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Abstract

The increasing penetration of wind power generation introduces uncertainty in the behaviour
of electric power grids. This work is concerned with the problem of day-ahead reserve schedul-
ing (RS) for power systems with high levels of wind power penetration, and proposes a novel
set-up that incorporates an alternating current (AC) Optimal Power Flow (OPF) formulation.
The OPF-RS problem is non-convex and in general hard to solve. Using a convex relaxation
technique, we focus on systems with uncertain generation and formulate a chance-constrained
optimization problem to determine the minimum cost of production and reserves. Following
a randomization technique, we approximate the chance constraints and provide a-priori feasi-
bility guarantees in a probabilistic sense. However, the resulting problem is computationally
intractable, due to the fact that the computation time complexity grows polynomially with
respect to the size of the power network and scheduling horizon.

In this thesis, we first use the so-called scenario approach to approximate a convex set which
contains almost surely the probability mass distribution of underlying random events. We rely
on the special property of reserve scheduling problems which leads to linear constraint func-
tions with respect to the uncertain parameters. We can therefore formulate a robust problem
for only the vertices of the approximated set. Using the proposed approach, the number of
scenarios is reduced significantly which is beneficial for the tractability. Such a formulation
requires the power network state to only be feasible for all vertices of the convex approxi-
mated set. To even further relax such a requirement, we develop a novel RS formulation by
considering the network state as a non-linear parametrization function of the uncertainty. By
using a conic combination of matrices, only three positive semidefinite constraints per time
step are considered. Unlike existing works in RS, our proposed parametrization has a practi-
cal meaning and is directly related to the distribution of reserve power. Such a reformulation
yields a reduction in computational complexity of OPF-RS problems.

Finally, we extend our results to a more realistic size of power grids, using sparsity pattern
and spatiality (multi-area) decomposition of the power networks, leading to a decomposed
semidefinite programming (SDP) problem. To solve the SDP in a distributed setting, we
formulate a distributed consensus optimization problem, and then the alternating direction
method of multipliers (ADMM) algorithm is employed to coordinate local OPF-RS problems
between neighbouring areas. The theoretical developments in aforementioned cases were
validated on a realistic benchmark system and a discussion on the tractability of the resulting
optimization problems by means of computational time analysis is presented.
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Chapter 1

Introduction

Transmission system operators (TSOs) aim to find an economic operating point to satisfy the
power demand and network constraints by solving an optimal power flow (OPF) problem.
TSOs have to deal with increasing degrees of uncertainty due to high penetration of wind
power generation. While wind power has clear environmental advantages, it is a highly
variable and not fully controllable resource. This imposes novel challenges for TSOs, which
cannot be solved optimally using traditional decision making tools.

One problem type that has become increasingly challenging is the reserve scheduling (RS)
task, which deals with day-ahead scheduling of the reserve power to accommodate possible
mismatches between power generation and demand. Due to its uncontrollable and unpre-
dictable nature, the mismatch between forecast and actual wind power adds to the total
uncertainty in the RS problem.

1-1 Related work

Traditional decision making tools for RS problems with this added uncertainty yield very
conservative and costly solutions. Stochastic variants of the RS problem, where violations are
allowed with a small probability to achieve better performance, have received a lot of attention
in the past few years, see [1, 2, 3, 4, 5, 6] and the references therein. In these approaches, a
stochastic RS problem is formulated using a lossless DC model based on the assumption of
constant voltage magnitudes and small voltage angles, while ignoring the active power losses
[7]. It is worth mentioning that these assumptions do not hold in general and may lead to
sub-optimality or even infeasibility when implemented on real world systems, especially for
networks under a high degree of stress [8].

The use of an alternating current (AC) representation of the power network enables the
stochastic RS formulation to accurately model the effect of large deviations of wind power
from its forecast value, and to offer a-priori suitable reserves such that both real and reactive
power, and complex-valued voltage are globally optimal. Due to the non-convexity of the
OPF problem, identifying such an optimal operating point of a power system may not be
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2 Introduction

straightforward. In [9], different reformulations and relaxations of the AC OPF problem
were presented and their connections were discussed. By means of semidefinite programming
(SDP), in [9] a convex relaxation was provided under the existence of a rank-one SDP solution
to guarantee the recovery of a globally optimal solution of the power network.

The RS problem incorporated with the OPF formulation has been introduced in [10, 11], where
a chance-constrained OPF problem was formulated. With some modifications, motivated by
practical observations, the authors in [10] provided a theoretical guarantee that the OPF-RS
problem yields a rank-one feasible solution. Using a heuristic Monte Carlo sampling approach,
they showed that the resulting optimization problem involves an OPF problem for each wind
power profile. Our work is motivated by [10] to provide some results in a more systematic
approach.

While preparing the final version of this work, [12] and [13] independently gave an approach
to solve OPF-RS problem in each hour separately, based on the results in [11]. OPF-RS
formulation in [12] is similar to [10] with some modifications, whereas in [13] the formulation
is weaker compared to [10], since they relaxed the condition to distribute reserves among
generators. Even though the authors in [10] presented a complete day-ahead OPF-RS formu-
lation with up- and down spinning reserves, the results in the aforementioned references are
limited either to heuristic or to a single hourly-based approaches with the relaxed conditions.
The major barrier of representing the OPF-RS problem as an SDP is the necessity of defining
a square SDP matrix variable, which makes the cardinality of scalar variables of OPF-RS
problem quadratic with respect to the number of buses in power network. This may yield a
very large-scale SDP problem for realistic large-scale power networks of interest, especially
when a large number of operating states (and therefore a large number of matrix variables)
need to be considered.

1-2 Contributions

Our work in this paper differs from the aforesaid references in two important aspects. We
propose a procedure to determine a worst-case reserve requirement in each hour by vertex enu-
meration (VE) of all possible deviation of wind power scenarios from the forecast value. The
outcome of VE determines the up- and down-spinning reserves with a desired level of prob-
ability. Using the OPF-RS problem, similarly to [10] with some modifications, we distribute
the up- and down-spinning reserves among generators together with the generator dispatch
planning for day-ahead schedules. As an alternative to the VE approach, we propose a sec-
ond tractable reformulation of the OPF-RS problem, where we define the network state as a
non-linear parametrization function of the uncertainty which implies positive-semidefiniteness
while using only three matrix variables per time step. Unlike existing works in RS, the pro-
posed parametrization has a practical meaning and is directly related to the distribution of
reserve power.

Finally, we extend our results to a more realistic size of power grids, using sparsity pattern
and spatiality (multi-area) decomposition of the power networks. To address the resulting
high-dimensional SDP problem, we leverage the sparsity pattern in power networks to break
down the large-scale positive-semidefinite constraints into small-sized constraints, similarly
to [14, 15] We then propose a novel recovery algorithm to obtain a rank-one solution based
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1-3 Structure 3

on the results in [16] to fit in our OPF-RS optimization problem. A spatial decomposition
method of the OPF-RS problem for multi-area systems is presented. To solve the resulting
SDP problem distributed, the alternating direction method of multipliers (ADMM) algorithm
is employed to coordinate OPF-RS problems between neighbouring areas.

The theoretical developments in aforementioned cases were validated on a realistic IEEE test
power system and a discussion on the tractability of the resulting optimization problems by
means of computational time analysis is presented.

In summary, this work has the following contributions:

• Formulation of the AC OPF-RS problem as a scenario program with a-priori probabilis-
tic feasibility guarantees;

• A tractable formulation of the AC OPF-RS problem using an indirect scenario-based
approximation and vertex enumeration;

• A novel parametrization of the network state in the uncertainty, leading to a tractable
formulation of the AC OPF-RS problem to which a direct scenario-based approximation
is applied;

• The application of sparsity decomposition techniques to both tractable formulations of
the AC OPF-RS problem;

• A multi-area decomposition framework for the AC OPF-RS problem, leading to a gen-
eral consensus problem which is solved using ADMM;

• Validation of all the aforementioned points using power flow simulations on a realistic
test case.

1-3 Structure

The rest of this work is organized as follows. In Chapter 2, we provide the reader with the
preliminaries for the following chapters. Chapter 3 discusses the formulation of the AC OPF
problem with reserve scheduling. In Chapter 4, two tractable approximations for this problem
(vertex enumeration and conic parametrization) are proposed. In Chapter 5, we explain the
different decomposition methods of OPF-RS problems, based on sparsity or control areas. In
Chapter 6, we present the simulation results for all the proposed approaches. Finally, Section
7 provides some concluding remarks, and Chapter 8 directions for future work.
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Chapter 2

Preliminaries

In this Chapter, some preliminary knowledge is provided, which helps the reader understand
the following chapters. First, the notation used throughout this work is presented in Section 2-
1. Power system optimization problems are introduced in Section 2-2. A class of optimization
problems, the semidefinite programs (SDPs), is presented in Section 2-3. Some background
on optimization under uncertainty and the scenario approach is provided in Section 2-4. An
algorithm that can be used to solve large optimization problems, the Alternating Direction
Method of Multipliers (ADMM), is introduced in Section 2-5.

2-1 Notation

R, R+ denote the set of real and positive real numbers, S, S+ denote the set of symmetric
matrices and positive-semidefinite matrices, respectively. C denotes the set of complex num-
bers. Vectors are denoted by lower-case bold letters a ∈ Rn, capitals are reserved for matrices
A ∈ Rn×n, and calligraphic letters A are used to indicate sets. AT , A∗, and AH are used for
the transpose, complex conjugate and conjugate transpose, respectively. The cardinality of a
set A is denoted by |A| = A.

2-2 Power system optimization problems

Electric power is used for a wide range of applications, and disruption of its delivery has signif-
icant economical and societal impact. Therefore, it is important to safeguard the continuous
delivery of power. The economic and secure operation of a power system is key in achieving
this. In this section, the basic concepts of power system optimization are introduced, without
assuming any prior knowledge of power systems. The general lay-out of a power system is
given in Section 2-2-1. After this, the optimization problems which ensure the economic and
secure operation of power systems are introduced in Section 2-2-2. Finally, in Section 2-2-3
the added uncertainty due to renewable energy sources is explained.

Master of Science Thesis O.A. ter Haar



6 Preliminaries

2-2-1 Lay-out of power systems and frequency control

A power system consists of three parts: producers of energy, a transmission network, and
consumers of energy. The producers of energy are connected at the ‘generation side’ of the
network to the consumers of energy, at the ‘demand side’. Traditionally, power is produced by
converting kinetic energy to electric energy with the use of a generator. The kinetic energy is
drawn from an energy source, such as thermal energy from fossil or nuclear fuels, or potential
energy from water behind a dam. All these forms of traditional power generation are called
Hydro-Thermal Generation (HTG). Electric energy is then transported as alternating cur-
rent over the transmission network, consisting of interconnected overhead lines, underground
cables, and transformers. The consumers transform the electric current into a form of energy
useful for them. A set of consumers connected to the same point in the grid is aggregated
into a single ‘load’. A typical power system has multiple loads, which for example correspond
to a urban area or a large industrial customer.

Power systems are organized per geographical region and operated by one Transmission Sys-
tem Operator (TSO) each. TSOs are responsible for the secure delivery of power to the
demand side. To do this, they adjust the output of the generators, or the generator dispatch.
Storage of power in the network is nearly impossible, so every produced Joule must be con-
sumed almost instantaneously. If this is not the case, the frequency of the network will deviate
from its nominal value. If the frequency of the network deviates too much, components may
fail, causing local outages or even a total black-out. Therefore, it is very important to balance
generation and load at all times.

As soon as a frequency deviation occurs, it is the task of a Transmission System Operator to
undertake actions to bring the network frequency back the nominal value by issuing corrective
actions. This task is called frequency control. The frequency control that TSO utilizes can
be categorized into three categories: primary, secondary and tertiary frequency control.

Primary control is activated within seconds of the frequency deviation and serves to stop
the change of frequency. It is deployed automatically without any intervention of the TSO,
and can be seen as the reaction of the system on a frequency deviation. Primary control in
traditional power systems consists of the local generator control loops. Because the moving
parts of each generator are synchronized with the network frequency, a frequency deviation
will cause the generator to rotate at a different speed, which in turn triggers local (mostly
proportional) controllers. The local controllers aim to bring the generator back to its original
set-point.

After the primary control has reacted to a frequency deviation, the secondary control will
be activated. The response time for the secondary control is in the scale of tens of seconds
to minutes. Whereas primary frequency control tries to bring the generators back to their
original set-point, secondary frequency control changes the generator set-points. This is called
providing reserve power, because it is not scheduled in advance. The reserve scheduling
(RS) task of TSOs deals with the day-ahead scheduling of the reserve power to accommodate
possible imbalances in the network. In this work, we consider asymmetric reserve distribution,
which means that we distinguish between up- and downspinning reserve. Upspinning reserve
is activated in case of a power deficit, downspinning in case of a surplus.

Finally, there is tertiary frequency control, where reserves are deployed that were previously
off-line. Because this requires more time, the tertiary control typically takes places in the
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2-2 Power system optimization problems 7

scale of tens of minutes to hours or even days. The purpose of the tertiary control is to free
the secondary reserve capacity or complement if it is not enough to restore the frequency.

2-2-2 Optimization problems in power system operation

A TSO has to make numerous decisions regarding the network, ranging from long term
planning to day-ahead unit commitment, reserve scheduling, and post-contingency safety
assessment. On very different time-scales, the TSO wants to know what the effect of his
decisions will be on the future state of the network. To help with this decision, several
modelling frameworks for a power system have been developed.
Every producing, consuming or transmitting element of a power system has many components
that interact with each other. It is therefore hard to model a power system in a very detailed
way. However, a very useful model for the power system exists, as for example described
by Andersson in [17]. In this model, the power system is represented by a simple connected
undirected graph. The nodes of this graph are called buses. The loads and generators of the
system are connected to the buses. The edges of the graph connecting the buses represent the
transmission lines and transformers, which are aggregated using the so-called Π-model (see
[17, §2.2.3]).
A power network is never really in steady state, because all the processes are dynamic. The
currents and voltages alternate with the network frequency. Switching actions and changes
in load and generation create all kind of transients through the network of transformers and
lines. However, the time-scale of these events are usually so small that a steady state model
of the network is algebraically justified [17]. A very useful variable to look at the steady state
operation is power flow.
Given an operation state of the network, it is possible to find the power flows resulting from
that operating state, by solving a Power Flow (PF) problem. This allows the TSO to simulate
the behaviour of the network for a given operating state. If the operating state is not given
a-priori, but can be chosen from a feasible set of operating states constrained by the electrical
laws and operating limits of the network components, the problem is known as the Optimal
Power Flow (OPF) [18, 19]. As the name suggests, this is an optimization problem, first
formulated in 1962 by Carpentier et al. in [20]. The objective function and constraints can
be adapted to formulate a problem for different time-scales and problem types. The OPF
problem is involved in all decisions regarding the state of the network, and can be regarded
as the key to efficient power system operation. Bienstock provides an extensive survey on the
state-of-the-art of the solvers for the traditional (O)PF problems in [21].

2-2-3 Increasing uncertainty due to renewable energy sources

To preserve the world for future generations, it is imperative to reduce carbon emissions
and the dependence on scarce natural resources. A more sustainable way to electric power
generation is necessary. By far the most polluting process in electric power generation is
power generation with fossil fuels. Therefore, TSOs are increasing the share of renewable
energy sources in the energy mix.
Although many forms of renewable energy sources exist, Wind Power Generation (WPG) [22]
has been the most significant form for the past 20 years, and will most likely remain prevalent
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in the coming years. Although wind is a resource that cannot be depleted, it also cannot be
controlled. Not only is the availability of wind-power sometimes limited and varies with time,
it is also hard to predict the availability in the nearby future. Although wind forecasts are
available and significantly improving [23], it is still not possible to predict the wind power
output with great precision [24]. This makes wind power an uncertain power source, which
adds to the total network uncertainty. Because there is more uncertainty, more reserves are
necessary to provide enough capabilities for frequency control, as shown in Figure 2-1.

Wind power is modelled as an active power injection on a bus, such that a farm of wind
turbines can be aggregated to a single uncertain power injection. This simplification enables
the use of existing methods for power system analysis for this new type of energy.

reserve

HTG

demand

load uncertainty

power
(a) Traditional

reserve

HTG

WPG

demand

load uncertainty

wind uncertainty

power
(b) Modern

Figure 2-1: In traditional networks (left), reserve power is needed to bring balance to the network
in the presence of load uncertainty. In modern networks (right), WPG adds more uncertainty to
the network, resulting in larger reserve requirements.

The increase in reserve requirement is cause for concern. Extra up-spinning reserves need to
come from existing generators, by setting them at a lower set point and thus allowing for more
changes in speed. Due to this, the efficiency of the thermal plants might decrease. Another
option to provide more reserve is building new controllable generators. This is obviously
very costly and most of them would still run on fossil fuels. If reserve requirements are not
planned carefully, the two effects described above might negate the positive impact wind
energy is suppose to have on the reduction of carbon emissions. Therefore, a modern strategy
to reserve planning is needed.
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2-3 Semidefinite programs 9

2-3 Semidefinite programs

In this section, semidefinite programs (SDPs) are introduced. The general concept and solving
methods are given in Section 2-3-1, and the computational complexity of such problems is
briefly discussed in Section 2-3-2.

2-3-1 Definition of a semidefinite program

A semidefinite program (SDP) is an optimization problem of the following form:

minimize
X∈Sn

Tr (CX) (2-1a)

subject to Tr (AiX) ≤ bi i = 1, ...,m (2-1b)
X � 0 (2-1c)

where X is a symmetric matrix that is the decision variable, and C,A1, . . . , Am ∈ Sn are
known data matrices and b1, . . . , bm ∈ Rn are known data vectors. The decision variable is
subject to lie in the positive semidefinite cone (see [25], §2.2.5) through the last constraint
(2-1c), or simply said, the last constraint encodes that X is positive-semidefinite (PSD). A
matrix X is PSD when it satisfies the following criterion:

yTXy ≥ 0, ∀y ∈ Rn,

or equivalently, all the eigenvalues of X are non-negative, or its determinant is non-negative.
To solve SDPs, the Interior Point Method (IPM) is used. The IPM works by adding a barrier
function that encodes the PSD-cone to the objective. The barrier function increases to infinity
when its argument goes goes outside the cone. In this way, it acts as a barrier that restricts the
solution to be within the cone. The most used barrier function for the PSD cone is − log detX,
which increases to +∞ as the determinant of X goes to zero. A new, unconstrained problem
is then formulated, that has the barrier function and the original objective function as its new
objective. Using a weight between these two terms, the IPM algorithm iterates by choosing a
search direction taking a step in that direction that minimizes the current objective function,
and updating the weight and start a minimization that uses the previous iterate as starting
point. By starting with zero weight on the original objective, the first iterate will always be
inside the cone. As the algorithm progresses, the weight on the original objective is increased
(and the weight on the barrier function is thereby decreased), making sure that the final
iterate of the algorithm is very close to the optimum of the original problem.

2-3-2 Computational complexity of semidefinite programs

To assess the performance of an algorithm, the worst-case computational complexity is ex-
amined. This can be used as indication of how the solving-time of a problem scales with the
dimensions of that problem. For the IPM, the number of iterations needed to approximate the
optimum within a given accuracy α scales with the problem dimension n as O

(
n1/2 log(1/α)

)
[26]. This bound is obtained from worst-case complexity analysis, but in practice IPM algo-
rithms can behave better. It has been observed for a wide variety of problems and problem
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sizes, the number of iterations grows much slower (see for example [27, §6.4.4]). The number
of iterations is typically between 5-50 [28].

The computational cost for each iteration therefore determines the complexity of an SDP
algorithm. This is mostly determined by the cost of finding the search direction. In the
most basic path-finding algorithm, this is the cost of finding and inverting the Hessian of the
barrier function [26]. However, more sophisticated search directions are available. In general,
the computational complexity of one iteration, i.e. the number of floating points operations
needed, can be characterized by:

βm2n2 + γmn3 + ξm3 +O
(
m2n+ n2m+ n3)

with β, γ, ξ > 0 all (small) constants, depending on the search direction used [29]. See [30]
for an overview of the best known values of these constants for various search directions. The
last term uses the big-O notation O(·), which denotes all terms that have at most the order
of its argument. Since all terms that are of higher order will grow faster than lower order
terms, these can be grouped together.

The total worst-case computational complexity to find an α-solution, i.e. the objective value
of the α-solution is at most α > 0 above the optimum, is then given by the worst-case number
of iterations times the worst-case complexity of one iteration:

O
(
(m2n2 +mn3 +m3)n1/2 log(1/α)

)
, (2-2)

since all lower order terms of m and m will drop out1. Note that this concerns the worst-case
computational complexity for a problem with dense data-matrices. In other words, nothing
is assumed on the structure of the problem. Modern day solvers, such as SeDuMi [31], can
achieve lower complexities by using sparsity in the problem structure. Whether or not this is
the case for our problem, is outside the scope of this thesis. For all IPM solvers, computational
complexity scales logarithmic with α, and polynomial with m and n, regardless of whether
they make use of the problem structure or not. For all proposed formulations, we will examine
how the worst-case computational complexity scales in the number of buses of the network.
To see how applicable our proposed algorithm is for the optimization of real-world networks,
it must be able to handle a reasonable number of buses.

2-4 Optimization under uncertainty

Different approaches to solving optimization problems with uncertainty will be described in
this section. A general optimization problem with uncertainty is first formulated in Section 2-
4-1. After this, different reformulations of the uncertain constraints are given in Section 2-
4-2. A randomization technique called the scenario approach is discussed more in depth in
Section 2-4-3.

1m2n2 and mn3 are of order four, while m3 is of order three. This term is however kept in the formulation,
since the order of m might be higher than n, depending on the problem definition.
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2-4 Optimization under uncertainty 11

2-4-1 Uncertain optimization problems

A general optimization program has the following form:

minimize
x∈Rd

f(x)

subject to x ∈ X ,

where f(x) : Rd → R is an objective function which is optimized over the decision variable
x ∈ Rd. The decision variable is restricted to lie in the the feasible set X ⊆ Rd. The objec-
tive function and the feasible set are both deterministic, i.e. they do not contain uncertain
variables, and therefore this program can be solved using various traditional methods, see for
example [32] for a survey optimization techniques for deterministic problems.

The feasible set X or the objective function f(x) often contains uncertainty. In the context
of the power system optimization, this uncertainty arises in the wind power due to the un-
predictability of the weather. In general, an optimization problem with uncertain parameters
is called an uncertain program:

Uncertain program:

minimize
x∈Rn

f(x)

subject to x ∈ Xδ, δ ∈ ∆,

where δ ∈ ∆ ⊆ Rm is the uncertain parameter extracted from the (possibly infinite) set
values δ can take. The uncertain parameters are used to construct Xδ ⊆ Rd, the uncertain
feasible set. Note that the objective function can always be made deterministic with help of
the epigraph notation. We assume that Xδ is a convex closed set for all δ ∈ ∆.

To make the uncertain program as formulated above well-posed, we need to know how δ
depends on the constraints Xδ. Furthermore, it is unclear if we are aiming for a solution that
will be feasible even for the worst-case δ, or a solution that will perform best given some
realization of δ. Different ways of dealing with uncertainty in an optimization problem to
formulate a well-posed problem, are presented in the following.

