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Abstract

Tsirelson once claimed that the set of quantum correlations, defined by strategies of non-local
two-player games, does not depend on which of two possible models is chosen: the tensor product
model or the commuting operator model. He later came back from this claim, and the resulting
conjecture is now known as Tsirelson’s problem. The problem has since been proven equivalent
to notoriously hard problems in operator theory, such as the Connes’ Embedding Problem
and the QWEP conjecture. In this master thesis, we look at the finite dimensional case of
Tsirelson’s problem, working out all the details of an existing proof and giving a new, shorter
proof which also extends to the nuclear case. Moreover, we give an overview of the equivalence
of Tsirelson’s problem and two of Kirchberg’s conjectures, including the QWEP conjecture.
Finally, we give some results and considerations for the three-player case of Tsirelson’s problem.
The appendix contains proofs of many related results used throughout the thesis, and also a
beginner’s introduction to quantum mechanics.
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Preface

After some fine years at the Technical University of Delft, the end of my time as a student was
getting in sight and there was just one final step ahead before graduation: the master thesis.
Since I was interested in the field of Quantum Information Theory and Operator Algebras, I
approached Martijn Caspers who graciously accepted to be my supervisor. He presented me
with the interesting Tsirelson problem and its range of equivalent problems, and pointed out
that little research seemed to have been done into the three-player scenario. Therefore, we
hoped, there might potentially be some interesting new results there.

After getting a feel about the topic of correlations matrices and the definition of Tsirelson’s
problem (Chapters 3, 4, 5), I first studied [25] and delved into the finite dimensional proof until
I understood all the details (see Chapter 5.2). As a means of trying to undestand the line of
thought, I tried a much simpler approach to see where it went wrong. It turned out that it
didn’t go wrong and thus we discovered a much simpler proof that seems to be nowhere in any
literature - although we suspect experts must be aware of the approach. This approach also
turned into a nice proof for the nuclear case, see Theorem 5.4.1. I did some more research in
other special cases such as the one in [16].

Next, I studied the papers [7], [9] and a part of [19] about the equivalence between Tsirelson’s
problem and a conjecture on tensor norms of C∗-algebras by Kirchberg. After this was done
and I had written my own version of the proof (most of which was preserved to become Chapter
6 in the current thesis) we decided it was time to delve into the three-player case and see if
anything could be said using this equivalence. This didn’t last for long however; it turned out
that with my current knowledge there was still very little I could say abot the three-player
scenario. Therefore we decided I would study other equivalences, and I took Brown&Ozawa’s
great book [1] to learn more about the QWEP conjecture and Connes’ Embedding Problem.
As it turned out, it was especially the QWEP conjecture and its related theory that had some
interesting links to Tsirelson. Hence I decided to write another piece (Chapter 7) on this topic.

Even with this though, the number of things I could say about the three-player scenario were
limited. Mostly, I discovered that some seemingly obvious properties seemed to go wrong. As
the thesis progressed this part (Chapter 8) gradually got more structured. Finally, it became a
decent overview of the things we do and do not know including some new insights in problems
that occur.

I have attempted to keep this report as readable as possible for someone with a similar back-
ground as I had when I started this project. I set out with the goal of keeping the thesis
self-contained apart from referring to the book of Murphy [15], but I had to quickly give up
on perfectly achieving this goal. To achieve that goal at least to some extent, many results are
proven in the Appendix in the back.

I would like to very much thank my supervisor Martijn Caspers whose advice and help has
been invaluable over the entire course of the project. He was able to help me on when I got
stuck countless times and has given much helpful feedback on my thesis. Further, I would like
to thank Jan van Neerven and Dion Gijswijt for being a part of my thesis committee and for
the critical commentary they will no doubt deliver at the time of my defense. Finally, I would
like to thank the whole Analysis department for the great atmosphere and ‘gezellige’ lunches.
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1 Introduction

This thesis is about correlation matrices. With that, we do not mean the standard type of
correlation matrices given by the Pearson correlation of two random variables, although it is
similar in spirit. The correlation matrices of this thesis arise from strategies of so-called non-
local games and are intimately related to Bell inequalities. A non-local two-player game consists
of two (abstract) space-like separated players that are quite unimaginatively named Alice and
Bob. They each receive an input x respectively y and have to choose an output a respectively
b. We assume there are finitely many inputs and outputs. A two-player strategy is given by
a set of conditional probabilities P(a, b|x, y); the correlation matrix is given by (P(a, b|x, y))a,b;x,y.

Since Alice and Bob are spacelike-separated, there is a limited set of strategies they can carry
out. It is not very hard to determine the set of classically obtainable correlation matrices; this
turns out to be the polytope with vertices given by deterministic strategies P(a|x)P(b|y). When
allowing quantum mechanical tricks (particularly entangled states), a larger range of quantum
correlation matrices becomes obtainable which is not so easily described. We do know that this
set is strictly larger; there are several examples of Bell inequality violations proving this, such as
the famous CHSH-inequality violation. As we will see in Chapter 4, Bell inequalities are nothing
but facets of the classical polytope of correlation matrices. Thus, a violation of a Bell inequal-
ity is nothing but a specific quantum correlation matrix that falls outside the classical polytope.

For the main part of the thesis we will focus on quantum correlation matrices. The standard
way to define a quantum correlation is by the formula

P(a, b|x, y) =
〈
ψ
∣∣Axa ⊗By

b

∣∣ψ〉
where |ψ〉 is a (possibly entangled) state on a bipartite Hilbert space HA ⊗ HB, where each
player has access to one tensor leg. Furthermore, the {Axa}a,x and {By

b }b,y are POVMs (or
equivalently, as it will turn out, projective measurements) that the players use to measure the
state on their part of the Hilbert space. Given input x and y, Alice and Bob will apply the
POVMs {Axa}a and {By

b }b and return the outcome corresponding to the resulting measurement.
The model corresponding to this definition of quantum correlations will be called the tensor
product model.

There is a different, more general model we can use to define quantum correlations: the com-
muting operator model. The physical intuition behind this model is the question: can we really
assume that we can break down the universe that nature presents us with into separate parts?
We will refrain from going further into this discussion (see e.g. [7] for more), and just state the
mathematical alternative. Namely, we have just one ‘giant’ Hilbert space and Alice and Bob’s
measurement operators are only assumed to be commuting. This assumption is necessary to
assure Alice and Bob can independently measure their states. Quantum correlations are then
defined by the formula

P(a, b|x, y) =
〈
ψ
∣∣AxaBy

b

∣∣ψ〉 .
These different definitions of quantum correlations yield potentially different sets. In [28],
Tsirelson considered these sets for the first time and claimed, without proof, that they are one
and the same. When someone finally asked for a proof, he found a mistake in his would-be proof
and instead posted the question as an open problem on the site of TU Braunschweig [29], no
less than 13 years later! He did resolve the finite dimensional case, for which he gave a sketch
of a proof. We give a very different (and remarkably shorter) proof in Chapter 5.
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The original problem was quite recently resolved by Slofstra in [26] in 2016, and the proof was
further simplified in [27] and [4]. These papers proved that the set of tensor product correlations
is not closed, while it was already known that the set of commuting correlations is closed. The
‘weak’ version of Tsirelson’s problem, which asks whether the closure of the set of tensor prod-
uct correlations is equal to the commuting correlations, remains open, and is now commonly
referred to as ‘the’ Tsirelson problem, which we will refer to as (T2).

A few special cases are known; for instance, the authors of [16] showed Tsirelson in the case
where one player has two inputs and outputs. A proof for the case where one player’s operators
generate a nuclear C∗-algebra is given in this thesis. The general case, we now know for sure, is
really very hard; indeed, it was proven equivalent to the notorious Connes Embedding Problem,
a problem that has been open since 1976 [2]. This problem is equivalent to a number of other
open problems in C∗ and von Neumann algebra theory. In particular, there is an interesting
connection to a problem in the theory of tensor norms on C∗-algebras, found by Kirchberg in
1993 [14]. This problem asks whether

C∗(F2)⊗min C
∗(F2)

?
= C∗(F2)⊗max C

∗(F2).

We will refer to this problem as (K2). One implication was found simultaneously by Fritz [7]
and Junge, Navascues, Palazuelos, Perez-Garcia, Scholz and Werner [9] in 2012, both of whom
showed the converse implication only for a matrix-valued version of Tsirelson’s problem. The
latter paper is built on the theory of operator systems. The first link to operator systems was
found by Werner and Scholz [25] in 2008; ironically, the result achieved there was later proven
to be incorrect. Indeed, it is essentialy claimed that the set of tensor product correlations is the
same as the closure of the set of finite dimensional correlations, which contradicts the result of
[26], [27], [4] mentioned above that the set of tensor product correlations is not closed. Still,
the ideas in that paper can be said to be crucial to later developements.

Fritz’ proof in [7] also has operator system theory lurking in the background, but it is written
down in a more elementary and accessible manner. Hence, it is this proof that will be the basis
of our Chapter 6, and we will also frequently refer to results in Fritz’ comprehensive appendix
of background material.

The full equivalence was proven one year later by Ozawa [19]. He used Fritz’ statement (Prop.
3.4) as a starting point for his proof, and proceeds to use several results relating to the Connes
Embedding Conjecture for the implication (K2) ⇒ (T2). These results are unfortunately out-
side the scope of this thesis, so we will not give this proof; instead we give the proof for the
matrix-valued version of Tsirelson as proven in [7] and [9].

We do look at one other statement equivalent to the Tsirelson problem: the QWEP conjecture,
which asks if every C∗-algebras has the Quotient Weak Expectation Property. We will elobarate
in Chapter 7 on what this means, how its link to (K2) appears, and what we can deduce about
Tsirelson’s problem. One conclusion we can draw is that the problem statement of Tsirelson
does not depend on whether both players have the same number of inputs and outputs, which
is an assumption made in much of the literature. We draw mostly from material from Brown
& Ozawa’s book [1], much of which originates from Ozawa’s 2004 paper [18]. The equivalence
between (K2) and QWEP was originally proven by Kirchberg in [14].

In our final normal chapter, we take a look at the three-player version of Tsirelons’s problem
(T3) and consider what happens to the connections explored in the earlier chapters. It turns
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out that there are many things we cannot duplicate to the three-player case. Most importantly,
the proof of (K2) ⇒ (T2) does not carry over to the three-player case since it goes via the
Connes Embedding Conjecture, as there is no know corresponding problem for the three-player
case. Things that do carry over are the results from [7] and [9]; specifically the implication
(K3) ⇒ (T3) (where (K3) is the tripartite version of (K2)) and the converse implication for the
matrix-valued Tsirelson. We also take a shot at proving (T2)⇒ (T3) via the QWEP conjecture
and explain where it goes wrong. Finally, we investigate what happens when considering com-
binations of the tensor product model and the commuting operator model. Fritz made some
claims and observations about this case in [7], but we argue that these claims might have been
premature.

At the end, there is an appendix which includes a collection of proofs of results we need through-
out the main part of the thesis. It also includes an elementary introduction to quantum me-
chanics for readers that are unfamiliar with the basic concepts.
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2 Terms and definitions

This thesis is built on material from Murphy’s book [15] and we will frequently refer to results
therein as ’Theorem x.x.x from Murphy’ without giving a citation each time. We will assume
familiarity with at least the first 3 chapters of that book, including Hilbert spaces, C∗-algebras,
the Gelfand-Naimark Theorem and some representation theory.

Let us start with some basic notation. A Hilbert space is generally denoted by H; the space of
its bounded linear operators by B(H). A C∗-algebra is indicated by some calligraphic letter -
usually A, B or C. Operators are indicated by normal capital letters. C∗-algebras will always
be assumed to be unital throughout this thesis, so no need for hassles like approximate units or
unitisations.

2.1 Completely positive maps

One essential term that is missing from Murphy’s book is completely positive maps. We give a
short overview here; a more extensive collection of results can be found in [1, 1.5].

