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technological and societal developments have steadily emphasised my interest in the subject matter 

and pushed me towards further improving my work. Additionally, simulation modelling and 
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research a topic I am deeply interested in with a method that I also thoroughly enjoy. Furthermore, I 
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This thesis is written in an attempt to enhance the academic state of the art by establishing and using 
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audience of policymakers, engineers and academics who are interested in designing cybersecurity 

solutions for critical infrastructures. However, given the multidisciplinary research discipline that 

overarched this study, the report can also prove interesting for other readers. This is especially true 

given the recently increased societal relevance and awareness of the problem this study seeks to 

address. I hope that my work and passion contributed to some extent to the state of the art. 
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Executive summary 
The main problem that this study seeks to address is the increased threat posed to modern-day 

society by cyberattacks on critical infrastructures. The transition from monolithic, closed critical 

infrastructure systems towards decentralised and open networks has enabled a significant increase 

in efficiency, at the cost of increased susceptibility to cyberattacks. Securing critical infrastructures 

against threats that exploit cyber-infrastructure to inflict large-scale physical damage or even loss of 

life has become a significant objective for both scientific research and public policy analysis. 

The aim of this study is to explore the effects of coherent defensive strategies on cyber-defensive 

behaviour in an ecosystem of critical infrastructures. The academic state of the art prescribes a 

shared desire to explore the effects of coherent defensive strategies that help secure the overall 

ecosystem of critical infrastructures more effectively. By integrating generalisable elements 

applicable to most critical infrastructure systems, ecosystem-level behaviour can be identified. This 

led to the following main research question: 

How do cyber-architectural elements and defensive strategies influence exposure to cyber-

threats within the cybersecurity ecosystem of critical infrastructures, and how can 

infrastructure operators effectively mitigate consequences from cyber-incidents? 

The research objectives involve establishing a framework for analysing a cybersecurity ecosystem for 

critical infrastructures. To achieve this, three main objectives are formulated: (i) specification of 

concepts that form an ecosystem model for critical infrastructure systems by identifying 

generalisable elements, (ii) formalisation and implementation of an agent-based model capable of 

exploring the effects of different configurations for integrated defensive strategies and (iii) deriving 

experimentation results into observed emergent patterns and best practices for defensive strategies. 

The main method used to support these objectives is agent-based modelling, which simulates 

systems as collections of distributed entities capable of individual decision-making based on a set of 

states, rules and actions. Agent-based models are capable of simulating complex systems through 

means of simple actions on the level of individual agents. 

The key interaction this study seeks to address takes place between critical infrastructure operators, 

cyberattackers and users who are critical to infrastructure operation. Critical infrastructure operators 

are tasked with securing the functional operation of critical infrastructures, for which involves 

thwarting cyberattacks while not hindering users. Cyberattackers seek to inflict damage on critical 

infrastructure nodes by launching cyberattacks. Users only interact with the ecosystem in an auxiliary 

manner, as they provide user traffic that can hinder infrastructure operation. 

The core elements identified that form the ecosystem are cyber-architectural concepts, 

cybersecurity concepts and behavioural elements. The main cyber-architectural concepts are 

dependencies that affect infrastructure node operation beyond the targets of cyberattacks alone and 

the severity of consequences that emphasise the desire for effective defensive strategies. The main 

cybersecurity elements involve the types of attackers that impact the type and focus of attacks 

conducted, the types of cyberattacks and control mechanisms that constitute defensive strategies. 

The main behavioural elements relate to situational awareness that limits interaction due to limited 

rationality, specifically the degree of operability and associated degree of perceived operability that 

determine which defensive decision is made. 

The implemented simulation model incorporates the core elements and operationalised interaction 

that takes place within the ecosystem. This simulation model can be used to assess system behaviour 

under different configurations for scenario parameters or defensive strategy designs. These 
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parameters influence the frequency and impact of certain events, such as a cyberattacks, and 

simulate the chance for these events to be successful. This allows for model use to extend beyond 

static analysis and facilitates exploration of deep uncertainty surrounding the ecosystem. 

The experimental design is based on exploration of system behaviour under deep uncertainty by 

conducting Exploratory Modelling and Analysis (EMA). The exploratory approach fits the chosen 

research design, as ecosystem-level analysis is built on tentative parameter values. Instead, a wide 

range of scenarios was created to suppress sensitivity towards specific parameter values, with 

variations applied across parameters such as the influence coefficient associated with dependencies. 

Experiments are defined as the combination of a scenario and a defensive strategy design. Each 

defensive strategy design was analysed using the same set of scenarios, resulting in a complete set of 

experiments that could be used to explore the robustness of each defensive strategy design.  

The main findings indicate that cyber-resilience of critical infrastructures is tied to three main 
emergent tendencies: 

1. When there is insufficient awareness of threats, the impact of those attacks is amplified by 

the delay in deployment of responsive mechanisms, as attacks are not dealt with in a timely 

manner. This occurred most prominently for signature-based intrusion prevention and 

detection mechanisms. 

2. When there is an unmanageable rate of false alarms, responsive mechanisms can end up 

inflicting more damage than utilising no responsive mechanisms at all. Defensive strategies 

that overstate the presence of attacks can therefore have a negative impact. This tendency 

was particularly common for anomaly-based intrusion prevention and detection 

mechanisms. 

3. Preventing cyberattacks by design delivers robust performance, whereas experiments 

tailored towards preventing false alarms bear the most immediate benefits, since attack 

events are uncommon and unnecessary responses can be initiated at any point. This 

tendency involves the way defensive decisions carry over to other infrastructure nodes 

through dependencies. 

The main limitations and assumptions are the direct consequences from designing an ecosystem-

level model. Because all elements are forced to be generalisable for most critical infrastructure 

systems, the specification of several concepts remains rather abstract. Assessing different defensive 

strategies from an ecosystem perspective does not produce results directly related to implementable 

policy, as that requires more thorough specification. The main assumption that influences model 

performance directly followed this limitation, as attacks in the ecosystem are always surmountable. 

Insurmountable consequences, as observed in very rare occasions in the real-world, are a deterrent 

that impacts the extent of losses incurred. This metric is kept relatively abstract in this study, which 

delimits the direct interpretability of model outcomes. 

The main implications and contributions put forward by this study are nested in the framework 

created to support the simulation model. Given the limitations and assumptions, the most important 

contribution is the conceptual framework of cybersecurity for an ecosystem of critical 

infrastructures. Since data analysis within the light of this approach does not contribute any new 

knowledge, the more important facet of this study is establishing future pathways for research and 

policy engineering. As such, this study contributes to the academic state of the art by proving that 

simulation modelling of critical infrastructures in a coherent ecosystem is possible and can help 

establish which behavioural patterns are expected under different policy configurations. By 

establishing a framework that incorporates all generalisable and applicable concepts, future research 

and analysis can expand on the foundation of this study.   
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Definitions 
Table 0-1: List of definitions 

Term Description 

Critical infrastructure 
(CI) 

An infrastructure for which the unhindered operation of critical 
infrastructures is vital for the functioning of crucial elements of 
society. Another term used is Networked Control System (NCS), 
which is a more abstract concept of interconnect subsystems to 
which critical infrastructures belong. 

Infrastructure node A distributed or decentralised component of a larger critical 
infrastructure system. This can entail any control system, sensor, 
communication  

SCADA systems Supervisory Control And Data Acquisition systems are central entities 
that assert control over parts of critical infrastructure networks. They 
are part of older, legacy infrastructures which relied on centralised 
architecture to ensure secure operation. 

Infrastructure 
operability/operation 

The degree by which an infrastructure is capable of functioning when 
compared to normal operation. Internal inoperability can be caused 
by attacks, erroneously blocked user traffic or responsive 
mechanisms. External inoperability can only be caused by 
dependencies. Infrastructure inoperability directly contributes to 
losses incurred. 

Dependency A functional directional connection between two infrastructure 
nodes that directly inflicts a degree of inoperability to a dependent 
node based on disruptions in the origin node. 

Control mechanism A countermeasure in place to either prevent, detect or respond to 
intrusions. 

Defensive strategy A configuration for a set of control mechanisms. 

Impact assessment The process by which an infrastructure operator attempts to detect 
intrusions. If an alarm is generated, the impact assessment changes 
by the expected impact of the detected type of attack. 

Complex adaptive 
systems (CAS) 

A paradigm of systems thinking that perceives systems as “a dynamic 
network of many agents (which may represent cells, species, 
individuals, firms, nations) acting in parallel, constantly acting and 
reacting to what the other agents are doing.” (Waldrop, 1992). 

Agent An entity in an agent-based model that is capable of autonomous, 
independent decision-making based on a set of states, rules and 
actions. 

Infrastructure node 
operators (defenders) 

Agents who are tasked with maintaining secure infrastructure node 
operability. 

Cyberattackers Agents who seek to inflict damage to infrastructure nodes or the 
environment. 

Users Agents who make use of infrastructure nodes. 

Chaos The complex behaviour resulting from variations in initial conditions 
that can occur through a set of model runs. Since each run uses 
different random number generator seeds, the structure of a model 
as well as the interaction that takes place will vary across the set of 
experiments. 

Threat landscape The collection of all active threats to the core operation of a critical 
infrastructure. Infrastructure operators make an assessment of the 
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threat landscape by assessing which elements pose a current threat 
to the system. 

Threat 
attractiveness/attacker 

utility 

How attractive a possible target node is to an attacker attempting to 
launch an attack. This is composed by the economic and physical 
losses associated with node inoperability and attacker preference for 
economic and physical damage. 

Situational awareness The degree to which an entity of the system is aware of the true 
state of a given element. An attacker wants to maximise their utility 
based on their degree of situational awareness and node operators 
seek to make correct defensive decisions against threats they are 
aware of. 

Repetition/iteration A single full simulation of the entire desired time frame for the model 
under a single set of parameter values. Multiple repetitions for one 
experiment are multiple model simulations with a single set of 
parameter values, used to suppress the impact of chaos. 

Tick A single time step in an agent-based model by which model 
procedures are conducted and output parameters are tracked. 

Evaludation A framework put forth by Augusiak, Van den Brink, and Grimm 
(2014) that can help ensure validity of outcomes for exploratory 
simulation models operating under deep uncertainty. Instead of 
focusing purely on statistical outcomes and their observed real-world 
counterparts, this approach focuses on the thoroughness of concepts 
and behaviour associated with the model. 
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1 Introduction 
Over the years, modern society has grown increasingly reliant on uninterrupted operation of critical 

infrastructure (CI) systems. Critical infrastructures are involved in many different societal tasks, such 

as ensuring efficiency on the electricity grid, public safety in national health infrastructure and flood 

protection systems. Technological developments and emergent smart city thinking have substantially 

increased the burden on critical infrastructures (Department of Homeland Security, 2015). This 

originates from the shift from monolithic, single-purpose systems towards large networks of 

distributed and heterogeneous system components (Ericsson, 2010). While these changes have led 

to a drastic increase in the capabilities of critical infrastructures, an unwanted and in many cases 

unexpected consequence is their susceptibility to attacks in both cyber and physical domains 

(Brezhnev, Kharchenko, Manulik, & Leontiev, 2018; Brown, Carlyle, Salmerón, & Wood, 2006; Farwell 

& Rohozinski, 2011). Given the critical role of these systems in society, the desire emerges to 

establish effective ways to mitigate risk. The aim of this thesis is to assess the effectiveness of 

defensive strategies for critical infrastructure systems. This chapter provides an introduction to the 

societal and scientific relevance of securing critical infrastructures. The first section details definitions 

of critical infrastructures and the essence of cybersecurity challenges within this domain. The second 

section provides insight in the scientific state of the art in critical infrastructure security. The third 

section derives the main research direction for this study. The fourth section lists the approach taken 

to answer the main research question. Fifth and last, the overall structure of this thesis is presented. 

1.1 Critical infrastructures and cybersecurity 
While there are multiple definitions of critical infrastructures, the terms ‘vitality’ or ‘criticality’ are 

almost universally included. The distinction between infrastructures and critical infrastructures lies in 

these very notions: the unhindered operation of critical infrastructures is vital for the functioning of 

crucial elements of society (Moteff, Copeland, & Fischer, 2003; Van der Lei, Bekebrede, & Nikolic, 

2010). Even minor disruptions in the power grid could result in massive blackouts, potentially 

crippling a nation’s economy and other crucial sectors depending on the stability of the electricity 

grid (Farwell & Rohozinski, 2011; Romanosky & Goldman, 2016). 

The shift towards decentralised and distributed networks of heterogeneous system components led 

to cyber-physical systems capable of connecting more means of gathering information in one 

environment (Amin, Litrico, Sastry, & Bayen, 2013a; Khurana, Hadley, Lu, & Frincke, 2010). However, 

this single environment is now subject to different standards and protocols, constraining agility of 

the system. Responsibility to secure these components is often distributed, leading to a loosely 

coupled set of security requirements that do not necessarily translate into effective countermeasures 

(Neuman, 2009). In turn, this resulted in an increased reliance on the presence and availability of all 

connected components (Baiardi, Suin, Telmon, & Pioli, 2006; Sandberg, Amin, & Johansson, 2015). 

The shifted ecosystem for critical infrastructures led to a stark increase in impact and frequency of 

cyberattacks on civilian targets, as highlighted by numerous attacks on electricity grids, hospitals or 

water management systems. Recent examples include coordinated attacks on the Ukrainian power 

grid in 2015 or the Stuxnet attacks on Iranian nuclear facilities. The former left to hundreds of 

thousands of civilians without power, severely damaging the regional economy (Lee, Assante, & 

Conway, 2016; Liang, Weller, Zhao, Luo, & Dong, 2017). The latter, Stuxnet, served as a wake-up call 

for engineers around the world, setting in motion a scramble for knowledge on how to defend 

against targeted attacks on critical infrastructure assets (Farwell & Rohozinski, 2011; Karnouskos, 

2011).  
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The discipline of cybersecurity traditionally revolves around information risk in organisations, where 

actors seek to maximise their security spending based on a degree of acceptable risk. Critical 

infrastructures do not operate like this, there is simply no form of acceptable risk. Securing critical 

infrastructures calls for a different approach, where networks need to studied in unison. The 

immense societal consequences from critical infrastructure failures and their exposure to 

cyberattacks stress the need for security by design in order to effectively detect and thwart 

intrusions (Fairley, 2016; Karnouskos, 2011). The societal importance of critical infrastructure 

systems calls for effective defensive strategies, as existing approaches cannot cope with the 

increased sophistication of the threats they are facing (Amin, Litrico, Sastry, & Bayen, 2013b; 

Department of Homeland Security, 2015). Establishing up-to-date, consistent defensive strategies 

requires understanding interactions within the ecosystem of cyberattacks on critical infrastructures 

(Fairley, 2016). 

1.2 Academic state of the art 
Before a research direction can be specified, a scoping literature review was conducted. The 

literature review, of which the summary is found in Appendix A, identifies several academic 

approaches to cybersecurity for critical infrastructures. The main purpose of the literature review is 

to establish the state of the art of scientific literature, which helps identify the gap of knowledge that 

this study can address. The state of the art involves four main concepts that pose primary research 

directions for securing critical infrastructures against cyberattacks. These concepts are as follows: 

The first recurring theme in academic literature is the architectural complexity of cyber-physical 

critical infrastructures. Increased accessibility and interconnection of system components have 

facilitated great improvements in productivity of critical infrastructures (Cárdenas et al., 2011). On 

the other hand, these very changes have formed vulnerabilities: an increase in connectivity increased 

the attack surface for malicious actors (Hahn, Ashok, Sridhar, & Govindarasu, 2013; Karnouskos, 

2011; Sandberg et al., 2015). The architectural complexity requires a specific line of thinking and 

complicates traditional cybersecurity approaches (Brezhnev et al., 2018; Department of Homeland 

Security, 2015; Karnouskos, 2011). 

The second recurring theme is the heterogeneous nature of both cyberattacks and the control 

mechanisms that are designed to prevent them. The variety in possible attack vectors has muddied 

the waters in identifying attainable security goals (Department of Homeland Security, 2015; Fairley, 

2016). Conversely, different types of control systems apply specific solutions that work well within 

their individual domain, but would not translate well into generalisable security policy (Formby, 

Durbha, & Beyah, 2017). Securing critical infrastructures strikes a balance between effective, specific 

solutions and coherent, shared defensive strategies. 

The third theme identified is the limited degree of rationality and dependency on accurate 

information. Traditional cybersecurity models typically assess the ecosystem as either exclusively 

rational or exclusively irrational optimisation problems, whereas the real-world situation revolves 

around making decisions based on available data (Alcaraz & Lopez, 2013; Amin et al., 2013a; Liu, 

Stefanov, Hong, & Panciatici, 2012; Teixeira, Amin, Sandberg, Johansson, & Sastry, 2010). 

The fourth and last recurring theme is the overall need for coherent defensive strategies. The failure 

to account for cybersecurity issues for critical infrastructures makes the task a lot more difficult 

(Clark, Panguluri, Nelson, & Wyman, 2017). Desires for security by design are logical, but too late for 

irreplaceable existing infrastructure. As a result, there is a need for coherent strategies to effectively 

implement mechanisms that thwart and mitigate cyberattacks (Cárdenas et al., 2011; Neuman, 

2009). 
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1.3 Knowledge gap 
While there are some stark and subtle differences in academic literature on securing critical 

infrastructures, there is a clear need for further research in this field. The realisation that security 

incidents can result in large-scale consequences has led to researchers scrambling for new methods 

and insights. Several recurring themes of academic literature were identified in section 1.2, yet are 

typically described in isolation. The knowledge gap therefore involves a lack of understanding of 

ecosystem-level system behaviour when all four elements are taken into account. While plentiful 

literature exists on each of these elements, academics have thus far not been able to explore 

different scenarios for defensive strategies. 

In order to frame these themes within the light of detail these require, a basic conceptual overview 

of the system was created. This conceptual overview, shown in Figure 1-1, serves as the starting 

point for this study and will be expanded throughout the report. The only elements included are key 

entities to infrastructure operation, as well as the general interaction taking place among them.  

Infrastructure 
operators

Users

Attackers
Target and

 attack

Apply control mechanisms

Make use of

Infrastructure 
nodes

 

Figure 1-1: Conceptual overview of key ecosystem entities and interactions 

After all core concepts are addressed and included in the conceptual overview, a fitting basis for 

exploration of ecosystem-level behaviour will have been established. As shown in the overview, 

infrastructure nodes play a central role in understanding the cybersecurity ecosystem for critical 

infrastructures. The main interaction is related to infrastructure operators and to attackers, as these 

make use of various defensive and offensive strategies to achieve their primary goals. In that sense, 

users maintain a more auxiliary role to the problem. Ecosystem specification will therefore mainly 

emphasise concepts related to infrastructure operators and attackers.  

Recalling the main knowledge gap, the four themes converge in critical infrastructure cybersecurity, 

yet little effort is made to model all of these aspects in unison. To this end, a main research question 

is formulated to specify the direction for this study. The main research question forms the backbone 

of this study. As established earlier, the aim is to explore and assess system behaviour and 

performance across a variety of different scenarios for defensive strategies. The main research 

question for this agent-based modelling study is formulated as follows: 
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How do cyber-architectural elements and defensive strategies influence exposure to cyber-

threats within the cybersecurity ecosystem of critical infrastructures, and how can 

infrastructure operators effectively mitigate consequences from cyber-incidents? 

1.4 Research approach 
As stated before, the main research question will be answered by conducting a comprehensive 

agent-based modelling study. First, main research objectives will be formulated. These research 

objectives indicate actionable tasks to be carried out to formulate an answer to the main research 

question. Secondly, the conceptual scope is detailed, specifying the conditions that serve as 

boundaries for the research project. Thirdly, the general research approach will be laid out. Fourthly, 

sub-questions are formulated, which together can form a coherent answer to the main research 

question.  

1.4.1 Research objectives 
The main aim of the model is to establish the effectiveness of defensive strategies for critical 

infrastructures. Exposure to cyber-risk within critical infrastructures has led to a growing desire for 

coherent security policies. By creating a simulation model that incorporates multiple interdependent 

critical infrastructure nodes, effects of cascading failures can be explored. Failures in individual 

infrastructure nodes might carry over to directly or indirectly connected nodes. This highlights the 

requirement for coherent security policies, which are to be explored using an agent-based model. 

Individual decision-making capabilities with different perceptions of current threats for a larger 

number of agents within an infrastructure are traditionally not included in cyber-risk models. Agent-

based modelling allows for these effects to be included, while maintaining graph-based spread of 

cyberattacks through networks. The resulting agent-based model is based on the direct and indirect 

spread of consequences from cyberattacks, paying particular attention to cyber-defensive strategies. 

Given these descriptive goals, the following objectives are formulated: 

Objective 1: Specify and conceptualise an ecosystem model for CI systems by establishing elements 
that relate to each core concept. 
Objective 2: Formalise and specify this ecosystem into a fully-fledged agent-based model capable of 
simulating different configurations for integrated defensive strategies. 
Objective 3: Derive the simulation results into emergent patterns and best practices for effective 

cyber defensive strategies for critical infrastructures. 

1.4.2 Scoping and constraints 
Conducting an agent-based modelling study can turn out to be a demanding and complex endeavour. 

The scope of a simulation model can extend far beyond the original purpose of a study. Devising 

simulation models involves translating reality into representative concepts, while maintaining 

manageability of the entire research process. The concepts touched upon in section 1.2 are all crucial 

to understanding critical infrastructures. The level of abstraction applied to the simulation model has 

to correspond with the formulated research objectives.  

The approach for this study involves modelling a representative selection of critical infrastructure 

elements. Elements to receive particular emphasis directly relate to the estimation of operability in 

sections of the infrastructure network and how inoperability is carried over to other portions of the 

model. This involves both attackers’ and defenders’ understanding of a particular situation. Less 

interesting for the purposes of this study are representative indications of many different 

infrastructures in one ecosystem. Instead, the model will include generalisable elements found in 

each infrastructure, yet remain extensible to incorporate infrastructure-specific elements. The key 

model inputs of the model to different configurations of defensive strategies in multiple scenarios. 
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This implies that details surrounding specific interaction between vulnerabilities and mechanisms 

used for attack and defence are not as interesting. The implementation of such mechanisms will rely 

on real-world effectiveness of attack vectors and control mechanisms. By making this concession, the 

simulation model can include more refined and generalisable decision-making models that are more 

likely to yield representative results in terms of sustained losses.  

1.4.3 Agent-based modelling 
A comprehensive agent-based modelling study will be conducted, serving as the main method used 

for this study. This will be used to explore system behaviour under multiple system configurations. 

Agent-based modelling effectively simulates interaction based on emergent behaviour following 

agent-level observations and subsequent actions (Nikolic & Kasmire, 2013). This is done in the light of 

the Complex Adaptive Systems paradigm, which perceives systems as the collection of self-organising 

autonomously operating entities (Nikolic & Kasmire, 2013; Waldrop, 1992). This implication works 

particularly well for conceptualising critical infrastructure affairs, as key actors operate based on their 

individual situational assessment, which is not fully rational when assess top-down (Liu et al., 2012; 

Rinaldi, Peerenboom, & Kelly, 2001; Teixeira et al., 2010; Van der Lei et al., 2010). The vast 

heterogeneity in ecosystem elements and properties discussed in section 1.2 can be implemented as 

agent-based modelling concepts to generate insight the effectiveness of defensive strategies. 

1.4.4 Research sub-questions 
To answer the main research question, a division is made into five separate sub-questions, each 

representing a different stage of research. This division is made to be able to generate more tangible 

answers to intermediate products. Together, the answers to these sub-questions will be synthesised 

into a coherent, substantial answer to the main research question.  

Sub-question 1: How does architectural complexity of critical infrastructure nodes within the 

cybersecurity ecosystem affect infrastructure operation? 

This first sub-question seeks to establish elements that contribute to the complexity of critical 

infrastructure systems. As stated in section 1.1 and in the literature review in Appendix A, the cyber-

architecture of critical infrastructures opened the sector up to a large threat landscape. An answer to 

this sub-question would contribute to an improved understanding of the ecosystem and form the 

first step towards creating a simulation model. Identifying key assets and elements that comprise the 

ecosystem helps ensure that further specification is constrained properly. 

Sub-question 2: How do control mechanisms and cyber-threats secure or impede operation of critical 

infrastructures? 

The second sub-question follows up on the first sub-question and seeks to establish direct effects of 

control mechanisms and cyberattacks on critical infrastructures. These elements relate to 

mechanisms that directly affect effectiveness of cyberattacks. Answering this sub-question can help 

specify the process by which attacks take place and specifically how these relate to the elements 

discussed as part of sub-question 1. 

Sub-question 3: Which properties for attacker and defender behaviour aptly describe decision-making 

behaviour in the cybersecurity ecosystem of critical infrastructures? 

The third sub-question aims to establish a set of properties for attacker and defender behaviour in 

order to further specify interaction among entities within the cybersecurity ecosystem of critical 

infrastructures. Identifying the mechanisms that constrain and delineate interaction is crucial for 

conceptualising an agent-based model, as this method revolves around the notion of agent-level 
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decision-making. Modelling critical infrastructure requires extensive identification of these elements, 

as it ties in directly to the scope of analysis. Establishing decision-making models for cyberattacks is a 

focal point of cybersecurity research, and critical infrastructures are no exception to this (Brown et 

al., 2006; Ten, Manimaran, & Liu, 2010). A wide variety of academic literature exists on specific 

behavioural models for critical infrastructure cyberattacks, yet these are typically tailored to static, 

isolated infrastructures, as opposed to a dynamic interconnected ecosystem that will serve as the 

backbone of this modelling study (Ashok, Hahn, & Govindarasu, 2014; Baiardi et al., 2006; Cárdenas 

et al., 2011; Pasqualetti, Dorfler, & Bullo, 2013; Pawlick & Zhu, 2017; Rybnicek, Tjoa, & Poisel, 2014; 

Teixeira et al., 2010; Vuković, Sou, Dán, & Sandberg, 2012). The inclusion of these models in an 

ecosystem-level agent-based model built upon cyber-architectural elements could shed light on 

interactions within this ecosystem, as well as concepts central to interaction within the ecosystem. 

Sub-question 4: Which emergent behavioural patterns can be observed in interactions within the 

cybersecurity ecosystem for critical infrastructures? 

The fourth sub-question relates to emergent behaviour identified in simulation model outcomes. This 

sub-question requires the simulation model to be formalised and implemented, having verified and 

validated the model. Conducting exploration and experimentation results in behavioural tendencies 

of entities operating in the ecosystem. These behavioural tendencies can prove interesting, as they 

could provide insight into the effects of certain interventions. These tendencies can be used to assess 

the robustness of certain configurations for control mechanisms and could help understand the array 

of possible behaviour. This will be assessed by using various system configurations, with deviations in 

defensive strategies, as well as deviating between internal model states to ensure the exploratory 

model circumvents sensitivity.  

Sub-question 5: What can be learned about the effectiveness of defensive strategies with regards to 

robustness and resilience in the cybersecurity ecosystem for critical infrastructures? 

The fifth sub-question is similar to the fourth sub-question, as they both relate to outcomes from 

exploration and experimentation. This sub-question seeks to achieve statistical evaluation of system 

performance under certain configurations of scenario parameters, exploring the effectiveness of 

different defensive strategies. To achieve this, the data resulting from extensive simulation will be 

assessed to determine overall performance on key performance indicators, but also to establish 

possible leverage points that disrupt model outcomes in certain cases. The outcomes of this sub-

questions will be comprise of evaluation of effectiveness of cyber-defensive mechanisms. Together 

with the fourth sub-question, this can help answer the last part of the main research question. 

Establishing recommendations for effective, coherent defensive strategies is the last requirement to 

answer the main research question, which should include substantiated findings regarding the 

interaction within the cybersecurity ecosystem and the sensitivity to mitigation strategies. The way 

elements from each sub-question will be used to answer the main research question is shown in 

Figure 1-2 below.  
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Figure 1-2: Methods and data objects related to the agent-based model 

1.5 Thesis structure  
In order to adequately answer the main research question, each of the six sub-questions will need to 

be answered. The application of the aforementioned five methods requires a clearly delineated 

research structure in which each step results in tangible answers or resources for further steps. The 

research will take place in seven steps, which are visualised in the Research Flow Diagram shown in 

Figure 1-3 below. For each major research phase, the corresponding steps in the agent-based 

modelling cycle by Nikolic, Van Dam, and Kasmire (2013) discussed in the third section are shown on 

the right side. The typical 10 stages of agent-based modelling by Nikolic et al. (2013) are represented 

by the formulated sub-questions: sub-questions 1, 2 and 3 relate to the system analysis phases, 

whereas sub-questions 4 and 5 relate to the relevance and validity of model findings and usage of 

the model. Together, the set of research questions provides insight required to establish an agent-

based model and a clear direction to use the model to answer the main research question. 

 Methods to be applied during each research step are shown in green. Three major phases of 

research indicate the type of activities that will take place:  

(1) Specification and conceptualising of the system-of-interest 

(2) Formalisation and implementation of an agent-based model of the system-of-interest 

(3) Exploring system behaviour under different configurations for defensive strategies 

The distinction between sub-questions 1, 2 and 3 and on the other hand 4 and 5, as discussed in the 

third section, is represented in the Research Flow Diagram as well, as the first phase revolves around 

gathering the required information to develop a conceptual model and the second phase relates to 

the findings from model experimentation. 
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Figure 1-3: Research Flow Diagram  
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2 Cyber-architectural complexities of critical infrastructures 
As stated in the first chapter, a critical infrastructure (CI) forms a complex system, characterised as a 

networks of distributed and interdependent subsystems with multiple distributed elements. 

Connecting additional subsystems allowed for critical infrastructures to carry out more tasks and 

increase their efficiency, but also opened systems up for additional threats. This chapter details the 

background of critical infrastructures, seeking to establish an answer to sub-question 1: 

How do critical infrastructure operators secure their operability against cyber-threats? 

This chapter expands on the conceptual overview defined in Figure 1-1 by focusing primarily on 

properties and concepts related to infrastructural nodes. This is highlighted in Figure 2-1 below. In 

order to answer sub-question 1, a background of cybersecurity for critical infrastructures is detailed. 

Infrastructure 
operators

Users

Attackers
Target and

 attack

Apply control mechanisms

Make use of

Infrastructure 
nodes

 

Figure 2-1: Highlighted elements from the conceptual overview to be discussed in this chapter 

The first section provides insight into their complex architecture and how dependencies contribute 

to the threat landscape. The second section follows up on this by laying out the consequences of 

cyberattacks. The third section concludes this chapter by offering intermediate findings required to 

answer sub-question 1. 

2.1 Architectural elements of critical infrastructures 
In order to understand how cybersecurity issues arose ecosystem for critical infrastructures, their 

architecture must first be understood. This section decomposes the complex architecture of CI 

systems in order to establish a foundation for an eventual simulation model. First, the complex 

networked structure will be detailed. This is followed by a description of dependencies between 

infrastructure nodes. Subsequently, the heterogeneity between different infrastructural sectors is 

discussed. The resulting impediments from these three elements will be discussed afterwards. 

2.1.1 Heterogeneity as a complicating factor 
The core of cyber-risk in critical infrastructure systems is inherently rooted in the network 

architecture applied. Critical infrastructures often involve operation of Networked Control Systems 

(NCS), which rely on central systems to enforce control and supervision on networked subsystems 
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(Amin et al., 2013a). A key notion of nearly every critical infrastructure system is a Supervisory 

Control And Data Acquisition (SCADA) system: a central entity that monitors system operation across 

multiple linked subsystems (Miller & Rowe, 2012; Zhu, Joseph, & Sastry, 2011). More traditional, 

legacy systems integrated new system components in the form of sensors or other additional 

equipment in direct connection with SCADA systems. This corresponds with the transition towards 

digital communication within a hierarchical structure. To this date, many systems involving legacy 

components still deal with parts of hierarchical structures, which were originally not implemented 

with cybersecurity challenges in mind. Additionally, critical infrastructures that are directly involved 

with public health of many civilians adhere to a more direct and centralised structure, such as drink 

water management and flood protection systems (Abrams & Weiss, 2008; Amin et al., 2013a; 

Department of Homeland Security, 2015; Rasekh, Hassanzadeh, Mulchandani, Modi, & Banks, 2016). 

This allows those systems to enforce security elements on the crucial, central system to prevent 

failures in the most critical part of the system. The most important consequence from this, however, 

is that an increased reliance on additional equipment was not subjected to the same security 

standards as SCADA systems. 

Modern critical infrastructure systems integrate a wide variety of different subsystems. This shift 

towards decentralised and distributed networks of heterogeneous system components made it 

possible to collect more information within the network. Instead of relying on a single entity to assert 

control, control over system components is distributed among nodes. These nodes are represented 

by certain types of system components, such as task-specific control systems, physical sensors and 

communication links, each subject to different standards and protocols (Amin et al., 2013a; Khurana 

et al., 2010). These systems ensure that an easy path to control nodes does not diminish the integrity 

of the entire network. On one hand, additional information made possible by this wide array of 

information gathering tools significantly increased the effectiveness and possibilities for critical 

infrastructures. On the other hand, the transcension of critical infrastructures beyond the physical 

domain has also opened up the system for undesired access from the cyber domain.  

Using digital communication to assert control over parts of networked control systems such as CIs 

offers significant benefits, despite unforeseen consequences. What was originally not expected was 

the way by which attackers could eventually access crucial system components more easily. 

Traditional, hierarchy-based infrastructures never accounted for the possibility of attackers affecting 

SCADA systems by targeting distributed sensors. Attackers could target vital national infrastructure 

assets through small-scale sensor disruption or intrusion causing enhanced consequences 

(Department of Homeland Security, 2015). The connectivity of critical infrastructures proves to 

enable attack vectors to be abused by malicious actors. Intrusions in critical infrastructure systems 

that result in substantial consequences can be conducted more easily (Lee et al., 2016; Romanosky & 

Goldman, 2016). This resulted in a stark increase in impact and frequency of cyberattacks on civilian 

targets, highlighted by large-scale attacks on the Ukrainian electricity grid in 2014 or the Stuxnet 

infection of Iranian nuclear facilities (Farwell & Rohozinski, 2011; Karnouskos, 2011; Lee et al., 2016; 

Liang et al., 2017). 

Whether control systems for critical infrastructures were designed around legacy SCADA systems or 

modern networked systems, the challenge faced is the same. Both the increased burden on critical 

infrastructures and widespread availability of information required for infrastructure operation 

require an agile yet robust system. While these aims seem contradictory, the challenge rests in 

juxtaposing critical infrastructure between robust system operation and adapting to intrusions or 

disruptions. Networked control systems should be able to cope with partial unavailability of network 

elements. Disruptions within a certain section should ideally not extend beyond that section. On the 
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other hand, attackers should not be able to breach SCADA nodes by gaining access to connected 

system nodes.  

Another complicating factor is rooted in the type of subsystems being used to gather information, 

communicate and assert control. In many such cases, commercial off-the-shelf software and 

hardware is integrated in order to save resources (Ericsson, 2010; Hull, Khurana, Markham, & Staggs, 

2012; Pederson, Dudenhoeffer, Hartley, & Permann, 2006). Conversely, usage of COTS products also 

impedes security practices, as it might bring vulnerabilities into an otherwise secure environment. 

Trust is shifted towards third party producers of COTS software and sensors. Most importantly, the 

added heterogeneity prevents infrastructures from updating security elements coherently. The more 

different sources of software and hardware present, the more problems will be experienced in 

applying patches and making minor modifications to resolve issues.  

This sub-section defined several elements that are classified as heterogeneous properties of the 

cyber-architecture of critical infrastructures. However, these elements all relate to a degree of 

internal operability: they determine how robust and resilient an infrastructure can ultimately be. On 

an ecosystem level, the desired elements all relate to how these can impede the functioning of a CI 

system. While specific node-related elements might require further specification for security 

assessment of individual nodes, this adds little value for an ecosystem model (Eid & Rosato, 2016; 

Rinaldi, 2004). With focal point established, it is important to realise that analysis of an 

interdependent and interconnected ecosystem might not lead to tangible policy options for single 

infrastructure nodes. In fact, it is essentially impossible to devise a single monitoring system for all 

infrastructure elements. On the other hand, this scope could prove useful for exploring possible 

ecosystem-level interaction. Shared strategies in terms of dealing with these elements are not 

impossible. 

2.1.2 Dependencies and cascading failures 
The second concept crucial to the identity of critical infrastructures is the presence of dependencies 

and interdependencies among networked systems. While slightly touched upon in the previous sub-

section, dependencies are one of the key features that distinguish critical infrastructures from 

regular cyber systems, and therefore require further specification. Dependencies between critical 

infrastructure systems imply direct effects from hindered operation in one node to another. Many 

incidents in critical infrastructure systems involved failures in sequential nodes, leading to a chain of 

events causing increasingly higher damage sustained. Dependencies can also work both ways, where 

two systems are interdependently affected. Failures caused by dependent nodes are known as 

cascading failures. Cascading failures as a concept is widely discussed with regards to industrial 

control systems, where direct industrial processes affect each other. This degree of dependency can 

occur between two nodes within the same infrastructure as well as between two infrastructures.  

The first type, dependencies and interdependencies among infrastructure network nodes, directly 

affects the capabilities of individual nodes. These dependencies will be referred to as first order 

dependencies (Setola & Theocharidou, 2016). First order dependencies involve direct connection 

between two nodes, typically involving sequential reliance on information or physical control on 

another node. For example, power grid load balancing systems are directly affected by unavailable 

information flow from different sensor nodes at other locations. This type of dependency is 

encountered in every networked control system by pure definition. Further connections between 

nodes create multiple-order dependencies, indicating how easily small disturbances can spread 

across a large network. 
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The second type of dependencies involves dependent infrastructure nodes across different networks. 

Cross-sectorial dependencies are different from regular first-order dependencies in the sense that 

the two involved nodes are part of different systems. Cross-sectorial dependencies are not a new 

concept, as these already existed in traditional, physical infrastructures. A 2001 train derailment in 

the United States resulted in widespread damage beyond what was originally expected (Pederson et 

al., 2006). Damage to a train tunnel caused physical damage to a water main, which in turn led to a 

flooding that disrupted the local power network. In the light of modern, cyber-physical 

infrastructures these dependencies are a lot more subtle than a chain of physically damaging events. 

In many cases, nodes require basic operation of associated nodes, and failures within one network 

quickly spread across that very network. This also holds up for dependencies between networks. An 

example of such a cross-sectorial dependency is water purification systems relying on a stable 

electrical power grid or the electrical grid relying on information from decentralised power 

generation (Department of Homeland Security, 2015; Pederson et al., 2006). A conceptual overview 

of such cross-sectorial dependencies, created by (Pederson et al., 2006), is shown in Figure 2-2 

below. 

 

Figure 2-2: Node-level dependencies and cross-sectorial dependencies represented as a graph, by Pederson et al. (2006) 

Categorising dependencies can help understand the processes that lead to loss events, but do not 

necessarily represent the consequences involved with these events. Depending on the weight given 

to dependencies, these have a likelihood of causing a cascading failure in dependent nodes. A model 

for this interaction was proposed by Setola and Theocharidou (2016) and is shown in Figure 2-3. This 

model incorporates dependencies as weighted edges between nodes in a network graph, which 

corresponds with the description given of dependencies and CI cyber-architecture in this section. 

