
Closing the performance gap between an iterative frequency-domain
solver and an explicit time-domain scheme for 3D migration
on parallel architectures

H. Knibbe1, W. A. Mulder2, C. W. Oosterlee3, and C. Vuik1

ABSTRACT

Three-dimensional reverse-time migration with the constant-
density acoustic wave equation requires an efficient numerical
scheme for the computation of wavefields. An explicit finite-
difference scheme in the time domain is a common choice.
However, it requires a significant amount of disk space for
the imaging condition. The frequency-domain approach simpli-
fies the correlation of the source and receiver wavefields, but
requires the solution of a large sparse linear system of equations.
For the latter, we use an iterative Krylov solver based on
a shifted Laplace multigrid preconditioner with matrix-
dependent prolongation. The question is whether migration in
the frequency domain can compete with a time-domain imple-
mentation when both are performed on a parallel architecture.
Both methods are naturally parallel over shots, but the fre-
quency-domain method is also parallel over frequencies. If we
have a sufficiently large number of compute nodes, we can

compute the result for each frequency in parallel and the required
time is dominated by the number of iterations for the highest
frequency. As a parallel architecture, we consider a commodity
hardware cluster that consists of multicore central processing
units (CPUs), each of them connected to two graphics processing
units (GPUs). Here, GPUs are used as accelerators and not as an
independent compute node. The parallel implementation of the
3Dmigration in frequency domain is compared to a time-domain
implementation. We optimize the throughput of the latter with
dynamic load balancing, asynchronous I/O, and compression
of snapshots. Because the frequency-domain solver uses ma-
trix-dependent prolongation, the coarse-grid operators require
more storage than available on GPUs for problems of realistic
size. Due to data transfer, there is no significant speedup using
GPU-accelerators. Therefore, we consider an implementation on
CPUs only. Nevertheless, with the parallelization over shots and
frequencies, this approach could compete with the time-domain
implementation on multiple GPUs.

INTRODUCTION

The oil and gas industry makes use of computational inten-
sive algorithms such as reverse-time migration (RTM) and full-
waveform inversion to provide an image of the subsurface. The
demand for better resolution increases the bandwidth of the seismic
data and leads to larger computational problems. At the same time,
high-performance computer architectures are developing quickly by
having more and faster cores in the central processing units (CPUs)

or graphics processing units (GPUs). The increase in the number of
cores requires the development of scalable algorithms.
The finite-difference solution of the constant-density acoustic

wave equation has become a common tool for RTM, usually dis-
cretized by high-order finite differences in space and second-order
differencing in time. The discretization leads to a fully explicit
method. Higher-order finite differences reduce problem size com-
pared to low order because they require fewer grid points per wave-
length (Alford et al., 1974) if the underlying model is sufficiently

Manuscript received by the Editor 9 June 2013; revised manuscript received 24 November 2013; published online 17 February 2014.
1Delft University of Technology, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The

Netherlands. E-mail: hknibbe@gmail.com; c.vuik@tudelft.nl.
2Delft University of Technology, Department of Geoscience and Engineering, Faculty of Civil Engineering and Geosciences, Delft, The Netherlands and Shell

Global Solutions International BV, Rijswijk, The Netherlands.
3Delft University of Technology, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The

Netherlands and Centrum Wiskunde & Informatica, Amsterdam, The Netherlands. E-mail: c.w.oosterlee@cwi.nl.
© 2014 Society of Exploration Geophysicists. All rights reserved.

S47

GEOPHYSICS, VOL. 79, NO. 2 (MARCH-APRIL 2014); P. S47–S61, 13 FIGS., 8 TABLES.
10.1190/GEO2013-0214.1

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



smooth, which is usually the case in RTM. Explicit methods based
on finite differences exhibit natural parallelism because the compu-
tation of one point in space for a given time step is independent of its
neighboring points. They can be easily parallelized with OpenMP on
shared-memory architectures and on GPUs (Micikevicius, 2009).
We refer to the paper by Fu et al. (2012) for an overview.
Migration of seismic data is commonly carried out in the time

domain. The classic RTM algorithms in the time domain are known
to be computationally and I/O intensive (Ji et al., 2012; Liu et al.,
2012) because the forward- and time-reversed wavefields have to be
computed and stored. If the correlation between these fields is car-
ried out during the time-reversed computation of the receiver data,
only snapshots of the forward wavefield have to be stored.
There are two main strategies to reduce the overhead of storing

snapshots. Reconstruction of the forward wavefield by marching
backward in time using the last two wavefields is difficult, if not
impossible, in the presence of absorbing boundary conditions.
Clapp (2009) has proposed to circumvent this problem by only stor-
ing boundary values of the snapshots or by using random instead of
absorbing boundaries. In the latter case, the energy of the wavefield
entering the boundary is scattered and does not stack during the
imaging condition. With checkpointing (Griewank and Walther,
2000; Symes, 2007), the forward wavefield is only stored intermit-
tently at pairs of subsequent time steps. During the reverse-time
computations and correlation, the missing time steps are recom-
puted by forward time stepping from stored snapshots over a rel-
atively short time interval. These methods represent a trade-off
between storage and computational time.
A second strategy is based on reducing the time needed to write

the snapshots to disk, for instance, by asynchronous I/O (Cabezas
et al., 2009) and wavefield compression. For the last, standard
libraries with Fourier transformation or wavelet compression can
be used (Ji et al., 2012).
Migration in the frequency domain is historically less mature be-

cause of the necessity to solve a sparse indefinite linear system of
equations for each frequency, which arises from the discretization of
the Helmholtz equation, whereas in the time domain, the discreti-
zation of the wave equation in space and time leads to an explicit
time marching scheme. An important advantage of migration in the
frequency domain is that the crosscorrelation needed for the imaging
condition becomes a simple multiplication. As a result, no wave-
fields have to be stored. Parallelization over frequencies is natural.
If a direct solver is used to compute the solution of the sparse matrix,
typically a nested-dissection LU-decomposition is applied (George
and Liu, 1981). When many shots need to be treated, the frequency-
domain solver in two dimensions can be more efficient than a time-
domain time-stepping methods (Marfurt and Shin, 1989; Mulder and
Plessix, 2002) because the LU-decomposition can be reused for
each shot as well as for each reverse-time computation. Also, lower
frequencies can be treated on coarser meshes.
In 3D, however, frequency-domain migration is considered to be

less efficient than its time-domain counterpart. One of the reasons is
the inability to construct an efficient direct solver for problems of
several millions of unknowns (Operto et al., 2007). Wang et al.
(2010, 2011) have proposed a direct solver based on nested-
dissection that compresses intermediate dense submatrices by
hierarchical matrices.
An iterative solver is an obvious alternative; for instance, the one

with a preconditioner that uses a multigrid method to solve the same

wave equation but with very strong damping (Erlangga et al., 2006;
Riyanti et al., 2006; Plessix, 2007; Knibbe et al., 2011). This
method, however, needs a number of iterations that increases with
frequency, causing the approach to be less efficient than a time-
domain method. Note that the iterative method requires a call to
the solver for each shot and each reverse-time computation, so
the advantage of reusing a LU-decomposition is lost. This approach
is parallelized by Riyanti et al. (2007). Knibbe et al. (2013) use
GPUs to speed up the computations.
However, with the development of iterative methods on the one

hand and hardware accelerators on the other hand, we have to
reconsider the performance of migration in the frequency domain.
As a parallel architecture, we consider a commodity hardware clus-
ter that consists of multicore CPUs, each of them connected to two
GPUs. In general, a GPU has a relatively small amount of memory
compared to the CPU.
A GPU can be used in two different ways: as an independent

compute node replacing the CPU or as an accelerator. In the first
case, the algorithm is split into independent subproblems that are
then transferred to the GPU and computed separately. To achieve
the best performance, the data are kept on the GPU when possible.
We have exploited this way of using a GPU for the Helmholtz equa-
tion earlier (Knibbe et al., 2011, 2013).
In the second case, the GPU is considered as an accelerator,

which means that the problem is solved on the CPU while offload-
ing the computational intensive parts of the algorithm to the GPU.
Here, the data are transferred to and from the GPU for each new
task. In this paper, we focus on the second approach.
The aim of this paper is to demonstrate that migration in the

frequency domain, based on a Krylov solver preconditioned
by a shifted-Laplace multigrid preconditioner on CPUs, can
compete with RTM in the time domain on commodity parallel
hardware, a multicore CPU connected to two GPUs.
We will make a comparison in terms of computational time, par-

allelization, and scalability aspects. We use a finite-difference dis-
cretization of the constant-density acoustic wave equation for
computing the wavefields. Here, we solve the 3D wave equation
in the frequency domain with the iterative Helmholtz solver de-
scribed by Knibbe et al. (2013). This solver reduces the number
of iterations by a complex-valued generalization of the matrix-
dependent multigrid method. The price paid for improved conver-
gence is that the implementation is no longer matrix-free. The
matrix-dependent prolongation requires the storage of the coarse-
grid operators. As a result, the use of a GPU as an independent
computer node becomes less attractive for realistic problem sizes.
Applying GPUs as accelerators involves substantial data transfer,
requiring a significant amount of time and reducing the speedup
as compared to parallel computations on CPUs. For that reason,
we will only consider a CPU implementation for the Helmholtz
equation. For the migration in the time domain, this problem dis-
appears because of the explicit time stepping and we can exploit
GPUs as accelerators. Complexity estimates show that both ap-
proaches scale in the same way with grid size, but that does not
give an indication of the actual performance on a problem of real-
istic size. We therefore made a comparison of our actual implemen-
tations for the frequency and time domain.
We will describe seismic modeling and migration in the time and

in the frequency domain. The advantages of the frequency-domain
solver are explained and demonstrated. We review the parallel

S48 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



strategies for time and frequency domain and describe implemen-
tation details on multicores and on GPUs. Finally, we compare the
parallel performance on two 3D examples.

