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ABSTRACT: Deep eutectic solvents (DESs) represent an environ-
mentally friendly alternative to conventional organic solvents. Their
liquid range determines the areas of application, and therefore, the
prediction of solid−liquid equilibrium (SLE) diagrams is essential for
developing new DESs. Such predictions are not yet possible by using
the current state-of-the-art computational models. Herein, we present
an alternative model based on support vector regression integrating
experimental data, a conductor-like screening model for real solvents
simulations, and cheminformatic descriptors for predicting melting
temperatures of binary metal-free DESs or ionic liquids, allowing the
researcher to estimate the eutectic formation and SLE for specific
combinations of components. The model was developed based on the
manually collected database of 1648 mixture melting temperatures for
237 experimentally described DESs, and its accuracy was demonstrated by 5-fold cross-validation (R2 ∼ 0.8). The presented machine
learning methodology empowers researchers to predefine the liquid range of the mixture and holds promise for efficient molecular
combination screening, facilitating the discovery of tailored DESs for desired applications from catalysis and extraction to energy
storage. By enabling a deeper understanding of DES behavior and the targeted design of these solvents, the proposed approach
contributes to advancing green chemistry practices and to promoting sustainable solvent usage.
KEYWORDS: deep eutectic solvents, COSMO-RS, machine learning, solid−liquid equilibrium, melting point prediction

■ INTRODUCTION
Deep eutectic solvents (DESs) attracted considerable attention
from the academic and industrial communities in the past
decade due to their potential as often biomass-derived and
biodegradable solvents with versatile and tunable character-
istics. These materials are defined as a mixture of two or more
components that, at a particular composition, present a high
melting point depression in contrast to the initial compo-
nents.1,2 The depression in the melting point is associated with
the formation of multiple hydrogen bonds between the DES
components.1

Based on the structure, DESs were defined as a eutectic
mixture of Lewis or Brønsted acids and bases with a general
formula Cat+ X−·zY and classified into five main types
presented in Figure 1.3,4 Type III is the most experimentally
and computationally studied DES3,5 that consists of the
quaternary ammonium or phosphonium salt and hydrogen
bond donor (Figure 1). Types I, II, and IV DES involve metal
salts and often contain non-nature-derived components,
making them less attractive for future sustainable chemistry
applications. DESs are generally described as a greener
alternative to ionic liquids (ILs) due to their cheaper and
easier synthesis, lower toxicity, high biodegradability, low
melting point, nonflammability, thermal stability, and high

dissolving ability.6−10 However, we should acknowledge that
the properties of DESs, including their toxicity and cost,
strongly rely on their specific composition.11 Some reports
highlight the potential environmental toxicity and nongreen
nature of DESs.12−14 Nevertheless, the tunable characteristics
of ILs and DESs established through their modular nature
provide an opportunity for targeting sustainability as a design
criterion. There is a growing commitment in the field to
developing and synthesizing sustainable ILs and DESs, with a
primary focus on reasonable selection of precursors.14,15

In this study, we consider both type III and type V DESs and
conventional metal-free ILs regardless of their potential
toxicity. This approach broadens the data set used for model
creation, enhancing its robustness and applicability. While
concerns about toxicity and biodegradability remain, especially
when considering large-scale utilization, DESs undeniably
contribute to the advancement of sustainable chemical
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processing. These solvents have already demonstrated their
utility in enhancing the sustainability of such processes as
chemical synthesis,16−18 drug delivery,19,20 biochemistry,21−23

production of nanomaterials,24,25 separation technologies,26−30

electrochemistry,31,32 and catalysis.33

So far, the development of new DES has relied primarily on
tedious experimental search guided to a large extent by
serendipity and the trial-and-error.34,35 The efficiency of such
an approach is further limited by the infinite number of
combinations of the DES individual compounds and the
practical challenge associated with the need to check wide
ranges of pressures and temperatures in an iterative manner.
Therefore, an alternative computational approach based on a
universal theoretical model capable of calculating and
predicting the characteristics of potential DES molecular
combinations in silico is highly desirable. Such a model should
be able to correctly predict the critical characteristics of DES,
such as the liquid limits and the melting temperature.
Accurate prediction of the molecular properties in solution,