These weightings or influence coefficients enable modellers to create scenarios for cascading 

failures. Scenarios based on dependencies, external pressure and possible attacks can help yield 

insight in how risk spreads under certain system configurations. Crucially, the effect of these 

dependencies affect the same core notion of operability within a node. An ecosystem of 

infrastructures therefore includes infrastructure nodes that incorporate dependencies that affect the 

level of operability, which is different among nodes. For modelling purposes, regular dependencies 
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and cross-sectorial dependencies are not inherently different. This results in the following, 

standardised assumption: dependency weightings directly affect the state of operation for 

dependent nodes based on the state of operation for the other end. 
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Figure 2-3: Infrastructure node dependency scenario, by Setola and Theocharidou (2016) 

2.1.3 Cross-sectorial differences in topology 
The third key aspect concerning the complexity of critical infrastructure systems revolves around 

heterogeneity between different infrastructures. Whereas the first sub-section detailed the general 

complexity of networked systems and the second sub-section went into detail as to how system 

elements affect one another, it is also important to denote the effects of different networked 

systems and different data elements. Aggregating concepts into a coherent ecosystem should 

account for differences that the topology of a network might make. As stated in sub-section 2.1.1, 

there is a general divide between traditional SCADA-based systems and contemporary, distributed 

networks. 

The hierarchy of nodes within any infrastructure is directly associated with the type and weighting of 

dependencies found within the network. CIs that involve concentrated, physical infrastructure, such 

as flood protection systems, are more likely to depend more heavily on geographical events related 

to other nodes in the network than networked systems that rely on physical and cyber characteristics 

of nodes in the network. More importantly however, the hierarchy of nodes within infrastructural 

sectors cannot be detached from their history and development over time. Since sections 2.1.1 and 

2.1.2 established that heterogeneous infrastructure nodes operate identically on the level of 

abstraction required to assess defensive strategies, this is not problematic. The model should 

integrate these factors without necessarily specifying matters too similar to individual 

infrastructures. The model should be generalisable for generic properties for CI systems, and remain 

extensible to include different network topologies. 

As mentioned in sub-section 2.1.1, infrastructures that carry a heavy physical burden on society are 

more likely to base their network topology around a centralised SCADA system. Any developments in 

terms of new sensors or other system components are moulded around this central system. While 

this calls for more specific development, it makes sure that interoperability can be maintained. The 

legacy nature of these networks implies that upgrading happens at a slow pace, if at all. Security of 

distributed components was often thought to not be an issue so long as the SCADA system was 

secured well, but the degree to which dependencies influence system operation can still result in 

cascading failures. For lower numbers of control nodes in a network, the relative dependency on 
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each associated node increases. In many such cases the problem is related to a weakest link that can 

significantly hinder operation. 

In modern CI systems, the challenge shifts towards the other direction. More modern architecture 

applied to newer emergent critical infrastructures make use of more decentralised network nodes 

and distributed authority. An example of this type of critical infrastructure is the smart electricity grid 

(Ericsson, 2010; Wei, Morris, Reaves, & Richey, 2010). Sensors and communication components are 

used to measure contemporary electrical loads at many different locations, including generation, 

transmission, usage and regeneration (Khurana et al., 2010; Yan, Qian, Sharif, & Tipper, 2012). The 

problem with decentralising critical infrastructures is the lack of control that can be asserted over the 

network as a whole. Differences in standards, protocols and software packages used greatly affect 

the amount of information available within the system. For operators of individual subsystems it 

then becomes incredibly difficult to assess the current situation in terms of risk exposure. 

Since the types of dependencies have already been clarified, the remaining key to the puzzle is how 

connectivity models correspond with the hierarchy of CI systems. Centralised control systems 

resemble a star topology based on a single control node. Outer nodes can be dependent among each 

other, but essentially all outer nodes are connected to the same central SCADA node. Decentralised 

systems are formed by a less hierarchical network of individual nodes and smaller subsystems. From 

a connectivity perspective, the model an infrastructure is based on determines the attack surface for 

possible attackers, as intruders can access subsequent nodes more easily (Alcaraz & Lopez, 2013). 

Besides, enforcing dependency on other nodes as opposed to duplicating information or resources 

could lead to cascading failures (Svendsen & Wolthusen, 2007). On the other hand, applying a 

greater number of inner connections can help avoid having large portions of the infrastructures being 

cut off completely (Buttyan, Gessner, Hessler, & Langendoerfer, 2010). This does result in a greater 

level of dependencies, and might increase the risk of cascading failures. 

In order to translate the concept of critical infrastructures into a simulation model, the topology of 

network nodes needs to be clarified. Link topology represents the arrangement of nodes in the 

system. This is based on inner connectivity and dependencies. Connected nodes are part of a 

physically or logically linked whole, whereas dependent nodes are functionally linked (Setola & 

Theocharidou, 2016). Dependencies affect the level of operation directly, whereas connections open 

the system up for possible external intrusions (Liang et al., 2017). The ecosystem model should 

therefore include both inner connectivity as well as dependencies. 

2.1.4 Complication of ecosystem-level control 
The issues discussed in the previous three sub-sections provide insight in how critical infrastructures 

operate. It was identified that CI systems encounter issues rooted in the usage of complex 

heterogeneous components, dependencies among network nodes and heterogeneity between 

separate infrastructures. These three elements form the most prominent issue in securing critical 

infrastructures: a lack of agility enabled by current architecture. This does not provide sufficient 

insight into how process of controlling the system as a whole is affected. Instead, urgent 

development of architecture-based security solutions are necessary (Khurana et al., 2010). 

The desire for cybersecurity in CI systems has urged many researchers to study the effects of CI 

failures induced by cyberattacks. In many cases, a specific case raised urgency for analysis of a 

specific infrastructural sector, the most prominent being the scramble for research into cyber-

resilience of power grids following Stuxnet and the 2015 Ukraine blackout (Fairley, 2016; Farwell & 

Rohozinski, 2011). In many cases, such an approach fails to sufficiently emphasise dependencies and 

interdependencies. According to Clark et al. (2017), the challenge in securing individual CIs requires a 
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coherent cybersecurity culture. Furthermore, they describe the desire for a secured network design 

to be implemented across CI systems. This is underlined by both Neuman (2009) and Karnouskos 

(2011), who urge the need for cybersecurity challenges to be a central element throughout the 

design process.  

Given the lack of coherent defensive strategies to effectively thwart cyberattacks, CI systems require 

network-level analysis. Looking at individual infrastructures in isolation might yield more direct and 

interpretable results, but fails to represent real-world challenges, which are deeply rooted in cross-

sectorial interdependencies (Rinaldi, 2004). Representing a network of infrastructure nodes built 

around a set of weighted dependencies can be crucial to determining the spread of risk and 

accountability throughout a control system (Vuković et al., 2012). It is therefore crucial to explore 

different network designs as a crucial element of cybersecurity. By establishing a set of shared 

vulnerabilities and controls among CI systems, cybersecurity can be explored on an ecosystem level 

(Clark et al., 2017; Pederson et al., 2006; Ten, Liu, & Manimaran, 2008). These shared vulnerabilities 

and controls are based on the architectural concepts discussed throughout this section and will be 

further detailed in chapter 3. While this approach might yield generalisable network-level results, it 

raises another question in terms of authority and manageability. The multitude of heterogeneous 

system components, including specifically designed sensitive systems as well as commercial off-the-

shelf systems, makes it difficult to accurately prescribe a path forward (Department of Homeland 

Security, 2015; Ericsson, 2010; Pederson et al., 2006). A security-by-design network model that 

effectively mitigates cyber-risk does not necessarily translate into actions that current infrastructures 

can apply. On the other hand, it enables coherent security policies that can be integrated and 

enforced top-down, to ensure similar actions are being taken that have proven to actively reduce risk 

exposure. 

2.2 Consequences of cyberattacks 
As stated in chapter 1, the consequences of attack-induced failures in CIs are immense. Wrongful 

identification of attacks could lead to incorrect defensive actions, which might hurt system operation 

without an actual attack taking place (Department of Homeland Security, 2015). This section lays out 

a framework for the types of damage sustained in CI systems and how consequences are dealt with. 

Stamp, Dillinger, Young, and DePoy (2003) lay out a framework of three forms of impact for critical 

infrastructures: physical impact, economic impact and social impact. Since social impact for CIs is a 

rather tenuous concept that is difficult to measure, it is left out of the scope of this study. For private 

organisations and companies it makes more sense to include elements such as reputational losses, 

but this does not hold up as well for critical infrastructures. Reputational damage sustained to or 

public confidence are direct consequences from the first two types and will therefore be 

complimentary to those types. To illustrate consequences in both the physical and economic 

domains, the pathways detailed in Department of Homeland Security (2015) will be used. 

2.2.1 Physical damage  
Physical damage is identified as the direct material loss in key assets. This includes damage to 

property, loss of life and environmental assets (Stamp et al., 2003). The two most straightforward 

physical attack vectors provided by the DHS report involved disruptions in the transportation and 

water management sectors.  

Smart city developments have added many functionalities to vehicles, automating tasks that would 

originally be left to humans driving the vehicle. Researchers have already exposed several 

vulnerabilities in vehicles, allowing malicious actors to remotely control crucial vehicle functions. 

Large-scale attacks on multiple vehicles could lead to multiple serious traffic accident, leading to 
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significant damage to key infrastructure and likely also loss of life. Other possibilities include 

tampering with train signals or disrupting road traffic signals. Disruption of these services can directly 

result in traffic accidents that pose serious risk to public health.  

Developments in the water management sector allowed for wide-area monitoring of many different 

variables. Water management systems can keep track of the concentration of chemicals or 

substances in drinking water to detect contaminations, and flood protection systems are capable of 

controlling physical flood barriers remotely to responsively act on certain scenarios. Cyberattacks on 

these systems have potential to cause significant damage to public health. One possible attack vector 

laid out in the DHS report, corroborated by Stamp et al. (2003), makes use of the remote accessibility 

of wastewater facilities to cause a flow of wastewater into drinking water, endangering public health 

and damaging the environment. A more direct attack vector is to infiltrate flood protection systems, 

which can directly lead to mass flooding in busy residential districts. Disrupting storm barriers in 

emergency situations cold possibly lead to physical harm of thousands of residents. 

2.2.2 Economic disruption 
Economic damage is often considered a second-order consequence of physical disruptions (Stamp et 

al., 2003). Economic impact is defined as the consequences of physical impacts on system operations, 

which transcend beyond the scope of the original asset. 

Whereas the physical impact of cyberattacks on CI systems is often directly noticeable, economic 

disruption as a result of those attacks is almost always inevitable. Besides direct damage to the 

environment, unavailability of infrastructures has substantial effects on the economy. Electricity 

blackouts lead to a loss of productivity for many companies affected, whereas traffic disruptions 

would prevent many employees from getting to work. An unexpected closure of a New York bridge in 

2013 caused over $7 million in economic damages to the local economy, in addition to impeding 

emergency services (Department of Homeland Security, 2015). 

Economic disruption is almost always a consequence of more subtle attacks, oriented around 

financial gain for attackers. Hijacking smart electricity meters costs the U.S. economy up to $6 billion 

annually (McLaughlin, Podkuiko, & McDaniel, 2009). Such attacks extend beyond stealing assets, as 

smart meters also allow for attackers to cut power to consumers or access home automation 

systems. While generally considered a second-order consequence from cyberattacks, economic 

disruption can very well be the main consequence of a cyberattack. 

2.2.3 Resilience 
Defending critical infrastructure around outside threats (including cyber-threats) requires clear 

identification of the type of damage to be expected. A resilient infrastructure is one that sustains 

little expected damage. To this end, a military approach discussed by Brown et al. (2006) includes 

four evaluations for an asset: the criticality of an asset, the vulnerability of an asset, the 

reconstitutability for losses and the threat likelihood. These evaluations seek to establish the very 

core of an enumerable degree of damage. However, the applicability of a military damage 

assessment is questionable. The planning involved for defending military assets often involves more 

complicated testing on a closed-off environment (Brown et al., 2006). The complicated testing 

involved for military-grade cyber-resilience involves tests for collateral damage and tactical 

positioning of certain assets (Hare & Goldstein, 2010; Romanosky & Goldman, 2016; Thompson, 

Morris-King, & Harang, 2016). Civilian critical infrastructures are much more open in character and 

assets are less expendable. As a result, worst-case analysis is required to get to the root of threats at 

any point in time. This approach allows researchers to maintain a multilevel definition of damage for 

attacker-defender models (Brown et al., 2006). In the light of dependencies and architectural 
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elements discussed in section 2.1, this lets a simulation model establish a coherent collective of all 

core concepts. Attacker-defenders models will be discussed in more detail in chapter 4. 

Despite the differences, the military four-step evaluation is agile to work in the context of civilian 

assets as well. While the strategic element of allocating resources based on likely targets is not 

applicable to this study, it is important to recognise the importance of assumptions made for both 

attacks and assets. For an ecosystem-level model that yields any meaningful interaction, attacks 

should be sufficiently present. The consequences should therefore follow standardised formalisms. 

The results that might arise from this assumption should be discussed in the light of this assumption. 

In order to deal with a dynamic ecosystem, attacks are modelled as sufficiently surmountable to 

enable tracing attributable elements of decision-making. 

2.3 Intermediate findings 
Throughout this chapter, elements related to the cyber-architectural structure of critical 

infrastructures were discussed in relation to risk management. The first section details how the 

decentralisation and distribution of infrastructural elements allowed for greater synergy within the 

ecosystem, while also enabling many pathways for cyberattackers. It was found that both first-order 

dependencies and cross-sectorial dependencies greatly affect the ability for individual system 

elements to operate, and that interoperability issues can quickly cause cascading failures. These 

elements complicate the options for security modifications, as networks each use different elements 

for different tasks, highlighting the need for coherent security strategies. The second section 

discussed the degree and types of damage that CI systems can be exposed to as a result of 

cyberattacks. The main consequences are physical and economic damage that can lead to further 

widespread cascading failures. The resilience of an infrastructure asset at any point in time is tied to 

its criticality and reconstitutability. Attacks encountered in the ecosystem should enable dynamic 

decision-making and are therefore assumed to be surmountable. These concepts are all added to the 

basic conceptual overview shown in Figure 1-1, resulting in the expanded model shown in Figure 2-4. 
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Figure 2-4: Expanded conceptual model with new additions highlighted in blue 
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3 Staying in control of critical infrastructures 
This chapter details the cybersecurity elements of critical infrastructure systems in the light of attack 

and defence events. The elements discussed throughout this chapter build on the foundation laid in 

chapter 2, extending the conceptual aggregation from a cybersecurity. This chapter seeks to build 

evidence required to answer the second sub-question: 

How do control mechanisms and cyber-threats secure or impede operation of critical infrastructures? 

This chapter relates to offensive and defensive mechanisms involved in securing critical 

infrastructures. To accomplish this, the background of threats and defensive strategies will be 

established. The additions to the conceptual model shown in Figure 1-1 are therefore related to 

attackers and infrastructure operators. This is highlighted in Figure 3-1 below. 
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Figure 3-1: Highlighted elements from the conceptual model to be discussed in this chapter 

To accomplish this, the first section will provide a definition of cybersecurity concepts in the light of 

critical infrastructures. These definitions extend the previously discussed architectural elements of CI 

systems and will help build towards a representative simulation model. The second section details 

the types of attacks experienced within CI systems and networked control systems. The third section 

follows up on these attacks to provide a set of control mechanisms used to thwart and mitigate 

cyberattacks. The fourth section wraps up this chapter by offering intermediate findings.  

3.1 A cybersecurity perspective on CI systems 
Security challenges for cyber-physical control systems rely on two key definitions that will be 

provided in this section. The first step is to define what cybersecurity entails within the context of 

this study. The second step is to define cyber-risk and how this concept relates to the ecosystem of 

critical infrastructures. 

3.1.1 Defining cybersecurity 
Modern critical infrastructures are the product of decades of technological advancement. Traditional 

control theory approaches could only ensure a very basic level of protection against cyber-threats 

(Fairley, 2016; Sandberg et al., 2015). The inability to account for an open flow of information within 

infrastructure networks is a primary driving force behind the degree of risk (Department of 
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Homeland Security, 2015). On the other hand, the issue at hand does not correspond with an 

information security problem either (Amin et al., 2013a). Information security revolves around three 

concepts as denoted by Van den Berg et al. (2014) and by Rasekh et al. (2016): 

1. Confidentiality of information 

2. Integrity of information 

3. Availability of information 

These concepts cover the essence of cybersecurity, but fail to address the capabilities of malicious, 

intelligent attackers (Amin et al., 2013a). Cybersecurity involves protecting assets that enable cyber-

activities against intrusions originating from malicious actors, with particular focus placed on 

emergent socio-technical interaction (Van den Berg et al., 2014). Essentially, cybersecurity diverges 

from information security, which is primarily focused around securing specific data, towards securing 

IT-enabled activities. As stated in chapter 1, the emergence of cyber-threats against critical 

infrastructures originates from a shift towards IT-enabled activities. The severity of consequences 

from cyberattacks on critical infrastructures create an urgency for ‘perfect’ security models. In order 

to improve resilience of cyber-physical critical infrastructures, a cybersecurity approach is necessary.  

The addition of physicality further stresses the need for a more tailored approach to critical 

infrastructures. The prominent presence of physical elements in CI systems means that a neither 

purely physical control nor purely cybersecurity fully covers resilience (Sandberg et al., 2015). A 

fitting approach therefore incorporates elements from both cyber and physical domains. This relates 

to interdependencies transcending beyond an isolated domain, as well as the degree of materiality 

resulting from cyberattacks (Aradau, 2010). An IT-focused security approach, while capable of 

accurately mapping properties of IT-specific assets, can simply not account for current threats to IT-

enabled cyber-activities for CI systems (Sandberg et al., 2015). 

3.1.2 Defining cyber-physical risk 
Cybersecurity analysis typically involves securing assets against a concept defined as risk. A 

commonly used definition of risk based on the Factor Analysis of Information Risk (FAIR) framework 

by Jones (2006), as it provides extensible and adaptable concepts. The definition of risk rests among 

four concepts according to FAIR: 

1. An asset is an entity that supports cyber-activities, where actions taken against this asset 

cause a form of loss. 

2. A threat is an entity that acts against the asset to cause harm 

3. Vulnerability is the degree by which the attacking capabilities of threats exceed the defensive 

capabilities of assets 

4. Risk is the resulting combination of the probable frequency of loss events and the probable 

magnitude of loss events (Jones, 2006).  

FAIR, as the name of the framework implies, revolves around identifying information security 

elements. These concepts are tailored around the direct internal consequences of cyberattacks. The 

architectural complexity of critical infrastructure networks makes the definition problematic, since 

dependencies introduce unexpected consequences for attacks on assets. This raises questions about 

the applicability of traditional risk analysis for critical infrastructures. Risk within the context of this 

study represents the current extent of consequences resulting from loss events. Therefore, it is best 

to avoid the term ‘risk’ and instead attribute related concepts to a degree of operability. A key 

distinction is made to differentiate between a quantifiable optimisation problem and the complex 

emergent behaviour that is to be explored through this study. The former could be solved by 
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identifying a degree of tolerated or accepted risk to determine optimal defensive strategies (Van den 

Berg et al., 2014). The latter is typical for CI systems, as there is simply no telling how vast the 

consequences of attacks will turn out to be, shifting the focus of risk analysis. The severity of 

consequences for critical infrastructures imply that such analysis is simply not feasible. The metrics 

used to define risk extend beyond the here and now, as risk enumerates the expected losses over a 

set time period. Within this study, risk is translated to a degree of infrastructure node operation. 

However, the concepts of FAIR can be adapted to create a coherent framework that fits the scope of 

this study. The consequences of attack-induced failures for critical infrastructures are substantially 

larger than typical loss events described in Jones (2006), as successful attacks are somewhat rare 

occurrences that result in more significant losses (Department of Homeland Security, 2015). Within 

FAIR, the process that determines the likelihood of success for a single attack is based on a relatively 

simple subtraction of the defensive control strength from the attacking capabilities. For critical 

infrastructure systems, the sophistication of control mechanisms, cyberattacks and dependencies 

among assets forms a problem for this definition. Cybersecurity elements for critical infrastructures 

should therefore follow the susceptibility of control mechanisms to attacks in general. This avoids 

any excess specification, where core interaction in the ecosystem becomes too specific for 

generalisability. Vulnerability in the context of CI systems is an emergent property of complex 

interaction. This study is built around the mechanisms by which individual intrusion attempts affect 

system operation and how infrastructure operators attempt to assert control.  

The resulting concept resembling cyber-risk in the system is thus the product of complex emergent 

interaction affecting operability of infrastructures. Defensive decisions rely on time-sensitive 

information on active threats and a subsequent perception of the active threat landscape. The 

degree of perceived operability of infrastructure nodes is subject to limited rationality, as mistakes 

can be made in assessing active threats (Teixeira et al., 2010). The processes by which they respond 

or employ control mechanisms will be discussed in section 3.3, and the limitations to rationality are 

further discussed in chapter 4. The degree of cyber-risk as present in academic literature is rather 

inapplicable for critical infrastructures, the concepts of which are primarily related to instances of 

attacks occurring. This indicates a shift in the scope of this study towards modelling active intrusions 

and defensive decisions made to mitigate these intrusions, as opposed to modelling a developing 

degree of security based on investment decisions. The model by extent incorporates worst-case 

analysis as the foundation for security assessment, as this implies the relevant degree of security that 

critical infrastructures should adhere to (Brown et al., 2006). 

3.2 Taxonomy of cyberattacks 
Securing CI systems relies on understanding all facets of the surrounding cybersecurity ecosystem. An 

important element of this ecosystem is the type of cyberattacks that take place. Understanding 

cyberattacks requires identification of both the types of attackers and their motivations as well as 

identifying the types of attacks and their attacks. 

3.2.1 Types of attackers 
The first element of cyberattacks to be discussed is the type of attacker involved. Attacker base their 

decisions on the information that is available to them and their preference for attack outcomes. 

Cybersecurity literature discusses many different types or profiles of attackers, yet critical 

infrastructures only involve a highly specific subset of those. The highly critical nature of CI systems 

makes them an interesting target for advanced persistent threats (APTs), and less interesting for 

typical attacker types (Pawlick & Zhu, 2017). Security incidents for CI systems involve highly specific 

intrusions, whereas regular cybercrime is only a small drop in the pond. The primary threats involved 
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in the ecosystem are therefore considered exclusively APTs, as the vast majority of possible 

cyberattackers do not have the skills or resources to conduct sufficiently powerful attacks (Herzog, 

2011). However, this does not mean that the system is closed off for smaller infractions, as smaller 

external security threats can influence the system (Alcaraz & Lopez, 2013; Department of Homeland 

Security, 2015; Li et al., 2012). Three types of APTs are considered, along with their preferences for 

attacker utility as well as their capabilities. These three APTs are based on Clark et al. (2017), with 

government-sponsored entities grouped together. These types corroborate Rasekh et al. (2016), 

taking into account that internal threats do not follow similar targeting procedures.   

Foreign adversaries are powerful, state-sponsored entities who seek to inflict large-scale damage to 

targeted infrastructures. These actors primarily engage in disruptive and destructive attacks, looking 

to harm foreign economies (Rasekh et al., 2016). Foreign adversaries typically do not seek to inflict 

damage to individuals, as that can be perceived as an act of war (Romanosky & Goldman, 2016). 

Their capabilities are immense and often make use of sophisticated worms, capable of intruding 

targeted sections or spreading through entire networks. Examples of these actors in recent years 

have been the sophisticated Stuxnet worm believed to have been an effort of international cyber 

warfare or the targeting of Georgian communication networks in 2008 (Farwell & Rohozinski, 2011; 

Karnouskos, 2011). The desired effects for foreign adversaries are to achieve relative gains compared 

to their target. In some cases, foreign adversaries might attempt to defraud assets for financial gain, 

although their motivations are primarily disruptive and destructive. 

Cyberterrorists are malicious actors motivated to instil fear by causing large-scale damage and loss of 

life (Rasekh et al., 2016). Resilience against terrorist threats to critical infrastructures has grown to be 

an increasingly important goal for national defence (Moteff et al., 2003; Shea, 2004). Terrorists are 

capable of executing potent attacks, hoping to cause significant physical damage to targets. The 

primary motivations for cyberterrorists are rested in causing destructive and deadly consequences. 

Cyberterrorists make use of the open nature of CI systems to further a political or ideological goal, 

while secondary effects typically impact local economies and trust in public office (Moteff et al., 

2003).  

The third and last type of actors are cybercriminals. Cybercriminals make use of disruptive malware 

as a means of defrauding infrastructures or attend to other means for blackmail (Perakslis, 2014). 

Cybercriminals typically possess fewer resources than the other types of threats, of can still 

potentially cause widespread damage. An infrastructural sector that has grown increasingly exposed 

to such threats is healthcare infrastructure, with multiple recorded instances of data breaches 

leading to identity theft (Kruse, Frederick, Jacobson, & Monticone, 2017; Luna, Rhine, Myhra, 

Sullivan, & Kruse, 2016). 

3.2.2 Types of attacks 
The second key element required to understand cyberattacks is to establish a classification scheme 

for the possible types of cyberattacks. The classification scheme to be used is adapted from Miller 

and Rowe (2012). Their scheme, based on a survey of attacks on CI systems, incorporates four factors 

for classification, each with multiple facets:  

1. Source sectors   

2. Method of operation  

3. Impact 

4. Target sectors 
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This scheme enabled the authors to denote a wide variety of incidents. However, this classification is 

rather broad, as it served a primarily normative purpose. A simulation model based around the 

architectural complexity of interdependent infrastructure nodes requires a more concise 

classification scheme. The target sector is not differentiated between, as nodes expose themselves 

directly to attackers in terms of perceived utility. The source sectors of attacks is also not included, as 

this directly stems from the attacker types identified in sub-section 3.2.1. This results in the following 

classification scheme: 

1. Impact/motivation 

a. Disrupt 

b. Destroy 

2. Method of operation  

a. Isolated denial of service  

b. Integrated worm 

Whereas Miller and Rowe (2012) identify eleven attacks methods, for this ecosystem these are 

grouped together into two categories. The first method is an isolated denial of service attack, which 

seeks to damage or disable a single infrastructure node. This method of operation does not limit 

itself to typical distributed denial of service attacks, but encompasses any targeted attack that seeks 

to cause damage. The other category is integrated worm attacks, comprising of attacks that are 

capable of spreading if not attended for. Based on this scheme, three types of attacks are identified, 

corroborated with academic literature: 

1. Disruptive malware – Disrupt, Integrated worm 

Making use of common malware to infect information systems within critical 

infrastructures. The most prominent recent example of this type of attack was a 

large-scale ransomware attack on British health infrastructure, affecting dozens of 

hospitals (Clarke & Youngstein, 2017). While these attacks are limited in power, they 

are capable of spreading throughout the interconnected network if left unattended.  

2. Infrastructure blackout – Disrupt, Denial of service 

The second type of attack involves denial of service-based attacks with the main 

purpose of disrupting infrastructure operability. The associated power of this attack 

is moderate, as the attack seeks to inconvenience infrastructure more than causing 

physical damage or harm. Yuan, Zhu, Sun, Wang, and Basar (2013) identify several of 

these attacks with the main trend in their increase being linked to the ease at which 

these can be conducted. An example of a high-end version of this attack vector was 

the 2015 cyberattack on a regional Ukrainian power grid, where data injection 

attacks managed to disable core facilities for a prolonged duration (Liang et al., 

2017). 

3. Infrastructure asset destruction – Destroy, Integrated worm 

The last type of attack is aimed around causing physical damage to infrastructure 

assets, with the intent of destruction. The most prominent example of this attack 

type is the Stuxnet worm that was able to spread across the world, believed to have 

originally targeted Iranian nuclear facilities Farwell and Rohozinski (2011); 

Karnouskos (2011). These attacks are considered the most powerful, but require very 

sophisticated and elaborate preparation. 

3.3 Defensive strategies and control mechanisms 
In order to cope with the increased frequency and impact of cyber-threats to CI systems, 

infrastructure operators make use of multiple control mechanisms to secure functional operation of 
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CIs. This section will provide insight into the formulation of coherent defensive strategies, consisting 

of a multitude of control mechanisms. First, the overall cycle by which control mechanisms are 

applied is described. This is followed by the specification of preventive mechanisms, intrusion 

detection mechanisms and responsive measures respectively. 

3.3.1 Control cycle  
Defensive strategies are defined as configurations for control mechanisms used to thwart and 

mitigate cyberattacks. Control mechanisms are individual measures that attempt to reduce the 

impact inflicted by cyberattacks. The allocation of control mechanisms impacts the ability for 

defenders to respond to a versatile threat environment or threat landscape. The FAIR framework by 

Jones (2006) proposes three purposes for control mechanisms: 

1. Preventive controls seek to filter illegitimate traffic before it enters the system 

2. Detective controls seek to detect whether any undetected threat has managed to bypass 

preventive controls 

3. Responsive controls seek to prevent escalation of damage for detected intrusions 

Within the context of CI systems, the same distinction is proposed by Cárdenas et al. (2011) and 

commonly dissected for research on specific control mechanisms (Berthier, Sanders, & Khurana, 

2010; Linda, Vollmer, & Manic, 2009; Pasqualetti et al., 2013). An important additional factor is to 

establish an accurate assessment of expected impact (Douligeris & Mitrokotsa, 2004; Ten et al., 

2010). These impact tests are used to determine the appropriate responsive measure. 

A defensive strategy describes the extent to which these controls are implemented. Each type of 

control mechanism provides benefits, but as no security implementations are perfect, there is also a 

possibility of false results, leading to false negatives or false positives (Patel, Taghavi, Bakhtiyari, & 

Júnior, 2013). These will be related to instances of each control mechanism in the next three sub-

sections. The chronological order associated with defensive strategies is as follows: prevention 

mechanisms are applied when inbound traffic is received by an infrastructure node. Prevention 

mechanisms judge whether the traffic should be blocked or not. Detection systems operate as a 

second line of defence against unprevented intrusions. Based on the classification, an impact 

assessment establishes the perceived operability of a node. This perceived operability is used to 

determine the correct type of response. After a threat is dealt with, the degree of perceived impact is 

updated. This process is visualised in Figure 3-2. 
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Infrastructure node receives inbound traffic

Prevention mechanism blocks or allows traffic

Detection mechanism determines whether existing traffic 
constitutes as an unprevented intrusion

Defender establishes impact assessment at node level

Defenders reacts with responsive mechanism associated with 
impact assessment

Defenders update impact assessment accordingly

 

Figure 3-2: Chronology of defensive strategies 

3.3.2 Prevention mechanisms 
The first line of defence is formed by prevention mechanisms, which seek to discern between 

legitimate traffic and malicious attacks (Li et al., 2012). There are multiple means of achieving this, 

but the main task is always similar on an ecosystem level. While just one facet of defensive 

strategies, prevention mechanisms pose the most direct frontier for cybersecurity challenges. Failure 

to prevent attacks can pose severe consequences, leading to often stringent requirements being 

placed on prevention systems (Korobiichuk, Hryshchuk, Mamarev, Okhrimchuk, & Kachniarz, 2018). 

Prevention can be filter-based or authentication-based. The former implies classification of all traffic 

going into the system and excluding predetermined entities (Li et al., 2012). The latter requires all 

possible activities of the system to be specified upfront, as only traffic that matches the prescription 

is allowed (Douligeris & Mitrokotsa, 2004). With growing demands for openness of critical 

infrastructures, purely authentication-based systems do not possess the required agility to navigate 

the growing threat landscape (Douligeris & Mitrokotsa, 2004; Li et al., 2012).  

Intrusion prevention systems effectively determine further choices made as a result of the 

classification made (Patel et al., 2013). By establishing the direct interpretation of traffic, the reaction 

chosen in turn directly impacts the operability of an infrastructure node. Allowing an attack through 

the system or erroneously blocking legitimate user traffic can both negatively affect the entire threat 

landscape, as consequences from attacks can lead to cascading failures in dependent nodes, as well 

as worm-based attacks spreading through connected nodes (Staniford-Chen et al., 1996). 

Requirements for accurate predictions are especially stringent because there is only one chance for 

prevention mechanisms to generate a classification. The aim for designing prevention mechanisms is 
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therefore based on sensitive positive results (correctly classifying an attack) as well as being specific 

in classifications (not classifying innocuous traffic as an attack) (Elhamahmy, Elmahdy, & Saroit). 

3.3.3 Detection mechanisms 
The second line of defence is comprised of intrusion detection systems. Intrusion detection systems 

are continuously applied as part of ongoing monitoring processes, whereas intrusion prevention is 

only applied when traffic is encountered (Ten et al., 2010). Essentially, detection mechanisms relate 

to the current state of infrastructure nodes in order to specify whether there are active attacks, and 

if so, the number and severity of attacks. There are several approaches to implementing intrusion 

detection: signature-based, specification-based or anomaly-based (Berthier et al., 2010; Mitchell & 

Chen, 2013; Ntalampiras, 2015). Anomaly-based intrusion detection seeks to establish entities 

operating outside of predefined behavioural rules (Mitchell & Chen, 2013). Whereas this performs 

better in adapting to new or unknown attacks, this also tends to yield higher false positive rates 

(Elhamahmy et al.; Mitchell & Chen, 2013). Conversely, signature-based and specification-based 

intrusion detection approaches both attempt to match entities with predefined properties of known 

attacks (Staniford-Chen et al., 1996). This works well at establishing what kind of attack is conducted, 

but often falls short at detecting new types of attacks (Ntalampiras, 2015). This can fail to detect 

newer types of attacks, but ensures a minimum of false positives. 

Based on the assessment made by intrusion detection systems, infrastructure operators judge the 

perceived operability. This feeds into their decision-making which will be further elaborated upon in 

the next sub-section. False negatives (failing to detect an attack) then imply an underestimation of 

active threats, whereas false positives (incorrectly detecting a non-existent attack) result in an 

overestimation of perceived inoperability. For these reasons, intrusion detection systems are subject 

to a substantial number of scientific studies (Amin et al., 2013b; Berthier et al., 2010; Cárdenas et al., 

2011; Elhamahmy et al.; Linda et al., 2009; Miciolino et al., 2017; Mitchell & Chen, 2013; Pasqualetti 

et al., 2013). Within the scope of this study however, it is mainly the first elements that are of 

interest: being able to classify attacks and harmless legitimate traffic in such a way that decision-

making processes could be altered. Combining these elements with the presence of dependencies 

further affecting infrastructure operability results in a rich mix of ecosystem elements for a 

simulation model. 

3.3.4 Impact testing and response 
The last element of defensive strategies rests in the assessment of current operation and the 

associated responsive mechanisms. Based on the impact assessment, decisions are made with 

regards to expected outcomes (Ten et al., 2010). Different security scenarios call for different 

measures, as certain scenarios result in higher or lower susceptibility to threats. Conducting impact 

tests is a key element of the cybersecurity ecosystem, as specifically the deviation between perceived 

impact and actual impact can substantially shift system behaviour (Charitoudi & Blyth, 2014). 

Two types of responses are identified, besides doing nothing: alleviating and retaining intrusions 

(Asnar & Giorgini, 2006). Alleviation implies keeping a node active while trying to remedy active 

intrusions. In case the failure was inflicted by attackers planting a worm, this could possibly lead to 

an infection spreading through the network (Staniford-Chen et al., 1996). Retention of intrusions 

means the disconnection of a node, as no countermeasure could prevent further damage at this 

point. This could result in cascading failures in connected nodes, but ensures that no further damage 

can be sustained. Similarly, failing to properly deal with ongoing intrusions could lead to the same 

extent of cascading failures, or even worse if attacks drag on for long enough. Impact testing and 

subsequent decision-making is a crucial process in the ecosystem. Establishing thresholds for certain 

decisions can help generate insight into exploratory system behaviour under different scenarios. 
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Cybersecurity is not exclusively limited to only attacks and prevention, as the pace at which 

responses are made can also indicate crucial elements of system performance.  

3.4 Intermediate findings 
Throughout this chapter, cybersecurity elements related to the ecosystem of critical infrastructures 

were laid out and discussed. The aim was to answer the second research sub-question, establishing 

control mechanisms and attacker properties and how these affect cyber-risk within the ecosystem. 

The first section laid out definitions of core cybersecurity elements such as cyber-risk itself and why 

the common definition of cyber-risk is not fully relevant to this study. Furthermore, it was found that 

several cybersecurity approaches and frameworks require slight adaptation to fit the scope of critical 

infrastructures. The second section detailed a derived taxonomy of cyberattackers and cyberattacks. 

This was done to generate insights into the effects caused by certain attacks, crucially identifying 

differences between worm-based attacks and denial of service-based attacks. The third section 

denoted elements of defensive strategies, which will be crucial for model experimentation phases. It 

was found that defensive strategies consist of several parameters for deployment of prevention 

mechanisms, intrusion detection mechanisms and impact testing and responsive mechanisms. These 

elements will primarily form the input for the eventual agent-based model. Updating the conceptual 

overview of ecosystem elements, the properties discussed throughout this chapter were added to 

the model. This is shown in Figure 3-3, with changes highlighted in blue. 
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Figure 3-3: Expanded conceptual model with new additions highlighted in blue  
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4 Attacker and defender behaviour in the ecosystem 
This chapter describes properties related to attacker and defender behaviour within the 

cybersecurity ecosystem for critical infrastructures. These concepts specify constraining elements 

and driving forces behind interaction among actors within the ecosystem. The main objective for this 

chapter is to formulate an answer to the third research sub-question, which was defined as follows: 

Which properties for attacker and defender behaviour aptly describe decision-making behaviour in 

the cybersecurity ecosystem of critical infrastructures? 

The elements discussed in this chapter relate to attacker and defender behaviour. Expanding on the 

conceptual overview established throughout previous chapters, Figure 4-1 depicts elements that are 

to be expanded upon. The first section provides insight into information as a constraining factor to 

actor interaction and decision-making. The second section details how infrastructure operation is 

disrupted and how operators assess this level of operation. The third section wraps up this chapter, 

establishing intermediate findings required to answer sub-question 3. 

Infrastructure 
operators

Users

Attackers
Target and

 attack

Apply control mechanisms

Make use of

Infrastructure 
nodes

 

Figure 4-1: Highlighted elements from the conceptual overview to be elaborated throughout this chapter 

4.1 Situational awareness  
The first element discussed involves actions and interactions related to both attackers and 

infrastructure operators. The degree of situational awareness affects the capabilities of actors to 

make rational decisions (Liu et al., 2012). First, limitations to defender decision-making will be 

discussed. Secondly, limitations to attacker decisions will be discussed. 

4.1.1 Defender information 
Infrastructure node operators make their decisions based on an assessment of current threats to 

infrastructure nodes. As stated in chapter 3, impact tests directly feed into the establishment of 

active intrusions to the network. This awareness is used to establish appropriate responses, within 

the context-dependent observations of a defender (Sridhar, Hahn, & Govindarasu, 2012). Rybnicek et 

al. (2014) discuss the differences in attacker and defender views, with core emphasis placed on the 

process by which infrastructure operators decide on their responses. The process of assessing the 
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cause and effect of certain impact scenarios involves indexing information related to vulnerabilities 

that expose attack vectors to external threats as well as indexing information related to the system’s 

state of operation (Ten et al., 2010). Typically, studies model cybersecurity scenarios through game 

theoretic approaches, where attackers and defenders both attempt to optimise their utility by 

reacting to the information presented by the other party (Brown et al., 2006; Hare & Goldstein, 

2010). Brown et al. (2006) distinguish between attacker-defender models and defender-attacker-

defender models for CI systems. The former implies defenders responding to threats initiated by 

attackers, whereas the latter enables a changing deployment of defensive resources. The conceptual 

model established in this study conceptualises a defensive strategy as the static configuration of 

control mechanisms. As such, for the purposes of this study, behaviour is characterised as an 

attacker-defender model, as the deployment of defensive resources is considered a static element in 

the ecosystem. Instead, attackers and defenders both act on information available to them to 

determine their best action. Further game theoretic expansion is therefore not required, since the 

availability of information can help operationalise interaction for static environments. 

In essence, defender information is constrained to their awareness of active threats to the system. 