CHOICE OF METHOD

The choice of the numerical scheme is motivated by complexity
analysis. Consider a 3D problem of size N ¼ n3, with ns shots, nt
time steps, nf frequencies, and nit iterations. The number of shots is
usually ns ∼ n2, the number of time steps nt ∼ n (see equation 6),
the number of frequencies is nf ∼ n at most, and the number of iter-
ations for the iterative frequency-domain method is nit ∼ nf (see
equation 10).
The complexity of time-domain modeling is nsntOðn3Þ (Mulder

and Plessix, 2004a, 2004b). The direct solver in the frequency do-
main has a complexity ofOðn7 þ nsn3Þ for a single frequency when
using a standard LU-decomposition. This can be reduced toOðn6 þ
nsn3Þ with nested dissection (George and Liu, 1981). Wang et al.
(2010, 2011) suggest using a low-rank approximation of the dense
matrices arising from the nested dissection. In that case, the
complexity of the method lies between Oðn3ðlog nþ nsÞÞ and
Oððn4 þ nsn3Þ log nÞ, depending on the problem. Riyanti et al.
(2006, 2007) considered the complexity of the shifted Laplace
solver preconditioned by a multigrid method and obtained
Oðnsnfnitn3Þ for nf frequencies.
Considering the parallel aspect over shots and frequencies,

Table 1 captures the complexity of the algorithms mentioned above.
Factors of Oðlog nÞ have been ignored. It is readily seen that the
time domain is the most efficient method in the serial case. How-
ever, if the implementation is parallel over shots and frequencies,
the time-domain and iterative frequency-domain methods appear to
be the most attractive in terms of turnaround time, assuming suffi-
cient resources for parallel computing are available and their cost is
not included. This leaves questions about actual performance unan-
swered, because the constants in the complexity estimates are ab-
sent. To get an indication of the actual performance of the two
algorithms, both were implemented and tested on a problem of real-
istic size.

MODELING

Modeling is a major component of migration and inversion algo-
rithms. Traditionally, seismic data are modeled in the time domain
because of the simplicity of implementation as well as the memory
demands. However, modeling in the frequency domain offers such

advantages as parallelization over frequencies and reuse of earlier
results if an iterative solver is employed for computing the wave-
fields: for example, during least-squares migration or full-waveform
inversion. We will compare modeling in the time domain to that in
the frequency domain.

Modeling in the time domain

Modeling in the time domain requires the solution of the wave
equation,

1

c2
∂2u
∂t2

−
∂2u
∂x2

−
∂2u
∂y2

−
∂2u
∂z2

¼ f; (1)

where uðx; y; z; tÞ denotes the pressure wavefield, cðx; y; zÞ is the
velocity in the subsurface, and fðx; y; z; tÞ describes the source,
at positions ðx; y; zÞ in a domainΩ. Discretization of the wave equa-
tion with second-order finite differences in space and time leads to
an explicit time marching scheme of the form

unþ1
i;j;k ¼ 2uni;j;k −un−1i;j;kþΔt2c2i;j;k

�
uni−1;j;k − 2uni;j;k þuniþ1;j;k

Δx2

þ uni;j−1;k − 2uni;j;k þuni;jþ1;k

Δy2

þ uni;j;k−1− 2uni;j;k þuni;j;kþ1

Δz2
þ fni;j;k

�
; (2)

where the superscript nþ 1 denotes a new time level that is com-
puted using the solutions at the two previous time steps, n and
n − 1. A higher-order discretization of the second derivative in
space in one direction is obtained by

∂ð2Þu
∂xð2Þ

����
i
≃ −

1

Δx2

�
bM0 ui þ

XM
k¼1

bMk ðui−k þ uiþkÞ
�
; (3)

where 2M denotes the order of the spatial discretization and the
coefficients are

bM0 ¼
XM
m¼1

2

m2
; (4)

Table 1. Complexity of various methods, split between setup and application cost. The required amount of storage is given in
column 4. Next, a factor that can be dealt with by trivial parallelization is listed. The last column shows the scaling of compute
time when the trivial parallelization is applied, assuming n3 grid points, ns ∼ n2 shots, nt ∼ n time steps, nf ∼ n frequencies, and
nit ∼ n iterations.

Method Setup Apply Storage Parallel Overall

Time domain – nsntn3 nsn3 ns ð0þ n6Þ∕n2 ∼ n4

LU, nested dissection nfn6 nsnfn4 nfn4 nf ðn7 þ n7Þ∕n ∼ n6

LU, low rank nfn4 nsnfn3 nfn3 nf ðn5 þ n6Þ∕n ∼ n5

Iterative nfnsn3 nsnfnitn3 nsnfn3 nsnf ðn6 þ n7Þ∕n3 ∼ n4

Frequency domain migration on multi-CPU S49

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



bMk ¼ ð−1Þk
XM
m¼k

2

m2

ðm!Þ2
ðmþ kÞ!ðm − kÞ! ; k ¼ 1; : : : ;M:

(5)

Dablain (1986) describes a higher-order discretization of the second
derivative in time.
To ensure stability of the time marching scheme above, the time

step has to satisfy the stability constraint

Δt ≤ CFL
d

cmax

; (6)

with the maximum velocity cmax, the diameter

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕Δx2 þ 1∕Δy2 þ 1∕Δz2

p ; (7)

and the constant CFL ¼ 2∕
ffiffiffi
a

p
with

a ¼
XM∕2

k¼1

4k∕
�
k2
�
2k − 1

k − 1

��
: (8)

For details, see Fornberg (1988).
To simulate an infinite domain and avoid reflections from the

boundaries, sponge absorbing boundary conditions have been
implemented (Cerjan et al., 1985).

Modeling in the frequency domain

For wave propagation in the frequency domain, we consider the
Helmholtz equation in a 3D heterogeneous medium,

−
∂2ϕ
∂x2

−
∂2ϕ
∂y2

−
∂2ϕ
∂z2

− k2ϕ ¼ g; (9)

where ϕ ¼ ϕðx; y; z;ωÞ is the wave pressure field, k ¼ kðx; y; z;ωÞ
is the wavenumber, and g ¼ gðx; y; z;ωÞ is the source term. The
first- or second-order radiation boundary conditions (Engquist
and Majda, 1977) are used to reduce the undesired reflections from
the boundary. Equation 9 is solved with a Krylov method precon-
ditioned by a shifted-Laplace preconditioner (Erlangga et al., 2006;
Knibbe et al., 2011, 2013).
If the wavelet or signature of the source term g is given in the time

domain, its frequency dependence is readily obtained by a fast Fou-
rier transform (FFT). Given the seismic data, the Nyquist theorem
dictates the frequency sampling and the maximum frequency. In
practice, the maximum frequency in the data is lower and is defined
by the wavelet. Given the range of frequencies defined by Nyquist’s
theorem and the data, the Helmholtz equation 9 is solved for each
frequency and the wavefield is sampled at the receiver positions,
producing a seismogram in the frequency domain. Finally, the
wavelet and an inverse FFT are applied to obtain the synthetic seis-
mogram in the time domain.
The discretization of equation 9 in space depends on the number

of points per wavelength. The general rule of thumb is to discretize
with at least 10 points per wavelength (Saleh, 2011). In that case,
the error behaves as ðkhÞ2, which is inversely proportional to the
square of the number of points per wavelength. To avoid the

pollution effect, kh ¼ 0.625 has been chosen constant, as described
by Erlangga et al. (2006). Erlangga (2005) shows that the number of
iterations of the Helmholtz solver does not depend on the problem
size for a given frequency, but the number of iterations increases
with frequency. Erlangga and Nabben (2008) and Erlangga and
Herrmann (2008) present an improved version that leads to a sig-
nificant cost reduction but still requires more iterations at higher
frequencies. Therefore, the computational time for modeling in
the frequency domain mainly depends on the highest frequency
used and on the total number of frequencies. To reduce computa-
tional time, the computations for each frequency can be parallelized
over several compute nodes. The question arises: How many com-
pute nodes do we need to minimize the computational time?
It is obvious that for a parallel implementation over an unlimited

number of compute resources, the computational time is at least
equal to the time needed to solve the Helmholtz equation 9 for
the highest frequency.
Because the problem size is the same for each frequency and

the iterative method has a fixed number of matrix-vector and vec-
tor-vector operations, it is easy to see that the time per iteration is
the same for each frequency. In principle, the lower frequencies can
be calculated on coarser meshes (Mulder and Plessix, 2004b). How-
ever, using a Krylov solver preconditioned with a shifted-Laplace
multigrid method, the number of iterations is already quite low.
Therefore, the additional complexity due to interpolation between
different grid sizes does not pay off. The number of iterations per
frequency fi, i ∈ N, can be expressed as

ni ≈ γfi; (10)

where γ ¼ nN∕fN , fN denotes the maximum frequency, and nN the
number of iterations for fN. The frequencies are given by fi ¼ iΔf
where Δf is the frequency sampling interval. The total number of
iterations for computing all frequencies is given by