2-4-2 Reformulating uncertain problems

One way to make an optimization problem with uncertainty well-posed is to force the solution
to satisfy the intersection of all the possible constraint sets. This means every element of the
set ∆ will be accounted for. This is called Robust Convex Programming (RCP) [33],

RCP:

minimize
x∈Rn

f(x)

subject to x ∈
⋂
δ∈∆Xδ.

RCP finds a solution which is robust for all possible realizations of δ. This can be desirable
in the optimization of critical systems, since the solution is extremely conservative. The cost
of this conservatism is an increased objective. Since the objective of power systems operation
is not only safe, but also economic operation, the conservatism introduced by RCP is deemed
undesirable.
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12 Preliminaries

A more sophisticated way of looking at uncertain problems is Chance Constrained Program-
ming (CCP). Rather than satisfying all the constraints, CCP seeks for a solution that satisfies
most of the constrains, such that only a small fraction of the constraints is violated. This
approach is suitable for systems where an ‘occasional’ violation is allowed. One can argue that
this is the case for power systems [12]. Every element in ∆ has a corresponding probability P
of being drawn. The small fraction of constraints that is violated should have a small prob-
ability of being drawn from ∆, such that problem is constrained by the probability (chance)
of violation. The uncertain parameters are removed from the constraints, and substituted for
the probability of infeasibility:

CCP:

minimize
x∈Rn

f(x)

subject to P
[
δ ∈ ∆ : x ∈ Xδ

]
≥ 1− ε,

where ε ∈ (0, 1) is defined as the violation level. The solution of this program is feasible with
a probability 1−ε which is chosen a-priori (in advance). The selection of ε can be seen as the
trade-off between risk aversion and performance. If ε is chosen to be very small, the solution
is very similar to the solution of the RCP, and thus conservative. If ε is increased, the chance
of constraint violation increases, but the performance improves.

2-4-3 The scenario approach for chance constrained problems

The CCP is in general intractable, due to the probability in the constraint. Therefore, a
randomization technique called the scenario approached is introduced in [34]. The formulation
of a Scenario Convex Program (SCP) is very similar to the RCP. Rather than satisfying all
the possible constraints, a finite number of constraints is considered:

SCP:

minimize
x∈Rn

f(x)

subject to x ∈
⋂N
i=1Xδi

, {δ1, . . . , δNs} ∈ ∆Ns ,

where a set of independent and identically distributed (i.i.d.) realizations of the uncertain
variable {δ1, . . . , δNs} is randomly drawn from ∆×· · ·×∆ = ∆Ns . The solution should satisfy
all constraints constructed from these realizations. Since this program is no longer chance
constrained, it can be efficiently solved as long as Ns is not too large. The set of extractions
ω := {δ1, . . . , δNs} ∈ ∆Ns is called a multi-extraction and is a random variable. The solution
from the SCP, x?Ns

(ω), depends on this multi-extraction, and is thereby a random variable
itself.

The authors of [34] show that by randomly selecting an appropriate number of realizations
of the uncertain parameter, the solution of the SCP will be feasible for a large share of the
unseen constraints. This holds in full generality, so regardless of the structure of the set of
the constraints ∆ and the probability P. The authors first showed that the solution of the
SCP will be a solution for the CCP with a confidence of at least (1− β). In later work [35],
the same authors defined a relation between Ns and the confidence and violation parameters.
In [36], an explicit formulation for the lowest bound on Ns is derived:

Ns ≥
⌈2
ε

(
d− 1 + log 1

β

)⌉
(2-3)
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2-5 Alternating direction method of multipliers (ADMM) 13

where the d·e operator denotes the smallest integer greater than or equal to its argument,
and d is the dimension of the decision variables. The number of samples grows logarithmic
with the inverse of β. This means that β can be decreased exponentially, and Ns will only
increase linearly. Hence, β can be made almost arbitrarily small, so the confidence (1− β) of
the solution of the SCP can be made very high.

In [37], an extension of the scenario approach is introduced, called the scenario with certificates
approach (SwC). This approach discerns between control variables and certificate variables.
The latter are introduced for every scenario, and needed to provide a feasibility certificate.
The authors prove that the bounds for Ns still hold for problems with this structure, when
the dimension of the control variables is only used for d.

2-5 Alternating direction method of multipliers (ADMM)

The algorithmic approach for optimization problems is introduced in Section 2-5-1 and a
specific algorithm, the Alternating Direction Method of Multipliers (ADMM) is discussed in
Section 2-5-2.

2-5-1 Using algorithms to solve optimization problems

To solve an optimization problem, algorithms are used. An algorithm can be seen as a program
that is initialized with some estimate of the solution, x0. The program then iterates over a
set of rules of the form x(k+1) := f(x(k)) to update the estimate. The superscript (k) is used
here to indicate the iteration number. If the estimate x(k) → x? as k →∞, the algorithm is
said to be converging. After each update step, the convergence criteria are checked, such as
the minimum distance between the previous and current estimate or the maximum number
of iterations. Once one of these criteria has been satisfied, the program is stopped and the
current estimate will be the solution found by the algorithm.

2-5-2 ADMM algorithm explained

The alternating direction method of multipliers (ADMM) is an algorithm that solves convex
optimization problems by breaking them into smaller pieces, each of which are then easier to
handle [38]. It was first proposed by Glowinski et al. in [39] in 1975. It is a combination of the
dual ascent method and the method of multipliers. Using this combination, the convergence
properties of the method of multipliers are combined with the decomposability of the dual
ascent.

To understand the ADMM algorithm, we first define a general separable problem:

minimize
x,y

f(x) + g(y) (2-4a)

subject to Ax+By = c (2-4b)

where x ∈ Rn, y ∈ Rm are the optimization variables, f(x) : Rn → R and g(y) : Rm → R

are closed, convex functions, and A ∈ Rp×n, B ∈ Rp×m are known matrices and c ∈ Rp
is a vector with known data. The problem as defined above is separable in the objective
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function and coupled through the linear equality constraints. This is the standard form of an
optimization problem, and problems with inequality constraints can be put in the form above
by the introduction of slack variables.

The ADMM uses the augmented Lagrangian Lµ(x, y, λ) : Rn ×Rm ×Rp → R, based on the
method of multipliers:

Lµ(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) + µ

2 ‖Ax+By − c‖22

This is the normal Lagrangian with an extra penalty term on the primal residual (i.e. how
infeasible the current estimate is). This reduces to zero if the current estimate is feasible. The
weight of this term is called the step size µ ∈ R+ and is a chosen constant. The advantage of
including the extra term is that the problem is differentiable under more conditions than the
original problem, and thus converges faster. Each iteration of the ADMM algorithm has the
following steps: the primal x-update, y-update and the dual update:

xk+1 := argmin
x

Lµ(x, yk, λk) (2-5a)

yk+1 := argmin
y

Lµ(xk+1, y, λk) (2-5b)

λk+1 := λk + µ(Axk+1 +Byk+1 − c) (2-5c)

where ‘argmin’ is the operator that returns the argument that minimizes the function. In the
x-update (2-5a), the augmented Lagrangian is minimized over x using the previous values
for y and λ. The obtained x is then used to minimize the Lagrangian over y in (2-5b). The
updated versions of the primal variables x, y are then used to move the dual variable λ using
the primal residual weighted by the penalty parameter in (2-5c).

It involves two minimizations of Lµ, but each time only on one of the decision variables.
Therefore, this optimization is less costly than the optimization of the coupled problem. After
this, a closed form for updating λ is available. Depending on the structure of f(x), g(y), an
algebraic expression of (2-5a) and (2-5b) may be available, allowing for a direct calculation
of xk+1, yk+1. ADMM has a high degree of robustness and a guaranteed convergence under
very mild assumptions [38, 40]. This means that as k → ∞, the solutions will converge to:
x→ x∗, y → y∗. In the implementation of ADMM algorithms, a stopping criterion is used on
the residual. When these are small enough, the iterations are stopped and the current value
for xk, yk is used as the optimal solution.
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Chapter 3

Alternating Current Optimal Power
Flow Reserve Scheduling Problem

The Optimal Power Flow (OPF) problem aims to find a feasible operating point of the network
that minimizes the cost of power generation over the prediction horizon. In the Alternating
Current1OPF problem, all network dynamics are taken into account. In this section, we first
explain the model used, and define the OPF problem with a given wind power as a non-
convex problem in Section 3-1. After this, we will apply a relaxation technique to convexify
this problem in Section 3-2. The formulation will be extended to include uncertain wind
power and reserve scheduling in Section 3-3, where the uncertain problem is transformed to
a chance constrained problem. Finally, some concluding remarks are given in Section 3-4.

3-1 Optimal power flow (OPF) problem

The OPF problem for a given wind power trajectory is formulated in Section 3-1-1. Then,
the computational complexity of this formulation is discussed in Section 3-1-2.

3-1-1 Formulation of OPF problem with deterministic wind power

Consider a power system with a set of buses N , a set of lines L ⊆ N × N and a set of
controllable generator buses G ⊆ N such that |N | = Nb and |G| = NG. The set of wind power
buses is denoted by F ⊆ N such that |F| = Nw. We will assume G∩F ∈ ∅, i.e. no wind in-feed
is connected to a generator bus. The set T forms the hourly-based prediction horizon and in
this work |T | = Nt = 24. p ∈ RNb , q ∈ RNb and s ∈ CNb denote real, reactive and apparent
power, respectively. Superscripts G,D,w are used to indicate generated, demanded and wind
power, respectively. The decision variables are the generator dispatch pGt , q

G
t ∈ RNG and the

1In the following, the AC-OPF problem will be referred to as the OPF problem. Any problem using the
Direct Current (DC) modelling framework will be explicitly referred to as a DC problem.
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16 Alternating Current Optimal Power Flow Reserve Scheduling Problem

complex bus voltages vt ∈ CNb for each time step t ∈ T . For the sake of brevity, a tilde
denotes a set of variables over all time steps, such that ã := {at}t∈T . Using the rectangular
voltage notation: xt := [Re (vt)

T
Im (vt)

T
]T ∈ R2Nb , we follow [9, Lemma 1] to determine the

data-matrices Yk, Y ∗k , Ylm, Y ∗lm,Mk ∈ S2Nb .

The objective is the cost of real power generation, expressed as a second order polynomial [41],
where the coefficients cqu, cli ∈ RNG

+ correspond to the quadratic and linear cost of generation,
respectively, and [cqu] represents a diagonal matrix with entries cqu. We now formulate the
OPF problem with deterministic wind as follows:

minimize
x̃,p̃G,q̃G

∑
t∈T

(cli)T
pGt + (pGt )T [cqu]pGt (3-1a)

subject to:

1. Power generation limits. The generator dispatch is bounded by the upper and lower
limits, such that ∀k ∈ G,∀t ∈ T :

pGk ≤ CGk pGt ≤ pGk , (3-1b)

qGk ≤ CGk qGt ≤ qGk , (3-1c)

where pG, qG,pG, qG ∈ RNb are the real and reactive lower and upper generation limits
for every bus, and CG ∈ {0, 1}Nb×NG represents the connection matrix for the gener-
ators, for which the (i, j)-th entry is one if generator j is located at bus i, and zero
otherwise. CGi represents the i-th row of the matrix, such that CGi pGt is equal to the
scalar pGj,t for all i ∈ G and zero for all i ∈ N \ G.

2. Power balance at every bus. To achieve balance in every bus, all power generated
(either by HTG or WPG) minus the demanded power has to equal the injected power,
such that ∀k ∈ N , ∀t ∈ T :

x
T
t Ykxt = CGk pGt − pDk,t + Cwk pwt , (3-1d)

x
T
t Y
∗
k xt = CGk qGt − qDk,t, (3-1e)

where pwt ∈ RNw is the wind power and pDt , q
D
t ∈ RNb are the real and reactive loads

respectively, and Cw ∈ {0, 1}Nw×Nb denotes the connection matrix for the wind buses,
which is defined in a similar fashion as CG, such that Cwi pwt equals pwj,t if wind bus j is
located at bus i and zero otherwise. The injected power at a bus is defined as the sum
of all power flows over the lines connected to that bus, and is a quadratic function of
the voltage vector. The wind power is considered as real power only, based on [41].

3. Bus voltage limits. To prevent component failure, the voltage magnitude for every
bus is constrained by the engineering limits of the network. The squared bus voltage
magnitudes are also quadratic functions of the voltage vector. The bus voltages are
bounded ∀k ∈ N ,∀t ∈ T :

|vk|2 ≤ x
T
tMkxt ≤ |vk|2, (3-1f)

where |v|, |v| ∈ RNb are the lower and upper voltage magnitude limits, respectively.
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3-1 Optimal power flow (OPF) problem 17

4. Line limits. To prevent sagging and congestion of lines, the magnitude of the apparent
power flow over a line cannot exceed |slm|. The squared apparent power is a squared
sum of two quadratic terms of xt, such that we have ∀(l,m) ∈ L,∀t ∈ T :(

x
T
t Ylmxt

)2 +
(
x

T
t Y
∗
lmxt

)2 ≤ |slm|2,
which can be reformulated using the Schur-complement [25, §A.5.5] to form a linear
matrix inequality. The fourth order dependence on the voltage vector is now reduced
to quadratic terms:  −|slm|

2 x
T
t Ylmxt x

T
t Y
∗
lmxt

x
T
t Ylmxt −1 0

x
T
t Y
∗
lmxt 0 −1

 � 0. (3-1g)

5. Reference bus constraint. All voltage angles are relative to the voltage angle of the
reference bus. The voltage angle of the reference bus is fixed at zero ∀t ∈ T :

x
T
t Erefxt = 0, (3-1h)

where Eref is a diagonal matrix from the standard basis vector eNb+iref , and iref is the
index of the reference bus.

Remark 3.1. The power balance constraints (3-1d) and (3-1e) can be used to reformulate
the generator dispatch in terms of the voltage vector as follows ∀k ∈ N , ∀t ∈ T :

CGk pGt = x
T
t Ykxt + pDk,t − Cwk pwt , (3-2a)

CGk qGt = x
T
t Y
∗
k xt + qDk,t. (3-2b)

Using this definition, one can substitute for CGk pGt and CGk qGt in the generation limits, thus
combining (3-1b) and (3-1c) with (3-2) to form the following box constraints ∀k ∈ N , ∀t ∈ T :

pGk ≤ x
T
t Ykxt + pDk,t − Cwk pwt ≤ pGk , (3-3a)

qGk ≤ x
T
t Y
∗
k xt + qDk,t ≤ qGk , (3-3b)

where the lower and upper generation limits have also been extended to N using pGk = pGk =
qGk = qGk = 0∀k ∈ {N \ G}.

Remark 3.2. Following Remark 3.1 and Equation (3-1a), one can reformulate the cost per
hour using only the voltage vector xt:

fxG(xt,pwt ,pDt ) :=
∑
k∈G

CGk cli(xT
t Ykxt + pDk,t − Cwk pwt

)
+ CGk cqu

((
x

T
t Ykxt + pDk,t − Cwk pwt

))2
.

(3-4)

It is important to note that this function is of order four with respect to x, it can be made
quadratic2. To streamline the presentation, these steps are skipped.

2The cost function can be made linear with the use of the epigraph notation (see also [25, §4.1.3]). The
resulting inequality constraint can be converted to a linear matrix inequality using the Schur complement (see
also [25, §A.5.5]), which yields a quadratic function of xt.
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18 Alternating Current Optimal Power Flow Reserve Scheduling Problem

Following Remarks 3.1 and 3.2, the decision variables p̃G and q̃G can be removed. We can
then reformulate Problem (3-1) in a more compact form. Since it is a function of the wind
trajectory, it will be denoted by opf(p̃w):

minimize
x̃

∑
t∈T

fxG(xt,pwt ,pDt )

subject to power balance constraints (3-3),
bus voltage constraints (3-1f),
line flow constraints (3-1g),
reference bus constraint (3-1h).

3-1-2 Computational complexity of the OPF problem

After removing the dependency on the generator dispatch, opf(p̃w) is a quadratically con-
strained quadratic program (QCQP) in x̃ only. The data matrices Yk, Y ∗k , Ylm, Y ∗lm are in-
definite, which makes the QCQP non-convex [9, 42]. Non-convex QCQPs form a problem
class that in general is very hard to solve. Many problems from this class are NP-hard. In
fact, the OPF problem is proven to be NP-hard [43]. This implies that the OPF problem
in this formulation may not be solvable in polynomial time. Therefore, a formulation that
can approximate the optimal solution of the OPF problem with less computational effort is
presented next.

3-2 Convexification of OPF problem

Historically, Newton-Raphson solvers and other heuristic non-linear solving methods, such
as genetic algorithms, have been used to solve the OPF problem directly [19, 44, 45]. An
alternative to this approach is to convexify the problem to a program which is solvable in
polynomial time with the help of efficient convex solvers. The resulting solution may be
identical to the optimal solution of the non-convex program. A convexification method that
has received increasing attention in the past years is the Semidefinite Relaxation (SDR) [46].
The application of the SDR to OPF problems has been proposed by [47], and its validity has
been justified in [9] by examination of the duality gap for certain types of problems. For a
large class of networks, the SDR has proven to be ‘tight’, i.e. the optimal solution of the SDR
is equal to the optimal solution of the original non-convex OPF problem.

In Section 3-2-1, opf(p̃w), which is a non-convex QCQP, is convexified and formulated as an
SDP using the semidefinite relaxation technique. After this, we will discuss the computational
complexity of the resulting convexified problem in Section 3-2-2.

3-2-1 Semidefinite relaxation of OPF problem

The semidefinite relaxation is based on the insight that the objective and constraints are all
quadratic functions of xt, and hence linear functions of the outer product of xt. This can be
shown with the help of the trace-operator: x

T
Ax = Tr

(
A

T(xx
T)
)
. Recognizing this allows

us to reformulate opf(p̃w) as an equivalent problem in a matrix variable Wt := xtx
T
t ∈ S2Nb .
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3-2 Convexification of OPF problem 19

Similar to xt, Wt represents the operating state of the network, and is therefore called the
state matrix. We define W(pw, sD) ⊂ S2Nb as the set of feasible network states, such that
Wt ∈ W indicates a feasible network state. This set is constructed by substituting every
quadratic term of xt by its linear counterpart in the set of constraints defining opf(p̃w), and
has the following characteristics:

W(pw, sD) :=
{
W ∈ S2Nb

∣∣∣ pGk ≤ Tr (YkW ) + pDk − Cwk pw ≤ pGk , ∀k ∈ N ,

qGk ≤ Tr (Y ∗kW ) + qDk ≤ qGk , ∀k ∈ N ,
|vk|2 ≤ Tr (MkW ) ≤ |vk|2, ∀k ∈ N , −|slm|2 Tr (YlmW ) Tr (Y ∗lmW )

Tr (YlmW ) −1 0
Tr (Y ∗lmW ) 0 −1

 � 0, ∀(l,m) ∈ L,

Tr (ErefW ) = 0
}
,

where pw is the wind power, and sD = pD + iqD is the demanded power. Consider now the
following formulation as an equivalent optimization problem to opf(p̃w):

minimize
W̃

∑
t∈T

fG(Wt,p
w
t ,p

D
t ) (3-5a)

subject to Wt ∈ W(pwt , sDt ), ∀t ∈ T , (3-5b)
Wt � 0, ∀t ∈ T , (3-5c)
rank (Wt) = 1, ∀t ∈ T , (3-5d)

where fG is defined as in Equation (3-4), but with every occurrence of x
T
t Ykxt replaced by

Tr (YkWt). Constraints (3-5c) and (3-5d) have been introduced to guarantee the exactness of
the SDR and consequently, the equivalence of opf(p̃w) and Problem (3-5).

Problem (3-5) is non-convex, due to the presence of the rank-one constraint (3-5d). Removing
(3-5d) relaxes the problem to an SDP. It has been shown in [9] and later in [48] that the rank-
one constraint can be dropped without affecting the solution for most power networks. In
[10, Proposition 1], the authors showed that when the convex relaxation of the AC OPF
problem has solutions with rank at most two, then, forcing any arbitrary selected entry of
the diagonal of the matrix Wt to be zero results in a rank-one solution. This condition is
practically motivated since the voltage angle of one of the buses (the reference bus) is often
fixed at zero in practice. Moreover, the corresponding value of the objective function is
identical to that of the original AC OPF problem.

Based on these results, we drop the rank constraint from the formulation. We denote by
c-opf(p̃w) the convexified version of opf(p̃w) in W̃ , i.e. Problem (3-5) with the rank-one
constraints (3-5d) removed. The computational complexity of this problem will be discussed
next.

3-2-2 Computational complexity of the convexified OPF problem

We now examine the computational complexity of the SDP c-opf(p̃w) by means of a worst-
case computational complexity analysis (see also Section 2-3 for a brief explanation). The
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20 Alternating Current Optimal Power Flow Reserve Scheduling Problem

dimension of the decision variable for one hour of c-opf(p̃w) is 2Nb. This decision variable
is constrained to be a member of the set of feasible states for that hour W(pwt , sDt ), which
is defined by 4Nb power injection limits, 2Nb bus voltage limits, NL line flow limits and 1
reference bus constraint. If we extend this to the full horizon, the problem consists of T
instances of these matrices and constraint sets. Therefore, n = 2NbT, m = (6Nb +NL + 1)T .
We can then substitute for n and m in the expression for the computational complexity given
in Equation (2-2), and expand the result. The highest order term will determine the order of
the worst-case complexity:

O
(
[m2n2 +mn3 +m3]n1/2 log(1/α)

)
= O

([(
(6Nb +NL + 1)T

)2(2NbT )2 +
(
(6Nb +NL + 1)T

)
(2NbT )3)

+
(
(6Nb +NL + 1)T

)3](2NbT )1/2 log(1/α)
)
,

= O
(
T 9/2N

9/2
b log(1/α)

)
,

from which we can conclude that the computational complexity for the c-opf(p̃w) scales
polynomially in the number of buses Nb and prediction horizon T with order 4.5 and loga-
rithmically in the desired accuracy of the solution.

3-3 Extending OPF problem to reserve scheduling (OPF-RS)

Next, c-opf(p̃w) is extended to include uncertain wind power. In Section 3-3-1, we formulate
a program that finds a feasible operating state of the network for the uncertain wind power.
The mismatch that arises due to this uncertainty is balanced using reserve power. This is
defined and incorporated in the formulation in Section 3-3-2 to form the opf-rs problem.
We then examine different strategies to reformulate the uncertain program in Section 3-3-3.

3-3-1 Including uncertain wind power in convexified OPF problem

Our proposed formulation c-opf(p̃w) solves an OPF problem, taking the actual wind power
trajectory p̃w into account. However, this information is not available to the TSO in the
day-ahead scheduling problem. The only information available at the time of decision making
is the forecast wind power trajectory, denoted by p̃w,f . We here define the difference between
a generic actual wind power realization and the forecast wind power, as the wind power
mismatch at each time step, e.g. pmt = pwt − pw,ft . Due to the fact that p̃m is a random
variable, the following technical assumption is necessarily in order to proceed to the next
steps.

Assumption 1. p̃m are defined on some probability space (P,B(P),P), where P ⊆ RNw×Nt,
B(·) denotes a Borel σ-algebra, and P is a probability measure defined over P.