as well as phase equilibria, is a challenging task due to the
complex nature of the solvation process.36 Among numerous
approaches developed for the calculation of solvation
energies,37 the conductor-like screening model for real solvents
(COSMO-RS) developed by Klamt et al.38,39 stands out as the
only model that is both able to account for the dependence of
the solvation energy on the mixture composition and being fast
enough for high-throughput computational screening. This
established methodology is therefore chosen in this study as a
representative state-of-the-art benchmark. Previous studies
report the successful application of COSMO-RS to calculate
phase diagrams and melting temperature in the case of
nonideal systems and ILs.40 However, COSMO-RS applic-
ability for DES design is questionable as both successful35,41

and hopeless cases were reported.35,42 The application of
group and group-interaction contribution methods was also
proposed for melting temperature estimation and showed good
accuracy on binary and ternary DESs.43 These approaches
assume that a property value is a linear function of the
contribution of all functional groups in the compound’s
molecular structure; each functional group has the same

contribution in every compound in which it appears. In
addition, machine learning (ML) approaches have been
successfully applied to describe the complex nature of the
solvation process44 and predict the properties of the molecules
in the solid state.45 The quantitative structure−property
relationship (QSPR) model was reported to have good results
in predicting the melting and freezing points of several DESs
containing various hydrogen bond donors and chlorides.46

Herein, we propose a generic computational framework for
rapidly screening molecular systems for DES design that can be
established using a predictive model based on ML techniques.
We analyzed the limitations and opportunities of the DES
design using the COSMO-RS model. After the main reasons
for the limited predictive power of such models were identified,
the ML-based model for the estimation of the DES melting
temperatures was constructed. Finally, the indirect approach to
DESs’ solid−liquid equilibria (SLE) prediction was established
based on the trained ML model. Nowadays, when science
moves toward more eco-friendly solutions, the methodology
presented in this study becomes a valuable tool for researchers
aiming to discover and develop novel DESs with reduced
environmental impact. This accelerates the adoption of green
chemistry practices and paves the way for a more sustainable
future by providing efficient alternatives to traditional organic
solvents.

■ MATERIALS AND METHODS
A unique database of 237 DESs with experimentally known eutectic
temperature and composition was manually collected from the
available literature. DES of type III, type V, and mixtures of IL in a
total of 124 individual compounds were considered (Figure S1). The
data set contains a simplified molecular-input line-entry system
(SMILES), melting temperatures, fusion enthalpies of mixture
compounds, experimental melting temperatures, and molar ratios of
DESs (1648 points in total) (Table S1). In some cases, experimental
mixture melting temperatures were not confirmed as eutectic
temperatures. For such DESs, the lowest melting temperature was
considered eutectic for future calculations. Fusion enthalpies for some
DES compounds were not available from the literature (fusion
enthalpies are known for both compounds for 208 DESs; fusion
enthalpy is unknown for at least one compound for 29 DESs). DES

Figure 1. Classification of DESs based on the structures of the initial compounds.
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compounds were classified as “component 1”�a compound with a
lower individual melting temperature and “component 2”�a
compound with a higher individual melting temperature.
Conductor-like screening model (COSMO) files for DES

compounds were prepared for the predictive modeling of SLE
diagrams by COSMO-RS. Initial geometries were generated from
SMILES with the RDKit package (Version 2021.03.3),47 subsequently
optimized in an aqueous solution using the self-consistent reaction
field method and used to calculate COSMO files by the Gaussian 16
software48 at the BP86/TZVP level of theory. Two modeling
approaches were used to generate the structures of the ionic
compounds. COSMO files of the ionic pair were generated in the
“CA” model, and COSMO files of separate cations and anions were
generated in the “C + A” model (Figure S2).
The software package COSMOthermX (Version 19.0.5)49 was