XN
i¼1

ni ≈ γ
XN
i¼1

iΔf ¼ γΔf
NðN þ 1Þ

2
¼ nN

N þ 1

2
: (11)

In other words, the least-computational time can be achieved by
using a number of compute nodes equal to half the number of
frequencies. As an example, let us consider a problem with maxi-
mum frequency fmax ≃ 30 Hz and Δf ≃ 1∕6 Hz. Then, 180
frequencies need to be computed, which would require 90 compute
nodes. Here, we assume that the problem size corresponding to the
maximum frequency fits into the memory of a single compute node.
We can adopt a different point of view by fixing the number of

compute nodes and then determining the minimum workload of
each node in terms of the number of iterations. Let us denote by
M the number of available compute nodes. Then, using equation 11,
the minimum time per node is equal to

Tmin ¼
tNðN þ 1Þ

2M
; (12)

where tN is the compute time needed for the highest frequency.

S50 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



MIGRATION

Migration algorithms produce an image of the subsurface given
seismic data measured at the surface. In particular, prestack depth
migration produces the depth locations of reflectors by mapping
seismic data from the time domain to the depth domain, assuming
a sufficiently accurate velocity model is available. The classic im-
aging principle (Hagedoorn, 1954; Claerbout, 1971) is based on the
correlation of the forward-propagated wavefield from a source and a
backward-propagated wavefield from the receivers. To get an
approximation of the reflector amplitudes, the correlation is divided
by the square of the forward wavefield (Baysal et al., 1983; White-
more, 1983). For true-amplitude or amplitude-preserving migration,
there are publications based on the formulation of migration as an
inverse problem in the least-squares sense (Lailly, 1983; Tarantola,
1984; Beylkin, 1985; Beylkin and Burridge, 1990; Plessix and
Mulder, 2004). For our purpose of comparing migration in the time
and frequency domain, we focus on the classical imaging condition
(Claerbout, 1985)

IðxÞ ¼
X
shots

X
t

Wsðx; tÞWrðx; tÞ; (13)

in time domain or

IðxÞ ¼
X
shots

X
ω

W�
sðx;ωÞWrðx;ωÞ; (14)

in the frequency domain. Here, I denotes the image,Ws is the wave-
field propagated from the source andWr from the receivers, respec-
tively; t denotes time, and ω denotes the frequency. The star
indicates the complex conjugate.

Born approximation

The seismic data that need to be migrated should not contain
multiple reflections from the interfaces if imaging artifacts are to
be avoided. Often, the Born approximation is used for modeling
without multiples. Migration can be viewed as one step of an iter-
ative procedure that attempts to minimize the difference between
observed and modeled data subject to the Born approximation of
the constant-density acoustic wave equation (Lailly, 1983; Taran-
tola, 1984; Beylkin and Burridge, 1990; Mulder and Ples-
six, 2004a).
The wave equation 1 in matrix form is

Au ¼ f; (15)

with wave operator A ¼ m∂tt − Δ and model parameter m ¼ 1∕c2.
The last can be split into m ¼ m0 þm1, where m0 ideally does not
produce reflections in the bandwidth of the seismic data. The wave-
field can be split accordingly into u ¼ u0 þ u1 into a reference and
a scattering wavefield, respectively. The reference wavefield u0 de-
scribes the propagation of a wave in a smooth medium without any
hard interfaces. The scattering wavefield u1 represents a wavefield
in a medium which is the difference between the actual and refer-
ence medium. Wave propagation in the reference medium is then
described by A0u0 ¼ f with A0 ¼ m0∂tt − Δ in the time domain.
What remains is A0u0 þ A1u0 þ A1u1 ¼ 0 with A1 ¼ A − A0 ¼
m1∂tt. In the Born approximation, the term A1u1 is removed, lead-
ing to the system of equations

A0u0 ¼ f; (16)

A0u1 ¼ −A1u0: (17)

Its counterpart in frequency domain is

A ¼ −k2 − Δ; A0 ¼ −k20 − Δ; A1 ¼ A − A0 ¼ −k21;
(18)

where k0 is the wavenumber in the reference and k1 in the scattering
medium, respectively.
With this, migration becomes the linear inverse problem of find-

ing a scattering model m1ðx; y; zÞ that minimizes the difference be-
tween the recorded and modeled wavefields u1 in a least-squares
sense. This assumes that the recorded data were processed in such
a way that only primary reflections are preserved, because wave-
field u1 will not contain the direct wave and multiple reflections.
A few iterations with a preconditioned Krylov subspace method
will suffice to solve the linearized inverse problem and just one iter-
ation may already produce a useful result (Mulder and Plessix,
2004a; Plessix and Mulder, 2004).
To illustrate the difference between modeling with the wave

equation and its Born approximation, we consider the simple veloc-
ity model shown in Figure 1. The background velocity (white) is
1500 m∕s and the horizontal layer shown with gray color has a
velocity of 2500 m∕s.
We model the seismogram in the time domain; see Figure 2

(left). The seismogram obtained using the Born approximation is
presented in Figure 2 (right). Time-weighting was applied to
boost the amplitude of the reflections. The first event in both
figures represents the reflection from the shallow interface and
the second from the deeper. The third event in Figure 2 (left)
is the interbed multiple that does not appear with the Born
approximation.

Migration in the time domain

We briefly summarize the algorithm for RTM in the time domain.
The method consists of three major parts: forward propagation of

Figure 1. Model with a single high-velocity layer of 2500 m∕s
(gray) in a homogeneous background of 1500 m∕s (white). The star
represents the source and the triangles the receivers.

Frequency domain migration on multi-CPU S51

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



the wavefield from a source, backward propagation from the receiv-
ers while injecting the observed seismic data, and the imaging
condition.
During forward propagating in time, the snapshots of the wave-

field are stored at every imaging time step, so that they can be
reused later for imaging, as sketched in Figure 3. After that, the
wavefield is propagated backward in time using the seismic data
as sources at the receiver locations. The image is built by correla-
tion, taking the product of the forward and backward wavefields
stored at the same imaging time step and summing the result over
time. The imaging time step is often the same as the sampling in-
terval of the seismic data, which is usually larger than the time step
used for modeling.
To save time and storage space, the imaging condition can be

incorporated in the backward propagation. During the forward wave
propagation, the wavefields are written to disk because for problems
of realistic size, random-access memory is usually too small. While
backward propagating every imaging time step, the forward wave-
fields are read from disk and correlated with the computed back-
ward wavefield. Even if this reduces the amount of I/O, disk
access can take a significant amount of time compared to the
computations.
Symes (2007) uses an optimized check-pointing method that

only saves the wavefields at predefined checkpoints in time and re-
computes the wavefields at other instances from these checkpoints.
The amount of recomputation is reduced by choosing optimal
checkpoints. However, the recomputation ratio may be very high
if the number of checkpoints is not large enough. If the number
of checkpoints is too large, the disk space demand and I/O will
be high.
With the use of absorbing boundary conditions to simulate infin-

ite domains, the recomputation of the forward wavefield may re-
quire some special techniques. One possibility is to store only
the boundary values of the wavefield. However, in 3D, the boun-
daries can have a substantial width and this may not be efficient.

