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Abstract

Agents trained through single-agent reinforcement learning methods such as self-play
can provide a good level of performance in multi-agent settings and even in fully cooper-
ative environments. However, most of the time, training multiple agents together using
single-agent self-play yields poor results as each agent tries to learn how to perform
their task while their teammates are also learning. Thus, training models to reach an
optimal behaviour in such situations becomes a challenging, if not impossible issue to
overcome. One possible solution to deal with this problem is to facilitate a centralized
training process in which the policies of all agents are evaluated by a centralized critic
that has access to the observations and actions of all the agents in the environment.
By using this approach, the environment becomes stationary and the agents learn in a
similar way to using a single-agent algorithm in settings where only one agent needs to
be trained. In this paper, we test whether by using a multi-agent reinforcement learn-
ing algorithm with centralized critics, as opposed to single-agent ones, we would obtain
an agent that generalizes better to new partners in a collaborative environment such as
Overcooked, where coordination is critical for good performance. The results display
a similar performance between the two algorithms when evaluated through self-play
and slightly better or worse results when paired with the human model, representing
a mediocre agent, depending on the map. Thus, the multi-agent, centralized critics
algorithm used in this study did not train agents that generalize better to new part-
ners. However, the training metrics clearly indicate that the centralized critics method
makes the agents learn and converge twice as fast as its single-agent version.

1 Introduction
Reinforcement learning (RL) has become an effective approach to build artificially intelligent
systems capable of performing various complex tasks. For example, agents were trained to
play video games such as Go [1] and Dota [2] [3] at a level exceeding the skills of the current
world champions. It also shows promise in revolutionizing multiple industries by successfully
training physical systems to perform a variety of human tasks such as autonomous cars [4].

The simplest and most popular method used to train such agents is self-play (SP), where an
agent learns to perform the task at hand by playing with past iterations of itself. However,
most of the implementations which make use of SP are designed for single-agent environ-
ments and are not always successful when training multiple agents at the same time, as
results in [5] show. This is due to a recurrent problem in multi-agent settings, as described
in [6], where by using single-agent reinforcement learning methods, the changing policies
of other players make the environment non-stationary from each agent’s perspective. One
solution to this issue is using a multi-agent reinforcement learning algorithm in which one
entity, called the centralized critic, evaluates the performance of each agent while having
access to the observations and actions of all agents in the environment. Thus, by using a
centralized training process in which information is shared between learners, in the form of
a common value function, the policies of the other agents become stationary from all agents’
points of view by becoming part of the environment.

Good results have been published regarding the high performance of single-agent self-play,
when trained and evaluated with other instances of themselves [5]. Nevertheless, the afore-
mentioned paper evaluates the effectiveness of a model trained in a pair through single-agent
self-play with a mediocre human model resulting in a very poor performance as opposed to
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evaluating the agent with its training partner. At the same time, when first training an
agent with a similar human model and then in a pair through self-play, it displayed much
better performance than the previously mentioned experiment. Thus, a pattern emerges
showing that agents trained through single-agent algorithms using self-play in collabora-
tive environments perform well when paired with the agents they trained with and poorly
otherwise, displaying a low level of generalization.

In this study we aim to test whether using a multi-agent reinforcement learning algorithm
with centralized critics in a multi-agent environment where coordination and collaboration
are critical, such as the game Overcooked [7], we would obtain an agent that would generalize
better to new partners than single-agent SP or it would become overfit to its training partner.
At the same time, we are also interested in the difference in training performance between
the two approaches.

As such, to provide a set of significant results, the research made use of a simplified version of
the game Overcooked, where agents were trained through a single-agent deep reinforcement
learning algorithm, namely PPO, and its multi-agent version which was implemented by
replacing the DDPG[8] algorithm in MADDPG [6] with PPO [9]. The two approaches
are compared in terms of training performance by observing the speed at which they each
converged to their optimal value of the reward. We also tested the level of generalization to
new partners by pairing them with a mediocre agent that they have not seen during training
and recording their performance.

The following sections provide details on the study at hand, starting with showcasing and
analyzing work related to the problem at hand in Section 2. Next, Section 3 provides an
overview of the necessary concepts which are relevant to the study as well as the algorithm
used to conduct it. Then, Section 4 details various aspects related to the manner in which the
hypothesis was tested such as the environment, agents and experimental setup. The results
are provided and discussed in Section 5, while Section 6 addresses the reproducibility aspect
of the research. Finally, in Section 7, conclusions are derived from the results and process
of the study and recommendations are made for future work.