used for the COSMO-RS SLE calculation. COSMO files and
individual DES compound fusion properties (melting temperatures,
fusion enthalpies) were incorporated into COSMOthermX; the
BP_TZVP_C30_1701 parameterization was used. The SLE diagrams
were calculated using the solid−liquid option in the 50−600 K
temperature range and a temperature step of 8 K.
Several descriptors were used for ML modeling (Table S3). First,

experimental descriptors (numbered 1−2) were collected from the
literature, and chemoinformatic descriptors (numbered 3−26) were
generated by the RDKit package from SMILES based on the two-
dimensional (2D) or three-dimensional (3D) structures. Second, the
descriptors based on COSMO-RS were computed by COSMO-
thermX with BP_TZVP_C30_1701 parameterization such as σ-
moments (numbered 27−29), activity coefficients at infinite dilution
(numbered 30), and integrated σ-profiles (numbered 31−37).
All ML calculations were conducted by the scikit-learn package

(Version 0.24.2).50 The input descriptors and the predicted target
(melting temperatures) were normalized using a min−max scaling
method

=x
x x

x x
min

max min (1)

where x′ is the scaled value, x is the initial value, and xmin and xmax are
the minimum and maximum values of the column, respectively. The
collected data were split randomly, and 80% of points were selected as
the training set and 20% for the validation set. The “mixtures out”
strategy was used in the current study.51 Each unique DES mixture
group was presented as a training or validation set. A similar tactic was
used for cross-validation; each unique DES mixture group was
included in the same fold. A training set with 5-fold cross-validation
was used to select descriptors and the models’ hyperparameter
optimization, and a validation set was used to determine the accuracy
of the final model. The random forest (RFR), gradient boosting
(GBR), k-nearest neighbors (KNN), support vector machine (SVR),
and multiple linear (MLR) regression algorithms, which are
implemented in the scikit-learn package, were used for ML
development. Optimization of hyperparameters was performed by
using a grid search algorithm. Optimized parameters are presented in
Table S5.
Three feature selection algorithms, namely, sequential forward

selection (SFS), Gini indexes of random forest regression (GI), and
maximal information coefficient (MIC), were used to represent the
wrapper, embedded, and filter methods, respectively. The two-stage
cascaded approach was performed for serial-based ensemble feature
selection. The first stage feature selection was based on MIC;
descriptors with coefficient value ≥0.2 were used as input data sets for
the second selection stage based on GI, SFS, and MIC (more than
0.35). Since 5-fold cross-validation was used to select descriptors,
each feature’s frequency was calculated, and the average selection
frequency was used as the threshold to obtain the final descriptors
subset. Highly intercorrelated descriptors were determined by using
the correlation matrix algorithm (Figure S3). Descriptors with an
intercorrelation coefficient Rij > 0.7 were recalculated as follows
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where xi is a molar ratio, γiinf is the activity coefficient at infinite
dilution, chip and chin are the sum of positive and negative surface
charges, respectively, aip and ain are the sum of positive and negative
surface charges, respectively, SIi is the spherocity index, MWi is the
molar weight, RGi is the radius of gyration, and σ-profilei is σ-profile
calculated by COSMO-RS of compound i. The final subset of selected
descriptors is presented in Table S4.
The root mean squared error (RMSE), coefficient of determination

(R2), and mean absolute percentage error (MAPE) were used to
reflect the performance of the prediction ability and are defined as
follows

=
=n

x xRMSE
1
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i i
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i

n
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where n is the number of data points, x̂i is the predicted value of the
ith sample, xi is the corresponding actual value, x̅i is the mean value of
the experimental data set, and k is the number of descriptors used for
prediction. The standard deviation associated with the mean of each
metric over five random training/test splits is also provided.

