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Abstract

In this paper, the problem of training optimization for estimating a multiple-input multiple-output (MIMO) flat fading
channel in the presence of spatially and temporally correlated Gaussian noise is studied in an application-oriented
setup. So far, the problem of MIMO channel estimation has mostly been treated within the context of minimizing the
mean square error (MSE) of the channel estimate subject to various constraints, such as an upper bound on the
available training energy. We introduce a more general framework for the task of training sequence design in MIMO
systems, which can treat not only the minimization of channel estimator’s MSE but also the optimization of a final
performance metric of interest related to the use of the channel estimate in the communication system. First, we
show that the proposed framework can be used to minimize the training energy budget subject to a quality
constraint on the MSE of the channel estimator. A deterministic version of the ‘dual’ problem is also provided. We then
focus on four specific applications, where the training sequence can be optimized with respect to the classical
channel estimation MSE, a weighted channel estimation MSE and the MSE of the equalization error due to the use of
an equalizer at the receiver or an appropriate linear precoder at the transmitter. In this way, the intended use of the
channel estimate is explicitly accounted for. The superiority of the proposed designs over existing methods is
demonstrated via numerical simulations.

1 Introduction
An important factor in the performance of multiple
antenna systems is the accuracy of the channel state infor-
mation (CSI) [1]. CSI is primarily used at the receiver
side for purposes of coherent or semicoherent detection,
but it can be also used at the transmitter side, e.g., for
precoding and adaptive modulation. Since in communi-
cation systems the maximization of spectral efficiency is
an objective of interest, the training duration and energy
should be minimized. Most current systems use train-
ing signals that are white, both spatially and temporally,
which is known to be a good choice according to several
criteria [2,3]. However, in case that some prior knowl-
edge on the channel or noise statistics is available, it is
possible to tailor the training signal and to obtain a signif-
icantly improved performance. Especially, several authors
have studied scenarios where long-term CSI in the form
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of a covariance matrix over the short-term fading is avail-
able. So far, most proposed algorithms have been designed
to minimize the squared error of the channel estimate,
e.g., [4-9]. Alternative design criteria are used in [5] and
[10], where the channel entropy is minimized given the
received training signal. In [11], the resulting capacity in
the case of a single-input single-output (SISO) channel
is considered, while [12] focuses on the pairwise error
probability.

Herein, a generic context is described, drawing from
similar techniques that have been recently proposed for
training signal design in system identification [13-15].
This context aims at providing a unified theoretical frame-
work that can be used to treat the MIMO training opti-
mization problem in various scenarios. Furthermore, it
provides a different way of looking at the aforemen-
tioned problem that could be adjusted to a wide variety
of estimation-related problems in communication sys-
tems. First, we show how the problem of minimizing
the training energy subject to a quality constraint can
be solved, while a ‘dual’ deterministic (average design)
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problem is considereda. In the sequel, we show that by a
suitable definition of the performance measure, the prob-
lem of optimizing the training for minimizing the channel
MSE can be treated as a special case. We also consider
a weighted version of the channel MSE, which relates
to the well-known L-optimality criterion [16]. Moreover,
we explicitly consider how the channel estimate will be
used and attempt to optimize the end performance of the
data transmission, which is not necessarily equivalent to
minimizing the mean square error (MSE) of the channel
estimate. Specifically, we study two uses of the channel
estimate: channel equalization at the receiver using a min-
imum mean square error (MMSE) equalizer and channel
inversion (zero-forcing precoding) at the transmitter, and
derive the corresponding optimal training signals for each
case. In the case of MMSE equalization, separate approx-
imations are provided for the high and low SNR regimes.
Finally, the resulting performance is illustrated based on
numerical simulations. Compared to related results in the
control literature, here, we directly design a finite length
training signal and consider not only deterministic chan-
nel parameters but also a Bayesian channel estimation
framework. A related pilot design strategy has been pro-
posed in [17] for the problem of jointly estimating the
frequency offset and the channel impulse response in
single-antenna transmissions.

Implementing an adaptive choice of pilot signals in a
practical system would require a feedback signalling over-
head, since both the transmitter and the receiver have to
agree on the choice of the pilots. Just as the previous stud-
ies in the area, the current paper is primarily intended
to provide a theoretical benchmark on the resulting per-
formance of such a scheme. Directly considering the end
performance in the pilot design is a step into making the
results more relevant. The data model used in [4-10] is
based on the assumption that the channel is frequency
flat but the noise is allowed to be frequency selective.
Such a generalized assumption is relevant in systems that
share spectrum with other radio interfaces using a nar-
rower bandwidth and possibly in situations where channel
coding introduces a temporal correlation in interfering
signals. In order to focus on the main principles of our
proposed strategy, we maintain this research line by using
the same model in the current paper.

As a final comment, the novelty of this paper is on
introducing the application-oriented framework as the
appropriate context for training sequence design in com-
munication systems. To this end, Hermitian form-like
approximations of performance metrics are addressed
here because they usually are good approximations of
many performance metrics of interest, as well as for sim-
plicity purposes and comprehensiveness of presentation.
Although the ultimate performance metric in communi-
cations systems, namely the bit error rate (BER), would

be of interest, its handling seems to be a challenging task
and is reserved for future study. In this paper, we make
an effort to introduce the application-oriented training
design framework in the most illustrative and straightfor-
ward way.

This paper is organized as follows: Section 2 intro-
duces the basic MIMO received signal model and specific
assumptions on the structure of channel and noise covari-
ance matrices. Section 3 presents the optimal channel
estimators, when the channel is considered to be either a
deterministic or a random matrix. Section 4 presents the
application-oriented optimal training designs in a guar-
anteed performance context, based on confidence ellip-
soids and Markov bound relaxations. Moreover, Section 5
focuses on four specific applications, namely that of MSE
channel estimation, channel estimation based on the L-
optimality criterion, and finally channel estimation for
MMSE equalization and ZF precoding. Numerical simula-
tions are provided in Section 6, while Section 7 concludes
this paper.

1.1 Notations
Boldface (lowercase) is used for column vectors, x, and
(uppercase) for matrices, X. Moreover, XT , XH , X∗, and
X† denote the transpose, the conjugate transpose, the
conjugate, and the Moore-Penrose pseudoinverse of X,
respectively. The trace of X is denoted as tr(X) and A � B
means that A − B is positive semidefinite. vec(X) is the
vector produced by stacking the columns of X, and (X)i,j
is the (i, j)-th element of X. [X]+ means that all negative
eigenvalues of X are replaced by zeros (i.e., [X]+ � 0).
CN (x̄, Q) stands for circularly symmetric complex Gaus-
sian random vectors, where x̄ is the mean and Q the
covariance matrix. Finally, α! denotes the factorial of the
non-negative integer α and mod (a, b) the modulo opera-
tion between the integers a, b.

2 System model
We consider a MIMO communication system with nT
antennas at the transmitter and nR antennas at the
receiver. The received signal at time t is modelled as

y(t) = Hx(t) + n(t),

where x(t) ∈ C
nT and y(t) ∈ C

nR are the baseband
representations of the transmitted and received signals,
respectively. The impact of background noise and inter-
ference from adjacent communication links is represented
by the additive term n(t) ∈ C

nR . We will further assume
that x(t) and n(t) are independent (weakly) stationary sig-
nals. The channel response is modeled by H ∈ C

nR×nT ,
which is assumed constant during the transmission of one
block of data and independent between blocks, that is, we
are assuming frequency flat block fading. Two different
models of the channel will be considered:
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(i) A deterministic model
(ii) A stochastic Rayleigh fading modelb, i.e.,

vec(H) ∈ CN (0, R), where, for mathematical
tractability, we will assume that the known
covariance matrix R possesses the Kronecker model
used, e.g., in [7,10]:

R = RT
T ⊗ RR (1)

where RT ∈ C
nT ×nT and RR ∈ C

nR×nR are the spatial
covariance matrices at the transmitter and receiver
side, respectively. This model has been experimentally
verified in [18,19] and further motivated in [20,21].

We consider training signals of arbitrary length B, repre-
sented by P ∈ C

nT ×B, whose columns are the transmitted
signal vectors during training. Placing the received vectors
in Y = [

y(1) . . . y(B)
] ∈ C

nR×B, we have

Y = HP + N,

where N = [n(1) . . . n(B)] ∈ C
nR×B is the combined

noise and interference matrix.
Defining P̃ = PT ⊗ I, we can then write

vec(Y) = P̃ vec(H) + vec(N). (2)

For example in [7,10], we assume that vec(N) ∈ CN (0, S),
where the covariance matrix S also possesses a Kronecker
structure:

S = ST
Q ⊗ SR. (3)

Here, SQ ∈ C
B×B represents the temporal covariance

matrixc that is used to model the effect of temporal
correlations in interfering signals, when the noise incor-
porates multiuser interference. Moreover, SR ∈ C

nR×nR

represents the received spatial covariance matrix that is
mostly related with the characteristics of the receive array.
The Kronecker structure (3) corresponds to an assump-
tion that the spatial and temporal properties of N are
uncorrelated.

The channel and noise statistics will be assumed known
to the receiver during estimation. Statistics can often be
achieved by long-term estimation and tracking [22]. For
the data transmission phase, we will assume that the
transmit signal {x(t)} is a zero-mean, weakly stationary
process, which is both temporally and spatially white, i.e.,
its spectrum is �x(ω) = λxI.