2 Related Work
The work in [5] focuses on the poor performance of AI agents when paired with human
agents in the highly cooperative and collaborative environment based on the popular video
game Overcooked [7]. Numerous agents are trained or implemented using different methods
such as population-based (PBT) [10] training, in which a population of agents whose policies
are parameterized by neural networks are trained with each other, having the least perfor-
mant agents replaced by mutated versions of the strongest ones. Other agents with similar
performance explored in the aforementioned paper are coupled planning with re-planning
which consists of a computing near-optimal joint plan for each agent in order to achieve the
best possible rewards and re-planning after every joint action. Behaviour cloning (BC) is
explained in the Section 3 and it represents the human model which is sometimes used for
training, but mainly to test the performance of the other agents.

The results show that, when agents play with other instances of themselves, their perfor-
mance is very high, whereas when paired with the human model agent, they perform very
poorly. This clearly shows the lack of generalization to new partners of single-agent methods
in a highly collaborative, multi-agent environment.
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OpenAI’s Five [3] is an AI which defeated the world champions of the popular e-sports
game Dota [2]. The policy is trained via the PPO algorithm and through the SP method.
The most important part of this research is that an AI designed for competitive settings
displayed the ability to collaborate well with humans. However, this can be due to the
increased performance of the AI, which can account for the lack of skill displayed by the
human player. Another reason could be that the human players who were paired with the
AI were close in skill to it and were thus able to collaborate well.

The results in this paper indicate that training agents in collaborative settings using single-
agent reinforcement learning approaches can sometimes result in effective teamwork with
new partners and thus, a good level of generalization. Nonetheless, it is unclear whether
collaboration was achieved because of the technique used to train the agents or the settings
of the environment.

Fictitious Co-Play (FCP) [11] proposes an idea through which an agent that can effi-
ciently cooperate with a human is trained without using any user data. The main point
behind the above-mentioned method is that, in order to create an agent that generalizes well
to new partners, it should be trained with multiple, diverse partners. Thus, several agents
are trained through self-play using different initialization seeds for their neural network, in
order to account for symmetry. At the same time, at various checkpoints during the game,
snapshots of the agents are saved such that, in the end, one agent is trained through PBT
with all the SP agents and their snapshots as part of the population.

This algorithm provided better results in terms of evaluation performance and human pref-
erence when compared to simple behaviour cloning (BC), SP or PBT. At the same time,
it shows an effective approach to using single-agent algorithms to reach a high level of
generalization.

In K-level Reasoning for Zero-Shot Coordination in Hanabi [12], the researchers
employ the use of the cognitive hierarchies [13] (CH) framework, more precisely, the K-level
reasoning [14] (KLR) instance which was difficult to scale in the context of coordination
problems, but, by applying two innovations, this approach becomes scalable. Firstly, each
level would be trained synchronously rather than sequentially, making them run in parallel
and thus reducing the clock time and stabilizing training. Secondly, a best response (BR)
agent is trained at the same time on the whole hierarchy with a special focus on the two
upper levels. All of the above results in a new state of the art performance when tested
together with a proxy human policy which displays a reasonable level of generalization.

Naturally, various multi-agent reinforcement learning algorithms have been designed specif-
ically for situations where more than one agent needs to be trained at the same time. One
such algorithm, the multi-agent deep deterministic policy gradient (MADDPG)[6], consists
of using a centralized critic, which has access to the observation and value space of all agents,
to evaluate the policies of all models during training. MADDPG has presented good results
in various experiments such as the "physical deception task" where using the single-agent
version, DDPG[8], would result in the agents not completing a task, while using the central-
ized critics algorithm did not only enable the agents to complete their task but also to do so
in an efficient manner. The most relevant experiment for the current work is "cooperative
navigation", as it is the only one that does not contain a set of adversaries, being only
based on cooperation. The experiments consist of 3 agents which have to occupy 3 different
landmarks efficiently and MADDPG has performed twice as well as its independent learning
counterpart.
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Another, more complex, multi-agent RL algorithm called QMIX [15] follows a different ap-
proach. Instead of learning decentralized policies using a centralized value function, Qtot, or
multiple, independent value functions for each agent a, Qa, it combines the two approaches
to learn a factored Qtot, similarly to value decomposition networks (VDN)[16]. As opposed
to VDN which learns Qtot by summing the individual Qa of each agent, QMIX uses a mixing
network to combine the individual value functions in a non-linear manner, thus representing
a richer class of action-value functions while making efficient use of the extra state informa-
tion. The algorithm was tested against VDN and individual Q learning (IQL)[17], as well as
various ablations on obtaining the centralized Qtot from the individual Qa and has consis-
tently achieved better results on the complex and highly cooperative game called Starcraft
II [18].