■ RESULTS AND DISCUSSION
As fusion enthalpy is required to determine the eutectic point
by the COSMO-RS model, a data set of DESs with known
fusion enthalpies of both individual compounds (208 binary
DESs) was used (Table S1). The COSMO-RS model
calculated the SLE diagrams in the temperature range of
50−600 K with the BP_TZVP_C30_1701 parameterization as
it was reported to have better results in eutectic point
p red i c t ion among the th ree pa ramete r i z a t ions
BP_TZVP_C30_1601, BP_TZVP_C30_1701, and
BP_TZVP_19.35 The “CA” and “C + A” approaches were
employed to model the ionic components. In the “CA” model,
the ionic compound is represented as the ionic pair (Figure
S2a), whereas in the “C + A” model, the ionic compound is
represented by two isolated cation and anion species (Figure
S2b).
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The COSMO-RS-computed eutectic points from phase
diagrams of 208 binary DESs are summarized in Table S2.
Three representative types of phase diagrams can be
distinguished (Figure 2a−d). The diagrams featuring a single
intersection allowed us to easily determine the eutectic melting
temperatures (Figure 2a). In contrast, diagrams without the
intersection (Figure 2b) and featuring multiple intersections
(Figure 2c,d) could not be used to find the eutectic point.
Even though for some diagrams with multiple intersections
(Figure 2c), the eutectic point could be determined as the first
intersection point, the overall reliability of the model in such
cases is limited. Previous studies reported DES phase diagrams

without intersection computed by COSMO-RS, which was
attributed to activity coefficient underestimation.35,41

Comparison of the “CA” and “C + A” models revealed a
broader applicability and a slightly better accuracy of the latter
ionic pair approach in melting temperature prediction than the
distinct ion approach (Figure 3). The “C + A” model also
produced multiple intersections (such as illustrated with the
SLE diagram in Figure 2d) more frequently than the “CA”
model (Figure 3b). We also note that the “C + A” model failed
in the calculation of IL mixtures where both compounds were
represented by the “C + A” model (Figure 3b). The failures of
the “C + A” model could be caused by the inaccurate

Figure 2. Representative SLE diagrams computed by the COSMO-RS approach with the “CA” model: (a) SLE of glycolic acid and betaine; (b)
SLE of ethylene glycol and tetrabutylammonium chloride; (c) SLE of benzoic acid and choline chloride; and (d) SLE of limonene and capric acid.

Figure 3. Comparison of the experimental and COSMO-RS-computed DES melting points (a) for “CA” and “C + A” model representations
(RMSEC+A = 47.23, RMSECA = 45.20) and (b) associated distribution of the number of intersections in the computed phase diagrams.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.3c05207
ACS Sustainable Chem. Eng. 2023, 11, 15492−15502

15495

https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.3c05207/suppl_file/sc3c05207_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c05207?fig=fig3&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.3c05207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


description of the interactions between the highly charged ions
within the current implementation of COSMO-RS.52 Fur-
thermore, the “CA” approach was previously reported to have
better prediction ability than the “C + A” on the choline
chloride-based eutectic mixtures.41 Therefore, the “CA”
representation has been selected for all further analyses and
calculations.
The calculation of the SLE diagram with COSMO-RS is

based on the experimental estimation of the fusion free
energy.52 The COSMO-RS model has several fundamental
limitations including an incorrect description of the hydrogen
bonding interactions of secondary and tertiary amines with
solvents and electrostatic interactions of highly charged ions
with unlocalized charge,52 resulting in the observed low
accuracy of the SLE prediction. Indeed, the best accuracy of
eutectic point prediction by COSMO-RS was observed for
DESs consisting of two nonionic compounds where the
attraction between DES components is less pronounced
(RMSECA = 16.33). The difficulties in modeling IL by
COSMO-RS related to the insufficient description of long-
range interactions were reported previously.53 The correction
of the parameters corresponding to the hydrogen bond
interaction in the model allows for a more accurate calculation
of the eutectic temperatures.42