A (concrete) operator system in a C∗-algebra A is a self-adjoint subspace containing the unit.
Note that an operator system inherits a notion of positive elements from A. More generally, the
matrix space Mn(E) inherits a notion of positive elements from Mn(A). Indeed, as is decribed
in Appendix A.2, this can be seen as the defining property of an operator system.

Definition 2.1.1. Let E ⊆ A be an operator system. A map Φ : E → B is called completely
positive if, for every n ∈ N, the map

Φ(n) := 1Mn ⊗ Φ : x 7→

Φ(x11) . . . Φ(x1n)
...

. . .
...

Φ(xn1) . . . Φ(xnn)

 , x ∈Mn(E)

is positive. We denote unital completely positive maps shorthand by ucp maps, and contractive
completely positive maps by ccp maps.

Let us state some elementary facts about positive maps in general. By writing self-adjoint ele-
ments as linear combination of two positive elements, we find that self-adjoint elements get sent
to self-adjoint elements. More generally, if x ∈ E is any element, then we can write x = a+ ib
for a, b self-adjoint. Thus, Φ(x)∗ = Φ(a)∗ − iΦ(b)∗ = Φ(a)− iΦ(b) = Φ(x∗).

In most cases, ucp maps will be defined on C∗-algebras. But in some cases, we will first define
an ucp map on a dense operator system and then extend to the whole C∗-algebra. This is
possible because of the following result.

Proposition 2.1.2. Let Φ : E → B be a ucp map. Then Φ is contractive.

Proof. First let x ∈Mn(E) be self-adjoint. Note that ‖x‖1− x ≥ 0; indeed,∥∥(‖x‖1− x)− ‖x‖1
∥∥ = ‖x‖,

so by Lemma 2.2.2 from Murphy ‖x‖1− x ≥ 0. Because Φ(n) is positive and unital, we have

Φ(n)(x) ≤ Φ(n)(‖x‖1) = ‖x‖1.
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Thus by Theorem 2.2.3 (3) from Murphy, ‖Φ(n)(x)‖ ≤ ‖x‖.

Now let x ∈ E be any element. Let x̃ :=

(
0 x
x∗ 0

)
∈M2(E); this is called a self-adjoint dilation

of x. Note that ‖x̃‖ = ‖x‖ (and ‖Φ(2)(x̃)‖ = ‖Φ(x)‖). Thus, ‖Φ(x)‖ = ‖Φ(2)(x̃)‖ ≤ ‖x̃‖ = ‖x‖
by the above argument for n = 2.

In the case of abelian C∗-algebras, completely positive maps are just the same as positive maps.

Proposition 2.1.3. [22, 3.11] Let A be an abelian C∗-algebra and let Φ : A → B be a positive
map. Then Φ is completely positive.

Proof. As A is abelian, we can assume that A = C(Ω) for a compact Hausdorff space Ω (see
2.1.10 and 1.3.5 in Murphy). An element f ∈ A is positive iff f(x) ≥ 0 for all x ∈ Ω. Similarly,
an element f ∈Mn(A) ∼= Mn(C(Ω)) ∼= C(Ω,Mn(C)) is positive iff f(x) is a positive matrix for
all x ∈ Ω.

Now, let f ∈Mn(A)+ and assume that f = g ·A for g ∈ C(Ω)+ and A ∈Mn(C)+. In that case,
by positivity of Φ, it is clear that

Φ(n)(f) = Φ(g) ·A ∈Mn(C)+.

So, for the set S+ of positive linear combinations of such elements, it is clear that Φ is com-
pletely positive. It remains to show that S+ is dense in Mn(A)+ = C(Ω,Mn(C))+.

Let f ∈ C(X,Mn(C))+ and ε > 0. For x ∈ X, let Ox be an open neighbourhood of x such
that for y ∈ Ox, ‖f(x)− f(y)‖ < ε. Since Ω is compact, there exists a finite number of points
x1, . . . , xk such that {Oxi}ki=1 is an open cover for X. Define Ai = f(xi).

Now let (gi)
k
i=1 be a partition of unity (i.e. gi ≥ 0 and

∑k
i=1 gi = 1) such that supp(gi) ⊆ Oxi .

Then for x ∈ X we have∥∥∥∥∥f(x)−
k∑
i=1

gi(x)Ai

∥∥∥∥∥ =

∥∥∥∥∥
k∑
i=1

(f(x)−Ai)gi(x)

∥∥∥∥∥ ≤
k∑
i=1

‖f(x)−Ai‖gi(x) < ε
k∑
i=1

gi(x) = ε.

Since
∑k

i=1 gi(x)Ai ∈ S+, we are done.

2.2 Quantum theoretic terms

We briefly state the terms we use in the thesis. For those that have never seen quantum me-
chanics before, we included an introduction in Appendix B.

A pure state on a Hilbert space H is a unit vector of H. A mixed state is a convex combination
of pure states. An entangled state is a pure or mixed state on a Hilbert space H = HA ⊗HB
that cannot be written as a tensor product of pure/mixed states on the tensor legs.

A projective measurement is a set of orthogonal projections {P1, . . . , Pn} such that
∑n

i=1 Pi =
1H. This is a special case of a Positive Operator-Valued Measurement (POVM), which is a
set of positive operators {A1, . . . , An} such that

∑n
i=1Ai = 1H. Both have corresponding

outcomes λ1, . . . , λn. The probability of observing outcome λi when measuring a pure state |ψ〉
is 〈ψ|Ai|ψ〉.
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2.3 Tensor products

Note that the direct sum of two finite dimensional spaces has dimension equal to the sum of the
dimensions. The tensor product can be seen as a way to multiply the dimensions of two spaces.

Algebraic tensor products

We give an informal definition of the algebraic tensor product; for a more rigorous definition
and several results, see [1, Ch. 3.1].

Let V,W be vector spaces. The elementary tensor of two elements v ∈ V and w ∈W is written
as v ⊗ w. The elementary tensors have certain arithmetic rules; in short, these are given by
bilinearity of the map (v, w) 7→ v ⊗w. The algebraic tensor product space V ⊗W of V and W
is defined as the space of linear combinations of elementary tensors.

Tensor products on Hilbert spaces

To define a tensor product on Banach spaces, we need to define a norm on the algebraic tensor
product of the underlying vector spaces, and then take the completion with respect to this
norm. For general Banach spaces this is a rather subtle issue, as there can be many different
possible tensor norms leading to completely different spaces. However, on Hilbert spaces, there
is a unique canonical way to do this. If H and K are Hilbert spaces, then we define an inner
product on their algebraic tensor product by

〈a⊗ b, c⊗ d〉H⊗K = 〈a, c〉H〈b, d〉K.

After completion with respect to the corresponding norm, we obtain a Hilbert space that we
will also denote as H⊗K.

Tensor products on C∗-algebras

One can canonically define a ∗-algebra structure on the algebraic tensor product by pointwise
multiplication and involution. The question is how to define a C∗-norm. Like Banach spaces,
C∗-algebras are rather complicated in this regard; they can admit several different pre-C∗-
norms on their algebraic tensor product (by which we mean that they satisfy all properties of
a C∗-norm bar completeness). The extreme (and most often used) cases are the minimal and
maximal tensor norms.

Definition 2.3.1 (Minimal tensor norm). Let A,B be C∗-algebras and let πA : A → B(HA) and
πB : B → B(HB) be their universal representations. Then πA ⊗ πB defines a ∗-homomorphism
A⊗ B → B(HA ⊗HB). The minimal (or spacial) tensor norm is given by

‖ · ‖min = ‖πA ⊗ πB(·)‖B(HA⊗HB).

The completion with respect to this norm is denoted by A⊗min B.

Remark 2.3.2. It turns out that instead of the universal representation, any faithful represen-
tation suffices to define the same minimal tensor norm. See e.g. [7, B.6] or [1, 3.3.11].

Remark 2.3.3. It is not immediately clear that the above norm is indeed the ‘minimal’ tensor
norm, i.e. that it is always smaller or equal than another pre-C∗ norm on the algebraic tensor
product. This turns out to be a very deep result by Takesaki - see for example Chapter 6.4
from Murphy.
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The representation used for the definition of the minimal tensor norm can be seen as a special
case of a representation A ⊗ B → B(H). The maximal tensor norm is defined as a supremum
over these kinds of representations; therefore it is not hard to see that the minimal tensor norm
is smaller than the maximal tensor norm.

Definition 2.3.4 (Maximal tensor norm). The maximal tensor norm is given by

‖ · ‖max = sup
π
π(·),

where the supremum is taken over all representations π : A⊗B → B(H) of the algebraic tensor
product. The completion with respect to this norm is denoted by A⊗max B.

The maximal tensor product satisfies the following universal property (see [7, B.9] for a proof):

Proposition 2.3.5 (Universal property of maximal tensor norm). For any ∗-homomorphism
π : A⊗max B → C to a C∗-algebra C, there exist restrictions πA : A → C and πB : B → C with
commuting ranges. Conversely, given any ∗-homomorphism πA : A → B(H) and πB : B → B(H)
with commuting ranges, there exists a unique ∗-homomorphism π : A⊗max B → C that extends
πA and πB.

Corollary 2.3.6. Let A, B be C∗-algebras. The maximal norm (and thus also the minimal
norm) on A⊗ B satisfies the following estimate for any a ∈ A, b ∈ B:

‖a⊗ b‖max ≤ ‖a‖A‖b‖B.

Proof. Let π : A⊗B → B(H) be any representation and let πA, πB be the restrictions from the
universal property. Then

‖π(a⊗ b)‖ = ‖πA(a)πB(b)‖ ≤ ‖πA(a)‖‖πB(b)‖ ≤ ‖a‖A‖b‖B,

using the fact that ∗-homomorphisms on C∗-algebras are contractive (Theorem 2.1.7 from Mur-
phy). Taking the supremum over all representations, we find ‖a⊗ b‖max ≤ ‖a‖A‖b‖B.

Remark 2.3.7. Unlike with the minimal tensor norm, it is not hard to show that the maximal
tensor norm is indeed the ‘largest’ tensor norm one can define. Indeed, if α was another tensor
norm on A⊗B and its completion is denoted by A⊗α B, then the canonical ∗-homomorphisms
πA : A → A⊗α B and πB : B → A ⊗α B have commuting ranges. Therefore, by the universal
property, there exists a ∗-homomorphism π : A⊗maxB → A⊗αB which is the identity on A⊗B.
But since ∗-homomorphisms between C∗-algebras are automatically contractive, it follows that
‖x‖α ≤ ‖x‖max for x ∈ A⊗ B.

One example of a C∗-algebras where the minimal and maximal norm are different is the space
B(H) - it is known that B(H) ⊗min B(H) 6= B(H) ⊗max B(H) [10] and even that there is an
uncountably infinite number of inequivalent C∗-norms on B(H) ⊗ B(H) [20]. In the case of
nuclear C∗-algebras, we know that this can’t happen.

Definition 2.3.8. A C∗-algebra A is called nuclear if for every C∗-algebra B, there is a unique
tensor norm on A⊗ B - i.e. the minimal and maximal tensor norm coincide.

This is one of several equivalent definitions for nuclear C∗-algebras (see e.g. [1, 2.3]); it is the
one that will be most convenient for us.
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2.4 Free groups, free products and group C∗-algebras

Free groups, free products and group C∗-algebras are notions that are essential for this thesis
but which are not covered in Murphy’s book (or any courses I followed). Hence I will introduce
them here for readers who aren’t familiar with them either.

Free groups

Firstly, the free group Fn of n generators g1, . . . , gn is the group of reduced words in those gen-
erators and their inverses. We will explain what this means. Firstly, we refer to the generators
gi as letters. A word consists of a sequence of such letters, for example g1g3g2g1. Instead of
writing multiple of the same letters adjacently, we write powers: for example g5

1g
2
2g

3
3g1. These

can also be inverses, such as g−5
1 .

The group operation is concatenation; i.e. (g1g2) ◦ (g2g1) = g1g2g2g1 = g1g
2
2g1. The only rela-

tions are taking powers, such as here, and the inverse relation - e.g. (g1g2)◦(g−1
2 g1) = g1g1 = g2

1.
The right hand sides of both of these words are said to be in reduced form. The unit is the
‘empty’ word, which we simply write as 1Fn .