Another possibility is to use the random boundary technique
(Clapp, 2009; Shen and Clapp, 2011), which leads to random scat-
tering of the wavefield at the boundary. The idea is that the forward
and backward wavefields have different sets of random numbers
and the artifacts due to scattering do not stack in the final image.
In this case, the propagation effort is doubled because the forward
wavefield is first computed, after which the backward propagation
and the time-reversed forward wavefield are calculated simultane-
ously. This method has been implemented on a GPU by Liu
et al. (2012).
If the noise due to random scatterers is to be avoided, alternative

techniques to reduce the effect of I/O for the RTM algorithm can be
applied. One of them is to hide the writing and reading times of the
snapshots by using asynchronous I/O. However, this is only effec-
tive when the reading of the wavefields from disk is faster than the
computations needed for one imaging time step. One way to achieve
this is by compressing the wavefield before storing it to disk on a
GPU or on a CPU (e.g., Cabezas et al., 2009).
The Fourier transform can offer compression. The periodicity of

trigonometric functions requires special care at the boundaries. An
alternative is to use functions that are compact in space and time,
such as wavelets. The wavelet transform has been extensively doc-
umented (e.g., Louis et al., 1997; Mallat, 2008). Ji et al. (2012) use
wavelets for compression of the wavefields. In that way, disk I/O is
reduced and the GPU, CPU, and disk I/O are balanced well. The
idea is to decompose the snapshot by means of the wavelet trans-
form into “average” and “detailed” parts. The average part contains
the dominant features of the data and the detailed part contains
small-scale features. We are interested in keeping the average part
as it is and focusing on the details. Before compressing the snap-
shots, we can choose the amount of detail we would like to keep.
For the detailed part, the mean and deviation are calculated. We
introduce a parameter λ that is multiplied by the deviation. This
product defines the threshold for compression. Table 2 describes
the effect of values of λ on the compression ratio, which is defined

T
im

e 
(s

)

Distance (m)

Synthetics

0 50 100 150

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e 
(s

)

Distance (m)

Born

0 50 100 150

0

0.2

0.4

0.6

0.8

1

1.2

a) b)

Figure 2. (a): Synthetic seismic produced with regular modeling in
the time domain. The direct arrival has been removed. (b): With
Born approximation in the time domain, showing that the interbed
multiple around 1.2 s has disappeared.

Figure 3. Migration in the time domain. The forward-propagated
wavefield from the source is stored at each imaging time step (light
gray cubes). Then, the wavefield is propagated backward in time
while injecting seismic data at the receiver locations and the
snapshots are stored (dark gray cubes). The imaging condition in-
volves the summation of the product of the forward and backward
wavefields.

S52 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



as the size of the original data divided by the size of the compressed
data, as well as the compression time. It is clear that the compres-
sion ratio depends on the parameter λ, which means that the more
data we remove, the better the compression. The second column in
the table shows the L1-norm of the absolute differences between the
original and the compressed wavefields. The third column repre-
sents the relative L2-norm, which is the usual L2-norm of the differ-
ence scaled by the L2-norm of the original wavefield. We observe
that the more the wavefields are compressed, the more the L1- and
L2-norms increase monotonically, due to the loss of information
during compression.
Which is the optimal compression parameter? There is a trade-off

between small L1- and L2-errors and a large compression ratio. The
table shows that the required compression time hardly changes with
various choices of λ. Figure 4 depicts the compression ratio as a
function of parameter λ. It starts with an exponential increase
and becomes linear for λ > 1. Therefore, we have selected λ ¼ 1

as our compression parameter, because it provides an acceptable
balance between compression errors and required compression
time.

Migration in the frequency domain

Migration in the frequency domain requires the selection of a set
of frequencies that avoids spatial aliasing (Mulder and Plessix,
2004b). The seismic data and the source signature are transformed
into frequency domain by an FFT. For each frequency, the Helm-
holtz equation is solved iteratively. The imaging condition in the
frequency domain consists of a simple multiplication of the wave-
fields at each frequency, followed by a summation over the selected
frequencies. Figure 5 illustrates the procedure. The forward and
backward propagation are computed in parallel and there is no need
to store the wavefields on disk. Basically, for each frequency, the
forward and backward fields are computed one after the other and

are then multiplied with each other. Only two wavefields are kept in
memory, whereas in time domain, all the consecutive wavefields for
the forward propagation need to be stored.

IMPLEMENTATION DETAILS

As mentioned before, we consider the GPU as an accelerator in
our implementation strategy and we will use the terms “CPU” and
“computer node” when referring to a multicore CPU machine.
Presently, a common hardware configuration is a CPU connected

to two GPUs that contain less memory than the CPU. We have iden-
tified the parts of the algorithms that can be accelerated on a GPU
and implemented them in CUDA 5.0. As already explained, the par-
allelization process for migration in the time domain is different
from that for the frequency domain because explicit time stepping
is used in the time domain, whereas the frequency domain requires
solving a linear system of equations. We summarize the levels of
parallelism in Table 3.

Table 2. Compression for wavefield snapshots for a problem
of size 5123 and about 100 MB of storage. The L1-norm
measures the difference between the original and compressed
wavefield. The relative L2-norm is the usual L2-norm of the
differences, scaled by the L2-norm of the original snapshot.
The compression ratio is defined as the size of the original
data divided by the size of the compressed data.

λ L1-norm
Relative
L2-norm

Compr.
ratio

Compr.
time (s)

0.1 1.08e − 1 1.98e − 3 3.88 16.16

0.5 1.14e − 1 2.11e − 3 4.16 15.46

1 1.52e − 1 2.87e − 3 4.32 15.27

1.5 2.21e − 1 4.27e − 3 4.42 15.07

2 3.07e − 1 5.95e − 3 4.51 14.92

2.5 4.06e − 1 7.86e − 3 4.59 14.77

3 5.22e − 1 1.01e − 2 4.67 14.58

3.5 6.47e − 1 1.25e − 2 4.75 14.53

4 7.96e − 1 1.53e − 2 4.83 14.37

4.5 9.44e − 1 1.82e − 2 4.91 14.27

5 1.09e − 0 2.09e − 2 4.99 14.28

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

λ

C
om

pr
es

si
on

 r
at

io

Figure 4. Compression ratio as a function of the parameter λ.

Figure 5. Migration in the frequency domain requires multiplica-
tion of forward and backward wavefields, followed by summation.

Frequency domain migration on multi-CPU S53

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



The highest level of parallelization for time-domain migration is
over the shots. Each shot is treated independently. We assume that
the migration volume for one shot is computed on one computer
node connected to one or more GPUs.
The next step is to split the problem into subdomains that will fit

on a GPU. We use a domain decomposition approach or grid par-
titioning. The idea is that, at each time step, the subdomains are
treated independently of each other. Once the computation is com-
pleted, the subdomains are copied back to the CPU, after which the
next time step can be started. The third level of parallelization is to
perform computations and data transfer simultaneously, to save time
and achieve optimal load balancing. The compression algorithms
and simultaneous computations of the forward and backward propa-
gation are also part of the third level. The fourth level of parallelism
for time-domain computations is data parallelism (e.g., Micikevi-
cius, 2009).
For migration in the frequency domain as well as in the time do-

main, the highest level of parallelization is over the shots. The next
level of parallelism involves the frequencies. For each frequency, a
linear system of equations needs to be solved. As mentioned before,
the matrix size and memory requirements are the same for each fre-
quency, but the lower frequencies require less computing time than
the higher ones (Erlangga et al., 2006). Here, we assume that one
shot in the time domain and one shot for one frequency in the fre-
quency domain fits in one compute node connected to one or more
GPUs, respectively. The third level of parallelism includes matrix
decomposition, where the matrix for the linear system of equations
is decomposed into subsets of rows that fit on a single GPU (e.g.,
Knibbe et al., 2013). With this approach, we can deal with problems
that are larger than can be handled by a single GPU. So far, the
simultaneous use of two GPUs to accelerate offloaded matrix-vector
multiplications (MVMs) of a large sparse-matrix have not produced
any performance improvements compared to a multicore CPU due
to the data transfer. Therefore, we use only CPUs for the frequency-
domain approach. Note that, with an increasing number of GPUs
connected to the same CPU (faster PCI buses, etc.), this situation
may change. The last level of parallelism for migration in frequency
domain is parallelization of MVMs and vector-vector operations.

Domain decomposition approach

The time-domain implementation on multi-GPUs is done by
domain decomposition. The problem is divided into subdomains
that fit in the limited memory of a GPU. This approach can also
be applied if a large problem needs to be computed on a sin-
gle GPU.
For simplicity of implementation and communication between

GPUs, the domain is split only in the z-direction, as Figure 6 shows.

The overlapping areas are attached to both subdomains. The size of
a subdomain is determined by the available memory divided by the
number of discretization points in the x-and y-directions, multiplied
by the byte-size of a floating-point number. Each subdomain should
fit entirely in GPU memory.
After partitioning the problem, tasks are set up, where each task

represents a subdomain. These tasks are added to a queue and
handled by pthreads (Barney, 2010) that are distributed among
the GPUs.
Once a subdomain has been processed, the interior domain (i.e.,

the domain without the overlapping parts), is copied back to the
CPU. Then, the next time step can be performed.

Table 3. Levels of parallelism for migration in time and frequency domain.