Besides this assumption, no further assumptions are made on P, and it can thus be considered
as an unbounded and unknown set. We now define a problem that finds the optimal generator
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3-3 Extending OPF problem to reserve scheduling (OPF-RS) 21

dispatch for the forecast scenario, and finds feasible operating states for a generic wind power
trajectory:

minimize
W̃ f ,W̃

∑
t∈T

fG(W f
t ,p

w,f
t ,pDt ) (3-6a)

subject to W f
t ∈ W(pw,ft , sDt ), ∀t ∈ T , (3-6b)

Wt ∈ W(pw,ft + pmt , s
D
t ), p̃m ∈ P,∀t ∈ T , (3-6c)

W f
t � 0 ∀t ∈ T , (3-6d)

Wt � 0 ∀t ∈ T , (3-6e)

where W f
t is related to the state of the network in the case of forecast wind power, and Wt is

a generic network state for a generic wind power trajectory at time step t ∈ T . Constraints
(3-6b) and (3-6c) ensure feasibility for every network state, while constraints (3-6e) enforce
positive semidefiniteness of all network states. Note that constraints (3-6) are identical to the
constraints of c-opf(p̃w,f ) and c-opf(p̃w) combined.

3-3-2 Reserve power and reserve scheduling

To ensure demand satisfaction even in the presence of uncertain wind power generation, the
TSO employs reserve power, to mitigate the mismatch between actual wind power and forecast
wind power using the controllable generators [1]. Define ∀k ∈ G, ∀t ∈ T :

CGk rt := CGk pGt − CGk pG,ft

where rt ∈ RNG denotes the amount of reserve power at time step t and pG,ft is used to denote
the generator power in the forecast case. Following Remark 3.1, we have ∀k ∈ G,∀t ∈ T and
for p̃m ∈ P:

CGk pGt = Tr (YkWt) + pDk,t − Cwk (pw,ft + pmt ),

CGk pG,ft = Tr
(
YkW

f
t

)
+ pDk,t − Cwk pw,ft ,

and therefore, one can obtain the reserve power in terms of the network states Wt and W f
t ,

such that ∀k ∈ G, ∀t ∈ T :

CGk rt := Tr
(
Yk
(
Wt −W

f
t

))
, (3-7)

where the term −Cwk (pmt ) is dropped since we assumed3 F∩G ∈ ∅, and thus every Cwk contains
only zeros for every k ∈ G.

The elements of rt can be positive and negative (the upspinning and downspinning reserve
power, respectively) such that they are deployed for a power deficit and surplus to bring bal-
ance to the network and satisfy the demanded power [41]. Following the automatic generator
regulation (AGR) mechanism [11], we also define two vectors dus

t ,d
ds
t ∈ RNG to distribute the

amount of up- or downspinning reserve power among the available generator for each time
3Please note that this assumption is done to streamline the presentation, and is not restrictive for any of

the obtained results.
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22 Alternating Current Optimal Power Flow Reserve Scheduling Problem

step t ∈ T . To obtain the optimal control strategy for the AGR mechanism, we consider the
following equality constraint ∀k ∈ G, t ∈ T :

Tr
(
Yk
(
Wt −W

f
t

))
= −CGk dus

t min
(
1T

pmt , 0
)
− CGk dds

t max
(
1T

pmt , 0
)
, (3-8)

where 1 is a vector of appropriate dimensions with all entries equal to one. In order to
always negate the wind power mismatch using the reserve power and bring balance to the
power network, we enforce the sum of the distribution vectors to be equal to one, using the
following constraints ∀t ∈ T :

1T
dus
t = 1, 1T

dds
t = 1, (3-9)

Define rds
t , r

us
t ∈ RNG such that ∀k ∈ G,∀t ∈ T :

−CGk rds
t ≤ Tr

(
Yk
(
Wt −W f

t

))
≤ CGk rus

t , (3-10a)

0 ≤ rus
t , 0 ≤ rds

t , (3-10b)

such that all positive and negative elements in rt are upper and lower bounded by rus
t

and −rds
t , respectively. The corresponding linear up- and downspinning cost coefficients

cus, cds ∈ RNG
+ are used to define the cost of reserve ∀t ∈ T :

fR(rus
t , r

ds
t ) := (cus)T

rus
t + (cds)T

rds
t .

Using Ξ :=
{
W̃ f , W̃ , d̃us, d̃ds, r̃us, r̃ds} as the set of decision variables, and combining our

previous discussions with the optimization Problem (3-6), we are now in the position to
formulate a convexified OPF problem in combination with a RS problem in a more compact
form. This problem will be denoted opf-rs:

minimize
Ξ

∑
t∈T

(
fG(W f

t ,p
w,f
t ) + fR(rus

t , r
ds
t )
)

subject to feasible forecast state (3-6b), (3-6d),
feasible generic state (3-6c), (3-6e),
reserve distribution constraints (3-8), (3-9),
reserve requirements constraints (3-10a), (3-10b).

3-3-3 Formulating OPF-RS as a chance constrained program (cc-opf-rs)

Using a more compact notation, we represent opf-rs as follows:

opf-rs:

minimize
Ξ∈X

f(Ξ)

subject to g(Ξ, p̃m) ≤ 0, for p̃m ∈ P,

where f(Ξ) is the objective function, g(Ξ, p̃m) ≤ 0 represents all constraints that are functions
of the uncertainty (i.e. constraints (3-6c) and (3-8)), and X is the deterministic feasible set,
formed by all the remaining constraints. Note that X is a convex set, since all deterministic
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constraints are linear in the elements of Ξ. opf-rs is an uncertain semi-infinite SDP, due to
the unknown and unbounded set P. It is therefore computationally intractable and in general
difficult to solve.

One can transform opf-rs into a robust program by enforcing the uncertain constraints to
be satisfied for all possible values of the uncertainty:

minimize
Ξ∈X

f(Ξ)

subject to g(Ξ, p̃m) ≤ 0, ∀p̃m ∈ P.

This worst-case robust approach in the case of power systems optimization is undesirable
for two reasons: first of all, the bounds of P might not be available to the TSO, or they
might be so excessive that a feasible solution does not exist. Secondly, the solution for this
program would be very conservative, since no violations are allowed. This would lead to a
degradation of the objective, i.e. very high generation and reserve power costs. Therefore, a
more sophisticated approach is considered.

All operating limits are given as nominal values. One can argue that if the operating limit
for a certain component is exceeded for a short time, that this would not directly lead the
failure of this component. The TSO can thus accept a (very low) risk of violation, rather than
allow no violation at all. Therefore, we use the concept of chance constraint programming,
as introduced in [6] for DC OPF problems. In this formulation, we introduce a risk level
ε ∈ (0, 1) which acts as a tuning parameter for the optimization. The selection of ε can be
seen as the trade-off between feasibility and performance. The uncertain problem opf-rs can
thus be transformed to chance constrained program (CCP), as follows:

cc-opf-rs:

minimize
Ξ∈X

f(Ξ)

subject to P
[
p̃m ∈ P : g(Ξ, p̃m) ≤ 0

]
≥ 1− ε.

Although this formulation is a much better fit for the type of problem at hand, it is still
intractable due to the chance constraint. In the next section, we propose a technique to
approximate P such that it contains the probability mass distribution of P almost surely
with a high level of confidence, which allows us to reformulate cc-opf-rs in a tractable way.

3-4 Conclusions

The optimal power flow problem is formulated as a non-convex QCQP, after which the SDR
technique is applied to obtain a convex program, c-opf. This program was defined for a given
wind trajectory, but these are uncertain in the context of the day-ahead scheduling problems.
The extension is made to the RS problem, resulting in an uncertain program opf-rs. Instead
of solving a robust program for all possible values of the uncertainty, we have formulated
opf-rs as a chance constrained program, cc-opf-rs. The formulation as a CCP is used,
since occasional violations can be allowed to better deal with the uncertainty. cc-opf-rs is
intractable due to the chance constraints. In the following chapter, tractable approximations
are proposed in order to find a solution for cc-opf-rs.
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Chapter 4

Tractable Approximations for
cc-opf-rs Using the Scenario

Approach

In the previous chapter, the optimal power flow problem with reserve scheduling is formulated
as a chance constrained program cc-opf-rs. This problem is computationally intractable,
due to the chance constraints. As explained in Section 2-4, the scenario approach can be used
to obtain tractable problems for which the optimal solution approximates the optimal solution
of CCPs with a predefined confidence level. In this chapter, two different ways of applying
the scenario approach to obtain a tractable approximation for cc-opf-rs are described.
In Section 4-1, an approximation of the uncertainty set is formulated as a CCP and the
scenario approach is used to define a tractable formulation of this approximation. Next, a
robust opf-rs problem is formulated for the approximated set. Since the scenario approach
is not applied directly to cc-opf-rs this approach is called the indirect scenario approach.
The direct application of the scenario approach to cc-opf-rs is then presented in Section 4-2.
The obtained program is intractable due to the large number of computationally expensive
PSD constraints. A novel parametrization of the generic network state is proposed, for which
the problem becomes tractable. Finally, some concluding remarks are given in Section 3-4.

4-1 Indirect scenario approach using vertex enumeration of uncer-
tainty set

In this section, we apply the indirect scenario approach to cc-opf-rs. First, we approximate
the uncertainty set P with a convex set H. In Section 4-1-1, the method is explained and a
theoretical connection between P and H regarding the level of approximation is made. Next,
we formulate a robust opf-rs for the approximated uncertainty set in Section 4-1-2, as a
tractable approximation of cc-opf-rs. Finally, we examine the computational complexity of
the obtained formulation in Section 4-1-3.
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4-1-1 Approximation of the uncertainty

It is now of interest to characterize a set H which approximates P. We assume for simplicity
that H is an axis-aligned hyperrectangular set, such that H :=×t∈T [ht,ht] ⊂ RNw×Nt .
This is not a restrictive assumption and any convex set could have been chosen instead as
described in [49]. Vectors ht ∈ RNw and ht ∈ RNw define the bounds of the hyperrectangular
set for all wind buses at each time step t ∈ T . To determine H with minimal volume which
approximates P with probability 1− ε, the following CCP is formulated:

minimize
h̃,h̃

∑
t∈T

∥∥∥ht − ht

∥∥∥
1

(4-1a)

subject to P
[
p̃m ∈ P : pmt ∈ [ht,ht], ∀t ∈ T

]
≥ 1− ε. (4-1b)

Following [34], we use a randomization Problem (4-1) with confidence level 1− β:

minimize
h̃,h̃

∑
t∈T

∥∥∥ht − ht

∥∥∥
1

(4-2a)

subject to pmt ∈ [ht,ht], ∀t ∈ T , ∀p̃m ∈ S, (4-2b)

where S = {p̃m,1, p̃m,2, · · · , p̃m,Ns} ∈ PNs is a multi-extraction of i.i.d. samples from P.
Denote H?S as the optimal solution for Problem (4-2), where the subscript S is used to denote
the dependency on the multi-extraction. We next provide the following theorem that provides
a theoretical connection between H?S and P by means of the level of approximation.

Theorem 1. Fix violation level ε ∈ (0, 1) and confidence level β ∈ (0, 1), and let Ns be the
smallest integer such that

Ns ≥
2
ε

(2NtNw + log 1
β

) , (4-3)

and construct the set S = {p̃m,1, p̃m,2, · · · , p̃m,Ns} ∈ PNs, and let H?S be the optimal solution
for Problem (4-2). Then,

PNs
[
S ∈ PNs : P[ p̃m ∈ P : p̃m ∈ H?S ] ≥ 1− ε

]
≥ 1− β,

where PNs denotes a Ns-fold product probability.

Proof. The proof is a direct result of [49, Th. 1].

The interpretation of Theorem 1 is as follows. Given a generic sample p̃m ∈ P, the probability
of p̃m ∈ H?S is greater than 1 − ε with confidence level 1 − β. In the following, we omit the
subscript S from H?S , for the sake of readability. Following the approach of [3], we now
formulate a robust opf-rs for H?:

minimize
Ξ∈X

f(Ξ) (4-4a)

subject to g(Ξ, p̃m) ≤ 0, ∀p̃m ∈ H?. (4-4b)

We now use Theorem 1 to make the following proposition:
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Proposition 1. The optimal solution to Problem (4-4) is a feasible solution of cc-opf-rs
with confidence 1− β.

Proof. Following Theorem 1, the solution to Problem (4-4) will be feasible for all of H?, which
encloses at least 1 − ε of the probability mass distribution of P with confidence of at least
1− β. The optimal solution to Problem (4-4) is therefore feasible with a probability greater
than or equal to 1− ε for a generic sample p̃m ∈ P with confidence 1− β.

Using Proposition 1, Problem (4-4) is almost surely a valid approximation for cc-opf-rs,
i.e. the optimal solution of Problem (4-4) has the same probabilistic guarantees with high
confidence. Problem (4-4) is now reformulated to increase tractability.

4-1-2 Robust OPF-RS by means of vertex enumeration

All uncertain constraints are linear with respect to the uncertainty p̃m, with the exception
of (3-8), which is non-linear due to the presence of the max and min operators and repeated
here for completeness:

Tr
(
Yk
(
Wt −W

f
t

))
= −CGk dus

t min
(
1T

pmt , 0
)
− CGk dds

t max
(
1T

pmt , 0
)
. (3-8)

In fact, these operators lead to hybrid operation since the two terms on the right-hand side
cannot be non-zero simultaneously, since ∀α ∈ R,min

(
α, 0) max

(
α, 0) = 0. It is straightfor-

ward to show that (3-8) is equivalent to ∀k ∈ G, ∀t ∈ T :

Tr
(
Yk
(
Wt −W

f
t

))
=


−CGk dus

t (1T
pmt ) if 1T

pmt < 0,
−CGk dds

t (1T
pmt ) if 1T

pmt > 0,
0 otherwise.

Following this observation, we first split H? into its time steps, such that H?t ⊆ RNw and
×t∈T H

?
t = H?, since g(Ξ, p̃) is decomposable over all the time steps. We then split H?t into

two sets ∀t ∈ T :

H?t =
{

pmt ∈ H?t | 1
T

pmt ≤ 0
}
,

H?t =
{

pmt ∈ H?t | 1
T

pmt ≥ 0
}
,

such that×t∈T

(
H?t ∪H

?
t

)
= H?. Graphically, H?t and H?t are created by separating the

hyperrectangle H?t with a hyperplane that has normal 1, resulting in two convex polyhedral
sets, as shown in Figure 4-1. Note that both sets have overlap for the case 1Tpmt = 0. For
this specific case, there is no hybrid behaviour because the right-hand-side of (3-8) is 0 for
all k ∈ G. Then, the following problem:

minimize
Ξ∈X

f(Ξ) (4-5a)

subject to g(Ξ, p̃m) ≤ 0,∀p̃m ∈×t∈T H
?
t , (4-5b)

g(Ξ, p̃m) ≤ 0,∀p̃m ∈×t∈T H
?
t , (4-5c)

is equivalent to Problem (4-4), and by Proposition 1 it will be an approximation of the optimal
solution for cc-opf-rs with confidence 1− β.
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Remark 4.1. Since there is no hybrid behaviour in H?t and H?t , constraint (3-8) can be
written as two separate linear constraints ∀k ∈ G,∀t ∈ T :

Tr
(
Yk
(
Wt −W

f
t

))
= −CGk dus

t (1T
pmt ), ∀pmt ∈ H?t ,

Tr
(
Yk
(
Wt −W

f
t

))
= −CGk dds

t (1T
pmt ), ∀pmt ∈ H

?
t .

pm2,t

pm1,t

1

1
T

pm
t = 0

H⋆
t

H⋆
t

H⋆
t

Figure 4-1: Illustration of approximation of the uncertainty for Nw = 2. The grey dots are the
elements in S at time step t. The red rectangle is H?

t , the smallest hyperrectangle that encloses
those elements of S. H?

t and H?

t are created by splitting H?
t in two at the hyperplane with

normal 1, shown as the dashed line, such that the light shaded region is H?

t and the dark shaded
region corresponds to H?

t . The red circles indicate all vertices of H?
t and H?

t that are not on the
hyperplane. They coincide with the vertices of H?

t .

Using Remark 4.1, both constraint functions (4-5b) and (4-5c) are linear with respect to the
uncertainty. Therefore, a robust solution for the whole set can be found by only considering
the vertices. Define vert(·) as a function that returns set of the vertices1 of a set. Consider
the vertices of H?t and H?t . Due to the definition, we have that

1T
pmt = 0,∀pmt ∈ {vert(H?t ) \ vert(H?t )}, (4-6)

i.e. all vertices that coincide with hyperplane with normal 1 correspond to zero total mismatch
and thus to no hybrid behaviour. Therefore, we can characterize the upspinning behaviour
with vert(H?t ) ∩ vert(H?t ) and the downspinning behaviour with vert(H?t ) ∩ vert(H?t ).
We number the vertices of H?t with superscript i = 1, · · · , 2Nw, such that pm,it is the i-th
vertex of H?t . Collect all the indexes in I, and let I ⊂ I be defined as the set of indexes of
vert(H?t ) ∩ vert(H?t ), and define I ⊂ I in a similar fashion for vert(H?t ) ∩ vert(H?t ).

1For a hyperrectangle, this function is equal to every possible combination of the component wise minimum
and maximum of all elements in the set, and can be found computationally efficient.
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4-1 Indirect scenario approach using vertex enumeration of uncertainty set 29

Problem (4-5) is now tractable by means of the worst-case (finite) SDP. Since we need to con-
sider the network state for every vertex, the generic network state matrix is replaced by 2Nw

matrices for every time step t ∈ T , such that Ξ2 =
{
W̃ f , W̃ 1, · · · , W̃ 2Nw , d̃us, d̃ds, r̃us, r̃ds}.

All the vertices of H? are used, and this approach is therefore called Vertex Enumeration
(VE). We define the following problem as the vertex enumerated OPF-RS (ve-opf-rs):

minimize
Ξ2

∑
t∈T

(
fG(W f

t ,p
w,f
t ) + fR(rus

t , r
ds
t )
)

(4-7a)

subject to W f
t ∈ W(pw,ft , sDt ), ∀t ∈ T , (4-7b)

W f
t � 0, ∀t ∈ T , (4-7c)

W i
t ∈ W(pw,ft + pm,it , sDt ), ∀i ∈ I, ∀t ∈ T , (4-7d)

W i
t � 0, ∀i ∈ I, ∀t ∈ T , (4-7e)

Tr
(
Yk
(
W i
t −W

f
t

))
= −CGk dus

t (1T
pm,it ), ∀i ∈ I,∀k ∈ G, ∀t ∈ T , (4-7f)

Tr
(
Yk
(
W i
t −W

f
t

))
= −CGk dds

t (1T
pm,it ), ∀i ∈ I,∀k ∈ G, ∀t ∈ T , (4-7g)

− CGk rds
t ≤ Tr

(
Yk
(
W i
t −W

f
t

))
≤ CGk rus

t , ∀i ∈ I,∀k ∈ G, ∀t ∈ T , (4-7h)

0 ≤ rus
t , 0 ≤ rds

t , ∀t ∈ T , (4-7i)

1T
dus
t = 1, 1T

dds
t = 1, ∀t ∈ T . (4-7j)

By Proposition 1, the solution to this program is feasible for the cc-opf-rs. The computa-
tional complexity of the solution is now examined.

4-1-3 Computational complexity of vertex enumerated OPF-RS

We will now examine the computational complexity of ve-opf-rs as defined in Problem (4-7).
If we compare ve-opf-rs with c-opf, it can be seen that the T matrix variables with their
corresponding constraints have been replicated 2Nw + 1 times. Furthermore, we have added
4T new vectors in RNG to the decision space, and introduced 4NG constraints in for every
matrix variable in constraints (4-7f) - (4-7h). Also, 4NG constraints are introduced for every
vector in constraints (4-7i) - (4-7j). The addition of the vectors will not influence the order of
the worst-case computational complexity, because the computational cost of finding a search
direction for vector variables is of a lower order than for matrix variables [26]. Equation (2-
2) can therefore be used to get an indication of the worst-case computational complexity of
ve-opf-rs. The dimension of the decision variable is n = 2Nb(2Nw + 1)T , and the number
of constraints is m = (6Nb + 4NG +NL + 1)(2Nw + 1)T . Using a similar expansion as given
in Section 3-2-2, this results in a total number of operations in O

(
N

9/2
w T 9/2N

9/2
b log(1/ε)

)
.

The computational complexity of ve-opf-rs scales thus not only with a high order in the
network size Nb and prediction horizon T , but also in the number of uncertain generators
Nw. In modern day applications, there can be many uncertain power sources, for example
due to the increasing use of residential photovoltaics. Moreover, the approximation of the
uncertainty introduces extra conservatism, since an axis-aligned hyperrectangular box may
not be the most compact approximation method. In the next Section, we present a novel way
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30 Tractable Approximations for cc-opf-rs Using the Scenario Approach

to parametrize the network state such that the computational complexity of the resulting
program is decoupled from the number of uncertain elements, and the scenario approach can
be applied directly to cc-opf-rs.

4-2 Direct scenario approach using conic parametrization of net-
work state

In this section, we propose a parametrization of the generic network state to reduce the number
of PSD constraints, such that the scenario approach can be applied directly to cc-opf-rs.
The approach is explained in Section 4-2-1, and arising tractability issues are described. To
mitigate these issues, the principle of conic parametrization is introduced in Section 4-2-2,
along with a simple example. The proposed parametrization is then applied to opf-rs, as
described in Section 4-2-3. In Section 4-2-4, the direct scenario approach is then applied to
the parametrized problem and the computational complexity is discussed.

4-2-1 Direct scenario approach and tractability issues

Rather than approximating P first, the scenario approach can also be applied directly to
cc-opf-rs. The required number of samples is based on an a-priori fixed violation level
ε ∈ (0, 1) and confidence level β ∈ (0, 1) and the dimension of the control variable (see also
Section 2-4 for a concise explanation of the scenario approach). As described in [12], the
dimension of the control variable for OPF-RS problems is T (4NG): the real generator power,
voltage magnitudes and the up- and downspinning vectors for every time step. Let Ns ∈ N
be the smallest integer such that

Ns ≥
2
ε

(4TNG − 1 + log 1/β). (4-8)

Next, define S = {p̃m,1, p̃m,2, · · · , p̃m,Ns} ∈ PNs as a a multi-extraction of samples from P.
Consider the following robust opf-rs problem with respect to every sample in S:

minimize
Ξ∈X

f(Ξ) (4-9a)

subject to g(Ξ, p̃m) ≤ 0, ∀p̃m ∈ S, (4-9b)

and let Ξopt be optimal solution to Problem (4-9). Based on [36, Th. 4], Ξopt has the following
probabilistic guarantees:

PNs
[
S ∈ PNs : P[ p̃m ∈ P : g(Ξopt, p̃m) ≤ 0] ≥ 1− ε

]
≥ 1− β.

In other words: given a multi-extraction S with cardinality Ns which satisfies (4-8), the
optimal solution to Problem (4-9) is feasible for any generic sample p̃m ∈ P with probability
1− ε, with confidence 1− β.

To implement Problem (4-9), one replaces the set of uncertain constraints for a generic wind
trajectory with Ns sets of deterministic constraints for the samples of the uncertainty, called
scenarios. Instead of a forecast and a generic network state, the decision variables now include
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4-2 Direct scenario approach using conic parametrization of network state 31

the forecast network state andNs scenario network states for every time step. Each of the state
matrices is subject to PSD constraints. The minimum number of samples Ns to guarantee
reasonable violation and confidence levels ε, β is typically quite large. The resulting problem
has therefore such a high number of computationally expensive PSD constraints, that it is
computationally intractable.