We propose to implement an ML-based approach to
improve the accuracy of the DES melting temperature. We
constructed an ML model based on a wide range of descriptors
including melting temperatures of DES constituents and their
molar ratio collected from literature, descriptors based on 2D
and 3D molecular structures generated by the RDKit package,
and descriptors based on the COSMO-RS model such as σ-
moments, activity coefficients at infinite dilution, and
integrated σ-profiles (Table S3). We added the mixture type
to the descriptor subset as there is a statistically significant
difference between the means of the melting temperatures
(Figure S1c). We employed the ensemble feature selection
approach to choose the best descriptor subset; combining
multiple selection methods showed better results than using a
single one.54,55 The highly correlated descriptors were
determined by Pearson’s correlation coefficient (Figure S3)
and descriptors with an intercorrelation coefficient Rij > 0.7
were recalculated (eqs 2−8). The final subset of descriptors
and their correlation with melting temperature are summarized
in the Supporting Information (Table S4 and Figure S4).
Correlation plots (Figure S4) showed that the selected
descriptors allowed the differentiation between the type of
DESs and melting temperature.
By definition, the melting point is the temperature where

solid and liquid phases are in equilibrium, and it, therefore, can
be expressed as the ratio of fusion enthalpy ΔHfus and entropy
change of melting ΔSfus

56,57

=T
H
Sm

fus

fus (12)

Fusion enthalpy is the energy required to transfer a
substance from a solid to liquid. It depends on the crystal
structure and intermolecular forces, while entropy represents
an increase of disorder upon melting and depends on
molecular symmetry and flexibility.58 Indeed, interactions
between molecules, their conformation, size, polarity, and
surface charge distribution were the main factors influencing
the melting point of organic molecules and ILs.59−62

The descriptors that we selected (Table S4) represent these
factors. To account for the molecular interactions in the
mixture, σ-profiles were calculated by the COSMO-RS. The
feature selection algorithm suggested using integrals of σ-
profiles 2 (from −1.8 to −1.1 e/nm2), 3 (from −1.1 to −0.4 e/
nm2), 4 (from −0.4 to 0.4 e/nm2), 5 (from 0.4 to 1.1 e/nm2),
and 6 (from 1.1 to 1.8 e/nm2). Integral number 4 represents
the polarity of compounds, integral numbers 3 and 5 represent
electrostatic misfit intermolecular interaction in the mixture,
while integrals 2 and 6 are related to hydrogen-bonding donor
and acceptor capacities.63 The symmetry of the σ-profile
indicates favorable electrostatic and hydrogen-bonding inter-
actions of the mixture with itself.63 Therefore, the descriptors
SymmetricIndex_MF and SymmetricIndex_HB (eqs 7 and 8)
were introduced to reflect the symmetric shape of the mixture
σ-profile. A strong dependence of the melting temperature of
DES on both the introduced descriptors was observed (Figure
S4). Notably, hydrogen bonding is hypothesized as the main
intermolecular force in DES, affecting the melting point
decrease.64,65 To account for the nonideal nature of DESs,64

we employed the activity coefficients at infinite dilution
calculated by the COSMO-RS model representing the
behavior of a single molecule surrounded by molecules of
another compound.
The impact of molecular charge, size, and symmetry was also