Free products

The free product of groups is quite similar in definition to free groups. If G,H are two groups,
then the free product of G and H is written as G ∗ H and defined as all words of alternating
elements g1h1g2h2 . . . , gi ∈ G\{e}, hi ∈ H \{e}. Upon concatenating two words, we take group
operations of any adjacent elements of the same group until all the letters are again alternating
and not equal to the identity (i.e. it is in ‘reduced’ form). We can concretely write down the
free product as

G ∗H =
∞⋃
n=1

(Sn1 ∪ Sn2 ),

where Sn1 = {g1 . . . gn : g1 ∈ G \ {e}, g2 ∈ H \ {e}, . . . } and Sn2 = {g1 . . . gn : g1 ∈ H \ {e}, g2 ∈
G \ {e}, . . . }.

The free product of C∗-algebras are more tricky; we do not write down the full details here
(see e.g. [17]). If A,B are C∗-algebras, we first construct the free ∗-algebra. We start again
with words of alternating elements. We define a multiplication by concatenation, multiplying
adjacent elements from the same C∗-algebra. We then take linear combinations of these words
to create a vector space structure, and define an involution on words by the standard rule
(AB)∗ = B∗A∗ and on the whole space by anti-linear extension. We need to adhere to the
standard ∗-algebra relations such as the distributive property; in order to do that, we quotient
out all elements like a1(b1 + b2)a2 − a1b1a2 − a1b2b1, etc. Now we would expect to concretely
write down the ∗-algebra A ∗C B as

A ∗C B = C1⊕
∞⊕
n=1

(Wn
1 ⊕Wn

2 ), (1)

where
Wn

1 = Span{a1 . . . an : a1 ∈ A \ C1, a2 ∈ B \ C1, . . . },

Wn
2 = Span{a1 . . . an : a1 ∈ B \ C1, a2 ∈ A \ C1, . . . }.

13



However, there is a problem here; for example, the word a1(b1 + λ1)a2 ∈ W 3
1 could be written

alternatively as a1b1a2 + λ · a1a2 ∈ W 3
1 ⊕W 1

1 , so elements here are not uniquely defined. To
remedy this, we choose states τA, τB and define subspaces

A◦ = {a ∈ A : τA(a) = 0}, B◦ = {b ∈ B : τB(b) = 0}.

For example, in the case A = B = `m∞ that will be considered in this thesis, we have the natural
choice τ(x) = 〈x, (1, . . . , 1)〉; thus, the space (`m∞)◦ will consist of elements whose inner product
with the all-ones vector is 0.

Now we define A ∗C B through (1) but by redefining

Wn
1 = Span{a1 . . . an : a1 ∈ A◦, a2 ∈ B◦, . . . }, Wn

2 = Span{a1 . . . an : a1 ∈ B◦, a2 ∈ A◦, . . . }.

We can replace a letter a ∈ A with (a − τA(a)) + τA(a) ∈ A◦ ⊕ C1. With this trick and the
distributive property, we can ‘reduce’ words of letters in A and B to elements in (1).

Finally, we need to define a norm to complete over. There are actually multiple ways to do
this; we will be using the universal free product in this thesis (one can also define a reduced one
which depends on a choice of state, see [17, Ch. 7]). The norm is defined somewhat similarly
to the maximal tensor norm: we let ‖x‖ := sup ‖π(x)‖ where the supremum is taken over all
representations π : A∗CB → B(H). First note that this norm is finite; indeed, if x = g1 . . . gn we
have for any representation π that ‖π(x)‖ ≤ ‖π(g1)‖ . . . ‖π(gn)‖ ≤ ‖g1‖ . . . ‖gn‖ since π is a rep-
resentation of C∗-algebras (and thus contractive) on the separate letters. Now it is easy to show
that this is a seminorm; to show that it is a norm we need to show that a faithful representa-
tion exists. This follows from the construction of the reduced free product; we refer again to [17].

The C∗-algebraic free product satisfies the following universal property:

Proposition 2.4.1 (Universal property of C∗-algebraic free product). Let πA : A → B(H)
and πB : B → B(H) be ∗-homomorphisms on C∗-algebras. Then there exists a unique ∗-
homomorphism π : A ∗ B → B(H) extending them.

Proof. We can define π on words by applying πA and πB to the separate letters and linearly
extend it to the algebraic free product A ∗C B. This defines a representation on that algebraic
free product; hence it is contractive by definition of the free product norm. Therefore we can
extend π to A ∗ B.

Group C∗-algebras

The last thing we need to define is the (maximal) group C∗-algebra, where we use elements from
a group as the building blocks to construct a C∗-algebra. The construction is rather similar to
the free product of C∗-algebras (although less technically involved). If G is a group, we start
with the space C[G] = span{ηg : g ∈ G}. Instead of just g, we write ηg for the group elements to
distinguish between the C∗-algebra and the original group. The multiplication on this space is
defined through the group operation and the standard algebra rules. The involution of a group
elements ηg is given by η∗g = ηg−1 . This extends to the whole space similarly as with the free
product. The norm is defined in a similar fashion through a supremum of representations:∥∥∥∥∥∑

g

λgηg

∥∥∥∥∥ := sup
π

∥∥∥∥∥∑
g

λgπ(g)

∥∥∥∥∥ ,
14



where the supremum is taken over all unitary representations π : G → A to C∗-algebras A,
i.e. representations that map to unitary elements. After completing with respect to this norm
we obtain the desired C∗-algebra, which we denote by C∗(G). This C∗-algebra satisfies the
following universal property:

Proposition 2.4.2 (Universal property of maximal group C∗-algebra). Let G be a group.
For any unitary representation π : G → A, there exists a ∗-homomorphism π̂ : C∗(G) → A
‘extending’ π, by which we mean that π(g) = π̂(ηg) for all g ∈ G.

Proof. By linear extension, it is clear how to define π̂ on C[G]. By definition of the norm, π̂ is
contractive on C[G], so we can extend it to C∗(G).
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3 Correlation matrices and Tsirelson’s problem

3.1 Introduction

We start by describing a very general fictional game setting. There are 2 players: Alice and Bob,
and a ‘game master’. The game master gives inputs x and y from finite sets X = {1, . . . , X} and
Y = {1, . . . , Y } to Alice and Bob respectively. Alice and Bob are not allowed to communicate
in any way. They now need to give outputs a and b from finite sets A = {1, . . . , A} and
B = {1, . . . , B}; they win the game only for specific combinations of a, b, x and y which are
known in advance. They can coordinate a strategy beforehand.

A B

R

x yx y

a b

Figure 1: A schematic overview of a non-local two-player game

We denote a (randomized) strategy by a probability measure P, indicating the probability of
every pair of outputs (a, b) given any pair of inputs (x, y):

(P(a, b|x, y))a∈A,b∈B,x∈X,y∈Y.

such a matrix of probabilities is called a correlation matrix. It reflects the correlation between
Alice and Bob’s output probabilities.

3.2 Classical case

In the classical deterministic case, all Alice and Bob can do for a strategy is coordinate before-
hand which output they will give for every input. Somewhat more generally, they can agree
on personal probability distributions over the possible outputs for each input; in other words,
personal conditional probability distributions. We call these distributions P and Q for Alice
and Bob respectively; so the probability of output a and b given input x and y is given by
P (a|x)Q(b|y).

If we define P(A|X) as all possible conditional probability distributions over A and X:

P(A|X) = {(P (a|x))x,a ∈ RAX+ : ∀x ∈ X,
∑
a∈A

P (a|x) = 1},

then all possible strategies are given by

{(P (a|x)Q(b|y))a,b;x,y : P ∈ P(A|X), Q ∈ P(B|Y)}. (2)

At this point there is no correlation between Alice’s and Bob’s outputs; the probabilities for
Alice do not depend on Bob’s outcome, and vice versa.

16



To add some correlation, we can allow Alice and Bob to have shared randomness; for example,
there could be a dice roll of which they can both see the result. The resulting set of classical
correlation matrices is denoted by Cc(AB|XY), after [5]. It now also includes probability
distributions over the strategies in (2), i.e.

Cc(AB|XY) =


(∑
i∈I

piPi(a|x)Qi(b|x)

)
a,b;x,y

: Pi ∈ P(A|X), Qi ∈ P(B|Y), pi ∈ [0, 1],
∑
i∈I

pi = 1

 .

This set can also be seen as the convex hull of (2), with the deterministic strategies as extreme
values. We often write simply Cc when the corresponding sets are clear.

3.3 Quantum case with entangled states

If we involve quantum mechanics, we can define even more elaborate strategies. Instead of
shared randomness, Alice and Bob now share an entangled (bipartite) state |ψ〉 over Hilbert
spaces HA and HB. Their outputs are decided by some POVM {Axa}a∈A respectively {By

b }b∈B,
depending on the inputs (x, y).

A B

R

x yx y

a b

HA HB

|ψ〉 ∈ HA ⊗HB|ψ〉 ∈ HA ⊗HBPOVM

{Axa}ma=1

POVM

{By
b }
m
b=1

Figure 2: A schematic overview of the tensor product model

From a physical point of view, it usually suffices to consider finite dimensional Hilbert spaces.
The resulting set of correlation matrices is simply called the ‘quantum correlations’ and denoted
by Cq:

Cq(AB|XY) =
{

(〈ψ|Axa ⊗B
y
b |ψ〉)x,y;a,b : H = HA ⊗HB, dim(H) <∞, |ψ〉 ∈ Ball(H),Ax

a ∈ B(HA)+,

By
b ∈ B(HB)+,

∑
a

Axa =
∑
b

By
b = 1∀(x, y) ∈ X×Y

}
.

Again, we write Cq when the corresponding sets are clear.

If we drop the finite dimensional requirement, we get another set of quantum correlations.
Following notation from [5], we denote this set by Cqs (probably for ‘separated quantum corre-
lations’):

Cqs(AB|XY) =
{

(〈ψ|Axa ⊗B
y
b |ψ〉)x,y;a,b : H = HA ⊗HB, |ψ〉 ∈ Ball(H),Ax

a ∈ B(HA)+,

By
b ∈ B(HB)+,

∑
a

Axa =
∑
b

By
b = 1∀(x, y) ∈ X×Y

}
.
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As we shall see in Chapter 5.3, neither of these sets are closed. Therefore, we define the closure
Cqa = Cqs. I am unsure what the ‘a’ in ‘qa’ is named after, perhaps the german word ‘abschluss’.

3.4 Quantum case with commuting projections

In the above, we assumed that the Hilbert space was divided in separate tensor legs for Alice and
Bob. It is not clear whether this is consistent with physical reality. A perhaps more reasonable
model would be to assume one (giant) Hilbert space on which both Alice’s and Bob’s operators
act. All we need then to conserve our experimental setup is for the operators on Alice’s side to
commute with those on Bob’s side; that way, it does not matter who does their measurement
first.

A B

R

x y

a b

|ψ〉 ∈ HPOVM

{Axa}ma=1

POVM

{By
b }
m
b=1

H

Figure 3: A schematic overview of the commuting operator model

This defines the set of ’commuting quantum correlations’, denoted by Cqc:

Cqc(AB|XY) =
{

(〈ψ|Axa ·B
y
b |ψ〉)x,y;a,b : H, |ψ〉 ∈ Ball(H),Ax

a,B
y
b ∈ Proj(H),

[Axa, B
y
b ] = 0,

∑
a

Axa =
∑
b

By
b = 1

}
..

By setting H = HA ⊗ HB and Ãax := Axa ⊗ 1HB , B̃b
y := By

b ⊗ 1HB , we see that correlation
matrices from Cqs are also in Cqc; therefore we have the inclusion Cqs ⊆ Cqc.

3.5 Overview

In Chapter 5, we shall show the following inclusion relations of the various correlation sets:

Cc ( Cq ⊆ Cqs ( Cqa ⊆ Cqc.