3 Channel matrix estimation
3.1 Deterministic channel estimation
The minimum variance unbiased (MVU) channel estima-
tor for the signal model (2), subject to a deterministic
channel (Assumption i) in Section 2, is given by [23]:

vec
(
ĤMVU

) = (
P̃H S−1P̃

)−1 P̃H S−1 vec(Y). (4)

This estimate has the distribution

vec
(
ĤMVU

) ∈ CN
(

vec(H),I−1
F,MVU

)
, (5)

where IF,MVU is the inverse covariance matrix

IF,MVU = P̃H S−1P̃. (6)

From this, it follows that the estimation error H̃ �
ĤMVU − H will, with probability α, belong to the uncer-
tainty set

DD =
{

H̃ : vecH(H̃)IF,MVU vec(H̃) ≤ 1
2
χ2

α(2nT nR)

}
,

(7)

where χ2
α(n) is the α percentile of the χ2(n) distribution

[15].

3.2 Bayesian channel estimation
For the case of a stochastic channel model (Assumption ii)
in Section 2, the posterior channel distribution becomes
(see [23])

vec(H)|Y, P ∈ CN
(
vec

(
ĤMMSE

)
, CMMSE

)
, (8)

where the first and second moments are

vec
(
ĤMMSE

) = (
R−1 + P̃H S−1P̃

)−1 P̃H S−1 vec(Y),

CMMSE = (
R−1 + P̃H S−1P̃

)−1 .
(9)

Thus, the estimation error H̃ � ĤMMSE − H will, with
probability α, belong to the uncertainty set

DB =
{

H̃ : vecH(H̃)IF,MMSE vec(H̃) ≤ 1
2
χ2

α(2nT nR)

}
,

(10)

where IF,MMSE � C−1
MMSE is the inverse covariance matrix

in the MMSE case [15].

4 Application-oriented optimal training design
In a communication system, an estimate of the channel,
say Ĥ, is needed at the receiver to detect the data symbols
and may also be used at the transmitter to improve the
performance. Let J(H̃, H) be a scalar measure of the per-
formance degradation at the receiver due to the estimation
error H̃ for a channel H. The objective of the training
signal design is then to ensure that the resulting channel
estimation error H̃ is such that

J(H̃, H) ≤ 1
γ

(11)

for some parameter γ > 0, which we call accuracy. In
our settings, (11) cannot be typically ensured, since the
channel estimation error is Gaussian-distributed (see (5)
and (8)) and, therefore, can be arbitrarily large. However,
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for the MVU estimator (4), we know that, with probability
α, H̃ will belong to the set DD defined in (7). Thus, we are
led to training signal designs which guarantee (11) for all
channel estimation errors H̃ ∈ DD. One training design
problem that is based on this concept is to minimize the
required transmit energy budget subject to this constraint

DGPP : minimize
P∈CnT ×B

tr(PPH)

s.t. J(H̃, H) ≤ 1
γ

∀ H̃ ∈ DD.
(12)

Similarly, for the MMSE estimator in Subsection 3.2, the
corresponding optimization problem is given as follows:

SGPP : minimize
P∈CnT ×B

tr
(
PPH)

s.t. J(H̃, H) ≤ 1
γ

∀ H̃ ∈ DB,
(13)

where DB is defined in (10). We will call (12) and (13)
as the deterministic guaranteed performance problem
(DGPP) and the stochastic guaranteed performance prob-
lem (SGPP), respectively. An alternative dual problem is to
maximize the accuracy γ subject to a constraint P > 0 on
the transmit energy budget. For the MVU estimator, this
can be written as

DMPP : maximize
P∈CnT ×B

γ

s.t. J(H̃, H) ≤ 1
γ

∀ H̃ ∈ DD,

tr
(
PPH) ≤ P .

(14)

We will call this problem as the deterministic maxi-
mized performance problem (DMPP). The correspond-
ing Bayesian problem will be denoted as the stochastic
maximized performance problem (SMPP). We will study
the DGPP/SGPP in detail in this contribution, but the
DMPP/SMPP can be treated in similar ways. In fact,
Theorem 3 in [24] suggests that the solutions to the
DMPP/SMPP are the same as for DGPP/SGPP, save for a
scaling factor.

The existing work on optimal training design for MIMO
channels are, to the best of the authors knowledge, based
upon standard measures on the quality of the channel
estimate, rather than on the quality of the end use of
the channel. The framework presented in this section
can be used to treat the existing results as special cases.
Additionally, if an end performance metric is optimized,
the DGPP/SGPP and DMPP/SMPP formulations better
reflect the ultimate objective of the training design. This
type of optimal training design formulations has already
been used in the control literature, but mainly for large
sample sizes [13,14,25,26], yielding an enhanced perfor-
mance with respect to conventional estimation-theoretic
approaches. A reasonable question is to examine if such a
performance gain can be achieved in the case of training
sequence design for MIMO channel estimation, where the
sample sizes would be very small.

Remark. Ensuring (11) can be translated into a chance
constraint of the form

Pr
{

J(H̃, H) ≤ 1
γ

}
≥ 1 − ε (15)

for some ε ∈ [0, 1]. Problems (12), (13), and (14) cor-
respond to a convex relaxation of this chance constraint
based on confidence ellipsoids [27], as we show in the next
subsection.

4.1 Approximating the training design problems
A key issue regarding the above training signal design
problems is their computational tractability. In general,
they are highly non-linear and non-convex. In the sequel,
we will nevertheless show that using some approxi-
mations, the corresponding optimization problems for
certain applications of interest can be convexified. In
addition, these approximations will show that DGPP and
SGPP are very closely related. In particular, we will show
that the performance metric for these applications can be
approximated by

J(H̃, H) ≈ vecH(H̃)Iadm vec(H̃), (16)

where the Hermitian positive definite matrix Iadm can be
written in Kronecker product form as IT

T ⊗ IR for some
matrices IT and IR. This means that we can approximate
the set {H̃ : J(H̃, H) ≤ 1/γ } of all admissible estimation
errors H̃ by a (complex) ellipsoid in the parameter space
[15]:

Dadm = {H̃ : vecH(H̃)γIadm vec(H̃) ≤ 1}. (17)

Consequently, the DGPP (12) can be approximated by

ADGPP : minimize
P∈CnT ×B

tr
(
PPH)

s.t. DD ⊆ Dadm.
(18)

We call this problem the approximative DGPP
(ADGPP). Both DD and Dadm are level sets of quadratic
functions of the channel estimation error. Rewriting (7)
so that we have the same level as in (17), we obtain

DD =
{

H̃ : vecH(H̃)
2IF,MVU

χ2
α(2nT nR)

vec(H̃) ≤ 1
}

.

Comparing this expression with (17) gives that DD ⊆
Dadm if and only if

2IF,MVU
χ2

α(2nT nR)
� γIadm

(for a more general result, see [15], Theorem 3.1).
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When Iadm has the form Iadm = IT
T ⊗ IR, with IT ∈

C
nT ×nT and IR ∈ C

nR×nR , the ADGPP (18) can then be
written as

minimize
P∈CnT ×B

tr
(
PPH)

s.t. P̃H S−1P̃︸ ︷︷ ︸
IF,MVU

� γχ2
α(2nT nR)

2 IT
T ⊗ IR. (19)

Similarly, by observing that Dadm only depends on the
channel estimation error, and following the derivations
above, the SGPP can be approximated by the following
formulation

minimize
P∈CnT ×B

tr
(
PPH)

s.t. R−1 + P̃H S−1P̃︸ ︷︷ ︸
IF,MMSE

� γχ2
α(2nT nR)

2 IT
T ⊗ IR.

(20)

We call the last problem approximative SGPP (ASGPP).

Remarks.

1. The approximation (16) is not possible for the
performance metric of every application. Several
examples that this is possible are presented in
Section 5. Therefore, in some applications, different
convex approximations of the corresponding
performance metrics may have to be found.

2. The quality of the approximation (16) is
characterized by its corresponding tightness to the
true performance metric. For our purposes, when the
tightness of the aforementioned approximation is
acceptable, such an approximation will be desirable
for two reasons. First, it corresponds to a Hermitian
form, therefore offering nice mathematical properties
and tractability. Additionally, the constraint
DD ⊆ Dadm can be efficiently handled.

3. The sizes of DD and Dadm critically depend on the
parameter α. In practice, requiring α to have a value
close to 1 corresponds to adequately representing the
uncertainty set in which (approximately) all possible
channel estimation errors lie.

4.2 The deterministic guaranteed performance problem
The problem formulations for ADGPP and ASGPP in
(19) and (20), respectively, are similar in structure. The
solutions to these problems (and to other approxima-
tive guaranteed performance problems) can be obtained
from the following general theorem, which has not pre-
viously been available in the literature, to the best of our
knowledge:

Theorem 1. Consider the optimization problem

minimize
P∈Cn×N

tr
(
PPH)

s.t. PA−1PH � B
(21)

where A ∈ C
N×N is Hermitian positive definite, B ∈ C

n×n

is Hermitian positive semidefinite, and N ≥ rank (B). An
optimal solution to (21) is

Popt = UBDPUH
A , (22)

where DP ∈ C
n×N is a rectangular diagonal matrix with√

(DA)1,1(DB)1,1 . . .
√

(DA)m,m(DB)m,m on the main diag-
onal. Here, m = min(n, N), while UA and UB are unitary
matrices that originate from the eigendecompositions of A
and B, respectively, i.e.,

A = UADAUH
A

B = UBDBUH
B

(23)

and DA, DB are real-valued diagonal matrices, with their
diagonal elements sorted in ascending and descending
order, respectively, that is, 0 < (DA)1,1 ≤ . . . ≤ (DA)N ,N
and (DB)1,1 ≥ . . . ≥ (DB)n,n ≥ 0.