To illustrate this, the worst-case computational complexity is determined. The dimension of
the decision variables n = 2Nb(Ns + 1)T , and since every constraint set is repeated for every
scenario state, the dimension of the constraints now increases to m = (6Nb + 4NG + NL +
1)(Ns + 1)T . Inspecting (4-8), it can be concluded that Ns ∈ O(TNG). If one substitutes
n and m in Equation (2-2) and keeps only keeping the highest order terms, one obtains a
complexity that is in O(T 9N

13/2
G N

9/2
b log(1/α)). Due to the high order terms of T,NG and

Nb, the worst-case complexity grows very fast with increasing problem sizes. In the following,
we therefore propose a parametrization of the scenario state, that aims to make the direct
application of the scenario approach to cc-opf-rs tractable.

4-2-2 Tractability through conic parametrization of scenario state

Instead of introducing a new variable to represent every scenario state, a conic combination2
of matrix variables, called coefficient matrices, is used to approximate the scenario state. The
variable for these coefficient matrices corresponds to the uncertainty. We can then impose
PSD-ness on the coefficient matrices, rather than on every scenario states separately. Since
any conic combination of PSDmatrices is a PSDmatrix [25, §2.2.5], the approximated scenario
state is guaranteed to be PSD.

To clarify the idea behind our proposed parametrization, a simple example is provided. Con-
sider the following scenario program:

minimize
{X1,··· ,XNs}

f(X1, · · · , XNs) (4-10a)

subject to Xi ∈ X (δi), for i = 1, · · · , Ns, (4-10b)
Xi � 0, for i = 1, · · · , Ns. (4-10c)

The decision variables are the scenario state, each corresponding to one scenario δi ∈ R.
Every scenario has its corresponding decision variable Xi ∈ Sd, which has to be PSD and in
the feasible set X (δi) ⊆ Sd for the corresponding uncertainty. A graphic representation of a
very simple version of this problem is shown in Figure 4-2, where the feasible set is illustrated
with the blue ellipse and the optimal solutions are indicated with red circles. Since d = 1,
the PSDness of the matrix variable is here simply all non-negative values.

To solve this, we aim to parametrize Xi in δi such that we implicitly satisfy every PSD
constraint X1 � 0, · · · , XNs � 0. We choose to define X̂(δi) as an affine function of δi, such
that the coefficients are the new decision variables. Since δi can be negative, we apply a
mapping P (·) : R → R+ that maps δi to non-negative values, and define the approximated
scenario state as follows:

X̂(δi) := A+BP (δi), for i = 1, · · · , Ns.

2A conic combination is a linear combination with only non-negative coefficients, see also [25, §2.1.5].
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32 Tractable Approximations for cc-opf-rs Using the Scenario Approach

where A,B ∈ Sd are introduced as the coefficient matrices. Since X̂(δi) is a conic combi-
nation of matrices, A,B � 0 =⇒ X̂i � 0 for all scenarios. Therefore, we can replace
constraints (4-10c) with A,B � 0. The problem can now be stated in terms of the new
parametrization of X̂i:

minimize
A,B∈ Sd

f(X̂1(δ1), · · · , X̂Ns(δNs)) (4-11a)

subject to X̂(δi) ∈ X (δi), for i = 1, · · · , Ns, (4-11b)
A � 0, B � 0. (4-11c)

Regardless of the number of scenarios Ns, Problem (4-11) has just two PSD constraints on
A,B. The price for this increase in tractability is more restrictiveness. As illustrated in
Figure 4-2, the solutions X̂opt

i must lie on the hyperplane Aopt + P (δi)Bopt, rather than
anywhere within the set {Xi ∈ X (δi) | Xi � 0}. This means that the optimal objective
for Problem (4-11) will provide an upper bound on the optimal objective of Problem (4-10),
which is not necessarily tight. This is also the case for the simple example: it can be seen
that the optimal value for X2 cannot be obtained using the parametrization.

P (δ)

X X (δ)

Xopt
1

Xopt
2

Xopt
3

X̂(δ) = Aopt + P (δ)Bopt

X̂opt
1

X̂opt
2

X̂opt
3

P (δ1) P (δ2) P (δ3)

f(X1, . . . , XN )

Figure 4-2: X,P (δ) plot for a (parametrized) scenario program with d = 1, Ns = 3. The
feasible set is the inside of the blue ellipse. Solutions are shown as red circles (green squares).
The parametrized solution is more restrictive, since all solutions must lie on a hyperplane.

4-2-3 Conic parametrization of generic network state for OPF-RS

The parametrization approach is now applied to the opf-rs problem. The scenario variables
are the network states for a realization of the uncertainty for every time step. W f

t and W i
t

are related through the reserve distribution equality constraints (3-8), such that the reserve
power resulting fromW i

t has to be consistent with the distribution vectors. Motivated by this
observation, we propose a novel parametrization of the generic network state that encodes
this restriction implicitly. Let Ŵt(pmt ) ∈ S2Nb be the parametrized generic network state
p̃m ∈ P, ∀t ∈ T , defined as

Ŵt(pmt ) := W f
t + max(−1T

pmt , 0)W us
t + max(1T

pmt , 0)W ds
t , (4-12)
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where coefficient matrices W us
t ,W

ds
t ∈ S2Nb have been introduced for every t ∈ T , and Ŵt is

a function of pmt . The generic network state is decomposed in a deterministic component and
two components which scale with the positive or negative uncertainty.

Remark 4.2. Both max(1T
pmt , 0) and max(−1T

pmt , 0) are always non-negative and never
non-zero simultaneously, such that the change in network state is determined by either W ds

t

or W us
t in case of either a wind power surplus or deficit, respectively.

Combining Remark 4.2 with the following constraints ∀t ∈ T

W us
t � 0, W ds

t � 0, (4-13)

implies that Ŵt(pmt ) � 0,∀pmt ∈ RNw ,∀t ∈ T , since Ŵt(pmt ) is a conic combination of PSD
matrices. To the best of our knowledge, the parametrization of the network state as a conic
combination of PSD matrices is new, and it is one of the main contributions of this work.

In order to let parametrization (4-12) be a feasible and valid state of the network, we introduce
the following constraints for p̃m ∈ P,∀t ∈ T :

Ŵt(pmt ) ∈ W(pw,ft + pmt , s
D
t ). (4-14)

We will now examine the definition of reserve power (3-7) expressed in the new parametriza-
tion Ŵt(pmt ) ∀k ∈ G, ∀t ∈ T :

CGk rt = CGk pGt − CGk pG,ft

= Tr
(
Yk
(
Ŵ (pmt )−W f

t

))
= Tr

(
Yk
(

max(−1T
pmt , 0)W us

t + max(1T
pmt , 0)W ds

t

))
= −Tr(YkW us

t ) min(1T
pmt , 0) + Tr(YkW ds

t ) max(1T
pmt , 0), (4-15)

where we have used ∀α ∈ R,max(−α, 0) = −min(α, 0) and the linearity of the trace operator.
To see how the distribution of reserve power (4-15) is encoded in the parametrized state, we
show the distribution constraints as they are defined in opf-rs again:

CGk r = −CGk dus
t min

(
1T

pmt , 0
)
− CGk dds

t max
(
1T

pmt , 0
)
, (3-8)

where the left-hand side of (3-8) has been substituted for the reserve power of bus k using the
definition of reserve in opf-rs, (3-7). Comparing (4-15) to (3-8), one can see that the terms
Tr(YkW us

t ) and Tr(YkW ds
t ) are equivalent to CGk dus

t and −CGk dds
t respectively, i.e. they define

the distribution of the up- and downspinning reserve. In the opf-rs notation, the choice
of a network state for some wind trajectory p̃m is required to be within the set of feasible
states and has to satisfy (3-8) for every k ∈ G,∀t ∈ T . This restriction is incorporated in the
definition of the parametrized network state. Constraints (3-8) are therefore redundant for
the parametrized problem. To ensure that the reserve power will always be always the exact
opposite of the mismatch, the following set of constraints is introduced3 ∀t ∈ T :∑

k∈G
Tr
(
YkW

us
t

)
= 1,

∑
k∈G

Tr
(
YkW

ds
t

)
= −1, (4-16)
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which replace constraints (3-9). Summing (4-15) over all generators k ∈ G yields ∀p̃ ∈ P,∀t ∈
T :

∑
k∈G

CGk rt = −

=1︷ ︸︸ ︷∑
k∈G

Tr(YkW us
t ) min(1T

pmt , 0) +

=−1︷ ︸︸ ︷∑
k∈G

Tr(YkW ds
t ) max(1T

pmt , 0),

1T
rt = −min(1T

pmt , 0)−max(1T
pmt , 0),

= −1T
pmt ,

such that the total reserve power always negates the total mismatch. Note that for the
downspinning term, the absence of the minus in (4-15) is compensated in (4-16). Since Yk is
indefinite for all k ∈ G, this is possible.
After finding a solution to this program, the distribution vectors can be extracted from
W̃ us, W̃ ds through the following relation ∀k ∈ G, ∀t ∈ T :

CGk dus
t = Tr

(
YkW

us
t

)
, CGk dds

t = −Tr
(
YkW

ds
t

)
. (4-17)

Since the reserve distribution vectors d̃us, d̃ds are encoded in W̃ us, W̃ ds, they can be removed
from the decision variables, and extracted a-posteriori using (4-17). The set of decision
variables for this problem now reduces to: Ξp :=

{
W̃ f , W̃ us, W̃ ds, r̃us, r̃ds

}
, where the sub-

script p has been used to indicate that this is the parametrized formulation. We define the
parametrized optimal power flow with reserve scheduling (p-opf-rs) as the following program:

minimize
Ξp

∑
t∈T

fG(W f
t ,p

w,f
t ,pDt ) + fR(rus

t , r
ds
t )

subject to feasible forecast state (3-6b), (3-6d),
feasible generic parametrized state (4-13), (4-14),
reserve distribution constraints (4-16),
reserve requirements constraints (3-10a), (3-10b),

where rt is replaced with its new definition (4-15) in constraints (3-10a). Since we have
not splitted the uncertainty in the time steps, we still optimize with respect to the original
wind trajectories. Especially optimization problems that have intertemporal constraints (for
example ramping constraints) benefit from this.
It is important to realize that p-opf-rs is not equivalent to opf-rs. It is an approximation,
since an parametrization of the generic network state has been used. p-opf-rs is still an
uncertain program, but the PSD constraints are no longer on the uncertain generic network
state, but on the deterministic forecast network state and two deterministic coefficient matri-
ces. We can therefore apply the scenario approach directly to p-opf-rs, as discussed in the
following section.

3 In the optimization, the introduction of these equality constraints causes numerical issues in the solver
since it is too restrictive. Therefore, we implement these constraints by introducing slack variable u ∈ R2

+ and
rewriting each equality constraint f(a) = b to the form b−u1 ≤ f(x) ≤ b+u2. By adding 1

T
u to the objective

function, u is minimized, essentially pushing f(a) to equal b. After optimization, the optimized value of the
slack variables is checked and turns out to be sufficiently small.
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4-2-4 Scenario approach for parametrization and computational complexity

Since the PSD constraints are now on the coefficient matrices instead of the generic network
state, the scenario approach can be applied directly to p-opf-rs to obtain a problem that is
computationally tractable. We first formulate p-opf-rs as a CCP, similar to how opf-rs is
transformed to cc-opf-rs,

minimize
Ξp∈Xp

f(Ξp) (4-18a)

subject to P
[
p̃m ∈ P : gp(Ξp, p̃

m) ≤ 0
]
≥ 1− ε, (4-18b)

where gp are the uncertain constraint functions for p-opf-rs, i.e. constraints (4-14), (3-10a),
and all other constraints for p-opf-rs are used to construct Xp, the deterministic feasible set
for the parametrized problem. We can than apply the scenario approach to Problem (4-18).
The resulting problem is called the scenario parametrized OPF-RS (sp-opf-rs) problem, and
is given by:

minimize
Ξp

∑
t∈T

fG(W f
t ,p

w,f
t ,pDt ) + fR(rus

t , r
ds
t )

subject to W f
t ∈ W(pw,ft , sDt ), ∀t ∈ T ,

Ŵt(pmt ) ∈ W(pw,ft + pmt , s
D
t ) ∀p̃m ∈ S,∀t ∈ T ,∑

k∈G
Tr
(
YkW

us
t

)
= 1, ∀t ∈ T ,∑

k∈G
Tr
(
YkW

ds
t

)
= −1, ∀t ∈ T ,

− CGk rds
t ≤ Tr

(
Yk
(
Ŵ (pmt )−W f

t

))
≤ CGk rus

t , ∀p̃m ∈ S, ∀k ∈ G,∀t ∈ T ,

0 ≤ rus
t , 0 ≤ rds

t , ∀t ∈ T ,

W f
t � 0, W us

t � 0, W ds
t � 0, ∀t ∈ T .

Having defined sp-opf-rs, the computational complexity of the problem is examined. Instead
of T (Ns + 1) matrix variables, we have reduced the program to only 3T matrix variables, so
n = 6NbT . Note that for Nw > 1, this results in a reduction of the number of matrix variables
compared to the ve-opf-rs approach. By parametrizing, we have made n independent from
the number of scenarios. The number of constraints per scenario has decreased slightly,
since we have dropped the reserve distribution constraints (3-8) from the problem, so m =
(6Nb+2NG+NL+1)(Ns+1)T . Since the direct approach is used, the number of scenario Ns

is still in O(NGT ) The resulting computational complexity is again obtained by expanding
all terms and only keeping the highest order terms, and results in O

(
T 13/2N

9/2
b N4

G log(1/α)
)
,

which is of much lower order than the robust opf-rs for all scenarios in S.
The idea of parametrizing the scenario state in the uncertainty originates from [11]. Here,
the authors define the scenario state as an affine function of the uncertain wind power. The
authors justify their approach by the fact that the generators change their output in a lin-
ear fashion as a result of some mismatch, due to the AGR scheme. The scenario state is
parametrized in the mismatch as p̃m ∈ P, ∀t ∈ T :

Ŵt(pmt ) := At +
∑
k∈F

(
Cwk (pw,ft + pmt )

)
Bk,t,
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where At and Bt,k are coefficient matrices in S2Nb . The total problem using this parametriza-
tion requires (2 + Nw)T matrices, instead of T (Ns + 1). However, PSDness is still imposed
on the every instance of the parametrized Ŵt(pmt ), resulting in T (Ns + 1) PSD constraints.
The computationally costly operation of finding a search direction has to be carried out for
every PSD constraint. Therefore, the computational complexity of the program has not de-
creased. The authors have limited the freedom of selecting a feasible scenario state to an
affine function, but do not gain much in terms of tractability.

In our approach however, we apply a parametrization of the scenario state that is general-
izable through only 3T PSD constraints. We re-use the forecast state as the deterministic
component of the generic network state, whereas the authors of [11] let the deterministic
component be a new decision variable. Moreover, our parametrization discerns between a
power surplus and deficit, and thus between up- or downspinnning behaviour of the network.
Therefore, the coefficient matrices have physical meaning and implicitly encode the distribu-
tion of reserve power. The improvement in computational tractability comes at the prize of
more conservatism.

4-3 Conclusions

We have provided two different ways of approximating cc-opf-rs. A schematic overview
of the approximations is shown in Figure 4-3. The chance constraints from cc-opf-rs are
transformed to deterministic constraints using the scenario approach. This results in a for-
mulation of opf-rs for all samples in the multi-extraction S, as shown in Figure 4-3 (a). This
formulation is computationally intractable, due to the large number of PSD constraints. In
Figure 4-3 (b), the indirect scenario approach is shown. The same problem is formulated, but
now for the vertices of an approximation of the uncertainty set. Because the number of ver-
tices will be very small compared to the number of elements in S, this is a tractable problem.
In Figure 4-3 (c), the direct scenario approach with parametrization is shown. opf-rs is first
parametrized to p-opf-rs, and a problem for S is formulated, called sp-opf-rs. Since the
number of PSD constraints is fixed in p-opf-rs, this problem is also tractable.

P(a) opf-rs
S

P(b) Find H∗ Robust
opf-rs

S vert(H∗)

P(c) sp-opf-rs
S

Figure 4-3: Schematic overview of different scenario approaches: (a) direct scenario approach
for opf-rs (intractable), (b) ve-opf-rs (c) sp-opf-rs

Both ve-opf-rs and sp-opf-rs are approximations for cc-opf-rs, which both introduce
some conservatism. ve-opf-rs may overestimate the uncertainty by the approximation error
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in finding H?, whereas in the parametrization approach every sample of the uncertainty is
used directly. However, the conic parametrization of sp-opf-rs introduces conservatism
by limiting the choice of the network state to a conic combination of PSD matrices. The
performance and probabilistic properties of solution for both formulations will be compared
in Chapter 6.
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Chapter 5

Decomposition of OPF-RS Problems

The non-convex OPF problem has been convexified to an SDP. It is then extended to an
OPF-RS problem with uncertain WPG, and formulated as a CCP. We proposed two tractable
approximations for the CCP, using the scenario approach. The computational complexity of
the resulting problems ve-opf-rs and sp-opf-rs grows polynomial in the dimension of the
network.

Although the approximations presented in previous chapters are tractable for reasonably sized
systems, the dimension network state matrix is prohibitively large for real world applications,
as realistic networks typically have multiple hundreds or even thousands of buses. In this
chapter, two decomposition methods are discussed for power system optimization problems
with a large matrix variable. This can be seen as an extension to the tractable approximations
presented in Chapter 4, as with these techniques, day-ahead scheduling problems can be solved
for larger networks.

In Section 5-1, the decomposition of the PSD constraints is discussed. The sparsity pattern
of the data is used to decompose the computationally expensive PSD constraint on a large
matrix variable, and an algorithm for the a-posteriori completion of the solution is presented.

Instead of only decomposing the PSD constraint, it is also possible to spatially decompose
a power system optimization problem, using the concept of control areas. In Section 5-2,
a multi-area problem is created by decomposing a large centralized problem into multiple
sub-problems, which have overlapping constraints. An algorithmic approach is used to solve
the resulting sub-problems in a distributed setting, and the application of this approach to
OPF-RS problems is given. Finally, some concluding remarks are given in Section 5-3.

5-1 Sparsity decomposition for OPF-RS problems

In this section, we improve the tractability of OPF-RS problems for large networks by decom-
posing the computationally expensive PSD constraints on the state matrices with the use of
the chordal theorem. The chordal theorem is first introduced in Section 5-1-1, and its use for
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Clique Buses

1 1, 2, 5,
2 2, 3, 4
3 2, 4, 5
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Figure 5-1: Illustration of the maximal cliques of the IEEE 14-bus network. The solid lines are
actual lines of the power system, the dotted lines are added to make the network graph chordal.
All maximal cliques are shown as shaded polygons.

the decomposition of PSD matrices is explained. The application of this approach is given for
the SDP c-opf in Section 5-1-2. Due to the decomposition, the solution is a partially filled
matrix. We present an algorithm to complete the matrix using the properties of the state
matrix and compare its performance in Section 5-1-3.

5-1-1 The chordal theorem and matrix completion

SDPs are computationally complex due to the matrix variable, which is subject to a PSD
constraint. One can reduce the size of the computationally expensive PSD constraint by
selecting certain sub-matrices of the original matrix variable and only impose PSD-ness on
those matrices. The solution is a partially filled matrix, with only those entries filled that
correspond to at least one of the sub-matrices. All other entries are undetermined. Various
algorithms are available for matrix completion, the a-posteriori filling of the undetermined
entries. In [50], Grone et al. provide the chordal theorem, that guarantees the completed
matrix is PSD if and only if specific sub-matrices are PSD. To explain the chordal theorem,
two definitions are first introduced:

Definition 1. [51, §3.1] A graph is chordal if every cycle of length greater than three has a
chord (an edge between non-consecutive nodes in the cycle).

Definition 2. [51, §2.1] A clique is a subset of nodes that together form a complete graph, i.e.
the number of edges between any two nodes in a clique is equal to one. A clique is maximal
if it is not a subset of any other cliques in the graph.

Consider a symmetric PSD matrix X ∈ Sd+, and let G be a graph with nodes {1, · · · , d}.
The chordal theorem states that one can reconstruct X using only the entries of X that
correspond to the nodes in the maximal cliques of G, if and only if G is chordal. The chordal
theorem has originally been defined for Hermitian matrices, but since a symmetric matrix

O.A. ter Haar Master of Science Thesis



5-1 Sparsity decomposition for OPF-RS problems 41

is a Hermitian matrix with all its imaginary values equal to zero, i.e. S ⊂ H, the chordal
theorem also holds for symmetric matrices. The chordal theorem can thus be used to prove
the equivalence between the PSDness of a matrix and the PSDness of its sub-matrices, thereby
reducing the size of the PSD constraints and overall computational complexity. Based on this
idea, various solving methods for decomposing SDPs with sparse problem data have been
developed [51, 52].

5-1-2 Sparsity decomposition method applied to OPF problem

We now demonstrate how the chordal theorem can be used to decompose the PSD constraints
of the c-opf problem. Consider a graph G over all the buses of the power network. G has
an edge between node i and j if the (i, j)-th entry of at least one of the data-matrices
Yk, Y

∗
k , Ylm, Y

∗
lm,Mk is non-zero, such that the adjacency matrix of G is equal to the aggregate

sparsity pattern. Due to the definition of the nodal admittance matrix, the aggregate sparsity
pattern is identical to the network topology, and is usually very sparse. If G is not chordal,
its chordal extension can be found by adding edges until the resulting graph is chordal. Using
a greedy decomposition algorithm as proposed by Madani et al. in [16], we decompose G in
K subsets of vertices, corresponding to the maximal cliques of the (extended) chordal graph.
This decomposition algorithm has the advantage that it returns maximal cliques of a low
order, i.e. the number of buses in a maximal clique is low. In Figure 5-1, an illustration of
the IEEE 14-bus network with the resulting maximal cliques is shown.

Denote every maximal clique of G with Ck ⊂ N , and collect all cliques in C = {C1, · · · , CK}.
Every subset Ck induces a sub-matrix from the original matrix by selecting the columns and
rows corresponding to the buses in it. We now decompose the PSD constraints (3-5c) on the
matrix variable in c-opf ∀t ∈ T using the following constraints:

Wt(Ck, Ck) � 0, ∀Ck ∈ C

For every t ∈ T , the single PSD constraint on Wt is now transformed to K separate PSD
constraints on sub-matrices of Wt. We call the resulting formulation decomposed optimal
power flow, d-opf.

Proposition 2. The optimal objective value of d-opf is equivalent to the optimal objective
value of c-opf.

Proof. This is a direct result of [16, Theorem 1].

Using Proposition 2, the solution to a decomposed network has the same optimal objective
as the original problem. Therefore, the decomposition can be used to make very large SDPs
tractable, since the the dimension of the largest maximal clique depends only on network
topology. Let NC be the number of buses in the largest maximal clique, i.e. NC := maxk |Ck|.
It is shown that for realistic networks, NC is still of reasonable dimensions. For example,
the Polish test system has over 3000 buses, but can be decomposed in cliques such that
NC = 27 (see also [16] for a list of large power systems and their corresponding ‘treewidth’,
the cardinality of the largest maximal cliques minus one). d-opf has K matrix variables
of dimension NC at most, and the worst-case overall dimension of the matrix variable is
therefore KNCT . The number of constraints is unchanged, i.e. m = (6Nb +NL + 4NG + 1)T .
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If we substitute n and m in Equation (2-2), we find that the total complexity for d-opf
is in O

(
T 9/2K5/2N

5/2
C N2

b log(1/α)
)
. Comparing this complexity with the original program,

O
(
T 9/2N

9/2
b log(1/α)

)
, and considering that NC � Nb, one can clearly see the impact of

decomposition on the computational complexity.