Time domain Frequency domain

Level 1 Parallelization over shots Parallelization over shots

Level 2 Domain decomposition Parallelization over frequencies

Level 3 Overlap for computations with memory transfer, load balancing Matrix decomposition

Level 4 Data parallelism (grid points) Linear algebra parallelization (MVM, vector operations)

Figure 6. An example of domain decomposition into two subdo-
mains in the z-direction. The overlapping area has half the size
of the discretization stencil.

S54 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Implicit load balancing

A common approach for parallelization across multiple CPU
nodes in the cluster is the so-called server-to-client approach
(e.g., Stevens, 1998). The server is aware of the number of nodes
and the amount of work involved. It equally distributes the
workload among the nodes. This approach is efficient on clusters
with homogeneous nodes as all CPU nodes have the same
characteristics.
In this paper, we propose a client-to-server approach where

clients request tasks to the server. GPU clusters are either hetero-
geneous or they have to be shared simultaneously among the users.
For example, the cluster at our disposition, Little Green Machine
(LGM, 2012), has the same hardware (with the exception of one
node). Similarly, within one computer node, the GPUs have the
same specifications, but one GPU can already be used by a user
while the other one remains available. To address the issue of load
balancing, we created a task system. When doing migration in time
domain, an “MPI-task” defines the work to be done for one shot.
For each time step during forward modeling, one “GPU-task” is
created for each subdomain of the domain decomposition algo-
rithm, as Figure 7 shows. The philosophy behind a task system
is the same over multiple compute nodes as well as over multiple
GPUs within one node: process all the tasks as fast as possible until
they are all processed. In this approach, the work is spread dynami-
cally according to the speed of the computing nodes and GPUs.
Depending on the level of parallelism, the implementation of the
tasks systems differs.

MPI-tasks

The server or “master node” creates one task per shot. Each task
is added to a queue. When a client requests a task, a given task is
moved from the queue to the active list. It can happen that a node
will crash due to a hardware failure. In that case, the task will re-
main on the active list until all the other tasks have finished. Once
that happens, any unfinished tasks will be moved back to the queue,
so that another computer node can take over the uncompleted work.
Toward the end of the migration, the queue is empty while the

lists of active tasks is not. Given that there is no way of telling
whether a task has crashes or just takes long time, the former is
assumed. The task that is being processed for the longest period
of time is submitted again but to a different node. At this point, this
particular task may end up being processed by two nodes. As soon
as the server receives the result of one of these tasks, the other task is
killed. When all tasks have been processed, the master node saves
the migration image to disk and stops.

GPU-tasks

GPU hardware failures are less frequent than the compute node
ones; therefore, there is no need to have two different queues for
GPU-tasks. As an example, let us consider time domain modeling
on a CPU node with two GPUs. A GPU-task defines a subdomain
and consists of the following workflow: transfer the subdomain
from CPU to GPU, propagate wavefield, and finally, copy the data
back to CPU.
When the program starts, first the data have to be transferred to

both GPUs. We expect that the two GPUs start transferring data and
then will compete for the PCI-bus. Eventually, one GPU will be

slightly faster with either the computations or with the data transfer.
Then, the two GPUs will work asynchronously, meaning that while
one GPU is computing, the other is transferring data. This leads to
dynamic load balancing, self-regulated by the system.
We performed profiling with the CUDA profiler, as illustrated in

Figure 8. Interestingly enough, the two GPUs are acting asynchro-
nously almost from the start of the program execution. The column
on the left in Figure 8 shows that we have used two GPUs GeForce
GTX 460, each of which has to perform a memory copy from host
to device (MemCpy(HtoD)), a memory copy from device to host
(MemCpy(DtoH)), and computations of the wave propagation ker-
nel (Compute). On the right side of the figure, the horizontal axis
denotes time, bars represent different tasks and the length of a bar
shows the duration of a task. It is easy to see that, at the beginning,
both GPUs simultaneously start to transfer data from the host, be-
cause the dashed bars are on top of each other. Then, GPU[1] starts
computing (dark gray bar) and the GPU[0] is idle. Afterward, GPU
[1] transfers the results to the CPU, and GPU[0] is computing at the
same time. We have performed several profiling tests and every
time, we obtained the same outcome, with the GPUs running in
asynchronous mode already from the start. This provides an optimal
load balancing.
Table 4 presents elapsed times (in s) for the modeling in time

domain for a finite-difference discretization with several discretiza-
tion orders. For problems of larger size, domain decomposition is
applied and the task system with load balancing is used. The col-
umn “slice” denotes the maximum number of ðx; yÞ-slices in the z-
direction that will fit in the memory of one GPU (1 GB). If a slice is
smaller than the number of points in z-direction, then domain de-
composition has to be applied, because the problem does not fit in
GPU memory. It is clearly seen that a problem of size 2003 is suf-
ficiently small to fit into 1 GByte of memory, but larger problems
have to be split. Also, the last column shows that the size of the slice
does not give rise to significant changes in time with increasing dis-
cretization order. A higher discretization order requires more float-
ing point operations per discretization point and causes an increase
in the compute time on the CPU. However, the GPU time hardly
changes with increasing order. The reason for this behavior is the

Figure 7. An example of task distribution into three tasks. Note that
the overlapping areas have to be assigned to all neighbors.

Frequency domain migration on multi-CPU S55

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



load-balancing strategy. As the profiling suggests, the transfer and
computational time overlap in time asynchronously. On the one
hand, the wave propagation kernel takes less time than the data
transfer. On the other hand, the transfer time does not change sig-
nificantly for higher-order discretizations. Therefore, the increase of
computational and transfer time for higher-order discretizations is
hidden and the overall GPU-time stays the same.

We propose the following workflow for migration in time do-
main, combining the techniques mentioned above. For forward
propagation, first, a main thread is created on a CPU. Its role is
to launch other threads, create tasks, and be responsible for the
GPU-CPU and CPU-GPU transfer. Two child threads are created,
one for each GPU, that perform the actual time-stepping computa-
tions on the GPUs. When one imaging time step is finished, the

Figure 8. Profiling for seismic modeling in the time domain using a 16th order discretization on two GPUs. The column on the left shows the
tasks per GPU, such as data transfer from host to deviceMemCpy(HtoD), from device to hostMemCpy(DtoH) and wave propagation Compute.
The length of a bar on the left represents the duration of a task. Dashed bars show the data transfer and dark gray bars represent the computa-
tional kernel. The dark gray bars are only overlapping in time with the dashed bars, illustrating that both GPUs are operating asynchronously.

Table 4. Elapsed time comparisons (in s) for fourth-, sixth-, eighth-, and 16th-order discretizations for a 3D problem of size n3.
The speedup is computed as the ratio of CPU time to GPU time. The slice column denotes the number of �x;y�-slices in z-
direction that will fit in the memory of one GPU (1 GB).

Order n CPU 1 GPU Speedup 2 GPUs Speedup slice

4 200 6 3 1.93 3 1.95 1565

400 49 25 1.94 24 2.02 391

800 398 202 1.97 137 2.9 97

1200 1342 673 1.99 442 3.03 43

6 200 8 3 2.33 3 2.32 1565

400 61 26 2.34 25 2.48 391

800 489 207 2.36 138 3.56 97

1200 1709 684 2.50 468 3.65 43

8 200 9 3 2.74 3 2.77 1565

400 73 26 2.75 26 2.83 391

800 591 209 2.82 137 4.31 97

1200 2002 685 2.92 473 4.23 43

16 200 15 3 4.34 3 4.36 1565

400 125 29 4.30 27 4.58 391

800 1008 221 4.55 142 7.09 97

1200 3475 671 5.18 433 8.02 41

S56 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



wavefield is copied from the GPU to the CPU. The main thread
launches several child threads to keep every CPU-core busy. The
role of those processes is to compress the wavefield on the fly, using
the wavelet transform described above, and write the results to disk.
For the backward propagation, the workflow is similar, except that
the wavefields are read from memory and decompressed on the fly.
Moreover, during the backward propagation the imaging condition
is applied. Computations on the GPUs as well as the compression
and disk I/O are all done in parallel. For the proposed workflow, I/O
(including compression and decompression) in the time domain
takes about 5% of the overall computational time.

RESULTS

In this section, we present some results for migration in the time
and frequency domain and make comparisons in terms of per-
formance.