considered. The ChargeIndex descriptor represents the
difference of positive and negative charges distributed over
the surface to account for the electrostatic and size impact on
the melting temperature. Values of charge and surface area
correspond to polarizability and dipole moments, which affect
intermolecular interactions and, thus, the melting point of the
substance.59 For example, for ILs, the dipole moment of the
cation correlated to a decrease in fusion enthalpy and, thus,
melting temperature.66 The domination of the positive surface
charge over the negative increased the melting temperature of
DES (Figure S4). Such parameters like the SpherocityIndex,
RadiusOfGyration, molecular weight, principal moment ratio,
and InertialShapeFactor represent the influence of size,
flexibility, and asymmetry of the DES components on the
melting point. The correlation between the size and shape
parameters of both the components and the mixture melting
point of DESs was reported in the literature.3,31,67 Interest-
ingly, there is a strong impact of the geometrical parameters of
component 2, which is mainly presented by the ionic
components. The effect of the molecular shape of component
1 is less expressed. Similarly, the melting temperature of DES
tended to decrease with the increasing molecular weight of
component 2 (Figure S4). Indeed, larger sizes for ionic
compounds led to weaker electrostatic interactions67 and thus
decreased lattice energy and melting temperature. In
comparison, for nonionic molecules, larger size resulted in
more expressed induced dipole interactions and higher melting
temperatures.59 Regarding the asymmetry of molecules, less
symmetric and more flexible structures tend to have low lattice
energy and melting temperature.31,59 Indeed, DESs with a
higher SpherocityIndex melted at higher temperatures (Figure
S4).
The selected subset of descriptors (Table S4) was used to

define the best ML model. For each model, we optimized
hyperparameters via a grid search algorithm (Table S5) with 5-
fold cross-validation and a “mixtures out” strategy.51 The
performance in melting temperature prediction for DES
mixtures with various compositions of five ML models,
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namely, RFR, GBR, KNN, SVR, and MLR regressions, was
also assessed using a 5-fold cross-validation approach
combined with a “mixtures out” strategy. The cross-validated
values of each metric with corresponding standard deviations
are presented in Figure 4 and Table S6. SVR, GBR, and KNN
performed best among the considered models (Table S6).
Exceptionally high accuracy was observed for the SVR model,
providing R2 ∼ 0.85, RMSE ∼ 30−31 K, and MAPE ∼ 5.57%
using unseen (external) validation data. This prediction
accuracy is comparable to the one obtained for the prediction
of the melting point of organic molecules using natural
language processing (RMSE = 36.88, R2 = 0.83),68 IL using the
ML model (RMSE = 38.54, R2 = 0.76),69 DESs by QSPR

(RMSE = 18.41, R2 = 0.80),46 and DESs using the group
contribution method (MAPE = 5.67%).43

To accurately predict the eutectic point, the model should
have good accuracy not only in mixture temperature
estimation but also in predicting the correct correlation
between the melting temperature and composition of the
mixture. Herein, we attempted to estimate the eutectic
temperature indirectly by using the developed models. We
used the following algorithm based on the leave-one-out
approach to investigate the performance of the developed
models in eutectic point: (i) the ML model for mixture melting
temperature prediction was trained on the data set with
eliminated experimental points related to the unique DES

Figure 4. Comparison of performance of ML models in DES melting temperature prediction: (a) R2; (b) RMSE; (c) MAPE; (d−h) comparison of
experimental temperatures and predicted ones by SVR, GBR, KNN, RFR, and MLR, respectively.
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mixture; (ii) for every unique DES mixture, melting temper-
ature was predicted for the molar ratios in the range of 0.1−0.9
(16 points); (iii) the lowest temperature among the predicted
ones and the corresponding molar ratio was considered as the
predicted eutectic point. The predicted eutectic points are
summarized in Table S2. Currently, SLE diagrams for DES are
scarcely presented in the literature, and the formation of DES
is not always confirmed by the experiments.70−72 Some works
reported investigating DESs at their supposed eutectic
composition without justification by the phase diagram (Figure
S1a),64 which leads to an unknown real eutectic point and
causes errors in the prediction models. Therefore, prediction
accuracy was calculated based on the entries with the provided
phase diagram in the literature.
All ML models showed much better performance in the

eutectic temperature prediction than the COSMO-RS model
(Table 1 and Figure 5), probably due to the ability of ML

models to consider more complex nonlinear interactions of
selected descriptors and melting temperature. Similarly,
Koutsoukos et al. demonstrated that ML models predicted
IL melting temperature better than the COSMO-RS model.73