The obtained solution from d-opf is a partially filled matrix, which is denoted by W ′. From
this matrix, we aim to reconstruct a PSD matrix which is an optimal solution for c-opf.
The reconstructed matrix has to be rank-one to be a valid solution to c-opf. Although
the chordal theorem proves the possibility of completing a PSD matrix, it does not provide
any guarantees on the rank of the completed result. We therefore provide a matrix recovery
algorithm such that the resulting solution is a rank-one PSD matrix.

5-1-3 Rank-one matrix completion algorithm

Inspired by the voltage vector recovery algorithm in [16], we propose a matrix recovery algo-
rithm which completes a partially filled state matrix to a rank-one PSD matrix. We modify
the voltage recovery algorithm for the rectangular voltage notation, and extract a complex
voltage vector from the partially filled solution. We then recover the full state matrix from
the complex voltage vector. Algorithm 1 summarizes our proposed recovery procedure.

Algorithm 1 Matrix completion for rectangular voltage notation
1: Given: partially filled state matrix W ′ ∈ S2Nb

2: Initialize: v ∈ CNb

3: for k ∈ N do
4: |vk| ←

√
W ′(k, k) +W ′(k +Nb, k +Nb)

5: end for
6: for (l,m) ∈ L do
7: ∠W ′lm := tan−1

(
W ′(l+Nb,m)−W ′(l,m+Nb)
W ′(l,m)+W ′(l+Nb,m+Nb)

)
8: end for
9: ∠v ← arg min

−π≤∠v≤π

∑
(l,m)∈L |∠W ′lm − ∠vl + ∠vm|

10: x←
[(
|v| cos∠v

)T
,
(
|v| sin∠v

)T
]T

11: Output: W ← xx
T

From W ′, we first extract a complex voltage vector v. The magnitude of the entries of v is
determined by summing the entries on the diagonal that correspond to the real and imaginary
part of the same bus, and taking the square root. After this, the angle difference between buses
is calculated based on the filled entries in W ′. Since the sparsity pattern coincides with the
network topology, the filled entries will correspond to the lines of the network, i.e. all entries
of W ′ used in Line 7 are filled. The convex program in Line 9 extracts the globally optimal
voltage vector such that corresponding angle differences are as close to those suggested by
the matrix W ′. The solution is used to build x, which is then used to form the completed
W . W is constructed from the outer product of a vector, and is therefore PSD and rank-one
by definition.
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The authors of [16] first use another completion algorithm based on the chordal theorem to
completeW ′ and extract the optimal voltage vector from this completed matrix. Recognizing
that the entries necessary for the latter extraction are already available in W ′, we skip the
matrix completion and extract a voltage vector from W̃ directly, and use this vector to
reconstruct a completely filled state matrix.

As a proof of concept, we solve c-opf and d-opf for one hour with the same fixed wind
trajectory. The first observation is that the objective functions evaluated at either the first
of second solution yield the same value, i.e. Proposition 2 holds. We complete the result of
the second optimization using Algorithm 1. The extracted voltage vectors are compared in
Figure 5-2. The two results are almost entirely identical, except some small differences in the
voltage angle. This can be attributed to the numerical error in solver.

1

1.02

1.04

1.06

V
o

lt
a

g
e

 m
a

g
n

it
u

d
e

Comparison of voltage profile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bus number

-0.1

-0.05

0

0.05

0.1

V
o

lt
a

g
e

 a
n

g
le full

decomposed

Figure 5-2: Comparison of obtained voltage profile from state matrix using a PSD constraint on
the full matrix (blue circles) and on sub-matrices only (red crosses).

Since every formulation is essentially a replication of the c-opf problem (only for more
different time-steps and wind realizations, see Chapters 3 and 4), the decomposition technique
can be applied to every formulation to decompose the PSD constraints. Note that the cliques
only need to be determined once a-priori, and can be used to decompose all PSD constraints.
The resulting problems will be called ‘decomposed’, such that dve-opf-rs and dsp-opf-
rs represent decomposed variants of ve-opf-rs and sp-opf-rs with every PSD constraint
decomposed based on the sparsity pattern, respectively.

5-2 Multi-area decomposition of OPF-RS problems

Rather than solving a single OPF-RS problem for an isolated power system, we now consider
multiple interconnected regions, called control areas. With the arrival of local energy produc-
tion and storage, for example through the higher penetration of residential solar power and
electric cars, the multi-area OPF problem has gained much relevance [53]. The collection of
all control areas and interconnections can be lumped together to form a large network, which
can be optimized centrally. However, there are several drawbacks to a centralized approach.
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44 Decomposition of OPF-RS Problems

The operation of the larger network is usually not carried out by a single TSO, but by multi-
ple TSOs, each responsible for the optimal and safe control of their local control area. Also,
the centralized approach has computational drawbacks. As we have seen in Section 2-3, the
worst-case computational complexity scales polynomially in the network size. It is therefore
hard to find an accurate solution in reasonable time for larger systems. In practice, this is
the main reason for the use of DC approximations to solve multi-area problems.

Several decomposition techniques are available for large semidefinite programs. We aim to
use these to decompose a centralized OPF-RS problem into several local problems, based
on the control areas. These local problems have to work together towards a solution for
the global problem. Distributed solving methods have already been applied to power systems
optimization, for example in [54], where an OPF problem is decomposed based on the sparsity
pattern of the data, and then solved in a distributed setting using the Alternating Direction
Method of Multipliers (ADMM). We use a similar approach, and formulate a decomposed
problem which is then optimized using the ADMM. We decompose the original problem based
on control areas, and not solely on the sparsity pattern of the data. This decomposition has
been applied for the SDR of power system problems in [55], but then for the state-estimation
problem instead of the OPF-RS problem.

In Section 5-2-1, we show how a network is decomposed into smaller interconnected systems,
and how a single time step OPF problem with multiple control areas can be formulated as a
general consensus problem. After this, the ADMM algorithm is used to solve this problem,
as is explained in Section 5-2-2. This approach is then extended to full horizon OPF-RS
problems in Section 5-2-3. Some concluding remarks are given in Section 5-3.

5-2-1 Formulating multi-area OPF problem

The decomposition of OPF problems in the local control areas is described in this section.
To keep the notation light, the decomposition is explained with the following problem:

minimize
W∈S2Nb

fG(W,pw,pD) (5-1a)

subject to W ∈ W(pw, sD), (5-1b)
W � 0, (5-1c)

where fG and W have been defined as described in Section 3-2-1. Note that Problem (5-1)
is an instance of c-opf with given wind trajectory and T = 1. The extension to reserve
scheduling problems with longer prediction horizons will be given in later sections.

First, we will describe the division of the network in sub-networks corresponding to the control
areas. After this, we will try to decompose Problem (5-1) in local problems, corresponding
to these control areas. The single PSD constraint needs to be decomposed as well, as will be
explained aftwerwards. We then obtain the decomposition of Problem (5-1) based on areas.

Dividing the network in control areas

Let the network be divided into several control areas, whose indices are collected in A :=
{1, . . . , Na}. Let Na ⊂ N be defined as the subset of buses corresponding to a control
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5-2 Multi-area decomposition of OPF-RS problems 45

area a ∈ A. Every bus belongs to exactly one control area, such that Na ∩ Nb = ∅ for all
a, b ∈ A, a 6= b, and

⋃
a∈ANa = N . Define Ba as the set of areas that are connected to area

a, such that ∀a ∈ A

Ba := {b ∈ A | ∃i ∈ Na, ∃j ∈ Nb, (i, j) ∈ L, } .

The lines that interconnect the areas are called tie-lines. These are collected ∀a ∈ A in tie-line
set Ta ⊂ L:

Ta := {(i, j) ∈ L | i ∈ Na, j 6∈ Na} .

Problem (5-1) cannot be decomposed, since the feasible set and all constraints are defined for
a single matrix variable W , which comprises the whole network. To decompose this variable
for the different areas, we need to expand the bus sets corresponding to the areas to include
the endpoints of the tie-lines connected to that area. The extended bus set N+

a is defined for
every a ∈ A as

N+
a := Na ∪ {j ∈ N | ∃i ∈ Na, (i, j) ∈ Ta} .

To clarify the above notations, an illustrative example for a multi-area 4-bus network is shown
in Figure 5-3a. There are two areas defined in this network, identified in A = {a, b}. Their
respective bus sets are given by Na = {1, 2} ,Nb = {3, 4}, shown by the shaded regions in the
figure. They are connected through a single tie-line (2, 3), so Ta = (2, 3), Tb = (3, 2). This
means that the extended areas are N+

a = {1, 2, 3} ,N+
b = {2, 3, 4}, shown with the dashed

lassos. The definition of neighbouring areas is then: Ba = {b} ,Bb = {a}.
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a b

(a) Layout of 4-bus network partitioned in two
areas, where dashed lassos indicate the extended
areas.

Wa

Wb
W

(b) Matrix variable and sub-matrices. The en-
tries that overlap ([Wa]ab = [Wb]ba) are half-
shaded

Figure 5-3: Simple example of a multi-area network: a 4-bus network with two areas

Decomposing matrix variable, objective and feasible set

We are now able to decompose W into sub-matrices corresponding to the extended areas.
We define the network state of area a (with all its tie-lines included) as Wa ∈ S2|N+

a |, which
is constructed by extracting a sub-matrix from W using only the rows and columns that
correspond to the buses in N+

a . For every neighbouring area b ∈ Ba, let the set Eab denote
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the intersection of the extended bus sets: Eab := N+
a ∩ N+

b . We then define [Wa]ab as the
sub-matrix extracted from Wa, with its rows and columns corresponding to the buses in Eab,
and likewise [Wb]ab the extraction from Wb that correspond to the same buses. Note that the
order of the subscript does not change the shared bus set between extended areas a and b,
and therefore [Wa]ab and [Wa]ba refer to the same extraction from Wa.

An illustration of the different sub-matrices for a 4-bus network is shown in Figure 5-3b. It
can be seen that the original state matrix is a 8× 8 matrix. The sub-matrices corresponding
to the areas are two 6× 6 matrices, shown by the magenta and green shaded and half-shaded
entries. The sub-matrices have overlap on 16 entries, which are half-shaded. These entries
correspond to the buses that are the endpoints of tie-lines (e.g. bus 2 and 3).

Following [55], the data-matrices for the constraints are converted in the same fashion as the
decision variables, i.e. by extracting the columns and rows corresponding to the buses in N+

a .
These partitions of the data-matrices are denoted with [·]a. We can now define the feasible
set for every sub-matrix, i.e. the local feasibility set denoted with Wa(pw, sD):

Wa(pw, sD) :=
{
Wa ∈ S2|N+

a |
∣∣∣

pGk ≤ Tr ([Yk]aWa) + pDk − Cwk pwk ≤ pGk , ∀k ∈ Na, ∀a ∈ A, (5-2a)

qGk ≤ Tr (([Y ∗k ]aWa) + qDk ≤ qGk , ∀k ∈ Na,∀a ∈ A, (5-2b)
|vk|2 ≤ Tr ([Mk]aWa) ≤ |vk|2, ∀k ∈ N+

a , ∀a ∈ A, (5-2c) −|slm|2 Tr ([Ylm]aWa) Tr ([Y ∗lm]aWa)
Tr ([Ylm]aWa) −1 0
Tr ([Y ∗lm]aWa) 0 −1

 � 0,
∀(l,m) ∈ (N+

a ×N+
a ) ∩ L,
∀a ∈ A,

(5-2d)

Tr ([Eref]aWa) = 0
}
. (5-2e)

Note that the power injection limits (5-2a) and (5-2b) are only enforced on the buses in the
control area itself, and not on the extended area. The injection limits cannot be enforced
on the neighbouring buses in {N+

a \ Na }, because power injection at a bus is defined as the
sum of all power flows over lines connected to a bus. The neighbouring buses have lines that
connect to buses in Na, the tie-line(s) in Ta, but they also have lines to buses in Nb. The
latter make it impossible to define the injected power in the neighbouring bus using the state
matrix of area a. From an areas perspective, there is no limit on the power injection at the
other end of a tie-line, allowing power to flow from and to the neighbouring areas. The line
flow limits (5-2d) are defined for the intersection of buses in the extended area and the set of
all lines, which is equivalent to the set of lines in an area including the tie-lines.

Consider the following local cost function faG(Wa,p
w,pD):

faG(Wa,p
w,pD) :=

∑
k∈Ga

clik
(

Tr ([Yk]aWa) + pDk − pwk
)

+ cquk

((
Tr ([Yk]aWa) + pDk − pwk

))2
,

where Ga := G∩Na is defined as the generator buses that are part of the control area a, exclud-
ing the neighbouring buses, to avoid double inclusion of generator at the endpoints of tie-lines
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in both local cost functions. The following problem is then equivalent to Problem (5-1):

minimize
{Wa}a∈A

∑
a∈A

faG(Wa,p
w,pD) (5-3a)

subject to Wa ∈ Wa(pw, sD), ∀a ∈ A, (5-3b)
[Wa]ab = [Wb]ba ∀a ∈ A,∀b ∈ Ba, (5-3c)
W � 0. (5-3d)

We have now defined Problem (5-1) as a set of |A| problems, each with a local objective
and feasible set. They are coupled through overlapping constraints (5-3c), to make sure that
the sub-matrices are consistent, and (5-3d), the PSD constraint. The only constraint that
still requires the full state matrix W is (5-3d). We will now explain how we decompose the
dependency on W to allow a distributed solving of the problem.

Decomposing PSD constraint

To decompose the centralized PSD constraint (5-3d), we make use of the chordal theorem
[50], as explained in Section 5-1. We consider a graph G over N , with its edges corresponding
to the set of extended buses for all areas {N+

a }, meaning every bus in N+
a is connected to all

other buses in N+
a with a single edge, for every area. This amounts to all the buses within

every subset N+
a forming a maximal clique. Proposition 1 from [55] then states that this

graph is chordal and all maximal cliques of G are captured by the subsets {N+
a }, under two

assumptions:

Assumption 2. The graph with the control areas as its nodes and the tie-lines between the
areas as its edges is a tree, i.e. an acyclic connected graph.

Assumption 3. Every area has at least one bus that does not have overlap, i.e. does not
have a tie-line connected to it.

Assumption 2 is the most restrictive assumption, since this prevents multi-area networks that
have cyclic interconnections between areas to be decomposed. However, distribution networks
are usually spread out geographically and mostly not very intertwined. The typical number
of tie-lines between networks tends to be very low. Assumption 3 will hold for almost every
real-world power system, as there tend to be much more buses than tie-lines in multi-area
systems.

If these two assumptions hold, the decomposition is valid, meaning that by restricting the
sub-matrices corresponding to the extended areas to be PSD, the original matrix is also PSD,
and can be completed from the local results using Algorithm 1. This enables one to split the
single PSD constraint (5-3d) on W into |A| smaller PSD constraints, and Problem (5-3) can
be formulated in terms of the separate sub-matrix for every area.

Multi-area OPF problem formulation

Furthermore, we decompose the equality constraints using auxiliary variables. Matrix W̄ab ∈
S2|Eab| is introduced for every pair of neighbouring areas a and b. For the sake of notational
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brevity, W̄ab and W̄ba are used interchangeably to represent the same matrix. Problem (5-3)
can now be rewritten as:

minimize
{Wa}a∈A,

{W̄ab}a∈A,b∈Ba

∑
a∈A

faG(Wa,p
w,pD) (5-4a)

subject to Wa ∈ Wa(pw, sD), ∀a ∈ A, (5-4b)
[Wa]ab = W̄ab ∀a ∈ A, ∀b ∈ Ba, (5-4c)
Wa � 0 ∀a ∈ A. (5-4d)

Problem (5-4) is now only coupled through the equality constraints (5-4c). Every sin-
gle coupling constraint [Wa]ab = [Wb]ba has been reformulated as two equality constraints
[Wa]ab = W̄ab and [Wb]ba = W̄ba = W̄ab. Following Proposition 2, the optimal objective
of the decomposed Problem (5-4) is equal to the optimal objective of the centralized Prob-
lem (5-3). Note that the decomposition is now based on the spatial lay-out of the power
system, rather than the sparsity in the data. In the latter, the smallest possible sub-matrices
are found, whereas the sub-matrices used in this decomposition correspond to the bus sets of
the extended control areas, and can be quite substantial.

5-2-2 Distributed solving of multi-area OPF problem with ADMM algorithm

Problem (5-4) is a general consensus problem. It has a set of local constraints and variables,
which are separable between the areas, and shared variables between two areas, the auxiliary
variables W̄ab,∀a ∈ A, b ∈ Ba. The local variables are related to the shared variables through
the coupling constraints (5-4c).

The global consensus problem has been studied extensively in literature (see for example [56]
for an extensive survey), because it arises in many different optimization problems, such as
sensor networks, model fitting, machine learning, etc. In [38], Boyd applies the Alternating
Direction Method of Multipliers (ADMM) to solve a consensus problem in a distributed
setting. It has been proven that ADMM for this type of problem converges linearly [57].
We follow a similar approach as used in [55] to solve the decomposed OPF problem in a
distributed manner.

The augmented Lagrangian function is used. This is the normal Lagrangian, with an extra
quadratic term. For Problem (5-4), the augmented Lagrangian is defined as follows:

L({Wa}, {W̄ab}, {Λab}) :=
∑
a∈A

(
faG(Wa,p

w,pD) + IWa(Wa)

+
∑
b∈Ba

(µ
2

∥∥∥[Wa]ab − W̄ab + Λab
µ

∥∥∥2

F
+ 1

2µ

∥∥∥Λab∥∥∥2

F

))

where IWa(Wa) : S2|N+
a | → {0,+∞} is the convex indicator function for constraints (5-4b) and (5-4d)

that maps to infinity if one of the constraints is violated, and to zero otherwise, and step
size µ is a fixed constant, and multipliers Λab ∈ S2|Eab| are introduced for every coupling
constraint. Note that unlike W̄ab and W̄ba, Λab and Λba cannot be used interchangeably,
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5-2 Multi-area decomposition of OPF-RS problems 49

since they correspond to different constraints. The indicator function makes sure all con-
straints (5-4b) and (5-4d) are satisfied and the squared norm forces constraint (5-4c) to be
satisfied.

The augmented Lagrangian is optimized using a Gauss-Siedel pass on the primal variables and
the auxiliary variables, after which the multipliers are updated [38]. Since either the primal
or the auxiliary variables are fixed in the Gauss-Siedel steps, the problem can be decomposed
for all the areas. The steps of the ADMM algorithm are now briefly described.

Update primal variables

The multipliers and auxiliary variables are fixed at the value of the previous iteration. Since
the minimization is only in Wa, all terms of Λab only drop out. This results in |A| separate
SDPs:

W (k+1)
a = arg min

Wa

faG(Wa,p
w,pD) + IWa(Wa)

+
∑
b∈Ba

(
µ

2

∥∥∥∥∥[Wa]ab − W̄
(k)
ab + Λ(k)

ab

µ

∥∥∥∥∥
2

F

)
∀a ∈ A (5-5)

Update auxiliary variables

The resulting sub-matrices {Wa} are used to update the auxiliary variables. The multipliers
again are fixed at their previous value. Note that to update the auxiliary variables, each
area only needs to communicate the part of its local state matrix that has overlap with its
neighbouring area. If the multipliers Λab are initialized with zero ∀a ∈ A,∀b ∈ Ba, the update
of the auxiliary variable simplifies to taking the average (see [38, §7.1]):

W̄
(k+1)
ab = 1

2
(
[W (k+1)

a ]ab + [W (k+1)
b ]ba

)
∀a ∈ A, ∀b ∈ Ba (5-6)

Update multipliers

For the multiplier update, no information needs to be exchanged, since the parts of the state
matrix of neighbouring areas have already been communicated in the update of the auxiliary
variables. The multipliers are updated as follows:

Λ(k+1)
ab = Λ(k)

ab + µ
(
[W (k+1)

a ]ab − W̄
(k+1)
ab

)
∀a ∈ A,∀b ∈ Ba

= Λ(k)
ab + µ

2
(
[W (k+1)

a ]ab − [W (k+1)
b ]ba

)
∀a ∈ A,∀b ∈ Ba (5-7)

Using this algorithm, it is possible to solve the multi-area OPF problem in a distributed
setting. If we assign a separate computing unit, ‘agent’, to each area, the communication
graph would be identical to the graph that has the areas as nodes and the tie-lines as edges.
To further illustrate the calculation and communication steps per agent, the ADMM algorithm
is given from the agents perspective in Algorithm 2.
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Algorithm 2 Multi-area OPF for agent a

1: Initialize: k = 0,Λ(0)
ab = 0, W̄ (0)

ab = 0 ∀b ∈ Ba
2: while not converged do
3: Update W (k+1)

a using (5-5)
4: Broadcast [W (k+1)

a ]ab to all b ∈ Ba
5: Receive [W (k+1)

b ]ba from all b ∈ Ba
6: Update W̄ (k+1)

ab using (5-6) for all b ∈ Ba
7: Update Λ(k+1)

ab using (5-7) for all b ∈ Ba
8: k = k + 1
9: end while

It can be seen that for each iteration, an agent needs to solve an SDP in Line 3. This
is the step in the algorithm that has the highest computational cost. After this, only the
parts of the local state matrix that have overlap with the neighbours are shared in Lines 4
and 5, using only simple operations (matrix addition, subtraction and scaling). The agents
are able to reach consensus by exchanging only the relevant part of the local state matrix
with neighbouring agents.

The convergence of the algorithm can be checked by looking at the residue sequence of the
ADMM algorithm:

η(k) =
∑
a∈A

∑
b∈Ba

‖[W (k)
a ]ab − W̄

(k)
ab ‖

2
F

If η is sufficiently small, all agents have reached consensus on the shared variables {W̄ab}.

The main advantage to decomposing large OPF-RS problems is the ability of every agent
to independently find local solutions based on information received in the previous iteration.
The calculations necessary for this step could therefore be carried out in parallel. Although an
actual parallel implementation is outside the scope of this thesis, it is important to mention
that the algorithms put forward by this result do allow such an implementation. Therefore,
this approach is regarded as distributed solving of a large OPF problem.

In a sequential implementation, a computationally expensive SDP is solved by every agent at
every iteration. Compared to the centralized problem, this SDP is considerably smaller, since
the number of buses in the local problems is lower. ADMM algorithms typically need a large
number of iterations to converge, so the local problems need to be solved many times before
finding a good enough solution. Therefore, the ADMM approach without parallelization
might not be the quickest method to solve an OPF-RS problem. However, when the global
problem is too big to be handled by a single computing agent, for example due to memory
limitations or computational constraints, the decomposition technique and ADMM algorithm
as described above can provide a good way to decentralize the optimization.

5-2-3 Extension to multi-area OPF-RS problems

The method presented in previous sections is now extended to include the full prediction
horizon, i.e. problems with T > 1. Every time step has its own corresponding state matrix,
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5-2 Multi-area decomposition of OPF-RS problems 51

for which the decomposition is identical to Problem (5-4). All local sub-matrices Wa,t are
required to be feasible ∀a ∈ A, ∀t ∈ T . All the coupling constraints with the corresponding
auxiliary variables and multipliers are also repeated T times, and Algorithm 2 can be used
to find the optimal local sub-matrix for all time steps.