Wedge

The first example is a wedge model that consists of two dipping
layers, depicted in Figure 9. The main purpose is to validate the
migration results in time and frequency domain. The problem is
defined on a cube of size ½0; 1000�3 m3. For our experiments,
we consider a series of uniform grids with increasing size n3.
The grid size satisfies the condition hmaxx;y;zkðx; y; zÞ ¼ 0.625,
where the grid spacing is h ¼ 1000

n−1 and the wavenumber kðx; y; zÞ
is given by kðx; y; zÞ ¼ 2πf∕cðx; y; zÞ with velocity cðx; y; zÞ.
The problem is discretized with fourth-order finite differences in
space and second-order in time for migration in time domain
and second-order finite differences in space for migration in fre-
quency domain. The source is a Ricker wavelet with a peak fre-
quency of 15 Hz located at (500, 500, 10). The receivers are
placed at a horizontal plane on a regular grid of 50 × 50 m2 at a
depth of 20 m. The sampling interval for the seismic data is 4
ms and the maximum simulation time is 2 s. The imaging time step
is 4 ms. The experiment was carried out on the Little Green Ma-
chine LGM (2012).
Table 5 lists the timings for migration in the time domain and

Table 6 for the frequency domain. The first column contains the
size of the problem, excluding an additional 40 points at each

absorbing boundary. The second and third columns show the
elapsed time for the forward and backward propagation, respec-
tively. For the experiment in the frequency domain, the timings
are given for the highest frequency of 30 Hz, because the precondi-
tioned Helmholtz solver requires the longest computational time at
this frequency. From Tables 5 and 6, it is clear that migration in the
frequency domain is more than two times faster than the migration
in time domain. Here, we assume that we have enough compute
nodes for the calculation of all frequencies in parallel.

Overthrust model

The SEG/EAGE overthrust model has been introduced in Amin-
zadeh et al. (1997). It represents an acoustic constant-density
medium with complex, layered structures and faults. We choose
a subset of the large initial model, containing the fault features
shown in Figure 10, and rescale it to fit on a single computer node.
The volume has a size of 1000 × 1000 × 620 m3. The problem is
discretized on a grid with 301 × 301 × 187 points and a spacing of
3.33 m in each coordinate direction. As described earlier, one cri-
terion for choosing the grid spacing is the number of points per
wavelength needed to accurately model the maximum frequency.
Another criterion is the available memory size of the computational
node. In addition, we add 40 points for each absorbing boundary in
the time-domain scheme to avoid boundary reflections. The discre-
tization for migration in time domain is fourth-order in space and
second-order in time and for migration in frequency domain is sec-
ond-order in space. A Ricker wavelet with a peak frequency of
15 Hz is chosen for the source and the maximum frequency in this
experiment is 30 Hz. Note that, by reducing the maximum fre-
quency, we can increase the grid spacing. For instance, by choosing
a maximum frequency of 8 Hz, the grid spacing can be chosen
as 25 m in each direction. The line of sources is located at a depth

Figure 9. Velocity profile for the wedge model.

Table 5. Performance of the migration for one source in the
time domain in the wedge problem. The problem size is n3,
not counting the extra points at each absorbing boundary.

n3 Timings forward (s) Timings backward (s)
Migration
ime (s)

201 837 846 1683

251 1653 1663 3317

301 2998 2990 5988

901 6649 7015 13,666

Table 6. Performance of migration for one source in the
frequency domain for the wedge problem at highest
frequency 30 Hz.

n3 Timings forward (s) Timings backward (s)
Migration
time (s)

201 375 365 740

251 732 718 1450

301 1119 1145 2264

Frequency domain migration on multi-CPU S57

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



of 10 m and is equally spaced with an interval of 18.367 m in the
x-direction. The receivers are equally distributed in the two horizon-
tal directions with the same spacing as the sources, at the depth of
20 m. The sampling interval for the modeled seismic data is 4 ms.
The maximum simulation time is 0.5 s. For migration in the time
domain, an imaging time-step of 0.0005 s was chosen, whereas in
the frequency domain we chose a frequency interval of 2 Hz.
Images produced by RTM in the time domain and in the fre-

quency domain are shown in Figures 11 and 12, respectively.
The timings for migration in the time domain are given in Table 7

and for migration in the frequency domain in Table 8, respectively.
The first and second column show the elapsed time for the forward
and backward propagation, correspondingly. For the experiment in
the frequency domain, the timings are given for a highest frequency
of 30 Hz, because the preconditioned Helmholtz solver requires the
longest computational time for this frequency. The timings show
that migration in the frequency domain is about four times faster
than in time domain. Here, we again assume that we have enough
computational nodes for the calculation of all frequencies in
parallel.

DISCUSSION

For a single source, migration in the frequency domain would be
more time consuming on one computational node because all the

frequencies are computed sequentially. However, if enough compu-
tational nodes are available, then migration in the frequency domain
can compete with migration in the time domain as shown in Table 1.
Our experiments in the previous section confirm that.
One might wonder what the actual timings would be in the time

and in the frequency domain for a given number of computational
nodes for a given problem. The wall-clock time for the time domain
can be estimated as a function of ns sources on nc computational
nodes

ttd ¼ Ttd
max max

�
1;
ns
nc

�
; (19)

where Ttd
max is the computational time for one source on one com-

putational node. For the frequency domain, it also depends on nf
frequencies

tfd ¼ Tfd
max max

�
1;
nsnf
2nc

�
; (20)

where Tfd
max is the computational time needed for the maximum fre-

quency on one computational node. Combining the number of
sources and computational nodes in a new variable nc∕ns, the time
function for the time and frequency domain is shown in Figure 13,

Figure 10. Overthrust velocity model.

Figure 11. Migration in the time domain for a subset of the SEG/
EAGE Overthrust problem.

Figure 12. Migration in the frequency domain for the Overthrust
problem.

Table 7. Performance of migration of one source in the time
domain for the Overthrust problem.

Timings forward (s) Timings backward (s) Migration time (s)

1156 1168 2324

Table 8. Performance of migration of one source in the
frequency domain for the Overthrust problem at the highest
frequency of 30 Hz.

Timings forward (s) Timings backward (s) Migration time (s)

276 294 570

S58 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



given the experimental results from the Overthrust model. If the
number of sources is smaller than twice the number of compute
nodes, then the time domain is faster on our hardware. Otherwise,
the frequency-domain approach outperforms the time-domain
method.
Moreover, from the experiments described in the previous sec-

tions, one can obtain the relation between memory usage and prob-
lem size. For the frequency domain, we find

MemoryðGBÞ ¼ 2 · 10−7 · N; (21)

where N is the total number of grid points including absorbing
boundary conditions. For the time domain, we obtain

MemoryðGBÞ ¼ 5.5 · 10−8 · N: (22)

On the one hand, the frequency-domain method uses more than
twice as much memory as the time-domain scheme. On the other
hand, the migration in the frequency domain does not make use of
disk for storing snapshots.
Obviously, there is a trade-off between the computational time,

the amount of memory, and disk usage when considering perfor-
mance for migration in the time and frequency domain. At this
point, the memory needed for the solver is the main bottleneck
for solving larger problems.

CONCLUSIONS

We have considered migration in the frequency domain based on
a Krylov solver preconditioned by a shifted-Laplace multigrid
method. Its implementation has been compared to the implementa-
tion of the RTM in the time domain in terms of performance and
parallelization. The hardware configuration is a multicore CPU con-
nected to two GPUs that contain less memory than the CPU. The
implementation in frequency domain is using parallel techniques on
multicore CPU and the implementation in time domain is acceler-
ated using GPUs. The parallelization strategy uses domain decom-
position and dynamic load balancing.

The experiments show that migration in the frequency domain on
a multicore CPU is faster than RTM in the time domain accelerated
by GPUs, given enough compute nodes to calculate all frequencies
in parallel. This observation is based on our own implementation
of both approaches, optimization details, and the hardware we
had access to. Despite such uncertainties, the methods can obvi-
ously compete. We expect to have similar results on different hard-
ware because the GPU-CPU performance ratio does not change
dramatically.

ACKNOWLEDGMENTS

The authors thank Delft University of Technology for granting
access to the Little Green Machine, partly funded by the `Neder-
landse Organisatie voor Wetenschappelijk Onderzoek’ (NWO,
the Netherlands Organisation for Scientific Research) under project
number 612.071.305.

APPENDIX A

SOLVER

For modeling in the frequency domain, we consider the Helm-
holtz equation for wave propagation in a 3D heterogeneous
medium,

−
∂2ϕ
∂x2

−
∂2ϕ
∂y2

−
∂2ϕ
∂z2

− k2ϕ ¼ g; (A-1)

where ϕ ¼ ϕðx; y; z;ωÞ is the wave pressure field, k ¼ kðx; y; z;ωÞ
is the wavenumber, and g ¼ gðx; y; z;ωÞ is the source term. The
corresponding differential operator has the following form

A ¼ −Δ − k2;

where Δ denotes the Laplace operator. The discretized Helmholtz
equation

Aϕ ¼ g; A ∈ CN×N; ϕ; g ∈ CN (A-2)

is solved by the Bi-CGSTAB method (der Vorst, 1992; Saad, 2003).
The advantage of this method is that it is easily parallelizable. How-
ever, even if the Bi-CGSTAB method converges for small wave-
numbers k, the convergence is too slow and it strongly depends
on the grid size, see Erlangga (2005). The original system of linear
equations A-1 can be replaced by an equivalent preconditioned
system

AM−1u ¼ g; M−1u ¼ ϕ; (A-3)

where the inverse of M is easy to compute. The matrix AM−1 is
well-conditioned, so that the convergence of Bi-CGSTAB (and
any other Krylov method) is improved.
As the preconditioner for Bi-CGSTAB we consider the shifted

Laplace preconditioner introduced by Erlangga et al. (2003,
2004, 2006), which is based on the following operator

Mðβ1;β2Þ ¼ −Δ − ðβ1 − iβ2Þk2; β1; β2 ∈ R; (A-4)

with the same boundary conditions as A. The system A-2 is then
preconditioned by

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Number of computational nodes / number of sources

T
ot

al
 ti

m
e 

(s
)

Time domain
Frequency domain

Figure 13. Performance of the time-domain scheme (dashed line)
and the frequency-domain solver (solid line) as a function of the
number of compute nodes divided by the number of sources.