If the eigenvalues of A and B are distinct and strictly
positive, then the solution (22) is unique up to the multipli-
cation of the columns of UA and UB by complex unit-norm
scalars.

Proof. The proof is given in Appendix 2.

By the right choice of A and B, Theorem 1 will solve the
ADGPP in (19). This is shown by the next theorem (recall
that we have assumed that S = ST

Q ⊗ SR).

Theorem 2. Consider the optimization problem

minimize
P∈CnT ×B

tr
(
PPH)

s.t. P̃H(ST
Q ⊗ SR)−1P̃ � cIT

T ⊗ IR,
(24)

where P̃ = PT ⊗ I, SQ ∈ C
B×B, SR ∈ C

nR×nR are Her-
mitian positive definite, IT ∈ C

nT ×nT , IR ∈ C
nR×nR

are Hermitian positive semidefinite, and c is a positive
constant.

If B ≥ rank(IT ), this problem is equivalent to (21) in
Theorem 1 for A = SQ and B = cλmax (SRIR)IT , where
λmax(·) denotes the maximum eigenvalue.

Proof. The proof is given in Appendix 3.

4.3 The stochastic guaranteed performance problem
We will see that Theorem 1 can be also used to solve the
ASGPP in (20). In order to obtain closed-form solutions,
we need some equality relation between the Kronecker
blocks of R = RT

T ⊗ RR and of either S = ST
Q ⊗ SR

or Iadm = IT
T ⊗ IR. For instance, it can be RR = SR,

which may be satisfied if the receive antennas are spatially
uncorrelated or if the signal and interference are received
from the same main direction (see [7] for details on the
interpretations of these assumptions).
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The solution to ASGPP in (20) is given by the next
theorem.

Theorem 3. Consider the optimization problem

minimize
P∈CnT ×B

tr
(
PPH)

s.t. R−1 + P̃H S−1P̃ � cIT
T ⊗ IR,

(25)

where P̃ = PT ⊗ I, R = RT
T ⊗ RR, and S = ST

Q ⊗ SR. Here,
RT ∈ C

nT ×nT , RR ∈ C
nR×nR , SQ ∈ C

B×B, SR ∈ C
nR×nR are

Hermitian positive definite, IT ∈ C
nT ×nT , IR ∈ C

nR×nR

are Hermitian positive semidefinite, and c is a positive
constant.

• If RR = SR and
B ≥ rank

([
cλmax (SRIR)IT − R−1

T

]
+

)
, then the

problem is equivalent to (21) in Theorem 1 for
A = SQ and B =

[
cλmax(SRIR)IT − R−1

T

]
+.

• If R−1
R = IR and B ≥ rank

([
cIT − R−1

T

]
+

)
, then

the problem is equivalent to (21) in Theorem 1 for
A = SQ and B = λmax(SRIR)

[
cIT − R−1

T

]
+.

• If R−1
T = IT and B ≥ rank (IT ), then the problem is

equivalent to (21) in Theorem 1 for A = SQ and
B = λmax

(
SR [cIR − RR]+

)
IT .

Proof. The proof is given in Appendix 3.

The mathematical difference between ADGPP and
ASGPP is the R−1 term that appears in the constraint of
the latter. This term has a clear impact on the structure of
the optimal ASGPP training matrix.

It is also worth noting that the solution for RR = SR
requires B ≥ rank([ cλmax(SRIR)IT − R−1

T ]+ ) which
means that solutions can be achieved also for B < nT
(i.e., when only the B < nT strongest eigendirections of
the channel are excited by training). In certain cases, e.g.,
when the interference is temporally white (SQ = I), it is
optimal to have B = rank([ cλmax(SRIR)IT − R−1

T ]+ ) as
larger B will not decrease the training energy usage, cf.
[9].

4.4 Optimizing the average performance
Except from the previously presented training designs, the
application-oriented design can be alternatively given in
the following deterministic dual context. If H is consid-
ered to be deterministic, then we can set up the following
optimization problem

minimize
P∈CnT ×B

EH̃
{

J(H̃, H)
}

s.t. tr(PPH) ≤ P .
(26)

Clearly, for the MVU estimator

EH̃
{

J(H̃, H)
} = tr

{
Iadm(P̃H S−1P̃)−1} ,

so problem (26) is solved by the following theorem.

Theorem 4. Consider the optimization problem

minimize
P∈CnT ×B

tr
{
Iadm(P̃H S−1P̃)−1}

s.t. tr(PPH) ≤ P ,
(27)

where Iadm = IT
T ⊗ IR as before. Set I ′

T = IT
T =

UT DT UH
T and S′

Q = ST
Q = UQDQUH

Q . Here, UT ∈
C

nT ×nT , UQ ∈ C
B×B are unitary matrices and DT , DQ

are diagonal nT × nT and B × B matrices containing
the eigenvalues of I ′

T and S′
Q in descending and ascend-

ing order, respectively. Then, the optimal training matrix
P equals

(
UT DPUH

Q

)∗
, where DP is an nT × B diago-

nal matrix with main diagonal entries equal to (DP)i,i =√
P√

αi/
∑nT

j=1
√

αj, i = 1, 2, . . . , nT (B ≥ nT ) and αi =
(DT )i,i(DQ)i,i, i = 1, 2, . . . , nT with the aforementioned
ordering.

Proof. The proof is given in Appendix 4.

Remarks.

1. In the general case of a non-Kronecker-structured
Iadm, the training can be obtained using numerical
methods like the semidefinite relaxation approach
described in [28].

2. If Iadm depends on H, then in order to implement
this design, the embedded H in Iadm may be
replaced by a previous channel estimate. This implies
that this approach is possible whenever the channel
variations allow for such a design. This observation
also applies to the designs in the previous subsections
(see also [24,29], where the same issue is discussed
for other system identification applications).

The corresponding performance criterion for the case
of the MMSE estimator is given by

EH̃,H
{

J(H̃, H)
} = tr

{
Iadm(R−1 + P̃H S−1P̃)−1} .

In this case, we can derive closed form expressions for
the optimal training under assumptions similar to those
made in Theorem 3. We therefore have the following
result:

Theorem 5. Consider the optimization problem

minimize
P∈CnT ×B

tr
{
Iadm(R−1 + P̃H S−1P̃)−1}

s.t. tr(PPH) ≤ P
(28)
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where Iadm = IT
T ⊗ IR as before. Set S′

Q = ST
Q =

VQ�QVH
Q . Here, we assume that VQ ∈ C

B×B is a uni-
tary matrix and �Q a diagonal B × B matrix containing
the eigenvalues of S′

Q in arbitrary order. Assume also that
R′

T = RT
T with eigenvalue decomposition U′

T�′
T U′H

T . The
diagonal elements of �′

T are assumed to be arbitrarily
ordered. Then, we have the following cases:

• RR = SR: We further discriminate two cases

– IT = I: Then the optimal training is given by
a straightforward adaptation of Proposition 2
in [8].

– R−1
T = IT : Then, the optimal training matrix

P equals
(

U′
T (πopt)DPVH

Q(	opt)
)∗

, where
πopt, 	opt stand for the optimal orderings of
the eigenvalues of R′

T and S′
Q, respectively.

These optimal orderings are determined by
Algorithm 1 in Appendix 5. Additionally,
define the parameter m∗ as in Equation 69
(see Appendix 5). Assuming in the following
that, for simplicity of notation, (�′

T )i,i’s and
(�Q)i,i’s have the optimal ordering, the
optimal (DP)j,j, j = 1, 2, . . . , m∗ are given by
the expression√√√√√√P + ∑m∗

i=1
(�Q)i,i
(�′

T )i,i∑m∗
i=1

√
(�Q)i,i
(�′

T )i,i

√
(�Q)j,j

(�′
T )j,j

− (�Q)j,j

(�′
T )j,j

,

while (DP)j,j = 0 for j = m∗ + 1, . . . , nT .

Proof. The proof is given in Appendix 5.

Remarks. Two interesting additional cases complement-
ing the last theorem are the following:

1. If the modal matrices of RR and SR are the same,
IT = I and IR = I, then the optimal training is
given by [9].

2. In any other case (e.g., if RR 
= SR), the training can
be found using numerical methods like the
semidefinite relaxation approach described in [28].
Note again that this approach can also handle general
Iadm, not necessarily expressed as IT

T ⊗ IR.

As a general conclusion, the objective function of the
dual deterministic problems presented in this subsection
can be shown to correspond to Markov bound approxi-
mations of the chance constraint (15), as these approxima-
tions have been described in [27], namely

Pr
{

J(H̃, H) ≥ 1
γ

}
≤ γE

{
J(H̃, H)

} ≤ ε

According to the analysis in [27], these approximations
should be tighter than the approximations based on confi-
dence ellipsoids presented in Subsections 4.1, 4.2, and 4.3
for practically relevant values of ε.

5 Applications
5.1 Optimal training for channel estimation
We now consider the channel estimation problem in its
standard context, where the performance metric of inter-
est is the MSE of the corresponding channel estimator.
Optimal linear estimators for this task are given by (4) and
(9). The performance metric of interest is

J(H̃, H) = vecH(H̃) vec(H̃),

which corresponds to Iadm = I, i.e., to IT = I and
IR = I. The ADGPP and ASGPP are given by (19) and
(20), respectively, with the corresponding substitutions.
Their solutions follow directly from Theorems 2 and 3,
respectively. To the best of the authors’ knowledge, such
formulations for the classical MIMO training design prob-
lem are presented here for the first time. Furthermore,
solutions to the standard approach of minimizing the
channel MSE subject to a constraint on the training energy
budget are provided by Theorems 4 and 5 as special cases.