It is now of interest to include uncertain wind power in the multi-area OPF Problem (5-4), i.e.
extend the deterministic OPF problem to an OPF-RS problem. We assume that the set of
wind trajectories (both forecast and scenarios) is available to all local agents. One can either
use the vertex enumeration or conic parametrization approach. For every matrix variable,
auxiliary variables and multipliers are needed, creating extra computational overhead. The
conic parametrization approach is preferred over the vertex enumeration approach, since the
number of matrix variables in this approach is fixed (three times the number of time steps),
whereas in the vertex enumeration approach the number of matrix variables depends on the
number of wind buses.

Let S be the multi-extraction set as defined in Section 4-2-1. One can decompose the
parametrized scenario state according to the same process as described in Section 5-2-1 to ob-
tain the following definition of the local parametrized scenario state ∀a ∈ A,∀p̃m ∈ S,∀t ∈ T :

Ŵa,t(pmt ) := W f
a,t + max(−1T

pmt , 0)W us
a,t + max(1T

pmt , 0)W ds
a,t,

whereW f
a,t,W

us
a,t,W

ds
a,t ∈ S2|N+

a | are defined as the sub-matrices fromW f
t ,W

us
t ,W

ds
t using only

the rows and columns corresponding to the buses in N+
a .

Define the following constraints to ensure that every forecast and parametrized scenario sub-
matrix is locally feasible and PSD ∀a ∈ A,∀t ∈ T

W f
a,t ∈ Wa(pw,ft , sDt ), (5-8a)

Ŵa,t(pmt ) ∈ Wa(pw,ft + pmt , s
D
t ), ∀p̃m ∈ S, (5-8b)

W f
a,t � 0, W us

a,t � 0, W ds
a,t � 0. (5-8c)

To have overlap between connected areas, coupling constraints are introduced for every sub-
matrix and ∀a ∈ A,∀t ∈ T

[W f
a,t]ab = W̄ f

ab,t, ∀b ∈ Ba, (5-9a)
[W us

a,t]ab = W̄ us
ab,t, ∀b ∈ Ba, (5-9b)

[W ds
a,t]ab = W̄ ds

ab,t, ∀b ∈ Ba, (5-9c)

where auxiliary variables W̄ f
ab,t, W̄ us

ab,t, W̄ ds
ab,t ∈ S2|Eab| are introduced for every other a ∈

A,∀b ∈ Ba, such that W̄ f
ab,t and W̄ f

ba,t refer to the same auxiliary variable, and likewise for
W̄ us
ab,t, W̄

ds
ab,t and W̄ us

ba,t, W̄
ds
ba,t. Using the local parametrization, we can define the local reserve

requirements constraints ∀a ∈ A,∀p̃m ∈ S,∀t ∈ T :

−CGk rds
t ≤ Tr

(
[Yk]a

(
Ŵa,t(pmt )−W f

a,t

))
≤ CGk rus

t , ∀k ∈ Ga, (5-10a)

0 ≤ rus
t , 0 ≤ rds

t . (5-10b)
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Note that these constraints are only defined for generators in the control area, i.e. ∀k ∈ Ga,
since the local network state does not have information about any other generators. Therefore,
the reserve costs per time-step are decomposed ∀a ∈ A:

faR(rus
t , r

ds
t ) :=

∑
k∈Ga

CGk cusCGk rus
t + cdsCGk rds

t ,

such that local reserve cost is simply the contribution of the local generators to the global
reserve cost, i.e.

∑
a∈A f

a
R(·) = fR(·). In every local area, there are only constraints on the

entries of r̃us and r̃ds that correspond to the local generators in Ga. These are also the only
entries that are included in the local objective. This means that every agent only makes a
decision on its own part of r̃us and r̃ds, and therefore a decomposition is unnecessary.

In sp-opf-rs, the mismatch is balanced through equality constraints (4-16). We now formu-
late (4-16) in terms of the local sub-matrices ∀t ∈ T :∑

a∈A

∑
k∈Ga

Tr
(
[Yk]aW us

a,t

)
= 1,

∑
a∈A

∑
k∈Ga

Tr
(
[Yk]aW ds

a,t

)
= −1.

These equality constraints cannot be decomposed for all areas. Therefore, we introduce
for every t ∈ T local reserve distribution vectors dus

a,t,d
ds
a,t ∈ RNG and auxiliary variables

d̄us
t , d̄

ds
t ∈ RNG such that the global equality constraints can be reformulated to the following

local constraints ∀a ∈ A,∀t ∈ T :

Tr
(
[Yk]aW us

a,t

)
= CGk dus

a,t, Tr
(
[Yk]aW ds

a,t

)
= CGk dds

a,t, ∀k ∈ Ga, (5-11a)

1T
dus
a,t = 1, 1T

dds
a,t = −1, (5-11b)

dus
a,t = d̄us

t , dds
a,t = d̄ds

t . (5-11c)

Constraints (5-11a) and (5-11b) can be decomposed for every area, whereas constraints (5-11c)
are consensus constraints, very similar to (5-9), and can thus be decomposed with the use of
a consensus algorithm.

Let Ξma :=
{
{W̃ f

a , W̃
us
a , W̃

ds
a }a∈A, r̃us, r̃ds, d̃us, d̃ds} be the set of decision variables and define

Θ :=
{
{ ˜̄W f

ab,
˜̄W us
ab ,

˜̄W ds
ab }a∈A,b∈Ba ,

˜̄dus, ˜̄dds} as the set of auxiliary variables for the multi area
scenario parametrized OPF-RS (masp-opf-rs) problem. We then have that optimal objective
of the following problem:

minimize
Ξma,Θ

∑
a∈A

∑
t∈T

faG
(
W f
a,t,p

w,f
t

)
+ faR(rus

t , r
ds
t )

subject to local network state constraints (5-8),
local reserve requirement constraints (5-10),
local reserve distribution constraints (5-11a), (5-11b),
overlapping constraints (5-9), (5-11c),

is equal to the optimal objective of sp-opf-rs, but this problem is separable in the areas for
all time steps.

We can now use the ADMM algorithm to solve masp-opf-rs. Multipliers Λfab,t,Λus
ab,t,Λds

ab ∈
S2|Eab| are introduced ∀a ∈ A, ∀b ∈ Ba,∀t ∈ T for the overlapping matrix constraints, and
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λus
a,t, λ

ds
a,t ∈ RNG are introduced ∀a ∈ A, ∀t ∈ T for the reserve distribution overlapping

constraints. All the multipliers are collected in Γ. The augmented Lagrangian of the problem
is then given by

L(Ξma,Θ,Γ) =
∑
a∈A

∑
t∈T

faG
(
W f
a,t,p

w,f
t

)
+ faR(rus

t , r
ds
t ) + IWa(W f

a,t,W
us
a,t,W

ds
a,t)

+ µ

2

∥∥∥dus
a,t − d̄us

t +
λus
a,t

µ

∥∥∥2

2
+ µ

2

∥∥∥dds
a,t − d̄ds

t +
λds
a,t

µ

∥∥∥2

2

+
∑
b∈Ba

µ

2

∥∥∥[W f
a,t]ab − W̄

f
ab,t +

Λfab,t
µ

∥∥∥2

F
+ µ

2

∥∥∥[W us
a,t]ab − W̄ us

ab,t +
Λus
ab,t

µ

∥∥∥2

F

+µ

2

∥∥∥[W ds
a,t]ab − W̄ ds

ab,t +
Λds
ab,t

µ

∥∥∥2

F
+ f(Γ)

where IWa(W f
a,t,W

us
a,t,W

ds
a,t) is the convex indicator function for all constraints except the

overlapping constraints, and f(Γ) indicates terms of Γ only, which drop out in the ADMM
algorithm and are omitted for the sake of brevity. The steps of the ADMM algorithm are
comparable with the steps described in Section 5-2-2, i.e. update primal, update auxiliary
and update multipliers. The equations used to update all variables are shown on the next
page.
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Ξ(k+1)
ma = arg min

Ξma

∑
a∈A

∑
t∈T

faG
(
W f
a,t,p

w,f
t

)
+ faR(rus

t , r
ds
t ) + IWa(W f

a,t,W
us
a,t,W

ds
a,t)

+ µ

2

∥∥∥dus
a,t − d̄

us,(k)
t +

λ
us,(k)
a,t

µ

∥∥∥2

2
+ µ

2

∥∥∥dds
a,t − d̄

ds,(k)
t +

λ
ds,(k)
a,t

µ

∥∥∥2

2

+
∑
b∈Ba

µ

2

∥∥∥[W f
a ]ab − W̄

f,(k)
ab + Λf,(k)

ab

µ

∥∥∥2

F

+ µ

2

∥∥∥[W us
a ]ab − W̄

us,(k)
ab + Λus,(k)

ab

µ

∥∥∥2

F

+ µ

2

∥∥∥[W ds
a ]ab − W̄

ds,(k)
ab + Λds,(k)

ab

µ

∥∥∥2

F
,

W̄
f,(k+1)
ab,t = 1

2
(
[W f,(k+1)

a,t ]ab + [W f,(k+1)
b,t ]ba

)
W̄

us,(k+1)
ab,t = 1

2
(
[W us,(k+1)

a,t ]ab + [W us,(k+1)
b,t ]ba

)
W̄

ds,(k+1)
ab,t = 1

2
(
[W ds,(k+1)

a,t ]ab + [W ds,(k+1)
b,t ]ba

)
d̄

us,(k+1)
t = 1

|A|
∑
a∈A

d
us,(k+1)
a,t

d̄
ds,(k+1)
t = 1

|A|
∑
a∈A

d
ds,(k+1)
a,t

Λf,(k+1)
ab,t = Λf,(k)

ab,t + µ
(
[W f,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
Λus,(k+1)
ab,t = Λus,(k)

ab,t + µ
(
[W us,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
Λds,(k+1)
ab,t = Λds,(k)

ab,t + µ
(
[W ds,(k+1)

a,t ]ab − W̄
f,(k+1)
ab,t

)
λ

us,(k+1)
a,t =λ

us,(k)
a,t + µ

(
d

us,(k+1)
a,t − d̄

us,(k+1)
t

)
λ

ds,(k+1)
a,t =λ

ds,(k)
a,t + µ

(
d

ds,(k+1)
a,t − d̄

us,(k+1)
t

)
In every iteration of this algorithm, multiple instances of sp-opf-rs with an adapted objective
are solved. Note that these instances are of lower dimension than the overall system matrix
for a centralized problem would be.

5-3 Conclusions

We have provided two ways to decompose OPF-RS type problems. First, the decomposition
of the computationally expensive PSD constraints is explained based on the chordal theo-
rem. Due to the sparsity in the data matrices, typical for power systems, the computational
complexity is greatly reduced. A matrix completion algorithm is proposed for the guaranteed
rank-one reconstruction of the matrix variable.
In the second approach, a decomposition method is given for multi-area systems. The matrix
variable and all corresponding constraints and objective function are partitioned according
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to the control areas, such that for every control area a separate problem is created which
is coupled only with auxiliary variables. Again, the PSD constraint is decomposed with the
help of the chordal theorem, but now based on the bus sets that correspond to an area rather
than the sparsity pattern. The ADMM algorithm is then used to solve the resulting general
consensus problem. Finally, the extension to full horizon problems with reserve scheduling is
made.

In the following chapter, the decomposition methods described in above are validated on a
realistic IEEE benchmark system and a discussion on the tractability of the resulting opti-
mization problems by means of computational time analysis is presented.
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Chapter 6

Simulation Study

In this chapter, we present the results of the simulation study for all proposed formulations.
The violation levels of the solutions are checked using power flow simulations. We first
introduce the simulation set up in Section 6-1. In Section 6-2, the solutions and violation levels
of ve-opf-rs and sp-opf-rs are compared to the DC benchmarks. The equivalence between
these problems and the sparsity decomposed variants is shown in Section 6-3. In Section 6-4
the spatial decomposition technique for multi-area systems is demonstrated. Finally, some
concluding remarks are given in Section 6-5.

6-1 Simulation set up

The simulation set up is discussed in this section. In Section 6-1-1, the modelling for the
uncertain wind power and power system model is discussed. Next, we explain the optimization
and solution extraction process in Section 6-1-2. The obtained solutions are then used in
Power Flow (PF) simulations, which is discussed in Section 6-1-3. The Direct Current (DC)
model is used to obtain a benchmark approach, and its implementation is briefly discussed in
Section 6-1-4.

6-1-1 Modelling wind power and power system

We model the wind power as a deterministic component (the forecast) with an additive
uncertainty (the mismatch). We use a Markov chain-based model that produces trajectories
of the mismatch, with the temporal correlation taken into account, following [58]. The model
is trained on a data-set corresponding to the hourly aggregated wind power production (actual
and forecast) of Germany over the period 2006-2011. The mismatch is discretized in 41 states,
and the probability of transitioning from a given state to any other state is calculated. The
model is initialized with the forecast and can be run to generate samples of the uncertainty
that have a similar probabilistic distribution as the actual wind power. The advantage of this
approach is that the modelling of the uncertainty is based purely on data, and no assumptions
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are made on the probabilistic properties of the wind power. In Figure 6-1, a full day of wind
power is shown. The thick red line shows the forecast wind power, and all thin green lines
are samples of wind trajectories. See also [59, §2.5] for an overview of the wind model used
and its properties. Note that all our results on stochastic optimization are independent of the
method used to obtain trajectories of the mismatch.

Figure 6-1: Load, wind forecast, and wind scenario trajectories as used in optimization.

Our methodology is applied to the 30-bus IEEE test case, a benchmark network commonly
used in literature; its data can be retrieved from [60]. A schematic overview of the network is
shown in Figure 6-2. We model the wind as a single in-feed of wind power at bus 10, because
the wind model that has a single output. If we were to use multiple wind buses, we need to
have a model that takes the joint probability into account. All proposed formulations are also
valid for systems with multiple wind buses.
The load profile is assumed to be known in advance. The nominal load of each bus is multiplied
with the load profile such that a time-varying load is available for every bus. The total load is
shown as the blue line in Figure 6-1. Due to the high penetration of the wind power, congestion
in the network is more likely, since an extra power source is introduced. We therefore increase
the apparent power flow limits |s| for all lines with 5%, to allow more deviations. This is
justified by the fact that the IEEE test cases are quite old (specifically, the 30 bus test system
is based on data from 1974), and most modern networks have been upgraded to handle
more deviations due to the increased uncertainty from renewable energy sources. The reserve
costs ∀k ∈ G are derived from the test case as CGk cus = (CGk cqupk

2 + CGk clipk)/pk, and the
downspinning costs are defined as cds = 0.9cus. All costs are shown in Table 6-1.

Table 6-1: Cost coefficients used in optimization

Generator cli cqu cus cds

22 3 0.0625 6.125 5.513
1 3 0.02 4.6 4.14
2 3 0.0175 4.4 3.96
13 3 0.025 4 3.6
23 3 0.025 3.75 3.375
27 3 0.0083 3.4587 3.113
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Figure 6-2: Schematic overview of the IEEE 30 bus test system. Circles indicate load buses,
triangles generator buses and the star is the wind power in-feed. The size of each symbol corre-
sponds to the respective demand or production capacity. The width of the lines corresponds to
the line rating, such that a thick line corresponds to a high rating

6-1-2 Running optimization and extracting solutions

Having the network and wind model in place, we can run the optimization using the for-
mulations as explained in the previous chapters. First, a set of scenarios is generated. To
determine the number of samples needed for the scenarios, Equation (2-3) is used. Since the
relation between Ns and β is inverse logarithmic (see Section 2-4-3), it is possible to select a
high confidence level without impacting the sample complexity very much. We use ε = 0.05
and β = 10−5, corresponding to a 99.999% confidence on a maximum level of constraint vi-
olation of 5%. We implement all the algorithms using the MATLAB toolbox YALMIP [61]
with the MOSEK [62] solver for SDPs, and the GUROBI [63] solver for linear programs. All
simulations are run on a MacBook Pro Retina 13’ with a 2,4 GHz Intel Core i5 processor and
8 GB of RAM.
In order to simulate the network to test the probabilistic properties of the obtained solution,
we extract the generator settings, voltage magnitudes and reserve distribution vectors from
the decision variables. The generator voltage magnitudes are related to the diagonal entries
of W̃ f , using the following relation ∀k ∈ G, ∀t ∈ T :

|vk,t| =
√

Re (vk)2 + Im (vk)2 =
√
W f
t (k, k) +W f

t (Nb + k,Nb + k). (6-1a)

Using Remark 3.1, the optimal generator dispatch and voltage magnitude are extracted from
W̃ f , such that we have ∀k ∈ G, ∀t ∈ T :

pGk,t = Tr
(
YkW

f
t

)
+ pDk,t − pwk,t. (6-1b)

The reserve power is defined as ∀k ∈ G,∀t ∈ T

CGk rt = −CGk dus
t min

(
1T

pmt , 0
)
− CGk dds

t max
(
1T

pmt , 0
)
, (6-2)
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where d̃us, d̃ds are obtained either from the optimal solution directly in the case of ve-opf-rs
or extracted from the coefficient matrices using Equation (4-17) in the case of pc-opf-rs.
The resulting reserve power is then implemented in the simulations ∀k ∈ G, ∀t ∈ T as

pGk,t = max(min(pG,fk,t + CGk rt, pGk ), pGk ),

such that the generator dispatch is always within the limits. For the sparsity decomposed
programs dve-opf-rs and dsp-opf-rs, Algorithm 1 is first used to complete the state and
coefficient matrices.

6-1-3 Testing solutions with power flow simulation

After retrieving a solution, the network is simulated using MATPOWER [64], commercial
software for solving (optimal) power flow problems using successive quadratic programming.
In the PF problem, the generator dispatch and loads are fixed. The resulting power flows
over the network are then calculated without taking any other limits into account.
We generate a set of 104 scenarios, different from those used in optimization but using the
same wind model. These scenarios will be used in Monte Carlo (MC) simulations.
The PF problem is simulated for the forecast case with the nominal generator dispatch, and
for every scenario with the nominal generator dispatch plus the reserve power. The wind
power is implemented as a negative load on the wind-bus. After simulating the network, the
resulting power flows and voltage magnitudes are evaluated. All other quantities (i.e. the
generator dispatch and loads) are fixed in the power flow simulations, and therefore it is only
necessary to check the lineflows and voltage magnitudes. The percentage of scenarios which
violate the constraints is an empiric measure for the probability of constraint violation for a
generic sample p̃ ∈ P. A schematic overview of the optimization and simulation process for
all proposed formulations is given in Figure 6-4.

6-1-4 Benchmarking with direct current model

A comparison using a DC model of the power network is delivered as a benchmark approach,
following [10]. A detailed description of the DC model can be obtained from [4, 5] and is also
described in Appendix A.
The solution of the DC benchmark program is the real generator power and distribution
vectors for every hour, {p̃G,dc, d̃us,dc, d̃ds,dc}. One also needs the generator voltage magnitudes
in order to run the power flow simulations. In [10], the nominal voltage magnitude (1 p.u.)
was used for all time steps and scenarios. This most likely results in larger violations, since
the reactive power flows are not taken into account, and the voltage magnitudes are assumed
constant at 1 p.u. when using the DC model.
We here develop a novel benchmark approach, namely converted DC (CDC), to have a more
sophisticated comparison by solving the following program:

minimize
W̃

∑
t∈T

∑
k∈G

(
pG,dck,t −

(
Tr (YkWt) + pDk,t − p

w,f
k,t

))2
(6-3a)

subject to Wt ∈ W(pw,ft , sDt ), ∀t ∈ T , (6-3b)
Wt � 0, ∀t ∈ T . (6-3c)
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The solution to this program is a trajectory of feasible (AC) network states W̃ , such that the
generator dispatch is as close as possible to p̃G,dc. The distribution vectors used in simulation
will be equal to those obtained from the solution of the DC framework. A schematic overview
of the optimization and simulation process to obtain and validate both the benchmark and
proposed formulations is given in Figure 6-3.

VE

Solve

VE

Solve

p̃G d̃us, d̃ds

Solve (6-3)

Eq. (6-1)

W̃ f

Simulation

Nominal
values

|ṽ| p̃G, |ṽ|

d̃us, d̃ds, p̃G

Simulation

DC benchmark CDC benchmark

Generate wind samples

Simulation

Solve OPF-RS problem in DC formulation

Figure 6-3: ]
Schematic overview of optimization and simulation process for the DC (left) and converted

DC (right) benchmark approach
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Figure 6-4: Schematic overview of optimization and simulation processes for the proposed ap-
proaches. In both figures, the proposed optimization is shown on the left, and the decomposed
variant on the right.

6-2 Results for tractable approximations of cc-opf-rs

In this section, the simulation results for all tractable approximations of cc-opf-rs are
discussed, i.e. ve-opf-rs and sp-opf-rs. In Section 6-2-1, the optimization results are
shown, and the optimization times and the different objectives are given. After this, the
optimal generator dispatch and distribution vectors for the different problems are compared
in Section 6-2-2. Finally, the solutions are simulated to test their probabilistic properties.
These results are shown in Section 6-2-3.

6-2-1 Optimization results for tractable approximations

ve-opf-rs and sp-opf-rs are solved using for the set-up described in Section 6-1. In all cases,
the solver finds a feasible solution and exits without errors. We repeated the optimization
with the same wind trajectories 10 times, and averaged the optimization time as an indication
of the computational effort required for a solution. The resulting average optimization times
and optimal objectives for the different formulations are shown in Table 6-2.

It can be seen that ve-opf-rs has a slightly better performance in terms of the objective
function. The optimal objective of sp-opf-rs is about 3% higher than the optimal objective
of ve-opf-rs. Moreover, ve-opf-rs finds a solution in a shorter amount of time. Since we
only use one wind bus (Nw = 1), the number of semidefinite matrix variables is identical
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Table 6-2: Optimization times and optimal objectives for the 30-bus test case

f(Θopt) Average opt. time (s)

ve-opf-rs 151.78 417.63
sp-opf-rs 156.73 457.71

for both formulations ((2Nw + 1)T = 3T ). The increased overhead of having more scenarios
makes sp-opf-rs computationally more expensive, but this will diminish when more wind
buses are used.

To demonstrate the computational advantage of sp-opf-rs, we optimize the same network,
but now with multiple wind buses. We again repeat the experiment 10 times to obtain the
average optimization times shown in Figure 6-5. Based on the worst-case computational com-
plexity analysis, one expects the actual computational complexity of ve-opf-rs to increase
with the number of wind buses, whereas one expects the actual complexity of sp-opf-rs to
stay roughly the same. We consider the average optimization times as an indication of the
actual computational complexity of the problem. One can clearly observe in Figure 6-5 that
the optimization time for ve-opf-rs indeed grows with the number of buses, and that the
time required for sp-opf-rs is almost flat.

Note that the solutions obtained from this experiment have no guarantees, since the wind
model used does not provide joint probabilities for multiple wind buses. This experiment is
merely an illustration of the favourable computational cost of the sp-opf-rs formulation for
systems with multiple wind buses.
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Figure 6-5: Average computational time for ve-opf-rs and sp-opf-rs systems with multiple
wind buses. The optimization time for ve-opf-rs increases with the number of wind buses, but
stays almost flat for sp-opf-rs.