Frequency domain migration on multi-CPU S59

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Mðβ1;β2Þ ¼ −L − ðβ1 − iβ2Þk2I; β1; β2 ∈ R; (A-5)

where L is the discretized Laplace operator, I is the identity matrix,
and β1; β2 can be chosen optimally. Depending on β1 and β2, the
spectral properties of the matrix AM−1 change. In Erlangga et al.
(2006), the Fourier analysis shows that A-1 with β1 ¼ 1 and 0.4 ≤
β2 ≤ 1 gives rise to favorable properties that considerably improve
convergence of Krylov methods (e.g., Bi-CGSTAB), see also van
Gijzen et al. (2007).
If Aϕ ¼ g in A-2 is solved using the standard multigrid method,

then conditions on the smoother and the coarse-grid correction must
be met. For the smoother, the conditions are:

• k2 must be smaller than the smallest eigenvalue of the
Laplacian;

• The coarsest level must be fine enough to allow for the
representation of the smooth solution components.

Furthermore, the standard multigrid method may not converge in
case k2 is close to an eigenvalue of M. This issue can be resolved
by using subspace correction techniques (Elman et al., 2001).
Because of the above reasons, we choose a complex-valued gen-

eralization of the matrix-dependent multigrid method by de Zeeuw
(1990) as a preconditioner in A-3. It provides an h-independent con-
vergence factor in the preconditioner, as shown in Erlangga
et al. (2006).
In the coarse-grid correction phase, the Galerkin method is used

to get coarse-grid matrices

MH ¼ RMhP; (A-6)

whereMH andMh are matrices on the coarse and fine grids, respec-
tively, P is prolongation, and R is restriction. The prolongation P is
based on the 3D matrix-dependent prolongation, described in Zhe-
bel (2006) for real-valued matrices. Because the matrix Mh is a
complex symmetric matrix, the prolongation is adapted for this
case. This prolongation is also valid at the boundaries.
The restriction R is chosen as full-weighting restriction and not as

adjoint of the prolongation. It provides a robust convergence for
several complex-valued Helmholtz problems (Erlangga et al.,
2006).
As mentioned before, classical iterative methods in general do

not converge for the Helmholtz equation, but we can apply them
as smoothers for the multigrid method. We consider a parallel
version of the Gauss-Seidel method as the smoother, the so-called
multicolored Gauss-Seidel smoother. In our 3D case, we use eight
colors, where the neighbors of a grid point do not have the
same color.

APPENDIX B

LITTLE GREEN MACHINE

Little Green Machine configuration consists of the following no-
des interconnected by 40 Gbps Infiniband:

• 1 head node

‐ 2 Intel hexacore X5650
‐ 24 GB memory
‐ 24 TB disk (RAID)

• 1 large RAM node

‐ 2 Intel quadcore E5620
‐ 96 GB memory
‐ 8 TB disk
‐ 2 NVIDIA C2070

• 1 Tesla node

‐ 2 Intel quadcore E5620
‐ 24 GB memory
‐ 8 TB disk
‐ 2 NVIDIA GTX480

• 1 test node

‐ 2 Intel quadcore E5620
‐ 24 GB memory
‐ 2 TB disk
‐ 1 NVIDIA C2050
‐ 1 NVIDIA GTX480

• 20 LGM general computing nodes

‐ 2 Intel quadcore E5620
‐ 24 GB memory
‐ 2 TB disk
‐ 2 NVIDIA GTX480

REFERENCES

Alford, R., K. Kelly, and B. Boore, 1974, Accuracy of finite-difference
modeling of the acoustic wave equation: Geophysics, 39, 834–842,
doi: 10.1190/1.1440470.

Aminzadeh, F., J. Brac, and T. Kunz, 1997, 3-D salt and overthrust models:
SEG.

Barney, B., 2010, POSIX threads programming: Lawrence Livermore
National Laboratory: https://computing.llnl.gov/tutorials/pthreads.

Baysal, D. E., D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time
migration: Geophysics, 48, 1514–1524, doi: 10.1190/1.1441434.

Beylkin, G., 1985, Imaging of discontinuities in the inverse scattering
problem by inversion of a causal generalized Radon transform: Journal
of Mathematical Physics, 26, 99–108, doi: 10.1063/1.526755.

Beylkin, G., and R. Burridge, 1990, Linearized inverse scattering problems
in acoustics and elasticity: Wave Motion, 12, 15–52, doi: 10.1016/0165-
2125(90)90017-X.

Cabezas, J., M. Araya-Polo, I. Gelado, N. Navarro, E. Morancho, and J. M.
Cela, 2009, High-performance reverse time migration on GPU:
International Conference of the Chilean Computer Science Society,
77–86.

Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting
boundary condition for discrete acoustic and elastic wave equations:
Geophysics, 50, 705–708, doi: 10.1190/1.1441945.

Claerbout, J. F., 1971, Towards a unified theory of reflector mapping:
Geophysics, 36, 467–481, doi: 10.1190/1.1440185.

Claerbout, J. F., 1985, Imaging the Earth’s interior: Blackwell Scientific.
Clapp, R. G., 2009, Reverse time migration with random boundaries: 79th

Annual International Meeting, SEG, Expanded Abstracts, 2809–2813.
Dablain, M. A., 1986, The application of high-order differencing to the

scalar wave equation: Geophysics, 51, 54–66, doi: 10.1190/1.1442040.
der Vorst, H. A. V., 1992, Bi-CGSTAB: A fast and smoothly converging

variant of Bi-CG for the solution of nonsymmetric linear systems: SIAM
Journal on Scientific and Statistical Computing, 13, 631–644, doi: 10
.1137/0913035.

de Zeeuw, P. M., 1990, Matrix-dependent prolongations and restrictions in a
blackbox multigrid solver: Journal of Computational and Applied Math-
ematics, 33, 1–27, doi: 10.1016/0377-0427(90)90252-U.

Elman, H. R., O. G. Ernst, and D. P. O’Leary, 2001, A multigrid method
enhanced by Krylov subspace iteration for discrete Helmholtz equations:
SIAM Journal on Scientific Computing, 23, 1291–1315, doi: 10.1137/
S1064827501357190.

Engquist, B., and A. Majda, 1977, Absorbing boundary conditions for
numerical simulation of waves: Mathematics of Computation, 31,
629–651, doi: 10.1090/S0025-5718-1977-0436612-4.

S60 Knibbe et al.

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.1440470
http://dx.doi.org/10.1190/1.1440470
http://dx.doi.org/10.1190/1.1440470
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
http://dx.doi.org/10.1190/1.1441434
http://dx.doi.org/10.1190/1.1441434
http://dx.doi.org/10.1190/1.1441434
http://dx.doi.org/10.1063/1.526755
http://dx.doi.org/10.1063/1.526755
http://dx.doi.org/10.1063/1.526755
http://dx.doi.org/10.1016/0165-2125(90)90017-X
http://dx.doi.org/10.1016/0165-2125(90)90017-X
http://dx.doi.org/10.1016/0165-2125(90)90017-X
http://dx.doi.org/10.1190/1.1441945
http://dx.doi.org/10.1190/1.1441945
http://dx.doi.org/10.1190/1.1441945
http://dx.doi.org/10.1190/1.1440185
http://dx.doi.org/10.1190/1.1440185
http://dx.doi.org/10.1190/1.1440185
http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1016/0377-0427(90)90252-U
http://dx.doi.org/10.1016/0377-0427(90)90252-U
http://dx.doi.org/10.1137/S1064827501357190
http://dx.doi.org/10.1137/S1064827501357190
http://dx.doi.org/10.1137/S1064827501357190
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4


Erlangga, Y., and R. Nabben, 2008, Multilevel projection-based nested Kry-
lov iteration for boundary value problems: SIAM Journal on Scientific
Computing, 30, 1572–1595, doi: 10.1137/070684550.

Erlangga, Y. A., 2005, A robust and efficient iterative method for the numeri-
cal solution of the Helmholtz equation: Ph.D. thesis, Delft University of
Technology.

Erlangga, Y. A., and F. J. Herrmann, 2008, An iterative multilevel method
for computing wavefields in frequency-domain seismic inversion: 78th
Annual International Meeting, SEG, Expanded Abstracts, 1957–1960.