3 Background
This section first describes relevant concepts for the work at hand in Subsection 3.1, such as
a multi-agent Markov Decision Process, the policy gradient method, the actor-critic archi-
tecture, and the centralized critic. Subsection 3.2, provides an overview of the algorithms
used to train the agents which were later used in the experiments namely PPO and MAPPO,
as well as an algorithm that failed to be trained in the environment called MADDPG.

3.1 Preliminaries
Multi-agent Markov Decision Process. A multi-agent Markov Decision Process (MDP)
[19] is defined by a set of finite states S, a reward function R which returns a real-value as
a result and has the form R : S → R, α representing a finite set of agents and a finite set
of action for each agent i, namely Ai. Finally, a transition function used to go from one
state to another τ : S ×A1 ×A2 × ...×An ×S → [0, 1]. Thus, the multi-agent MDP can be
written as a quintuple of all the aforementioned elements < S,α, {Ai∈α}, τ, R >.

Policy gradient represents a popular reinforcement learning approach in which the param-
eters θ of a policy are optimised in order to maximize the objective function J(θ) = Eπ[Rt+1]
by moving in the direction of ∇θJ(θ) (Equation 1) [6] through gradient ascent.

∇θJ(θ) = Es∼pπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)], (1)

where Qπ(s, a) represents the long-term rewards with the following formula, as per [6]:

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Q
π(s′, a′)]] (2)

As opposed to value based reinforcement learning, a policy gradient algorithm is more ef-
fective and efficient for continuous action space while also converging quicker. However,
this method suffers from high variance gradient estimate which is intensified in multi-agent
settings as mentioned in [6].

The actor-critic architecture, as stated in [20], employs the use of two networks as
opposed to one used by policy gradients: actor and critic. The actor network operates as
the policy which the agent uses to select an action, while the critic network represents the
value function used to evaluate, or criticize, the action taken by the agent.
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As described in [21], the actor-critic architecture can help reduce the variance caused by
policy gradient algorithms by employing the use of an advantage function for the critic
network which subtracts a baseline from the estimated value function. By using a state
value function, V π(s), as the baseline, the estimate of the advantage function becomes
Aπ(s, a) = Qπ(s, a)− V π(s). Replacing Qπ(s, a) with Aπ(s, a), the new formula becomes:

∇θJ(θ) = Es∼pπ,a∼πθ
[∇θ log πθ(a|s)Aπ(s, a)], (3)

where pπ is the state distribution.

The centralized critic architecture builds on top of the actor-critic method by only using
one common critic to evaluate the policies of all actors. This approach solves a recurrent
problem found in multi-agent settings where the changing policies of other players make the
environment non-stationary from each agent’s perspective [6]. Thus, by allowing the agents
to share information amongst themselves during training, the policies become part of the
environment which, in turn, becomes stationary. It is important to note that the centralized
critics are used only during training while the execution is kept decentralized.
Formally, following the centralized critic definition from [6] and adapting it to use the ad-
vantage function instead of the Q function, we establish a game with N agents with the set
π = π1, π2, ..., πN representing the policies of all agents, parameterized by θ = θ1, θ2, ..., θN .
Then, the expected return for each agent is expressed as J(θi) = E[Ri] and its gradient as:

∇θiJ(θi) = Es∼pπ,ai∼πi
[∇θi log πi(ai|oi)Aπ

i (x, a1, ..., aN )], (4)

where Aπ
i (x, a1, ..., aN ) = Qπ

i (x, a1, ..., aN ) − V π
i (x) represents the centralized advantage

function, or centralized critic, as it takes as input the actions of all N agents and state
information x which, in the current case, consists of the observations of all the agents in the
environment.

