τ)

∣∣∣∣
τ=−1

+ [x(τ)− x̂] p(τ)

∣∣∣∣
τ=1

,

=

1∫
−1

[
1

2
mẋ2(τ)

dτ

dt
− 1

2
kx2(τ)

dt

dτ

]
dτ + [x(τ)− x̂] p(τ)

∣∣∣∣
τ=−1

+ [x(τ)− x̂] p(τ)

∣∣∣∣
τ=1

.

(4.30)

The mapping is arbitrary because dt
dτ (τ) in (4.30) is unknown, as well as the end-time b in

(4.29). Through the minimisation procedure that matches the discrete initial momentum to the
exact momentum at tn, dt

dτ (τ) and hence b are found. Variational analysis with respect to x(τ),
p(τ)|τ=−1 and p (τ) |τ=1 leads to a system of three equations through
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∂S(x(τ) + αδx(τ), p−1, p1)

∂α

∣∣∣∣∣
α=0

=

1∫
−1

[
mẋ(τ)δẋ(τ)

dτ

dt
− kx(τ)δx(τ)

dt

dτ

]
dτ

+ δx(τ)p(τ)

∣∣∣∣
τ=−1

+ δx(τ)p(τ)

∣∣∣∣
τ=1

, (4.31)

∂S(x(τ), p(τ) + βδp(τ)|τ=−1, p(τ)|τ=1)

∂β

∣∣∣∣∣
β=0

= [x(τ)− x̂] δp(τ)

∣∣∣∣
τ=−1

and (4.32)

∂S(x(τ), p(τ)|τ=−1, p(τ) + γδp(τ)|τ=1)

∂γ

∣∣∣∣∣
γ=0

= [x(τ)− x̂] δp(τ)

∣∣∣∣
τ=1

. (4.33)

The equations of motion follow from (4.31) to (4.33) when again the end points are fixed,
meaning that again the end point variations are not allowed. By equating (4.31) to (4.33) to 0
and using the discretisations mentioned in (4.21) and (4.22) the final system reads[

A NT
N 0

] [
~x
~λ

]
=

[
~0
~Λ0

]
, (4.34)

where

A = Ē(1,0)TMmĒ(1,0) −Mk (4.35)

and has size p+ 1× p+ 1. Mm and Mk in (4.35) are shorthand notations for

Mm =

1∫
−1

mēi(τ)ēj(τ)
dτ

dt
dτ and

Mk =

1∫
−1

kh̄i(τ)h̄j(τ)
dt

dτ
dτ.

Furthermore, N takes size 2× p+ 1 and has non-zero entries at positions N00 and N1p which
have a value of 1. ~λ contains the entries p0 and pp+1 and ~Λ0 encompasses x̂0 and x̂p. N and ~Λ0

read

N =

[
1 0 · · · 0 0
0 0 · · · 0 1

]
and ~Λ0 =

[
x̂0

x̂p

]
.

The vectors ~x and ~λ read

~x =

x0
...
xp

 and ~λ =

[
p0

pp+1

]
.

The fraction dt
dτ (τ) is found through the minimisation described above and the mapping

t(τ) = aτ + b,

=
dt

dτ
τ + tn +

dt

dτ
,

(4.36)
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is thereafter constructed. The solution is then reconstructed and the procedure is repeated.
A test case similar to the test case used in Sections 4.2 and 4.3 is investigated. The results
are found in Figure 4.13 for p = 3 and ∆t ≈ 0.1. It is seen that position and momentum
in Figure 4.13a and Figure 4.13b respectively display a close match with respect to the exact
solution. It is however clearly visible that the total energy tends to run away from the exact
solution. This is shown in Figure 4.13c. The position-momentum plot in Figure 4.13d for
t ∈ [0, 1600] however indicates that the divergence of the energy is small. A reason for the
increasing energy may be found in the establishment of xp. Recalling (4.26), it might be that
this guess will be outside the range in which a solution is possible, resulting in a minimisation
procedure that will not be properly minimised. It is therefore that a jump is seen at the trough
of the position plot.
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Figure 4.13: Discrete solution to (4.1) using (4.21), (4.22) and (4.34) using p = 3. Exact solution
shown as − · −. Figures 4.13a to 4.13c computed for for t ∈ [0, 16]. Figure 4.13d computed for
t ∈ [0, 1600]. ∆t = 0.1 (—).
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4.5 Spectral marching methods

Recall that the main problem faced in this report is the challenge to deal with the future
boundary condition when variational analysis is applied. See for example Sections 1.2 and 3.2.
In the former sections it was tried to cope with the aforementioned in a variety of ways. The
approach in this section incorporates the best of all methods described above.