Remark. Although the confidence ellipsoid and Markov
bound approximations are generally different [27], in the
simulation section, we show that their performance is
almost identical for reasonable operating γ -regimes in the
specific case of standard channel estimation.

5.2 Optimal training for the L-optimality criterion
Consider now a performance metric of the form

JW (H̃, H) = vecH(H̃)W vec(H̃),

for some positive semidefinite weighting matrix W.
Assume also that W = W1 ⊗ W2 for some positive
semidefinite matrices W1, W2. Taking the expected value
of this performance metric with respect to either H̃ or
both H̃ and H leads to the well-known L-optimality cri-
terion for optimal experiment design in statistics [16]. In
this case, IT = WT

1 and IR = W2. In the context of
MIMO communication systems, such a performance met-
ric may arise, e.g., if we want to estimate the MIMO chan-
nel having some deficiencies in either the transmit and/or
the receive antenna arrays. The simplest case would be
both W1 and W2 being diagonal with non-zero entries
in the interval [0, 1], W1 representing the deficiencies in
the transmit antenna array and W2 in the receive array.
More general matrices can be considered if we assume
cross-couplings between the transmit and/or receive
antenna elements.
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Remark. The numerical approach of [28] mentioned
after Theorems 4 and 5 can handle general weighting
matrices W, not necessarily Kronecker-structured.

5.3 Optimal training for channel equalization
In this subsection, we consider the problem of estimating
a transmitted signal sequence {x(t)} from the correspond-
ing received signal sequence {y(t)}. Among a wide range
of methods that are available [30,31], we will consider
the MMSE equalizer, and for mathematical tractability, we
will approximate it by the non-causal Wiener filter. Note
that for reasonably long block lengths, the MMSE esti-
mate becomes similar to the non-causal Wiener filter [32].
Thus, the optimal training design based on the non-causal
Wiener filter should also provide good performance when
using an MMSE equalizer.

5.3.1 Equalization using exact channel state information
Let us first assume that H is available. In this ideal case
and with the transmitted signal being weakly stationary
with spectrum �x, the optimal estimate of the transmitted
signal x(t) from the received observations of y(t) can be
obtained according to

x̂(t; H) = F(q; H)y(t), (29)

where q is the unit time shift operator,
[
qx(t) = x(t + 1)

]
,

and the non-causal Wiener filter F(e jω; H) is given by

F(e jω; H) = �xy(ω)�−1
y (ω)

= �x(ω)HH (
H�x(ω)HH + �n(ω)

)−1 .
(30)

Here, �xy(ω) = �x(ω)HH denotes the cross-spectrum
between x(t) and y(t), and

�y(ω) = H�x(ω)HH + �n(ω) (31)

is the spectral density of y(t). Using our assumption that
�x(ω) = λxI, we obtain the simplified expression

F(e jω; H) = HH (
HHH + �n(ω)/λx

)−1 . (32)

Remark. Assuming non-singularity of �n(ω) for every
ω, the MMSE equalizer is applicable for all values of the
pair (nT , nR).

5.3.2 Equalization using a channel estimate
Consider now the situation where the exact channel H is
unavailable, but we only have an estimate Ĥ. When we
replace H by its estimate in the expressions above, the
estimation error for the equalizer will increase. While the
increase in the bit error rate would be a natural measure
of the quality of the channel estimate Ĥ, for simplicity, we
consider the total MSE of the difference, x̂(t; H + H̃) −
x̂(t; H) = �(q; H̃, H)y(t) (note that Ĥ = H + H̃), using
the notation �(q; H̃, H) � F(q; H + H̃) − F(q; H). In

view of this, we will use the channel equalization (CE)
performance metric

JCE(H̃, H)= E

{[
�(q; H̃, H)y(t)

]H [
�(q; H̃, H)y(t)

]}
= E

{
tr
([

�(q; H̃, H)y(t)
] [

�(q; H̃, H)y(t)
]H)}

= 1
2π

∫ π

−π

tr
(
�(e jω ; H̃, H)�y(ω)�H(e jω ; H̃, H)

)
dω.

(33)

We see that the poorer the accuracy of the estimate,
the larger the performance metric JCE(H̃, H) and, thus,
the larger the performance loss of the equalizer. There-
fore, this performance metric is a reasonable candidate to
use when formulating our training sequence design prob-
lem. Indeed, the Wiener equalizer based on the estimate
Ĥ = H+H̃ of H can be deemed to have a satisfactory per-
formance if JCE(H̃, H) remains below some user-chosen
threshold. Thus, we will use JCE as J in problems (12) and
(13). Though these problems are not convex, we show in
Appendix 1 how they can be convexified, provided some
approximations are made.

Remarks.

1. The excess MSE JCE(H̃, H) quantifies the distance of
the MMSE equalizer using the channel estimate Ĥ
over the clairvoyant MMSE equalizer, i.e., the one
using the true channel. This performance metric is
not the same as the classical MSE in the equalization
context, where the difference x̂(t; H + H̃) − x(t) is
considered instead of x̂(t; H + H̃)− x̂(t; H). However,
since in practice the best transmit vector estimate
that can be attained is the clairvoyant one, the choice
of JCE(H̃, H) is justified. This selection allows for a
performance metric approximation given by (16).

2. There are certain cases of interest, where JCE(H̃, H)

approximately coincides with the classical
equalization MSE. Such a case occurs when nR ≥ nT ,
H is full column rank and the SNR is high during
data transmission.

5.4 Optimal training for zero-forcing precoding
Apart from receiver side channel equalization, as another
example of how to apply the channel estimate we consider
point-to-point zero-forcing (ZF) precoding, also known as
channel inversion [33]. Here, the channel estimate is fed
back to the transmitter, and its (pseudo-)inverse is used as
a linear precoder. The data transmission is described by

y(t) = H�x(t) + v(t),

where the precoder is � = Ĥ†, i.e., � = ĤH(ĤĤH)−1 if
we limit ourselves to the practically relevant case nT ≥ nR
and assume that Ĥ is full rank. Note that x(t) is an nR × 1
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vector in this case, but the transmitted vector is �x(t),
which is nT × 1.

Under these assumptions and following the same strat-
egy and notation as in Appendix 1, we get

y(t; Ĥ) − y(t; H) = HĤ†x(t) + v − (HH†x(t) + v)

= (ĤĤ† − H̃Ĥ† − I)x(t) � −H̃H†x(t).
(34)

Consequently, a quadratic approximation of the cost
function is given by

JZF(H̃, H) = E

{[
y(t; Ĥ) − y(t; H)

]H [
y(t; Ĥ) − y(t; H)

]}
� λx vecH(H̃)

(
(H†(H†)H)T ⊗ I

)
vec(H̃)

= vecH(H̃)(IT
T ⊗ IR) vec(H̃), (35)

if we define IT = λxH†(H†)H = λxHH(HHH)−2H and
IR = I.

Remark. The cost functions of (27) and (28) reveal
the fact that any performance-oriented training design
is a compromise between the strict channel estimation
accuracy and the desired accuracy related to the end
performance metric at hand. Caution is needed to iden-
tify cases where the performance-oriented design may
severely degrade the channel estimation accuracy, anni-
hilating all gains from such a design. In the case of ZF
precoding, if nT > nR, IT will have rank at most nR
yielding a training matrix P with only nR active eigendi-
rections. This is in contrast to the secondary target, which
is the channel estimation accuracy. Therefore, we expect
ADGPP, ASGPP, and the approaches in Subsection 4.4
to behave abnormally in this case. Thus, we propose the
performance-oriented design only when nT = nR in the
context of the ZF precoding.

6 Numerical examples
The purpose of this section is to examine the perfor-
mance of optimal training sequence designs and compare
them with existing methods. For the channel estimation
MSE figure, we plot the normalized MSE (NMSE), i.e.,
E(‖H − Ĥ‖2/‖H‖2), versus the accuracy parameter γ . In
all figures, fair comparison among the presented schemes
is ensured via training energy equalization. Additionally,
the matrices RT , RR, SQ, SR follow the exponential model,
that is, they are built according to

(R)i,j = r j−i, j ≥ i, (36)

where r is the (complex) normalized correlation coef-
ficient with magnitude ρ = |r| < 1. We choose to
examine the high correlation scenario for all the presented
schemes. Therefore, in all plots, |r| = 0.9 for all matri-
ces RT , RR, SQ, SR. Additionally, the transmit SNR during

data transmission is chosen to be 15 dB, when chan-
nel equalization and ZF precoding are considered. High
SNR expressions are therefore used for optimal train-
ing sequence designs. Since the optimal pilot sequences
depend on the true channel, we have for these two applica-
tions additionally assumed that the channel changes from
block to block according to the relationship Hi = Hi−1 +
μEi, where Ei has the same Kronecker structure as H, and
it is completely independent from Hi−1. The estimated
Hi−1 is used in the pilot design. The value of μ is 0.01.