3.2 Algorithms
Multi Agent DDPG (MADDPG)[6] represents the multi-agent version of DDPG[8], a
single-agent RL algorithm which uses the actor-critic architecture. To obtain the MADDPG
algorithm, DDPG’s critic is enhanced with more information regarding the other agents’
policies, similarly to Equation 4 but replacing Aπ

i with Qπ
i , thus bringing a very simple

extension of actor-critic policy gradient methods. The Q-function in this case is a centralized
action-value function that takes as input the actions of all agents together with some state
information that results from the observations of the agents within the game. This ultimately
means that for each agent, all the other agents become part of the environment, thus making
it stationary even as the policies change.

Proximal Policy Optimization (PPO)[9] is currently one of the state of the art approaches
for policy learning within reinforcement learning. It is a policy gradient algorithm that
follows the Trust region idea from TRPO [22] while providing a relatively simple implemen-
tation, understanding and parameter tuning. The objective function consists of multiplying
the advantage estimate multiplied with the ratio of the probability of choosing an action
given the new policy and the old policy, respectively. In order to deal with the common
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policy gradient problem of updating the policy at every step and thus ruining it, the PPO
algorithm uses a clipping function LCLIP defined in Equation 5, to ensure that the gradient
steps are not too large.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (5)

Multi Agent PPO (MAPPO) is a multi-agent version of the aforementioned PPO algo-
rithm which was implemented for the purpose of this research. The PPO algorithm uses
a generalized advantage estimation which runs the policy for T timesteps before updating
it. By augmenting the advantage function in a similar style to MADDPG and following the
centralized critic formula depicted in Equation 4 from Subsection 3.1, the PPO algorithm
can be successfully converted into a centralized critic algorithm. More precisely, this is done
by concatenating the agent’s observations with the observations and actions of the other
agents, then providing the resulting vector as input for the policy neural network.

4 Methodology
In order to test whether a centralized critics algorithm generalizes better to new partners
than a single-agent approach, we used various tools from the study done in [5]. This includes
the simplified version of the game Overcooked [7] and various algorithms such as self-play
using PPO and behaviour cloning using human data. The setup is explained in detail in the
next paragraphs.

4.1 The Overcooked environment
The environment used to conduct this research is the same as the one used in [5] and it
represents a simplified version of the game Overcooked [7]. In the game, players need to
prepare and deliver as many dishes as possible in a given amount of time in order to maximize
their score.

The authors of [5] found the setting of the game as being challenging for collaboration,
but especially for coordination which not many environments are designed for. Given the
complexity of the real game, it would be computationally expensive to train agents. As such,
the simplified version only contains onions, pots, dishes and delivery zones. The agents need
to pick up three onions from the onion dispenser, put them in a pot and wait for 20 timesteps
for the soup to cook. Then, they need to use a dish to pick up the soup and deliver it at
the designated location. Upon delivery, the agent will receive a reward.

There are multiple layouts available that require various levels of coordination and collabo-
ration from Asymmetric Advantages where coordination would improve efficiency to Forced
coordination where, without collaboration, no soups can be delivered. Different layouts can
have a different number of dispensers, pots and delivery zones. At the same time, the pos-
sible actions that the agents can take are moving to the tile above, below, to their left and
right as long as there is still available space to move in the chosen direction. The players
can also interact with the tile which they are facing or stay at the current location and do
nothing.
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The final goal of the agents is to learn how to deliver dishes in an efficient manner by col-
laborating with their teammates and taking advantage of the map layout. The environment
is designed as a Markov Decision Process to facilitate the usage of reinforcement learning
algorithms.

Figure 1: Room layouts as described in [5]. From left to right: Cramped Room where both
players have access to all resources but they can easily collide. Asymmetric Advantages
eliminates any collision problems and allows both players to work independently. Neverthe-
less, working together will greatly improve efficiency as the green hat player has the delivery
zone closer to the pot, whereas the blue hat one has the onion dispenser closer to the pot.
Coordination Ring requires players to coordinate when moving around the map as collisions
can easily take place. Forced Coordination restricts the players from preparing and deliver-
ing a dish by themselves and, as such, forces them to coordinate. Counter circuit contains
an inapparent coordination strategy, where, instead of going around the counter to get the
onions and place them in a pot, one agent can pass them over the counter while another
one pots them.

4.2 Agents
This subsection presents the methods chosen to train agents which were used to evaluate
the performance of the algorithms during training as well as their level of generalization.