Let the discretisation method start by recapping the challenges faced in Sections 4.3 and 4.4.
In Section 4.3, a primal and a dual grid were used to compute the solution. Furthermore, the
matrix in (4.24) was asymmetric. The method also incorporated a known mapping between t
and τ and no time marching was incorporated.

The method described in Section 4.4 on the other hand used time marching and included a
symmetric matrix in (4.34). The downside of this method was that it relied on the minimisation
procedure to find the initial momentum. The method that will be described below includes the
marching from Section 4.4 and the asymmetric layout of Section 4.3. Two variations will be
discussed, of which the solutions are shown in Figures 4.14 and 4.16 respectively.

Recall (4.34) and (4.35) with

Mm =

1∫
−1

mēi(τ)ēj(τ)
dτ

dt
dτ and

Mk =

1∫
−1

kh̄i(τ)h̄j(τ)
dt

dτ
dτ.

The mapping between t and τ is done as described in Section 3.4 such that

dt

dτ
= 0.1

p

2
,

meaning that the interval between primal nodes equals 0.1. Here, p represents the poly-
nomial degree. The two spectral marching methods described in this section differ in their
accompanying matrix N. Focusing on the first method, matrices N and ~Λ0 read

N =
[
1 0 · · · 0 0

]
and ~Λ0 =

[
x̂0

]
.

The vector ~x and ~λ read

~x =

x0
...
xp

 and ~λ =
[
p̂0

]
.

The system is thereafter rearranged to end with known values at the right-hand side. This
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is done through

[
A BT
N 0

]
x0
...
xp
p̂0

 =


0
...
0
x̂0

 ,

[
A
N

]x0
...
xp

 =


−p̂0

0
...
0
x̂0

 ,
(4.37)

where B reads

B =
[
1 0 · · · 0

]
.

The solution of (4.37) only solves for position though. The momentum pp+1 at the end of
the domain is calculated through energy conservation. This can be done since energy at t = 0
is known to be

E0 =
1

2m
p2

0 +
1

2
kx2

0, (4.38)

resulting in the expression for pp+1

pp+1 =
√

2mE0 − kmx2
p. (4.39)

Equation (4.39) sets the (deviating) energy curve E(t) back to its initial energy level, causing
possible jumps. The results of this system can be found in Figure 4.14. Furthermore, p- and
∆t-convergence has been computed. This is shown in Figure 4.15.

The other spectral marching method takes the endpoint into consideration. The matrix N
and ~Λ0 therefore read

N =

[
1 0 · · · 0 0
0 0 · · · 0 1

]
and ~Λ0 =

[
x̂0

x̂p

]
.

This version of the spectral marching method moves initial position x0 and initial momentum
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p0 to the right-hand side of the system. This is done through

[
A NT
N 0

]

x0
...
xp
p̂0

pp+1

 =


0
...
0
x̂0

xp

 ,

[
A BT
N 0

]
x0
...
xp
pp+1

−


0
...
0
xp

 =


0
...
0
x̂0

0

−

p̂0

0
...
0

 and

[
A CT
N D

]

x0
...
xp
pp+1

xp

 =



−p̂0

0
...
0
x̂0

0


.

(4.40)

Here, B, C and D read

B =
[
0 · · · 0 −1

]
, C =

[
0 · · · 0 −1
0 · · · 0 0

]
and D =

[
0 0
0 −1

]
.