In Figure 1, the channel estimation NMSE performance
versus the accuracy γ is presented for three different
schemes. The scheme ‘ASGPP’ is the optimal Wiener filter
together with the optimal guaranteed performance train-
ing matrix described in Subsection 5.1. ‘Optimal MMSE’
is the scheme presented in [9], which solves the optimal
training problem for the vectorized MMSE, operating on
vec(Y). This solution is a special case in the statement
of Theorem 5 for Iadm = I, i.e., IT = I and IR = I.
Finally, the scheme ‘White training’ corresponds to the
use of the vectorized MMSE filter at the receiver, with a
white training matrix, i.e., one having equal singular val-
ues and arbitrary left and right singular matrices. This
scheme is justified when the receiver knows the involved
channel and noise statistics but does not want to sacri-
fice bandwidth to feedback the optimal training matrix
to the transmitter. This scheme is also justifiable in fast
fading environments. In Figure 1, we assume that RR =
SR, and we implement the corresponding optimal train-
ing design for each scheme. ASGPP is implemented first
for a certain value of γ , and the rest of the schemes
are forced to have the same training energy. The Opti-
mal MMSE in [9] and ASGPP schemes have the best and
almost identical MSE performance. This indicates that for
the problem of training design with the classical chan-
nel estimation MSE, the confidence ellipsoid relaxation
of the chance constraint and the relaxation based on the
Markov bound in Subsection 4.4 deliver almost identical
performances. This verifies the validity of the approxi-
mations in this paper for the classical channel estimation
problem.

Figures 2 and 3 demonstrate the L-optimality average
performance metric E{JW } versus γ . Figure 2 corresponds
to the L-optimality criterion based on MVU estimators
and Figure 3 is based on MMSE estimators. In Figure 2,
the scheme ‘MVU’ corresponds to the optimal training for
channel estimation when the MVU estimator is used. This
training is given by Theorem 4 for Iadm = I, i.e., IT = I
and IR = I. ‘MVU in Subsection 4.4’ is again the MVU
estimator based on the same theorem but for the correct
Iadm. The scheme ‘MMSE in Subsection 4.4’ is given by
the numerical solution mentioned below Theorem 5, since
W1 is different than the cases where a closed form solu-
tion is possible. Figures 2 and 3 clearly show that both the
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Figure 1 Channel estimation NMSE based on Subsection 5.1 with RR = SR. nT = 4, nR = 2, B = 6, a (%) = 99.

confidence ellipsoid and Markov bound approximations
are better than the optimal training for standard channel
estimation. Therefore, for this problem, the application-
oriented training design is superior compared to training
designs with respect to the quality of the channel estimate.

Figure 4 demonstrates the performance of optimal train-
ing designs for the MMSE estimator in the context of

MMSE channel equalization. We assume that RR 
= SR,
since the high SNR expressions for Iadm in the context of
MMSE channel equalization in Appendix 1 indicate that
IT = I for this application and according to Theorem 5
the optimal training corresponds to the optimal training
for channel estimation in [8]. We observe that the curves
almost coincide. Moreover, it can be easily verified that for
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Figure 2 L-optimality criterion with arbitrary but positive semidefinite W1, W2 for the MVU estimator. nT = 6, nR = 6, B = 8, a (%) = 99.
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Figure 3 L-optimality criterion with arbitrary but positive semidefinite W1, W2 for the MMSE estimator with RR = SR. nT = 3, nR = 3,
B = 4, a (%) = 99.

MMSE channel equalization with the MVU estimator, the
optimal training designs given by Theorems 2 and 4 differ
slightly only in the optimal power loading. These obser-
vations essentially show that the optimal training designs
for the MVU and MMSE estimators in the classical chan-
nel estimation setup are nearly optimal for the application

of MMSE channel equalization. This relies on the fact that
for this particular application, IT = I in the high data
transmission SNR regime.

Figures 5 and 6 present the corresponding performances
in the case of the ZF precoding. The descriptions of
the schemes are as before. In Figure 6, we assume that
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Figure 4 MMSE channel equalization with RR �= SR. nT = 4, nR = 2, B = 6, SNR = 15 dB, μ = 0.01.



Katselis et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:245 Page 12 of 22
http://jwcn.eurasipjournals.com/content/2013/1/245

−10 −5 0 5 10
−25

−20

−15

−10

−5

0

5

10

γ (dB)

E
{J

Z
F
} 

(d
B

)

n
T
=5, n

R
=5, B=7, SNR=15 dB, μ=0.01, a−percentile=0.99

MVU
ADGPP
MVU in Subsection 4.4

Figure 5 ZF precoding based on Subsection 5.4 for the MVU estimator. Iadm is based on a previous channel estimate. nT = 5, nR = 5,
B = 7, SNR = 15 dB, a (%) = 99, μ = 0.01.

RR = SR. The superiority of the application-oriented
designs for the ZF precoding application is apparent in
these plots. Here, IT 
= I and this is why the opti-
mal training for the channel estimate works less well
in this application. Moreover, the ASGPP is plotted for
γ ≥ 0 dB, since for γ ≤ −5 dB all the eigenvalues of

B =
[
cλmax (SRIR)IT − R−1

T

]
+ are equal to zero for this

particular set of parameters defining Figure 6.

Figure 7 presents an outage plot in the context of the
L-optimality criterion for the MVU estimator. We assume
that γ = 1. We plot Pr { JW > 1/γ } versus the train-
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Figure 6 ZF precoding MSE based on Subsection 5.4 for the MMSE estimator with RR = SR. Iadm is based on a previous channel estimate.
nT = 4, nR = 4, B = 6, SNR = 15 dB, μ = 0.01, a (%) = 99.
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Figure 7 Outage probability for the L-optimality criterion with the MVU estimator. nT = 6, nR = 6, B = 8, γ = 1. The accuracy parameter is
γ = 1.

ing power. This plot indirectly verifies that the confi-
dence ellipsoid relaxation of the chance constraint given
by the scheme ASGPP is not as tight as the Markov
bound approximation given by the scheme MVU in
Subsection 4.4.

Finally, Figures 8 and 9 present the BER performance of
the nearest neighbor rule applied to the signal estimates
produced by the corresponding schemes in Figure 6.
The used modulation is quadrature phase-shift keying
(QPSK). The ‘Clairvoyant’ scheme corresponds to the ZF
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Figure 8 BER performance using the signal estimates produced by the corresponding schemes in Figure 6 with RR = SR and γ = −10 dB.
Iadm is based on a previous channel estimate. nT = 4, nR = 4, B = 6, γ = −10 dB, μ = 0.01, a(%) = 99.
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Figure 9 BER performance using the signal estimates produced by the corresponding schemes in Figure 6 with RR = SR and γ = 5 dB.
Iadm is based on a previous channel estimate. nT = 4, nR = 4, B = 6, γ = 5 dB, μ = 0.01, a(%) = 99.

precoder with perfect channel knowledge. The channel
estimates have been obtained for γ =−10 and 0 dB,
respectively. Even if the application-oriented estimates are
not optimized for the BER performance metric, they lead
to better performance than the Optimal MMSE scheme
in [9] as is apparent in Figure 8. In Figure 9, the per-
formances of all schemes approximately coincide. This is
due to the fact that for γ = 5 dB, all channel estimates
are very good, thus leading to symbol MSE performance
differences that do not translate to the corresponding
BER performances for the nearest neighbor decision
rule.

7 Conclusions
In this contribution, we have presented a quite general
framework for MIMO training sequence design subject
to flat and block fading, as well as spatially and tempo-
rally correlated Gaussian noise. The main contribution
has been to incorporate the objective of the channel
estimation into the design. We have shown that by a
suitable approximation of J(H̃, H), it is possible to solve
this type of problem for several interesting applications
such as standard MIMO channel estimation, L-optimality
criterion, MMSE channel equalization, and ZF precod-
ing. For these problems, we have numerically demon-
strated the superiority of the schemes derived in this
paper. Additionally, the proposed framework is valuable
since it provides a universal way of posing different
estimation-related problems in communication systems.

We have seen that it shows interesting promise for,
e.g., ZF precoding, and it may yield even greater end
performance gains in estimation problems related to
communication systems, when approximations can be
avoided, depending on the end performance metric at
hand.

Endnotes
aThe word ‘dual’ in this paper defers from the

Lagrangian duality studied in the context of convex
optimization theory (see [24] for more details on this
type of duality).

bFor simplicity, we have assumed a zero-mean channel,
but it is straightforward to extend the results to Rician
fading channels, similar to [9].

cWe set the subscript Q to SQ to highlight its temporal
nature and the fact that its size is B × B. The matrices
with subscript T in this paper share the common
characteristic that they are nT × nT , while those with
subscript R are nR × nR.

dFor a Hermitian positive semidefinite matrix A, we
consider here that A1/2 is the matrix with the same eigen-
vectors as A and eigenvalues as the square roots of the cor-
responding eigenvalues of A. With this definition of the
square root of a Hermitian positive semidefinite matrix, it
is clear that A1/2 = AH/2, leading to A = A1/2AH/2 =
AH/2A1/2.

eFor easiness, we use the MATLAB notation in
this table.
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Appendix 1
Approximating the performance measure for MMSE
channel equalization
In order to obtain the approximating set Dadm, let us first
denote the integrand in the performance metric (33) by

J ′(ω; H̃, H) = tr
(
�(e jω; H̃, H)�y(ω)�H(e jω; H̃, H)

)
.