This cultivates a perception defined as situational awareness (Alcaraz & Lopez, 2013). The degree of 

situational awareness describes the encompassing view of defenders on the threat landscape. The 

characterisation depends on a combination of three elements, as per Alcaraz and Lopez (2013): 

 Infrastructure anomalies: identification of physical events and whether observed activities 

are within permitted thresholds 

 Anomaly control: Detecting malfunctions in (physical) node operation within the control 

network. 

 Intrusion control: Detecting suspect activities within the control network 

Relating to cybersecurity elements, only intrusion control is relevant for critical infrastructure 

operation. Infrastructure anomalies and anomaly control both refer to physical elements that are 

irrelevant to decisions relating to cyber-activities. On the other hand, intrusion control directly 

establishes the degree of cyber-situational awareness (Alcaraz & Lopez, 2013). This degree of 

situational awareness is used to anticipate, detect and respond to anomalies in network operation. 

Assessments are made within the network to identify and assess the capabilities of attackers, as well 

as the presence of attack-related anomalies.  

The degree of situational awareness is established by defenders’ capabilities of detecting intrusions 

and anomalies while not creating false alarms (Vasilomanolakis, Karuppayah, Muhlhauser, & Fischer, 

2015). The most prominent element for establishing awareness of threats to the system is the 

effectiveness of intrusion detection systems, which in turn is based on continuous monitoring 

activities (Patel et al., 2013). Activities pertaining to intrusion detection seek to primarily detect 

misuse and anomalies. Regardless of the type of activity applied, the result is a decision to flag 

deviations. This deviation is then used to classify which type of attack is detected, which is used to 

establish the perceived threat to the infrastructure node (Alcaraz & Lopez, 2013; Cárdenas et al., 

2011).  

The impact assessment associated with attack classification is then used to compare the perceived 

threat to the system to certain response thresholds (Linda et al., 2009; Sridhar et al., 2012). The 

fuzziness of impact assessment based on situational awareness results in rational actor-level 

decisions, as they follow their own set of rules for their context-dependent awareness, yet irrational 

decisions from an encapsulating observer’s point of view (Rybnicek et al., 2014). Since intrusion 

prevention and detection systems are not perfect, the degree of situational awareness often diverges 
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from the true presence of threats for a network. A core element of cyber defensive strategies is 

therefore to assess which configurations for intrusion detection systems yield the highest degree of 

accurate operational decisions (Yuan et al., 2013).   

Essentially, intrusion detection and prevention systems are used to identify two types of events, 

regardless of whether these events correspond with misuse or anomaly identification (Patel et al., 

2013). These are as follows: 

1. Active attacks 

a. If intrusion detection or prevention results in an detecting an attack (positive 

classification), resembling a true positive 

b. If intrusion detection or prevention fails to detect an attack (a negative 

classification), resembling a false negative 

2. Harmless, legitimate system operation 

a. If intrusion detection or prevention results in detecting an attack (a positive 

classification), resembling a false positive 

b. If intrusion detection or prevention results in not detecting an attack (a negative 

classification), resembling a true negative 

Performance metrics for intrusion detection are typically associated with these concepts, described 

by the false positive rate, which is related to the specificity of a metric, and false negative rate, which 

is related to the sensitivity of a metric (Patel et al., 2013; Vasilomanolakis et al., 2015). The undesired 

outcomes for defenders, false positives and false negatives, directly contribute to differences 

between perceived threat awareness and true threat presence. However, there are slight differences 

between effects of intrusion detection and prevention misclassifications. For intrusion detection, 

false positives lead to a higher estimation of threats, whereas false negatives lead to an increase in 

true presence of threats. For intrusion prevention on the other hand, false positives result in blocking 

access for legitimate traffic, causing a loss in operability within the system and thus the true 

presence of threats, while not changing the context-dependent awareness. This occurs because 

defenders perceive a threat to have been dealt with, not realising that they blocked access from a 

non-threat which results in direct efficiency losses (Alcaraz & Lopez, 2013; Puig, 2018). 

4.1.2 Attacker information 
The other actors that act within the boundaries of their own context-dependent awareness are 

attackers. The inclusion of awareness-related concepts are slightly more subtle than with defenders 

and primarily pertain to target and attack selection. The central element to attacker decision-making 

is utility-maximisation: attackers seek to attain maximum perceived utility and will find a target to 

attack accordingly (Brown et al., 2006). Crucial to this notion is the limitations they experience in 

terms of available and accessible information (Janssen & Sharpanskykh, 2017). 

Besides assessing threats and controls, attackers within this ecosystem require further specification 

(Byres, 2004). The main addition made is the perception of threat attractiveness, which serves as the 

primary motivation for whether an attacker decides to initiate an attack or not. While Byres (2004) 

specifies that such elements are difficult to operationalise for cybersecurity issues, the components 

of critical infrastructure losses established in chapter 2 (physical and economic impact) and attack 

motivations discussed in chapter 3 enable a classification scheme that incorporates attacker 

preference (Miller & Rowe, 2012). Attackers assess their threat attractiveness in terms of preference 

for physical and economic losses resulting from an attack. In the light of game theoretic models 

touched upon in section 4.1.1, attacker actions follow maximisation problems, where they attack a 

target following individual assessment of threat attractiveness. 
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This component of attacker information is further emboldened due to lacking knowledge of the 

target population, in this case infrastructure nodes. There is a certain degree of ambiguity in 

decision-making for critical infrastructures, where a lack of awareness of current context might lead 

agents to make suboptimal decisions (Charitoudi & Blyth, 2014). There is a certain level of knowledge 

for attackers, depending on their profile (established in chapter 3). This level of knowledge affects 

the level of refinement applied during target selection. Attackers lacking information on the system 

might apply target selection randomly, whereas more sophisticated target selection mechanisms 

involve optimising perceived utility following their loss preferences. Even greater knowledge of the 

system could allow for attackers assessing further impact due to cascading failures in outbound 

dependent nodes. All in all, attackers are just as limited in terms of their situational awareness as 

defenders (Janssen & Sharpanskykh, 2017). However, Brown et al. (2006) identify attackers as being 

in an advantageous position in terms of information availability, since defenders have already applied 

their defensive strategy and do not make any strategic decisions in response to attackers. In essence, 

attackers make proactive decisions to maximise their risk based on their predetermined attack 

configuration and defenders react to these decisions, establishing perceived threat awareness and 

picking responsive mechanisms accordingly.  

4.2 Infrastructure operability 
Another constraining factor to interaction among the system is the core concept of infrastructure 

node operation, or operability. This concept was mentioned in prior sections of this study, but 

requires further elaboration now that other factors have been established. First, the main concepts 

pertaining to infrastructure operability are expanded upon. These are subsequently linked to 

infrastructure states and their relation with dependencies is discussed. 

4.2.1 Definition of operability 
The main definition of operability, the mode of operation, rests in the efficiency attained to within an 

infrastructural node (Puig, 2018; Setola & Theocharidou, 2016). The degree of operability serves as a 

universal metric for infrastructure node behaviour, and can for this reason be used to define the 

effects of dependencies contributing to cascading failures (Rinaldi, 2004; Setola & Theocharidou, 

2016). Since the granularity of analysis for this study is aimed around assessing ecosystem level 

effects and mitigation of undesired effects through defensive strategies, applying this universal 

definition opens the door for defining a concept applicable to most interaction.  

The notion of operability relates to the sensitivity of system operation, and by extent affects the 

degree to which losses are incurred (Puig, 2018; Sridhar et al., 2012). Infrastructure node loss 

consequences can be described as a degree of losses incurred respective to the degree of 

inoperability, the extent to which operation is hampered (Rinaldi et al., 2001). By incorporating the 

operability of an infrastructure node as a common factor, this can be used to enable actor interaction 

around a central concept (Rinaldi, 2004). Successful cyberattacks and erroneously blocked user traffic 

tarnish the mode of operation within an infrastructure node, which in turn affects the mode of 

operation in dependent nodes. On the other hand, the impact assessment of defenders can also be 

related to the level of operability of an infrastructure node. They assess the expected impact of the 

perceived attack to establish a level of perceived operation, which in turn is related to thresholds for 

responses.  

4.2.2 System operational states 
While the operability of a node should be included as a continuous scale, as per Puig (2018), the 

interpretation of values along this scale should depend on several definitions. Setola and 

Theocharidou (2016) define four states for system operation, which are shown in Table 4-1 below. 
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Table 4-1: Infrastructure node operability states and their definitions, adapted from Setola & Theocharidou (2016) 

State Description 

Normal The state in which a critical infrastructure node operates under normal operational 
conditions. If there is any threat, it is very minor in terms of impact. 

Stressed The state in which a critical infrastructure node operates when special measures 
should be taken to keep system operation in control. Threats can be minor and 
major inconveniences, but do not single-handedly disable the node. 

Crisis The state in which a critical infrastructure is destabilised and out of control. 
Significant losses are sustained and operators should detect this and react 
appropriately. 

Recovery The state in which a critical infrastructure is closed off from the network in order 
to reconstitute system operation. This is achieved by retaining intrusions, as 
discussed in chapter 3. 

 

These states represent the meaning of system operability and define the type of response typically 

associated with a certain level of operation. While there are other states possible depending on the 

refinement of specific infrastructures, this selection of states can be used to visually represent 

activities associated with nodes in certain conditions. Besides, it can highlight how differences 

between perceived operability and true operability emerge as the result from detected and 

undetected attacks.  

The overall impact of infrastructure operability is a central element for actor interaction across the 

ecosystem. Operability is used to assess the extent to which losses are incurred, as well as identifying 

defenders’ impact assessment. The mode of operation, as such, helps operationalise several 

elements that were originally considered problematic for quantification. 

4.3 Intermediate findings  
Throughout this chapter, elements related to actor interaction were discussed. Specifically, these 

interactions related to actions taken by attackers and defenders. The aim for this chapter was to 

formulate an answer to the third research sub-question, assessing which properties describe attacker 

and defender behaviour. The first section identified crucial elements in defender and attacker 

decisions, indicating how both operate on a degree of situational awareness. It was found that both 

entities are constrained due to the limited availability of information, with attackers carrying an 

advantage over defenders, since they get to optimise utility gains based on fixed loss parameters for 

infrastructure nodes. Defenders are constrained due to limitations in impact assessment, which can 

lead to counterproductive responses. In short, attacker and defender behaviour is inherently 

context-dependent, whereas system configurations such as defensive strategies are static. As such, 

game theoretic models would not add value within the scope of this study. The second section 

identified how the notion of infrastructure operability can be used to formalise and operationalise 

the effects of cyberattacks and dependencies among an ecosystem of infrastructures. A classification 

scheme is provided that distinguishes node operation states as normal, stressed, crisis or recovering. 

These elements are applied to existing concepts within the ecosystem to be formalised within the 

model. The added elements are shown in Figure 4-2, with changes highlighted in blue. This concludes 

the system specification phase of this study, leading into the model conceptualisation and 

formalisation phase. 
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Figure 4-2: Overview of elements added to the conceptual overview throughout this chapter, resulting in the finalised 
ecosystem-level aggregation model 
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5 Conceptualising an ecosystem model of critical infrastructures 
This chapter seeks to establish a conceptual model for the cybersecurity ecosystem of critical 

infrastructures. This step in model development is associated with the System Identification and 

Decomposition and Concept Formalisation steps discussed by Nikolic et al. (2013). This phase is 

crucial for model development, as all necessary elements are incorporated and detailed to prepare 

for model implementation. Specifying a conceptual model involves integrating all elements discussed 

in chapter 2, chapter 3 and chapter 4 following an integrated framework. The framework applied in 

synthesising the identified concepts into a coherent model is complex adaptive systems (CAS) 

thinking, which will be discussed in section 5.1. The perspective of CAS thinking on the cybersecurity 

ecosystem of critical infrastructures is provided in section 5.2, providing insight into how a 

conceptual model can be used to answer research questions. Section 5.3 further specifies the 

ecosystem model, linking elements identified in previous chapters to CAS concepts. Section 5.4 

provides a set of performance metrics that can be used to assess different elements of system 

performance. The chapter is wrapped up and summarised in section 5.5, providing key pointers for 

model formalisation in chapter 6. 

5.1 Complex adaptive systems: a definition 
The essence of the approach taken for this study is nested in complex adaptive systems thinking. 

First, the background of CAS will be described. Subsequently, an integrated definition will be 

provided. Afterwards, the main properties of CAS are discussed.  

5.1.1 The background of complex adaptive systems 
Nikolic and Kasmire (2013) propose a framework for understanding CAS and translating this 

understanding into agent-based models. CAS thinking is in itself an adaptation from traditional 

systems thinking, which is identified by Ryan (2008), citing W. Ross Ashby, as being “a set of variables 

sufficiently isolated to stay discussable while we discuss it”. This definition of systems forms the 

foundation of CAS thinking. Crucially, Ryan (2008) identifies, among others, organisation, 

interdependent components, interaction with their environment and emergence as key properties of 

system components.  

Complex adaptive systems, as the name suggests, extend beyond the definitions adhered to within 

traditional systems thinking. CAS differs as the systems are perceived to be both complex and 

adaptive. Adaptiveness in the context of CAS relates to improving system behaviour over time, 

whether through physical, social, technical or cultural shifts in the environment (Nikolic & Kasmire, 

2013). A system that is adaptive does not merely change over time, but instead shows improvement 

due to a change in context awareness or learning behaviour. Because all actions within a complex 

adaptive system are based on the context of a given situation, it is almost impossible to predict the 

state the system has evolved towards. The essence of adaptiveness is nested in a large number of 

actors constantly interacting, each changing their state accordingly.  

The other notion, complexity, is more sensitive to applicable and contemporary worldviews. 

Complexity can be described as the property of not being simple, but often requires further 

specification of complicated and complex aspects (Nikolic & Kasmire, 2013). Zadeh (1973) relates 

complexity to the ability to describe system behaviour under different circumstances. Being able to 

accurately predict system behaviour implies a foundation of understanding of driving forces system-

level behaviour. Complex systems can be understood, and therefore modelled, provided that a fitting 

formalism is specified (Mikulecky, 2001). A system is considered complicated if this degree of 

understanding is not present: for a given scenario X it is almost impossible to correctly predict 

consequence Z associated with action Y. Managing complexity in systems requires the application of 
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multiple formalisms to understand which properties affect system behaviour and to carefully 

distinguish between relevant and irrelevant elements (Nikolic & Kasmire, 2013). 

5.1.2 The complex adaptive systems paradigm 
The CAS paradigm is a branch of system thinking that integrates the three main concepts discussed 

previously: it requires researchers to identify formalisms to cope with complexity, identify the 

adaptiveness of system behaviour as well as identifying components and interactions among the 

system of interest. John H. Holland in Waldrop (1992) defines complex adaptive systems as: “a 

dynamic network of many agents (which may represent cells, species, individuals, firms, nations) 

acting in parallel, constantly acting and reacting to what the other agents are doing. The control of a 

complex adaptive systems tends to be highly dispersed and decentralised. If there is to be any 

coherent behaviour in the system, it has to arise from competition and cooperation among the agents 

themselves. The overall behaviour of the system is the result of a huge number of decisions made 

every moment by many individual agents.” 

Crucially, CAS are defined by bottom-up interaction that shapes system-level behaviour. The only 

facets that need to be implemented relate to individual entities making decisions. The way these 

entities interact is therefore critical to understanding system behaviour. This perspective on systems 

evolved significantly from the systems thinking paradigm as described by Ryan (2008), highlighting 

the essence of system-level behaviour is in itself inherently rooted in the parts that compose a 

system. 

5.1.3 Key properties in complex adaptive systems thinking 
CAS are characterised by the presence of chaos in agent interaction and emergent behavioural 

patterns as a form of overall system behaviour (Nikolic & Kasmire, 2013). Chaos implies a degree of 

changeability depending on a set of conditions at any point in time. This relates back to the notion of 

complexity provided by Zadeh (1973). Chaotic systems do not necessarily imply randomness, as 

subtle differences in starting configurations or encountered scenarios can make agents shift their 

behaviour. The second key concept of CAS, emergence, stems directly from decentralised agents 

making decisions based on their contemporary environment. Emergence is the consequence of 

bottom-up decision-making behaviour leading to coherent system behaviour (Nikolic & Kasmire, 

2013). Crucially, emergent patterns are directly tied to the combined presence of all parts in a 

system. Emergent patterns cannot be explained by isolated, individual agent rules and directly stem 

from dynamic interaction of the network of many agents as defined by Holland (Morin, 1999). An 

aspect of emergent patterns is the capability of CAS to self-organise. The similarity of these 

properties to those presented by Ryan (2008) highlight how the CAS paradigm is an evolution of 

traditional systems thinking. 

5.2 Modelling the critical infrastructures ecosystem 
The ecosystem of cybersecurity for critical infrastructure systems, as discussed throughout this study, 

can be classified as a complex adaptive system for a multitude of reasons. For this classification to be 

eligible, a number of conditions described in section 5.1 should be met. After discussing these 

conditions, the main method is argued for.  

5.2.1 Critical infrastructures as a complex adaptive system 
First, it should be established that cybersecurity for CI systems largely corresponds with systems 

thinking. As discussed in chapter 2, critical infrastructures are vast networks of heterogeneous 

infrastructure nodes. These system artefacts consist of a wide variety of different elements, with 

specific cybersecurity decisions being made at the node-level. Decisions related to defensive 

strategies tend to be made at higher institutional levels, meaning that interaction is governed on 
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multiple levels (Van Dam, Nikolic, & Lukszo, 2012). Cyberattackers and infrastructure node operators 

each make decisions directly tied into cybersecurity elements: cyberattackers make decisions related 

to utility optimisation and information gathering as discussed in chapter 4 and operators make 

decisions related to infrastructure operation and traffic classification. Whether attacks are thwarted 

or successful relies on decisions made by a multitude of agents, as well as environmental context. 

While the process of attacking and defending is generally well-known, the intricate balance that 

takes place between these actions is academically unexplored on an ecosystem-level. This level of 

analysis, or worldview in the words of Nikolic and Kasmire (2013), assesses dynamic interaction that 

extends beyond the objectives for individual node operators, who seek to only assess their optimal 

defensive strategy. 

The second qualification to be met is adaptiveness. Critical infrastructures themselves have shown to 

adapt significantly over the past decades, as discussed in chapter 2. However, this adaption primarily 

originates from the need to cater towards a changing environment. The true nature of adaptiveness 

takes place in terms of impact assessment with regards to interdependent node operability. Agents 

within the ecosystem are constantly seeking to achieve improvements for their own goals, whether 

malicious or not. Cyberattacks have been getting more and more sophisticated, and infrastructure 

operators are constantly adapting their situational awareness in order to adapt to a new situation. 

This perception of impact and operability feeds into their decision-making process, as more 

dangerous situations ask for more rigorous defensive decisions. 

The third qualification revolves around the complexity of the system. While existing studies into 

control effectiveness for CI systems establish their effectiveness in a closed environment, the overall 

cybersecurity picture involves multiple factors beyond an individual node, as discussed in chapters 2 

and 3. Individual decisions and the behavioural rules that lead to them can be identified, showcasing 

the processes that take place within this complex environment. However, assessment of an 

ecosystem-level cybersecurity environment involves inclusion of the multiple different cybersecurity 

facets discussed in chapter 3 and elements to interaction detailed in chapter 4.  

As a result of the cybersecurity ecosystem for CI systems corresponding with the three qualifications 

for CAS, the resulting interaction is also characterised by CAS properties. Chaos, emergent 

behavioural patterns and self-organisation can all be identified within the ecosystem. Cyberattacks 

against CI systems are not conceived by pure randomness: there is always an instigating factor. 

Whether the stars align for an attacker to be able to successfully launch an attack depends on 

multiple factors: whether they have the resources and knowledge available to launch an attack, 

whether there is a viable target and whether attacks can bypass several checks in the form of 

defenders’ control mechanisms. Chaotic behaviour occurs based on the wide variety of possible 

events that lead to one event or another. These decisions all emerge bottom-up, based on 

behavioural rules set by each agent. The likelihood of successful attacks taking place increases if all 

defenders fail to accurately assess situational inoperability. Additionally, lacklustre defensive 

decisions can quickly lead to cascading failures throughout a vastly interdependent and 

interconnected network of infrastructure nodes. Disjoined, local decisions lead to actions from other 

agents that combined lead to coherent system behaviour.   

5.2.2 Agent-based modelling concept 
This section details the chosen approach to create a simulation model for the ecosystem discussed in 

section 5.2.1. The first sub-section details the basic elements of an agent-based model, following the 

same framework by Nikolic and Kasmire (2013) used throughout this chapter. The second sub-

section describes why ABM will be used, followed by the main objectives for the model in the third 

sub-section. 
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The essence of agent-based modelling 

While there are multiple methods to model CAS, this study will make use of agent-based modelling 

(ABM). Agent-based modelling is considered an extension of CAS, as it allows for the model itself to 

be a CAS in and of itself (Nikolic & Kasmire, 2013). ABM is based on generating answers to the core 

question “What happens when …?” in an attempt to generate insight into the effectiveness of the 

system in certain scenarios. These questions are exploratory in nature and seek to assess the 

response of certain system elements to changes in environmental drivers. This underlines the 

objectives of exploring system behaviour given different scenario configurations. As Nikolic and 

Kasmire (2013) describe, there is no desired system state to achieve, as ABM revolves around finding 

out what happens if the system is exposed to given system configurations. On the other hand, the 

type of results ABM yields are by no means direct quantitative, reliable predictions for exact system 

performance. Instead, ABM performs well at discerning emergent patterns and behavioural 

tendencies from simulation and experimentation iterations.  

Key elements of complex adaptive systems as detailed in section 5.1 are the local-level decisions 

made by individual agents, who form the central element of ABM. They make their own decisions 

based on predetermined rules and adaptive agent states. Nikolic and Kasmire (2013) identify these 

elements as agent states, behavioural rules and interactions. Agents are entities present within the 

demarcated system boundaries, who operate in a decentralised, independent and context-sensitive 

manner. 

Besides agents, ABM also operates within a specified model environment, which encompasses all 

elements in the model, as well as external variables that entities within the model could interact 

with. The model environment embodies the physical and/or logical location of agents, as well as all 

relevant external elements required for their interaction. By extent, the model environment includes 

all agents and all elements possibly necessary to facilitate interaction within the chosen formalisms. 

Another element essential to identify before devising an agent-based model is the time frame 

associated with the system of interest. Agent-based models incorporate a discrete time scale, 

whereas real-world CAS follow a continuous time scale. Since an agent-based model is expected to 

be a CAS representation of the original system, the limitations caused by the discrete time should be 

kept to a minimum (Nikolic et al., 2013). This can be achieved by modelling actions in the order and 

frequency by which they appear in the real-world, normalised to fit the time scale applied in the 

model. 

Agent-based modelling for cybersecurity purposes 

Agent-based modelling cybersecurity ecosystems has seen an uptick in recent years, as it enables 

modelling a great variety of cybersecurity scenarios and can form an extension of game theoretic 

methods (Charitoudi & Blyth, 2014; Hare & Goldstein, 2010; Janssen & Sharpanskykh, 2017; Priest et 

al., 2015; Rybnicek et al., 2014). Cybersecurity in itself is an emerging discipline, which leads to 

academics naturally asking a lot of exploratory questions along the line of “What happens when …?” 

The flexibility offered by ABM to include many facets of ecosystems and the relative simplicity of 

relationships and interactions helps in reducing the immense complexity of ecosystem-level 

problems.  

Charitoudi and Blyth (2014) managed to establish a model that simulated the impact of cascading 

failures within an interconnected, heterogeneous network. The authors found that agent-based 

models work well at observing interactions and dependencies throughout critical infrastructures. 

Priest et al. (2015) modelled defender interactions as the redistribution of resources as a means of 

hindering cyberattacks’ penetration, assessing the effectiveness of moving target mechanisms on a 

network level. The notion of redistributing resources as a defensive measure is similar to defensive 
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mechanisms modelled by Hare and Goldstein (2010). Janssen and Sharpanskykh (2017) took a 

different approach, modelling security checkpoint intrusion. The authors established means for 

vulnerability modelling in specific network nodes, forming a coherent overview of impact assessment 

in an agent-based modelling environment. Similarly, Rybnicek et al. (2014) modelled a network of 

individual infrastructures with distinct dependencies, highlighting the interconnected impact of 

cyberattacks.  

Most related, non-ABM academic studies work under the assumption of rationality due to 

computational limitations arising from a top-down view of the system, which is circumvented within 

the formalisms of CAS thinking (Janssen & Sharpanskykh, 2017). Instead, emergent behaviour is used 

as the main proponent of susceptibility to cyberattacks following individual agent states for both 

attackers and defenders. As discussed in chapter 4, agent behaviour can simply not be modelled as 

rational due to real-world complications arising from situational awareness. Applying ABM helps 

reduce complexity while still being able to explore emergent patterns given different system 

configurations. 

Objectives for the agent-based model 

Following the identification and specification of crucial ecosystem elements in chapter 2, chapter 3 

and chapter 4 as well as the specification of the ABM approach in this chapter, the foundation of the 

agent-based model can be conceptualised. In order to simulate the effectiveness of defensive 

strategies, an agent-based model will be created that incorporates all crucial ecosystem elements. 

The agent-based model will resemble an ecosystem of interdependent and interconnected critical 

infrastructure nodes, as well as cyberattackers and users of these nodes. The model should seek to 

establish a concise yet representative overview of infrastructure nodes and primarily relate to how 

losses are incurred and transferred among infrastructure nodes. 

The main input to serve for the core question “What happens when …?” relates to system 

configurations for defensive strategies. In order to explore the robustness of defensive strategies, 

model parameters should be explored for possible sensitivity to attacker configurations or weightings 

assigned to dependencies. If these concerns are taken into account, the results from robust 

experimentation can be used to help establish a coherent answer to the main research question 

(Bankes, 1993).  

5.3 Ecosystem conceptualisation 
The first step is to identify all entities and interactions that should be included in the model. This 

ecosystem-level model should follow the formalisms associated with complex adaptive systems and 

agent-based modelling. An overview of ecosystem-level interaction between the different types of 

agents is shown in Figure 5-1 below. The ecosystem-level interaction model forms an extension to 

the aggregation model shown in Figure 4-2. The original conceptual visualisation built upon 

throughout this study has been refined to better match all agent-level interactions. The original 

model depicted in Figure 1-1 does not show the level of detail required to create a complete 

simulation model. The updated model forms the foundation for specification of model concepts 

following the specified framework.  
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Figure 5-1: Ecosystem interaction model 

The conceptual model depicts several core elements discussed in chapter 2, chapter 3 and chapter 4. 

The key entities included are users, attackers, infrastructure operators and infrastructure. The central 

entities around which all interaction revolves are infrastructure nodes. These nodes are subject to 

attacks from attackers and legitimate traffic originating from users, while affecting operability of 

other dependent infrastructure nodes. Infrastructure operators are responsible for protecting nodes 

by applying control mechanisms following the defensive strategy configuration. This defensive 

strategy consists of control mechanisms that seek to protect nodes by preventing and detecting 

intrusions and responding to current threats. Attackers target infrastructures based on their 

preferences and launch attacks towards infrastructure nodes.  

The next step is to identify all entities that should be included in the model and determine what 

states, actions and rules encapsulate their behaviour. This was briefly touched upon in section 5.2 

and will be expanded upon thoroughly throughout this section. Entities are placed in three 

categories: agents, link entities and objects. Typically, a fourth category for environmental factors is 

also included, but these are not used for this ecosystem-level study. Each entity in the model can 

operate based on a set of states, rules and actions, which will be further discussed throughout this 

section. The conceptual model has been devised in such a way that all agents feature states, rules 

and actions, yet objects and links are only assigned states. This is done to facilitate interaction more 

easily, as agents in the model are supposed to replicate their real-world counterparts in terms of 

independent and autonomous decision-making. An overview of model entities is shown in Table 5-1, 

and will be expanded upon next. The first sub-section details every agent, indicating the states, rules 

and actions associated with agents in this model. The second sub-section discusses the different link 

entities and their real-world representations. The third sub-section discusses objects and how these 

are to be modelled. Assumptions that were made over the course of model conceptualisation are 

listed in Appendix D. 

5.3.1 Specification of agents 
The first type of entity to be discussed are agents. Agents are the most refined entities within the 

model concept, as they are involved in context-aware decision-making processes. Each agent is 

tasked with a set of rules and states, as well as actions that correspond with meeting certain rules. 

Rules apply to multiple conditions, including environmental input, input from other agents or 

activation thresholds associated with an internal state. Three such agents are identified in Table 5-1. 
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These are expanded upon throughout this sub-section. Each type of agent will be discussed in terms 

of states, actions and interactions identified.  

Table 5-1: Overview of model entities, including agents, link entities and objects 

Model inventory Description 

Agents  

Infrastructure node 
operators (defenders) 

Agents who are tasked with maintaining secure infrastructure 
node operability. 

Cyberattackers Agents who seek to inflict damage to infrastructure nodes or the 
environment. 

Users Agents who make use of infrastructure nodes. 

Link entities  

Connections Physical or logical links between two infrastructure nodes that 
worm attacks can spread through. 

Dependencies Functional or technical dependencies between two infrastructure 
nodes that impede operability. 

Objects  

Infrastructure nodes Entities that together form a critical infrastructure network. 

Defensive strategies Collections of control mechanism configurations and thresholds. 

Control mechanisms Processes entities are exposed to that seek to deter cyberattacks 
while not impeding users. 

Cyberattacks Processes initiated by cyberattackers that inflict harm to 
infrastructure nodes. 

 

Infrastructure node operators 

Infrastructure node operators, also referred to as defenders, are agents involved in operating (parts 

of) critical infrastructure systems. Within the cybersecurity ecosystem, they are tasked with securing 

key infrastructure nodes against possible cyber-threats while reducing the impact on other parties. 

Their task is complicated by widespread dependencies among infrastructure networks, stark 

consequences from minor security infractions and a limited degree of situational awareness (Alcaraz 

& Lopez, 2013; Lee et al., 2016; Priest et al., 2015; Teixeira et al., 2010). Their main states and actions 

are displayed in Table 5-2. Each of these elements has been discussed previously to some extent. 

States and actions related to inoperability perceptions were discussed in chapter 2, chapter 3 and 

chapter 4. Similarly, elements relating to defensive strategies and control mechanisms were defined 

in chapter 3.  

As displayed in Table 5-2, defenders make use of four internal states: perceived internal inoperability, 

perceived external inoperability, perceived operation and the deployed defensive strategy. These four 

states are only the internal elements used for their actions. Besides internal states, external input 

also impacts decision-making. This will be discussed in the light of possible actions later. As identified 

in chapter 4, defenders operate based on their established situational awareness (Alcaraz & Lopez, 

2013). This is represented in the conceptual model through their perception of internal and external 

operability. The perception of operability constitutes as their method of impact assessment, which is 

used to determine whether response mechanisms should be applied. The degree of perceived 

internal inoperability relates to awareness of threats to the internal system of an infrastructure node, 

for example the type of attack an infrastructure is currently experiencing. External inoperability 

follows from hampered operation from disruptions in other nodes, passed along through 
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dependencies. The deployed defensive strategy relates to the fixed values used for control 

mechanisms within the node. In addition, the chosen defensive strategy determines thresholds for 

defensive decisions. These states facilitate abstract interaction, yet together encompass the main 

facets relevant to decision-making. An assumption is made to use operability as the main input for 

decision-making, following game theoretic approaches discussed and supported in chapter 4. The 

main implication for this decision is that interaction does not include any strategic behaviour, while 

on the other hand including such concepts constrains generalisability of the model. 

Table 5-2: States and actions associated with defender agents 

Defender elements Description 

States  

Perceived internal 
inoperability 

The perceived extent of current impact on a node originating 
from internal inoperability, e.g. due to cyberattacks. 

Perceived external 
inoperability 

The perceived extent of current impact on a node originating 
from external inoperability, e.g. due to dependencies. 

Perceived operation Based on the perceived degree of internal and external 
inoperability, defenders make an assertion of the level of 
operation. 

Deployed defensive 
strategy 

The level of refinement at which prevention, detection and 
responsive mechanisms are deployed. 

Actions  

Assess current operability Establishing the degree of perceived operability currently 
experienced in a node. 

Classify inbound traffic Applying prevention mechanisms to inbound traffic, aiming to 
block cyberattacks and allowing user traffic. This is the event 
directly triggered by users or attackers interacting with a node. 

Block traffic Preventing cyberattacks access to the system, avoiding any 
possible damage. This is the direct result from the classification 
generated by Classify inbound traffic. 

Detect intrusions Detecting existing, unprevented attacks currently taking place. 
Detected intrusions will remain detected until they either expire 
or are removed. False positives are corrected the next time step, 
when intrusion detection is applied once more. 

Alleviate intrusions Attempting to remove existing, unprevented attacks while 
keeping the node in operation. 

Retain intrusions Removing existing, unprevented attacks while closing the node 
down, preventing further spread of attacks. 

 

As shown in Table 5-2, six actions are specified for defender agents. These actions are, as with 

previously discussed states, based on attack-defence properties detailed in chapter 3 and decision-

making properties introduced in chapter 4. First of all, defenders create a situational assessment of 

perceived operability. As stated previously, this is based on an internal and an external component of 

operability. This assessment might deviate from the true degree of operability experienced for a 

defender, which could lead to counterproductive choices. The other actions are all related to the 

core task for defenders to distinguish between legitimate and illegitimate traffic using a prevention 

mechanism. This action is denoted by Classify inbound traffic. Inbound traffic originating from 

attackers and users is classified based on the prevention mechanisms applied. Accurate impact 

assessment and mitigation rely on accurately classifying user traffic as innocent and attacker traffic 



Chapter 5: Conceptualising an ecosystem model of critical infrastructures 
 

41 
 

as malicious. Traffic classified as malicious is then blocked from accessing the system. The action 

Block traffic prevents an attack from ever causing damage, but could also prevent legitimate traffic 

from keeping the system operational. As not all intrusions are deterred by prevention mechanisms, 

unprevented intrusions can be detected through the detect intrusions action. Based on the sensitivity 

and specificity of intrusion detection mechanisms applied, attacks can be detected, or false positives 

could generate false alarms out of nothing (Zhang, Wang, Sun, Green, & Alam, 2011). The last two 

actions relate to responsive measures, which are applied based on the perceived level of operation. 

Alleviating intrusions means removing existing attacks while the system remains operational and 

accessible for other nodes and traffic. Retaining intrusions also involves removing existing attacks, 

but closes down the node to prevent further spreading of intrusions. In both cases, the degree of 

operability of a node is reduced, as overall functioning of nodes is limited. 

The main interactions that involve infrastructure node operators relate to dealing directly with users 

and attackers, as well as operating infrastructure nodes. Infrastructure nodes are the centrepiece of 

the model, and defenders bear responsibility for their unhindered operation. As mentioned 

previously, defenders are tasked with discerning between user traffic and cyberattacks, directly 

impacting the operability of a node. Should a node depend on other nodes, defenders need to 

correctly establish the possible impact that external failures might lead to. The states and actions 

specified to represent interaction enable operationalisation of high-level interaction, while enabling 

straightforward concept definitions for interaction with other agent types. Since infrastructure node 

operators are responsible for interaction that takes place centrally in the ecosystem model, it is 

important to keep conceptual definitions accurate without specifying too much information. 

Attackers 

Cyberattackers, or attackers, are agents who seek to inflict damage to critical infrastructures. As 

there is little interest for monetary gain, attackers seek to primarily maximise the amount of damage 

they can inflict. This was discussed in more detail in chapter 3. Attackers make use of advanced 

cyberattacks to disrupt, destroy or disable parts of critical infrastructures. Their main states and 

actions are laid out in Table 5-3. These states and agents were all discussed in chapter 3, except for 

Knowledge, which was introduced as situational awareness in chapter 4. 

Attackers make use of four internal states following elements of the framework established in 

chapter 3 and chapter 4. Their Economic loss preference and Physical loss preference indicate the 

degree of personal utility they achieve from inflicting a certain degree of economic and physical 

damage, respectively. Their aims to maximise this utility is based on both economic and physical 

components. Attacker Knowledge affects the sophistication of target selection. Less knowledgeable 

attackers are more likely to make irrational choices, while more knowledgeable attackers can more 

accurately predict the possible damage caused to a node itself as well as subsequent damage caused 

to dependent nodes. To this end, their Attack capabilities delineate which attacks are available to an 

attacker. A knowledgeable, rational attacker with high attack capabilities might pick more powerful 

solutions compared to their less resourceful counterparts. 

The actions applied by attackers are threefold. The first, Find the best target, involves the previously 

mentioned process of target selection. Attackers with little knowledge might select targets 

irrationally or chaotically, as their perception of utility could be established in a flawed manner. More 

knowledgeable attackers weight the expected utility from breaching a target with their loss type 

preferences, and in some cases assess the extension of damage through outgoing dependencies from 

target nodes (Byres, 2004). Similarly, the second action, Pick the best attack, selects the expected 

attack that coincides with an attacker’s knowledge and attack capabilities. The background of these 

two actions is rooted in maximising attacker utility through maximising their preferred type of 
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damage. The last action, Initiate attack, involves the process of launching an attack on the target 

node. This initiates a chain of events for defenders, who have to respond to the newly arrived traffic.   

Table 5-3: States and actions associated with attacker agents 

Attacker elements Description 

States  

Economic loss preference The preference of an attacker for economic loss as the result of 
node inoperability. 

Physical loss preference The preference of an attacker for physical loss as the result of 
node inoperability. 

Knowledge The degree of refinement with which an attacker selects a target 
and an appropriate attack to harm their target. 

Attack capabilities The types of attacks available for an attacker. 

Actions  

Find the best target Selecting the target that is most likely to yield desired utility (loss 
for nodes). This is the result of their weighted expected utility for 
both economic and physical loss. 

Pick the best attack Selecting the attack that is most likely to inflict significant 
damage against the target. Attackers use more sophisticated 
considerations based on their level of knowledge. 

Initiate attack An attack is initiated after completion of the two prior actions. 
The selected target is to be attacked with the type of attack 
selected. This action encompasses initiating an attack, causing 
the defender to react. 

 

Attackers interact with multiple elements of the ecosystem, although they predominantly interact 

directly with infrastructure nodes. Attackers do not communicate or coordinate among each other, 

as they plan out their attack based on both their own internal states as well as the internal states of 

possible target nodes. Defenders do not directly interact with attackers either, as their scope of 

control is limited to only dealing with attacks. Within this ecosystem, defenders are not able to single 

out attacker agents as responsible for certain attacks, as this type of behaviour exceeds the 

boundaries of a cybersecurity ecosystem. While on one hand this prevents behaviour that might be 

observed in the real world, there was no consensus about the dynamicity of such elements of the 

threat landscape. For that reason, the ecosystem-level framework specifies no such concept, 

although this could be included as an extension of the framework for specific, practical application. 

Furthermore, attackers possess the capabilities to conduct different types of attacks. In order to 

translate elements of the framework into complex adaptive systems constructs, attack capabilities 

are assigned to each attacker type. Because of the probabilistic approach, this made more sense than 

adding a more assumptious numerical denominator for attack capabilities. As such, there is still 

variety in the threat landscape for defenders to act upon based on the attack types identified in 

chapter 3. The types of attack associated with each type of actor are denoted in Table 5-4.  

Users  

Users are agents that simply make use of critical infrastructures. They represent traffic that would 

typically be encountered in day-to-day infrastructure operation. In this sense, users are entities that 

are responsible for professional usage and communication of parts of infrastructures. The role of 

users is more auxiliary when compared to attackers and defenders, as they mainly provide inputs for 

other agents to act on. The states and actions associated with users are shown in Table 5-5. 
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Depending on which infrastructural sectors the framework is applied to, the impact of users on 

operability could range from meaningless to crucial. 