Behaviour Cloning [23] is a type of imitation learning. The specific model used in this
research is the same as the one used in [5]. As such, it uses supervised learning methods to
learn a policy based on recorded gameplay by learning how to map observations to actions.

The data used by the BC-trained agents to learn was collected during the [5] study through
Amazon Mechanical Turk. It has been filtered depending on the optimal trajectories and
returned reward resulting in approximately 16 human-human trajectories per layout. Each
trajectory is split into two single-agent trajectories. In the aforementioned work, the re-
searchers used half of the data to create a model used to aid the training of other agents
and a half to create an agent to test against. However, given that we only train our agents
through self-play, all the collected data was used to train a single model for testing purposes.
Lastly, the data used in this research is from 2020 whereas the one used in the previously
mentioned paper is from 2019.

Self-play is a reinforcement learning method in which an agent learns by playing with
different instances of itself. The self-play method is used to train multiple agents through
various deep reinforcement learning algorithms such as PPO, MADDPG and a multi-agent
version of PPO which we refer to as MAPPO.

Normally, it is expected that the multi-agent algorithms would perform better than their
single-agent counterpart considering that, during training, the critic has access to the obser-
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vations and actions of all agents [6]. However, the multi-agent version of the PPO algorithm
implemented in this work, MAPPO, does not show any considerable increases in performance
over its single-agent counterpart.

4.3 Experimental setup
In order to test our hypothesis, three agents are trained, one through a single-agent RL
algorithm, another through multi-agent RL and the last one using behaviour cloning on
human data.

For the single-agent RL algorithm, PPO was chosen since it was already implemented within
the Overcooked environment, showcasing a good performance. Nonetheless, it is important
to note that in [5], the PPO algorithm uses an observation space that consists of a featuriza-
tion of the Overcooked state environment into a stack of boolean masks that are compatible
with a CNN. Since the NeurIPS submission in 2019 which corresponds to the neurips2019
branch1, the library used to train the agent was changed from stable-baselines [24] to RL-
lib [25] and thus, the underlying implementation of PPO changed as well. This means that
the hyperparameters listed in the aforementioned paper were no longer valid and new ones
needed to be tuned. Thus, to ease the hyperparameter optimisation process, we used the
same hand-crafted observation space as the BC agent.

Multiple issues were present while integrating the multi-agent algorithm in the Overcooked
environment. Initially, MADDPG was chosen as there was already an implementation avail-
able from RLlib. However, as stated in the description of the algorithm [26], MADDPG
is very hard to get to work and combined with the fact that new algorithms are hard to
optimise in the Overcooked environment and the lack of time available for conducting this
research, training agents through it was not successful.

The next multi-agent algorithm considered which was successfully integrated within the
environment is a centralized version of PPO which we previously referred to as MAPPO.
However, there is one important factor to note which is that the underlying model of the
neural network in MAPPO is different than the one we use in PPO, as the version from
[5] used a custom model, whereas the MAPPO uses the default model provided by RLlib,
both of which are detailed in Appendix A. Various attempts were made at adapting the
centralized critic version to use the custom PPO model but eventually proved unsuccessful.
Nonetheless, the same set of hyperparameters obtained from tuning PPO provide similar
results when applied to MAPPO.

5 Results
The first experiment consists of training a PPO and a MAPPO pair of agents and comparing
their performance over the learning process. Both agents used the same set of hyperparam-
eters which are also listed in Appendix A and converged to almost the same reward level
when trained in self-play. However, the MAPPO pair converged twice as fast as the PPO
agents as illustrated in Figure 2, where averaged rewards during training are shown from
3 different maps of 3 seeds each. These results prove that the centralized critic algorithm

1https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019
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learns faster than the single-agent version and is thus more efficient in terms of data and
computational efficiency.

Figure 2: Average rewards per episode (400 timesteps per episode) registered during self-play
training for different pairs of agents. In each graph, the orange line represents the perfor-
mance of the MAPPO agent while PPO is displayed in blue. In the Cramped Room layout,
MAPPO seems to be converging at around 0.5 timesteps, whereas PPO converges at ap-
proximately 0.75 million timesteps. In the Asymmetric Advantages map, MAPPO stabilizes
at around 0.6 million timesteps and PPO at around 1.2 million. Finally, in Coordination
Ring, MAPPO converges at approximately 1 million timesteps while PPO only does so at
2 million. Overall, a general trend is observed in the sense that MAPPO converges to an
optimal policy, on average, twice as fast as PPO.