(37)

In addition, let � denote an equality in which only dom-
inating terms with respect to ||H̃|| are retained. Then,
using (32), we observe that

�(e jω ; H̃, H) = F(e jω ; H + H̃) − F(e jω ; H)

� λxH̃H�−1
y − λ2

xHH�−1
y (HH̃H + H̃HH)�−1

y

= λx

⎛⎜⎜⎝(
I−λxHH�−1

y H
)

︸ ︷︷ ︸
=Q

H̃H�−1
y − λxHH�−1

y H̃HH�−1
y

⎞⎟⎟⎠ ,

(38)

where we omitted the argument ω for simplicity. Inserting
(38) in (37) results in the approximation

J ′(ω; H̃, H) � λ2
xtr

(
QH̃H�−1

y H̃Q

+ λ2
x

(
HH�−1

y H̃HH�−1
y HH̃H�−1

y H
)

− λxQH̃H�−1
y HH̃H�−1

y H

−λxHH�−1
y H̃HH�−1

y H̃Q
)

. (39)

To rewrite this into a quadratic form in terms of
vec(H̃), we use the facts that tr(AB) = tr(BA) =
vecT (AT )vec(B) = vecH(AH)vec(B) and vec(ABC) =
(CT ⊗ A)vec(B) for matrices A, B, and C of compatible
dimensions. Hence, we can rewrite (39) as

J ′(ω; H̃, H) � vecH(H̃)[ λ2
xQ2T ⊗ �−1

y ] vec(H̃)

+ vecH(H̃)[λ4
x(HH�−1

y H)T ⊗ �−1
y HHH�−1

y ] vec(H̃)

− vecH(H̃)[λ3
x(�

−1
y HQ)T ⊗ �−1

y H] vec(H̃H)

− vecH(H̃H)[λ3
x(QHH�−1

y )T ⊗ HH�−1
y ] vec(H̃).

(40)

In the next step, we introduce the permutation matrix
� defined such that vec(H̃T ) = � vec(H̃) for every H̃ to
rewrite (40) as

J ′(ω; H̃, H) � vecH(H̃)[λ2
xQ2T ⊗ �−1

y ] vec(H̃)

+ vecH(H̃)[λ4
x(HH�−1

y H)T ⊗ �−1
y HHH�−1

y ] vec(H̃)

− vecH(H̃)[λ3
x(�

−1
y HQ)T ⊗ �−1

y H] �vec(H̃∗)

− vecH(H̃∗)�T [λ3
x(QHH�−1

y )T ⊗ HH�−1
y ] vec(H̃).

(41)

We have now obtained a quadratic form. Note indeed that
the last two terms are just complex conjugates of each
other and thus we can write them as two times their real
part.

High SNR analysis
In order to obtain a simpler expression for Iadm, we will
assume high SNR in the data transmission phase. We
consider the practically relevant case where rank (H) =
min(nT , nnnR). Depending on the rank of the channel
matrix H, we will have three different cases:

Case 1. rank(H) = nR < nT
Under this assumption, it can be shown that both the first
and the second terms on the right hand side of (41) con-
tribute to Iadm. We have Q → �⊥

HH and λx�
−1
y →

(HHH)−1 for high SNR. Here, and in what follows, we use
�X = XX† to denote the orthogonal projection matrix on
the range space of X and �⊥

X = I − �X to denote the pro-
jection on the nullspace of XH . Moreover, λxHH�−1

y H →
�HH and λ2

x�
−1
y HHH�−1

y → (HHH)−1 for high SNR. As
�⊥

HH +�HH = I, summing the contributions from the first
two terms in (41) finally gives the high SNR approximation

Iadm = λxI ⊗ (HHH)−1. (42)

Case 2. rank(H) = nR = nT
For the non-singular channel case, the second term on
the right hand side of (41) dominates. Here, we have
λxHH�−1

y H → I and λ2
x�

−1
y HHH�−1

y → (HHH)−1 for
high SNR. Clearly, this results in the same expression for
Iadm as in Case 1, namely

Iadm = λxI ⊗ (HHH)−1. (43)

Case 3. rank(H) = nT < nR
In this case, the second term on the right hand side
of (41) dominates. When rank(H) = nT , we get
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λxHH�−1
y H → I and λ2

x�
−1
y HHH�−1

y → �
−1/2
n [�−1/2

n

HHH�
−1/2
n ]† �

−1/2
n for high SNR. Using these approxi-

mations finally gives the high SNR approximation

Iadm = λxI ⊗
(

1
2π

∫ π

−π

�−1/2
n [�−1/2

n HHH�−1/2
n ]†

�−1/2
n dω

)
.

Low SNR analysis
For the low SNR regime, we do not need to differentiate
our analysis for the cases nT ≥ nR and nT < nR because
now �y → �n. It can be shown that the first term on
the right hand side of (41) dominates, that is, the term
involving

λ2
x

(
(Q2)T ⊗ �−1

y

)
.

Moreover, Q → I and �−1
y → �−1

n . This yields

Iadm = I ⊗
(

λ2
x

2π

∫ π

−π

�−1
n dω

)
. (44)

Appendix 2
Proof of Theorem 1
For the proof of Theorem 1, we require some prelimi-
nary results. Lemmas 1 and 2 will be used to establish the
uniqueness part of Theorem 1, and Lemma 3 is an exten-
sion of a standard result in majorization theory, which is
used in the main part of the proof.

Lemma 1. Let D ∈ R
n×n be a diagonal matrix with ele-

ments d1,1 > · · · > dn,n > 0. If U ∈ C
n×n is a unitary

matrix such that UDUH has diagonal (d1,1, . . . , dn,n), then
U is of the form U = diag(u1,1, . . . , un,n), where |ui,i| = 1
for i = 1, . . . , n. This also implies that UDUH = D.

Proof. Let V = UDUH . The equation for (V)i,i is

n∑
k=1

dk,k|ui,k|2 = di,i

from which we have, by the orthonormality of the columns
of U, that

n∑
k=1

dk,k
di,i

|ui,k|2 = 1 =
n∑

k=1
|ui,k|2. (45)

We now proceed by induction on i = 1, . . . , n to show
that the ith column of U is [0 · · · 0 ui,i 0 · · · 0]T with

|ui,i| = 1. For i = 1, it follows from (45) and the fact that
U is unitary that

|u1,1|2 +
∣∣∣∣d2,2
d1,1

u2,1

∣∣∣∣2 + · · · +
∣∣∣∣dn,n

d1,1
un,1

∣∣∣∣2
= |u1,1|2 + · · · + |un,1|2 = 1.

However, since d1,1 > · · · > dn,n > 0, the only way
to satisfy this equation is to have |u1,1| = 1 and ui,1 = 0
for i = 2, . . . , n. Now, if the assertion holds for i =
1, . . . , k, the orthogonality of the columns of U implies that
ui,k+1 = 0 for i = 1, . . . , k, and by following a similar rea-
soning as for the case i = 1, we deduce that |uk+1,k+1| = 1
and ui,k+1 = 0 for i = k + 2, . . . , n.

Lemma 2. Let D ∈ R
N×N be a diagonal matrix with

elements d1,1 > · · · > dN ,N > 0. If U ∈ C
N×n, with n ≤

N, such that UH U = I and V = D̃UD̃−1 (where D̃ =
diag(d1,1, . . . , dn,n)) also satisfies VH V = I, then U is of the
form U =[diag(u1,1, . . . , un,n) 0N−m,n]T , where |ui,i| = 1
for i = 1, . . . , n.

Proof. The idea is similar to the proof of Lemma 1. We
proceed by induction on the ith column of V. For the
first column of V we have, by the orthonormality of the
columns of U and V, that

|u1,1|2 +
∣∣∣∣d2,2
d1,1

u2,1

∣∣∣∣2 + · · · +
∣∣∣∣dN ,N

d1,1
uN ,1

∣∣∣∣2
= 1
= |u1,1|2 + · · · + |uN ,1|2.

Since d1,1 > · · · > dN ,N > 0, the only way to satisfy this
equation is to have |u1,1| = 1 and ui,1 = 0 for i = 2, . . . , N .
If now the assertion holds for columns 1 to k, the orthog-
onality of the columns of U implies that ui,k+1 = 0 for
i = 1, . . . , k, and by following a similar reasoning as for
the first column of U we have that |uk+1,k+1| = 1 and
ui,k+1 = 0 for i = k + 2, . . . , N .

Lemma 3. Let A, B ∈ C
n×n be Hermitian matrices.

Arrange the eigenvalues a1, n . . . , an of A in a descending
order and the eigenvalues b1, n . . . , bn of B in an ascend-
ing order. Then, tr (AB) ≥ ∑n

i=1 aibi. Furthermore, if
B = diag(b1, n . . . , bn) and both matrices have distinct
eigenvalues, then tr (AB) = ∑n

i=1 aibi if and only if A =
diag(a1, n . . . , an).

Proof. See ([34], Theorem 9.H.1.h) for the proof of the
first assertion. For the second part, notice that if B =
diag(b1, n . . . , bn), then by ([34], Theorem 6.A.3)

tr(AB) =
n∑

i=1
(A)i,ibi ≥

n∑
i=1

(A)[i,i]bi, n
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where {(A)[i,i]}i=1,...,n denotes the ordered set {(A)

1,1, . . . , (A)n,n} sorted in descending order. Since
{(A)[i,i]}i=1,...,n is majorized by {a1, n . . . , an} and the bi’s
are distinct, we can use ([34], Theorem 3.A.2) to show that

n∑
i=1

(A)[i,i]bi >

n∑
i=1

aibi

unless (A)[i,i] = ai for every i = 1, . . . , n. Therefore,
tr(AB) = ∑n

i=1 aibi if and only if the diagonal of A is
(a1, nnn . . . , an). Now, we have to prove that A is actually
diagonal, but this follows from Lemma 1.

Proof of Theorem 1
First, we simplify the expressions in (21). Using the eigen-
decompositions in (23) of A and B, we see that

PA−1PH � B ⇔ PUAD−1
A UH

A PH � UBDBUH
B

⇔ UH
B PUAD−1

A UH
A PH UB � DB.