Table 5-4: Cyberattack capabilities for each type of attacker 

Attack 
Attacker  

Disruptive malware Infrastructure 
blackout 

Infrastructure asset 
destruction 

Cybercriminal X X  

Cyberterrorist  X X 

Foreign adversary X X X 

 

Table 5-5: States and actions associated with user agents 

User elements Description 

States  

Criticality The criticality of a user’s traffic to a node’s operability 

Associated node The specific node a user interacts with. 

Actions  

Send traffic Sending traffic to an infrastructure node as a means of regular 
usage of infrastructures. 

 

The simplicity behind user agent interaction presents itself in the scarcity of states and actions, as 

displayed in Table 5-5. Only two states are used by user agents: their Associated node and the 

Criticality of their traffic. Their associated node represents the node that functionally depends on the 

unhampered arrival of a specific user’s traffic. A real-world example for this would be reporting by 

smart electricity equipment to a central load-balancing facility (Department of Homeland Security, 

2015). The criticality of this traffic then determines just how crucial the presence of this traffic is to 

node operation. Some infrastructures might depend more heavily on a steady flow of critical 

information whereas other infrastructures could build a backlog of information. 

The only action taken by user agents highlights their auxiliary role in the ecosystem: Send traffic. 

Given their associated node and the criticality associated with their traffic, they will transmit 

information related to themselves to a node. This then prompts the same response from defenders 

that cyberattackers instigate: classification of inbound traffic. If user traffic were to be erroneously 

blocked by prevention mechanisms, crucial node operation would be harmed, as discussed in chapter 

3. As a result, the node’s level of operation would decrease based on the aforementioned criticality 

of traffic. This single action also marks the full selection of interaction involving users, as they fulfil no 

other purpose for ecosystem operation. 

5.3.2 Specification of link entities 
The second type of entities to be detailed are link entities. These links exist as a form of connecting 

multiple agents for a specific purpose. Two such link entities exist within the conceptual model: 

connections and dependencies. Links exist to carry over information from one entity to another and 

serve as logical and physical input for agents’ decision-making processes. Their purpose within the 

model will be briefly discussed throughout this sub-section. 

Connections 

Connections represent direct linkage of two infrastructure nodes. These links involve connection of 

two individual nodes that together shape the complex networks of critical infrastructure systems. 
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Relating back to the visualisation shown in Figure 2-2, connections are shown as the essence of 

critical infrastructure networks. These are necessary to operate infrastructures, as they physically or 

logically connect multiple parts of the same system. Their states are listed in Table 5-6. 

Table 5-6: States associated with connection entities 

Connection elements Description 

States  

First end One end of the bidirectional connection. 

Second end The other end of the bidirectional connection. 

 

Connections are in their very essence simple concepts. They make use of only two states that are 

implicitly linked to their existence: a First-end and a Second-end. Connections are bidirectional and 

exist to only represent the fact that two entities are tied to each other. Infrastructure nodes and 

defenders themselves do not use any elements related to connections, but cyberattacks can under 

the right circumstances make use of connections to infect neighbouring nodes. While connections 

have little implicit value by themselves, they can be used to specify delays or other elements relating 

to a specific application if desired. On an ecosystem level however, this is not relevant, as it is not 

generalisable and would add further assumptions. 

Dependencies 

Dependencies are similar to connections in the way that they represent a form of linkage between 

infrastructure nodes. However, they are vastly different, as they were described in chapter 2. 

Connections relate to architectural unity between multiple nodes, whereas dependencies describe 

the degree of functional impediments across multiple nodes (Setola & Theocharidou, 2016). 

Crucially, dependencies are not related to a single infrastructural sector, as they can also occur as 

cross-sectorial dependencies. The core of these links within a cybersecurity ecosystem revolves 

around impeding dependent nodes in case of inoperability. The states related to dependencies are 

shown in Table 5-7.  

Table 5-7: States associated with dependency entities 

Connection elements Description 

States   

Origin The original node, on which the dependent node relies for 
operability. 

Target The dependent node, which depends on the origin of a 
dependency for their operability. 

Weighting The weighting associated with a dependency that determines 
how heavily dependent nodes are impacted if the original node is 
disrupted. 

Current state The current state of the original node that determines (along 
with the weighting) how significantly the dependent node is 
affected. 

 

Dependencies incorporate four internal states to store and process information. Dependencies have 

an Origin, or original node, and a Target, or dependent node. Since dependencies are directional 

(unlike connections, which are bidirectional), the direction of a dependency describes the flow of 

functional dependency (Setola & Theocharidou, 2016). The degree of operability of the origin node 
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impacts the dependent node, to a certain extent. The extent to which this happens is encapsulated 

by one further element: the Weighting of the dependency. The weighting dictates how severely the 

impediment to the dependent node will be, given disruptions in the original node (Setola & 

Theocharidou, 2016). Heavier dependencies can lead to quick disruption of the entire ecosystem, as 

functional dependencies are widespread (Pederson et al., 2006; Rinaldi et al., 2001). Associated with 

the level of operability in the original node is the Current state of a dependency. This state directly 

matches the degree of external inoperability it passes on to the dependent node.  

5.3.3 Specification of objects 
The third category of entities to be discussed are Objects. As shown in Table 5-1, four such entities 

are identified. Objects refer to elements that are used by agents to facilitate their interaction, but 

cannot make autonomous or independent decisions. The objects defined for this conceptual model 

are Infrastructure nodes, Defensive strategies, Control mechanisms and Cyberattacks. 

Infrastructure nodes 

Infrastructure nodes are the central object within the ecosystem. This is highlighted by their central 

positioning in Figure 5-1, as all agents exert interaction with infrastructure nodes. Infrastructure 

nodes, simply put, are the physical systems that are part of critical infrastructures. They are 

components of a greater network and are directly tied to grave consequences in case of 

inoperability. Defenders directly control the operation of these nodes and aim to secure the system 

from undesired intrusions. The main states associated with infrastructure nodes are shown in Table 

5-8. 

Table 5-8: States associated with node objects 

Node elements Description 

States  

Internal operability The degree of operability posed to a node due to internal affairs, 
e.g. a successful cyberattack. 

External operability The degree of operability posed to a node due to external affairs, 
e.g. an original node impedes this node through dependencies. 

Physical impact The amount of physical damage that could possibly be sustained 
by node inoperability. 

Economic impact The amount of economic damage that could possibly be 
sustained by node inoperability. 

Operation The level of operability currently achieved for an infrastructure 
node. 

Current state of operation The associated state with the level of operation following Setola 
and Theocharidou (2016). Possible state are normal, stressed, 
crisis and recovery. 

 

Infrastructure nodes contain six internal states: Internal operability, External operability, Physical 

loss, Economic loss, Operation and Current state of operation. Internal and external operability 

encompass a similar concept, yet are caused by different entities. The internal degree of operability 

is the direct result from a defender’s capability of defending a node. Successful attacks (false 

negatives) and non-existing detections (false positives) lead to a decrease in the level of operability 

present internally. The external degree of operability is the indirect result from other defender’s 

capabilities of defending their respective nodes, which impede this node due to dependencies. 

Together, these operability components impede a node’s level of Operation. This is directly 

connected with a node’s Current state of operation, which dictates whether losses are being 
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incurred. Together, these elements describe the extent to which losses are incurred. To establish 

exactly how much damage is being sustained, Physical loss and Economic loss describe the possible 

extent of losses. A design decision was initially made to mirror these states to states used by 

attackers, as this paves the way for straightforward operationalisation of these concepts. Keeping 

interfaces clear and simple while maintaining interpretability for states ensures that the model is 

both manageable and accurate. 

Defensive strategies and control mechanisms 

The second and third objects discussed are Defensive strategies and Control mechanisms. A defensive 

strategy is defined as a configuration for a set of control mechanisms. For that reason, the 

parameters that would describe a defensive strategy are the exact same as for control mechanisms. 

These two objects are therefore grouped together to avoid convolution of concepts. A control 

mechanism, as described in chapter 3, is a mechanism that is used to thwart cyberattacks. This can 

be either through prevention, intrusion detection and responses. The states associated with 

defensive strategies and control mechanisms are displayed in Table 5-9. 

Table 5-9: States associated with defensive strategy/control mechanism objects 

Defensive strategy/control 
mechanism elements 

Description 

States  

Prevention sensitivity The likelihood for a prevention mechanism to correctly classify an 
attack. Derived from the false negative rate. 

Prevention specificity The likelihood for a prevention mechanism to correctly classify 
user traffic. Derived from the false positive rate. 

Detection sensitivity The likelihood for a detection mechanism to correctly detect 
there is an intrusion. Derived from the false negative rate. 

Detection specificity The likelihood for a detection mechanism to correctly predict 
there is no intrusion. Derived from the false positive rate. 

Alleviation threshold The operability threshold required for a defender to respond with 
alleviation. 

Alleviation duration  The duration it takes to alleviate intrusions and resume 
unhindered operation of a node. 

Retention threshold The operability threshold required for a defender to respond with 
retention. 

Retention duration The duration it takes to retain intrusions and restart operation of 
a node. 

 

The distinction between preventive, detective and responsive control mechanisms is represented by 

the states associated with control mechanisms. Prevention sensitivity and Prevention specificity 

describe the attributed measures of performance for prevention mechanisms. Similarly, Detection 

sensitivity and Detection specificity describe performance metrics for intrusion detection 

mechanisms. The sensitivity of a control describes the rate at which attacks are correctly classified as 

such. A failure to do so results in a false negative, as a true attack is not prevented or detected. 

Specificity denotes the rate at which normal traffic (or a lack of attacks) is classified as harmless and 

therefore not prevented or detected. If this is not the case, a false positive arises, as legitimate traffic 

was blocked from the system, or the defender tries to remove an attack that does not truly exist. The 

other four states directly tie into the perceived operability for a defender. Alleviation threshold and 

Retention threshold describe the thresholds for this degree of perceived operability at which a 
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defender decides to conduct alleviation or retention, respectively. Alleviation duration and Retention 

duration describe the time required to remove all attacks and resume normal internal system 

operation for alleviation and retention respectively. It is important to note that retention always has 

a heavier impact than alleviation. The threshold for alleviation should therefore always be lower than 

the threshold for retention. Similarly, because retention is a more drastic measure, it should take less 

time than alleviation, implying retention duration should always be lower or equal to alleviation 

duration. The decision to model responses as such is a tentative and assumptious one. There are 

many ways to model the effectiveness of response mechanisms, such as probability-based clearing of 

all or some attacks at every step of simulation. This choice is tentative in itself, but a necessary one to 

establish a conceptual model. The other option would likely not have a significant impact on model 

behaviour, but that does not mean take away the assumptious nature of the implemented concept. 

Cyberattacks 

The last type of object included in the ecosystem is included in the form of cyberattacks. 

Cyberattacks are initiated by attackers and are the direct result of their interaction with an 

infrastructure node. Since a cyberattack is targeted towards a single node, it does not directly 

interact with defenders themselves. The states applied to a cyberattack object define the way other 

entities should interact with one. Table 5-10 lists all states associated with cyberattacks. 

Table 5-10: States associated with cyberattack objects 

Cyberattack elements Description 

States  

Detection Whether an attack is detected or not. 

Power The relative power of this cyberattack to the level of operation in 
a node. 

Method of attack Whether the attack is conducted as a Denial-of-Service or Worm 
attack. DoS attacks are aimed at individual nodes, whereas 
worms can spread through connections. 

Chance of spreading Only applicable to worms: If the cyberattack is a worm, the worm 
can spread to other connected nodes. The worm arrives as if it 
were regular traffic, and is therefore first subjected to prevention 
mechanisms. 

Duration How long an attack has lasted. 

 

There are five internal states that define how a cyberattack interacts with other entities in the 

system. The first, Detection, is a simple check as to whether a control mechanism detected the attack 

during its lifespan. The second, Power, is the degree of internal damage that can be inflicted to a 

node’s operability. The degree of power depends on the type of attack defined in chapter 3. 

Similarly, the Method of attack describes the MO behind an attack, which is either a worm-based 

attack or a Denial-of-Service-based attack. The Duration of an attack is used to keep track of how 

long attacks have been going on, establishing a performance metric to assess the timeliness of 

defensive decisions. Additionally, worms can spread through connected neighbouring nodes to 

further infect the ecosystem. The likelihood of this occurring is given by Chance of spreading. These 

states define a high-level, abstract representation of cyberattacks and their impact on nodes. It is not 

likely that such a definition could translate directly into real-world cases. These assumptions impact 

model interpretability significantly, as real-world cases that inspired this study and introduced the 

knowledge gap have already shown that attacks can be incredibly sophisticated and operate on more 
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layers than presented here (Department of Homeland Security, 2015; Fairley, 2016; Farwell & 

Rohozinski, 2011; Liang et al., 2017). 

5.4 Model performance metrics 
This section will briefly discuss which metrics represent model performance appropriately. Before 

model formalisation steps are conducted, it should be clear where exactly emergent behaviour 

should be expected. An agent-based model can quickly contain dozens or hundreds of parameters or 

possible combinations of parameters, many of which provide little insight into dynamic emergent 

behaviour. Factors that are likely part of the model but will provide no insight in model behaviour 

include the number of nodes, the number of attackers or average dependency weighting. Instead, 

changeable, emergent properties should be monitored. 

5.4.1 Damage to nodes 
The first metric to track dynamic model performance is the degree of damage being inflicted to 

nodes. This includes the total amount of losses incurred, as well as the implicit physical and economic 

components. The main purpose for the agent-based model is to assess the effectiveness of coherent, 

top-down defensive strategies in a bottom-up, emergent environment. The severity of consequences 

forms one of the primary inputs to conduct this study in the first place. Exploring changes to the 

sustained extent of damage is the most straightforward practice when assessing whether desired 

behaviour emerges. Since damage can be tracked cumulatively, this shows the relative growth of 

losses following deviations in other performance indicators for a single model run. Other 

performance metrics are likely more chaotic in nature, as there is no cumulative growth or 

improvement in behaviour. Instead, the model is used to assess the system performance under 

certain parameter configurations, which is likely more chaotic and reactionary in itself. Another 

similar indication for the system performance within the model is keeping track of the state of 

operation of nodes in the model.  

5.4.2 Correctness of defensive decisions 
The second metric applicable to track model performance relates to the quality or correctness of 

defensive decisions. Given the prescribed Alleviation threshold and Retention threshold, defenders 

should only conduct decisions when their Perceived operation reaches these threshold. However, the 

true level of Operation in a node might vary significantly. By checking the values or deviation among 

these values, the effectiveness of system configurations can be more accurately explored. This helps 

map the type of decisions being made across a model parameter configuration. Part of assessing the 

correctness of defensive decisions involves establishing whether defenders overestimated, 

underestimated or correctly estimated the level of operation in a node. This can help explain 

whether losses are primarily incurred due to failing to mitigate cyberattacks or due to intrusion 

prevention and detection mechanisms raising false alarms. Since the nature of this study is 

exploratory, this helps account for possible emergent tendencies, since output statistics do not 

provide relevant insights on their own. 

5.4.3 Cyberattack surreptitiousness  
The third metric used to assess model behaviour is the success rate of cyberattacks and all factors 

required to establish the effectiveness of cyberattacks. A key element of ecosystem interaction, 

cyberattacks disrupt functional operation of infrastructures. There are several facets of cyberattacks 

that can be tracked to observe emergent patterns in model behaviour. Assessing whether 

cyberattacks manage to bypass prevention mechanisms for nodes in itself does not yield any 

significant information, as this is inherently tied to the Prevention sensitivity state discussed in sub-

section 5.3.3. More interesting, however, is assessing how long cyberattacks last before they are 
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removed and the fraction of attacks that have been detected. Together, the three metrics identified 

shape a story about what happens over the course of a simulation. 

5.5 Intermediate findings 
This chapter served to establish a conceptual model that incorporates all aggregated model concepts 

discussed throughout chapters 2, 3 and 4. This required specification of all elements to be 

incorporated in the simulation model. The first step, discussed in section 5.1, was to identify the 

framework for model conceptualisation. The complex adaptive systems perspective enables 

identification of states, actions and interactions on the level of individual agents. The next step, 

detailed in section 5.2 was to denote the ecosystem of critical infrastructures from the perspective of 

complex adaptive systems. The translation of the ecosystem into a conceptual model to be used for 

agent-based modelling was discussed in section 5.3. This was done through creating a model 

inventory and specifying all key entities in the ecosystem model. It is important to remember the 

assumptious nature of any such model, as well as the implications of the inclusion of high-level and 

abstract definitions and interaction. The last step, detailed in section 5.4, was to identify possible 

metrics for model performance that can be used to observe emergent patterns. Metrics identified 

relate to the level of operation for nodes, the correctness of defensive decisions made and the 

success factors for cyberattacks. The next steps in this study will continue with the conceptual model, 

formalising and implementing the identified concepts. 
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6 Formalising an agent-based model  
This chapter entails the model formalisation and implementation process. Building upon the 

conceptual model established in chapter 5, the following steps relate to translating actions, states 

and rules towards computable expressions to be included in a simulation model. Following the ABM 

cycle by Nikolic et al. (2013), the steps taken in this chapter correspond with Concept formalisation, 

Model formalisation, Software implementation and Model verification. Conducting these steps 

properly ensures a robust and representative model to discern emergent patterns in system 

behaviour. Section 6.1 will first establish deviations made from the conceptual model to the 

formalised version. This is followed by laying out the model narrative and order of interactions in 

section 6.2. The key mechanisms required to define the actions discussed in section 6.1 are discussed 

in section 6.3. Subsequently, section 6.4 details the process of implementing the model and how the 

model can be used. Next, model verification processes are described in section 6.5. Finally, section 

6.6 wraps up this chapter and defines key concepts identified along the way.  

6.1 Deviations from conceptual model  
To reduce the degree of complexity involved with the modelling process, several deviations were 

made during the formalisation process. These steps do not further abstract complex concepts into 

simpler computations, but were applied to save resources for eventual simulation (Martin, 2009). 

Martin (2009) perceives the codification process of complex systems as an incremental process, 

where system elements are designed as a minimal model and expanded upon with new concepts 

that could improve the system architecture.  

The first change made is to not implement user agents as ABM agent entities at all. Given the relative 

simplicity of their states and actions, their interactions with infrastructure nodes are modelled as 

implicit actions undertaken by infrastructure node operators. Every action and state conceptualised 

for user agents are still included, modelled as elements belonging to infrastructure nodes. 

The second change made is to not implement infrastructure operators and infrastructure nodes as 

separate entities. Instead, defender agents represent both the node object and the original defender 

agent. This does not change the way interactions take place, as defenders only interacted with other 

entities through infrastructure nodes. Furthermore, defenders were originally already tied to a single 

node. This results in defenders interacting with other entities directly, as opposed to indirect 

interaction, which could prove more problematic for modelling purposes. By doing this, only the 

essential agents that display independent, autonomous decision-making are modelled as such. All 

other entities provide the exact same data they would otherwise do, without convoluting the 

simulation model with unnecessary agents. This is done to avoid convolution of procedures within 

the model, as related concerns are grouped, and separate concerns are decoupled at the code level 

(Martin, 2009). 

The third and last change made is to implement cyberattacks as a link entity. This is done for two 

reasons. Cyberattacks as objects need to be capable of spreading, which is done easiest if they are 

capable of calling another procedure.  The other reason is that a link shows the active attack from an 

attacker to a node more clearly. Especially when the attack is worm-based and has spread to multiple 

nodes, this can more easily be distinguished from the rest of the model. 

6.2 Model narrative 
This section discusses the narrative of model interaction. In order to incorporate all actions and 

interactions discussed in chapter 5, the model includes twelve main procedures, thirteen if setup 

procedures are included. To illustrate the overall structure of procedures, Figure 6-1 depicts the 
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structure of overall procedures. A distinction is made between procedures initiated by attackers 

(highlighted in blue) and those initiated by defenders (highlighted in green). The flowchart shows 

how iteration at each distinct time step takes place, aside from the initialisation process, which is 

only conducted at model setup. Although attacker procedures flow into defender procedures, these 

can be seen as separate entities. The former will be discussed first, followed by the latter.  

Initialise model
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intrusions

Retain intrusions

End

Start

Classify inbound 
traffic

Sustain damage

Detect intrusions

Assess impact
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Legend:

Process

Decision
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Figure 6-1: Flowchart depicting the structure of model procedures 

6.2.1 Attacker procedures 
The first step taken by attackers is to assess whether they should attack. Attackers can only launch a 

new attack if they are not currently attacking. If an attacker is already attacking, they will then assess 

whether this attack is a worm. If they are conducting a worm-based attack, they will assess whether 

the worm should spread further or not. Worm-based attacks have a chance of spreading to 

connected nodes of the target. There is a predetermined chance of this happening at each time 
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interval. If the condition to spread worms is met, the attacker determines which connected 

neighbour a node will spread the worm to. The worm then spreads as if a new attack was launched 

towards the neighbouring node. If this is not accounted for, the worm can quickly spread across large 

parts of the network. 

If attackers are not going to initiate a new attack, their procedure ends and another agent will be 

iterated over. If an attacker is not attacking and they do decide to initiate a new attack, they need to 

first identify several elements. The first is the target infrastructure node. Attackers select a target 

that corresponds with their personal preference for type of damage sustained, as well as the overall 

extent of damage sustained. The degree of knowledge available to an attacker determines the level 

of detail to which they pick their target. Attackers with low knowledge pick their targets randomly, 

and attackers with higher levels of knowledge are capable of computing internal damage 

expectations and possible cascading failures.  

The next step is to identify which attack would fit best. To this end, attackers simply pick the most 

powerful attack. The choice of attack is logically limited to whether a certain attacker is capable of 

conducting each type of attack.  

Before an attacker actually creates an attack instance, they need to pass a last check: whether their 

perceived attack utility assessment outweighs the degree of utility they could experience by 

attacking targets outside of the ecosystem. If this is the case, they will be considered as actively 

attacking, while not creating any attack entities. This automatically implies that more knowledgeable 

attackers are also more likely to attack, since they have full knowledge on any and all first-order 

dependent nodes being impacted. 

6.2.2 Defender procedures 
The defender procedure starts with checking whether there is any inbound traffic. This traffic is 

classified following the definitions of prevention mechanisms discussed in section 5.3. The 

classification of traffic works differently for inbound attacks and user traffic. Since user traffic is 

modelled implicitly, a defender calls this procedure themselves. If an attack is classified correctly, the 

defender calls on the associated attacker to remove the attack. If an attack is classified incorrectly, it 

remains intact and undetected. If user traffic is erroneously prevented, the internal operability of the 

associated node is tarnished for a set amount of time. 

The next procedure is also related to the implementation and configuration of control mechanisms, 

being the detection of intrusions. Prevention mechanisms are activated by any traffic being initiated, 

whereas detection mechanisms are applied at each time step. Defenders assess at each time step 

whether there are any inbound attacks, along with the associated impact they expect. This also yields 

the chance to throw up false positives and false negatives. Failure to detect an attack results in 

overestimated perceived operability of a node, whereas false positives result in underestimated 

perceived operability. These elements both tie into the impact assessment and perception 

procedures. 

Following the prevention and detection procedures, a node conducts two procedures related to their 

impact assessment. The first procedure serves to establish the internal and external impact 

components and to derive the actual level of operability. The second procedure represents the 

situational awareness a defender acts upon and establishes the perceived extent of impact. 

Undetected intrusions and erroneously prevented user traffic both contribute to the true level of 

inoperability without being included in the perceived impact assessment.  
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Conversely, false positives resulting from erroneous intrusion detection are not included in the 

impact assessment, as non-existing attacks do not inflict damage directly, while contributing to a 

false degree of situational awareness. This is the direct result of limited and incorrect information 

available to a defender. In terms of the external impact components, these are both the direct result 

of operability of origin nodes with dependencies towards a node. There is no difference between the 

perception and true degree of external inoperability, as node operators can discern when a lack of 

productivity is transferred as input for their internal operability. 

Based on the perceived operability, which is the direct result of perceived internal and external 

impact awareness, defenders select the most appropriate response mechanism. After establishing 

the degree of operability based on internal and external impact perceptions, this is compared with 

two thresholds. Given the shared, top-down defensive strategy, these thresholds are universal across 

all infrastructure nodes. If no threshold is met, no response is executed. If only the alleviation 

threshold is met, the defender will start alleviating intrusions within the node. This keeps the node in 

operation and is the safe, risk averse approach for overall damage sustained. However, keeping the 

node in operation allows worm attacks to spread to connected neighbours. On the other hand, 

intrusion retention is conducted if the more stringent threshold for retention is surpassed. This closes 

the node in order to ensure attacks inflict no further damage in the ecosystem. This takes a shorter 

time than alleviating intrusions, but means that full internal losses are experienced during the 

duration. 

The last defender procedure relates to the degree of operation within every node and the associated 

losses. Physical and economic losses are experienced at each time interval. The extent of damage is 

inversely based on the operability level of a node, multiplied by the total possible losses associated.  

6.3 Model specification 
This section will tread into further detail as to how certain core procedures are formalised. To 

achieve this, the concept formalisation will be discussed first. This is followed by the formalisms 

applied to core model mechanisms. Lastly, the time scale to which the model is tailored will be 

detailed. 

6.3.1 Concept formalisation 
The first step in formalising the conceptual model into a fully-fledged simulation model is to identify 

which states are to be included as software elements. Nikolic et al. (2013) assess the importance of 

this step as it helps establish whether formerly logical elements might have been more context 

dependent than expected. Appendix B denotes full details as to which elements are included, to 

which category these belong and how these software types are formalised. Appendix C shows 

flowcharts that depict all procedures to be found in the model. These elements largely match the 

state definitions discussed in chapter 5, having applied the deviations discussed in section 6.1. Whilst 

there are several additional deviations, these are all very limited in impact and the purpose for this 

becomes clear in section 6.4. 

6.3.2 Model formalisms 
The next step is to formalise all conceptualised model interaction. There are multiple approaches to 

this step, including UML diagrams, pseudo-code and flowcharts (Nikolic et al., 2013). For this study, 

flowcharts are used, similar to the description of the model narrative. Given the deep nestedness of 

interaction among agents, flowcharts serve as a great visual aid to discern between agent 

behavioural inputs and outputs. Additionally, there are several core mechanisms central to model 

interaction. These operationalisation of these mechanisms will be discussed throughout this sub-

section. 
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True degree of inoperability 

As stated in chapter 5, the level of operation is computed through two components of impact or 

inoperability. Inoperability is measured as a continuous scale between 0 and 1 and is the inverse of 

the level of operation. Since both the degree of inoperability and operation are modelled as scales 

from 0 to 1, the level of operation 𝑂 can be derived by the internally limited level of operation and 

the externally limited level of operation. These limited levels of operation are derived from the 

internal impact 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and external impact 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 as defined in (1). 

 𝑂 = (1 − 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  × (1 − 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) (1) 

𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is established by the sum of the impact of all inbound attacks (A), as well as additional 

impact attributed to the sum of the impact of blocked users (U). The internal inoperability 

component is given by (3). 

 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =

{
 
 

 
 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

≤ 1

1, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴

+ ∑ 𝐶(𝑈𝑗)

𝑈𝑗 ∈𝑈

> 1
 (2) 

With: 

 𝐴𝑖: an attack from the set of all active attacks A towards this node 

 𝑈𝑗: a user from the set of all active users currently erroneously blocked from this node 

 I: the power or impact associated with an attack 

 C: the criticality of user traffic  

𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is established by dependencies, following the hampered level of operation in all origin 

nodes. By extent, this refers to the level of inoperability (1 − 𝑂) in each node. The following 

equation denotes this relationship: 

 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

{
 
 

 
 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘), 𝑖𝑓 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘) ≤ 1

1,                                             𝑖𝑓 ∑ 𝑤𝐷𝑘
𝐷𝑘 ∈𝐷

× (1 − 𝑂𝑘) > 1
 (3) 

With: 

 𝐷𝑘: the dependency from origin node k out of the set of all inbound dependencies D 

 𝑤𝐷𝑘: the weighting of dependency 𝐷𝑘 

 𝑂𝑘: the level of operability for origin node k 

Impact assessment 

The calculation of perceived operability is almost identical to deriving true inoperability. However, 

there are slight differences resulting from the implications of situational awareness. The perceived 

degree of operability 𝑝𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is computed identically to the true degree of operability, albeit 

based on the respective perceived components. 

 𝑝𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (1 − 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  × (1 − 𝑝𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) (4) 

With: 

 𝑝𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦: the perceived degree of operation 
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 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙: the perceived value for 𝜌𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 

 𝑝𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙: the perceived value for 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

However, the difference between an actual situation and a defender’s situational awareness 

emerges in how internal inoperability is computed. While the actual impact is composed by all 

attacks, perceived impact is composed by only detected attacks. Additionally, defenders cannot tell 

whether they erroneously blocked legitimate traffic, leading to that facet of internal impact missing. 

On the other hand, false positives in intrusion detection lead a defender to believe the situation is 

more problematic than it really is. False positives for intrusion detection and prevention are 

modelled to expire the next time step, when the error is overturned. The equation for 𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is as 

follows: 

 

𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙= 

 

{
 
 

 
 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

, 𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

≤ 1

1,                                                                     𝑖𝑓 ∑ 𝐼(𝐴𝑖)

𝐴𝑖 ∈𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

+ ∑ 𝐼(𝐹𝑃𝑗)

𝐹𝑃𝑗 ∈𝐹𝑃

> 1
 

(5) 

With: 

 𝐴𝑖: an attack from the set of all active detected attacks 𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 towards this node 

 𝐹𝑃𝑗: a currently detected false positive from the set of falsely detected, non-existent attacks 

on this node  

 I: the power or impact associated with an attack 

The external inoperability component is no different for the degree of perceived impact than it is for 

the true extent of inoperability. Defenders are able to tell when origin nodes are not delivering the 

performance dependent nodes expect, putting instantaneous pressure on node operation. The 

external component is thus computed exactly the same way as equation (3). 

 𝑝𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝜌𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (6) 

Intrusion prevention and detection 

Another key mechanism is the prevention and detection of intrusions by defenders. As opposed to 

the computation of risk assessment and perception, these processes do not involve any sophisticated 

computations. Figure 6-2 depicts the process and order of operation formalised for intrusion 

prevention. Intrusion prevention can be called for two types of events: an attacker attempting to 

launch an attack and a defender simulating user traffic reaching the node. Both events call for 

classification into either attacks or harmless, legitimate traffic. Incorrect classifications result in an 

underestimation for perceived risk and an increase in true risk exposure. The success of these 

classifications is based on the effectiveness of the prevention mechanism, which is the expressed by 

prevention sensitivity and prevention specificity. Random values between 0 and 1 are generated to 

assess whether a successful event occurs, with prevention sensitivity and prevention specificity each 

denoting the success rate of classification. 
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Figure 6-2: Flowchart for intrusion prevention procedures 

The procedure for intrusion detection also consists of two separate sub-processes. The first deals 

with possibly generating false positives, which in turn leads to an overestimation of the risk 

perception. The second sub-process deals with detecting existing attacks. Failing to appropriately 

classify an attack lead to no changes being made, as the undetected attack already contributes to the 

true degree of risk exposure. Detecting an intrusion correctly helps bring the degree of perceived 

impact more in line with actual effective impact and helps feed into eventual response decisions as 

discussed in section 6.2. The intrusion detection process is shown in Figure 6-3. The success of these 

classifications is based on the effectiveness of the detection mechanism, which is the expressed by 

detection sensitivity and detection specificity. Since detection sensitivity and detection specificity 

both represent the success rate of classification of attacks and non-attacks, random values between 

0 and 1 are used to determine whether classification results in a true positive, false positive, true 

negative or false negative classification.  

Damage calculation 

The procedure of damage computation relies on two main factors as discussed in chapter 2: physical 

and economic losses. The total degree of losses 𝐿𝑡𝑜𝑡𝑎𝑙 is given as the sum of these components (7). 

Both components are in turn computed by the product of the extent of inoperability and the 

associated respective loss factors 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 or 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐. These computations are shown in (8)and 

(9). 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐿𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 (7) 
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 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = (1 − 𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙) × 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 (8) 

 

 𝐿𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 = (1 − 𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙) × 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  (9) 
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Figure 6-3: Flowchart for intrusion detection procedures 

Target and attack selection 

The mechanism used to select a target depends on the overall knowledge level 𝐾. The cases for each 

value of 𝐾are shown in (10). Indicative of attacker interaction is the depth of their perception 

growing as their knowledge level increases. Being able to assess weighted loss more clearly yields a 

more refined target selection scheme, which increases the capabilities of attackers as well as their 

likelihood to attack nodes within the ecosystem. The lowest level of knowledge, shown in (11), 

randomises the attacker from the target population 𝑇𝑖. The medium level of knowledge, shown in 

(12), maximises the perceived attacker utility from attacking the isolated target alone. The highest 

level of knowledge, shown in (13), maximises perceived attacker utility for attacking each target as 
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well as all outgoing dependent nodes. This is given by the maximisation of attacker utility for the 

target node added to all attacker utility attained from first-order dependencies.  

 𝑇 = {

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11), 𝑖𝑓  𝐾 = "𝑙𝑜𝑤"
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12), 𝑖𝑓 𝐾 = "𝑚𝑒𝑑𝑖𝑢𝑚"
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13), 𝑖𝑓  𝐾 = "ℎ𝑖𝑔ℎ"

 (10) 

 

 

𝑇 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑇𝑖) 

 

(11) 

 𝑇 = max
𝑇𝑖
( 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝑖 × 𝑃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑖 × 𝑃𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐) (12) 

   

 

𝑇 = max
𝑇𝑖
( (𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝑖 × 𝑃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑖 × 𝑃𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐)

+ ∑ 𝑤𝐷𝑗 ×

𝐷𝑗∈𝐷𝑜𝑢𝑡

(𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
𝑗

× 𝑃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑗

× 𝑃𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐)) 
(13) 

With:  

 𝑇: the selected target 

 𝑇𝑖: A target 𝑖 from the set of all targets available (nodes who are not in crisis or recovery) 

 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
𝑖 : factor of physical loss associated with a node 𝑖  

 𝐹𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑖 : factor of economic loss associated with a node 𝑖 

 𝑃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙: attacker preference for physical damage 

 𝑃𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐: attacker preference for economic damage 

 𝐷𝑜𝑢𝑡: the set of outgoing dependencies 

 𝐷𝑗: A dependency 𝑗 from the set of outgoing dependencies 𝐷𝑜𝑢𝑡 leading to a dependent 

node associated with this dependency 𝑗 

 𝑤𝐷𝑖: the weighting of a dependency 𝐷𝑗 

The mechanism applied to assess which attack to use is relatively straightforward: attackers with all 

levels of knowledge pick the most powerful attack. Since attack powers are not context-dependent, it 

would be unrealistic to assume attackers have no knowledge over their own resources. The equation 

for this maximisation problem is shown in (14).  

 𝛼 = max
𝑎𝑖∈𝛼𝑐𝑎𝑝𝑎𝑏𝑙𝑒

(𝐼( 𝑎𝑖)) (14) 

With: 

 𝛼: the selected type of attack 

 𝑎𝑖: an attack type 𝑖 iterated over 

 𝛼𝑐𝑎𝑝𝑎𝑏𝑙𝑒: the types of attack available to this attacker 

 𝐼(𝑎𝑖): the impact or power associated with an attack of type 𝑎𝑖  

6.3.3 Time scale  
The time scale the model will iterate over is based on a time interval of one day, meaning one tick in 

the simulation model corresponds with one day. Because choices made during model formalisation 

reduced the computational strain exerted by the simulation model, thousands of ticks can be 
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iterated through relatively quickly. A daily time interval allows for threats to occur following more 

realistic distributions, while avoiding to create a model that is extremely sensitive to very uncommon 

events. Given the aim of this study to assess the effectiveness of different coherent defensive 

strategies, a time interval that stretches over multiple years is applied. However, to avoid dealing 

with uncertainties with regards to developments in the ecosystem, the overall timespan should be 

constrained. With these requirements in mind, a timespan of five years (or 1825 days) was chosen, as 

this allows for robust assessment of defensive strategies without straying too far into the unknown.  

6.4 Software implementation 
This section discusses elements related to the software implementation phase. First, the chosen 

software package will be discussed. Next, an overview of what model elements look like is given.  

6.4.1 NetLogo 
The software package chosen to implement this agent-based model is NetLogo for Windows, version 

6.0.2. NetLogo, developed by Northwestern University’s Uri Wilensky, offers an easy-to-understand 

software environment that allows researchers to model complex adaptive systems (Tisue & 

Wilensky, 2004). NetLogo is particularly well-suited for studies that assess the behaviour of different 

system configurations. Since this study is not primarily quantitative, NetLogo offers a suitable and 

applicable software environment to implement the formalised model for thorough exploration and 

experimentation (Nikolic et al., 2013). The true representativeness of the model is not to compare 

real-world policy instruments, as those would require incredibly specific and non-generalisable 

models, but instead to explore what happens if top-down defensive strategies were applied to 

different scenarios. 

6.4.2 Model overview 
The simulation model now implemented in NetLogo features several elements that require further 

explanation. The overview of the model is shown in Figure 6-4. There are four distinct elements of 

the model interface: model input parameters, buttons, the model and output monitors. 

 

Figure 6-4: Model overview in NetLogo 

Model input parameters, such as sliders, choosers and switches, prescribe values used during model 

usage. An example of each is shown in Figure 6-5. Model input parameters can be altered to affect 

core functionality of the model. A division was made between attack setup, attacker setup, model 

setup, scenario parameters, and design parameters. The first two types are all supposed to be static 

for experimentation, but can be altered over to explore model behaviour for a baseline 
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configuration. The model setup parameters are purely in place to make the model appear less 

convoluted. Scenario parameters are uncertain factors that are varied over to suppress uncertainty. 

The last set, design parameters, serve as the foundation for experimentation. 

 

Figure 6-5: Examples of model input parameters. From top to bottom: slider, switch, and chooser. 

Buttons are used to operate the model. The buttons used in the model are shown in Figure 6-6. 

Buttons directly operate procedures to be called. There are two main operating procedures: setup 

initiates the model and clears digital residue from previous model runs and go operates the main 

system procedure, which in turn calls on all sub-procedures. There are three types of go buttons: go-

once simulates one tick, go-1825 simulates 1825 ticks and go-forever continuously simulates ticks 

until the button is depressed. The other buttons are used to show or hide elements that might be 

convoluting the model view. 

 

Figure 6-6: Buttons in NetLogo 

The model view is the main element of NetLogo’s interface. The model view depicts all elements of 

interactions that elicit visual changes. Two examples are shown below: Figure 6-7 depicts the model 

view if no elements are hidden, whereas Figure 6-8 shows the default model configuration, hiding 

connections. Visual elements shown are: 

 Attackers (the top row of entities) with their state (attacking?) determining their display 

colour: red attackers are currently attacking, whereas yellow attackers are not. 

 Infrastructure nodes or defenders (dots in the middle of the model view) with their state 

(current-state) determining their display colour. Green nodes are in normal operation, yellow 

nodes are stressed, red nodes are inoperable and blue nodes are recovering. The label “A” 

indicates alleviation is in process and the label “R” indicates retention is in process. 

 Attacks (connections between attackers and nodes) with their shape affected by the 

associated attack method and their colour set by their state (detected?). A blue attack is 

detected, a red attack is not. 

 Dependencies are directed links between two nodes. The line thickness is affected by the 

weighting and their colour matches the state of the origin node (except for recovering nodes 

which exert a red dependency). 

 Connections are undirected links between two nodes. They have no further properties. 
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Figure 6-7: Model view in NetLogo. Hiding no elements. 

 

Figure 6-8: Model view in NetLogo. Hiding only connections. 