Erlangga, Y. A., C. W. Oosterlee, and C. Vuik, 2006, A novel multigrid
based preconditioner for heterogeneous Helmholtz problems: SIAM Jour-
nal on Scientific Computing, 27, 1471–1492, doi: 10.1137/040615195.

Erlangga, Y. A., C. Vuik, and C. Oosterlee, 2004, On a class of precondi-
tioners for solving the Helmholtz equation: Applied Numerical Math-
ematics, 50, 409–425, doi: 10.1016/j.apnum.2004.01.009.

Erlangga, Y. A., C. Vuik, and C. W. Oosterlee, 2003, On a class of precondi-
tioners for solving the discrete Helmholtz equation: Mathematical and
numerical aspects of wave propagation: University of Jyväskylä, Finland,
788–793.

Fornberg, B., 1988, Generation of finite difference formulas on arbitrarily
spaced grids: Mathematics of Computation, 51, 699–706, doi: 10.1090/
S0025-5718-1988-0935077-0.

Fu, H., R. G. Clapp, O. Lindtjorn, T. Wei, and G. Yang, 2012, Revisiting
finite differences and spectral methods on diverse parallel architectures:
Computers & Geosciences, 43, 187–196, doi: 10.1016/j.cageo.2011.09
.017.

George, A., and J. W. H. Liu, 1981, Computer solution of large sparse pos-
itive definite systems: Prentice-Hall.

Griewank, A., and A. Walther, 2000, Algorithm 799: Revolve: An imple-
mentation of checkpointing for the reverse or adjoint mode of computa-
tional differentiation: ACM Transactions on Mathematical Software, 26,
19–45, doi: 10.1145/347837.347846.

Hagedoorn, J. G., 1954, A process of seismic reflection interpretation:
Geophysical Prospecting, 2, 85–127, doi: 10.1111/j.1365-2478.1954
.tb01281.x.

Ji, Q., S. Suh, and B. Wang, 2012, GPU based layer-stripping TTI RTM:
82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5.

Knibbe, H., C. W. Oosterlee, and C. Vuik, 2011, GPU implementation of a
Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid
method: Journal of Computational and Applied Mathematics, 236,
no. 3, 281–293, doi: 10.1016/j.cam.2011.07.021.

Knibbe, H., C. Vuik, and C. W. Oosterlee, 2013, 3D Helmholtz Krylov
solver preconditioned by a shifted Laplace multigrid method on
multi-GPUs, in Proceedings of ENUMATH 2011, the 9th European
Conference on Numerical Mathematics and Advanced Applications,
Leicester, 653–661.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack
migration: Proceedings of the Conference on Inverse Scattering: Theory
and Applications, SIAM, 206–220.

LGM 2012, The Little Green Machine: Massive many-core supercomputer
at low environmental cost: http://www.littlegreenmachine.org.

Liu, H., B. Li, H. Liu, X. Tong, Q. Liu, X. Wang, and W. Liu, 2012, The
issues of prestack reverse time migration and solutions with graphic
processing unit implementation: Geophysical Prospecting, 60, 906–
918, doi: 10.1111/j.1365-2478.2011.01032.x.

Louis, A., P. Maas, and A. Rieder, 1997, Wavelet: Theory and applications:
John Wiley and Sons.

Mallat, S., 2008, Awavelet tour of signal processing, 3rd edition: The sparse
way: Academic Press.

Marfurt, K. J., and C. S. Shin, 1989, The future of iterative modeling of
geophysical exploration: Supercomputers in seismic exploration: Perga-
mon Press, 203–228.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using
CUDA: GPGPU-2: Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, 79–84.

Mulder, W. A., and R.-E. Plessix, 2002, Time- versus frequency-domain
modelling of seismic wave propagation: Presented at the 64th Annual
Conference and Exhibition, EAGE, Extended Abstract E015, 27–30.

Mulder, W. A., and R.-E. Plessix, 2004a, A comparison between one-way
and two-way wave-equation migration: Geophysics, 69, 1491–1504, doi:
10.1190/1.1836822.

Mulder, W. A., and R.-E. Plessix, 2004b, How to choose a subset of
frequencies in frequency-domain finite-difference migration: Geophysical
Journal International, 158, 801–812, doi: 10.1111/j.1365-246X.2004
.02336.x.

Operto, S., J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. B. H.
Ali, 2007, 3D finite-difference frequency-domain modeling of visco-
acoustic wave propagation using a massively parallel direct solver: A fea-
sibility study: Geophysics, 72, no. 5, SM195–SM211, doi: 10.1190/1
.2759835.

Plessix, R.-E., 2008, A Helmholtz iterative solver for 3D seismic-imaging
problems: Geophysics, 72, no. 5, SM185–SM194, doi: 10.1190/1
.2738849.

Plessix, R.-E., and W. A. Mulder, 2004, Frequency-domain finite-difference
amplitude-preserving migration: Geophysical Journal International, 157,
975–987, doi: 10.1111/j.1365-246X.2004.02282.x.

Riyanti, C., Y. Erlangga, R.-E. Plessix, W. A. Mulder, C. Vuik, and C. W.
Oosterlee, 2006, A new iterative solver for the time-harmonic wave equa-
tion: Geophysics, 71, no. 5, E57–E63, doi: 10.1190/1.2231109.

Riyanti, C. D., A. Kononov, Y. A. Erlangga, C. Vuik, C. W. Oosterlee, R.-E.
Plessix, and W. A. Mulder, 2007, A parallel multigrid-based precondi-
tioner for the 3D heterogeneous high-frequency Helmholtz equation:
Journal of Computational Physics, 224, 431–448, doi: 10.1016/j.jcp
.2007.03.033.

Saad, Y., 2003, Iterative methods for sparse linear systems: SIAM.
Saleh, B., 2011, Introduction to subsurface imaging: Cambridge University
Press.

Shen, X., and R. G. Clapp, 2011, Random boundary condition for low-
frequency wave propagation: 81st Annual International Meeting, SEG,
Expanded Abstracts, 2962–2965.

Stevens, W. R., 1998, UNIX network programming, Volume 1, 2nd ed.:
Networking APIs: Sockets and XTI: Prentice Hall.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing:
Geophysics, 72, no. 5, SM213–SM221, doi: 10.1190/1.2742686.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic
approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.

van Gijzen, M. B., Y. A. Erlangga, and C. Vuik, 2007, Spectral analysis of
the discrete Helmholtz operator preconditioned with a shifted Laplace:
SIAM Journal on Scientific Computing, 29, 1942–1958, doi: 10.1137/
060661491.

Wang, S., M. V. de Hoop, and J. Xia, 2010, Acoustic inverse scattering via
Helmholtz operator factorization and optimization: Journal of Computa-
tional Physics, 229, 8445–8462, doi: 10.1016/j.jcp.2010.07.027.

Wang, S., M. V. de Hoop, and J. Xia, 2011, On 3Dmodeling of seismic wave
propagation via a structured parallel multifrontal direct Helmholtz solver:
Geophysical Prospecting, 59, 857–873.

Whitemore, N. D., 1983, Iterative depth imaging by backward time propa-
gation: 53rd Annual International Meeting, SEG, Expanded Abstracts,
382–385.

Zhebel, E., 2006, A multigrid method with matrix-dependent transfer oper-
ators for 3D diffusion problems with jump coefficients: Ph.D. thesis,
Technical University Bergakademie Freiberg.

Frequency domain migration on multi-CPU S61

D
ow

nl
oa

de
d 

03
/2

7/
14

 to
 1

31
.1

80
.1

30
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1137/070684550
http://dx.doi.org/10.1137/070684550
http://dx.doi.org/10.1137/040615195
http://dx.doi.org/10.1137/040615195
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1016/j.apnum.2004.01.009
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1016/j.cageo.2011.09.017
http://dx.doi.org/10.1145/347837.347846
http://dx.doi.org/10.1145/347837.347846
http://dx.doi.org/10.1145/347837.347846
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1111/j.1365-2478.1954.tb01281.x
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://www.littlegreenmachine.org
http://www.littlegreenmachine.org
http://www.littlegreenmachine.org
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01032.x
http://dx.doi.org/10.1190/1.1836822
http://dx.doi.org/10.1190/1.1836822
http://dx.doi.org/10.1190/1.1836822
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2738849
http://dx.doi.org/10.1190/1.2738849
http://dx.doi.org/10.1190/1.2738849
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1190/1.2231109
http://dx.doi.org/10.1190/1.2231109
http://dx.doi.org/10.1190/1.2231109
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1016/j.jcp.2007.03.033
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1137/060661491
http://dx.doi.org/10.1137/060661491
http://dx.doi.org/10.1137/060661491
http://dx.doi.org/10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1016/j.jcp.2010.07.027
http://dx.doi.org/10.1016/j.jcp.2010.07.027