Now, define P̄ = UH
B PUAD−1/2

A and observe that

tr(PPH) = tr
(
(UBP̄D−H/2

A UH
A )(UBP̄D−H/2

A UH
A )H

)
= tr(UBP̄D−1

A P̄H UH
B ) = tr(P̄H P̄D−1

A ).

Therefore, (21) is equivalent to

minimize
P∈Cn×N

tr(P̄H P̄D−1
A )

s.t. P̄P̄H � DB.
(46)

To further simplify our problem, consider the singular
value decomposition P̄ = U�VH , where U ∈ C

n×n and
V ∈ C

N×N are unitary matrices and � has the structure

� =
⎡⎢⎣σ1 0 0 · · · 0

. . .
...

...
0 σm 0 · · · 0

⎤⎥⎦ or � =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
. . .

0 σm
0 · · · 0
...

...
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
depending on whether N ≥ n or N < n. The singular
values are ordered such that σ1 ≥ · · · ≥ σm > 0. Now,
observe that (46) is equivalent to

minimize
P∈Cn×N

tr(VH�H�VH D−1
A )

s.t. U��H UH � DB.
(47)

With this problem formulation, it follows (from
Sylvester’s law of inertia [35]) that we need m ≥ rank(DB)

to achieve feasibility in the constraint (i.e., having at least

as many non-zero singular values of � as non-zero eigen-
values in DB). This corresponds to the condition N ≥
rank(B) in the theorem.

Now, we will show that U and V can be taken to be the
identity matrices. Using Lemma 3, the cost function can
be lower bounded as

tr(V�H�VH D−1
A ) ≥

n∑
j=1

λn−j+1(DA)λj(V�H�VH)

=
m∑

j=1
(DA)jjσ

2
j ,

(48)

where λj(·) denotes the jth largest eigenvalue. The equality
is achieved if V = I, and observe that we can select V in
this manner without affecting the constraint.

To show that U can also be taken as the identity matrix,
notice that the cost function in (47) does not depend on
U, while the constraint implies (by looking at the diagonal
elements of the inequality and recalling that U is unitary)
that

σ 2
i ≥ (DB)i,i, i = 1, . . . , m, (49)

requiring m ≥ rank(DB). Suppose that Ū and �̄ minimize
the cost. Then, we can replace Ū by I and satisfy the con-
straint, without affecting the cost in (48). This means that
there exists an optimal solution with U = I.

With U = I and V = I, the problem (47) is equivalent
(in terms of �) to

minimize
σ1≥0,...,σm≥0

∑m
i=1 σ 2

i (DA)i,i

s.t. σ 2
i ≥ (DB)i,i, i = 1, . . . , m.

It is easy to see that the optimal solution for this problem
is σ

opt
i = √

(DB)i,i, i = 1, . . . , m. By creating an optimal �,
denoted as �opt, with the singular values σ

opt
1 , . . . , σ opt

m ,
we achieve an optimal solution

Popt = UBP̄D1/2
A UH

A = UB�optD1/2
A UH

A = UBDPUH
A

with DP as stated in the theorem.
Finally, we will show how to characterize all optimal

solutions for the case when A and B have distinct non-
zero eigenvalues (thus, m = n). The optimal solutions
need to give equality in (48) and thus Lemma 3 gives that
V��H VH is diagonal and equal to ��H . Lemma 1 then
implies that V = diag(v1,1, . . . , vn,n) with |vi,i| = 1 for
i = 1, . . . , n.

For the optimal �, we have that σ 2
i = (DB)i,i for i =

1, . . . , n, so the diagonal elements of U��H UH − DB are
zero. Since U��H UH −DB � 0 for every feasible solution
of (47), U has to satisfy U��H UH = DB. Lemma 2 then
establishes that the first n columns of U are of the form

[diag(u1,1, . . . , un,n)0N−m,n]T ,
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where |ui,i| = 1 for i = 1, . . . , n. Since U has to be unitary
and its last N −n+1 columns play no role in P̄ (due to the
form of �), we can take them as [0n,N−m+1 IN−m+1]T

without loss of generality.
Summarizing, an optimal solution is given by (23).

When A and B have distinct eigenvalues, V and U can
only multiply the columns of UA and UB, respectively, by
complex scalars of unit magnitude.

Appendix 3
Proof of Theorems 2 and 3
Before proving Theorems 2 and 3, a lemma will be given
that characterizes equivalences between different sets of
feasible training matrices P.

Lemma 4. Let B ∈ C
n×n and C ∈ C

m×m be Hermi-
tian matrices and f : Cn×N → C

n×n be such that f (P) =
f (P)H. Then, the following sets are equivalent

{P| f (P) ⊗ I � B ⊗ C} = {P| f (P) � λmax(C)B}. (50)

Proof. The equivalence will be proved by showing that
the left hand side (LHS) is a subset of right hand side
(RHS) and vice versa. First, assume that f (P) � λmax(C)B,
then

f (P) ⊗ I � λmax(C)B ⊗ I

= (B ⊗ λmax(C)I) � (B ⊗ C).
(51)

Hence, RHS ⊆ LHS.
Next, assume that f (P)⊗ I � B ⊗ C, but for the purpose

of contradiction that f (P) 
� λmax(C)B. Then, there exists
a vector x such that xH(f (P)−λmax(C)B)x < 0. Let v be an
eigenvector of C that corresponds to λmax(C) and define
y = x ⊗ v. Then,

y(f (P) ⊗ I − B ⊗ C)y

= (xHf (P)x)‖v‖2 − (xH Bx)(vH Cv)

= xH(f (P) − λmax(C)B)x‖v‖2 < 0

(52)

which is a contradiction. Hence, LHS ⊆ RHS.

Proof of Theorem 2
Rewrite the constraint as

P̃H(ST
Q ⊗ SR)−1P̃ � cIT

T ⊗ IR

⇔ (PS−1
Q PH)T ⊗ S−1

R � cIT
T ⊗ IR

⇔ (PS−1
Q PH) ⊗ I � cIT ⊗ SRIR.

(53)

Let f (P) = PS−1
Q PH . Then, Lemma 4 gives that the set

of feasible P is equivalent to the set of feasible P with the
constraint

(PS−1
Q PH) � cλmax(SRIR)IT . (54)

Proof of Theorem 3
In the case that RR = SR, the constraint can be rewritten
as

(PS−1
Q PH + R−1

T )T ⊗ I � cIT
T ⊗ SRIR. (55)

With f (P) = PS−1
Q PH + R−1

T , Lemma 4 can be applied to
achieve the equivalent constraint

PS−1
Q PH + R−1

T � cλmax(SRIR)IT

⇔ PS−1
Q PH � cλmax(SRIR)IT − R−1

T

⇔ PS−1
Q PH �[cλmax(SRIR)IT − R−1

T ]+

(56)

where the last equality follows from the fact that the left
hand side is positive semidefinite.

In the case that R−1
R = IR, the constraint can be

rewritten as
(PS−1

Q PH)T ⊗ S−1
R � (cIT − RT )T ⊗ IR

⇔ (PS−1
Q PH)T ⊗ S−1

R �[cIT − RT ]T+ ⊗IR.
(57)

Observe that this expression is identical to the constraint
in (24), except that the positive semidefinite IT has been
replaced by [cIT − RT ]+. Thus, the equivalence follows
directly from Theorem 2.

In the case R−1
T = IT , the constraint can be rewritten as

(PS−1
Q PH)T ⊗ S−1

R � IT
T ⊗ (cIR − RR)

⇔ (PS−1
Q PH)T ⊗ S−1

R � IT
T⊗[cIR − RR]+ .

(58)

As in the previous case, the equivalence follows directly
from Theorem 2.

Appendix 4
Proof of Theorem 4
Our basic assumption is that IT ,IR are both Hermitian
matrices, which is encountered in the applications pre-
sented in this paper. Denoting by P′ the matrix PT and
using the fact thatd Iadm = (

I ′
T ⊗ IR

)1/2 (I ′
T ⊗ IR

)1/2,
it can be seen that our optimization problem takes the
following form

minimize
P′∈CB×nT

J(H)

s.t. tr(P′P′H) ≤ P ,
(59)

where J(H) = EH̃
{

J(H̃, H)
}

is given by the expression

tr
{[

I−1/2
T ′ P′H S′−1

Q P′I−1/2
T ′ ⊗ I−1/2

R S−1
R I−1/2

R

]−1
}

= tr
{[

I−1/2
T ′ P′H S′−1

Q P′I−1/2
T ′

]−1 ⊗ I1/2
R SRI1/2

R

}
.
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Using the fact that tr (A ⊗ B) = tr (A) tr (B) for square
matrices A and B, it is clear from the last expression that
the optimal training matrix can be found by minimizing

tr
{[

VH
T I

−1/2
T ′ P′H S′−1

Q P′I−1/2
T ′ VT

]−1
}

, (60)

where VT denotes the modal matrix of IT ′ corresponding
to an arbitrary ordering of its eigenvalues. Here, we have
used the invariance of the trace operator under unitary
transformations. First, note that for an arbitrary Hermi-
tian positive definite matrix A, tr

(
A−1) = ∑

i 1/λi (A),
where λi (A) is the ith eigenvalue of A. Since the function
1/x is strictly convex for x > 0, tr

(
A−1) is a Schur-

convex function with respect to the eigenvalues of A [34].
Additionally, for any Hermitian matrix A, the vector of its
diagonal entries is majorized by the vector of its eigen-
values [34]. Combining the last two results, it follows
that tr

(
A−1) is minimized when A is diagonal. Therefore,

we may choose the modal matrices of P′ in such a way
that VH

T I
′−1/2
T P′H S′−1

Q P′I ′−1/2
T VT is diagonalized. Sup-

pose that the singular value decomposition (SVD) of P′H
is UDP′VH and that the modal matrix of S′

Q, correspond-
ing to arbitrary ordering of its eigenvalues, is VQ. Setting
U = VT and V = VQ, VH

T I
′−1/2
T P′H S′−1

Q P′I ′−1/2
T VT is

diagonalized and is given by the expression

�
−1/2
T DP′�−1

Q DP′�−1/2
T .