The best result was achieved using the SVR model (RMSE =
22.50, R2 = 0.74) and showed a high potential in estimating the
SLE diagram of DESs. However, all developed models had low
R2 values when predicting the eutectic composition (Table 1).
It could be caused by the nonperfect strategy of considering
the lowest temperature among the predicted ones and the
corresponding molar ratio as a eutectic point, as it does not
define the actual minima of the function. To better understand
the spread of residuals and assess the reliability of the SVR
model, we generated the predicted versus actual values plot
and the residuals versus actual values plot (Figure S5). In the
predicted versus actual values plot, we observed that most
predicted values were closely scattered around the expected
values, demonstrating a reasonably good fit of the SVR model
supported by the corresponding evaluation metrics. The
residual versus actual value plot indicated that the model did
not exhibit any systematic bias in its predictions. The residuals
appeared to be scattered randomly around zero, suggesting
that the model’s predictions were not consistently skewed in
one direction. Most residuals fell within the RMSE value
(dashed lines), supporting the conclusion that the model
showed reasonable error limits. However, it is worth noting the
presence of some outliers in each type of estimated DESs.
These outliers were mainly observed when no phase diagrams
were available from the literature. We retained such values in
our analysis since the SVR model was trained on predicting the
melting temperature of the mixture, independent of relying on
eutectic point data. This highlights the model’s ability to
handle variations and deviations from established values,

making it a valuable tool even when facing outliers not
accounted for in the existing literature.
To compare the predictive power of the models for different

DES types, we selected representative examples referring to the
three types used in our research: IL mixture (Figure 5a), ionic/
nonionic compounds (III-type) (Figure 5b), and nonionic/
nonionic compounds (V-type) (Figure 5c,d). For all models,
lower RMSE values were observed for DES of type III and V.
The possible reason is that DES of type III is the most
represented in our data set (Figure S1a). In the case of type V
DESs, better accuracy could be caused by the less complex
interactions and nonionic nature of the constituents. The result
indicated that the types of DESs differ in the formation
mechanism and that a large amount of SLE data related to
other types of DES can help improve the prediction algorithm.
The issues of transferability and accuracy in the model’s
applicability are well-recognized challenges in the field of ML
for chemistry and materials science.73,74 We observed that the
developed models were less transferable in the case of entirely
dissimilar molecules. In contrast, the transferability to the
unseen DES was relatively high in the case of DESs with
similar structures, which were commonly presented in the data
set. For example, structures like sulfathiazole were less
represented in our data set than IL, acids, alcohols, or phenols
(Figure S1b); therefore, ML models had low accuracy in the
prediction temperature of DES including sulfathiazole (Figure
5d). However, the SLE for DESs consisting of ammonium salts
and/or carboxylic acids was estimated with high accuracy
(Figure 5a−c). The developed ML model approach could be a
much more efficient alternative to the COSMO-RS model for
DES melting temperature estimation. Nonetheless, it is
essential to continue research to address the challenges
associated with model transferability and data set diversity,
which will enhance the robustness and applicability of our
approach.
Table 2 compares the results obtained from our prediction

model (SVR) and those previously reported in the literature.
One of the key differences in our study is the data set size we
employed, which was at least twice as large as the data sets
used in the reported methods. Our data set included III, V
types of DESs and mixtures of IL, providing a broader and
more diverse set of data points for analysis. Our prediction
model demonstrated comparable results to the methods
reported in the literature, even though a larger data set often
introduces higher variability making achieving competitive
performance challenging. Some methods achieved lower
MAPE values. However, these methods were often tested on
smaller data sets and were more focused on specific types of
DESs. Interestingly, our model outperformed most other
methods in predicting eutectic compositions. Such results
suggest that our model has a particular strength in handling
complex eutectic systems, highlighting its robustness and
potential for broader applicability.