The last element of the model interface are output monitors. Only one type of output monitors are 

used, plots. Plots indicate the development of certain model parameters over time. Each plot can 

include multiple graphs and can be used to indicate differences in model performance across 

different sets of agents. Two examples are shown in Figure 6-9. 
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Figure 6-9: Model output plots 

6.5 Model verification 
After implementing an agent-based model, the model should be verified to ensure that the way the 

model operates is in line with desired interactions and that no errors were made during 

implementation (Nikolic et al., 2013). When designing a model that might be difficult to validate, 

which is typical for ecosystem-level simulation models, extra emphasis should be placed on the 

validity of concepts implemented in the model (Augusiak et al., 2014; Kwakkel & Pruyt, 2013). Martin 

(2009) prescribes thorough unit testing for any coding projects, as the only meaningful elements of 

code are those that have been subjected to clean testing. The Evaludation framework put forth by 

Augusiak et al. (2014) proposes an integrated strategy for validating models when parameter settings 

are difficult to quantify or substantiate. As part of this framework, thorough verification of model 

implementation and output is required, but exact pointers to each step are not specified. The 

emphasis placed on verification by the Evaludation framework corresponds with the agent-based 

modelling cycle by Nikolic et al. (2013). For this reason, verification is conducted following the agent-

based modelling cycle. Model verification is conducted in four steps:  

1. Tracking agent behaviour: actively implementing debug procedures during model 

implementation to ensure that the desired result was achieved for each implemented set of 

commands. 

2. Single-agent testing: testing whether values are computed correctly by a single agent for 

each type of agents, ensuring that the mechanisms by which individual agents operate are 

implemented correctly.  

3. Interaction testing in a minimal model: testing whether the order and execution of 

interaction works correctly by implementing a model with the minimal number of entities. 

This serves as another check to ensure that overall interaction is the desired result from 

single-agent actions. 

4. Multi-agent testing: testing whether values resulting from simulation model repetitions exert 

the desired variability to ensure values are computed correctly and outliers can be explained. 

Besides testing the variability, timeline sanity is evaluated for several model repetitions to 

ensure that desired emergent behaviour results from a set of preconditions. 

These four steps were conducted thoroughly and resulted in several implementation errors 

emerging. The results of these steps are discussed in full detail in Appendix E. By ensuring agent 

behaviour was consistently tracked during model implementation, the burden on further verification 

steps was reduced. Debugging tools were continuously implemented to ensure that values were 

modified as desired and correct procedures were called.  

By conducting single-agent testing, several errors came to light, as well as multiple possible 

improvements to ensure undesired behaviour could not emerge. This was done by attempting to 

break the model with extreme and unrealistic or impossible values, as well as conducting several 
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sanity checks for general model behaviour. It was found that the model implementation operates as 

desired for the most part, and errors encountered were immediately resolved. 

This was further put to the test during interaction testing within a minimal model. This step entailed 

devising several scenarios for agent and system parameters. Each scenario was accompanied by a set 

of checks for parameter modifications that should occur and the order at which these occur. No 

errors were found during this stage, indicating that the structural validity of the model is likely in line 

with the concepts identified in chapter 2, chapter 3 and chapter 4.  

The last step, multi-agent testing, was conducted to verify whether output values could logically be 

explained. It was identified that the nature of the model implies chaotic behaviour when assessed 

over the timeline of a simulation run. This is the direct result of the reactive nature of the simulation 

model, as there is no developing degree of model performance over time. For this simulation model, 

the main purpose of the timeline is to prescribe the amount of data points required for thorough 

analysis. It was found that within single model runs, the variability between subsequent time steps 

could be large, while the general tendencies of each model run were explained by occurring events, 

such as an active attack emerging. The variability between multiple model runs was found to even 

out across a multitude of repetitions, which was in line with expectations. The main take from this is 

that analysis relating to the time scale is not likely to yield any noteworthy results. Instead, results 

should be assessed as cumulative parameters relating to the entire model run. That way, 

performance of the model is stable across several model runs, which paves the way for more 

thorough exploration of experiments. Overall, the designed simulation model is in line with the 

desired formalised model and is capable of simulating interaction among entities and concepts 

identified previously. To ensure bias or sensitivity is not an issue, the experimental design should 

account for the desired model output parameters as well as possible sensitivity to uncertain model 

parameters.  

6.6 Intermediate findings 
This chapter sought to translate conceptual elements from chapter 5 into a fully-fledged simulation 

model. The first step to formalising the conceptual model was to identify which deviations would be 

applied to the conceptual model to avoid overcomplicating the formalised model. The main 

deviations made were switching the user agent group to a more passive role, as differences between 

different users were impossible to establish in a meaningful manner, and to synthesise defender 

agents and node objects, as defender agents could only account for behaviour related to a single 

node in the conceptual model to begin with. The next step was to describe the narrative for model 

operation, indicating which procedures would be executed and the order in which this occurs. The 

main step towards model implementation was to specify concepts in the model to implementation-

ready computations and mechanisms. After these concepts were specified, the model was 

implemented in NetLogo. Lastly, the simulation model was verified to ensure the implemented 

model was in line with the desired model. This was a crucial step before the model can be used for 

experimentation, as it contributes to the validity of eventual results given the existing exploration of 

each concept throughout previous chapters. The next step is to use the model for experimentation 

and subsequent data analysis to assess model performance.  
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7 Model experimentation and exploration of sensitivity 
This chapter details the process of using the verified simulation model to conduct experimentation 

and the first phase of data analysis on the experiment results. The first phase of data analysis entails 

exploration of model behaviour under different circumstances. The first step towards producing a set 

of representative experiments is to identify the framework used for experiments and the parameters 

used for experimentation. This is explained in section 7.1. The second step, discussed in section 7.2, 

describes the results of model exploration and the implications for further data analysis. The results 

from experimentation and exploration will be wrapped up in section 7.3, providing intermediate 

findings. 

7.1 Experimental design 
The aim of this section is to detail the ways in which the simulation model can and will be used to 

explore and assess system behaviour under certain parameter configuration. First, the framework 

applied to exploration and experimentation will be discussed. Secondly, model parameterisation is 

discussed. Thirdly, the setup for experimentation is described. 

7.1.1 Exploratory modelling and analysis and Evaludation 
The central question posed for the modelling objectives was previously defined as “What happens 

when …?” (Nikolic & Kasmire, 2013). The main goals for model usage are exploratory in nature, 

seeking to analyse deeply uncertain and complex system behaviour. Bankes (1993) notes that 

exploratory modelling can help address issues typically uncovered by traditional consolidative 

modelling, as exploratory modelling can provide insight into the effectiveness of policy configurations 

even when models are not validated and true statistical sensitivities are unknown. Since this study 

revolves around ecosystem-level interaction among tentatively represented agents, it is difficult to 

establish the true meaning of entities in the model. While attempts are made to validate the model 

to true real-world behaviour and outcomes, deviations in defensive strategies by definition stray into 

the unknown. Despite the degree of uncertainty, validity of exploratory models can be established by 

coherently integrating substantiated conceptual facets into eventual model outcomes (Augusiak et 

al., 2014). Given this degree of uncertainty, experiments should account for possible subsequent 

deviations in system behaviour. 

In order to establish experiments that can achieve these objectives, the Exploratory Modelling and 

Analysis (EMA) approach for simulation models as described by Kwakkel and Pruyt (2013) will be 

applied. The EMA framework delineates a set of practices and checks for exploring model behaviour. 

This approach is tailored specifically to using simulation models to analyse technological 

interventions, highlighting their effectiveness across multiple performance indicators. Since the 

uncertainty experienced on an ecosystem level within this study cannot be reduced, the EMA 

approach helps achieve valid simulation results. Connecting to the notion of emergent behavioural 

patterns for complex adaptive systems, EMA tries to extract data regarding these patterns from a 

vast set of experiments with different parameter settings.  

First, a set of uncertain parameters is established for the model. This includes interactions that are 

based on values that are likely to vary to a certain extent. Along with the set of parameters, their 

value ranged are also specified. The second step is to establish data analytics that cover the variety of 

system runs, identifying the degree of uncertainty experienced for certain performance metrics. The 

third and last step is to discuss the results of these analytics in the light of policy representations to 

indicate under which circumstances proposed interventions could be effective. Crucially for agent-

based simulation models, the analytics can be used to point out the value ranges for which certain 

policy interventions are effective (Kwakkel & Pruyt, 2013). For the purposes of this study, EMA can be 
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used to assess robustness of conceptual defensive strategies across the possible scenario space. A 

framework that is typically applied to exploratory models is the Evaludation approach by Augusiak et 

al. (2014) briefly introduced in section 6.5. Evaludation helps establish valid results from exploratory 

models and will be used to validate model outcomes in chapter 8. 

7.1.2 Experimental design  
Based on the EMA framework, a design was generated for experimentation. The experimental design 

consists of a set of scenarios for model parameters and designs for defensive strategies. In this sense, 

an experiment is defined as the combination of a design and a scenario. The aim for experimentation 

is to explore the effects of formulated conceptual designs. The scenarios are included to explore the 

robustness of each design across of a variety of model parameter settings to account for model 

sensitivity. First, the setup for model parameters will be discussed, as well as the set of scenarios 

explored. Afterwards, the implications of the set of parameters are discussed, denoting the number 

of experiments to be conducted as well as the data collection process. These parameters correspond 

with the formalisation of model concepts in Appendix B. 

Conducting thorough and accurate experiments requires formulation of several factors crucial to this 

process. As discussed above, the main elements are designs for defensive strategies and parameters 

for scenarios that describe a certain degree of uncertainty (Kwakkel & Pruyt, 2013). Chosen 

parameter settings are based on default parameter values listed and substantiated in Appendix F. In 

order to produce valid experimentation results, it is necessary to establish the veracity of each 

parameter (Augusiak et al., 2014).  

Four defensive strategies were conceptualised to be applied across the set of experiments. These are 

listed and described in Table 7-1 below. The associated values used for design parameters used for 

experimentation are listed in Table 7-2 below. There are four defensive strategies. Between all 

defensive strategies, thresholds for alleviation and retention are shifted to account for overall 

differences in false positive and false negative rates. The inclusion of operability as a central 

modelling construct requires an appropriate interface for decision-making. In this case, perceived 

operability serves as the metric used for deciding which responsive mechanism is required. Since the 

concept is in itself conceptual, the threshold used is a simplification of a complex process that in the 

real-world depends on many additional variables. The values used for these design parameters 

account for differences in sensitivity and specificity for each defensive strategy. These values were 

established through a process of trial and error, where a brief run of baseline experiments was used 

to establish which set of thresholds performed best in a static environment for each strategy. 

The first strategy represents fully anomaly-based intrusion prevention and detection, likely leading to 

a low false negative rate. On the other hand, the associated false positive rate is likely higher. The 

second strategy involves fully specification- or signature-based intrusion prevention and detection 

mechanisms. The functioning of this strategy opposes the first strategy, as a raised alarm almost 

always equates to an attack taking place, yet attacks themselves are less likely to be thwarted at an 

early stage. The third strategy is a hybrid between the first and second strategies, deploying 

anomaly-based intrusion prevention and specification - or signature-based intrusion detection 

mechanisms. Similarly, the fourth strategy combines signature-based intrusion prevention and 

anomaly-based intrusion detection systems. These designs seek to extract the best qualities from 

both strategies.  
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Table 7-1: Defensive strategies and expectations 

Strategy Description/expectation 

(1) Fully anomaly-
based intrusion 

detection & prevention 

This strategy involves one of three typical intrusion detection and 
prevention systems (IDPS) as described by Patel et al. (2013) and 
seeks to detect patterns that deviate from pre-specified behavioural 
rules (Mitchell & Chen, 2013). These systems tend to be sensitive to 
raising false alarms, but are adaptive enough to deal with the vast 
majority of attacks. Integrating such a strategy for coherent, 
ecosystem-level assessment of threats to individual systems is likely 
to prevent many attacks from entering the system and spreading 
across connected nodes. However, the system is likely to cause 
cascading failures by filtering out crucial user traffic.  

(2) Fully signature-
based intrusion 

detection & prevention 

This strategy is based on another intrusion detection and prevention 
system discussed by Patel et al. (2013). Signature-based intrusion 
detection and prevention involves matching detected patterns with 
specific types of attacks or misuse. These systems work well at 
detecting a known attack if present, without the negative side 
effects from the first strategy. However, these mechanisms fall short 
in dealing with an adaptive and constantly evolving threat 
environment (Berthier et al., 2010). This strategy is expected to 
perform best at preventing unnecessary defensive decisions, but 
likely falls short at consistently dealing with active attacks in a timely 
manner. 

(3) Hybrid between 
anomaly-based 

intrusion prevention & 
signature-based 

intrusion detection 

This strategy is based on a third category of intrusion detection and 
prevention systems suggested by Patel et al. (2013). These systems 
combine elements found in other IDPS in an attempt to achieve the 
best of both worlds. In this case, the deployment of a hybrid system 
uses two separate methods distinctly for intrusion prevention and 
intrusion detection. By applying anomaly-based intrusion 
prevention, the presence of attacks within the ecosystem is 
minimised. Subsequently applying signature-based intrusion 
detection helps detect the small margin of attacks that was not 
detected, while avoiding unnecessary complication of false alarms. 
The expectation is that this strategy works well at adapting to 
shifting circumstances within the ecosystem, but might fail to 
address core issues arising from critical user traffic. The decision to 
alleviate cannot be stopped in the model, and it can take one 
mistake in assessment to cause chain disruptions in the network. 

(4) Hybrid between 
signature-based 

intrusion prevention & 
anomaly-based 

intrusion detection 

This strategy seeks to strike a similar balance between anomaly- and 
signature-based intrusion prevention and detection systems as 
Strategy 3. In that sense, Strategy 4 is the opposite counterpart to 
Strategy 3, as it makes use of signature-based intrusion prevention 
and anomaly-based intrusion detection. In essence, this strategy 
seeks to mitigate the impact of erroneously blocked user traffic 
while ensuring attacks that might have slipped through are detected 
quickly. The expectation for this defensive strategy is that it 
encompasses more negative aspects of both types of controls than 
other defensive strategies, as inoperability resulting from 
unprevented attacks and obfuscation of situational awareness due 
to false alarms are both risks. Other defensive strategies encounter 
only one of these problems, whereas Strategy 4 likely incurs both.  
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Table 7-2: Design parameters for each defensive strategy 

Parameters Strategy 1 Strategy 2 Strategy 3 Strategy 4 

Prevention sensitivity 0.95 0.80 0.95 0.80 

Prevention specificity 0.80 0.95 0.80 0.95 

Detection sensitivity 0.95 0.80 0.80 0.95 

Detection specificity 0.80 0.95 0.95 0.80 

Alleviation threshold 0.70 0.80 0.75 0.70 

Retention threshold 0.30 0.20 0.25 0.20 

 

In order to explore the robustness of these conceptual designs across the uncertain parameter space, 

a set of scenarios is formulated, the value ranges of which are shown in Table 7-3. These parameters 

are varied based on their default value as denoted in Appendix F, ensuring that uncertainties 

surrounding the parameters do not dictate model behaviour. The low degree of tangible information 

available for ecosystem-level analysis of critical infrastructures complicates the validity of 

experiments to be conducted.  

Table 7-3: Scenario parameter value ranges 

Parameter Value range 

Dependency weighting ≥ 0.3 𝑎𝑛𝑑 ≤ 0.7  

Attack frequency ≥ 0.03 𝑎𝑛𝑑 ≤ 0.07  

Attack powers Attack 1: ≥ 0.25 𝑎𝑛𝑑 ≤ 0.45 
Attack 2: ≥ 0.45 𝑎𝑛𝑑 ≤ 0.65 
Attack 3: ≥ 0.5 𝑎𝑛𝑑 ≤ 0.7 

Worm spread likelihood ≥ 0.1 𝑎𝑛𝑑 ≤ 0.4  

User traffic frequency ≥ 0.2 𝑎𝑛𝑑 ≤ 0.6  

User traffic criticality ≥ 0.2 𝑎𝑛𝑑 ≤ 0.6  

Alleviation duration 5, 6, 7  

Retention duration 2, 3, 4  

 

The set of scenarios is created within these parameter ranges following Latin Hypercube Sampling 

(LHS). Nikolic et al. (2013) denote the applicability of LHS to agent-based models, as they generate a 

set of parameter settings that approximates uniformity across the scenario space. To accomplish this, 

a set of 250 unique scenarios was created using the ‘lhs’ package in R by Carnell (2016). Since the aim 

of these experiments revolves around comparing the robustness of four designs, a deliberate choice 

was made to generate a single set of unique scenarios to be used across all four designs. Exploratory 

modelling, especially using models that prove difficult to validate, typically involves a large number of 

model runs to ensure results are generalisable for possible real-world representations (Bankes, 

Walker, & Kwakkel, 2013). By incorporating a set of 250 scenarios and four designs, a total of 1000 

unique experiments will be conducted. To ensure the effects of chaotic model behaviour on results 

are reduced, multiple repetitions are typically conducted for agent-based models, so long as 

computational requirements allow for this (Nikolic et al., 2013). Each repetition repeats the same 

experiment, but variation will still be encountered due to chaos. There is no ‘right’ number of 

repetitions, but the general rule of thumb prescribes simulating as many repetitions and scenarios as 

possible. Since nearly all model runs using identical parameter settings were verified to yield similar 

distributions of data (detailed in full in Appendix E), there is not a significant degree of variability for 
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model outcomes across multiple repetitions. To meet computational requirements, each experiment 

is conducted 25 times, yielding a total of 25000 repetitions, each repetition spanning across 1825 

ticks.  

7.1.3 Experimentation output 
The experimental design was implemented within the agent-based model and ran fully on two 

separate machines to ensure no data corruption took place. The total set of experiments, spanning 

25000 repetitions of 1825 ticks, yields a total number of observations of over 45 million. This number 

of observations would result in a dataset that would prove difficult to process on both machines 

available for this study. To mitigate this, experiments for each defensive strategy design were run 

separately and the outputs were pruned to only contain necessary information. Since the chosen 

performance indicators for this model require nearly 30 separate parameters to be tracked at each 

time step, the resulting dataset size was substantial at over 8 GB. The size of this dataset complicates 

the set of analysis tools prepared to achieve desired insights in model performance across 

experiments. The dataset was pruned to only contain the required data points at the end of each 

repetition, resulting in 1 data point per repetition instead of the original 1825 data points per 

repetition. As a result, the number of data points was reduced by roughly 99.7%, from over 34 

million to 25,000. Both machines resulted in comparable runtimes of around 2.5 hours for full model 

simulation (approximately 40 minutes per defensive strategy design), for an average run time of less 

than half a second. Following these steps, the dataset was prepared for data analysis to answer the 

research sub-questions. 

7.2 Model exploration 
The aim of this section is to detail behaviour emerging from the experiments. The process of 

exploring model behaviour entails two main elements. First, model performance over the entire set 

of experiments is assessed for each performance indicator. Next, the impact of variations in scenario 

parameters is discussed. Together, these steps help establish the sensitivity of the model towards 

uncertain parameters, which is crucial in ensuring model outputs are valid and reliable (Augusiak et 

al., 2014).  

7.2.1 Model performance density 
Exploring model behaviour is no straightforward task, as the underlying complexity of concepts 

incorporated into the simulation model might interact in a way that was not expected. This also 

underlines why model exploration is so crucial, as it helps understand how the system might perform 

in the real world. This subsection seeks to establish the Kernel Density Estimations of model output 

across the entire set of scenarios to assess emergent patterns. This is done for a multitude of model 

parameters, following the same structure as applied to multi-agent verification described in appendix 

E. For each parameter, the expected behaviour is hypothesised and subsequently assessed based on 

presented data. The general expected behaviour if no particular sensitivities are found is symmetrical 

behaviour across each experiment, with positive and negative swings causing similar deviations from 

baseline model behaviour, albeit in different directions. Each plot will be drawn from the complete 

set of experiments and will therefore likely contain variability that is attributable to the effects of 

different defensive strategy designs. These plots were generated using the ggplot2 package in R, 

providing clear and customisable customisation of many different visualisations (Wickham & Chang, 

2008). 

While density estimations alone do not provide complete insight into the performance of individual 

runs, variability analysis conducted in appendix E.IV shows that deviations among repetitions 

belonging to each experiment are negligible. The mean and standard deviation associated with each 
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performance indicator are listed in Table 7-4. The variability of model runs is discussed in more detail 

in appendix E. While deviations can occur, the extent of these deviations average out to almost 

perfectly symmetrical behaviour. Deviations observed across kernel density estimations can 

therefore be attributed to different model configurations used for different experiments. 

Table 7-4: Means and standard deviations for all performance indicators across 1000 repetitions for variability testing 

Performance indicator Mean  Standard 
deviation 

Cumulative losses 5566.92 343.53 

Current losses 0.12 0.0075 

Number of normal nodes 10.79 0.42 

Number of stressed nodes 14.03 0.40 

Number of inoperable nodes 0.18 0.054 

Impact assessment deviation -0.059 0.0011 

Fraction of ‘nothing’ decisions 0.39 0.0073 

Fraction of alleviation decisions 0.60 0.0064 

Fraction of retention decisions 0.0072 0.0021 

Fraction of correct decisions 0.48 0.013 

Fraction of overestimated decisions 0.030 0.0015 

Fraction of underestimated 
decisions 

0.49 0.014 

Number of active attacks 0.21 0.027 

Attack duration 2.66 0.098 

Incurred losses 

The first model output parameter analysed is the extent to which losses are sustained throughout a 

model run. This parameter implies a degree of direct, tangible performance for a model repetition, as 

preventing losses is the primary objective for defensive strategies. This is measured both 

cumulatively over the course of an entire model run and the average degree of contemporary losses 

per node over an entire model run. While values should differ, the patterns for these two parameters 

should be identical, as the latter is the result of summation of average losses per node for an entire 

run. The density plots for the extent of total losses are shown in Figure 7-1 below.  

As shown in Figure 7-1, the behaviour shown by both plots is visually identical. This is to be expected, 

as both parameters relate to the same model parameter, except the former describes summates 

contemporary losses from all nodes and the latter averages these out. Assessing the density of model 

averages would therefore yield identical distributions for different value ranges. The interesting 

behaviour observed from these parameters is the asymmetrical shape of the density graph. The 

upper bound of kurtosis is significantly less densely distributed than the lower bound. In this case, 

scenario parameters that are more beneficial to node operation result in an even decrease in losses, 

as the majority of nodes is not subject to any significant inoperability. The upper bound is disrupted 

by the differences in distribution for defensive strategies. The lower bound instead approaches 

linearity down towards 0. The implications of differences between defensive strategies will be 

further explored in chapter 8. 
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Figure 7-1: Density plots for losses 

Node operational states 

The second model output parameter analysed regards the operational states for nodes. Exploring the 

distribution of operational states for nodes helps understand the effects of defensive strategies and 

scenarios on how the aforementioned losses occurred. Similar loss values can be caused by either a 

large number of slightly hindered nodes or by a smaller number of inoperable nodes. The 

expectation for this parameter is that most runs are characterised by a relatively high number of 

nodes in normal and stressed operation, whereas the number of inoperable nodes is likely lower. 

This can be established based on variability testing conducted in appendix E.IV. Density plots for each 

node operation state are displayed in Figure 7-2 below. 
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Figure 7-2: Density plots for node and their operation states 

The density plots show general trends in node operational states. First of all, the majority of model 

runs show a marginal number of inoperable nodes on average. This is in accordance with 

expectations, as inoperability should be a rare occurrence in the ecosystem and be primarily 

attributable to key defensive decisions and cyberattacks. There are, however, several instances 

where model operation is disrupted to the point where over 5 nodes are inoperable on average. The 

impact this would have on model runs is significant. Noteworthy is that the shape of the density plot 

for inoperable nodes matches the disruptive growth in losses found in Figure 7-1, indicating that 

experiments with a high degree of losses are caused by multiple nodes being inoperable rather than 

slight disruptions in a larger number of nodes. The behaviour shown in terms of normal and stressed 

nodes is more natural and shows a certain equilibrium between clusters of model runs. A substantial 

portion of model runs have noteworthy numbers of stressed nodes, although there seem to be 

multiple local peaks that could be attributed to different defensive strategies. Relating these 

observations to single model runs observed in appendix E, node operational states are 

interchangeably stressed and normal throughout the majority of model runs. 

Average number of attacks 

The third model output parameter relates to the average number of attacks active at each time step 

across an entire model run. Keeping track of the active number of attacks during a run can help 

assess whether certain scenarios lead to a high number attacks, which in turn helps establish 

whether losses are attributable to internal or external impact components. On top of this, the 

fraction of attacks that are detected is also included, providing further information for this 

assessment. The density plots for the number of attacks and the undetected fraction of attacks are 

shown in Figure 7-3 below. 
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Figure 7-3: Density plots for the number of attacks and the fraction of detected attacks 

The average number of attacks shows two distinct sets of patterns across the set of experiments. The 

most common results account for less than one attack per observation. This is to be expected, as this 

is limited by both the predetermined frequency at which attacks occur as well as the sensitivity of 

prevention mechanisms. Interestingly, another set of observations contains a higher number of 

attacks on average, forming a local optimum for a greater number of active attacks. The disparity 

across the set of results is far greater than variations in the frequency at which attacks occur. 

Therefore, it can be asserted that these variations are the result of certain defensive strategies failing 

to prevent attacks or prompt responsive measures in a timely manner. 
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This is corroborated by the similar shift in behaviour observed for the attack detection rate shown in 

Figure 7-3b, where a comparable fraction of observations shows a similar pattern. The observed 

deviations do not occur due to variations in scenario parameters, but instead follow implicit effects 

of defensive strategies. This will be discussed in further detail in chapter 8. 

Average duration of attacks 

The fourth output parameter involves the average duration of attacks. This indicates how long 

unprevented attacks are capable of inflicting damage upon nodes in the system before they are 

removed. The average duration of attacks is only accounted for if there are any attacks, as the metric 

would otherwise be convoluted by successful attack prevention. The duration of attacks is likely to 

vary significantly across a more widely distributed shape than previous parameters, as several 

scenario parameters directly affect capabilities to quickly remove attacks, and some defensive 

strategies might perform subpar at detecting attacks in a timely manner. The associated density plot 

is shown in Figure 7-4. 

 

Figure 7-4: Density plot for the average attack duration 

Behaviour shown in Figure 7-4 follows a largely symmetrical bell-shaped distribution, with four 

different local peaks. This implies that there is likely little variation based on specific value ranges for 

scenario parameters, as the general value range extends to upper and lower bounds of kurtosis. The 

more interesting observation is the overall range of observed values. In the most optimistic scenario 

for defenders, an attack would be detected instantly and alleviation duration and retention duration 

are respectively set to 4 and 2. In this instance, an attack would be removed after two time steps. 

Almost all values encountered indicate an extremely fast removal process, sometimes faster than the 

described optimal scenario. The only possible explanation for this is that single infrastructure nodes 

are repeatedly targeted by multiple attackers, while these nodes were already prompted to either 

alleviate or retain intrusions. That way, several newer attacks could be removed even if originally 

undetected or only briefly detected, as either responsive mechanism removes all inbound attacks. 

This brings down the average to values encountered in the density plot. 
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Overall decision errors 

The fifth output parameter assessed is the fraction of response decisions made compared to the 

decisions that should have been made following a node’s response thresholds and true level of 

operation. This helps establish to what extent defensive decisions are accurate, and more 

importantly, aids in drawing comparisons between decisions made following defensive strategies. 

Density plots were made of how frequent each type of decision (alleviation, retention, no response) 

occurred, as well as the correctness of decisions made across model runs. These are shown in Figure 

7-5. Figure 7-5a depicts the former, whereas Figure 7-5b depicts the latter.  

 

 

Figure 7-5: Density plots for defensive decisions and their correctness 
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Figure 7-5a indicates three main observations. The first, in line with expectations, shows that the 

majority of decisions in most runs is to not respond to intrusions and that retention decisions are 

incredibly uncommon. The reason for this is that responses are only warranted when an attack is 

currently active, and decisions are registered even when no attacks are active. Besides, the threshold 

for retention decisions typically requires multiple active attacks on one node, which is uncommon. 

The second observation relates to the oscillations in the upper bound of kurtosis for retention and 

alleviation decisions. A possible explanation for this is that separate defensive strategies react 

differently to certain combinations of parameter values. Through separating this graph in different 

facets for each defensive strategy, distinct oscillations were found in the behaviour for each 

defensive strategy, based on the (now smaller) variation in experiments iterated over. The 

combination of all defensive strategies therefore explains why certain value ranges seem to occur in 

troughs and peaks. The third observation relates to two separate clusters for the density of ‘no 

response’, as nearly all decisions are observed symmetrically in either of two clusters. This is likely 

related to observations in Figure 7-5b. 

As seen in Figure 7-5b, behaviour shown across repetitions is stable for the number of decisions 

where the degree of operation was overestimated. Interestingly, the behaviour shown for correct 

decisions and decisions based on underestimating the degree of operability show almost identical yet 

mirrored behaviour. Different peaks and troughs in the density of values indicate distinct sets of 

experiments resulting in similar clusters for results. Because these variables are denoted as the 

fraction of overall decisions, an increase in one variable for one repetition is inherently tied to an 

overall decrease in the other two variables. Given the stability of ‘overestimated’ decisions, it is very 

likely that local peaks for correct decisions are associated with the similar, mirrored peaks in 

‘underestimated’ decisions. The relative stability of experiments within these peaks indicate that 

either a small number of scenario parameters causes the distribution of observations into two 

distinct clusters, or that one defensive strategy leads to fewer correct decisions and more 

‘underestimated’ decisions than the other two. In this case, the variance within clusters is attributed 

to difference scenario parameters, whereas the two separate clusters are caused by different 

defensive strategies. This will be further elaborated upon in chapter 8.  

Impact assessment error 

The sixth and last output parameter describes the average error made in impact assessment, given 

by the average deviation between perceived operability and true operability. Whereas the fifth 

output parameter denotes the fraction of decisions made erroneously, this parameter describes the 

extent by which impact assessment deviated from reality. Together, these parameters can help 

establish how well the concept of situational awareness was incorporated in a model run. The 

density plot for this metric is shown in Figure 7-6. 
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Figure 7-6: Density plot for the average error in impact assessment 

The main observations drawn from the distribution of deviation in impact assessment relate to the 

differences in upper and lower bound behaviour. Under different system configurations, the 

deviation between impact assessment and true operability trends towards either positive or negative 

values. Positive values imply that, on average, impact assessment tends to overestimate the level of 

operation (either by not detecting true attacks or by erroneously preventing user traffic). Negative 

values represent the opposite, where the average impact assessment underestimates the level of 

operability, overstating the perceived effect of attacks.  

The overall impact assessment deviation is in line with the behaviour identified for overall decision 

errors: the average trend results in a relatively low number of overestimating decisions, as the mean 

deviation is relatively stable around 0. However, two main clusters are identified: one asymmetrical 

cluster centred around -0.025 and another around -0.075. Similar clusters are found in the density of 

impact assessment for alleviation decisions, indicating a common root cause for this behaviour. The 

overall value range is rather narrow, as this metric involves the impact assessment of all nodes, 

including those not targeted by attacks. Since these plots involves the average error in impact 

assessment across entire model repetitions, such a stark difference and the visually distinctive 

manner it emerges highlight significant differences across multiple sets of model runs. Most of the 

overestimation can be explained by nodes opting to not respond or to alleviate, as these nodes have 

a clear alternative that should have been chosen (alleviation and retention, respectively). Further 

specification of the relationship between defensive strategies and deviations in impact assessment is 

provided in chapter 8. 

7.2.2 Sensitivity towards specific parameters 
Given the variations in system performance found in the previous subsection, the root causes for 

deviations in parameters are to be explored further. To this end, the data was arranged along subsets 

of parameter value ranges to explore whether any noticeable differences would emerge. Each 

parameter was measured against a subset of performance indicators used for initial exploration, with 

exception of the parameters attack1-power, attack2-power and attack3-power, which were grouped 

together to indicate the overall effects of higher and lower powers. If all performance indicators 
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were to be applied for exploration of parameter sensitivity, this would yield 64 graphs, each with 

multiple plots for value intervals. Most of these plots showed similar behaviour, which is why a 

selection was made as to what output parameters would be further explored. The selected output 

parameters are cumulative total losses, correctness of defensive decisions and the average error in 

impact assessment. The full results for this phase are listed and partially described in Appendix G. 

This subsection provides a summary of the most interesting fluctuations in system behaviour. 

Effects of dependency weighting 

The most direct and prominent effects witnessed across the set of scenarios relate to variations in 

dependency weightings. The overall impact of dependency weighting is supposed to primarily affect 

the total extent of losses inflicted to the ecosystem. Attack-induced inoperability in nodes translates 

over to dependent nodes, directly causing further inoperability. More heavily weighted 

dependencies further exacerbate the degree to which losses are incurred. These expectations are 

directly observed by sensitivity analysis, shown in Appendix G. The most variation is seen in Figure 

7-7, which depicts the effects of dependency weighting on total losses incurred over time. The shape 

of the density plot shows significant shifts, as higher values for dependency weighting correlate with 

higher and less densely concentrated losses. The implementation of dependency weighting as a 

direct link between the operability levels is conceptually corroborated, but values used in the model 

are uncertain because of their ecosystem-level scoping (Setola & Theocharidou, 2016). Other 

performance indicators showed slight changes, indicating no significant sensitivity to extreme 

circumstances. Variations in dependency weightings are used to establish the robustness of 

defensive strategies, in line with the overall exploratory approach for data analysis. 

Effects of attack frequency 

Other interesting deviations were observed by conducting sensitivity analysis for different values of 

the frequency at which attacks occur. Variations in values for attack frequency directly affect the 

presence of threats to the ecosystem, as attacks become a more common occurrence. Since different 

defensive strategies deal with an increase in attacks differently, plots for different values of attack 

frequency should trend roughly similarly as a whole, yet show greater individual variation. This is 

observed most strongly in Figure 7-8, where the density of upper and lower distributions across 

single sets of parameter values show chaotic behaviour. Differences in the overall distribution 

between each group of parameter values are chaotic and the overall interpretability of these 

variations are largely negligible. This is likely attributable to different defensive strategy 

configurations handling several cases poorly, more so than with other scenario parameters.  
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Figure 7-7: Effects of dependency weighting on total losses 

 

Figure 7-8: Effects of attack frequency on impact assessment deviation 

Effects of attack powers 

Values used for attack powers, as with the previous two scenario parameters, directly affect 

interaction that takes place between attackers and defenders. Attack powers are used for directly 

disrupting node operation, as well as obfuscating defenders’ situational awareness through false 

positives.  

If a false positive is generated during intrusion detection, defenders decrease their perceived internal 

operability by the power associated with the type of attack classified. Higher values for attack powers 

therefore affect nodes both directly through causing reduced operability and indirectly through 
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prompting incorrect decisions. The overall deviations in values for attack powers are relatively low, 

as their impact is based on historical attacks that disrupted parts of critical infrastructure systems 

(Miller & Rowe, 2012). For this reason, most variation across the set of experiments was relatively 

minor when compared to other scenario parameters. The most interesting observations relate to the 

average deviation between impact assessment and true impact, the density plot of which is shown in 

Figure 7-9. 

The expectation would be that lower attack powers lead to generally more accurate impact 

assessment, since the positive deviation between perceived operability and true operability is lower 

when an attack is initiated and the negative deviation is lower for false positives. This pattern is most 

notably identified in the lower cluster and is more suppressed in the cluster of higher average 

deviation in impact assessment. 

 

Figure 7-9: Effects of attack powers on impact assessment deviation 

7.2.3 Implications for comparison of defensive strategies 
The main findings discussed in this section relate to the sensitivity of key performance indicators to 

deviations in uncertain scenario parameters. Analysing a set of conceptual defensive strategies for a 

conceptual ecosystem involves entering academic uncharted territory. By extent, the process of 

modelling and experimentation depends on a great degree of uncertainty surrounding 

parameterisation (Bankes, 1993). By mapping the degree of uncertainty surrounding several scenario 

parameters, these variables can be varied across for simulation purposes. These scenarios were 

devised following the EMA framework and help establish patterns through thorough exploration of 

designated patterns in density plots (Kwakkel & Pruyt, 2013).  

The main findings from conducting sensitivity analysis showed that most expected emergent 

patterns could be observed from kernel density plots for the total set of experiments. Plotting 

differences between sets of experiments with different value ranges for separate scenario 

parameters showed minor variations across most parameters. For each of these patterns, logical 

explanations could be formalised as to how fluctuations arise. There were a few instances of ‘perfect 

storms’, where some combinations of extreme parameter values would lead to crises, but none of 
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these crises varied too heavily from the mean model behaviour. The extent of variance discovered 

among the set of scenarios provides a solid basis for comparison of defensive strategy designs. Since 

there is not a single set of certain system parameters, these designs should be assessed in terms of 

robustness (Augusiak et al., 2014; Kwakkel & Pruyt, 2013). 

7.3 Intermediate findings 
Throughout this chapter, an effort was made to design a set of experiments that could be used to 

explore system behaviour under a multitude of different circumstances. To this end, the Exploratory 

Modelling & Analysis (EMA) framework was applied, as it helps establish valid results for models 

operating under deep uncertainty. Section 7.1 detailed how EMA concepts were integrated into the 

experimental design, as well as the parameterisation for each experiment. Section 7.2 detailed 

thorough exploration of model behaviour following the complete set of experiments. This resulted in 

insight into the robustness of system performance, which showed overall stability across variations 

of scenario parameters, with variations being explainable by model formalisms. These experiments 

will be used to conduct data analysis to assess the robustness of defensive strategies in the next 

chapter. 
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8 Data analysis and model validation 
This chapter continues from where chapter 7 left off: analysing robustness of defensive strategy 

designs across the set of experiments. The main aim for this chapter is to produce all required 

insights to formulate answers to both sub-question 4 and 5. Section 8.1 details the process of 

analysing the differences between each design. These findings are validated in section 8.2 as part of a 

thorough assessment of model validity. The results from this chapter are synthesised and wrapped 

up in section 8.3. 

8.1 Behaviour of defensive strategies 
The aim of this section is to boil down the set of experiments to a set of favourable and unfavourable 

behaviours identified among the set of defensive strategies. Whereas chapter 8 aimed at identifying 

sensitivity across the set of experiments through exploration, this section seeks to compare the 

robustness of defensive strategies in order to formulate insights required to answer the main 

research question. Understanding how defensive strategies influence the ecosystem requires 

analysing how patterns for key performance indicators differ between strategies. This can eventually 

help establish which elements of defensive strategies provide desired effects.  

The performance for strategies will be compared for each performance indicator, similar to how 

overall model performance was explored in section 7.2.1. The relative performance of each strategy 

will be discussed in the light of model formalisms and what the possible implication is for the 

effectiveness of a defensive strategy. This will subsequently be summarised into a coherent 

description of the implications of each defensive strategy. 

8.1.1 Comparative performance of defensive strategies 
This subsection will discuss the behaviour shown by each defensive strategy. Descriptions of 

defensive strategies from section 7.1.2 and their expected performance was previously detailed in 

Table 7-1. 

Overall damage and operation 

The first performance metric assessed is the robustness of each defensive strategy in terms of total 

losses sustained per simulation. To visualise this, a density plot was generated for each defensive 

strategy separately. This combined density plot is shown in Figure 8-1. The plot shows significantly 

different behaviour between the set of defensive strategies. Thinner shaped curves indicate more 

robust behaviour for a strategy. One strategy that stands out is the first, as it leads to substantially 

higher losses incurred over time compared to other strategies. Strategies 2, 3 and 4 show roughly 

similar patterns, specifically in comparison with strategy 1. Overall, strategy 2 performs best, as the 

vast majority of observations result in lower losses than strategies 3 and 4. Out of these similar 

strategies, strategy 4 performs somewhat worse, consistently resulting in slightly higher losses. The 

implementation of anomaly-based intrusion detection, unique to strategies 1 and 4, possibly affects 

the extent of node operability to an exacerbated degree.  