Here, �T and �Q are the diagonal eigenvalue matrices
containing the eigenvalues of I ′

T and S′Q, respectively,
in their main diagonals. The ordering of the eigenvalues
corresponds to VT and VQ. Clearly, by reordering the
columns of VT and VQ, we can reorder the eigenvalues
in �T and �Q. Assume that there are two different per-
mutations π , 	 such that π

(
(�T )1,1

)
, . . . , π

(
(�T )nT ,T

)
and 	

(
(�Q)1,1

)
, . . . , 	

(
(�Q)B,B

)
minimize J(H) sub-

ject to our training energy constraint. Then, the
entries of the corresponding eigenvalue matrix of
VH

T I
′−1/2
T P′H S′−1

Q P′I ′−1/2
T VT are

(DP′)2
i,i/

(
π
(
(�T )i,i

)
	

(
(�Q)i,i

))
,i=1, 2, . . . , nT (B ≥nT ).

Setting (DP′)2
i,i = κi, i = 1, 2, . . . , nT , the optimization

problem (59) results in

minimize
π ,	 ,κi,i=1,2,...,nT

∑nT
i=1

1
κi

π((�T )i,i)	((�Q)i,i)
s.t.

∑nT
i=1 κi ≤ P

(61)

which leads to

minimize
π ,	 ,κi,i=1,2,...,nT

∑nT
i=1

αi
κi

s.t.
∑nT

i=1 κi ≤ P ,
(62)

where αi = π
(
(�T )i,i

)
	

(
(�Q)i,i

)
, i = 1, 2, . . . , nT .

Forming the Lagrangian of the last problem, it can be seen
that

(DP′)i,i =
√

P√
αi∑nT

j=1
√

αj
, i = 1, 2, . . . , nT ,

while the objective value equals to
(∑nT

i=1
√

αi
)2

/P . Using
Lemma 3, it can be seen that π and 	 should cor-
respond to opposite orderings of (�T )i,i, (�Q)j,j, i =
1, 2, . . . , nT , j = 1, 2, . . . , B, respectively. Since B can be
greater than nT , the eigenvalues of I ′

T must be set in
decreasing order and those of S′Q in increasing order.

Appendix 5
Proof of Theorem 5
Using the factorization Iadm = (

I ′
T ⊗ IR

)1/2 (I ′
T⊗

IR)1/2, we can see that E
{

J(H̃, H)
}

is given by the expres-
sion

tr
{[(

I ′−1/2
T R′−1

T I ′−1/2
T ⊗ I−1/2

R R−1
R I−1/2

R

)
+

(
I ′−1/2

T P′H S′−1
Q P′I ′−1/2

T ⊗ I−1/2
R S−1

R I−1/2
R

)]−1
}

,

(63)

where R′
T = RT

T with eigenvalue decomposition
U′

T�′
T U′H

T . This objective function subject to the train-
ing energy constraint tr(P′P′H) ≤ P seems very difficult
to minimize analytically unless special assumptions are
made.

• RR = SR: Then, (63) becomes

tr
{(

I ′−1/2
T R′−1

T I ′−1/2
T + I ′−1/2

T P′H S′−1
Q P′I ′−1/2

T

)−1

⊗ I1/2
R RRI1/2

R

}
.

(64)

Using once more the fact that tr (A ⊗ B) = tr (A) tr
(B) for square matrices A and B, it is clear from (64)
that the optimal training matrix can be found by mini-
mizing

tr
{(

R′−1
T + P′H S′−1

Q P′)−1
I ′

T

}
. (65)

Again, here some special assumptions may be of
interest.

– IT = I: Then, the optimal training matrix
can be found by straightforward adjustment
of Proposition 2 in [8].

– R−1
T = IT : Then, (65) takes the form

tr
{(

I + R′1/2
T P′H S′−1

Q P′R′1/2
T

)−1
}

. (66)
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Using the same majorization argument as in
the previous appendix for
tr
(
A−1) = ∑

i 1/λi (A) and adopting the
notation therein, we should select U = U′

T
and V = VQ. With these choices, the optimal
power allocation problem becomes

minimize
π ,	 ,κi,i=1,2,...,nT

∑nT
i=1

1

1+ π((�′
T )i,i)κi

	((�Q)i,i)
s.t.

∑nT
i=1 κi ≤ P ,

(67)

where (�′
T )i,i, i = 1, 2, . . . , nT are the

eigenvalues of R′
T . Fixing the permutations

π(·) and 	(·), we set γi = π
(
(�′

T )i,i
)
/	(

(�Q)i,i
)

, i = 1, 2, . . . , nT . With this notation,
the problem of selecting the optimal κi’s
becomes

minimize
κi,i=1,2,...,nT

∑nT
i=1

1
1+γiκi

s.t.
∑nT

i=1 κi ≤ P .
(68)

Following similar steps as in the proof of
Proposition 2 in [8], we define the following
parameter

m∗ = max
{

m ∈ {1, 2, . . . , nT } :

√
1
γk

·
m∑

i=1

√
1
γi

−
m∑

i=1

1
γi

< P , k = 1, 2, . . . , m
}

.

(69)

Then, it can be easily seen that for j = 1, 2,
. . . , m∗ the optimal (DP′)j,j is given by the
expression

√√√√√P + ∑m∗
i=1

1
γi∑m∗

i=1

√
1
γi

√
1
γj

− 1
γj

,

while (DP′ )j,j = 0 for j = m∗ + 1, . . . , nT .

With these expressions for the optimal power
allocation, the objective of (67) equals

nT − m∗ +
(∑m∗

i=1
1√
γi

)2

P + ∑m∗
i=1

1
γi

,

and therefore, the problem of determining the
optimal orderings π(·), 	(·) becomes

minimize
π ,	

nT − m∗ +
(∑m∗

i=1
1√
γi

)2

P+∑m∗
i=1

1
γi

. (70)

The last problem seems to be difficult to solve
analytically. Nevertheless, a simple numerical
exhaustive search algorithm, namely Algorithm 1,
can solve this probleme.
Note that given the fact that nT and B are small in
practice, the complexity of the above algorithm and
its necessary memory are not crucial. However, as nT
and B increase, complexity and memory become
important. In this case, a good solution may be to
order the eigenvalues of R′

T in decreasing order and
those of S′

Q in increasing order. This can be
analytically justified based on the fact that for a fixed
m∗, the objective function of problem (70), say
MSE(γ1, . . . , γm∗), has negative partial derivatives
with respect to γi, ni = 1, 2, . . . , m∗, and it is also
symmetric, since any permutation of its arguments
does not change its value. This essentially shows that
a good solution may maintain as active γ ’s the largest

Algorithm 1 Optimal ordering for the eigenvalues of
R′

T and S′
Q, when RR = SR and R−1

T = IT

Require: nT , B such that B ≥ nT , P , a row vector �′
T

containing all (�′
T )i,i’s for i = 1, 2, . . . , nT in any order

and a row vector �Q containing all (�Q)i,i’s for i =
1, 2, . . . , B in any order.

1: Create two matrices �T and �Q containing as rows
all possible permutations of �′

T and �Q, respectively.
Define also the matrix � = [ ].

2: loop
3: for l = 1 : nT !
4: loop
5: for t = 1 : B!
6: � = [

�; �T (l, :)./�Q(t, 1 : nT )
]
.

7: loop
8: For each row of � determine the corresponding

m∗ and place it in the corresponding row of a new
vector M.

9: loop
10: for l = 1 : nT ! B!
11:

J(l) = nT − M(l) +
(∑M(l)

i=1
1√

�(l,i)

)2

P + ∑M(l)
i=1

1
�(l,i)

12: [val, ind] = min J
13: if mod(ind, B! ) == 0 then
14: j = B!
15: else
16: j = mod(ind, B! )
17: i = (ind − j)/B! +1
18: The optimal π(·), say πopt, corresponds to �T (i, :) and

the optimal 	(·), say 	opt, to �Q(j, :).
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possible, through the selection of m∗. Additionally,
the structure of MSE(γ1, . . . , γm∗) reveals the fact that
for every new active γ , something less than 1 is added
to the MSE, while an inactive value corresponds to
adding 1 to the MSE. This is intuitively appealing
with the spatial diversity of MIMO systems and the
usual properties that optimal training matrices
possess in such systems (i.e., that they tend to fully
exploit the available spatial diversity). The largest
possible γ ’s can be achieved with a decreasing order
of the eigenvalues of R′

T and an increasing order of
the eigenvalues of S′

Q. In this case, it can be checked
that m∗ can be found as follows:

m∗ = max
{

m ∈ {1, 2, . . . , nT } :

√
1

γm
·

m∑
i=1

√
1
γi

−
m∑

i=1

1
γi

< P
}

.

• If the modal matrices of RR and SR are the same,
IT = I and IR = I, then the optimal training is
given by [9], as these assumptions correspond to the
problem solved therein.

• In any other case (e.g., if RR 
= SR), the (optimal)
training can be found using numerical methods like
the semidefinite relaxation approach described in
[28]. Note that this approach can handle also general
Iadm, not necessarily Kronecker-structured.
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