Strictness of the final inclusion is still open, which will be the main problem in this thesis:

Conjecture 3.5.1 (Tsirelson’s Problem or T2). For all input sets X,Y and output sets A,B,
we have Cqa(AB|XY) = Cqc(AB|XY).

Remark 3.5.2. The attentive reader might have remarked that we have not defined a finite
dimensional version of the set Cqc, as we did for Cqs. The reason is that we already know these
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sets would be the same; in other words, the finite dimensional version of Tsirelson’s problem is
already resolved. A sketch of the proof was given by Tsirelson himself in the original problem
statement [29]. We give the full version with all details, as well as our own simpler proof, in
Chapter 5.2.

Remark 3.5.3. In the above, we have used pure states to define the various sets of quan-
tum correlations. These sets would remain unchanged if we defined them instead with mixed
states. This is because we can ‘purify’ a mixed state by increasing the dimension of the
Hilbert space: if ρ =

∑n
i=1 pi |ϕi〉〈ϕi| is a mixed state on H, then we define |ψ〉 ∈ H ⊗ Cn

by |ψ〉 =
∑n

i=1 |ϕi〉 ⊗
√
pi |ei〉. By Pythagoras, this is a unit vector, and therefore a valid pure

state. By straightforward calculation, we can check that ρ = (1H⊗TrCn)(|ψ〉〈ψ|). This implies
that, for A ∈ B(H):

〈ψ|A⊗ 1Cn |ψ〉 = Tr(A⊗ 1Cn |ψ〉〈ψ|) = Tr(A(1H ⊗ TrCn)(|ψ〉〈ψ|) = Tr(Aρ).

If H has a tensor product form H = HA⊗HB, then this can be preserved by adding the ancilla
to one of the two tensor legs.
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4 Classical correlations vs quantum correlations

In this chapter we give some results on the relation between the two ‘simplest’ correlation sets
Cc and Cq. The content is rather stand-alone as we will not use any of these results later on.

4.1 Cc ⊆ Cq

First let us check that the expected result Cc ⊆ Cq indeed holds. Let (P(a, b|x, y))a,b;x,y ∈
Cc(AB|XY) be a classical correlation given by P(a, b|x, y) =

∑n
i=1 piPi(a|x)Qi(b|y). The goal is

to find someAxa, B
y
b ∈Mn(C) and |ψ〉 ∈ Ball(Cn2

) such that
〈
ψ
∣∣Axa ⊗By

b

∣∣ψ〉 =
∑n

i=1 piPi(a|x)Qi(b|y).

We define measurement operators

Axa :=


P1(a|x) 0 . . . 0

0 P2(a|x) . . . 0
...

...
. . .

...
0 0 . . . Pn(a|x)

 , By
b :=


Q1(b|y) 0 . . . 0

0 Q2(b|y) . . . 0
...

...
. . .

...
0 0 . . . Qn(b|y)


and a state |ψ〉 =

∑n
i=1

√
pi |ii〉 =

∑n
i=1

√
piei ⊗ ei. Then it holds that

〈
ψ
∣∣Axa ⊗By

b

∣∣ψ〉 =

n∑
i=1

piPi(a|x)Qi(b|y).

Also, Axa and By
b are positive matrices summing up to the identity over a respectively b, and ψ

is a unit vector. Thus, P(a, b|x, y) ∈ Cq(AB|XY).

4.2 Cc 6= Cq: Bell violations

As mentioned in Chapter 3.2, the classical correlations are given by a convex hull, i.e. a polytope.
This means that we can describe it by a set of inequalities corresponding to its edges; these are
called Bell inequalities (see [21, Ch. 1.2]). Such an inequality is described by∑

a,b;x,y

λa,b;x,yP(a, b|x, y) ≤ C for all (P(a, b|x, y))a,b;x,y ∈ Cc(AB|XY).

Therefore, to prove that Cc 6= Cq, it suffices to find a correlation (P(a, b|x, y))a,b;x,y ∈ Cq(AB|XY)
that violates such a Bell inequality. The most common (and most simple) example is the CHSH-
inequality.

In the CHSH-scenario, Bob and Alice have only 2 inputs and outputs. Let us start by de-
scribing the experiment from the classical point of view. Alice has a particle of which she can
measure two properties, given by random variables A1 and A2. She chooses which property to
measure depending on the input x. Similarly, Bob has random variables B1 and B2 of which
he measures one depending on the input y. The outputs are given by the sets A = B = {1,−1}.

We consider the random variable S = A1B1+A2B1+A1B2−A2B2 =
∑2

x,y=1(−1)1+min(x,y)AiBj .
In classical physics, we assume that the values of the random variables are deterministic; they
have fixed, although hidden, values. Therefore, the value of either A1 +A2 or A1−A2 is always
0, while the other is ±2. As such, the value of S is always ±2. Hence,

|E(S)| =

∣∣∣∣∣∣
∑

s∈{−2,2}

P(S = s)s

∣∣∣∣∣∣ ≤ 2
∑

s∈{−2,2}

P(S = s) = 2.
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Note that E(AxBy) =
∑

a,b∈{−1,1}(−1)abP(a, b|x, y). Hence we can reformulate this as a Bell
inequality (or actually 2) as defined above:∑

a,b;x,y

(−1)1+ab+min(x,y)P(a, b|x, y) ≤ 2,
∑
a,b;x,y

(−1)1+ab+min(x,y)P(a, b|x, y) ≥ −2.

We now describe a specific quantum experiment violating this inequality. Recall the Pauli
matrices

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
,

also known as the bitflip and the phaseflip operators. We implement the measurements through
the observables A1 = σx, A2 = σz and B1 = −1/

√
2(σz + σx), B2 = 1/

√
2(σz − σx) (note that

these are observables, not the projections from the definition). The state is given by the well-
known EPR-pair |ψ〉 = 1/

√
2(|00〉+ |11〉).

Now we have

E(A1B1) = 〈ψ|A1 ⊗B1|ψ〉 =
1

2
√

2

(
1 0 0 1

)
0 0 −1 −1
0 0 −1 1
−1 −1 0 0
−1 1 0 0




1
0
0
1

 = − 1√
2

And similarly

E(A1B2) = − 1√
2
, E(A2B1) = − 1√

2
, E(A2B2) =

1√
2
.

Hence,
E(S) = −2

√
2 < −2,

which violates the Bell inequality. Therefore, the projective measurement operators following
from the observables A1, A2, B1, B2 (i.e. the projections on the eigenspaces) together with the
state |ψ〉 yield a correlation matrix in Cq that is not in Cc.
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5 Known quantum correlation results

5.1 Preliminaries: C∗-states vs vector states

In the C∗-algebra theory we will use hereafter, we need the notion of a C∗-algebraic state. This
is a positive linear functional ω : B(H)→ C such that ω(1H) = 1. In this case we say that ω is
a state on H. See Murphy for more details.

Note that a ‘pure quantum state’ |ψ〉 as above can be identified with the C∗-algebraic state
on A defined as A 7→ 〈ψ|A|ψ〉. More generally, a density matrix ρ can be identified with the
state defined by A 7→ Tr(Aρ). In the context of a concretely represented C∗-algebra A ⊆ B(H),
these are called a (pure) vector state respectively mixed vector state. Recall that we can purify
a mixed vector state by Remark 3.5.3.

We see that the mixed vector states are a subset of all C∗-algebraic states. In finite dimensions,
the converse inclusion is also true. Indeed, if ω : Mn(C) → C is a positive linear functional
with ω(1Cn) = 1, then clearly ω(A) = Tr(Aρ) for some ρ ∈ Mn(C). (One can check that
the coefficients of ρ are given by ρi,j = ω(Ej,i), where Ei,j is the matrix with a 1 at posi-
tion (i, j) and zeroes elsewhere.) Filling in A = 1Cn shows that Tr(ρ) = 1. Also, positivity
of ω implies that Tr(Aρ) ≥ 0 whenever A is positive definite. In particular, it follows that
〈ψ|ρ|ψ〉 = Tr(|ψ〉〈ψ| ρ) ≥ 0, therefore ρ is positive definite. It follows that ρ is a density matrix,
and thus ω is a mixed vector state.

In general, the converse is not true; there are C∗-algebraic states which cannot be written as
mixed vector states on the same Hilbert space. There are two common tricks we can use to
convert a general state ω on a Hilbert space H to a (mixed) vector state.

First, if we are allowed to change our Hilbert space, we can use the GNS representation cor-
responding to ω. Then ω will automatically become a (pure!) vector state on the resulting
Hilbert space Hω. Indeed, if ξ is the equivalence class of the multiplicative unit (1, . . . , 1) in
Hω, then 〈πω(a)ξ, ξ〉 = ω(a). To be precise, we define a corresponding state ω̃ on B(Hω) by
ω̃(a) = 〈aξ, ξ〉. Then ω̃ is a vector state on Hω such that ω = ω̃ ◦πω. Note that the new Hilbert
space Hω generally does not carry over any properties from H. In particular, if H = HA⊗HB,
then Hω does not need to have a similar tensor form.

Second, we can use the fact that mixed vector states on H are weak-* dense in the set of general
states - see Theorem A.1.1. This has the advantage that the representation remains fixed.

5.2 Finite dimensional case

In the finite dimensional case, Tsirelson’s problem has already been resolved; hence the defi-
nition of the set Cq does not depend on the type of model chosen. A sketch of the proof was
already given by Tsirelson himself in the original problem statement [29], and worked out in a
bit more detail in [25]. We work out all the details of this proof below. The proof turns out to
be of considerable length, and can be skipped at first reading.

We introduce some notation from Murphy (above Lemma 4.1.6). Let p be a projection of a
Hilbert space H into K. If a ∈ B(H), we define ap = aK to be the compression of a ∈ B(H)
to K. In other words, ap ∈ B(K) is defined as ap : ξ 7→ paξ. Further, when A is a ∗-algebra
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on H and p ∈ A′, we define Ap = {ap : a ∈ A}. By Lemma 4.1.6 from Murphy, the map
pAp 7→ Ap, u 7→ up is a ∗-isomorphism. Moreover, if p ∈ A′′, then (A′)p = (Ap)′.

Theorem 5.2.1. Let H be a finite dimensional Hilbert space and A ⊆ B(H) be a von Neumann
algebra containing 1H. Then there exist finite dimensional Hilbert spaces HA,HB and injective
∗-homomorphisms πA : A → B(HA) and πB : A′ → B(HB) such that the following statement
holds: for every state ω on B(H), there is a state ω̃ on B(HA⊗HB) such that ω̃(πA(a)⊗πB(b)) =
ω(a · b) for all a ∈ A, b ∈ B.

Proof. We start by describing the so-called central decomposition of A. The center Z(A) =
A ∩ A′ is a unital commutative C∗-algebra, hence by Gelfand-Naimark it is isomorphic to
C(Ω), where Ω is the character space of H. Since H is finite dimensional, Ω is a finite set of
points {x1, . . . , xn}. Therefore C(Ω) is linearly spanned by the indicator functions 1xi . Define
pi ∈ Z(A) to be the elements satisfying p̂i = 1xi . Then the pi are orthogonal central projections
summing to 1H.

Defining Ai = Api , it follows from Lemma 4.1.6 of Murphy that A =
∑n

i=1 piA =
∑n

i=1 piApi ∼=⊕n
i=1Ai. Similarly, we can decompose A′ ∼=

⊕n
i=1A′i, since it has the same center. Note

here that, again by Lemma 4.1.6 from Murphy, we have A′i = (A′)pi = (Ai)′. Also, we define
Hi = pi(H), which leads to the decomposition H ∼=

⊕n
i=1Hi.

Next, we prove that each Ai is a factor, i.e. Z(Ai) = C1Hi = Cpi. Take i ∈ {1, . . . , n} and
p = pib ∈ Z(Ai). For a ∈ A, we have

a(pib) = (
n∑
k=1

pka)pib = (pia)(pib) = (pib)(pia) = (pib)a.