Figure 8-2 depicts how these losses are sustained by visualising the density of operational states for 

nodes under each defensive strategy. Several striking observations are made. First, Strategy 1 shows 

a substantial cluster of inoperable nodes, while inoperable nodes are almost never observed for the 

other strategies. The distinctively higher losses for strategy 1 observed in Figure 8-1 are also 

observed here. Secondly, strategies 2 and 3 show nearly identical behaviour with relatively high 

density of nodes in normal operation, a lower density of stressed nodes and virtually no inoperable 

nodes. Furthermore, strategy 4 shows similar behaviour, although for this strategy stressed nodes 



Chapter 8: Data analysis and model validation 
 

82 
 

are more common than nodes in normal operation. The last observation underlines the slight 

increase in losses for this strategy identified previously. 

 

Figure 8-1: Robustness of defensive strategies for cumulative losses 

 

Figure 8-2: Robustness of defensive strategies for node operational states 
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Cyberattack effectiveness 

The next step in assessing the robustness of each defensive strategy is to explore metrics related to 

cyberattack effectiveness. The average number of attacks active in the network is shown in Figure 

8-3, again in the form of a density plot. Two striking patterns can be identified: strategies 1 and 3 are 

characterised by narrow density graphs encapsulating typically low values indicating few attacks 

were incurred, and on the other hand strategies 2 and 4 both show similar and less robust 

distributions around higher values. The latter implies that under strategies 2 and 4, successful 

cyberattacks were common events. The interesting take from this is that strategy 2 showed the most 

robust performance in terms of sustained losses previously, yet is also the least effective at 

preventing cyberattacks. This directly implies that under strategy 2, nearly all losses sustained are 

attributed to a select few nodes, while other nodes barely experience inoperability. 

The higher frequency of successful attacks for strategies 2 and 4 is expected, since these are the only 

strategies that incorporate signature-based intrusion prevention, which is less effective at preventing 

attacks. However, the fact that strategy 2 showed the most robust density for losses incurred in spite 

of the high number of active attacks suggests that the majority of losses depicted in Figure 8-1 are 

attributable to defensive decisions made and are largely the result of unwarranted deployment of 

responsive mechanisms. The suggestion that false alarms pose the comparatively larger threat within 

this ecosystem will be further put to the test later on in this section.  

Besides the number of active attacks, further suggestions about the relative performance of 

strategies can be deduced from the attack detection rate of and the average attack duration 

recorded. These metrics are shown in Figure 8-4 and Figure 8-5, respectively. The attack detection 

rate shows strategies 1 and 4 perform well at detecting any present attacks, as nearly all attacks are 

detected. Both of these strategies are characterised by anomaly-based intrusion detection systems, 

catching out all but a few attacks. Interestingly, strategy 4 results in a thin and symmetrical 

distribution, showing greater robustness than strategy 1. The same pattern is observed for strategy 2 

in comparison to strategy 3. Both strategy 2 and 4 make use of signature-based intrusion prevention, 

suggesting that signature-based intrusion prevention systems cause attack detection to be more 

robust. This is likely the result of a higher number of unprevented attacks to detect, leading to 

individual simulation observations to be statistically less affected by single events. Analysis of 

average attack duration across defensive strategies fails to add any interesting insights, as it merely 

shows that strategies 2 and 3 take longer to respond to active attacks, which is logically the result 

from a lower attack detection rate. 

However, merely analysing these metrics in isolation fails to tell the full story on the robustness of 

defensive strategies. It is clear that anomaly-based intrusion detection effectively reduces the strain 

experienced from cyberattacks while subjecting the ecosystem to an exaggerated perception of the 

threat landscape.  
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Figure 8-3: Robustness of defensive strategies for the number of active attacks 

 

Figure 8-4: Robustness of defensive strategies for the fraction of attacks that is detected 
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Figure 8-5: Robustness of defensive strategies for the average attack duration 

Frequency of defensive decisions 

The third step in assessing the relative performance and robustness of defensive strategies is to 

assess the density of each type of decision made. This adds another piece to the proverbial puzzle by 

providing an overview of how previously discussed metrics contribute to possibly beneficial or 

impeding defensive decisions. Figure 8-6 depicts the density plots of the frequency of each type of 

decision for each strategy.  

Figure 8-6a and Figure 8-6b show the direct effects from the hypothesised exaggeration of the threat 

landscape by defenders for strategies 1 and 4, as the number of alleviation decisions is substantially 

higher. This is particularly apparent for strategy 4, as the majority of decisions made in the network 

result in alleviation. Both alternative strategies, being 2 and 3, seem to result in more passive 

decision-making, highlighted by the more common observation of decisions to not respond. Similar 

observations apply to Figure 8-6c, with the key difference being strategy 1 leading to a substantially 

different distribution of decisions. Out of all four strategies, only strategy 1 results in common 

retention of intrusions. This is not attributable to the configuration of its control mechanisms, as this 

would share some similarity with either strategy 3 or strategy 4. Instead, this is the result of a slightly 

higher value for operability threshold to retain intrusions resulting in a higher tendency to retain 

intrusions. 
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Figure 8-6: Robustness of defensive strategies for the distribution of defensive decisions 
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Correctness of defensive decisions 

The last metric used for comparison between defensive strategies is the correctness of previously 

specified defensive decisions. All previous measures together can help hypothesise the implications 

for observations, but fail to show the number of correct and incorrect decisions or the average error 

in impact assessment. The density of the correctness of decisions is shown in Figure 8-7. Incorrect 

decisions are either based on overestimating node operability, for example through failing to detect 

an active attack, or underestimating node operability, for example through raising a false alarm. 

The three plots together tell a clear story about the implications of the usage of different control 

mechanisms in terms of robustness and overall performance for defensive strategies. Based on 

Figure 8-7a, Strategy 2 results in the highest number of correct decisions made across the set of 

experiments. Strategy 3 follows suit with a similar yet slightly lower distribution of correct decisions. 

Strategies 1 and 4 lead to substantially lower distributions. The common factors between these pairs 

are strategies 2 and 3 sharing signature-based intrusion detection systems and strategies 1 and 4 

both sharing anomaly-based intrusion detection systems. Signature-based detection systems are 

logically going to lead to fewer incorrect decisions, as the prespecified specificity determines. 

Analysing Figure 8-7b, it becomes clear that strategies 1 and 3 share similar tendencies to make more 

decisions based on an overestimation of operability than strategies 2 and 4. Strategies 1 and 3 both 

make use of anomaly-based intrusion prevention mechanisms, which result in a higher false positive 

rate than the signature-based intrusion prevention mechanisms used by strategies 2 and 4. Within 

the model, false positives during intrusion prevention lower node operability while situational 

awareness is unchanged. Therefore decisions following these events are more likely to be based on 

overestimated operability, as defenders are unaware of the impact. Figure 8-7c recounts the 

observations discussed for Figure 8-7a, as strategies 1 and 4 result in a substantial fraction of 

decisions made based on underestimating operability. Their anomaly-based intrusion detection 

systems raise comparatively unmanageable numbers of false alarms. Conversely, strategies 2 and 3 

result in a lower fraction of decisions based on underestimation. The slight deviation between these 

two strategies found in Figure 8-7a is the result of strategy 3 making additional errors in judgment 

due to erroneously prevented user traffic. 

The average deviation in impact assessment is shown in Figure 8-8a, which matches the descriptions 

provided above. Strategy 2 provides the most robust and balanced performance in terms of impact 

assessment, as this strategy avoids the problems discussed for both anomaly-based intrusion 

prevention and anomaly-based intrusion detection. Strategy 3 results in a tendency to overestimate 

operability, as was observed in Figure 8-7b. Strategies 1 and 4 more commonly underestimate 

operability than not. By plotting the origin of deviations in impact assessment, as presented in Figure 

8-8b, additional insights are gathered. Strategies 1 and 3 commonly overestimate operability when 

no response was decided on, although the former results in multiple instances where alleviation and 

retention decisions are made on severe underestimations of operability and the latter shows more 

robust behaviour across its decisions. Strategy 2 on the other hand shows that the robustness in 

impact assessment is traceable back to all three types of decisions, and it seems that a delicate 

balance is struck. Strategy 4 diverges from the other strategies with a consistent tendency to 

underestimate operability regardless, although overestimations are only a rare occurrence, as with 

strategy 2.  
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Figure 8-7: Robustness of defensive strategies for the correctness of defensive decisions 
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Figure 8-8: Robustness of defensive strategies for the deviation in impact assessment 
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8.1.2 Summary of defensive strategies 
After exploring model behaviour for sensitivities to scenario parameters and trying to draw a 

comparison between defensive strategies, an increased understanding of how the ecosystem model 

responds to different scenarios and defensive strategies has been established. The main behavioural 

elements and the relative performance of each conceptual defensive strategy are summarised in 

Table 8-1.  

Crucially, strategies 2 and 3 show comparatively robust behaviour, with one major difference. While 

both strategies result in a relatively low degree of losses incurred across model runs, strategy 2 is 

associated with a major caveat, as attacks are significantly more successful in terms of detection rate 

and average duration. The same caveat applies to strategy 4, although this strategy performs worse 

in other categories. Defensive strategies that incorporate signature-based intrusion detection result 

in consistently accurate decision-making, while strategies using anomaly-based intrusion detection 

result in obfuscation of situational awareness. On the other hand, defensive strategies that use 

signature-based intrusion prevention cannot mitigate and thwart cyberattacks as well as other 

strategies. While the effects of this modelling assumption seem logical in theory, the direct 

interpretability of results is therefore subject to thorough discussion. While the frequency of 

cyberattacks on critical infrastructures has been steadily increasing, successful attacks are still a rare 

occurrence. Within the ecosystem model, these attacks are a rare occurrence – the maximum 

possible losses from not dealing with attacks are therefore rather marginal and an equilibrium can be 

reached between consequences from false negatives and consequences from false positives. This 

works well under the assumptions this simulation mode is based on, but real-world examples of 

attacks have showcased the insurmountability of attacks. Generalisations and assumptions that were 

necessary to cover most ecosystem-level concepts might not hold up well when compared to real-

world incidents, even if such modelling constructs were based on a solid foundation of academic 

literature. 

8.2 Model validation 
Model validation is a crucial step in the agent-based modelling cycle, as it establishes whether the 

modeller managed to “build the right thing” (Nikolic et al., 2013). Validating a model involves 

assessing whether the outcomes of a model correspond with observed patterns in the real world. 

Several methods exist for validating agent-based models, including historic replay of scenarios or 

expert validation of certain concepts. However, these methods do not account for problems 

encountered for exploratory modelling, as these models are often difficult to validate (Bankes, 1993). 

This leaves exploratory models in a juxtaposition between modelling constructs as theoretical 

concepts and modelling constructs as producers of data. To circumvent these problems, the 

evaludation process proposed by (Augusiak et al., 2014) is applied. This framework was briefly 

touched upon for model verification and experimentation and will be fully applied in this section. 

When applying an exploratory modelling approach, such as EMA, the problem arises that strict model 

validation is impossible, as exploratory simulation models operate under great uncertainty (Kwakkel 

& Pruyt, 2013). By definition, there is virtually no tangible data available to validate model outcomes, 

since the model seeks to explore what would happen in hypothetical future scenarios (Bankes, 1993). 

This does not mean that validation steps will be skipped altogether. Augusiak et al. (2014) propose a 

framework to deal with uncertainty around the validity of model parameters by emphasising the 

validity of concepts the model was built upon. Bankes (1993) prescribes the validation process as 

judging model quality based on the completeness of the model – in other words, ensuring that 

concepts forming the foundation of the model are built on solid grounds. In that sense, traditional 

model validation as described by Nikolic et al. (2013) is impossible and not attempted. Instead, 
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evaludation serves as a thorough approach to validate conceptual elements and their translation into 

simulation modelling constructs. The interpretation of model concept validation comes with a major 

caveat: behavioural tendencies can be discussed and compared, but direct interpretability of model 

outcomes are meaningless. 

The evaludation approach proposes standardised evaluation of data quality and the knowledge gaps 

in order to reduce uncertainty surrounding model outcomes. This is done through six steps that will 

be briefly discussed.  

8.2.1 Step 1: data evaluation 
The first step of evaludation is to evaluate all tangible data objects found to serve as input for the 

model. This was covered under model parameterisation, found in Appendix F. All model parameters 

were listed, assigned a base value, either based on available information or guesstimated. 

Afterwards, the quality of these parameters was assessed. This step helps determine the role played 

by uncertainty for these parameters and the outcomes were used to generate the set of scenario 

parameters and associated value ranges. Overall, the quality of data was relatively low for the agent-

based model. This is inherently tied to the nature of agent-based modelling, especially so for 

exploratory purposes of an ecosystem. The concepts that were most problematic to find data 

requirements for were directly deduced from well-cited academic frameworks for modelling critical 

infrastructure ecosystems. The studies these concepts were derived from used similar approaches to 

formulate a proof of concept for certain conceptual relationships rather than unambiguous 

prediction of system states.  

8.2.2 Step 2: conceptual model evaluation 
The second evaludation step is to evaluate the concepts that form the basis of model interaction in 

terms of consistency. However, as Augusiak et al. (2014) remark, there is no clear-cut method for 

establishing how consistent model concepts are. As stated before, the overall quality of the model is 

based on how complete it is in terms of incorporated concepts. To achieve this, thorough literature 

study was conducted, as detailed in chapters 2, 3 and 4. 
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Table 8-1: Behaviour and performance for each defensive strategy 

Strategy Behaviour and performance 

(1) Fully 
anomaly-based 

intrusion 
detection & 
prevention 

This strategy was found to be the most problematic and least robust in 
terms of overall performance. Conducting both intrusion detection and 
prevention as anomaly-based control mechanisms leads to substantially 
larger losses than incurred by other strategies. While effective at preventing 
and thwarting attacks, the undesired consequence of these mechanisms is 
that crucial user traffic is prevented and the overall degree of situational 
awareness is further clouded by false positive detections. The ecosystem is 
almost in a constant state of alleviation or retention with this strategy, since 
defenders’ perception is almost constantly clouded by false alarms for non-
existent attacks. This also reflects one of the main generalisations made in 
implementing the model, since it is virtually impossible to formalise true 
representations of the complex decision-making process in case a false 
alarm occurs. The benefits from using this strategy go hand in hand with 
impediments encountered. 

(2) Fully 
signature-based 

intrusion 
detection & 
prevention 

This strategy was found to be the overall most effective strategy for most 
performance indicators. Behaviour observed across the total set of 
experiments is also the most robust of any defensive strategy. However, 
there are several possibly problematic tendencies that do not directly 
present themselves from individual plots. This strategy is very ineffective at 
thwarting attacks, indicated by a relatively high number of active attacks. 
Despite the higher frequency of attacks, this strategy is characterised by the 
most efficient decision-making tendencies. While this strategy performed 
well across the scenario space applied for experimentation, it relies on one 
major assumption to perform well: that all attacks are surmountable. This 
strategy thrives on situations where consequences from attacks are always 
recoverable and clusters of nodes can operate in isolation.  

(3) Hybrid 
between 

anomaly-based 
intrusion 

prevention & 
signature-based 

intrusion 
detection 

The third strategy sought to combine the best of strategies 1 and 2. In 
general, performance between strategy 2 and 3 are very comparable, albeit 
that strategy 2 tends to perform slightly better and slightly more robust in 
most areas. In many cases, these differences are marginal. There is, 
however, one major exception to this comparison, as this strategy performs 
significantly better at thwarting attacks and dealing with detected attacks in 
a timely manner. Attacks are prevented successfully significantly more often, 
while detection of unprevented attacks trends almost identically. In 
comparison with strategy 2, the deviation in impact assessment is less 
problematic since attacks are prevented more effectively to begin with. 
While strategy 1 relies on a substantial frequency of attacks to warrant its 
benefits and strategy 2 relies on surmountable and uncommon attacks, 
strategy 3 encounters no such limitation.  

(4) Hybrid 
between 

signature-based 
intrusion 

prevention & 
anomaly-based 

intrusion 
detection  

The last strategy was another attempt to combine the best of other 
defensive strategies. This strategy was found to suffer from similar 
impediments as the first strategy, as situational awareness was clouded by 
frequent false alarms. This resulted in a significant number of alleviation 
decisions made across all experiments with this strategy active. While 
incorrect decisions based on overestimations were a rare occurrence, this is 
negligible in comparison with the high fraction of underestimations leading 
to incorrect decisions. 
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May (2004) describes the importance of keeping model data structures simple and implicitly tied to 

validated concepts that form the underlying model structure. Modellers tend to overstate the 

complexity of certain concepts incorporated in simulation models, further increasing the sensitivity 

of a model towards specific values that might not always be realistic or available. To mitigate these 

issues, concepts identified in chapters 2, 3 and 4 were boiled down to a generalisable set of 

relationships correspond with an ecosystem-level perspective. To achieve this, the central degree of 

operability discussed in section 4.2 was applied, as it was found to work well as a facilitating factor 

for actions and interactions for either critical infrastructure dynamics, cybersecurity elements as well 

as decision-making models. Operability as a concept worked particularly well in adapting cyber-risk 

into an applicable concept for critical infrastructures. For example, Setola and Theocharidou (2016) 

prescribe a formalisation for dependency weightings based around the central degree of operability, 

which could then be related to the deployment of specific types of control mechanisms based on 

perceived operability (Sridhar et al., 2012). Another example would be the inclusion of both physical 

and economic loss factors, which are crucial for determining the types of attacks that take place 

within the ecosystem (Miller & Rowe, 2012). For an ecosystem, values assigned to these concepts 

mean very little – there is simply no unambiguous way to determine a set of quantitative inputs for 

losses associated with conceptual infrastructure nodes. Instead, in an attempt to reduce the 

uncertainty surrounding these parameters, the focus was shifted towards purely decision-making 

elements. Loss factors were merely included to facilitate target selection for attackers and the values 

used only indicate the relative presence of either type of consequences for nodes. Finding specific 

values for these parameters can therefore be considered unnecessary, as the conceptual basis for 

which these parameters exist was already defined. 

By consistently applying this methodology for model conceptualisation and formalisation, model 

parameters were kept conceptually robust and relatable to instances of critical infrastructure 

ecosystems. Through this, the quality of the model was safeguarded by forming a complete overview 

of concepts required to model the system appropriately. 

8.2.3 Step 3: implementation verification 
The third step of evaludation is to verify whether the simulation model corresponds with the 

formalised conceptual model. This step for evaludation is fully in line with the verification steps 

prescribed by Nikolic et al. (2013) that were applied in section 7.5. Full results for the verification 

phase are denoted in Appendix E. To recap the findings discussed in section 7.5, the verification 

phase helped establish several implementation errors relating to the software package used to 

create the model. After resolving these, output was verified to assess whether observed values and 

distributions match expectations. The model showed a high degree of stability across time steps, 

showing that a sufficient number of repetitions show near-symmetrical output parameter 

distributions. 

8.2.4 Step 4: model output verification 
The fourth step of evaludation a model is to verify whether model output matches observations and 

prescribed expectations. In general, this step is similar to the overall model validation phase for the 

agent-based modelling cycle by Nikolic et al. (2013). However, the context of evaludation focuses on 

the predictability of individual model components as opposed to general simulation results. Instead, 

the response of model entities to changes in context parameters is assessed to establish whether 

patterns make sense in comparison to real-world observations. Specifying model output verification 

to validation of individual sets of behaviour makes validating individual elements possible. This was 

gradually touched upon in section 7.3 and will be further specified in this subsection. The main 

verifiable elements of model output relate to the process of decision-making for defenders under 
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different circumstances. As was identified in section 7.3, the different strategies had significant 

impact on how the threat environment was assessed by defenders.  

Full anomaly-based intrusion prevention and detection led to severe obfuscation of whether attacks 

were taking place, as many false alarms were thrown. One of the core problems encountered by 

cybersecurity for CIs is creating an unambiguous overview of the threat environment without raising 

insurmountable amounts of false alarms (Patel et al., 2013). The observed emergent pattern in this 

instance is the almost omnipresent decision to act on false alarms throughout all experiments, 

leading to a substantial increase in sustained losses. This behaviour deviates significantly from the 

other strategies, which managed to generate more manageable impact assessments. Similar 

behaviour is identified in the real world, where slight deviations in impact assessment can quickly 

lead to wrongful defensive decisions (Department of Homeland Security, 2015). In some cases, the 

absence of correct threat monitoring was observed to lead to unnecessary outages, which resulted in 

dealing preventable damage to infrastructure assets (Clark et al., 2017). Unnecessary defensive 

decisions were also found to directly affect the operability of infrastructure nodes, corresponding 

with elements discussed by Asnar and Giorgini (2006), which were used as the foundation for 

responsive mechanisms. 

Full signature- or specification-based intrusion prevention and detection led to robust decision-

making, as the rarity of attack events outweighed the possible negative consequences predicted for 

such control mechanisms (Patel et al., 2013). Since there were not many attacks to account for, 

suppression of negative consequences from false positives was minimised. The behaviour shown by 

these entities is fully in line with expectations set in the context of the formalised conceptual model. 

However, there is one key element missing in the model that might shape the real-world threat 

environment: if attacks are repeatedly successful, the system would likely be subject to a higher 

frequency of subsequent attacks, as new attack vectors might be enabled (Department of Homeland 

Security, 2015). Under static circumstances, the observed behaviour is in line with expectations. 

Incorporating a dynamic, evolving threat landscape would be impossible within the constraints of this 

study, and possibly also undesired (May, 2004). For exploratory purposes, the behaviour develops as 

expected, but the limitations and assumptions under which patterns were observed should be noted 

and memorised.  

The first hybrid defensive strategy, strategy 3, incorporating both signature- and anomaly-based 

control mechanism, showed a more robust set of behaviour patterns in dealing with higher and 

lower attack frequencies. Significant emphasis was placed on the importance of preventing security 

incidents for critical infrastructures in chapter 2. Any event where attacks are successful is undesired 

and should be mitigated, so long as effective decision-making is not significantly impeded. Other 

defensive strategies resulted in different but expected behavioural patterns in key dimensions: 

strategy 1 led to an obfuscation of situational awareness and strategy 2 led to subpar understanding 

of when attacks were taking place. Combining signature-based detection and anomaly-based 

prevention from both strategies suppresses both negative and positive elements from those 

strategies, but provides robust and less assumptive behaviour.  Strategy 4, which is the inverse 

hybrid version of strategy 3, still suffers from problems described for anomaly-based intrusion 

detection.  

8.2.5 Step 5: model analysis 
The fifth step of evaludation is to analyse the sensitivity of the model to different values for certain 

parameters. As part of EMA, this was conducted during model exploration, the results of which are 

denoted in section 7.2.2. These experiments were conducted with evaludation in mind, ensuring that 

factors used to iterate experiments were useful for eventual validation.  
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8.2.6 Step 6: model output corroboration 
The sixth and last step of evaludation is to compare model predictions with datasets and patterns not 

used during model implementation. This step involves partial selection of patterns observed in the 

model and to identify these patterns with real-world cases. Because validation using applicable data 

is typically nigh impossible, the number of patterns analysed is kept to a minimum. Only core 

patterns are compared to new sources of information, in this case relating to defensive decisions 

made for different incidents. Given the scarcity of information for critical infrastructure incidents, the 

same set of attacks recurs throughout academic literature. Several references for data will therefore 

have to be re-used from chapters 2, 3 and 4. The main examples with ample evidence are Stuxnet 

and the 2015 Ukrainian blackout (Farwell & Rohozinski, 2011; Karnouskos, 2011; Lee et al., 2016; 

Liang et al., 2017). To corroborate behavioural tendencies, these examples and several smaller 

examples will be used. Model experimentation discussed in section 7.3 can be boiled down to three 

main behavioural tendencies: 

1 When there is no sufficient awareness of attacks, the impact of those attacks is amplified as the 

deployment of responsive mechanisms/defensive decisions is delayed. Real-world examples of 

attacks that go undetected for prolonged periods show the severe extent of damage that can be 

inflicted, as such this behaviour might not be desirable, even if the false alarm rate is negligible. 

2 When there is an unmanageable rate of false alarms, responsive mechanisms made can end up 

inflicting more damage than simply doing nothing. Defensive strategies might perform well at 

thwarting attacks in a timely manner, but might ultimately end up damaging the ecosystem more 

than attacks would. 

3 Preventing attacks by design delivers robust performance across simulations whereas preventing 

false alarms bears the most immediate benefits, since attack events are relatively uncommon. 

These strategies avoid overly relying on assumptions for cybersecurity scenarios. 

The first tendency is the most prominent element discussed in literature on cyberincidents for critical 

infrastructures: insufficient attack detection or response protocols leading to substantial damage as 

attacks can inflict damage for prolonged durations. The biggest example of such an attack is Stuxnet, 

which managed to infiltrate systems for a long time without making any significant deviations 

(Karnouskos, 2011). After a prolonged time, the worm would take over control of physical equipment 

and destroy facilities. Failures to accurately assess impact could be problematic for real-world 

scenarios where attacks are insurmountable and deal lasting damage. These types of attacks are 

essentially impossible to include in a simulation model, as they are incredibly rare occurrences. 

The second tendency can be corroborated by several smaller examples. Clark et al. (2017) discuss 

such an example, where a water and wastewater facility in Boca Raton, USA reacted to cybersecurity 

incidents inappropriately, causing control systems to damage itself. Instead of implicitly removing 

perceived threats, the control system caused further malfunctions trying to remove a non-existent 

threat. Due to insufficient monitoring of the threat landscape, harmful defensive decisions were 

made, substantially damaging system operations. Another example denoted by Department of 

Homeland Security (2015) involves Newark Airport operations preventively being taken offline after a 

suspected cyberattacks was perceived. In reality, a truck driver using a commercial-grade GPS 

jammer passed by the airport. 

The third tendency reflects on the robustness of performance across assumptions made for the 

simulation model. The attacks on the Ukrainian power grid in 2015 incorporated multi-faceted attack 

vectors to infect systems with malware that could be used together to inflict physical damage 

(Karnouskos, 2011). Individual system elements might have detected attacks but failed to account for 

the danger posed by coherent attack vectors. This underlines the notion discussed in section 7.3.2 
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that relying on the assumption of relatively surmountable attacks is unlikely to yield desired and 

robust results for real-world analysis. These situations could have been prevented upfront by 

including security requirements by design rather than loosely-coupled security requirements (Fairley, 

2016; Neuman, 2009). 

8.2.7 Model validity assessment 
After iterating through the six evaludation steps and critically reflecting on observed emergent 

patterns, it becomes clear that attempting to validate exploratory models is a complex endeavour. 

However, by iterating through a standardised evaluation scheme, uncertainty surrounding model 

parameters and resulting patterns observed within the set of simulations could be suppressed. By 

drawing a parallel between observed patterns and historical events analysed by academics, a certain 

degree of corroboration could be formulated. This is sufficient for stating that the model can be used 

to predict possible system behaviour, specifically assessing what happens with critical infrastructure 

elements in an ecosystem built around cybersecurity concepts. 

8.3 Intermediate findings 
This chapter continued from chapter 7, further analysing data generated from experimentation and 

ensuring the validity of findings. Section 8.1 detailed robustness analysis across designs for defensive 

strategies, denoting the emergent patterns observed. It was found that there were several delicate 

differences in decision-making processes that emerged from different circumstances. It was shown 

that defensive strategies significantly influence the robustness of system performance across a large 

set of scenarios. No strategy was dominant, but simulating all strategies helped generate insight into 

what happens in the ecosystem of critical infrastructures. Traditional model validation proved to be 

impossible, as values applied in the model are sometimes arbitrary and in many cases assumptious. 

The evaludation approach for exploratory simulation models helped establish the conceptual validity 

of modelling constructs, in an attempt to validate the foundation on which data analysis was 

conducted. While results deducible from model simulations can be formulated, significant 

consideration will need to be applied to how assumptious any findings might be. These findings serve 

to help understand behaviour that might occur under deep uncertainty and cannot be used to argue 

for a specific defensive strategy based on statistical performance observations. 
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9 Conclusion and discussion 
After conducting all required phases of research, the main findings can be wrapped up into coherent 

answers to all research sub-questions and eventually the main research question. First, the 

limitations to the overall study are addressed. Secondly, the main findings are described, formulating 

answers to all research questions. Thirdly, the implications of the findings are discussed. Fourth and 

last, options for future research are discussed. 

9.1 Limitations 
Before the conclusions and main findings can be laid out, the limitations to these findings should be 

described. There are multiple facets that played a role throughout this study that could limit the 

representativeness of the model and subsequent findings. It is important to discuss possible 

limitations to ensure possible uncertainties are accounted for, even if all steps for ‘proper’ model 

development were conducted and consistently documented.  

9.1.1 Limitations of an ecosystem model 
The most influential set of limitations discussed arises from the ecosystem-level approach to critical 

infrastructures. The knowledge gap established through literature review, discussed in Appendix A, 

specifies the need for coherent security policies that incorporate cyber-risk as a shared property of 

the entire ecosystem. For this reason, the ecosystem was designed around properties for critical 

infrastructures that describe how reduced operability from single infrastructure nodes transcends 

beyond that node. Examples of these properties are implicit dependencies between two nodes or the 

degree of situational awareness that constrains decision-making. While there is a shared desire to 

explore ecosystem-level behaviour and assess the effects of different types of defensive strategies, 

this approach is not without its limitations. 

Generalisability of findings 

The first major problem with ecosystem-level models is that they should incorporate elements that 

are generalisable to most, if not all, applicable critical infrastructure systems. This requires selection 

and abstraction of elements that should and should not be incorporated, leaving out other elements 

that define individual infrastructures. Elements that are incorporated should be modelled in such a 

way that they are applicable to other critical infrastructures. This inherently reduces the complexity 

of incorporated concepts, which aids the modelling process, but might hurt the representativeness of 

the eventual simulation model. There is a delicate balancing act between creating models that are 

too sensitive to yield generalisable insights for other infrastructure sectors and models that are too 

generalisable that no real value is added. Fortunately, the results from experimentation showed 

variability and emergent behaviour for several concepts. On the other hand, the actual meaning and 

interpretation of these results in relatively uninspiring, as they cannot be translated directly into 

desired policy requirements. Whether or not the model in its current state can be utilised for 

research on specific defensive strategy implementations while incorporating more specific, 

infrastructure-related elements is uncertain. The original aim for this model was to be based around 

a specific type of infrastructure to ensure tangible results. This was turned around in favour of an 

ecosystem-level approach at an early stage of this study, as the assumptions required to model such 

a system given the specified time and resources would water model concepts down to meaningless 

interpretations. This made sure that results would be too abstract for direct interpretation, but it was 

also a crucial and necessary first step towards creating models that can serve that purpose. 

Lack of tangible data as model input 

The second major problem for ecosystem modelling was encountered during model formalisation 

and implementation: the lack of tangible, representative data objects to serve as for model input. 
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When analysing a single infrastructure, specific and realistic data can be found, paving the way for 

specific, near-deterministic simulation models. Creating such a simulation model provides more 

straightforward interpretation of model outcomes, but makes the model more sensitive towards 

domain-specific properties. This raises requirements for the quality and coherence of data used, but 

also enables more advanced research into designs. The decision to create an ecosystem-level 

simulation model constrains the direction of research to exploratory purposes. Since the desired 

direction of research is in line with the possibilities and impediments of the chosen approach, this is 

not problematic, so long as the choice was a conscious decision. In fact, creating such a model was 

also the only option given the current state of the art, time and resources available for this project. 

The framework created as part of this study can be used for further research that incorporates 

tangible, well-supported behavioural mechanisms and statistical data to ensure specificity of 

outcomes is not tarnished by abstraction of model constructs. 

9.1.2 Limitations resulting from the CAS perspective and agent-based modelling 
Complex adaptive systems thinking perceives systems as complex collections of entities operating 

based on basic states, rules and actions. This perception ensures a coherent and interconnected 

ecosystem that enables operationalisation of interaction. However, this also results in several 

limitations. 

Abstraction of interaction  

The first issue is that not all concepts related to cybersecurity for critical infrastructures can 

effectively be boiled down to a set of basic interactions. Examples of these are complex social or 

economic drivers behind cyberattacks towards specific types of infrastructures, geographical 

locations of infrastructure nodes affecting populous areas, or the complex decision-making processes 

for defensive decisions. An even more prominent example relates to the behavioural models used for 

attacker and defender behaviour. There is no single best option to model how resources are 

allocated, how attackers select targets and how defenders respond to intrusions. The simulation 

model created as part of this study largely skips game theoretic dilemmas, as attack operation is 

handled probabilistically and defensive strategies are part of static system configurations. Since these 

game theoretic elements were not all included, possible differences between sets of behavioural 

rules and actions or the effects of strategic behaviour were not fully explored. However, 

implementing some of those concepts and relationships without incorporating their root causes 

would make the model even more assumptious by design, as the presence of most root causes 

cannot be unequivocally determined. To this end, keeping the conceptual framework narrow can 

help pinpoint emergent patterns in behaviour at the cost of being able to determine direct 

consequences for certain system configuration. Instead, research was forced to be tailored more 

around exploring different scenarios and analysing the robustness of system configurations rather 

than determining their direct performance. This proved to be sufficient in generating a model and 

framework to serve as a proof of concept for ecosystem-level modelling.  

Ambiguity of behavioural patterns 

The second issue with perceiving cybersecurity for critical infrastructures as a complex adaptive 

system is that the CAS framework revolves around detecting emergent patterns and self-

organisation. These patterns are observed as emergent from the collection of entities included in the 

model. Cyberattacks on critical infrastructures are found to be ever-evolving in a way that cannot 

unambiguously be captured within CAS thinking. Patterns observed in the real-world are sensitive 

towards several factors that cannot be modelled in a straightforward manner. The desired observed 

patterns in an ecosystem of critical infrastructures are ideally rather subtle in nature, as large-scale 

disruption and self-organisation is the result of an evolving threat landscape and lacking defensive 
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strategies. Instead, a level of ambiguity was applied to explore the response of the system to certain 

shifts in environmental drivers. This is part of the aforementioned balancing act between meaningful 

and generalisable models, a key issue being that the total set of modelling choices and assumptions 

should be coherent. 

9.1.3 Limitations of the model and exploratory modelling  
The most prominent limitations to any agent-based model are formed by the usage of assumptions 

for model concept formulation and ensuring elements included in the model are coherent. The main 

modelling assumptions applied for concept formalisation are denoted in appendix D. For this study, 

many such issues were circumvented by ensuring the concepts incorporating in the model were 

based on a solid foundation of academic literature.  

Validatability of the simulation model 

Conceptualisation was conducted with difficulties in validating the eventual simulation model in 

mind. Examples of such model concepts are the dependency weighting model by Setola and 

Theocharidou (2016), which in itself is related to an extent of operability that can be expressed as a 

numerical value, corroborated by Puig (2018), or the connection between intrusion prevention and 

detection events and a degree of situational awareness for this level of operability. By ensuring the 

concepts that served as input for the model are connected, no major assumptions had to be made 

with regards to core interaction, fulfilling part of the validation process. Instead, the engineered 

framework covered aspects that were previously not all connected. However, there are still 

numerous assumptions that impact model behaviour, such as the assumptions made to be able to 

implement crucial user traffic as a modelling concept. This inclusion was required to match actions 

for control mechanisms and the level of operability, but besides the existence and actions of this 

traffic, there was no clear guideline for the exact frequency and extent of this interaction. In order to 

keep the model manageable, several assumptions were made to make implementation possible. 

These assumptions relate to the frequency at which intrusion detection takes place and the relative 

frequency and criticality of user traffic for infrastructure node operation. These assumptions are not 

inherently problematic, as they are in line with value ranges specified for the ecosystem model and 

multiple value ranges were iterated over as scenarios for experimentation. Evaludation proved 

valuable in establishing whether concepts were implemented in a thorough and representative 

manner. 

Abstraction of model concepts 

As addressed by the limitations for ecosystem models and the CAS perspective, selection and 

abstraction of concepts was required, indicating that several conceptual factors were originally found 

but pruned from the conceptual model. The original research proposal included a distinction 

between multiple types of critical infrastructures based on hierarchical structure. The idea behind 

this was to analyse different types of systems interlinked by cross-sectorial dependencies, assessing 

how resilient and robust each type of infrastructure would be given defensive different strategies. 

This was ultimately decided to be unnecessarily complex, as it would require both a significant 

understanding of implicit specifics as well as increased reliance on tangible data from each 

infrastructural sector. Instead, the model was kept manageable by including one conceptual network 

of infrastructure nodes. This performs better on an ecosystem-level, and while the objectives for the 

model are different, this approach was more likely to successfully yield useful results.  

Limited meaning for policy design without specification 

Since the conscious decision was made to not analyse individual or multiple specific critical 

infrastructures, the implications for data input and output were also clear: there would be little to no 

realistic data available for meaningful implementation in the model, and as a result there would be 
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little meaningful interpretation of values for performance indicators resulting from simulations. A 

solution for this limitation was found by following the EMA framework, which helped reduce the 

uncertainty for model outcomes by thoroughly varying across values for uncertain scenario 

parameters. Instead of focusing on direct interpretations for values of performance indicators, 

analysis focused on observing the robustness of several design alternatives across the scenario space. 

To this end, data analysis was also limited to exploratory analysis of distributions for model output 

parameters across the set of experiments. This proved that, even with several parameters using 

meaningless values, valuable insights in system behaviour could be found, generating key insights 

required to answer research questions. The generalisability of results was not tarnished, since a 

methodical, thorough approach was taken to experiment with unvalidatable models. However, the 

actual meaning of results was doubtful, as stated before, as it followed circular reasoning. 

Information on control mechanisms was used as input for the model and was corroborated by model 

output. In essence, no new insights were gathered through this process alone. Despite reducing 

uncertainty surrounding the validity of model behaviour and model output through evaludation, the 

findings discussed throughout this study bear few direct implications for policy design. Instead, the 

model was used to explore what happens if a hypothetical coherent defensive strategy was 

implemented across the full ecosystem. More specifically, the study functions as a proof of concept 

that this modelling approach can yield desired behavioural patterns and can be extended with 

specific details for specific infrastructural sectors for policy design or requirements engineering. 

9.2 Main findings 
After addressing the main limitations to this study, the main findings can be formulated. First, these 

will be synthesised in a set of answers and discussions for research questions. Next, the main 

contributions taken from this research are discussed. 

9.2.1 Answers to research questions 
With all research steps now conducted, findings can be formalised into answers for all research 

questions. The research questions formulated in chapter 1 are recalled in Table 9-1, along with initial 

research objectives. Each question will be addressed individually and in chronological order. 

Sub-question 1 

The first sub-question revolves around identifying architectural elements that define the resilience of 

critical infrastructures against cyberattacks. The insights required to answer this sub-question were 

gathered and discussed in chapter 2, tailored around mapping architectural complexities and their 

impact on critical infrastructure operation. It was found that there are four major components that 

define this impact:  

1. Vulnerabilities that arise from the use of networked heterogeneous systems, as the 

multitude of different sensors and subsystems complicate security practices. 

2. Dependencies between infrastructure nodes causing cascading failures. These determine the 

perturbation effectuated on dependent nodes, caused by a disruption in the origin node. 

3. Extending dependencies, the networked structure of critical infrastructures determine how 

inoperability in a node causes disruption in further nodes. Depending on the networked 

structure of a CI system, this might result in isolated incidents or widespread inoperability. 

4. Severe consequences from critical infrastructure inoperability that strengthen the need for 

effective security approaches, as any slight disruption could set a destructive chain of events 

in motion. 
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Table 9-1: Research questions and objectives 

Question/objective Formulation 

Sub-question 1 How does architectural complexity of critical infrastructure nodes within 
the cybersecurity ecosystem affect infrastructure operation? 

Sub-question 2 How do control mechanisms and cyber-threats secure or impede operation 
of critical infrastructures? 

Sub-question 3 Which properties for attacker and defender behaviour aptly describe 
decision-making behaviour in the cybersecurity ecosystem of critical 
infrastructures? 