Having obtained the optimal solutions for all the formulations, one can inspect the optimal
generator dispatch and distribution vectors, as is presented in the following section.
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6-2-2 Comparing generator dispatch and reserve distribution

After running the optimization, one obtains an optimal trajectory of feasible network states
W̃ f . Using Equation (6-1a), the generator dispatch p̃G is extracted from this trajectory. The
resulting dispatch per time step is shown in Figure 6-6. The total height of each bar is equal
to the total produced power. Each partition of the bar corresponds to the output of one
generator, and the lowest part is the forecast wind power, indicated with ‘w’. The order of
the generators corresponds to the relative production costs, e.g. the generator at bus 27 has
the lowest cost and the generator at bus 22 the highest.

For ve-opf-rs (Figure 6-6a), it can be seen that generator 27, which has the lowest production
costs, is used to mitigate any variance in the forecast wind power. The output of the more
expensive generators is decreased in the hours with less demand (3 to 7). In the peak hours
(12 to 14), generator 23 is used to satisfy the extra load, while all other generators are more
or less constant. The generator dispatch for sp-opf-rs (Figure 6-6b)) is slightly different.
There is less distinction between the dispatch for low and peak hours.

The shaded area behind the bars corresponds to the total demand per time step. The pro-
duction exceeds the demand for every hour, for both formulations. This is expected, since
any solution for which the load is not satisfied is infeasible, and all formulations yielded fea-
sible solutions. The overproduction is due to the fact that load satisfaction is not enforced
as an equality constraint, but rather as a lower bound on the power production, which is
then pushed down by the objective. The amount of overproduction is below 2 MW for both
formulation for every time step, which is deemed acceptable.

Next, the optimal distribution vectors d̃us, d̃ds for both formulations are compared. These time
varying vectors are shown as shaded squares in Figure 6-7, where a darker shade corresponds
to more participation in the up- or downspinning reserve for a given generator and hour.
Again, the order of the generators corresponds to the reserve cost vectors, such that the
highest reserve cost corresponds to the first row and the lowest reserve cost to the last row.

For the reserve distribution of the ve-opf-rs formulation (Figure 6-7a), all the upspinning
reserve comes from generator 27 for all hours, which has the lowest cost. The downspinning
reserve is distributed over 27 and 23 for certain hours, and only 27 for the other hours. To
understand this behaviour, it is insightful to look at the generator dispatch in combination
with the reserve power. In Figure 6-8, the relative production for every generator is shown,
i.e. the actual production divided by the capacity of that generator. The width of the bars
corresponds to the total capacity, i.e. a wide bar is a generator with a large capacity and a
narrow bar is a generator with a small capacity. The generator dispatch is shown as the grey
bars, and the up- and downspinning reserves are shown as green and red arrows, respectively.
The reserve is calculated with Equation (6-2), using the worst case positive and negative
mismatches from the wind samples used in optimization.

We now examine the generator output for t = 5 where demand is low, and for t = 11,
one of the peak hours. At time step 5 (Figure 6-8a), all upspinning reserve is provided by
generator 27. It is however impossible for generator 27 to also provide all the downspinning
reserve, as the dispatched output of that generator is lower than the required downspinning
reserve. Therefore, a part of the downspinning reserve is distributed to the generator at
bus 23. This is a clear example why having asymmetric reserve distribution, i.e. a separate
up- and downspinning strategy, can improve performance: if a single reserve distribution
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(a)

(b)

Figure 6-6: Generator dispatch per hour for different formulations for the 30-bus test case. The
grey shaded area corresponds to the total demand per hour. The numbers correspond to the
generator buses, and the lowest part of each bar (green) indicates the wind power per hour.
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(a)

(b)

Figure 6-7: Up- and downspinning reserve distribution vectors per generator and hour for different
formulations for the 30-bus test case. Darker cells correspond to higher contribution to the reserve
power. The generators are ordered from high to low reserve costs.
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vector were used, the upspinning reserve would have to be distributed in the same way as
the downspinning reserve, causing generator 23 to provide upspinning reserve as well, which
would have resulted in higher reserve costs. Comparing this situation with time step 11
(Figure 6-8b), it is clear to see that due to the higher demand, the output of all generators,
including generator 27, has increased. Due to this increase, generator 27 is now able to satisfy
not only the upspinning, but also the downspinning reserve requirements.

(a) (b)

Figure 6-8: Generator dispatch and reserve power for ve-opf-rs at different time steps for
the 30-bus test case. The width and height of the bars corresponds to the capacity and relative
production of a generator, respectively. The upward green arrow indicates upspinning reserve,
the downward red arrow indicates downspinning reserve. At t = 5, the downspinning reserve is
distributed over two generators.

Next, we examine the reserve distribution for sp-opf-rs, shown in Figure 6-7b. The reserve
is spread out more evenly, using the four generators with the lowest cost for upspinning and
three generators with the lowest cost for downspinning. For the upspinning, the distribution
along the four generators is very equal and constant throughout the entire prediction horizon.
The downspinning reserve is distributed on the three generators with the lowest cost, with
generator 27 providing the majority of the reserve for all hours. Inspecting the same time
steps in Figure 6-9, one can see how the reserve is distributed for the low and peak time steps.
At both hours, the reserve distribution is very similar. At t = 5, not a single generator is
fully used, and at t = 11 generator 13 is used fully when the maximum upspinning reserve is
provided.

In ve-opf-rs, the scenario state can be chosen freely, as long as the network is in balance.
In the sp-opf-rs formulation on the other hand, the scenario state is defined as a conic
combination of coefficient matrices. Clearly, the latter does not allow for the strict use of
only one generator, but requires multiple generators to be used. This is also the reason why
the optimal objective for ve-opf-rs is slightly below the optimal objective for sp-opf-rs. We
will now implement both solutions in power flow simulations and check whether the resulting
violation levels, to see if the probabilistic guarantees hold.
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(a) (b)

Figure 6-9: Generator dispatch and reserve power for sp-opf-rs at different time steps for the
30-bus test case. The width of the bars corresponds to the capacity of a generator. The upward
green arrow indicates upspinning reserve, the downward red arrow indicates downspinning reserve.
For both time steps, the reserve is distributed over the multiple generators.

6-2-3 Violation levels based on power flow simulations

The probability of constraint violation for the obtained generator dispatches and reserve
distributions for both formulations is examined with the use of Monte-Carlo simulations as
described in Section 6-1-3. We simulate the network using the two solutions described in the
previous section. To benchmark the probabilistic properties, the results are compared with
the DC and CDC benchmark solutions.

The relative line loadings for all hours and samples are shown as box plots per line in Figure 6-
10 for the (C)DC benchmarks, and ve-opf-rs and sp-opf-rs. The relative line loading is
defined as the apparent power flow over a line divided by the line rating ∀(l,m) ∈ L

|srel
lm| :=

|slm|
|slm|

,

such that a loading higher than 100% corresponds to a violation of the lineflow limit. The DC
benchmark (Figure 6-10a) result shows the biggest violations, followed by the CDC benchmark
(Figure 6-10b). For both the benchmark results, line 10, 30, 31, and 35 are overloaded in a
large share of all the line loadings. The ve-opf-rs solution shows much less violation, as only
line 10 is slightly overloaded, whereas the sp-opf-rs solution show almost no violations for
all hours and scenarios. It appears that the distribution of the reserve power over multiple
generators caused the power flows to be better divided over all the lines, resulting in less
congestion.

The number of violating1 network states is counted for each hour, and divided by the total
number of samples. The resulting fraction is an empiric measure of the probability on con-
straint violation per hour. In Figure 6-11 the results are shown. As expected, the benchmark

1A network state is violating if at least one of the line limits is not satisfied.
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Figure 6-10: Relative line loading for all hours and scenarios per line for the 30-bus test case.
The red line represents the median value, edges of each box correspond to the 25th and 75th
percentiles, the whiskers extend to 99% coverage, and the red marks denote the data outliers.
The green dashed line indicates the limit. The upper plots (a) and (b) show the DC benchmark
results, and the lower plots (c) and (d) show the proposed approaches.
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solutions show a very high level of violation during the peak hours. Although the CDC solu-
tion reduces the chance of lineflow limit violation, the theoretical limit is exceeded for every
t ≥ 8. This can be explained by the fact that in the DC framework, the bus voltages are
assumed to be constant at nominal value and all reactive power flows are neglected. There-
fore, the empirical chance of constraint violation is well above the theoretical limits once the
benchmark solutions are implemented in the AC power flow simulations.

The empirical chance of constraint violation for the ve-opf-rs results is well below the
theoretical limit, at most 1.01% at t = 13. The line limit violations for sp-opf-rs are
omitted in Figure 6-11, since the violations are too small to be visible (at most 0.05% at
t = 13).
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Figure 6-11: Empirical violation level of lineflow limit for different formulations for the 30-bus
test case.

Next we examine the relative voltage magnitudes per bus for all hours and all samples in
Figure 6-12). The relative voltage magnitudes are defined very similar to the line loadings
∀k ∈ N ,

|vrel
k | :=

|vk| − |vk|
|vk| − |vk|

,

such that a relative voltage magnitude below 0% corresponds to a bus voltage which is below
the lower limit, and a relative voltage magnitude greater than 100% indicates a violation of
the upper limit. There is no violation of the voltage magnitude limits for any of the results,
for all time steps and scenarios. The voltage magnitudes for the parametrization approach
are lower compared to the other results.

Both ve-opf-rs and sp-opf-rs are now empirically proven to be feasible solutions for cc-
opf-rs. ve-opf-rs is the most optimal, because there is more freedom, while sp-opf-rs is
very conservative. Both DC and CDC are infeasible for cc-opf-rs. We will now continue to
discuss the results for the sparsity decompositions, to reduce the computational complexity.
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Figure 6-12: Relative bus voltages for all hours and scenarios per line for the 30-bus test case.
The red line represents the median value, edges of each box correspond to the 25th and 75th
percentiles, the whiskers extend to 99% coverage, and the red marks denote the data outliers. The
green dashed lines indicate the limits. The upper plots (a) and (b) show the (C)DC benchmark
results, and the lower plots (c) and (d) show the proposed approaches.
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6-3 Results for sparsity decomposition method

The results for the proposed formulation with the sparsity decomposition are presented. The
optimal objectives and optimization times are presented in Section 6-3-1. After this, the
optimal solutions are shown and the violation levels are checked using power flow simulations
in Section 6-3-2.

6-3-1 Optimal solutions for the sparsity decomposed formulations

The greedy tree decomposition algorithm proposed in [16] and implemented in [65] is used to
decompose the network in cliques. Every PSD constraint from ve-opf-rs and sp-opf-rs is
decomposed according to these cliques, resulting in dve-opf-rs and dsp-opf-rs, respectively.
The solution is obtained from these programs, and Algorithm 1 is used to complete the
partially filled state matrices, after which Equation (6-1a) yields the generator dispatch and
distribution vectors.

The optimization is run 10 times for both dve-opf-rs and dsp-opf-rs, and the optimal
objective and average optimization times are shown in Table 6-3 along with the original
values from Table 6-2. Note that the optimal objective of the decomposed programs is equal
to the optimal objective of the original programs, and thus Proposition 2 holds. Furthermore,
there is a large decrease in optimization times, resulting in a speed-up of approximately 14
times for both formulations. The advantages in terms of computational cost for the sparsity
decomposition are evident in this case. Note that since the 30 bus network is still relatively
small, even bigger speed-ups are possible when larger networks are optimized.

Table 6-3: Optimization times and optimal objectives for the (decomposed) 30-bus test case

f(Θopt) Average opt. time (s)

ve-opf-rs 151.78 417.63
dve-opf-rs 151.78 30.0 (13,92× faster)
sp-opf-rs 156.73 457.71
dsp-opf-rs 156.73 31.2 (14,67× faster)

The generator dispatches and distribution vectors are shown in Figure 6-13 and Figure 6-14.
Comparing these figures with Figure 6-6 and Figure 6-7, it can be seen that the solutions from
the decomposed programs are almost identical to the solutions of the original programs, and
we refer the reader to Section 6-2-2 for a general discussion and comparison of these solutions.

Next, the empirical violation levels of the decomposed programs are compared with the vio-
lation levels of the original programs. Due to the similarity of the decomposed and original
solutions, we expect to find very similar violation levels.

6-3-2 Violation levels for sparsity decomposed formulations

The obtained solutions are again implemented in power flow simulations using the same set
of 10000 wind trajectories as used in Section 6-1-3. The resulting power flows and voltage
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(a)

(b)

Figure 6-13: Generator dispatch per hour for different sparsity decomposed formulations for the
30-bus test case. The grey shaded area corresponds to the total demand per hour. The numbers
correspond to the generator buses, and the lowest part of each bar (green) indicates the wind
power per hour.
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(a)

(b)

Figure 6-14: Graphical display of up- and downspinning reserve distribution vectors per generator
and hour for different formulations for the 30-bus test case. Darker cells correspond to higher
contribution to the reserve power.
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magnitudes are checked for violations. We now compare the decomposed results with the
original results of the proposed formulations, and leave out the DC benchmark, since both DC
benchmark approaches resulted in solutions with excessive violation levels, and are therefore
invalid.
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Figure 6-15: Empirical violation level of lineflow limit for different formulations for the 30-bus
test case

As can be seen in Figure 6-15, the probability of line flow constraint violations is very sim-
ilar for ve-opf-rs and dve-opf-rs. sp-opf-rs and dsp-opf-rs are omitted in this figure,
since their maximum violations levels are at 0.05% and 0.02%, respectively. The probabil-
ity of voltage magnitude constraint violations is zero for all formulations at all hours and
scenarios. We can therefore conclude that the sparsity decomposition of PSD constraints is
a valid way to reduce computational complexity, without affecting the a-priori probabilistic
guarantees. The sparsity decomposed programs dve-opf-rs and dsp-opf-rs are therefore
valid approximations for cc-opf-rs.

6-4 Simulation results for multi-area networks

In this section, the results for multi-areas are given. First, the decomposed network is shown
and the selection of the step size is discussed in Section 6-4-2. After this, the resulting
solutions are shown and the violation levels are examined in Section 6-4-3.

6-4-1 Decomposition set-up

To create a realistic multi-area network, we use two identical IEEE 14-bus networks. We
connect a tie-line between bus 5 of the first network and bus 10 of the second network,
resulting in a 28-bus network with two areas. The multi-area decomposition framework as
described in Section 5-2-1 is used. The extended areas are obtained by adding the endpoints
of the tie-lines to the areas, such that the buses are grouped in two overlapping sets, as shown
in Figure 6-16.

This decomposition is used to formulate a masp-opf-rs problem. Two agents are initialized
and the ADMM algorithm is used to coordinate the local estimates towards convergence.
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Figure 6-16: Schematic overview of the decomposed 28-bus test system. The different colors
of the buses indicate the different control areas of the network, and the shaded lassos are the
extended control areas.

After each iteration, the residual is checked. If the residual is sufficiently small, the algorithm
is stopped and the current iterates are used as the solution. Before this algorithm can be
implemented, a step size µ has to be defined. In the following, the selection of this step size
is explained.

6-4-2 Selection of step-size for ADMM algorithm

Step-size coefficient µ is an important tuning parameter for the ADMM algorithm. The
step-size is the weight on the residuals in the objective. The residuals represent the level of
disagreement the local estimates have with the average. If the step size is large, the iterates
generally converge faster to a consensus, but since the weight on the original objective is
relatively low, the consensus solution might be sub-optimal. If a smaller step size is selected,
the iterates converge slower to consensus, but the performance of the solution in terms of the
original objective function can be better. The selection of µ is therefore a trade-off between
the rate of convergence of the ADMM iterations and the performance of the solution.

The step size is selected using a heuristic approach. The ADMM algorithm is run for a fixed
number of iterations, and the residual sequences η are shown in Figure 6-17. It is visible
that the first steps of the algorithm are not very sensitive to the selection of µ, and show
similar behaviour for different values of µ. Later, a higher µ results in faster convergence.
The performance of the final iterates is evaluated for every step size. It is observed that for
µ = 100, the performance is still acceptable, while the convergence is fast enough.
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Figure 6-17: Effect of varying step-size µ on the convergence of ADMM algorithm. The algorithm
converges for large enough step-size, the convergence is very similar.

6-4-3 Simulation results for multi area problems

Having selected the appropriate step size µ, the algorithm is run until the primal residual η
is sufficiently small, i.e. below 10−2 for each hour. This appears to be after 158 iterations.
As a benchmark, we also solve the 28-bus network centrally using the sp-opf-rs formulation.
The resulting optimal objectives and optimization times are shown in Table 6-4.

Table 6-4: Optimization times and optimal objectives for the 28-bus test case

f(Θopt) Opt. time (s)

sp-opf-rs 327.57 432.30
masp-opf-rs 335.24 5970.83

Since we use a sequential approach and multiple SDPs have to be solved at every iteration,
the time needed to solve masp-opf-rs is much longer than the time needed for sp-opf-rs.
However, if the computation of the local solutions is done in parallel, the time per iterations
would be reduced to half of the sequential time. The masp-opf-rs has a slightly higher
objective. The objective for each agent of masp-opf-rs is not only to have an economic
and secure dispatch of generation of their local generators, but also to be in agreement with
neighbouring agents on the power flows between the two networks. Therefore, a sub-optimal
solution is obtained.

The resulting dispatch and distribution vectors are extracted from the final iterates. The
generator dispatch is compared with the centralized solution in Figure 6-18. The distributed
solution is very similar to the centralized solution.

The distribution vectors are displayed in Figure 6-19. It can be seen that the results are
quite similar for the centralized and distributed result. The upspinning reserve is completely
provided by the generator with the lowest cost, generator 8. The downspinning reserve
is distributed over the first and second generator for the distributed solution, but in the
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centralized approach it is mostly provided by generator 8. For both the centralized and
distributed solutions, the reserve is distributed over more generators during the peak hours,
because the dispatch of the generators is higher in those hours, so less reserve power is available
per generator.

The resulting solutions are simulated with a new set of 10000 wind trajectories to compare
the violation levels. The encountered violation levels resemble results from the 30 bus test
case, and both the centralized and distributed solutions have a very low probability of line
violations: at most 0.02% and 0.06% at the peak hours, respectively. We can therefore
conclude that the probabilistic guarantees are still valid for the distributed solution.
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(a) centralized

(b) distributed

Figure 6-18: Generator dispatch per hour for centralized and distributed solutions for the 28-
bus test case. The grey shaded area corresponds to the total demand per hour. The numbers
correspond to the generator buses, and the lowest part of each bar (green) indicates the wind
power per hour.
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(a) centralized

(b) distributed

Figure 6-19: Graphical display of up- and downspinning reserve distribution vectors per generator
and hour for centralized and distributed solutions for the 28-bus test case. Darker cells correspond
to higher contribution to the reserve power.
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6-5 Conclusions

In this chapter, the set-up of the simulation is presented. The ve-opf-rs and sp-opf-rs
formulations are used to solve a problem for a 30-bus test system. The resulting generator
dispatch and distribution vectors are examined. The ve-opf-rs approach has a slightly lower
cost, since the reserve power is only provided by the generators with the lowest cost. For the
sp-opf-rs solution, the reserve power is more distributed.

The solutions are implemented in PF simulations. The violation level for line loadings and
bus voltage magnitudes is compared with the DC benchmarks. The assumptions made in
the DC modelling framework do not hold in the AC simulations, resulting in higher violation
levels. The conversion from DC to CDC somewhat reduced the violation level, but for both
the original DC and the CDC solutions, the violation level exceeds the theoretical limit for
the majority of the time steps. For both ve-opf-rs and sp-opf-rs, the violation levels
are well below the theoretical limit. The ve-opf-rs solution is somewhat less conservative,
whereas the sp-opf-rs is more conservative with a very low violation level at the cost of a
slight increase in the objective. For both the proposed approaches, the a-priori probabilistic
guarantees hold. We have therefore showed that the solutions obtained from both formulations
are feasible for cc-opf-rs formulation.

Next, the decomposition methods are validated using the same test system. First, the de-
composed variants of the proposed formulations are solved, and afterwards the partially filled
matrices are completed with the help of our proposed algorithm. Almost the same solution
is found in a considerable lower amount of time, with an average speed-up of approximately
14 times. The solutions have been validated with the same PF simulations, and the resulting
violation levels are found to be similar to the original levels. The sparsity decomposition has
therefore proven to be an effective way to reduce computational complexity while keeping the
probabilistic guarantees of the solution intact.

Finally, the multi-area decomposition is applied to two interlinked 14-bus systems. The
selection of the step size is justified using a heuristic approach. After this, the ADMM
algorithm is used to find solutions to the OPF-RS problem in a distributed setting, and the
result is compared to the centralized solution for the same network. The solutions obtained
by the centralized and distributed approach are very similar, so we can conclude that the
ADMM algorithm has converged. The violation levels for the decomposed and centralized
solutions are checked using PF simulations. The theoretical limit is not exceeded in both
cases, and both solutions are therefore feasible for cc-opf-rs. Therefore, our proposed multi-
area decomposition framework is a valid decomposition method which allows for distributed
solving of OPF-RS type problems.

Master of Science Thesis O.A. ter Haar



82 Simulation Study

O.A. ter Haar Master of Science Thesis



Chapter 7

Conclusions

In this thesis, we proposed a new optimization problem to address the problem of reserve
scheduling under an AC power flow set-up, for systems with uncertain WPG. For the AC
power flow formulation we used a modification of the relaxation presented in [9] and in-
corporated it in the stochastic reserve scheduling problem formulation. To deal with the
uncertainty, the problem is formulated as a CCP, such that violations are allowed with a low
probability.

Using a randomization technique (the scenario approach), a deterministic problem which ap-
proximates the CCP with a-priori feasibility guarantees is formulated. The resulting problem
has a high number of matrix decision variables, leading to computational tractability issues
for realistic networks. Therefore, two tractable approximations are proposed.

We first use the scenario approach to approximate a convex set which contains almost surely
the probability mass distribution of the uncertain wind power trajectories. We rely on the
special property of reserve scheduling problems which leads to linear constraint functions with
respect to the uncertain parameters. We can therefore formulate a robust problem for only
the vertices of the approximated set, ve-opf-rs. Using the proposed approach, the number of
scenarios is reduced significantly which is beneficial for the tractability. The second tractable
approximation we propose is a novel RS formulation, sp-opf-rs, in which the distribution
of reserve is encoded directly in the network state as a non-linear parametrization of the
uncertainty. By using a conic combination of matrices, the positive semidefiniteness of all
network states is implied, using only three PSD constraints per time step. Unlike existing
works in RS, our proposed parametrization has a practical meaning and is directly related to
the distribution of reserve power.

Finally, we provide two ways to decompose large OPF-RS problems, based on the sparsity
pattern and control areas. First, a sparsity decomposition method is presented. Based on
the chordal theorem, we decompose computationally expensive PSD constraints for both the
proposed formulations. Due to the sparsity in the data matrices, typical for power systems,
the computational complexity is greatly reduced. A matrix completion algorithm is proposed
for the guaranteed rank-one reconstruction of the matrix variable. Second, a decomposition
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technique suitable for multi-area systems is presented. The matrix variable and all corre-
sponding constraints and objective function are partitioned according to the control areas,
such that for every control area a separate problem is created which is coupled only with
auxiliary variables. With the help of the chordal theorem, the PSD constraint is again de-
composed, but now based on the bus sets that correspond to an area rather than the sparsity
pattern. The ADMM algorithm is then used to solve the resulting general consensus problem.