Therefore pib ∈ Z(A), so we can write it as a linear combination pib =
∑n

k=1 λipk. But then
pib = pibpi = (

∑n
k=1 λkpk)pi = λipi, and therefore p = λi1Hi ∈ C1Hi .

We will need the following Lemma (see Lemma A.4.2 in the Appendix for a proof):

Lemma 5.2.2. LetM⊆ B(H) be a factor, where H is a finite dimensional Hilbert space. Then
there exists a unitary u ∈ B(H) such that uMu∗ = 1Md(C)⊗Mq(C) for some d, q ∈ N (and thus

H ∼= Cdq ∼= Cd ⊗ Cq).

Since the A′i are also factors, we can by the Lemma find ni,mi ∈ N such that uA′iu∗ = 1Mni (C)⊗
Mmi(C), acting on the Hilbert space Cni ⊗ Cmi . Then (since uAiu∗ = uA′′i u∗ = (uA′iu∗)′ we
have uAiu∗ = Mni(C)⊗ 1Mmi (C) (we could have done this the other way around, but this way
will be more convenient for us). For notational convenience, let us now assume without loss of
generality that both unitary equivalences are in fact equalities. It follows that we can write

A =

n⊕
i=1

Mni(C)⊗ 1Mmi (C), A′ =
n⊕
i=1

1Mni (C) ⊗Mmi(C).

So to illustrate, for elements a ∈ A and b ∈ A′ we can write

a =
n⊕
i=1

ai =
n⊕
i=1

ãi ⊗ 1Mmi
(C), ab =

n⊕
i=1

ãi ⊗ b̃i. (3)

Now define HA =
⊕n

i=1 Cni and HB =
⊕n

i=1 Cmi . Then we can define a projection pH :
HA ⊗ HB → H by mapping a double direct sum to the direct sum of its diagonal entries, i.e.
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⊕n
i=1

⊕n
j=1 ai ⊗ bj 7→

⊕n
i=1 ai ⊗ bi.

Using notation from (3), we define injective ∗-homomorphisms πA : A → B(HA) and πB : A′ →
B(HB) by

πA(a) =
n⊕
i=1

ãi, πB(b) =
n⊕
i=1

b̃i.

To prove the final statement, let ω be a state on B(H). Let uH : B(HA ⊗HB) → B(H) be the
restriction mapping defined by x 7→ pHxpH. We define our new state ω̃ on B(HA ⊗HB) as

ω̃ = ω ◦ uH : ω̃(x) = ω(pHxpH).

Since uH is contractive and ω̃ is unital, Corollary 3.3.4 from Murphy tells us that this linear
functional is indeed a state. Finally, for a ∈ A, b ∈ A′:

ω̃(a⊗ b) = ω̃

 n⊕
i=1

ãi ⊗
n⊕
j=1

b̃j

 = ω̃

 n⊕
i=1

n⊕
j=1

ãi ⊗ b̃j


= ω

(
n⊕
i=1

ãi ⊗ b̃i

)
(3)
= ω(a · b).

Corollary 5.2.3. Let P (a, b|x, y) = ω(AxaB
y
b ) be a correlation given by a state ω on B(H),

and measurement operators Axa, B
y
b ∈ B(H) with [Axa, B

y
b ] = 0. Then there exist POVMs Ãxa ∈

B(HA), B̃y
b ∈ B(HB) and a vector state ω̃ on B(HA⊗HB) such that ω̃(Ãxa ⊗ B̃

y
b ) = P (a, b|x, y).

Proof. This follows from the previous proposition by defining A to be the von Neumann al-
gebra generated by the Axa, noting that By

b ∈ A
′ and defining Ãxa = πA(Axa), B̃y

b = πB(By
b ).

Furthermore, as mentioned in Chapter 5.1, every state on a finite dimensional Hilbert space
is automatically a mixed vector state, which we can purify by Remark 3.5.3 by increasing the
dimension of the Hilbert space if necessary.

Note that dim(HA ⊗HB) ≥ dim(H), even without the expansion needed for purification of the
vector state; indeed, dim(H) =

∑n
i=1 nimi ≤

∑n
i=1 ni

∑n
j=1mj = dim(HA ⊗HB).

The above proof is Tsirelson’s original idea with all details worked out, using the structure of
finite dimensional C∗-algebras to create a clever splitting of the Hilbert space. A different proof,
using the notion of ‘quansality’, was given by [16].

The elaborate splitting for the previous proof only really helps you in defining the new state
because there is a natural restriction mapping B(HA ⊗ HB) → B(H). What if instead, we
just define HA = HB = H? It turns out that it is not much harder to prove that the natural
candidate for the new state ω̃(a ⊗ b) = ω(ab) is indeed a valid state. This much shorter proof
does not seem to be written down anywhere in the literature (although we are sure it must be
known to the experts). We take A and B to be the C∗-algebras generated by Alice and Bob’s
operators (we do not need von Neumann algebra theory anymore).

Theorem 5.2.4. Let A,B ⊆ B(H) be C∗-algebras with H finite dimensional and B ⊆ A′. Let ω
be a state on B(H). Then there exists a vector state ω̃ on B(H⊗H) such that ω̃(a⊗b) = ω(a ·b)
for all a ∈ A, b ∈ B.
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Proof. Note that, since the Hilbert spaces are finite dimensional, the unital ∗-algebra A ⊗ B
with the inherited norm from B(H⊗H) becomes a C∗-algebra (in infinite dimensions this would
require a norm completion). Therefore the map ϕ : A ⊗ B → B(H) given by a ⊗ b 7→ a · b is
a linear map between C∗-algebras. Using commutativity, it can be routinely checked that ϕ
is in fact a ∗-homomorphism, which by Theorem 2.1.7 from Murphy means that ϕ is contractive.

Now the map ω̃ ∈ (A⊗B)∗ defined by ω̃ = ω ◦ϕ is clearly a linear functional with ω̃(1⊗1) = 1.
This implies that ||ω̃|| ≥ 1, but also ||ω̃|| ≤ ‖ϕ‖‖ω‖ ≤ 1, so ‖ω̃‖ = 1. By Corollary 3.3.4 from
Murphy, ω̃ is positive and therefore a state. By Theorem 3.3.8 from Murphy, ω̃ can be extended
to B(H ⊗ H). As remarked in Chapter 5.1, ω̃ is automatically a mixed vector state since it
works on a finite dimensional Hilbert space. By Remark 3.5.3, we can assume without loss of
generality that ω̃ is a pure vector state. Finally, we have by definition that ω̃(a⊗ b) = ω(a · b)
for all a ∈ A, b ∈ B.

5.3 Other quantum inclusion results

Cqs 6= Cqa

The original problem that Tsirelson posed actually asked multiple questions: firstly, if Cqs = Cqc,
and if not, than maybe Cqa = Cqc? The latter became known as the weak Tsirelson problem.
Even stronger, one might ask whether Cq = Cqc, which was titled the strong Tsirelson problem,
with the original case becoming the intermediate Tsirelson problem.

The strong and intermediate Tsirelson problem were resolved by Slofstra in 2016 [26], who
showed the non-closedness of Cqs which means that Cqs ( Cqa ⊆ Cqc. The proof was later
simplified by Slofstra [27] with a constructive example of input sizes 184 and 235, and output
sizes 8 and 2. The proof was even further simplified by Dykema, Paulsen and Prakash [4], who
showed that a violating quantum strategy can be found even in the relatively simple case of
input sizes 5 and output sizes 2. These results are outside the scope of this thesis and will not
be discussed further.

With that, only the weak Tsirelson problem remains open, which is now commonly referred to
as ‘the’ Tsirelson problem.

Cqa ⊆ Cqc

We already know that Cqs ⊆ Cqc, so to prove that Cqa ⊆ Cqc we only need to show that Cqc is
closed. We postpone this proof until Chapter 6; see Corollary 6.2.6. This proves closedness only
for the case where both players have the same number of inputs and ouputs, but in Corollary
7.2.6 we will see that the general case also holds.

5.4 Special cases for Tsirelson’s problem

Theorem 5.2.4 used a simple proof to show the finite dimensional case of Tsirelson. A similar
proof works when the algebra generated by Alice’s operators is nuclear:

Theorem 5.4.1. Let A,B ⊆ B(H) be C∗-algebras such that B ⊆ A′. Moreover, assume that
A is nuclear. Let ω be a state on B(H). Then there exists a state ω̃ on B(H ⊗ H) such that
ω̃(a⊗ b) = ω(a · b) for all a ∈ A, b ∈ B.

Proof. The only part in the previous proof where we used finite dimensionality was where we
claimed that A ⊗ B was a C∗-subalgebra of B(HA ⊗ HB). In infinite dimensions, we need a
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norm completion to make A ⊗ B into a C∗-algebra. such as A ⊗min B. In order to define a
state on B(HA⊗HB), we need to extend the map ϕ : a⊗b 7→ ab that we used before to A⊗minB.

By nuclearity, we have A⊗min B = A⊗max B. Theorem 6.3.7 from Murphy now tells us exactly
that there is a unique ∗-homomorphism ϕ : A ⊗max B → B(H) satisfying ϕ(a ⊗ b) = a · b
for all a ∈ A and b ∈ B. This gives us the extension of ϕ we need. Now we can define
ω̃ ∈ (A⊗min B)∗ by ω̃ := ω ◦ ϕ and similarly prove that ω̃ is a state that can be extended to a
state on B(HA ⊗HB).

Corollary 5.4.2. Let P (a, b|x, y) ∈ Cqc be a correlation matrix given by a Hilbert space H,
a state ω on H and measurement operators {Axa}, {B

y
b } ∈ B(H) such that the C∗-algebra A

generated by {Axa} is nuclear. Then P (a, b|x, y) ∈ Cqa; more specifically, there are vector states
ωn such that ωn(Axa ⊗B

y
b )→ P (a, b|x, y) for all a, b, x, y.

Proof. Let A and B be the C∗-algebras generated by Alice’s and Bob’s operators. By the
previous Proposition, there exists a state ω̃ such that ω̃(Axa ⊗ B

y
b ) = ω(AxaB

y
b ). However, we

can no longer assume that ω̃ is a vector state. Therefore, we use the weak-* density of vector
states (Theorem A.1.1): let ωn be vector states so that ωn → ω̃ pointwise. Then in particular,
ωn(Axa ⊗B

y
b )→ P (a, b|x, y) for all a, b, x, y.

Note that the nuclear version implies the finite dimensional version: indeed, by Theorem 6.3.9
from Murphy, every finite dimensional C∗-algebra is nuclear.

Another known case is when the number of inputs and outputs for Alice is 2, see [16]. The case
where both players have 2 inputs and outputs is the well-known CSHS-scenario.
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6 Tsirelson’s problem and Kirchberg’s conjecture

In this section we focus on the equivalence to Kirchberg’s conjecture. It is important to note
that this equivalence holds only if we assume Alice and Bob have the same number of inputs and
outputs. We prove one implication and a matrix-valued version of the other implication, similar
to the one [9] and Fritz [7] have shown it. The full equivalence was later shown by Ozawa [19] but
his proof is outside the scope of this project. Our proof runs along the same lines as Fritz’ proof.

Kirchberg’s conjecture (which we will abbreviate by (K2)) has many equivalent forms, some of
which are stated in Appendix A.5. The formulation we need for now is the following one:

Conjecture 6.0.1 (K2). For some (or equivalently, for all) k,m ≥ 2, (k,m) 6= (2, 2), we have

∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞.

The sufficient condition is proven in Appendix A.5. Recognise how the CHSH-scenario, for which
Tsirelson is known to be true (cf. Chapter 5.4), is left out here. This is due to the fact that
Z2∗Z2 does not contain F2 as a subgroup, while other groups of that form do (see Lemma A.5.6).

Any C∗-algebra containing one or more copies of ∗kx=1`
m
∞ with minimal or maximal tensor prod-

ucts between them will be called a FJO-algebra, after the three papers [7], [9] and [19] that
established the equivalence between Kirchberg’s en Tsirelson’s problems.