Sub-question 4 Which emergent behavioural patterns can be observed in interactions 
within the cybersecurity ecosystem for critical infrastructures? 

Sub-question 5 What can be learned about the effectiveness of defensive strategies with 
regards to robustness and resilience in the cybersecurity ecosystem for 
critical infrastructures? 

Main research 
question 

How do cyber-architectural elements and defensive strategies influence 
exposure to cyber-threats within the cybersecurity ecosystem of critical 
infrastructures, and how can infrastructure operators effectively mitigate 
consequences from cyber-incidents? 

Objective 1 Specify and conceptualise an ecosystem model for CI systems by 
establishing elements that relate to each core concept. 

Objective 2  Formalise and specify this ecosystem into a fully-fledged agent-based 
model capable of simulating different configurations for integrated 
defensive strategies. 

Objective 3  Derive the simulation results into emergent patterns and best practices for 
effective cyber defensive strategies for critical infrastructures. 

 

Sub-question 2 

The second sub-question required specification of elements related to cyber-incidents. The required 

insights were gathered and detailed in chapter 3, which aimed to establish how cyberattacks take 

place within the ecosystem, as well as control mechanisms in place to thwart cyberattacks. It was 

found that cyberattackers and cyberdefenders are both characterised by three elements. For 

attackers, these elements are: 

1. Attacker types representing the nature of an attacker. Cyberattackers targeting critical 

infrastructures are generally only considered as advanced persistent threats, indicating that 

the types of attacks launched towards critical infrastructures tend to be coordinated, 

impactful events. 

2. Motivations for attackers determining the type of consequences preferred by different types 

of attackers. This impacts the type of attacks they would employ. Cybercriminals are less 

likely to use attacks as a means of inflicting physical harm than cyberterrorists, as they mainly 

prefer economic incentives.  

3. Attacker capabilities that describe the capabilities for each type of attacker, indicating the 

means available and typically used by types of attackers. Foreign adversaries are more 

resourceful than other attackers, as they are capable of developing highly specific, targeted 

attacks.  

For defenders, the following elements were identified: 
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1. Control mechanisms being used by defenders to prevent, detect and respond to attempted 

intrusions by cyberattackers. These impact the success rate of cyberattacks, as well as the 

timeliness by which attacks are detected and responded to. 

2. Defensive strategies comprising of a combination of control mechanisms, essentially serving 

as the set of behavioural rules for defender agents. 

3. Infrastructure operators acting on a degree of threat awareness that impacts the usage of 

several control mechanisms. Defensive decisions are made based on the perception of the 

threat landscape. Critical infrastructures deviate from traditional cybersecurity paradigms, 

where security investments are based on perceived costs and benefits over time. The severe 

consequences imply that threat awareness only determines defensive decisions for CI 

systems. 

Sub-question 3 

The third sub-question sought to establish a set of properties that impact decision-making behaviour 

observed by cyberattackers and critical infrastructure operators. Three concepts were identified and 

discussed: 

1. Situational awareness for attackers determining their targeting selection behaviour. 

Attackers operate on an established degree of available knowledge by which they assess 

which infrastructure node would be their optimal target. 

2. Infrastructure node operability as a scale central to interaction within the model. Node 

operability is affected by cyberattacks, dependencies and handling of user traffic and also 

enables threat awareness to be implemented as a perceived degree of this scale. 

3. Situational awareness for infrastructure operators, represented by the effective perceived 

level of operability of an associated node. Infrastructure operators use this degree of 

situational awareness to make decisions and assess whether their situational awareness 

should result in a responsive mechanism being used. 

Sub-question 4 

After thorough analysis and discussion of behaviour across the complete set of experiments, three 

main patterns were identified. Together, these patterns describe the main deviations occurring 

throughout model runs and show the dynamicity of system configurations responding to 

environmental drivers. These patterns are formulated as follows: 

1. When there is insufficient awareness of threats, the impact of those attacks is amplified as 

the deployment of responsive mechanisms/defensive decisions is delayed. Real-world 

examples of attacks that go undetected for prolonged periods, such as Stuxnet, show the 

severity of damage that can be inflicted (Farwell & Rohozinski, 2011; Karnouskos, 2011). As 

such this behaviour might not be desirable, even if the false alarm rate is negligible by 

metrics used in the simulation model. 

2. When there is an unmanageable rate of false alarms, responsive mechanisms made can end 

up inflicting more damage than simply doing nothing. Defensive strategies might perform 

well at thwarting attacks in a timely manner, but might ultimately end up damaging the 

ecosystem more than attacks would. 

3. Preventing attacks by design delivers robust performance across simulations whereas 

preventing false alarms bears the most immediate consequences, since attack events are 

relatively uncommon. These strategies avoid overly relying on assumptions for cybersecurity 

scenarios. 
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Sub-question 5 

After analysis of observed behavioural patterns across different defensive strategies and scenario 

parameters, the following statements can be derived: 

1. Defensive strategies that incorporate anomaly-based intrusion prevention manage to thwart 

attacks and their direct impact much more effectively than defensive strategies that make 

use of their signature-based counterparts. On the other hand, strategies with signature-

based intrusion prevention ensure defensive decisions are made more accurately, since 

problems caused by falsely blocked user traffic occur less often. 

2. Defensive strategies that make use of anomaly-based intrusion detection further suppress 

the impact of attacks, as they are dealt with marginally more quickly. The larger impact made 

by intrusion detection mechanisms relates to the effects on defensive decision-making 

correctness. Strategies using anomaly-based detection mechanisms result in serious 

obfuscation of situational awareness, since false positives occur more frequently than false 

negatives due to the inherent rarity of cyberattacks. Within the model, the effects of 

unnecessary defensive action outweigh the effects of lacklustre attack mitigation. 

3. The overall best performing defensive strategies (strategies 2 and 3) both incorporated 

signature-based intrusion detection and therefore avoided the complete obfuscation of 

situational awareness. However, these aforementioned patterns describe the balance that 

follows the implementation of abstract and conceptual control mechanisms without 

incorporating specific elements of decision-making processes or intricacies that affect the 

use of control mechanisms. Instead, it is important to take note of emergent behavioural 

tendencies and relate these to other modelling constructs. Because the model is inherently 

unvalidatable, the meaning of statistical values is useless for further analysis of ecosystem-

level behaviour. 

Main research question 

The main research question is two-tailed: the first half of the question seeks to establish 

understanding of how conceptual elements influence system behaviour, whereas the second half 

revolves around understanding how future system behaviour could be predicted based on those 

conceptual elements.  

It was found that by studying the cyber-architectural complexity of this ecosystem, the mechanisms 

that enable and thwart attacks and implications for interaction, a solid basis of understanding was 

created. In order to generate new insights and contribute to the academic state of the art, a new 

direction was taken, as these concepts were operationalised on the scale of a conceptual ecosystem. 

To achieve this, a framework for operationalisation was required that links all previously identified 

concepts. This framework would then pave the way for translation into modelling constructs for 

simulation-based analysis. By relating all identified concepts to a central element of the ecosystem, 

these concepts could be connected in a coherent and thorough framework. This central element is 

infrastructure node operability. Operability can be used to describe the effects of defensive actions, 

offensive actions, dependencies and interdependencies as well as enabling a simplified 

interpretation of decision-making processes. In doing so, several concepts were simplified into an 

abstract representation on an ecosystem level. This implies that quantitative outcomes are less 

insightful, but made sure that simulation modelling was possible on this level. 

To answer the second part of the question, emergent patterns and key insights resulting from the 

simulation model were used. By exploring possible deviations and instances of coherent defensive 

strategies, the relative robustness of conceptual defensive strategies could be analysed. The 

exploratory nature of this study implies that results do not directly provide insight into the 
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effectiveness of tangible design alternatives. Because defensive strategies were abstract 

representations of conceptual arrangements of control mechanisms, the implications resulting from 

model runs themselves are rather minor. Emergent patterns found as part of sub-question 5 shed 

some light on expected behavioural patterns possible in the model, but fail to unequivocally produce 

new insights that were not implied by the concepts model elements were based on. This is largely 

attributable to the level of abstraction used, as the results cannot be used to support the results 

without engaging in circular reasoning. Instead, the implications of this research relate to the proof 

of concept for ecosystem-level modelling as a means of simulating the way concepts interact. Since 

the model itself is unvalidatable, conceptual validation was applied through evaludation to ensure 

that behavioural patterns made sense. It is important to keep in mind that for any modelling study, 

the outcome is an artefact of the applied set of assumptions. This paves the way for future research 

to extend or apply this framework for critical infrastructure ecosystems in a more advanced setting 

to produce specific, tangible results. While this is the desired goal to generate new knowledge in 

addition to the academic state of the art, this was not possible without formalising and 

operationalising a coherent ecosystem-level framework. 

9.2.2 Main research contributions 
Having answered the research questions and fulfilled the research objectives, the main insights 

gathered throughout this study have been noted. This subsection will discuss the main academic and 

societal contributions provided by this study. Recalling the knowledge gap, the aim of this research 

project was to enhance knowledge on the ecosystem-wide effects of certain defensive decisions. 

Each contribution will be described in the light of the academic state of the art. 

Ecosystem-level aggregation of critical infrastructures 

The first major contribution provided put forth by this study is an aggregation of concepts 

incorporated in an ecosystem model for critical infrastructures. This ecosystem-level conceptual 

model is the result of achieving the first research objective and contains all generalisable concepts 

that together represent an ecosystem of critical infrastructures. The knowledge gap formulated in 

chapter 1 specified the need for analysis of ecosystem-level interaction and the effects of 

cyberattacks and defensive strategies on this ecosystem. However, no coherent framework or other 

integration of cybersecurity elements of critical infrastructures was put forth. This ecosystem-level 

aggregation identifies and conceptualises such elements and how they are interrelated. The model is 

depicted in Figure 9-1 and shows the specification of concepts discussed throughout this study. The 

core concept of infrastructure node operability is depicted centrally within this aggregation, 

depicting how all other elements relate back to infrastructure nodes, the central entity among 

interaction. In its most meaningful sense, this framework can be considered an artefact that 

encompasses the gaps of knowledge identified in the academic state of the art. Combining these 

factors and concepts in an operationalised model can be further synthesised with real-world cases to 

fulfil specific research objectives. 

Ecosystem interaction model for critical infrastructures 

The second contribution expands on the ecosystem aggregation model and specifies the main 

interactions that take place within this ecosystem, as well as operationalising concepts specified in 

the aggregation model. While the aggregation model provides a set of concepts that describe states 

and interactions required for eventual implementation of a simulation model, the interaction model 

provides a conceptual overview of interactions to be simulated. This model is shown in Figure 9-2 

and was used as the foundation for agent-based modelling concept implementation. Avenues for 

operationalisation were discussed in chapter 6 and proved that despite the high-level and abstract 

nature of concepts in the aggregation model, elements could still be computed in a coherent 
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manner. This step and contribution was a key part of addressing the academic knowledge gap, as 

these activities are required before simulation models can be devised. Given the level of abstraction 

required for ecosystem-level analysis, the framework introduces a novel approach to gathering 

missing knowledge, and in itself is also an artefact of knowledge. The main contribution by this 

framework is offering a ready-to-implement ecosystem overview and a set of constructs that could 

be used for simulation modelling.  
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Figure 9-1: Ecosystem aggregation model of cybersecurity for critical infrastructures 
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Figure 9-2: Ecosystem interaction model of cybersecurity for critical infrastructures 

Explorative agent-based model for conceptual defensive strategies 

The third major contribution is the implemented agent-based model itself, as well as, to a lesser 

extent, the derived observations about different conceptual defensive strategy designs. The agent-

based model is fully verified and validated to the extent an explorative model can be validated.  

Within this model, users of the model can shift parameter values to desired configurations, with 

possible modules to be extended to feature more specific representations of real-world 

infrastructures. The model also serves as a proof of concept for ecosystem-level simulation of critical 
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infrastructures, showing how malleable emergent patterns can be achieved by varying between 

different configurations for defensive strategies. 

The results from experimentation with conceptual implementations of different defensive strategies 

are denoted in Table 9-2. This shows for each combination of control mechanisms analysed what the 

observed behaviour tendencies are. Together, these observations indicate which properties of 

defensive strategies could result in desired performance. The full set of patterns is discussed in 

chapter 8 and was summarised in section 9.2.1. 

Table 9-2: Observed patterns for combinations of control mechanisms 

Intrusion 
prevention 

Anomaly-based Signature/specification-based 

Intrusion 
detection 

Anomaly-based This strategy results in the lowest 
susceptibility to cyberattacks, as 
anomaly-based control mechanisms 
find most attacks quickly. However, 
the strategy also resulted in the least 
robust overall performance, as 
situational awareness was 
consistently obfuscated by false 
alarms. Responsive measures are 
almost constantly conducted due to 
this obfuscation. 

This strategy led to the overall 
lowest number of correct defensive 
decisions, as the majority of 
alleviation decisions were based on 
underestimating operability. 
However, together with the fully 
anomaly-based defensive strategy, 
this strategy resulted in the highest 
attack detection rate. Translating 
these findings into real-world 
guidelines would require further 
specification of decision-making 
processes. 

Signature/specific
ation-based 

This strategy showed low 
susceptibility to cyberattacks, as the 
anomaly-based prevention 
mechanism manages the thwart the 
majority of attempted attacks. By 
using signature-based intrusion 
detection, additional overestimation 
of the threats posed to the 
ecosystem are not exaggerated, and 
the loss in sensitivity for detecting 
attacks is compensated by initially 
preventing the majority of attacks. 

This strategy ultimately shows the 
most robust performance across 
most performance indicators, but 
rests on the assumption that 
incurring several attacks is 
surmountable, as signature-based 
control mechanisms fail to detect 
as many attacks as anomaly-based 
mechanisms. Other strategies 
experience most losses by making 
incorrect defensive decisions, 
which this strategy does not show.  

 

In the abstraction of these patterns and strategies lies the main problem with the contribution: it 

does not provide any tangible findings besides emergent patterns that were largely implied by the 

assumptions on which the model was based. Instead, the agent-based model serves as a proof of 

concept for operationalising the framework put forth by this paper. In this capacity, the model 

proves that the framework is capable of generating behaviour that corresponds with real-world 

observations, despite a high-level view. In order to generate tangible artefacts of knowledge to 

contribute to the academic state of the art, further research is required. As such, this contribution 

paves the way for further simulation studies in the light of the scientific gap of knowledge, much like 

how the other major contributions enable further research. 
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9.3 Implications 
This section details how the main contributions from this study affect the scientific state of the art 

and what the societal implications are for these contributions.  

9.3.1 Modelling an ecosystem of critical infrastructures 
The main implication asserted by this study is evidence that an ecosystem approach to modelling 

cybersecurity for critical infrastructures is possible. During a comprehensive review of contemporary 

academic literature, the academic and societal desire for ecosystem-level analysis of critical 

infrastructures emerged. Following major cyber-incidents for critical infrastructures around the 

world, many policymakers stressed the need for new approaches to securing critical infrastructures 

(Fairley, 2016; Farwell & Rohozinski, 2011). Karnouskos (2011) stressed the desire for next 

generation control systems to incorporate coherent security policies by design. Despite this desire, 

there is still a gap of knowledge related to the effects of cyberincidents in critical infrastructure 

systems with cyber-architectural elements, rationality, dependencies and defensive strategies 

accounted for.  

In order to contribute to the design of such policies, a framework for ecosystem-level interaction is 

required. This ecosystem establishes a foundation for just that, as it incorporates elements that 

should be included in any model for critical infrastructure systems. The model and modelling 

approach suggest that emergent patterns can be discovered through agent-based modelling and 

show that this approach is capable of exploring possible emergent behaviour. Since the theoretical 

implications of the direct results of this simulation modelling study are minimal, it is important to 

keep in mind that this modelling approach creates a foundation that could be used for future analysis 

of specific cybersecurity scenarios or policies. The model itself is an artefact of assumptions to 

demonstrate how the framework is capable of operationalising and simulating the subject matter. 

The framework in itself is less assumptious and specifies a coherent collection of concepts and how 

these factors could be enumerated. 

While ecosystem-level models cannot produce results that directly translate into tangible policy 

implementations, they provide additional insight for the bodies of knowledge upon which future 

policy can be designed (Nikolic & Kasmire, 2013). Understanding how inoperability translates from 

one node to another is crucial to understanding the entire threat landscape (Baiardi et al., 2006). The 

immense consequences from critical infrastructure security incidents should be sufficient reason for 

creating a complete overview of the threat landscape. However, all possible future use should still 

respect the limitations associated with an ecosystem modelling approach. 

9.3.2 Exploring security policies and designing future critical infrastructures 
The increased frequency and impact of cyber-incidents stresses the need for coherent security 

policies (Brown et al., 2006; Li et al., 2012; Neuman, 2009). Historically, cybersecurity requirements 

for critical infrastructures were often an afterthought, with little consideration of possible cascading 

failures resulting from cybersecurity practices. This study proved the possibilities to analyse the 

effects of security policies using an agent-based model, which can be used to test several elements 

that might matter for coherent security policies. Hahn et al. (2013) highlight the desire to test 

security elements in an architectural ‘cyber-physical security testbed’. This requires exploration of 

specific instances of design elements, with several additional modifications to the ecosystem model 

taken into account.  

The translation of conceptual patterns and conceptual defensive strategy designs requires a different 

environment than an agent-based modelling suite, especially so when analysis is conducted on the 

level of the cybersecurity ecosystem for critical infrastructures. The findings discussed in section 8.2 
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should be taken for what they are: pure exploration of possible behaviours based on a substantial 

basis of core elements, and not analysis of optimal strategies to base policy on. Translating observed 

patterns into policy opportunities requires integrating many additional social and technical facets, 

while also having to account for responsible costs of defensive strategies. This step exceeds the 

scope of this study, but can make use of the findings and contributions discussed throughout this 

chapter. While coherent, top-down policies might make sense when designed from a blank slate, 

they are based on a selection of properties that could be managed within a simulation model. Real-

world policy implementations cannot make these assumptions and exclude properties from the 

applied scope.  

However, this does not mean that simulation models of this type are useless for engaging the policy 

process. The more time passes by without tangible actions towards new, secure-by-design 

infrastructure, the more important complete exploration of all possible effects related to critical 

infrastructures is. If critical infrastructures and policymakers are to keep up with the ever-evolving 

threat posed by cyberattackers, they should explore all avenues possible by assessing the robustness 

of both tangible, domain-specific designs, as well as higher level behaviour of generalisable 

infrastructures. The process of designing new infrastructures is expensive, and the short-sightedness 

shown for legacy infrastructures should serve as a lesson for new designs: to account for possible 

security issues at all stages of development (Department of Homeland Security, 2015; Neuman, 

2009). The main implication from this study is therefore the conclusion that it is possible to model 

and simulate the impact of cyberattacks and defensive strategies on interdependent networks of 

critical infrastructures. To achieve this, the framework created forms a solid foundation that is both a 

coherent integration of concepts as well as being extensible with additional concepts. 

9.4 Future research 
As stated in section 9.3, there are several possibilities to conduct further research to gather more 

insights into cybersecurity elements for critical infrastructures. Three main avenues for further 

research are encouraged.  

The first possible avenue for future research is to use the simulation model designed as part of this 

study as the starting point for additional elements for ecosystem-level analysis. Other modellers can 

extend the model to add additional elements that are identified for relevant policy exploration. If this 

is done, the agent-based modelling cycle should still be adhered to, implying the necessity for further 

verification and validation. Section 9.1 detailed several possible extensions that were cut during 

conceptualisation of this simulation model, including the differences between different architectural 

compositions of the simulated infrastructure network. One particular consideration for extension is 

to incorporate a dynamic threat landscape that represents the probable increase in threat frequency 

if many incidents occur in a recent time period. Such changes can extend the range of uses for the 

model to also include time-sensitive developments. Another avenue for model extension is by 

including different decision-making models, or changing the baseline of interaction from probability-

based to game theory. Including more game theoretic elements could shed light on how strategic 

behaviour possibly shapes system behaviour. Other researchers might be interested in expanding the 

model with concepts that they deem necessary to achieve their desired research objectives. 

However, this avenue for future research should stick to the exploratory nature of this model, and is 

likely mainly relevant for exploring new, untouched directions for defensive strategy designs. 

The second avenue for further research also builds upon the foundation of this simulation model and 

involves specification of the system-of-interest. If this is done, the researchers should keep in mind 

that the foundation of the model was built around an ecosystem-level aggregation of incorporated 

elements. Shifting these elements towards specific implementations and catering towards real-world 



Chapter 9: Conclusion and discussion 
 

109 
 

data is possible, but might require substantial modification of procedures, such as attack selection or 

impact assessment. However, the underlying foundation for operationalisation should stay the same, 

as this was based on a thorough study and conceptually validated through evaludation. Applying 

such an approach can help generate new directions for security policies and formulate a more 

advanced stage of research than presented by this study. 

The third possible avenue for further research builds upon the concepts included for ecosystem-level 

modelling of critical infrastructures. As denoted in section 8.2 and 8.3, the desire for understanding 

the effects of dependencies and situational awareness on infrastructure operation is an emerging 

discipline of science. To this end, the findings of this thesis are not inherently relevant and the 

approach might be the more interesting facet. Mimicking the process of incorporating concepts for 

elements of a cybersecurity ecosystems and translating these towards formalised, tangible 

computations of parameters can help formalise similar models for other topics. 
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Appendix A: Literature review 
This appendix contains the literature review that the academic knowledge gap is based on. The 

increased frequency and impact of cyber-incidents, such as the Stuxnet worm attack on Iranian 

power plants, sparked a new wave of scientific research pertaining to resilience and security of 

cyber-physical control systems (Cárdenas et al., 2011; Department of Homeland Security, 2015; Jang-

Jaccard & Nepal, 2014; Karnouskos, 2011). A scoping review of contemporary academic literature is 

conducted in order to establish core academic principles related to cybersecurity of critical 

infrastructures.  

By studying contemporary and well-cited academic publications, a clear pattern emerges, forming 

the structure of this literature review. Scientific literature generally fits in one of the following 

categories: 

 Prescriptive research of protocols and practices in specific cyber-physical systems which 

require change. 

 Descriptive research of incidents and associated security components, how these 

components failed and anomaly detection practices. 

 Methodological review of shortcomings in establishing coherent, top-down strategy and how 

to integrate cyber-security by design.  

Prescriptive research 
Many publications provide analysis of cyber-incidents, identifying system components that failed, 

followed by prescribing change to these components. Fairley (2016) is no exception to this, 

highlighting the severity of the shock that the Stuxnet attack provided to US power grids. 

Cybersecurity had long been disregarded as an afterthought, whereas Fairley recognises the need for 

detecting and thwarting intrusions by design. A similar view is shared by Karnouskos (2011), who 

relates this need for detection and mitigation to a complicating factor in critical infrastructures: the 

sheer complexity of networked sensors and components. Karnouskos further specifies Fairley’s 

notion of cybersecurity by design, yet published his findings five years prior – yet Fairley’s call for 

cybersecurity by design is as relevant as it was before. This timespan highlights the lack of pace at 

which cyber-physical systems change – the shakeup that major incidents cause do not find their way 

into coherent, tangible cyber-defensive strategies. In an effort to assess future challenges in 

cybersecurity, Jang-Jaccard and Nepal (2014) distinguish between critical infrastructures and large-

scale networks of embedded sensors, a distinction typically not made. They found that emphasising 

central control systems in isolation might help provide more tangible solutions, but could fail to 

include interaction between centralised Supervisory Control And Data Acquisition (SCADA) systems 

and a growingly complex environment. In general, there is wide discussion as to which control 

mechanism performs best, but little attention is paid to interdependencies between infrastructures 

(Priest et al., 2015; Rinaldi, 2004). The primary take from this is the requirement for more 

sophisticated control mechanisms than in traditional cybersecurity cases. 

A recurring theme in literature is the notion of accessibility of SCADA systems being both a blessing 

and a curse: while allowing for increased productivity, it also significantly increases the attack surface 

(Hahn et al., 2013; Karnouskos, 2011; Sandberg et al., 2015). Cárdenas et al. (2011) are proponents of 

this view on critical infrastructures and supply a widely cited framework for securing critical assets in 

infrastructures. This framework works well for providing risk assessment and control effectiveness, 

but fails to address core issues in the design of critical infrastructures. Brezhnev et al. (2018) make 

use of the accessibility of SCADA systems by proposing duplication and redistribution of important 
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assets across system components, increasing the required effort to attack. The heterogeneous 

nature of critical infrastructures components prevents a consistent, easy updating process 

(Department of Homeland Security, 2015; Karnouskos, 2011). Besides, dependencies and 

interdependencies between infrastructure nodes indicate that modelling critical infrastructures 

should always include interconnections (Rinaldi, 2004).  

Descriptive research 
Whereas many publications propose specific changes, Neuman (2009) considers this 

counterproductive, as it results in operators and regulators tacking on inconsistent, unattainable 

security requirements. The critical consequences of previously non-critical systems are to be 

described and require proactive integration of security views. More recently, Clark et al. (2017) agree 

with this notion, describing the impact of lacklustre security requirements, indicating the need for 

cybersecurity by design. Many authors of prescriptive research might not fully consider the recursive 

loop they create: heterogeneous, individual systems are to be changed using individual, specific 

mechanisms. Crucial to the rush to improve security is the disproportionate damage incurred by 

critical infrastructure failures, something which Romanosky and Goldman (2016) relate to specific 

evaluation of  attack impact. Understanding the concept of collateral damage, as stated in the first 

sub-section, is crucial to understanding critical infrastructures in general. 

Risk assessment mechanisms should thus take the severity of consequences and the complexity of 

the environment into account. Teixeira et al. (2010) and Liu et al. (2012) assess the impact of policy 

interventions based on limited knowledge for both attackers and defenders. Puig (2018), on the 

other hand, assumes security issues to be an optimisation problem and provides the tools and 

mechanisms on assessing the exact amount of risk. Similarly, Kowalski et al. (2008) relate to insider 

threats as rational attackers. There seems to be a lack of consensus regarding the rationality of 

actors. In reality, these viewpoints might not be exclusive, as decisions are made based on an entity’s 

situational awareness. Their situational awareness might be fully rational or limited rationally, based 

on temporal circumstances (Alcaraz & Lopez, 2013). 

Methodological review 
Some of the leading authors on cybersecurity of critical infrastructures identify the complexity of the 

problem and include all previously discussed elements into extensible frameworks. Teixeira et al. 

(2010) and Sandberg et al. (2015) propose analysis tools that include control theory, game theory 

and network optimisation elements that can be applied to any critical infrastructure. Other authors, 

such as Formby et al. (2017) provide methods to systematically address issues within an isolated type 

of infrastructure, but the different approaches to securing critical infrastructures are what caused 

problems to begin with (Cárdenas et al., 2011). Interestingly, Formby et al. (2017) identify industrial 

control systems as unique due to their cyber-physical nature, which is shared by most contemporary 

control systems. Individual solutions might fit their associated system well, but security requirements 

cannot make this distinction as easily. Hahn et al. (2013) provide the basic structure for attack 

templates, allowing for any infrastructure to be systematically analysed. Modelling the ecosystem of 

attacks on critical infrastructures requires using accurate yet flexible models for attack and defence 

scenarios. More sophisticated coordinated attack templates are required to keep up with ever-

evolving cyber-threats. 
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Appendix B: Model concept formalisation 
Table B-1: Concept formalisation 

State Software data 
structure 

Value range 

Defenders   

Node operation Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Internal operation factor Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

External operation factor Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Economic impact Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Physical impact Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Perceived node operation Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Perceived internal operation Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Perceived external operation Float ≥ 0 𝑎𝑛𝑑 ≤ 1  

Current state Integer 0, 1, 2, 3  

Attackers   

Profile Integer 1, 2, 3  

Knowledge String “𝑙𝑜𝑤”, “𝑚𝑒𝑑𝑖𝑢𝑚”, “ℎ𝑖𝑔ℎ”  

Economic-preference Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Physical preference Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Attack capabilities Boolean 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 for each attack  

Dependencies    

Weighting Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Current state Integer 0, 1, 2  

Global states    

User traffic frequency Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

User traffic criticality Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Detection sensitivity Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Detection specificity Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Prevention sensitivity Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Prevention specificity Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Alleviation threshold Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Retention threshold Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Alleviation duration Integer 1, 2, 3, 𝑛  

Retention duration Integer 1, 2, 3, 𝑛  

Worm spread likelihood Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Attack frequency Float ≥ 0 𝑎𝑛𝑑 ≤ 1   

Attack duration Integer 1, 2, 3, 𝑛  

Attack powers Float ≥ 0 𝑎𝑛𝑑 ≤ 1 for each attack  

Total damage sustained Float ≥ 0  

Physical damage sustained Float ≥ 0  

Economic damage sustained Float ≥ 0  
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Appendix C: Model formalisation flowcharts 
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Figure C-1: Intrusion prevention procedure 
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Figure C-2: Intrusion detection procedure flowchart 
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Figure C-3: Target selection procedure flowchart 

 



Appendix C: Model formalisation flowcharts 
 

121 
 

Start

End

Create a list of the identifier 
numbers for all attacks in 

random order

Select the first attack

Is this attack possible? NoYes

Choose this attack

Is an attack chosen?Yes

Launch chosen attack

No

Select the second attack

Is this attack possible? No

Is this attack possible? No

Select the third attack

Yes

Yes

 

Figure C-4: Attack selection procedure flowchart 
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Figure C-5: Attacker activity assessment procedure flowchart 
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Figure C-6: Sustain damage procedure flowchart 
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Figure C-7: Establish response procedure flowchart 
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Figure C-8: Launch attack procedure flowchart 
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Figure C-9: Establish operation procedure flowchart 
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Figure C-10: Establish external operation procedure flowchart 
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Figure C-11: Perceive operation procedure flowchart 
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Figure C-12: Update operation procedure flowchart 
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Appendix D: Modelling assumptions 
Table D-1: List of assumptions adhered to during modelling 

Assumption number Description 

Assumption 1 Attacks do not expire and will remain until they are removed by a 
defender. 

Assumption 2 Since the model entails an ecosystem, all threats acting against 
the system do so since they are already motivated. Their decision 
to attack is motivated by the ecosystem alone and not affected 
by externally available targets. The prescribed attack frequency 
alone therefore determines when an attacker initiates an attack. 

Assumption 3 For the same reason as assumption 2, attacks are selected 
randomly based on the overall population of attacks acting 
against critical infrastructures. There is no specific preference for 
any type of attacks other than the distribution of identified types 
of attacks. 

Assumption 4 All attacks are surmountable by the same procedures of 
alleviation and retention. During this process, any damage is 
repaired and consequences are not lasting. 

Assumption 5 The level of operability is represented by a continuous variable 
that is linearly correlated with the associated losses from node 
operation.  

Assumption 6 All user traffic shares the same degree of criticality, as further 
specification of different types of traffic would increase the bias 
towards specific types of selected infrastructures. 

Assumption 7 False positive classification of legitimate activity is corrected the 
very next time intrusion detection is applied, as this false positive 
is not necessarily  

Assumption 8 False positive prevention of legitimate traffic is corrected the 
next time step, as the crucial instance of traffic is reinitiated   

Assumption 9 If a node is already alleviating intrusions and their impact 
assessment increases above the threshold for retention, they will 
instantly change to retaining intrusions. 

Assumption 10 Infrastructure node operators are aware of any inoperability 
caused by dependencies, even if node operators for the origin 
node are not aware of inoperability. 

Assumption 11 When a worm spreads to another node, this still counts as 
normal traffic and will have to bypass intrusion prevention first. 
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Appendix E: Model verification 
This appendix denotes the results of verification. Nikolic et al. (2013) prescribe four stages of the 

verification process, each aiming to establish whether the implemented model procedures match the 

formalised conceptual model. Each of these steps is followed in the light of the framework provided 

by Nikolic et al. (2013). 

E.I Tracking agent behaviour 
The first step for model verification is to actively track agent behaviour. This was mainly conducted as 

a continuous process throughout the model implementation phase. Tracking agent behaviour implies 

using extensive debugging features during the implementation process, which helps identify 

erroneous coding schemes at an early stage. Problems with the model encountered throughout this 

phase were immediately dealt with. In terms of verification results, this step is inherently constrained 

by the complexity of software implementation. As a result, the checks made to ensure agent 

behaviour matches the formalised model will be discussed for the other verification steps.  

E.II Single agent testing 
Single agent testing or unit testing involves testing the behaviour of singular model entities. This is 

done in order to ensure that a single agent conducts all procedures as formalised and in the right 

order. A set of checks is formulated to ensure that model behaviour under normal operating inputs is 

implemented correctly. Furthermore, a set of tests is conducted that seeks to establish possible 

errors that arise from extreme or impossible values. The latter can help detect problematic model 

implementation that could possibly obstruct ‘normal’ model behaviour. 

Test agent sanity: whether computations and choices are made correctly 
A list of theoretical predictions was made in order to assess whether computations within the model 

correspond with the formalised model. Each sanity check is described by the theoretical prediction, 

the method used to test the prediction and the result of a sanity check. 

1. Theoretical prediction: the find-target procedure is called by any attacker who has no 

outgoing attacks. 

Method used: print command in NetLogo embedded in the procedure for the single agent 

Result: Confirmed 

2. Theoretical prediction: an active worm will always call for a chance of spreading 

Method used: print command in NetLogo embedded in the procedure for the single agent 

Result: Confirmed 

3. Theoretical prediction: attacks cannot be launched towards recovering nodes 

Method used: print command in NetLogo checking whether any target is identified when 

there are only recovering nodes in the model. 

Result: Confirmed 

4. Theoretical prediction: attackers do not launch attacks they are not capable of, even if the 

expected damage is the highest. 

Method used: print commands in NetLogo comparing the types of attack iterated over and 

comparing these attacks with the chosen type of attack and the list of possible attacks for 

each attacker profile. 

Result: Confirmed 

5. Theoretical prediction: an attacker will randomise their preference for each type of attack 

and iterate through this list until an attack type is found that the attacker can conduct. 

Method used: iterating through model runs with print statements embedded in the code. 

Attackers consistently yielded randomised variants of the list of attack types. 
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Result: Confirmed 

6. Theoretical prediction: If an attacker is not capable of conducting any type of attack, they will 

still attempt to find a target, but fail to initiate an attack, as they cannot find a viable attack 

Method used: setting all attacker switches for attacker/attack combinations to false and 

running the model. A command was previously implemented in the code to verify whether 

attacks could be conducted and to provide feedback to model users whether there is an 

error with parameter settings.  

Result: Confirmed, the attackers do nothing instead and a warning message is printed in the 

NetLogo Command Centre. 

7. Theoretical prediction: if all three types of attack have equal power and an attacker is 

capable of only one type of attack, they will still find the correct identifier associated with 

that type of attack. 

Method used: using print statements for the type of attack chosen within the NetLogo code 

and cross-referencing the chosen attacks with different settings for attacker/attack 

combinations. 

Result: Confirmed 

8. Theoretical prediction: an attacker with a knowledge level of above medium will sort each 

possible target in descending order based on their expected utility and therefore select the 

target with the highest degree of utility. 

Method used: setting up manual parallel computations of each element involves in utility 

assessment as the result of (physical-factor * physical-impact) + (economic-factor * 

economic-impact) and comparing whether the chosen node corresponds with the manually 

assessed node. 

Result: Confirmed 

9. Theoretical prediction: If a node is recovering, their perceived internal operation factor and 

their true internal operation factor are both always set to 0. 

Method used: implementing mandatory checks for changing operation factors to ensure 

nodes are not recovering and verifying these with print statements for when any node is 

recovering and their internal operation factor and perceived internal operation are not equal 

to 0. 

Result: Confirmed 

10. Theoretical prediction: When the establish-risk procedure is called, this removes the direct 

effects of previous false positives during intrusion prevention. 

Method used: inspecting the node agent between ticks and cross-referencing changes in 

agent states with print statements added to the NetLogo code. Since there are two causes 

behind changes in true impact, one of them being active attacks, this could easily be verified 

with the power of active attacks. 

Result: Confirmed 

11. Theoretical prediction: A node cannot have its internal operating state reduced below 0 by 

attacks. 

Method used: changing the power of an active attack to a value of greater than 1 and 

inspecting whether the internal operation factor of the target node is subsequently reduced 

to 0 or a value below 0. 

Result: Confirmed 

12. Theoretical prediction: A node cannot have its internal operating state reduced below 0 by 

preventing user traffic.  



Appendix E: Model verification 
 

133 
 

Method used: changing user-traffic-criticality to a value greater than 1 and inspecting 

whether the internal operation factor of a node is subsequently reduced to 0 or a value 

below 0 when a false positive occurs. This was indicated with a print statement. 

Result: Confirmed 

13. Theoretical prediction: A node cannot have either its perceived operation or its true 

operation below 0.  

Method used: changing the power of attack types to values greater than 1 and inspecting 

whether the perceived internal operation of a target node is subsequently reduced to 0 or a 

value below 0, while no attack agents were added or removed. 

Result: Confirmed 

14. Theoretical prediction: A node that meets the operation threshold for alleviation, but not for 

retention, starts alleviating intrusions. This process goes on even if the operation threshold is 

no longer met afterwards, until the prescribed duration for alleviation is reached.  

Method used: setting the perceived internal operation factor for a node to 0.5 while 

retention-threshold is set to 0.7 and alleviation-threshold is set to 0.3. The node was then 

manually ordered to conduct the establish-response procedure with print statements added 

to indicate the decision that was made. The perceived internal operation factor was then 

manually set to 1 (where no threshold would be met) to assess whether alleviation was still 

ongoing. 

Result: Confirmed 

15. Theoretical prediction: A node that meets the operation threshold for retention starts 

retaining intrusions. This process goes on even if the operation threshold is no longer met 

afterwards, until the prescribed duration for retention is reached. The retention process 

should also start if alleviation is ongoing, reducing the time needed to fully retain intrusions 

depending on how long the node had been alleviating intrusions.  

Method used: setting the perceived internal operation factor for a node to 0.2 while 

alleviation-threshold is set to 0.3. The node was then manually ordered to conduct the 

establish-response procedure with print statements added to indicate the decision that was 

made. The perceived internal operation factor was then manually set to 1 (where no 

threshold would be met) to assess whether retention was still ongoing. The same process 

was applied to a node that was set to alleviate (a value for alleviation greater than 0). 

Result: a slight error was found in the code that made the required time for retention 1 tick 

longer if the node had swapped from alleviating to retaining intrusions. The increment for a 

node’s retention was moved down in the code, making sure that all iterations of this 

procedure encounter the increment process. This was then revalidated and confirmed. 

16. Theoretical prediction: When a node is confronted with an attack and the node fails to 

prevent this attack, their internal operation factor is decreased by the power of an attack up 

to a minimum of 0, and the node updates the true impact subsequently.  

Method used: setting up a node that was attacked while detection-sensitivity was set to 0 

(i.e. no attacks would be prevented). The attack power was set to 0.35. The expectation 

would then be that the internal operation-factor was set to 0.65. Updating the extent of 

inflicted damage happens at the end of each tick, after all required interaction has taken 

place. 

Result: Confirmed 

17. Theoretical prediction: A node does not incorporate undetected attacks in their impact 

assessment.  

Method used: setting up a node that was attacked by two separate attacks, one detected 

with power 0.35 and another undetected with power 0.55. The expectation would be that 
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the internal operation factor would be set to 1 – 0.55 – 0.35 = 0.2, and that perceived 

internal operation would be set to 0.65.  

Result: Confirmed 

Breaking the agent 
Besides conducting sanity checks, another useful method for single agent verification is attempting 

to ‘break’ agents. By deliberately entering values that exceed the predefined range for several 

parameters, or by adding extreme values, model behaviour can be uncovered that should be 

prevented for the sake of robustness. Each test will be described in terms of objectives, results and 

whether any changes were added to counteract the phenomena. 