Solving the system in (4.40) results in finding pp+1 and xp which can subsequently be used
for the next computation. The results are shown in Figure 4.16. Furthermore p-convergence
and ∆t-convergence is computed and can be found in Figure 4.17.
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Figure 4.14: Discrete solution to (4.1) using (4.21), (4.22) and (4.37) using p = 3. Exact solution
shown as − · −. Figures 4.14a to 4.14c computed for for t ∈ [0, 16]. Figure 4.14d computed for
t ∈ [0, 1600]. ∆t = 0.1 (—).
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Figure 4.15: p- and ∆t-convergence for p, x and E of the simple harmonic oscillator problem
using (4.21), (4.22) and (4.37).
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Figure 4.16: Discrete solution to (4.1) using (4.21), (4.22) and (4.40) using p = 3. Exact solution
shown as − · −. Figures 4.16a to 4.16c computed for for t ∈ [0, 16]. Figure 4.16d computed for
t ∈ [0, 1600]. ∆t = 0.1 (—).
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Figure 4.17: p- and ∆t-convergence for p, x and E of the simple harmonic oscillator problem
using (4.21), (4.22) and (4.40).
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4.6 Summary

This chapter covered the discretisation of a simple harmonic oscillator. Through a discrete
Lagrangian in Section 4.2 and through mimetic spectral element discretisation in Sections 4.3
to 4.5 discrete solutions were found. Section 4.4 reformulated the mimetic spectral element
method and changed the method in a marching method by means of an arbitrary linear t − τ
mapping. Section 4.5 combined the best of both derivations in Sections 4.3 and 4.4 to arrive
at another formulation. This section takes all methods together and compares them with each
other. The focus will be on energy conservation.

The variational integrator technique in Section 4.2 that uses (4.10) has a mismatch when
one compares discrete momentum and exact momentum at t = 0. This is shown in Figure 4.4b,
but is for the sake of clarity enlarged in Figure 4.18a. The corresponding energy behaviour is
shown in Figure 4.4c. It can be seen that discrete energy is oscillatory around the exact energy
level but bounded and that the maximum deviation between the exact energy level and discrete
energy is approximately 10−2.

The variational integrator technique in Section 4.2 that uses (4.12) has no mismatch when
comparing exact and discrete momentum at t = 0. This is shown once more in Figure 4.18b.
The energy level of this technique also oscillates but on the contrary to the aforementioned vari-
ational technique, this technique never exceeds the exact energy level. The maximum deviation
between the exact energy level and discrete energy level is significantly smaller compared to the
aforementioned method and is approximately 2.5× 10−4. This is 40 times smaller.

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ph

(a) Momentum using (4.10)
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(b) Momentum using (4.15)

Figure 4.18: Enlarged cut outs from Figures 4.4b and 4.5b to indicate the mismatch in Fig-
ure 4.18a and the matching initial momentum in Figure 4.18b.

Both variational integrator techniques display a decreasing maximum amplitude when the
timestep is smaller. For ∆t = 0.05 instead of ∆t = 0.1, the maximum deviations from the exact
energy level are approximately 5× 10−3 and 5× 10−5 respectively. This means that halving
the timestep the maximum deviation decreases 2 and 5 respectively. Based on these findings it
can be concluded that the latter variational integrator technique converges faster to the exact
energy level in comparison to the former.

Looking at the results found in Section 4.3, it is found that the maximum deviation reads
approximately 2× 10−5 for p = 3 and ∆t = 0.1. Again, it is shown that energy oscillates around
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the exact energy level and does not amplify nor damp out. The position and momentum also
captured the desired physics.

The total opposite happened when a marching method was attempted using a forecasting
method and arbitrary t − τ mapping in Section 4.4. Energy gradually and linearly increased
over time, possibly due to curvature problems.

At last, two spectral marching methods were investigated. They captured the most promis-
ing aspects from all previously described methods. Both methods have similar performance,
having a maximum energy deviation of 1× 10−5 for p = 3 and ∆t = 0.1. The latter spectral
marching technique however, did not rely on an energy setback at the end of an interval.

A comparison among all different approaches is shown in Table 4.1. The most promising
technique is the last one, because of its robustness and simplicity.

Table 4.1: Comparison maximum energy deviation Emax from E(t).