All formulations described above are validated on the IEEE 30-bus test system and compared
to the DC benchmark solutions. With the use of Monte Carlo simulations of the power flows,
the empirical level of constraint violation is checked. For both ve-opf-rs and sp-opf-rs,
the violation levels are well below the theoretical limit, whereas the solutions from the DC
benchmark lose their feasibility guarantees in the AC framework. The solutions obtained
from both formulations are therefore feasible solutions for the CCP. The ve-opf-rs solution
is somewhat less conservative, whereas the sp-opf-rs is more conservative with a very low
violation level at the cost of a higher objective.

Next, the sparsity decomposition methods are validated using the same set-up. First, the de-
composed variants of the proposed formulations are solved, and afterwards the partially filled
matrices are completed with the help of our proposed algorithm. Almost the same solution
is found in a considerable lower amount of time, with an average speed-up of approximately
14 times. The solutions have been validated with the same PF simulations, and the resulting
violation levels are found to be similar to the original levels. The sparsity decomposition is
therefore shown to be an effective way to reduce computational complexity while keeping the
probabilistic guarantees of the solution intact.

Finally, the multi-area decomposition is applied to two interlinked 14-bus systems. The
selection of the step size is justified using a heuristic approach. After this, the ADMM
algorithm is used to find solutions to the OPF-RS problem in a distributed setting, and the
result is compared to the centralized solution for the same network. The solutions obtained
by the centralized and distributed approach are very similar. The violation levels for the
decomposed and centralized solutions are checked using PF simulations. The theoretical
limit is not exceeded in both cases, and both solutions are therefore feasible for cc-opf-rs.
Therefore, our proposed multi-area decomposition framework is a valid decomposition method
which allows for distributed solving of OPF-RS type problems.
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Chapter 8

Future Research Directions

In this section, several future research directions are proposed. First, we propose several
ideas for future research on the new formulations ve-opf-rs and sp-opf-rs in Section 8-1.
In Section 8-2, we continue to propose different applications for the sparsity decomposition.
Finally, possible improvements to the multi-area decomposition framework are proposed in
Section 8-3.

8-1 Extensive testing of tractable reformulations

8-1-1 Testing with different wind models

The validity of the proposed approaches is proven theoretically for any uncertainty source,
but only demonstrated for one specific wind model. A broad comparison using different
models will help to show the robustness of the proposed approaches. Especially, wind models
with multiple wind buses (i.e. that not only consider temporal, but also spatial correlation
between wind buses, such that the trajectories per wind bus have a joint probability) could
be an interesting follow-up on the current research.

The computational advantage of the sp-opf-rs approach for problems with multiple wind
buses has already been demonstrated in this work, but since there is no correlation between
the trajectories, the results did not have any probabilistic guarantees. The scenario state
is parametrized in the sum of all uncertain wind powers. It still remains to be researched
whether the conic parametrization in the sum is too restrictive to find feasible scenarios states
for systems with multiple uncertain wind powers.

If this appears to be the case, the conic parametrization can be extended, such that ev-
ery uncertainty source has its own set of separate PSD coefficient matrices, similar to the
parametrization proposed in [11], but then with the PSDness implied due to the conic com-
bination. It is important to mention that in such a formulation, the number of PSD matrices
would again be T (2Nw +1), which is identical to the number of PSD matrices for ve-opf-rs,
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and therefore any computational advantage would be lost. However, the comparison of vio-
lation levels for such problems between sp-opf-rs and ve-opf-rs would be very interesting.

The theoretical results hold not only for the uncertain generation of wind power, but can also
be applied to different forms of uncertainty, such as uncertain loads. More exotic adaptations
to the models could include local power storage (see [66]) or the deration of wind power as
downspinning reserve (see [67]).

8-1-2 Application of indirect scenario approach to different OPF-RS formulations

The current work focused on the SDR formulation of OPF-RS problems. The indirect scenario
approach can also be extended to other convex relaxations. A good candidate would be the
Feasible Point Pursuit-Successive Convex Approximation (FFP-SCA) algorithm proposed in
[68] and applied to an OPF problem in [69]. The formulation in [69] is very similar to our OPF
formulation before relaxation, opf(p̃w), such that one can leverage the linear dependency on
the negative and positive total mismatch. One can than approximate the uncertainty set using
the indirect scenario approach as described in Section 4-1, such that the resulting problem
has a low number of scenarios, and the FFP-SCA algorithm can then be used to solve the
(non-convex) problem.

Note that the SDR outperforms the FFP-SCA algorithm in terms of optimal objective value
and computational burden, but FPP-SCA can identify constraints that make an OPF problem
infeasible, and thus find solutions to problems that may be infeasible in the SDR. We assumed
that a feasible solution to the OPF-RS problem existed, but the FFP-SCA algorithm can be
of interest for OPF-RS problems where feasibility is not given. A good example of such a
problem might be a network topology optimization: given a certain amount of uncertainty
and demand, the FFP-SCA problem can identify the constraints which make the problem
infeasible, such that the TSO can consider upgrading the corresponding components (such as
congested lines).

8-1-3 Different approximations of uncertainty set to reduce conservatism

In our research, we have used an axis-aligned hyperrectangular set to approximate the uncer-
tainty set for simplicity. Any convex set is however valid. To further clarify the conservatism
introduced by the VE approach, different sets might be used to approximate the uncertainty
set, such as an ellipsoidal set, for which the approximation might be less conservative.

8-2 Extending application of sparsity decomposition methods

8-2-1 Sparsity decomposition for large scale OPF-RS problems

The validity of the ve-opf-rs and sp-opf-rs approximations for cc-opf-rs have been shown
for the 30 bus system with a single uncertain wind bus. We have chosen the 30 bus network,
because it is of such dimensions that OPF-RS problems can be solved as a whole in reasonable
time. This allowed us to demonstrate the similarity between solutions from the sparsity
decomposition and original formulation. Future research should focus on testing our proposed
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formulations dve-opf-rs and dsp-opf-rs for larger problems which cannot be solved as a
whole, such as the Polish test system with over 3000 buses. Although the authors of [16]
showed that the sparsity decomposition is valid for large scale OPF problems, the extension
to RS problems has not yet been made.

8-2-2 Sparsity decomposition for local matrices of multi-area decomposition

We have considered applying the sparsity decomposition as described in Section 5-1 for the
local updates of the multi-area decomposition as described in Section 5-2, thus obtaining
a tractable approximation for cc-opf-rs that is first decomposed in the defined control
areas and then each of these decomposed state matrices is again decomposed based on the
sparsity pattern of the local data matrices. We have observed that for the 28-bus multi-
area system, the addition of a sparsity decomposition to the optimization process introduced
more overhead than it reduced the computational complexity, because the sub-networks were
already of comprehensive size (two sub-networks with 15 buses each). To be able to exchange
the information on overlapping nodes, it is necessary to run a matrix completion procedure,
such as Algorithm 1, at every iteration. However, for large scale multi-area OPF-RS problems,
the double decomposition (spatial and sparsity) would be a promising approach, due to the
large speed-ups gained from sparsity decomposition.

It is however important to mention that the matrix completion procedure at every step
could introduce approximation errors which might propagate through the sub-networks and
deteriorate as the algorithm progresses, because the ADMM algorithm typically needs a
large number of iterations to converge. Whether or not this problem occurs (either with our
proposed algorithm in particular, or in general) is still an open question.

8-3 Distributed approaches for OPF-RS problems

8-3-1 Distributed implementation of multi-area decomposition

The multi-area decomposition framework as described in Section 5-2 allows for the solving in
a distributed setting. Every agent has its own set of constraints and decision variables. By
communicating its decisions and receiving averages of those decisions from all other agents,
the agent can independently update its decisions variables. A distributed implementation
would be an interesting follow-up on the presented framework, such that the computational
time is more comparable to centralized approaches.

8-3-2 Varying wind samples between agents in multi-area decomposition

Another direction which was pursued during this research was the decomposition of entire
OPF-RS problems over scenarios, i.e. multiple instances of the whole network, each with a
subset of the scenarios. This approach is motivated by the fact that in the direct scenario
approach the high number of scenarios causes tractability issues due to the repetition of
matrix variables. Different algorithmic approaches which allow for distributed settings were
researched, such as active constraint consensus and proximal gradient methods. It appeared
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that the extra computational burden introduced by solving an SDP at every iteration resulted
in a large increase in computation time, while not improving the quality of the results. By
solving the same problem multiple times, each time with different scenarios, the overall com-
plexity increased instead of decreased, and this approach was therefore abandoned in favour
of researching tractable ways of formulating OPF-RS problems and sparsity and multi-area
decompositions.

In the current multi-area decomposition framework, we have assumed that all agents have the
same set of scenarios, i.e. samples of trajectories available to them. It will be worth investi-
gating whether dividing the scenarios between the agents will result in similar solutions. Since
all agents have to reach consensus on their decisions, every agents implicitly has information
of all the scenarios, but only explicitly knows its own subset of the scenarios. The resulting
solutions could then be tested for their corresponding violation level using PF simulations, to
see whether the probabilistic guarantees hold.

8-3-3 Different consensus algorithm for multi-area decomposition

The proposed multi-area decomposition leads to a general consensus problem, for which any
consensus algorithm can be used to coordinate the agents towards a global consensus. In the
current work, the ADMM algorithm is used as a consensus algorithm for the decomposed
problem. The computational time for this algorithm to converge was quite large compared
to the centralized approaches, even in a hypothetical parallel implementation. A comparison
of performance and computational effort for different consensus algorithms to solve the same
multi-area OPF-RS problem was outside the scope of this thesis. An interesting direction
for future research would be to use a different consensus algorithm which converges in a
lower number of iterations, such that the computational effort and time to solve a multi-area
OPF-RS problem in a distributed setting would be reduced.
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Appendix A

Direct Current Modelling Framework

The Direct Current (DC) approximation of a power system will be derived and the classical
DC OPF problem will be formulated in Section A-1. In the DC framework, all the system
equations are linear, resulting in a problem formulation that is easy to solve. In Section A-2,
Wind Power Generation (WPG) will be integrated in the DC framework to come up with a
CCP formulation of the DC OPF with reserve scheduling.

A-1 Classical direct current (DC) OPF

The non-linear relation of the complex voltage and currents through the admittance matrix
(I = YE) is simplified using the following assumptions, based on [17]:

Assumption 4. The voltage at every bus of the network remains constant at 1 p.u.1

Assumption 5. The active power losses in the branches are neglected. In particular, the
branch resistance and charging capacitance are negligible. The admittance of each branch will
then reduce to 1

jxs
.

Assumption 6. All voltage angles are small, so sin θlm ≈ θlm, where θlm is the angle in
radians across the branch connecting the buses l and m.

Furthermore, no phase-shifting transformers are assumed to be present, so θlm,shift = 0 for all
(l,m) ∈ L. This assumption is made to streamline the presentation, but can be included in
the DC OPF problem as described in [64].

The power flow over each line at time-step t can be calculated using the following linear
equation:

P ft = BfΘt (A-1)
1p.u. stands for per unit, a normalized unit common in power system analysis. A baseline is chosen for the

voltage, and all voltages are divided by this voltage. 1 p.u. means that all the bus voltages are nominal.
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where P ft ∈ RNl is the vector containing the power flows Plm,t for each line (l,m) ∈ L at
time-step t, Θt ∈ RNb is the vector of all the voltage angles at every bus θk,t at time-step t,
and Bf ∈ R(Nl×Nb) is the imaginary part of the nodal admittance matrix. Only the imaginary
part is used, because active power losses are neglected for lines (Assumption 5). The power
flows can be expressed as a linear function of Θ because the angles are assumed to be small
(Assumption 6).

The power injected at each time-step t for all the buses is defined as:

P inj
t = CGPGt − PDt (A-2)

where P inj
t ∈ RNb , PGt ∈ RNG and PDt ∈ RNb are the vectors containing the injected, gener-

ated and demanded power at time-step t respectively. The matrix CG is the sparse connection
matrix of appropriate dimension. The entry (i, j) equals one if bus i has generator j connected
to it, and zero otherwise.

Through Kirchoffs current law, the active power injection at bus k can be defined as:

P inj
t = BbusΘt (A-3)

where Bbus ∈ RNb×Nb is the nodal admittance matrix in the DC framework.

It is common practice for OPF calculations to define one of the buses as a reference2 bus.
The voltage angle of this bus will be fixed at 0, so all the other voltage angles are expressed
as an offset to the reference bus. In the DC approximation the magnitude of the voltage is
assumed to be constant (Assumption 4), so the only variable changing is the voltage angle.

Combining (A-1) and (A-3), it is possible to eliminate the voltage angle from the equations.
It is necessary to invert Bbus for this, but since Bbus is singular by construction, this is not
possible. Using the properties of the reference bus, this can be circumvented.

Following [17], the row and column corresponding to the reference bus are removed from Bbus

to form B̃bus ∈ R(Nb−1)×(Nb−1). The same is done for the power injection vector: the entry
corresponding to the reference bus is removed to create P̃ inj

t ∈ R(Nb−1). Reordering the buses
to set the reference bus to the last position allows for the following expression of Θt and the
power flows P ft :

Θt =
[
(B̃bus)−1P̃ inj

t

0

]
⇒ P ft = Bf

[
(B̃bus)−1P̃ inj

t

0

]

By doing so, the reference angle is forced to zero, and the power flows over all the lines have
become a function of the power injection vector rather than the voltage angles. Since the
demand profile is assumed to be known, the only variable is PGt . This allows the formulation

2The reference bus is in some power systems literature called the ‘slack bus’, but to avoid confusion with
‘slack variables’ as are commonly found in optimization literature, that term will not be used in this work.
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of the classical DC OPF problem as a quadratic program (QP):

minimize
[PG

t ]Nt
t=1

Nt∑
t=1

∑
k∈G

(
cquk (PGk,t)2 + clikP

G
k,t

)
(A-4a)

subject to: 1T
P inj
t = 0, (A-4b)

PG,min
k ≤ PGk,t ≤ P

G,max
k , (A-4c)

− P f,max ≤ Bf

[
(B̃bus)−1P̃ inj

t

0

]
≤ P f,max, (A-4d)

for t = 1, . . . , Nt, ∀k ∈ G

The objective function considers the cost of the active power generation for each generator
over the time horizon with quadratic cost vector cqu ∈ RNG

+ and linear cost vector cli ∈ RNG
+ .

In some literature, for example [47], a fixed cost vector cfi is also added to the cost function,
but since this does not change the location of the optimal solution, it is omitted here.

The set of power balancing constraints (A-4b) enforces the sum of all the injected powers at
each time step to equal zero, to let generation always meet demand. The vector 1 ∈ RNb has
all entries equal to 1. The generator limits are encoded in the second set of constraints (A-4c),
bounding the generated power for a given generator k. The last set of constraints (A-4d) are
the line capacities. Each line (l,m) has a maximum line capacity Pmax

lm that represents the
rated amount of power it can transmit in both directions. P f,max ∈ RNl represents the
capacities stacked over all the lines. By bounding power flows by the negative and positive
maximum capacities, the safe transportation of energy is ensured.

The problem is separable in the time steps, since no coupling between the time-steps are
present, such as ramping limits. Therefore, the problem can be reduced to 24 separate DC
OPF problems, whose objective functions can be summed to retrieve the total problem as
given above.

A-2 Integrating wind power in DC OPF

Having defined the classical DC OPF problem as a deterministic QP, we can now introduce
the uncertainty in the form of WPG. The uncertainty will enter the formulation in the form
of chance constraints, resulting in a CCP formulation of the DC OPF with uncertain WPG.

The wind-power is modelled as active power injection on the buses i ∈ W, following [4]. Since
the wind power production is uncertain, it is a random variable. The variable is the wind
power trajectory over the time horizon, [Pwt ]Nt

t=1 ∈ ∆ ⊆ R(Nw×Nt), and therefore a stochastic
process. The forecast wind-power is denoted by [Pw,ft ]Nt

t=1 ∈ R(Nw×Nt) and is deterministic.

Let Pmt ∈ R be the total wind power mismatch, or the difference between the summed forecast
and the summed actual wind power. In some literature, this mismatch is called the prediction
error, but it represents the same quantity. Rt ∈ RNG is the reserve active power which is
a function of the mismatch. The mismatch is distributed along the committed generators
according to two distribution vectors dus

t , d
ds
t ∈ RNG , following the representation of reserves

as discussed in [4], Section II B. If a generator k is not participating in the secondary frequency
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control, its respective element in the distribution vectors will be 0. Rt is defined in such a way,
that at time t a positive mismatch (surplus, requires down-spinning) is distributed according
to dds

t and a negative mismatch (deficit, requires up-spinning) is distributed according to dus
t .

Pmt =
∑
h∈W

Pwh,t − P
w,f
h,t

Rt = dus
t max(0,−Pmt )− dds

t max(0, Pmt ) (A-5)

With this definition, two new power injection vectors can be composed. The first, denoted
P inj,f
t represents the injected power for the deterministic case (i.e. the WPG in-feed is equal

to its forecast value and no reserve are used), the second represents the probabilistic case (a
scenario) and is denoted by P inj,s

t . Both have the same dimensions as the original P inj
t .

P inj,f
t = CGPGt + CwPw,ft − PDt
P inj,s
t = CG(PGt +Rt) + CwPwt − PDt

where Cw is the sparse connection matrix connecting the WPG in-feeds to the buses, con-
structed in the same way as CG.

Because different costs are associated with either up- or downspinning for each generator, a
different cost vector is used for each. The up- and downspinning costs are assumed to be linear
and time invariant. Let cus, cds ∈ RNG

+ be the costs for up- and downspinning each generator,
respectively. This allows the up- and downspinning costs to be calculated separately. The
DC OPF can now be extended to not only solve for the optimal generator dispatch, but also
for the optimal reserve distribution vectors. Because [Pwt ]Nt

t=1 is an uncertain parameter, the
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DC OPF will be formulated as a CCP (see Section 2-4 for more information about CCPs).

minimize[
PG

t ,dus
t ,

dds
t ,Rus

t ,

Rds
t

]Nt

t=1

Nt∑
t=1

∑
k∈G

(
cquk (PGk,t)2 + clikP

G
k,t

)
+ (cus)T

Rus
t + (cds)T

Rds
t

 (A-6a)

subject to 1T
P inj,f
t = 0, (A-6b)

PG,min
k ≤ PGk,t ≤ P

G,max
k , (A-6c)

− P f,max ≤ Bf

[
(B̃bus)−1P̃ inj,f

t

0

]
≤ P f,max, (A-6d)

P
{

[Pwt ]Nt
t=1 ∈ ∆

∣∣∣∣
1T
P inj,s
t = 0, (A-6e)

PG,min
k ≤ PGk,t +Rk,t ≤ PG,max

k , (A-6f)

− P f,max ≤ Bf

[
(B̃bus)−1P̃ inj,s

t

0

]
≤ P f,max, (A-6g)

−Rds
t ≤ dus

t max(0,−Pmt )− dds
t max(0, Pmt ) ≤ Rus

t (A-6h)
Rus
t ≥ 0, (A-6i)

Rds
t ≥ 0

}
≥ 1− ε (A-6j)

for t = 1, . . . , Nt, ∀k ∈ G

with Rk,t = ek
(
dus
t max(0,−Pmt )− dds

t max(0, Pmt )
)
, where ek represents a vector with only

the k-th entry equal to 1 and the rest zero. Rus
t , R

ds
t ∈ RNG are the maximum up- and

downspinning reserves needed, or the reserve requirements at time t. They are included in
the objective function, multiplied by the corresponding cost vectors and summed over all the
timesteps. This makes the objective function not only a representation of the total incurred
generation costs, but also reserve requirement costs. The deterministic constraints (A-6b)-
(A-6d) are exactly the same as in the classical DC OPF, with the exception that the power
injection vector now also contains the forecast wind-power (P inj,f

t ).

The probabilistic constraints (A-6e)-(A-6g) state that for a uncertain wind-power trajectory
[Pwt ]Nt

t=1, the chance of constraint satisfaction should be at least 1 − ε. Constraints (A-6h)-
(A-6j) define the maximum up- and down-spinning in such a way, that Rds

t will contain the
absolute value of all the negative elements of Rt, and Rus

t will have all the positive elements.

The above CCP can be converted to a SCP. In this case, the set of soft chance constraints (A-6e)-
(A-6j) will be substituted for N sets of hard constraints, where N is the number of scenarios
as determined by Equation (2-3). For every set of constraints, another realization of [Pwt ]Nt

t=1
is used. Using this approach, the solution of the SCP will be an ε-solution of the CCP with
confidence 1− β.
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Glossary

List of acronyms

AC Alternating Current
ADMM Alternating Direction Method of Multipliers
AGR Automatic Generator Regulation
c-opf Convexified Optimal Power Flow
cc-opf-rs Chance-constrained Optimal Power Flow with Reserve Scheduling
CCP Chance-constrained Program
CDC Converted Direct Current
d-opf Decomposed Optimal Power Flow
DC Direct Current
dsp-opf-rs Decomposed Scenario Parametrized Optimal Power Flow with Reserve

Scheduling
dve-opf-rs Decomposed Vertex Enumerated Optimal Power Flow with Reserve

Scheduling
FPP-SCA Feasible Point Pursuit-Successive Convex Approximation
HTG Hydro Thermal Generation
IPM Interior Point Method
masp-opf-rs Multi-area Scenario Parametrized Optimal Power Flow with Reserve

Scheduling
OPF-RS Optimal Power Flow with Reserve Scheduling
OPF Optimal Power Flow
PF Power Flow
PSD Positive Semidefinite
QCQP Quadratically Constrained Quadratic Program
RCP Robust Convex Program
RS Reserve Scheduling
SCP Scenario Convex Program
SDP Semidefinite Program
SDR Semidefinite Relaxation
sp-opf-rs Scenario Parametrized Optimal Power Flow with Reserve Scheduling
TSO Transmission System Operator
ve-opf-rs Vertex Enumerated Optimal Power Flow with Reserve Scheduling
WPG Wind Power Generation
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List of symbols

α accuracy for solution m number of constraints
β confidence level Mk voltage magnitude data matrix
δ uncertain parameter n dimension of decision variable
∆ uncertainty set Nb number of buses
ε violation level NG number of generators
Γ set of multipliers NL number of lines
Λ, λ multipliers Ns number of scenario
A set of areas Nt length of prediction horizon
Ba set of neighbouring areas to area a Nw number of wind buses
Eab overlapping buses between a and b p real power
F set of wind buses pw,f forecast wind power
G set of generator buses pD, qD real/reactive demanded power
H approximation of uncertainty set pG, qG real/reactive generator power
L set of lines pm wind mismatch
N set of buses pw wind power
P uncertainty set for wind mismatch q reactive power
T set of time steps r reserve power
Ta set of tie-lines for area a rus, rds up/downspinning requirements
W set of feasible states s apparent power
µ step size t time step
Θ set of auxiliary variables v complex voltage
h,h upper and lower bounds for H W network state
Ξ set of decision variables W f network state for forecast
a, b area index W us upspinning coefficient matrix
cli linear cost coefficients W ds downspinning coefficient matrix
cqu quadratic cost coefficients Ŵ parametrized network state
cus, cds up/downspinning cost coefficients x rectangular voltage
CG, Cw generator/wind connection matrix Ylm real powerflow data matrix
dus,dds up/downspinning distribution Y ∗lm reactive powerflow data matrix
Eref reference bus data matrix Yk real power injection data matrix
k bus index Y ∗k reactive power injection data ma-

trix
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