In the following, {Axa} respectively {By
b } denote sets of POVMs that can be thought of as

Alice’s respectively Bob’s set of observables. We will assume in this Chapter that Alice and
Bob have the same number of inputs and the same number of outputs: x, y ∈ {1, . . . , k} and
a, b ∈ {1, . . . ,m}. We define Γ := (k,m) as a ‘choice of integers’. The value of Γ defines a ‘ver-
sion’ of Tsirelson’s problem, and we denote the related sets of quantum correlations by Cqa(Γ)
and Cqc(Γ).

6.1 Relation to `m∞ and the free product

We start by considering only one player. The first step in the proof establishes a link between
the ’simple’ space `m∞ of functions on m discrete points with the supremum norm, and B(H),
the space containing the operators from the quantum measurements. Indeed, since the oper-
ators from an m-outcome POVM {Ax1 , . . . , Axm} add up to 1, it makes sense to link them to
the standard basis e1, . . . , em ∈ `m∞ (note here that `m∞ is just Cm with the supremum norm).
Through linear extension, we can define a linear map Φx : `m∞ → B(H) satisfying Φx(ea) = Axa.
By construction, it is clear that this map is unital.

With pointwise multiplication and conjugation, the space `m∞ becomes a C∗-algebra. This gives
us a notion of positive elements - namely, those elements with real, positive coefficients. In
other words, an element a =

∑m
i=1 aiei ∈ `m∞ is positive iff ai ∈ R≥0 for i = 1, . . . ,m. Thus,

since the Axa are all positive, Φx(a) =
∑m

i=1 aiA
x
a is positive whenever a is positive. This means

that Φx is a positive map. In fact, since `m∞ is a commutative C∗-algebra, this means that Φx

is completely positive. We conclude that Φx is a unital completely positive map (in short: ucp
map).

The above shows how we can define a ucp map between C∗-algebras from a quantum measure-
ment. Conversely, note that any ucp map Φx : `m∞ → B(H) defines a quantum measurement.
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Indeed, if we define Axa := Φx(ea), then we find
∑m

i=1A
x
a = Φx(

∑n
i=1 ea) = Φx(1`m∞) = 1H

by unitality. Also, the Axa are positive since the ea are. Therefore, the operators Ax1 , . . . , A
x
m

constitute a valid POVM.

The next goal is to define some ucp map Φ : A → B(H) defined on some C∗-algebra A, which
defines all measurements {Axa} simultaneously. Somehow we need to ’combine’ the Φx above to
a single map. The following proposition states that this can be done via the free product. For
a proof we refer to [8, Cor. 3.8].

Proposition 6.1.1. Let A,B be C∗-algebras. For ucp maps Φ : A → B(H) and Ψ : B → B(H),
there is a ucp map Φ̃ : A ∗ B → B(H) extending Φ and Ψ (in the sense of the embeddings
A ↪→ A ∗ B and B ↪→ A ∗ B).

Repeatedly applying this proposition shows how we can define a single ucp map Φ : ∗kx=1`
m
∞ →

B(H) extending the maps Φx. Conversely, any ucp map

Φ : ∗kx=1`
m
∞ → B(H), Φ(exa) = Axa

defines a set of k measurements, one for each copy of `m∞. The operators are given by Axa :=
Φ(exa), where exa is the a’th orthonormal basis vector in the x’th copy of `m∞.

We can conclude the following:

Proposition 6.1.2. Sets of k m-outcome POVMs on Hilbert spaces H correspond to ucp maps
Φ : ∗kx=1`

m
∞ → B(H), i.e.

{(Axa)x,a | Axa ∈ B(H)+,
m∑
a=1

Axa = 1H} = {(Φ(exa))x,a | Φ : ∗kx=1`
m
∞ → B(H) ucp}.

A similar correspondence holds for projective measurements and ∗-representations, which we
will later use to show that it suffices to consider projective measurements:

Proposition 6.1.3. Sets of k m-outcome projective measurements on Hilbert spaces H corre-
spond to ∗-homomorphisms π : ∗kx=1`

m
∞ → B(H), i.e.

{(Axa)x,a | Axa ∈ Proj(B(H)), Axa pairwise orthogonal,

m∑
a=1

Axa = 1H}

= {(π(exa))x,a | π : ∗kx=1`
m
∞ → B(H) ∗ −homomorphism}.

Proof. Let π : ∗kx=1`
m
∞ → B(H) be a ∗-homomorphism. Define Axa := π(exa). By the properties

of ∗-homomorphisms, we have (Axa)2 = π(exa)2 = π((exa)2) = π(exa) = Axa and (Axa)∗ = π(exa)∗ =
π(exa) = Axa, so the Axa are projections. Similarly, we have Axa1A

x
a2 = π(exa1e

x
a2) = π(0) = 0 when-

ever a1 6= a2, so the projections {Axa}ma=1 are orthogonal. Finally,
∑m

a=1A
x
a = π (

∑m
a=1 e

x
a) =

π((1, . . . , 1)) = 1H.

Conversely, let (Axa)x,a be a projective measurement. Define maps πx : `m∞ → B(H) as given
before. We already know they are ucp, and since the images of the exa are orthogonal projections
they are ∗-homomorphisms. Now, by the universal property of free products, there is a unique
∗-homomorphism π : ∗kx=1`

m
∞ → B(H) extending the πx.
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6.2 Link to tensor norms and Kirchberg implies Tsirelson

We now know what the link is to free products. Next, we will see where the minimal and
maximal tensor products enter the equation. The essential step is in the following propositions,
which showcase the link to operator system theory.

Proposition 6.2.1. Let A,B be C∗-algebras. If ΦA : A → B(HA) and ΦB : B → B(HB) are
ucp maps, then the map defined by

ΦA ⊗min ΦB : A⊗min B → B(HA ⊗HB), a⊗ b 7→ ΦA(a)⊗ ΦB(b)

is also ucp.

Proof. This is a direct corollary of Theorem A.2.7.

Proposition 6.2.2. Let A,B be C∗-algebras. If ΦA : A → B(H) and ΦB : B → B(H) are ucp
maps with commuting ranges, then the map defined by

ΦA ⊗max ΦB : A⊗max B → B(H), a⊗ b 7→ ΦA(a)ΦB(b)

is well-defined and ucp.

See Theorem A.2.8 for the proof.

The tensor product model respectively commuting operator model become visible in these
propositions. They allow us to prove the following result, which states that the respective
sets of quantum correlations are equal in some sense to the set of states on the respective
tensor products of C∗-algebras. This proposition gives a natural framework in which to study
Tsirelson’s problem, and also immediately proves that Kirchberg’s conjecture implies Tsirelson’s
problem.

Recall that Γ := (k,m) represents the number of inputs and outputs. For ease of notation, we
define

Gmin(Γ) := ∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞, Gmax(Γ) := ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞

as a shortcut for the FJO-algebras.

Proposition 6.2.3. We have

Cqa(Γ) = {[ω(exa ⊗ e
y
b )]a,b;x,y : ω ∈ S(Gmin(Γ))} (4)

and
Cqc(Γ) = {[ω(exa ⊗ e

y
b )]a,b;x,y : ω ∈ S(Gmax(Γ))}. (5)

Here S(A) denotes the state space of the C∗-algebra A.

Proof. We essentially follow Fritz’ proof from [7, 3.4]. Let P (a, b|x, y) ∈ Cqs(Γ) be a quantum
correlation in the tensor product model. By Proposition 6.1.2, there exist ucp maps ΦA,ΦB

describing Alice’s and Bob’s measurements respectively. Let HA, HB be their corresponding
Hilbert spaces and ω ∈ S(B(HA⊗HB)) their shared (vector) state. The unital linear functional

ω̃(λ1 ⊗ λ2) := ω(ΦA(λ1)⊗ ΦB(λ2)), λ1, λ2 ∈ ∗kx=1`
m
∞
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satisfies ω̃(exa ⊗ e
y
b ) = P (a, b|x, y) by construction. To show that ω̃ is a state on Gmin(Γ), it

remains to check that ω̃ is positive. By proposition 6.2.1, the map ΦA ⊗min ΦB : Gmin(Γ) →
B(HA⊗HB) defined by ΦA⊗min ΦB(λ1⊗λ2) = ΦA(λ1)⊗ΦB(λ2) is ucp. So ω̃ is the composition
of two positive maps and therefore positive.

Now let P (a, b|x, y) ∈ Cqa(Γ), i.e. it is a limit of quantum correlations from the tensor product
model. Each of these quantum correlations gives rise to a state ω̃n as argued above. Now we
define ω̃(x) := limU ω̃n(x) to be the pointwise ultralimit with respect to some non-principal
ultrafilter U . (If the reader is unfamiliar with ultrafilters and ultralimits, the state ω̃ can also
be defined through a Hahn-Banach argument, by defining it first on the closed linear span of
the elements ΦA(exa)⊗ ΦB(eyb ).)

Since the ultralimit of a converging sequence is the same as the usual limit, we have ω̃(exa⊗e
y
b ) =

P (a, b|x, y). Also, a pointwise ultralimit of linear maps is still linear (since an ultralimit preserves
sums). Finally, ‖ω̃‖ ≤ 1 since ‖ω̃n‖ = 1, and also ω̃(1⊗ 1) = 1 so ‖ω̃‖ = 1. Now by Corollary
3.3.4 of Murphy, ω̃ is positive. Therefore ω̃ defines a state satisfying ω̃(exa ⊗ e

y
b ) = P (a, b|x, y),

which shows one inclusion of (4).

For the converse inclusion, fix some faithful representation π : ∗kx=1`
m
∞ → B(H). Then Gmin(Γ) ↪→

B(H⊗H) by definition of the ⊗min norm. We define the measurement operators Aax := π(exa),
Bb
y := π(eyb ). Note that the Hilbert space and these operators can be defined independently of

the given state.

Now if P (a, b|x, y) is given by a state ω on Gmin(Γ), all that remains to do is converting the
C∗-algebraic state to a vector state. One could try using the GNS-representation, but that
would destroy the tensor form of the Hilbert space H ⊗H (see Chapter 5.1). Instead, we use
the second trick from that chapter (see Theorem A.1.1), namely the fact that for a concretely
represented C∗-algebra, mixed vector states are weak-* dense in the state space. In other words,
there are vector states ωn on Gmin(Γ) such that ωn(x) → ω(x) pointwise. So, if ε > 0, we can
find some ωn such that

|P (a, b;x, y)− ωn(exa ⊗ e
y
b )| = |ω(exa ⊗ e

y
b )− ωn(exa ⊗ e

y
b )| < ε ∀a, b, x, y.

Since the supremum norm and Euclidean norm are equivalent on Rm2k2 , this means that
[ω(exa ⊗ e

y
b )]a,b;x,y ∈ Cqa(Γ).

We now turn our attention to (5). The proof runs along similar lines as in the tensor product
case. Let P (a, b|x, y) ∈ Cqc(Γ) and ΦA, ΦB the ucp maps following from Proposition 6.1.2, with
corresponding Hilbert space H and vector state ω on B(H). This time, we define the linear
functional ω̃ on Gmax(Γ) as

ω̃(λ1 ⊗ λ2) := ω(ΦA(λ1)ΦB(λ2)), λ1, λ2 ∈ ∗kx=1`
m
∞

which clearly satisfies P (a, b|x, y) = ω̃(exa ⊗ e
y
b ). By Proposition 6.2.2 the map ΦA ⊗max ΦB :

Gmax(Γ)→ B(H) defined by ΦA ⊗max ΦB(λ1 ⊗ λ2) = ΦA(λ1)ΦB(λ2) is ucp, which implies that
ω̃ is indeed a state.