∆t = 0.1 ∆t = 0.05
p Emax - E(t) Emax - E(t)

VIT 1 (Figure 4.4) - 10−2 5× 10−3

VIT 2 (Figure 4.5) - 2.5× 10−4 5× 10−5

MSEM 1 (Figure 4.9) 3 2× 10−5 -
MSEM 2 (Figure 4.13) 3 - -
SMM 1 (Figure 4.14) 3 1× 10−5 1× 10−6

SMM 2 (Figure 4.16) 3 1× 10−5 1× 10−6
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5 Conclusion

This thesis focused on developing a discretisation technique that conserved energy up to machine
precision by using the mimetic spectral element method. Deriving a mimetic spectral element
technique for time-dependent problems turned out to raise some challenges, which will be ad-
dressed in the next paragraphs. This chapter reflects on the research questions and research
objective in Section 5.1, after which it concludes with recommendations in Section 5.2.

The first challenge that had to be dealt with turned out to be the boundary conditions
on either side of the time domain. Derived from a Lagrangian formulation and integrated the
latter by parts resulted in explicit boundary contributions on both sides of the time domain.
This could be dealt with on a spatial domain as Dirichlet or Neumann boundary conditions
could be set on either side of the domain. On the contrary however, boundaries conditions
on the time domain can only be specified on the boundary that deals with the present. It
was coped with through an arbitrary mapping between the real time domain and a reference
domain, see Section 4.4. Through this method it was possible to restrict the real time domain
on both boundaries, yet without a time stamp because the mapping was not known. Later in
Section 4.5, another workaround was found to cope with the future boundary.

Another challenge that was faced, was found in the translation from continuous time-
dependent problems to discrete time-dependent problems using the mimetic spectral element
method. A second order time-dependent problem requires 2 initial conditions for it to have a
unique solution, i.e. an initial position and initial velocity. Its discrete equivalent, due to the
problem that was mentioned in the previous paragraph, had only one initial condition. Through
a minimisation procedure the mapping between the real time domain and the reference time
domain was chosen such that the Lagrange multiplier took the desired initial condition value.

It was shown that all methods did not succeed in achieving energy conservation up to ma-
chine precision, but showed oscillating energy behaviour. The variational integrator techniques
were outperformed by the spectral element techniques as the latter had a smaller error. It
was furthermore shown that p- and ∆t-convergence allowed energy conservation when a higher
polynomial order was chosen.

Section 4.4 showed that forecasting position behaviour is not necessarily a good alternative
for dealing with future boundaries. The most promising technique was found to be the spectral
marching method from Section 4.5, which turned out to be the most simplistic and robust
method.

5.1 Reflecting on the research objective and research questions

In Chapter 1 it was stated that this thesis aimed

Research Objective

to further develop the mimetic spectral element method in its fourth dimension time
by critically reflecting on the core concepts of differential topology, algebraic topol-
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ogy and mimetic operators of the mimetic spectral element method and Lagrangian
and Hamiltonian mechanics.

Based on the findings retrieved and challenges faced when solving the simple harmonic os-
cillator problem in Chapter 4, it was concluded that progressing the mimetic spectral element
method in its fourth dimension time was primarily focused on conserving energy. The La-
grangian and Hamiltonian mechanics in combination with the mimetic operators and algebraic
topology ensured energy conservation at a continuous level, yet not on a discretised domain.

Research Questions

1) How does time-dependence fit in the mimetic spectral element method?

2) Why have not yet other engineers tried (or succeeded) to solve time-dependent problems
using the mimetic spectral element method?

3) Is it possible to discretise time in a similar way as space is discritsed according to the
mimetic spectral element method?

Research Question 3) can be answered straight away. Yes, it time-dependent variables can
be discretised in a similar fashion with respect to spatial variables. This also answers Research
Question 1) partially. time-dependence can be fit in the mimetic spectral element method rather
easily. The problem arises however when variational analysis is applied to the method, creating
the boundaries. To fit time-dependence, those boundaries were best treated by considering no
end point variations. Reconsidering Research Question 2), it must be said that other people did
consider the combination of time-dependence and the mimetic spectral element method, see for
example [18]. It has however never been applied using the mimetic spectral element method for
time variables.