The second experiment entails comparing the generalization level between the two algo-
rithms. To test this, a BC agent was trained using the 2020 human data recorded after the
study in [5]. Then, the MAPPO and PPO agents were each paired with the BC agent in
order to register the average reward over 100 rollouts of 400 timesteps each, thus providing
a reliable metric for the level of generalization between the two approaches. Figure 3 clearly
shows that when paired with themselves, the agents display a similar level of performance
which is the same as the one registered during training after each algorithm converged. Sim-
ilarly, when each agent is paired with the human model, only a relatively small difference
can be observed between the reward gained by the team with the PPO agent and the one
with the MAPPO model. However, one noteworthy fact to mention is that the pairs which
contain a MAPPO trained agent tend to have a smaller variance and can thus be considered
to be more stable across rollouts.

Furthermore, whenever the self-play team using one algorithm performed better on a layout,
the team consisting of the human model and that algorithm also performed slightly better
than its counterpart on that same map. Moreover, even though the difference in performance
is small, the MAPPO agents proved to be slightly more effective on maps where agents are
likely to collide such as Cramped Room and Coordination Ring. The PPO trained agents
perform slightly better on the Asymmetric Advantages layout where agents have all the
tools necessary to complete and deliver dishes by themselves and can thus complete the
game while never collaborating.

One last point to mention is that the performance of self-play agents is considerably higher
than the one of the team consisting of the human model and the self-play trained agent. This
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is consistent with the findings in [5], emphasising the idea that agents trained through self-
play usually perform poorly in collaborative environments when paired with new partners.

Figure 3: Average rewards per 100 rollouts of 400 timesteps each, for different pairs of
agents. The light grey bar represents the performance of PPO when playing with itself. In
orange we register the average rewards per episode of PPO paired with the human agent
trained through BC, while the 2 blue plots represent the performance of a pair of MAPPO
(light blue) and MAPPO playing with the same BC agent as PPO. When evaluated both
in self-play and with the human model, both PPO and MAPPO show similar performance
across all 3 layouts when averaged across 3 seeds (per layout).

6 Responsible Research
To facilitate the process of responsible research, two main aspects need to be discussed,
namely the ethical implications of the study as well as the reproducibility factor. The former
is not a concern for this study as the research is conducted within a virtual environment and
the main research question to answer is whether one approach trains agents that generalize
better to new partners than another. The only element which could represent an ethical
concern is the privacy factor of the human data used to train the behaviour cloning agent to
obtain the human model. However, this data is the 2020 version of the one used during the
work in [5] and it is widely available at the repository associated with their work. At the
same time, the data only contains the trajectories which the humans created while playing
the game, without any explicit or implicit reference that could lead to finding the identity
of the people who took part in the study.

The reproducibility aspect has been accounted for since the beginning of the research by
thoroughly recording the process and the results obtained throughout the study to eventually
offer a comprehensive overview of how the work has been conducted and what the findings
are. The code is built on top of the master branch2 of the repository used for the study in

2https://github.com/HumanCompatibleAI/human_aware_rl
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[5]. Various additions were made such as an evaluation setup inspired by their neurips2019
branch3 which was used for the final submission of the aforementioned paper, as well as
implementing the necessary models for the centralized critics algorithm. The version of
the code used to obtain the results from Section 5 is available in a GitHub repository4,
together with instructions on how to run the experiments. Furthermore, the seeds used to
conduct the study as well as the hyperparameters used to train the agents are present in
the Appendix A.

In order to provide a set of reliable results the agents were trained on multiple layouts and
various seeds. Moreover, all displayed data represents an averaged return over the evaluation
of multiple seeds that were used during training.

7 Conclusions and Future Work
Summary. Using a multi-agent, centralized critic algorithm to train agents in a collab-
orative environment did not provide models that generalize better to new partners than
the single-agent version of the algorithm. However, the centralized critic approach aids the
agents to train almost twice as fast as the single-agent counterpart, while keeping the same
level of generalization in the simplified version of the game Overcooked. At the same time,
in various layouts where coordination was more relevant than in others, the multi-agent ar-
chitecture resulted in agents that perform slightly better on average and more consistently
as they present lower variance over the rollouts. Nevertheless, the increase in performance
can potentially be attributed to the randomness of the initialization seeds as the difference
between the results displayed by each algorithm is relatively small and there is not one single
algorithm always outperforming the other.