■ CONCLUSIONS
Summarizing, we have introduced an innovative approach that
integrates publicly available molecular descriptors, SVR, and
the physical principles of the COSMO-RS method. The
developed framework is capable of predicting the melting
temperatures of binary metal-free DESs or ILs, contributing to
the rational design and application of these solvents.
The prediction model is based on the melting temperatures

of initial compounds, their molar ratio, the quantity of

Table 1. Comparison of the Different Methodologies for the
DES Eutectic Point Prediction

eutectic
temperature eutectic composition

model R2 RMSE R2 RMSE

COSMO-RS (“CA” model) 0.129 45.21 −0.561 0.18
GBR 0.683 24.95 0.041 0.14
RFR 0.434 33.31 −0.205 0.15
SVR 0.742 22.50 0.344 0.11
KNN 0.564 29.25 0.030 0.14
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deviation from an ideal mixture behavior, surface charge
distribution, hydrogen bonding, and electrostatic and nonpolar
intermolecular interactions, as well as geometrical parameters
of size, flexibility, and asymmetry, which were identified as the
key factors that are critical for the prediction of the DES
mixture melting temperature. Several ML algorithms were
considered. The best cross-validation accuracy in the melting
temperature prediction of DESs was achieved for SVR (R2 ∼
0.83, RMSE ∼ 30 K), GBR (R2 ∼ 0.82, RMSE ∼ 31 K), and
KNN (R2 ∼ 0.77, RMSE ∼ 35 K). The indirect approach of
eutectic point estimation was proposed based on the
developed models. We showed that the model based on the

SVR could predict the SLE of DESs with the accuracy of
eutectic temperature estimation of R2 ∼ 0.74, RMSE ∼ 22−23
K, and eutectic composition estimation of R2 ∼ 0.34, RMSE ∼
0.11. Our approach bridges the gap between DES potential and
practical application by offering a robust framework for
predicting their behavior and guiding their rational design.
The established ML approach enables the creation of
environmentally friendly solvents tailored to specific needs
while adhering to the principles of green chemistry and
sustainability.
ML is currently the most straightforward and practical

approach to predicting the eutectic point and estimating the

Figure 5. Prediction of DES’s eutectic point by the ML approach. The comparison of the experimental and ML- and COSMO-RS-computed SLE
diagrams for (a) tetraethylammonium chloride and choline chloride, (b) pimelic acid and tetrapropylammonium bromide, (c) menthol and
phenylpropionic acid, and (d) urea and sulfathiazole; COSMO-RS calculations cannot be performed due to the unavailable fusion enthalpy of
sulfathiazole.

Table 2. Comparison of Previously Published Methods for the DES Eutectic Point Prediction

method type of DESs
number of estimated

DESs
MAPE (eutectic
temperature) (%)

MAPE (eutectic
composition) (%)

SVR (our work) type III, V, IL 237 7.27 17.79
COSMO-RS (TZVP-17)35 type III, V, IL 64 7.39 106.91
PC-SAFT75 L(−)-menthol/thymol + fatty

acids
12 0.72 15.47

COSMO-RS (AB model)41 IL, choline chloride-based DES 23 8.87
COSMO-SAC-10 (C + A method)76 type III, V, IL 162 6.63 27.18
regressed modified UNIFAC(a)77 type III, V 73 4.72 27.56
ElasticNet model and Redlich−Kister
theory78

type III, V 15 3.75 38.84
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SLE of DESs. However, to facilitate the development of such
models, further efforts are necessary for the accurate
systematization of the SLE experimental data, including the
direct experimental search of eutectic point and the refinement
of the data exclusively available in the graphical format.79 Such
systematization should significantly improve the predictive
power of ML models and thus speed up the virtual screening of
DESs.
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