5.2 Recommendations for future work

This thesis focused on mimicking the physical behaviour of a one-dimensional simple harmonic
oscillator, which meant that only a single point in space was solved. Proceeding challenges
that are found interesting and contribute to using the mimetic spectral element method for
time-dependent problems are listed in the next paragraphs.

A first extension of the simple harmonic oscillator problem would be to solve the same
problem with multiple bodies instead. An illustration of this system is found in Figure 5.1a.
The behaviour of this system is chaotic and not oscillatory and proves to be highly sensitive to
its initial conditions.

Another field of interest is the one-dimensional wave equation. This second order differential
equation in both space and time requires special attention of the time boundary dealing with the
future. A representation of this motion is shown in Figure 5.1b. A first exploration has already
been done. The wave equation can be solved by discretising the accompanied Lagrangian,
reading

S(p, x,N) =

b∫
a

T∫
0

[
1

2
pẋ− 1

2
εN

]
dt dx+

b∫
a

T∫
0

[
x

(
∂p

∂t
− ∂N

∂x

)]
dt dx

+

b∫
a

[
(x− x̂)λ

∣∣∣∣T
0

]
dx+

T∫
0

[
(x− x̂)λ

∣∣∣∣b
a

]
dt.
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(a) Undamped multiple mass spring system. (b) Undamped one-dimensional wave system.

kc

m x
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Figure 5.1: Recommended systems for future work.

Using the relation between velocity and momentum

p = ρAẋ,

and the relation between stress and strain

N = EAε,

the expression becomes

S(p, x,N) =

b∫
a

T∫
0

[
1

2

p2

ρA
− 1

2

N2

EA

]
dt dx+

b∫
a

T∫
0

[
x

(
∂p

∂t
− ∂N

∂x

)]
dt dx

+

b∫
a

[
(x− x̂)λ

∣∣∣∣T
0

]
dx+

T∫
0

[
(x− x̂)λ

∣∣∣∣b
a

]
dt.

Taking care of the boundary conditions in space and doing variational analysis results in
the equation of motion and the constitutive equations, reading
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Figure 5.2: Discretised quantities p, x and N over temporal and spatial points and edges.
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]
dt = 0 ∀δλ.

Following the discretisation of the variables p, x and N as described in [1] results in a discrete
system that can thereafter be solved. p, x and N can be discretised as shown in Figure 5.2.

The extension of the time-dependent mimetic spectral element method to two-dimensional
space for the wave equation follows by means of tensor products. Applications of this method
are for instance a drum or a falling pebble in a well.

Explicitly stating that energy is not conserved is possible by adding a damper to the system,
as is shown in Figure 5.1c. This field of studies is also open for exploration.

It needs to be said that all future work is still superficial and related to textbook problems.
Thinking ahead and passed these textbook problems, the ultimate goal is to apply this time-
dependent mimetic spectral element method to fluid dynamics. This incorporates for instance,
convective terms.
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A Full solution simple harmonic oscillator

Let the equation of motion be

mẍ(t) + kx(t) = 0. (A.1)

Assume x(t) = ert as a solution. Replace ẍ and x by its assumptions r2ert and ert respec-
tively. (A.1) is converted in

mẍ(t) + kx(t) = 0,

mr2ert + kert = 0,(
mr2 + k

)
ert = 0.

(A.2)

As ert 6= 0, it follows that

mr2 + k = 0 (A.3)

must hold for it to be a solution to (A.1). Solving for r leads to

r =

√
k

m
i ∨ −

√
k

m
i (A.4)

and hence
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k

m
t

)
.

(A.5)

Here, (A.5) uses Euler’s formula and d1 = (c1 + c2) and d2 = (c1 − c2) i. With initial
conditions x(0) = x0 and ẋ(0) = ẋ0 the solution becomes

x(t) = x0 cos

(√
k

m
t

)
+ ẋ0

√
m

k
sin

(√
k

m
t

)
. (A.6)
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