For the converse, let ω be a state on Gmax(Γ). This time, we can simply use the GNS-
representation of ω to define a vector state ω̃ on Hω satisfying ω = ω̃ ◦ πω (see Chapter 5.1).
We define the operators Axa := πω(exa ⊗ 1), By

b := πω(1 ⊗ eyb ). Then the operators commute
pairwise and ω̃(AxaB

y
b ) = ω(exa ⊗ e

y
b ) = P (a, b|x, y), as required.
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Remark 6.2.4. Note that both times we constructed a quantum correlation, we were able to
do so via a ∗-representation (an arbitrary faithful representation for the tensor model and the
GNS representation for the commuting operator model). By Proposition 6.1.3, the resulting
measurements are actually projective measurements. In other words, we pass from a general
quantum correlation to a FJO-algebra and a state thereon, where the measurements (defined
through some representation) are automatically projective. This means that to generate either
set of quantum correlations, it suffices to consider projective measurements.

Remark 6.2.5. In fact, the proof exhibits that in the tensor product model, there is a universal
quantum system, in the sense of a Hilbert space and fixed (projective) measurements generating
all tensor product quantum correlations as the state varies over the state space. This is also
true for the commuting operator model. To see this, replace the GNS representation in the
proof by the universal representation (i.e. the direct sum over all states of the corresponding
GNS representations). Each state now becomes a vector state (it only takes the argument from
its own component).

Finally we prove the corollary that we referred to in Chapter 5.3.

Corollary 6.2.6. Cqc(Γ) is closed

Proof. By the Banach-Alaoglu Theorem, the state space of a C∗-algebra is weak-∗ compact. The
space Cqc(Γ) is obtained from S(Gmin(Γ)) as the image of the map ω 7→ [ω(exa⊗e

y
b )]. Evaluation

on each of the elements exa ⊗ e
y
b is a continuous mapping, so the map ω 7→ [ω(exa ⊗ e

y
b )] is also

continuous. Therefore the image Cqc(Γ) is also compact and therefore closed.

6.3 Matrix-Tsirelson implies Kirchberg

The converse implication has been proven in its actual form by [19] after [7] and [9] proved a
variant with a stronger matrix-valued version of Tsirelson. Unfortunately, the proof by Ozawa
uses advanced techniques linked to the original Connes Embedding Problem, which falls out-
side the scope of this thesis. Instead, we present here the matrix-valued proof, again mostly
following the proof of Fritz [7].

We define the matrix-valued Tsirelson problem directly in the form as in (4) and (5). One
can interpret this in terms of non-local games by using steering (see [7]) or in the form of the
original definition in Chapter 3 by using isometries instead of vector states (see [19]).

To adapt the situation of (4) to the matrix-valued situation, we consider states on the matrix
algebras Mn(Gmin(Γ)) and Mn(Gmax(Γ)) on the min- and max tensor product respectively. We
thus define the matrix-valued sets of correlation matrices as follows:

Cnqa(Γ) := {[ω(Ei,j ⊗ exa ⊗ e
y
b )]a,b;x,y;i,j : ω ∈ S(Mn(Gmin(Γ)))} (6)

and
Cnqc(Γ) := {[ω(Ei,j ⊗ exa ⊗ e

y
b )]a,b;x,y;i,j : ω ∈ S(Mn(Gmax(Γ)))}. (7)

Note that these sets can be considered as subsets of Rm2k2n2
.

We will now prove that Kirchberg’s conjecture is fully equivalent with this matrix-valued version.
The essential trick, which necessitates the matrix version, is known as Pisier’s trick, see Theorem
A.3.3. This allows one to prove norm equality only on a certain generating subset of the C∗-
algebra, at the cost of having to prove it for all matrix algebras. Deeper down, the matrix

31



requirement comes from the Arveson extension theorem which requires a completely positive
map.

Theorem 6.3.1. Let Γ = (k,m) be fixed. The following statements are equivalent:

(i) We have
Gmin(Γ) = Gmax(Γ).

(ii) The matrix-valued Tsirelson problem (T2M): for all n, we have Cnqa(Γ) = Cnqc(Γ).

Proof. The direction (i)⇒ (ii) is (still) clear from the definitions (6) and (7). For the converse,
let n and Γ = (k,m) be arbitrary and define S = Span{ex

a ⊗ ey
b}. Now by Pisier’s trick (Theo-

rem A.3.3) it suffices to show that ‖x‖min = ‖x‖max for all x ∈ Mn(S)sa. Here the ‖ · ‖min and
‖·‖max norms on Mn(S) are induced by the respective norms on Mn(Gmin(Γ)) and Mn(Gmax(Γ)).

Thus, let x ∈ Mn(S)sa. Since Mn(S) can be identified with Mn(C) ⊗ S, we can write x in the
form

x =
∑

i,j,a,b,x,y

λi,jEi,j ⊗ exa ⊗ e
y
b .

By the assumption, it follows that for each ω ∈ S(Mn(Gmin(Γ))) there exists a ω̃ ∈ S(Mn(Gmax(Γ)))
such that ω(x) = ω̃(x), and vice versa. Finally, we use the fact that for self-adjoint a ∈ A,
‖a‖ = supω∈S(A) |ω(a)| to conclude:

‖x‖min = sup
ω∈S(Mn(Gmin(Γ)))

|ω(x)| = sup
ω∈S(Mn(Gmax(Γ)))

|ω(x)| = ‖x‖max.

Remark 6.3.2. Recall that for (K2) it is sufficient to show the statement for one Γ 6= (2, 2)
in order to show it for all Γ 6= (2, 2). Therefore, this result shows that if we can show the
matrix-valued Tsirelson for just one Γ 6= (2, 2), it follows for all Γ. This is not the case (or at
least, not known) for the original, 1-dimensional Tsirelson; see [19, Thm. 36]. In this paper, the
Connes Embedding Conjecture, which is equivalent to (K2), is deduced from the assumption
that (T2) holds for all Γ. In other words, there is no known 1-1 equivalence between a given
Tsirelson scenario and its corresponding FJO algebra.
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7 Relations to QWEP conjecture

In this section we will show that Kirchberg’s QWEP conjecture implies (K2). In the first
subsection, we will prove that QWEP implies the following related statement:

Conjecture 7.0.1. If Fk is a countable free group, then

C∗(Fk)⊗min C
∗(Fk) = C∗(Fk)⊗max C

∗(Fk).

In the second subsection we will show how the implication QWEP ⇒ (K2) follows from this.
In Appendix A.5, we will prove that Conjecture 7.0.1 is equivalent to (K2), using some results
from this chapter.
We will introduce necessary concepts such as the Lifting Property (LP), the Weak Expectation
Property (WEP) and Quotient Weak Expectation Property (QWEP), and show some related
results from Brown&Ozawa’s book [1]. The link between FJO-algebras and these terms will
help us say some things about the 3-player case in chapter 8.

7.1 Related theory

The fundamental result behind this theory is the following one by Kirchberg:

Theorem 7.1.1. For any free group F and any Hilbert space H, we have

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).

The proof, although interesting, is not very relevant to this section so we included it in the
appendix (Theorem A.6.4).

Now, let us see what this means for us if we want to prove that C∗(F)⊗maxA = C∗(F)⊗minA for
some C∗-algebra A. If A ⊆ B(H) is a faithful representation of A and C∗(F) ⊆ B(K) is another
representation, then it follows that both C∗(F)⊗minA and C∗(F)⊗min B(H) inherit their norm
from B(K⊗H), and therefore the inclusion C∗(F)⊗minA ⊆ C∗(F)⊗minB(H) is clear. Combined
with Theorem 7.1.1, all that remains to prove is that C∗(F)⊗max A ⊆ C∗(F)⊗max B(H).

The problem here is that on the algebraic tensor product C∗(F) ⊗ B(H), there might not be
as many representations as on the ‘smaller’ algebraic tensor product C∗(F)⊗A, and therefore
the maximal norm might be different. Thus the question of whether this inclusion holds is not
trivial. [1, Prop. 3.6.6] gives two equivalent formulations for this property.

Theorem 7.1.2. Let A ⊆ B be an inclusion of C∗-algebras and A′′ (resp. B′′) be the double
commutant in the universal representation. Then the following are equivalent:

1. For every C∗-algebra C, there is a natural inclusion

A⊗max C ⊆ B ⊗max C.

2. There exists a ccp map ϕ : B → A′′ such that ϕ|A = 1A.

3. For every *-homomorphism π : A → B(H) there exists a ccp map ϕ : B → π(A)′′ such
that ϕ|A = π.

We first give a Lemma about extensions of maps on A to A′′.
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Lemma 7.1.3. Let A be a C∗-algebra and π : A → B(H) be a representation. Then there is
an extension π̃ : A′′ → B(H) such that π̃(A′′) = π(A)′′.

Proof. By Theorem 5.1.3 from Murphy, the representation (H,π) (following notation from Mur-
phy) can be written as a direct sum of cyclic representations, i.e. (H, π) =

⊕
x∈Λ(Hξ, πξ), where

Hξ = [π(A)ξ]. By Theorem 5.1.7 from Murphy, a cyclic representation with cyclic vector ξ is
unitarily equivalent to the GNS representation corresponding to the state τξ : a 7→ 〈π(a)(ξ), ξ〉.
Thus, ⊕

ξ∈Λ

(Hξ, πξ)
Ψ∼=
⊕
ξ∈Λ

(Hτξ , πτξ).

As mentioned, A′′ is the double commutant of A within the universal representation (HU , πU ) =⊕
τ∈S(A)(Hτ , πτ ). Now we can define a map π̃ : A′′ → B(H) by sending an element x = (xτ ) ∈⊕
τ∈S(A) B(Hτ ) to Ψ−1((xτξ)ξ∈Λ) ∈ B(H). This is an extension of π by uniqueness of GNS

representations. Since the commutant must leave every non-trivial Hτ invariant, we have (for
general direct sums of representations)(⊕

λ

πλ(A)

)′′
=
⊕
λ

πλ(A)′′.

This implies that

π̃(A′′) = π̃

 ⊕
τ∈S(A)

πτ (A)′′

 = Ψ−1

⊕
ξ∈Λ

πτξ(A)′′

 =
⊕
ξ∈Λ

πξ(A)′′ = π(A)′′

where we used that unitary equivalences preserve commutants.

Proof of Thm.7.1.2. 3. ⇒ 2. is clear. For 2. ⇒ 3, let ϕ : B → A′′ be the ccp map given by
condition 2. Let π : A → B(H) be a *-homomorphism. By Lemma 7.1.3 we can extend π to A′′
and its range will be contained within (even equal to) π(A)′′. Therefore π ◦ ϕ yields the map
B → π(A)′′ we need.

For 1. ⇒ 3. we refer to [1, Prop. 3.6.6.] We only prove 3. ⇒ 1, since that is the one we will need
later on. Let C be a C∗-algebra and let π : A⊗max C → B(H) be a faithful representation. Note
that the inclusion maps A → B⊗maxC and C → B⊗maxC yield an extension A⊗maxC → B⊗maxC
by the universal property. Our goal will be to prove that this map is injective, which we will
accomplish by constructing a commutative diagram that factors the representation π through
B ⊗max C. It will look as follows:

B ⊗max C πA(A)′′ ⊗max πC(C)

A⊗max C B(H)

ϕ⊗maxπC

π

Then using that the bottom arrow is injective, it follows that the left map has to be injective also.

By universality, the representation π has restrictions πA and πC with commuting ranges. Note
that πA(A)′′ and πC(C) still commute. Therefore, by the universal property, the inclusions
πA(A)′′, πC(C) ⊆ B(H) induce a *-homomorphism which is the right-most arrow in the diagram:

πA(A)′′ ⊗max π(C)→ B(H).
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By assumption, there exists a ccp extension ϕ : B → πA(A)′′ of the map πA. Now by Theorem
A.2.7, the map ϕ ⊗max πC : B ⊗max C → πA(A)′′ ⊗max πC(C) is well-defined (and ccp). This
completes the diagram, and it commutes because ϕ is an extension of πA.

Definition 7.1.4. When a C∗ algebra A satisfies the properties from Theorem 7.1.2 with
B = B(HU ), its universal representation, we say that A has the Weak Expectation Property, or
WEP in short.

The following corollary, which is of central importance not only for the current chapter but also
for the three-player case, is now immediate

Corollary 7.1.5. If A is a C∗-algebra and F is any free group, then C∗(F)⊗maxA = C∗(F)⊗min

A if and only if A has the WEP.