Limitations and future work. Firstly, as mentioned in Subsection 4.3, the observation
space used to train the PPO and MAPPO agents is the same as the handcrafted one used to
train the human model. As such, it contains heuristics which makes it easier for the agent
to learn. Initially, this observation space was used while attempting to train agents through
MADDPG. The centralized critic algorithm was designed to concatenate the observation
space of the two agents and the larger, more detailed observation space which was used by
PPO was not compatible with that architecture. When MADDPG failed to train, it was
decided to keep the BC observation space as we could easily customize PPO to use the same
architecture as MADDPG. At the same time, the BC observation space is easier to train as
it has been crafted to facilitate the learning process in this environment, and, due to the
time constraints, that was an added bonus. Nonetheless, the BC observation space might
not be as expressive as the observation space used by PPO in [5]. As such, for future work,
one can apply the centralized critics using the more expressive and general observation space
in the attempt to get the agent to generalize better.

Secondly, one successful approach discussed in [5] to train agents that would generalize well
to new partners, more specifically humans, consists of training an agent with a human model
and then linearly increase the number of episodes in which the agent trains against itself,
until only training through self-play. Using this strategy, one can test whether a centralized
critic algorithm would generalize to new partners better than a single-agent one when first
training with a mediocre partner and then through self-play.

3https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019
4https://github.com/andrei-07/rp-overcooked-centralized-critics

12

https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019
https://github.com/andrei-07/rp-overcooked-centralized-critics


While the performance of the multi- and single-agent approaches is similar in our study,
it is not yet known how the behaviour of the agents changes. There is a possibility that
the centralized critic has a better way to avoid collision whereas the single-agent algorithm
increases the agent’s performance when working separately. Nevertheless, all of these as-
sumptions are hard to test when the agents cannot be observed playing the game. Thus,
one can adapt the visual representation of the game from the neurips2019 branch used for
the work in [5] to be able to use it with the agents in this study. By having the ability to
observe the behaviour of the agents in real-time, more conclusions can be drawn regarding
the advantages and disadvantages of the two types of algorithms and their performance.
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A Implementation details for PPO and MAPPO
Feature space. Both algorithms are trained using the same manually designed 64-dimensional
featurization the state used by the BC agent in [5]. Given the limited amount of human-
human data, this observation space was specifically designed to facilitate the learning of the
human model trained through BC. As such, this featurization provides a quicker and easier
training process, while taking away some of the performance. The observation space consists
of the relative position of each player from various points of interest within the map such as
the closest onion, dish, soup, onion dispenser, dish dispenser, serving location, and pot (one
for each pot state: empty, 1 onion, 2 onions, cooking, and ready). It also includes boolean
values that encode the agent’s direction and indicate if the agent is close to empty counters.
The absolute position of the agent in the layout is also incorporated in the feature space.

Reward shaping. Normally, the agent only receives a reward when delivering a dish.
However, to allow for a swift training process, a dense reward is added to the environment
by providing the agents with additional rewards when placing an onion in a pot (3 reward
points), when picking up a dish while a soup is being cooked (3 reward points) and a reward
of 5 when picking up the soup with a dish. In [5], the dense reward is reduced to 0 over time.
Nonetheless, reducing the dense reward in the experiments presented in this work provided
negative results.

PPO model is parameterized by 3 fully-connected layers with hidden size 64, as convolu-
tional neural networks could not be used because of the BC feature space.

MAPPO model is parameterized by 2 fully-connected layers with hidden size 256. The cen-
tralized critic takes as input the observation of the current agent (96), the observations(96)
of the opponent and the actions (6) of the opponent and concatenates them, resulting in a
198 one-dimensional vector which is fed as input to one layer of size 64, followed by one of
size 16 and an output layer of size 1. All activation functions are relu.

To train the agents used for the experiments, 3 seeds (2229, 7649, 7225) used. The same
hyperparameters were used for training both the PPO and the MAPPO agents across all 3
layouts and are listed below:

• Learning rate = 0.0001

• VF coefficient = 0.5

• Rew. shaping horizon

• Training batch size: 12000

• Minibatch size: 2000

• Entropy coefficient = 0.2 (linearly decreasing to 0.1),

• Gamma = 0.9,

• Lambda = 0.98

• Clipping = 0.2

• Gradient steps per minibatch per PPO step = 8
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