1. Agent-breaking action: changing the power associated with attacks to negative values.  

Results: attacks inflict no damage to nodes, as instead the level of operation and perceived 

operation increases far beyond the range of values prescribed for the parameter. The result 

is that no attacks are removed, and worms eventually spread across the entire ecosystem of 

connected nodes. With each attack, the level of perceived operation increases leading to no 

defensive decisions being made. 

Remedy: the only way to achieve this level of operability is by intentionally modifying the 

values of attacks beyond what the sliders allow. Still, in order to prevent unintended model 

behaviour, checks can be added each time the true and perceived levels of internal 

operability are derived to ensure that these values do not extend beyond 1. A check was 

added to prevent values for perceived-internal-operation and internal-operation-factor from 

extending beyond 1. 

2. Agent-breaking action: changing the power associated with attacks to values above 1. 

Results: a single attack manages to completely disrupt internal operation of a node. As a 

result, false positives detected through intrusion detection bring the perceived operability 

down to 0 instantly. Because checks were already in place to ensure the levels of operability 

cannot drop below 0, the model behaviour witnessed is in line with expectations.  

Remedy: no remedy required, as the checks already in place to prevent negative operability 

levels behave as expected. 

3. Agent-breaking action: changing the values for retention duration and alleviation duration in 

such a way that retention takes longer than alleviation. Retention-duration was set to 14, 

while alleviation-duration was set to 7. 

Results: the model catches this combination of setup parameters and automatically adjusts 

the value of retention-duration to match that of alleviation-duration. A warning is printed in 

the NetLogo Command Center (Model setup warning: Retention-duration should never be 

longer than alleviation-duration. Retention-duration has been set to 7). Further model 

behaviour is not changed. 

Remedy: no remedy required, as the check for setup parameters caught the logically 

inconsistent settings. 

4. Agent-breaking action: changing the values for retention threshold and alleviation threshold 

in such a way that retention would be conducted before alleviation would be considered. 

Retention-threshold was set to 0.8, whereas alleviation-threshold was set to 0.7. 

Results: the model catches this combination of setup parameters and automatically adjusts 

the value of retention-threshold to be lower than that of alleviation-threshold, and a warning 

message in the NetLogo Command Center similar to the message of test 3. However, there 

was an error in this mechanism, as it still resulted in a higher retention-threshold than 

intended. What should have been a subtraction operator was an addition operator. After 

fixing this, the correct values were set and the correct message was displayed: (Model setup 
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warning: Retention-threshold should never be longer than alleviation-threshold. Retention-

threshold has been set to 0.69). 

Remedy: As stated under results, the + operator was changed to a − operator, fixing issues 

encountered and making the pre-emptive check function as intended. 

5. Agent-breaking action: changing the number of nodes to 1. 

Results: the model crashes during setup, as all nodes are requested to create connections 

and dependencies to other nodes. The model is built around simulating a network of nodes 

and did not account for the possibility to create only one node. 

Remedy: while not strictly necessary, as simulating one node is not representative for any 

real-world situation within this ecosystem, a single check for creating connections and 

dependencies was added. These functions are now only called if there are multiple nodes in 

the model. 

6. Agent-breaking action: changing intrusion detection and prevention sensitivity and specificity 

values to negative values. 

Results: changing prevention-sensitivity to a negative value results in every attack attempt 

being successful. There is no difference between negative values and a value of 0, as the 

chance of succeeding is 0. Changing detection-sensitivity to a negative value works similarly 

for the detection process, as no attacks are detected at all. Negative values for prevention-

specificity lead to most nodes being constantly stressed, as all user traffic results in false 

positives. Negative values for detection-specificity lead to nodes constantly detecting non-

existent attacks and near-ubiquitous decisions to alleviate or retain intrusions, even if there 

are no attacks. 

Remedy: no remedy required, the model functions as expected. 

7. Agent-breaking action: changing utility preference parameters for attackers to negative 

values. 

Results: attackers still select the target based on the highest value for perceived utility, 

however this value is now negative. If an attacker has values for physical-preference of -0.3 

and economic-preference of -0.7, the attacker would prefer targets with relatively high 

physical-impact. All values are negatives, but are still sorted in descending order with the 

highest value of perceived utility being selected. 

Remedy: no remedy required, the model functions as expected. 

8. Agent-breaking action: changing attacker/attack combinations to make all attacks impossible 

across the model. 

Results: as described during sanity check 6 for single-agent testing, attackers are forced to 

verify whether they can conduct each attack in order of associated power. If an attacker 

cannot select an attack, they will abort the procedure and a message is relayed to the model 

user in the NetLogo Command Center: ((attacker 34) detected incorrect model parameter 

usage. Could not find any attack to conduct, aborting procedure.).  

Remedy: no remedy required, the model functions as expected. 

E.III Interaction testing in a minimal model 
Besides paying attention to a single agent to verify whether their actions correspond with the 

formalised model, another approach is to test interaction in a minimal model. This implies selecting 

the bare minimum of agents required for all basic interaction. In the case of this model, this results in 

one attacker agent and two node agents. Two node agents are required to incorporate connection 

links and dependency links, which fulfil a crucial role in interaction. Each test for interaction is 

described along a scenario for which multiple predictions are made for interaction taking place and 

the values this results in. 
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1. There is an attacker with economic-preference of 1 and physical-preference of 0.5, in the 

following scenario: 

There are two connected and interdependent nodes (A and B), with values for respectively 

economic impact and physical impact of 0.75 and 0.25 for A and 0.25 and 0.75 for B, and the 

weighting of the dependency from A->B is 0.3 whereas the weighting of dependency B->A is 

0.7 

The attacker would make the following decisions: 

o An attacker with “low” knowledge will randomly select either  

Method used: running multiple iterations and seeing whether any variety is 

encountered that could be directly attributed to the random seed used. 

Result: Confirmed 

o An attacker with “medium” knowledge will select node A with perceived utility of 

0.875 over node B with perceived utility of 0.625  

Method used: implementing print statements that verify whether the expected value 

matches the encountered value for perceived utility. 

 A: 1 × 0.75 + 0.5 × 0.25 = 0.875 

 B: 1 × 0.25 + 0.5 × 0.75 = 0.625 

Result: Confirmed 

o An attacker with “high” knowledge will select node B with perceived utility of 1.2375 

over node A with perceived utility of 1.0625  

Method used: implementing print statements that verify whether the expected value 

matches the encountered value for perceived utility. 

 A: 0.875 + 0.3 × 0.625 = 1.0625 

 B: 0.625 + 0.7 × 0.875 = 1.2375   

 Note: Due to internal data references, NetLogo yielded the value 1.23749999 

repeating for node B, which is internally interpreted as 1.2375. The internal 

model implementation can therefore be confirmed as verified.  

Result: Confirmed 

2. Given the following scenario: 

There are two connected and interdependent nodes (A and B), with dependency weightings of 

0.8 from A->B and 0.5 from B->A. The alleviation-threshold and retention-threshold are set to 

0.7 and 0.3, respectively. For the sake of reproducibility, the lone attacker is only capable of 

conducting one type of attack, a worm with associated power 0.5. 

If the attacker decides to attack node A, the following chain of events is expected: 

o Event: the attacker attempts to create an attack to node A with associated power 0.5 

and worm? set to true. The creation of the attack is subject to intrusion prevention: 

if this is successful, nothing happens and the chain stops here. If intrusion prevention 

was unsuccessful, subsequent steps are encountered.  

Observation: in the first instance, the attacker failed to pass the intrusion prevention 

check. The attack was successfully prevented and no further action was warranted. 

In the second instance, intrusion prevention was unsuccessful and an attack was 

created with associated power 0.5 and worm? set to true. 

Result: Confirmed 

o Event: Following the creation of the attack, node A adjusts the internal operation 

level to 1 − 0.5 = 0.5.  

Method used: internal-operation-factor was correctly reduced to 0.5 as a result of 

the attack. 

Result: Confirmed 
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o Event: Node A changes current-state accordingly in line with the new level of 

operation and changes the outgoing dependency state. Both states should be set to 

1. 

Observation: node A changed its state to correspond with the level of operation and 

shifted to represent the yellow-toned stressed state, codified as current-state = 1. 

Result: Confirmed 

o Event: Node B updates their true impact and impact assessment by given the 

inbound dependency, which affects the level of operation at node B by 0.5 × 0.8. 

The new level of operation should therefore be 0.6. Node B should change their state 

to 1, as a result, and so should the dependency from B->A. Node A then reacts to this 

shift in external perturbation and adapts its overall level of operation. 

Observation: node B detected the change in state for the dependency and shifted its 

external-operation factor to 1 − 0.8 × (1 − 0.5) = 0.6. Node A is now affected by 

the dependency from B->A and adapts its external-operation-factor to 1 − 0.5 ×

(1 − 0.6) = 0.8. The internal level of operation in node A is now 0.8 × 0.5 = 0.4. 

Result: Confirmed 

Note: all of these events took place on one tick. Two interdependent nodes form a 

closed loop which will continuously decrease the level of external operability in both 

nodes that react to each other. The best way to unambiguously verify the values that 

take place without treading into precise numbers with more a vast number of 

decimals is to assess whether updates are correctly computed within the one tick 

assessed. 

o Event: Node A detects the attack and updates their perceived-internal-operation to 

0.5 and subsequently changes the value for perceived-operation to 0.5 × 0.8 = 0.4. 

Observation: the moment the attack on node A becomes detected, node A shifts 

their perceived-internal-operation from 1 to 0.5. As a result, node A computes 

perceived-operation to 0.5 × 0.8 = 0.4. 

Result: Confirmed 

o Event: Node A decides on the appropriate response and chooses alleviation, as the 

retention-threshold is not met, whereas the alleviation-threshold is met. The value 

for alleviation should be increased to 1, and a label with the letter A should appear 

on the node. 

Observation: node A detects the attack, which turns blue, and updates their 

perceived-internal-operation to 1 − 0.5 = 0.5. Based on this, node A starts the 

alleviation procedure and increments the value for alleviation, as well as displaying 

an A. 

Result: Confirmed 

o Event: Attack spreads to node B, which is undetected. Node B updates internal-

operation-factor and operation based on the true impact of the attack. 

Observation: after the attack spreads to node B, the internal-operation-factor for 

node B is reduced by 1 to 0.5, similarly to what happened to node A before. 

Result: Confirmed 

E.IV Multi-agent testing 
The fourth and last step of model verification is to conduct multi-agent testing. Multi-agent testing 

involves verifying model behaviour for the entire model with default parameterisation, as shown in 

Appendix F. This implies that agents are present in normal quantities. The aim for this step is to 

identify whether behavioural patterns that emerge are consistent with behaviour that matches 
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hypothesised or desired behavioural patterns in the real world. There are two main approaches to 

conducting multi-agent testing: variability testing and timeline sanity analysis. Both of these steps 

will be conducted and related to model behaviour for each key performance indicator discussed.  

Variability testing 
Variability testing involves running many repetitions of the same model, typically 100 to 1000, to 

suppress heavily chaotic behaviour and help normalise emergent patterns (Nikolic et al., 2013). The 

aim of variability testing is to hypothesise and discuss whether the degree of variability across 

performance indicators is explainable. Timeline sanity testing involves simulating a low number of 

instances of the same model to assess whether behaviour can be explained by other parameters. The 

setup used for these verification steps are 1000 repetitions used to assess the variability of each 

parameter and only the first three repetitions used to discuss timeline sanity. Each of these 

variability tests are conducted using boxplot graphs over the set of 1000 repetitions, grouping 

together sets of 10 model ticks. This shows the general tendencies for data to exert itself between 

boundaries given by the upper and lower quartiles, as well as showing the behaviour of the majority 

of data points in the second and third quartiles. 

Damage to nodes 

The first set of performance indicators discussed are those indicators relating to the extent of 

damage to nodes, discussed in section 5.4. The first indicator assessed is the total extent of losses 

incurred by nodes over time. Losses should gradually increase over time as they are caused by any 

slight disruption in nodes. Cumulative losses can only increase over time, determined by the extent 

by which operability is hampered. This is inherently rooted in run-specific circumstances and should 

show variability among repetitions. The variability across cumulative losses indicate the extent to 

which losses are incurred and shows the relative difference among pure system performance.  

The associated boxplot is shown in Figure E-1. As can be seen in the graph, the majority of data 

points trend along the same near-linear relationship shown by the second and third quartiles. This 

shows a steady increase in the extent of losses over time, which is as expected. Variations in the 

growth of losses in several outliers is expected, yet the differences between outliers and general 

means are rather slim. Upper outliers can be explained due to more sensitive iterations of node 

configurations, as in some cases nodes with a high degree of perceived utility might also carry 

heavier dependencies. This highlights the need for a high number of repetitions for experimentation 

in order to catch the overall possible model outcomes. This is corroborated by the extent of current 

or contemporary losses at each point in time, shown in Figure E-2. This plot shows how the linear 

coefficient for cumulative losses trends between around 0.10 and 0.15 per node for the majority of 

repetitions. This implies the average degree of operability is between 0.85 and 0.90 for these 

repetitions. The other elements of the boxplot graph show that there is variability possible, but as 

expected the behaviour this exerts does not change over time. The reactive nature of the simulation 

model is identified in the comparability of each time step. Outliers at each point in time are similarly 

the result of coincidental configurations of nodes and dependencies.  
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Figure E-1: Cumulative losses over time for variability testing 

 

Figure E-2: Current losses per node over time for variability testing 

The second indicator assessed is the development of node operation states over time. This gives a 

brief indication of the level of operability that can be attained within the simulation run. Since each 

run implicitly incorporates a degree of chaos, the expectation is that this parameter will show a great 
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degree of variability across each time step, given many different repetitions are inspected. Given the 

foundations of the formalised model, emphasis is placed on the effectiveness of defensive strategies 

within the ecosystem, which in itself implies a degree of reactiveness. The implicit degree of 

reactiveness means that entities within the model are supposed to react to contemporary events. On 

the basis of analysing 1000 repetitions of the simulation model, the mean distribution of node 

operation status should be comparable across each time step. This was identified for the first 

indicator, as it directly relates to the extent of losses sustained. The upper and lower limits and 

standard deviations across model runs are supposed to show variety between each time step, but 

will ultimately trend within similar boundaries. The expectations for these plots is, as with the 

previous indicator, that there is little variability between time intervals. However, it is expected that 

the number of normal and stressed nodes interchange to a certain extent. These two plots should 

indicate similar spread. On the other hand, inoperable nodes should occur much less and cases of 

multiple inoperable nodes should be rare. The plots for the numbers of normal, stressed and 

inoperable nodes are respectively shown in Figure E-3, Figure E-4 and Figure E-5. 

 

Figure E-3: Number of normal nodes over time for variability testing 
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Figure E-4: Number of stressed nodes over time for variability testing 

 

Figure E-5: Number of inoperable nodes over time for variability testing 

The plots show significant variation across the number of normal and stressed nodes, whereas the 

number of inoperable nodes trends heavily at 0. It should be noted that the scales are different for 

inoperable nodes to highlight the rarity of these phenomena. Out of the 1825000 total observations 
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(1000 repetitions of 1825 ticks), only around 14.8% show an inoperable node count above 0. This 

emergent behaviour replicates the desired behaviour, where slight disruptions in infrastructure 

operation lead to a slight increase in losses and the frequency of inoperable infrastructure nodes is 

low. Not seen in the plots, the number of normal and stressed nodes shows significant variation 

across model runs: single run model behaviour is not a static data point, as one might deduce from 

these plots. This will be further detailed during timeline sanity testing.   

Quality of defensive decisions 

The second set of performance indicators discussed relate to the overall quality of defensive 

decisions made across a model run. The first indicator used is the deviation between true operability 

of nodes and the perceived level of operation of nodes over the course of each type of decision 

made. The expectation is, once again, little variability between time intervals across the 1000 

simulation runs. Furthermore, significantly high or significantly low values would indicate there are 

implementation errors for impact assessment. This highlights the extent by which impact assessment 

yielded incorrect information at each time step. The associated plot is shown in Figure E-6. As can be 

seen from the boxplot, the majority of repetitions show little variance, with almost perfect symmetry 

across the mean over all time steps.  One thing that should be noted is the presence of outliers on 

the lower boundaries of the plot. Many values are identified which slightly exceed the fourth 

quartile, yet would not be sufficient to be incorporated in this fourth quartile. The fact that these 

outliers occur on the lower end more so than the higher end of the deviation in impact assessment 

likely implies that the set of parameters used for these repetitions tends to underestimate the level 

of operation on a node. 

 

Figure E-6: Average deviation in impact assessment over time for variability testing 

The second indicator assessed is the frequency at which each type of defensive decision (do nothing, 

alleviate or retain), plots for which are shown in Figure E-7Figure E-7: Frequency of decisions made as 

part of the total number of decisions for variability testing. Figure E-7a and Figure E-7b show a similar 

pattern as seen before, as a near-symmetrical distribution of data points is shown across all model 
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runs. The second and third quartiles of each boxplot are densely clustered around the mean and the 

upper and lower quartiles cover similar areas on each respective side of the mean. For Figure E-7c, all 

boxplots cover the value 0, as most observations do not include any decisions to retain intrusions. All 

observations where these do occur are therefore inherently considered outliers for boxplot graphs. 

There appears to be no substantial change in behaviour or distribution across different time steps, as 

expected. The total possible value range is substantial when compared to the mean, but it is not 

obvious from this graph alone whether these differences originate from chaotic model behaviour or 

stable differences between separate model repetitions. Considering timeline sanity analysis 

described further down and differences observed through descriptive statistics, which will be 

expanded upon further, it can be concluded that model runs result in only minor overall differences: 

the observed symmetry is the result of similar behaviour at different time steps across model runs, 

showing no unexpected variability. 

The third performance indicator assessed relates to the correctness or quality of defensive decisions 

made. The variability of these parameters across the set of 1000 repetitions is shown in Figure E-8. As 

with the frequency of defensive decisions, the observed distribution of data points is stable across 

different time steps and shows nearly symmetrical behaviour. Figure E-8a and Figure E-8c together 

show that the majority of decisions made tends to be either correct or based on an underestimation 

of operability given the parameter settings used for variability testing. Figure E-8b shows that 

occasionally, decisions are made based on overestimating operability, but these tend to be outliers. 

In terms of expected variability, these performance indicators are inherently likely to change over 

time within a single model repetition. The level of symmetry indicates that no implementation errors 

can be deducted from these 1000 repetitions, as model behaviour follows expected chaos between 

time steps within individual repetitions.  
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Figure E-7: Frequency of decisions made as part of the total number of decisions for variability testing 
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Figure E-8: Correctness of decisions as a fraction of total decisions made for variability testing 
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Cyberattack effectiveness 

The third set of performance indicators used relate to the effectiveness of cyberattacks. The first 

performance indicator of this type is the number active attacks. The second performance indicator 

for the effectiveness of cyberattacks is the average duration of cyberattacks at each point in time. 

Effectively thwarting unprevented intrusions implies mitigating attacks early. If these numbers differ 

significantly from the functions formalised for attack detection, these parameters would show 

deviation beyond expected boundaries. Again, these parameters are likely subject to significant 

chaos between runs, as similar events might happen at different points in time across model runs. 

The variability of these parameters can be assessed by verifying whether upper and lower boundaries 

could be explained by the formalised model and whether the behaviour across 1000 repetitions 

evens out to a symmetric overview as seen for other performance indicators. 

 

Figure E-9: Average number of attacks at each time step for variability testing 

The average number of attacks is plotted in Figure E-9 and the average duration is shown in Figure 

E-10. Both graphs do not show significant variance from 0, as the vast majority of observations are 

characterised by no active attacks. The full range covered by each boxplot represents 0 attacks, 

meaning all other observations are outliers. Out of all 1825000 data points, only around 18.7% of 

observations have at least 1 active attack. While around 1 attack per tick would be expected based 

on the parameterisation, this number is the result of attempted attacks being thwarted by intrusion 

prevention systems and therefore not being realised in the model at the end of each tick. Since the 

number of active attacks is low, the average duration also inherently is tied to 0 for the majority of 

observations. The subset of attacks with a duration of greater than 0 is even smaller, as there can be 

active attacks that have just been initialised. This is indeed the case, as there are such attacks in 

around 14.8% of observations. While this number might suggest some overlap with the same 

percentage previously identified for inoperable nodes, the underlying number differs (270404 attacks 

and 271125 inoperable nodes). The variability among these parameters can therefore be logically 

explained due to successful attack mechanisms and the sheer rarity of loss events due to 

cyberattacks. 
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Figure E-10: Average attack duration at each time step for variability testing 

Variability between individual repetitions 

In order to establish whether there are substantial differences between individual runs for the same 

parameter settings, two main paths could be taken: a tabular approach based on descriptive 

statistics or a visual approach based on additional plots. Since these plots would be rather 

convoluted, assessing differences across 1000 repetitions, a tabular approach was taken, denoting 

the mean and standard deviation for each performance indicator across the set of experiments. The 

set of 1000 repetitions was used to generate a new dataset with 1000 data points, each denoting the 

average for each performance indicator across an individual run. This dataset was then used to 

determine the mean and standard deviation for each performance indicator across the overall set of 

repetitions, following the same process that will be used for data analysis in chapters 7 and 8. 

The results of this analysis are shown in Table E-1. The table shows that no performance indicator 

results in unreasonable standard deviations, as the value range across the set of 1000 repetitions 

seems rather stable. Only one performance indicator has a seemingly noteworthy standard deviation 

compared to the mean, being the cumulative extent of losses over the course of a model run. 

However, these were also tracked through contemporary losses experienced for each time step, 

which does not result in similar variations due to the exponential nature of standard deviations. 

While seemingly significant, the standard deviation only makes up for 6.1% of the mean, and does 

therefore not change the interpretation of model variability. Model variability, as initially expected, 

shows variation in terms of model-specific events happening at different time steps, for example due 

to an attack being created or a raised false alarm for defenders. However, since chaos only affects 

whether such events happen at specific time intervals, their impact on model runs is minor. 

Variations in model behaviour across a set of model repetitions with equal parameter settings are 

not likely to affect interpretation of data analysis outcomes. 
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Table E-1: Means and standard deviations for all performance indicators across 1000 repetitions for variability testing 

Performance indicator Mean  Standard 
deviation 

Cumulative losses 5566.92 343.53 

Current losses 0.12 0.0075 

Number of normal nodes 10.79 0.42 

Number of stressed nodes 14.03 0.40 

Number of inoperable nodes 0.18 0.054 

Impact assessment deviation -0.059 0.0011 

Fraction of ‘nothing’ decisions 0.39 0.0073 

Fraction of alleviation decisions 0.60 0.0064 

Fraction of retention decisions 0.0072 0.0021 

Fraction of correct decisions 0.48 0.013 

Fraction of overestimated decisions 0.030 0.0015 

Fraction of underestimated 
decisions 

0.49 0.014 

Number of active attacks 0.21 0.027 

Attack duration 2.66 0.098 

 

Timeline sanity testing 
The second form of multi-agent testing involves assessing several parameters for a small number of 

model repetitions, in this case three repetitions drawn from the dataset used for variability testing. 

Since this step serves mainly as a tentative check on whether model behaviour is valid, only a select 

few parameters will be assessed. This step was initially mainly conducted as part of tracking agent 

behaviour and was consistently applied throughout model implementation.  

 

Figure E-11: Cumulative losses over time for timeline sanity testing 
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Figure E-12: Current losses at each time step for timeline sanity testing 

As can be seen in Figure E-11 and Figure E-12, the loss function follows a continuous near-linear 

growth pattern. Deviations in current loss per time step are rather minor, and when smoothed out, 

as done for the plot in Figure E-12, show only slight persistent tendencies. The grey areas around 

each mean graph indicate the 95% confidence interval for the graph. In order to explain these 

tendencies, Figure E-13, Figure E-14 and Figure E-15 depict the number of nodes for each status at 

each time step. The changeable nature of each model run can be derived from these plots, 

highlighting how the symmetrical observations from variability testing emerges. Changes within 

individual model runs occur at chaotic time steps, but do not significantly contribute to differences 

cumulatively observed over the course of 1000 repetitions. Upward trends in current losses, for 

example early on in run 3 in Figure E-12 can be explained by increases in the number of inoperable 

and stressed nodes as compared to normal nodes shown in Figure E-15. Similarly, the downward 

trend for losses in run 2 early on in Figure E-12 corresponds with virtually no inoperable nodes and a 

relative growth in the number of normal nodes. These behavioural tendencies operate as expected 

and as desired, and to this extent the timeline sanity tests for the model can be confirmed. 
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Figure E-13: Node status per time step for run 1 

 

Figure E-14: Node status per time step for run 2 
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Figure E-15: Node status per time step for run 3 
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Appendix F: Model parameterisation 
This appendix denotes and details parameter values selected for the model. Following the 

evaludation approach by Augusiak et al. (2014), each parameter is assigned a quality indicator on a 

low/medium/high scale. Several variables cannot be assigned a quality, as these are parameters used 

for model visualisation (node-radius) or are values the model is based around, such as Number-of-

nodes. A distinction was made between model parameters, attacker parameters and experimental 

design parameters. Model parameters impact values used by several agents in their interaction, for 

example the power assigned with a certain attack. Attacker parameters incorporate the predefined 

attacks and determine which attacks can be conducted and are fixed by design. Experimental design 

parameters are used for experimentation and are discussed in more detail in chapter 7. 

Table F-1: Model parameters, values, quality of data and justification 

Parameter Value Quality 
of data 

Justification 

Attack-
frequency 

0.050 High On average, 20% of critical infrastructure systems are 
attacked each month (Kaspersky Lab ICS CERT, 2017). 
That means at a minimum there would be 5 attacks on 
unique targets per month. Adding slight leeway would 
result in around one attack per tick. Given the selected 
number of 20 attackers, each attacker will attack once 
on average every 20 days. Combined with the number 
of nodes in the model, this results in roughly 1 attack 
per tick.  

Number-of-
attackers 

20 N/A Combining the frequency of attacks to an ecosystem, 
selecting 20 attackers still yields dynamic interaction 
and distributed attack origins while not increasing 
computational requirements significantly. 

Number-of-
nodes 

25 N/A The ecosystem is built around a system that contains a 
substantial number of nodes, connections and 
dependencies. On an ecosystem-level, 25 nodes allow 
for sufficient variety of interaction while maintaining 
representativeness for typical critical infrastructure 
networks shown in Pederson et al. (2006). 

Worm-
spread-

likelihood 

0.25 Low While there are ample examples of cyberattacks on 
critical infrastructures infecting multiple systems, it is 
essentially impossible to define a universal probability 
for worms to spread to other targets at each time step. 
This value was assumed after iterative testing to assess 
when model performance looked meaningful. This 
parameter should be varied heavily during 
experimentation. 

Attack1-
power 

0.35 Medium Represents the disruptive malware attack discussed in 
chapter 3. The value of the attack is derived from the 
relative impact on infrastructure operation from attacks 
listed in Miller and Rowe (2012). 

Attack1-
worm 

True N/A 

Attack2-
power 

0.55 Medium Represents the infrastructure blackout attack discussed 
in chapter 3. The value of the attack is derived from the 
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Attack2-
worm 

False N/A relative impact on infrastructure operation from attacks 
listed in Miller and Rowe (2012). 

Attack3-
power 

0.6 Medium Represents the infrastructure asset destruction attack 
discussed in chapter 3. The value of the attack is 
derived from the relative impact on infrastructure 
operation from attacks listed in Miller and Rowe (2012). 

Attack3-
worm 

True  N/A 

Criminal-
distribution 

 
1 
 

 
 
 
N/A 
 

The relative distribution of each type of attacker among 
the total number-of-attackers. By default these are 
assumed to be equally present, all values are set to 1. 

Terrorist-
distribution 

Adversary-
distribution 

Node-radius 4 N/A Visual modifier that impacts how far apart nodes are 
created. Has no real-world counterpart of relevancy to 
experiments. 

Physical-
impact 

Random 
between 
0 and 1 

Low Both physical-impact and economic-impact exist as 
parameters to incorporate optimisation-based targeting 
mechanisms for attackers. The extent of losses itself 
does not matter – only relative performance between 
defensive strategies yields interesting results.  

Economic-
impact 

Random 
between 
0 and 1 

Low See physical-impact. 

Number of 
connections 

1.5/node Medium Based on the connectivity model by Pederson et al. 
(2006). Implemented as a conceptual element to 
facilitate worm infection capabilities. 

Number of 
dependencies 

1/node Medium Based on the dependency model by Pederson et al. 
(2006). Implemented to facilitate the possibilities of 
cascading failures. Can be changed further to 
incorporate different structures for dependencies or 
infrastructure networks in general. 

Dependency 
weighting 

0.3 Low Guesstimate based on the level of operability and 
general effects of cascading failures. Based on the 
multitude of literature discussed in section 2.1. 

User-traffic-
frequency 

0.4 Low Guesstimate based on the level of operability and 
typical effects for failing to classify traffic correctly 
(Vasilomanolakis et al., 2015). 

User traffic 
criticality 

0.4 Low See User-traffic-frequency. 

Alleviation-
duration 

7 Low Guesstimate based on iterative model performance. 
Estimated based on the requirements for responding in 
relation to attack powers. In reality, responses take 
significantly shorter (Department of Homeland Security, 
2015). Changing the time interval to allow for shorter 
time steps would increase computational requirements 
exponentially. Since there is no need to produce 
tangible, real-world representations of attack-defence 
scenarios, the increased time for this is not problematic, 
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so long as it remains consistent with other model 
parameters. 

Retention-
duration 

4 Low See Alleviation-duration. 

 

Table F-2: Attacker parameters 

Attacker type Physical-
preference* 

Economic-
preference* 

Attack1? Attack2? Attack3? Knowledge 

Cybercriminal 0.1-0.3 0.9-1 x x  Low 

Cyberterrorist 0.9-1 0.7-0.9  x x Medium 

Foreign 
adversary 

0.9-1 0.4-0.6 x x x High 

* Physical-preference and economic-preference are both used to add variety to attack targeting 

behaviour and do not necessarily have real-world counterparts. These are based on the motivation for 

attackers discussed in section 3.2 and primarily work to discern between targets.  
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Table F-3: Defensive strategy configuration parameters, values, quality and justification 

Defensive 
strategy 

configurations 

Value  Quality 
of data 

Justification 

Prevention 
sensitivity 

Anomaly-
based: 0.95 
Signature-
based: 0.8 

High These parameters and their meaning are based 
on the taxonomy of intrusion detection and 
prevention systems by Patel et al. (2013). 
However, the authors do not specify 
unambiguous values to be used for such 
mechanisms. Instead, values concluded by 
Mansour, Chehab, and Faour (2010) are 
applied. They state that average false negative 
and false positive rates for both prevention and 
detection range between 5-15%, depending on 
the method applied. True negative and true 
positive rates are derived from these values and 
deviate between such values. The average 
success rate for attacks on networked control 
systems is around 10%, roughly corroborating 
these distributions (Verizon, 2015). The quality 
of the data is considered high despite not 
directly linking the parameters to direct 
implementations of such features, as 
experimentation is exploratory in nature. The 
aim is to find emergent patterns for several 
defensive strategies as opposed to designing a 
specific intervention for an existing system. 

Prevention 
specificity 

Anomaly-
based: 0.8 
Signature-
based: 0.95 

High 

Detection 
sensitivity 

Anomaly-
based: 0.95 
Signature-
based: 0.8 

High 

Detection 
specificity 

Anomaly-
based: 0.8 
Signature-
based: 0.95 

High 

Alleviation 
threshold 

0.7 Medium Values derived from the central degree of 
operability of a node by Setola and 
Theocharidou (2016), combined with typical 
attack strengths and likelihood to classify 
attacks correctly. These values differ per 
defensive strategy to account for differences in 
accuracy for situational awareness. 

Retention 
threshold 

0.3 Medium 
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Appendix G: Model exploration 
This appendix contains analysis on the outcomes of experimentation. Only the three most influential 

parameters are described following the process described in section 7.2. 

G.I Dependency weighting 
The overall impact of dependency weighting is supposed to primarily affect the total extent of losses 

inflicted to the ecosystem. Attack-induced inoperability in nodes translates over to dependent nodes, 

directly causing further inoperability. More heavily weighted dependencies further exacerbate the 

degree to which losses are incurred. This is corroborated by the density plot shown in Figure G-1, 

with higher values for dependency weighting directly leading to higher and less densely concentrated 

losses. In simulations with heavily weighted dependencies, slight variations are exaggerated, causing 

a wide spread in the behaviour shown. The behaviour shown here shows sensitivity, but not to an 

unreasonable extent. The implementation of dependency weighting as a direct link between the 

operability levels is conceptually corroborated, but values used in the model are uncertain by their 

nature (Setola & Theocharidou, 2016). Effective defensive strategies should account for robustness 

across the variety of scenario parameter ranges.  

 

Figure G-1: Effects of dependency weighting on total losses 

While the effects of different values for dependency weighting on total losses at the end of a 

simulation are noticeable, the effects on correctness of decision-making are not likely to vary 

significantly. The reason for this is rather straightforward: dependency weighting only affects the 

external operability component of a node and does not interfere directly with internal impact 

assessment. However, decisions are made based on the overall impact perception, which is partially 

affected by external inoperability. Figure G-2a shows two distinct clusters with identical patterns of 

observations. Both the higher and lower distributions of observations highlight a slight increase in 

the correctness of decisions made for heavier dependency weightings, while the relative spread is 

larger for the cluster of fewer correct decisions. Conversely, Figure G-2c shows fewer 

overestimations of operability occur for lower dependency weightings. This implies that the 

unexpected decrease in decision-making accuracy occurs due to a higher frequency of 
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underestimating the level of operation, corroborated by Figure G-2b. The only logical explanation for 

this phenomenon is that in some cases, more heavily weighted dependencies lead to correct 

defensive decisions without correctly assessing internal impact. In those cases, defensive decisions 

are made based on primarily external perturbation, and by extent are ‘accidentally correct’. These 

variations, while unexpected, are relatively minor and could logically be explained by model 

formalisms. The existence of two separate clusters of observations is attributable to differences 

between defensive strategies. 

Compared to variance observed for other parameters, the density of impact assessment deviation 

across several values for dependency weightings, shown in Figure G-3, is relatively stable. Deviations 

are almost indistinguishable, with one slight exception. As with the distribution of erroneous 

decisions, lower values show slightly more dense clusters of observations for lower values and less 

dense clusters for higher values, corroborating what was written above. However, this variance is 

rather marginal when compared to the effects of dependency weighting on the total extent of losses.  
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Figure G-2: Effects of dependency weighting on decision correctness 
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Figure G-3: Effects of dependency weighting on impact assessment deviation 

G.II Attack frequency 
Variations in values for attack frequency directly affect the presence of threats to the ecosystem, as 

attacks become a more common occurrence. As shown in Figure G-4, the extent of total losses 

suffered across repetitions increases as the attack frequency increases. However, when compared to 

the extent of losses experienced for variations in dependency weighting, these are relatively minor. 

Interestingly, the highest values for attack frequency show different behaviour, with more widely 

spread density of losses. This is likely caused by the combination of higher attack frequencies and 

more powerful attacks or other synergetic parameters, exacerbating the extent of inoperability 

caused by attackers. 
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Figure G-4: Effects of attack frequency on total losses 

  



Appendix G: Model exploration 
 

161 
 

 

 

 

 



Appendix G: Model exploration 
 

162 
 

 

Figure G-5: Effects of attack frequency on decision correctness 

Variations in the frequency at which attacks occur only bear moderate consequences for decisions 

made across the set of experiments. This is in line with expectations, as the metrics shown in Figure 

G-5 indicate the correctness of decisions as a fraction. As a result, decisions made across a simulation 

are similar regardless of the frequency of attacks they are exposed to. The one observation is that 

lower attack frequencies lead to a slightly higher number of underestimations, likely attributable to 

the reduced presence of ‘accidentally correct’ decisions, as described previously. The system shows 

robust behaviour across this parameter set, an indication that overall fluctuations in performance are 

largely caused by defensive strategies. These observations also hold up for the effects of attack 

frequency deviations on the density of deviations in impact assessment, shown in Figure G-6. 

 

Figure G-6: Effects of attack frequency on impact assessment deviation 

G.III Attack powers 
The impact of attack powers, as with the previous two scenario parameters, directly affects the 

interaction that takes place between attackers and defenders. However, the values associated with 

attacks are also used by defenders in their impact assessment process. If a false positive is generated 

during intrusion detection, defenders decrease their perceived internal operability by the power 

associated with the type of attack classified. Higher values for attack powers therefore affect nodes 

both directly and indirectly. The overall deviations in values for attack powers are relatively low, as 

their impact is based on historical attacks that disrupted parts of critical infrastructure systems 

(Miller & Rowe, 2012). Deviations across the dimensions for this parameter are therefore expected 

to be stable and condensed in comparison to other parameter. The behaviour shown in Figure G-7 

displays moderate variation, but mainly trending within similar boundaries. The density plots for the 

lowest and highest set of attack powers show more variability, as these lines are based on a smaller 

subset of observations. Since attack powers are a summation of individual attack powers, the odds of 

all attack powers being selected either below or above average are smaller than less extreme 

deviations. The resulting density plots are more likely to show sensitive variations due to the smaller 
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sample size. With this in mind, the density plots for total losses are for the most part considered 

robust. 

 

Figure G-7: Effects of attack powers on total losses 

Besides the total losses incurred during simulations, variations in attack powers could lead to 

differences in outcomes from decision-making processes. The density plots for correct decisions, 

decisions based on underestimation of operation and decisions based on overestimation of 

operation are shown in Figure G-8. Figure G-8a depicts the behaviour of correct decisions made 

across simulations, showing that the lower two value ranges lead to a noticeable cluster of incorrect 

decisions on the lower end of the plot. The same pattern appears mirrored in Figure G-8b, indicating 

that the cluster is caused by underestimating the impact experienced by cyberattacks. Given a lower 

set of attack powers, the pressure exerted by user traffic becomes relatively more important. Where 

previous defensive decisions are based around an equilibrium from false negative and false positive 

detections, this is slightly distorted for lower attack powers. Overall, these changes are marginal and 

show a desired degree of sensitivity. 

Similar behaviour is identified in Figure G-9, which displays the density of impact assessment 

deviation for each set of attack powers. As with the correctness of decisions, some variation is 

observed, specifically for the very lowest set of attack powers, which trends higher on average than 

other value ranges. This corresponds with what was written for the previous set of metrics, as lower 

attack powers cause a shift in behaviour due to both not detecting impact from erroneously blocked 

user traffic and this deviation not being sufficiently compensated by false positive detections.  
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Figure G-8: Effects of attack powers on decision correctness 
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Figure G-9: Effects of attack powers on impact assessment deviation 

Patterns for other scenario parameters provided little additional insight and are therefore not 

discussed further. 

G.IV Worm spread likelihood 

 

Figure G-10: Effects of worm spread likelihood on total losses 
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Figure G-11: Effects of worm spread likelihood on decision correctness 
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Figure G-12: Effects of worm spread likelihood on impact assessment deviation 

G.V Alleviation duration 

 

Figure G-13: Effects of alleviation duration on total losses 
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Figure G-14: Effects of alleviation duration on decision correctness 
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Figure G-15: Effects of alleviation duration on impact assessment deviation 

G.VI Retention duration 

 

Figure G-16: Effects of retention duration on total losses 
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Figure G-17: Effects of retention duration on decision correctness 
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Figure G-18: Effects of retention duration on impact assessment deviation 

G.VII User traffic frequency 

 

Figure G-19: Effects of user traffic frequency on total losses 
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Figure G-20: Effects of user traffic frequency on decision correctness 
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Figure G-21: Effects of user traffic frequency on impact assessment deviation 

G.VII User traffic criticality 

 

Figure G-22: Effects of user traffic criticality on total losses 
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Figure G-23: Effects of user traffic criticality on decision correctness 
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Figure G-24: Effects of user traffic criticality on impact assessment deviation 

 

 