Proof. For the if statement, the final inclusion C∗(F) ⊗max A ⊆ C∗(F) ⊗max B(H) that we
needed follows from Theorem 7.1.2 (as soon as we take H to be the universal representation).
Conversely, if the tensor products are the same, then we have

C∗(F)⊗max A = C∗(F)⊗min A ⊆ C∗(F)⊗min B(H)
7.1.1
= C∗(F)⊗max B(H).

This corollary shows that in order to prove Conjecture 7.0.1, it is enough to show that C∗(F)
has the WEP. We will not need the converse of this corollary (and it needs the direction of
Theorem 7.1.2 we have not proven)

Definition 7.1.6. A C∗-algebra A is said to be QWEP (or to have the Quotient Weak Expec-
tation Property) if it is the quotient of a C∗-algebra with the WEP.

It seems grammatticaly strange that a C∗-algebra ‘is’ QWEP and not ‘has’ the QWEP. However,
this seems to be the convention in the literature and we adhere to it.

Conjecture 7.1.7 (QWEP conjecture). Every C∗-algebra is QWEP

This is one of the many equivalent statements to Tsirelson’s problem, and it will help us to
say a little about the three-player case Tsirelson. Before we can prove that QWEP implies
Conjecture 7.0.1, we need to introduce one more property.

Definition 7.1.8. Let A be a C∗-algebra, J ⊆ B be a closed two-sided ideal in a C∗-algebra
B, and π : B → B/J be the quotient map. A u.c.p. map ϕ : A → B/J is called liftable if there
exists a u.c.p. map ψ : A → B such that π ◦ ψ = ϕ. A is said to have the lifting property (LP)
if every u.c.p. map from A to a quotient C∗-algebra B/J is liftable.

Theorem 7.1.9. For any countable free group Fk, the group C∗-algebra C∗(Fk) has the LP.

Again we refer to the appendix for the proof (Theorem A.6.1).

We can now prove that the QWEP conjecture implies Conjecture 7.0.1, which we do via the
following proposition

Proposition 7.1.10. If a C∗-algebra A is QWEP and has the LP, then it has the WEP. In
particular, the QWEP conjecture implies that the LP implies the WEP.

Proof. The proof that will follow is summarised in the following diagram.
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A A′′

B(HA)

B B′′

B(HB)

ψ

Φ

ψ̄

ψ̃

π

ϕ

Let B be a C∗-algebra with the WEP such that A is a quotient of B. Let π be the quotient
mapping. Let HA and HB be the universal representations of A and B respectively, and A′′ and
B′′ the double commutants within this representation. Because B has the WEP, there exists a
ccp map ϕ : B(HB)→ B′′ such that the lower triangle commutes. 1

Since A has the LP, there exists a ccp lifting ψ of the identity. Note that the extension of π to
B′′ makes the outer square commute. 2

By the Arveson extension theorem (A.1.4), the map ψ : A → B ⊆ B(HB) has a ccp extension
ψ̃ : B(HA)→ B(HB). In other words, the left parallelogram commutes. 3

Now we can define a ccp map ψ̄ : B(HA)→ B′′ by setting ψ̄ = ϕ ◦ ψ̃. Using this definition and
1 and 3 , we find that ψ̄ is an extension of ψ, i.e. the triangle A− B − B′′ commutes. 4

Finally, we define the ccp map Φ = π ◦ ψ̄. Combining this definition with 4 and 2 , we find
that the upper triangle commutes, i.e. Φ|A = 1A as required.

Proof that QWEP implies Conjecture 7.0.1. Let Fk be a countable free group. By Proposition
7.1.10 the QWEP conjecture implies that, since C∗(Fk) has the LP by Theorem 7.1.9, it also
has the WEP. By Corollary 7.1.5, this implies Conjecture 7.0.1.

7.2 QWEP implies (K2)

In this section we will prove that QWEP also implies (K2) as stated in Chapter 6, namely
∗kx=1`

m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞ for some/all k,m ≥ 2, (k,m) 6= (2, 2).

We begin by proving a well-known Lemma, which states that free group C∗-algebras are uni-
versal in a sense.

Lemma 7.2.1. Let A be a C∗-algebra. Then A ∼= C∗(F)/J for some free group F and some
ideal J ⊆ C∗(F). Here F can be taken with countable generating set if A is separable.

Proof. Note that A is generated by its set of unitaries U(A). Let F be a free group whose set
of generators has the same cardinality as U(A), i.e. there exists a bijection from the set of
generators of F to U(A). By the universal property of the maximal group C∗-algebra, there is a
canonical *-homomorphism ϕ : C∗(F)→ A. This map is surjective because the range contains
the unitaries and must be a C∗-algebra. Thus, the map C∗(F)/ ker(ϕ)→ A is a ∗-isomorphism.

If A is separable, then we can find a countable set of unitaries which is dense in U(A), and thus
also generates A. Now we map the generators of some countable free group Fk to these unitarie.
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By the same argument, this gives a surjective ∗-homomorphism ϕ : C∗(Fk) → A, after which
we quotient out the kernel.

Next, we prove another corollary of Theorem 7.1.1 in the spirit of corollary 7.1.5.

Corollary 7.2.2. For C∗-algebras A and B, if A has the LP and B has the WEP, then A⊗max

B = A⊗min B.

Proof. Let B ⊆ B(H) be a faithful representation and A ∼= C∗(F)/J , with π the quotient map.
Since A has the LP, there exists a lifting ψ : A → C∗(F) satisfying ψ|A = 1A. Now the map

A⊗min B(H)
ψ⊗1−→ C∗(F)⊗min B(H) = C∗(F)⊗max B(H)

π⊗1−→ A⊗max B(H)

is a contraction. Since the minimum norm is obviously smaller than the maximum norm, this
means that both are equal, i.e. A⊗min B(H) = A⊗max B(H).

Finally, since B has the WEP, we have A⊗maxB ⊆ A⊗maxB(H) (see Theorem 7.1.2). Therefore,
by the same argument as below Theorem 7.1.1, we have A⊗min B = A⊗max B.

This shows that we need to prove that ∗kx=1`
m
∞ has the LP and the WEP. Assuming the QWEP

conjecture, Proposition 7.1.10 implies that it suffices to prove the LP. This is the contents of
our next statement.

Lemma 7.2.3. Let A be a separable C∗-algebra, and write A ∼= C∗(F)/J by Lemma 7.2.1.
Then A has the LP if the identity map 1A : A → C∗(F)/J has the lifting property.

Proof. Assume wlog that A = C∗(F)/J . Let q : C∗(F) → A be the quotient map and let
ψ : A → C∗(F) be a ucp lifting.

Now let ϕ : A → B/I be some ucp map to a quotient of a C∗-algebra B. Then ϕ ◦ q is a ucp
map from C∗(F) into B/J . By Theorem 7.1.9, there exists a ucp lifting ψ̃ : C∗(F) → B. Now
the map ψ̃ ◦ ψ gives a ucp lifting from A into B, by commutativity of the following diagram

C∗(F) B

A A B/J

ψ̃

q
ψ

ϕ

Theorem 7.2.4. ∗kx=1`
m
∞ has the LP

Proof. [24, Thm. 7] has shown that the LP is preserved under free products. Therefore it suffices
to prove that `m∞ has the LP. Here we use that `m∞

∼= C∗(Zm) = C[Zm] via the discrete Fourier
transform - we give the details in the Lemma below. The canonical projection p : Z → Zm
induces a surjective *-homomorphism C∗(p) : C∗(F1) → C∗(Zm) (where C∗(F1) = C∗(Z) =
C[Z]). Quotienting out by the kernel of this map gives an isomorphism C∗(Zm) ∼= C∗(F1)/J .
We can now construct a lifting by simply choosing for each group element δg ∈ C∗(Zm) a
positive original in C∗(F1) and expanding linearly. This map is positive and thus completely
positive since C∗(Zm) is abelian (see Proposition 2.1.3).

C∗(F1)

C∗(Zm) C∗(F1)/J
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By the previous Lemma, C∗(Zm) and thus `m∞ has the LP.

Lemma 7.2.5. The discrete Fourier transform gives a *-isomorphism `m∞
∼= C∗(Zm).

Proof. Let u be the generator of Zm, and let ωm := e2πi/m. The discrete Fourier transform
sends u to the vector (ωm, ω

2
m, . . . , 1). This extends to a homomorphism un 7→ (ωnm, ω

2n
m , . . . , 1)

defined on Zm. One can check that these vectors form an orthonormal basis for Cm. Hence, by
linear extension, we get a *-isomorphism C[Zm]→ Cm.

As a result, we can now prove that the simplicity assumption we made at the beginning of
chapter 6 - that both players have the same number of inputs and outputs - is legal. This
assumption is made in pretty much all of the literature about this topic so it is good to have
this straightened out. In fact, we can even assume the more general case that each input has
its own number of outputs.

Corollary 7.2.6. The following conjectures are equivalent:

i) (K2): ∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞ for all k,m ∈ N or equivalently, for

some k,m ≥ 2 with (k,m) 6= (2, 2).

ii) ∗kx=1`
mx
∞ ⊗min ∗ly=1`

ny
∞ = ∗kx=1`

mx
∞ ⊗max ∗ly=1`

ny
∞ for all k, l ∈ N and m1, . . . ,mk, n1, . . . , nl ∈

N. Equivalently, it is enough to prove the equality for one choice of integers k, l,m1, . . . ,mk,
n1, . . . , nl ∈ N such that either k ≥ 3 or m1,m2 > 2, and either l ≥ 3 or n1, n2 > 2.

As a result, Tsirelson’s problem is equivalent whether or not we consider the same number of
inputs and ouputs for both players.

Proof. ii) ⇒ i) is trivial. The argument of Theorem 7.2.4 uses only that free products of spaces
with the LP have the LP, and thus it also shows that a space of the form ∗kx=1`

mx
∞ has the

LP. Therefore, ii) is implied by QWEP in exactly the same way as i) was. The fact that i)
implies QWEP is proven in [18, 3.19, 6.2], or in [1, 13.3.1]. Statement ii) is equivalent to (T2)
with different numbers of inputs and outputs by variants of Propositions 6.1.2 and 6.2.3 with
completely analogous proofs.

Finally, the sufficient condition for statement (ii) follows from a variant of Lemma A.5.6; in the
case k = 2,m1,m2 > 2 we can use the ping-pong lemma on the subgroup Zm1 ∗ Zm2 .
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8 Three-player case

Papers such as [23] have shown how a multipartite setting can yield some surprising results in
that they are quite opposite to what holds in the twopartite setting. In that paper, it is shown
that tripartite quantum states can allow for unbounded violations of tripartite Bell inequalities.
Therefore it might be interesting to consider the tripartite version of Tsirelson’s problem. Not
much seems to have been written about this topic - all we could find were short remarks in for
example [7] and [16].

8.1 Introduction of three-player Tsirelson

We now introduce a third player Charlie to the fictional game setting, who receives an input
c ∈ {1, . . . , k} and has a set of measurements {Czc } to determine an output z ∈ {1, . . . ,m}. We
can define ‘extreme’ three-player correlation sets similarly to the two player case

C(3)
qa (Γ) = closure

({ 〈
ψ
∣∣Ax

a ⊗ By
b ⊗ Cz

c

∣∣ψ〉 : Ax
a ∈ B(HA)+,By

b ∈ B(HB)+,Cz
c ∈ B(HC)+, ...

})
,

C(3)
qc (Γ) =

{〈
ψ
∣∣AxaBy

bC
z
c

∣∣ψ〉 : Axa, B
y
b , C

z
c ∈ B(H)+ pairwise commuting , ...

}
where due to lack of space we omitted the following requirements: |ψ〉 is a state on HA ⊗
HB ⊗ HC respectively H, the Axa, B

y
b , C

z
c are POVMs (i.e.

∑
aA

x
a = 1, etc), and x, y, z ∈

{1, . . . , k}, a, b, c ∈ {1, . . . ,m}.

This leads to the following definition of the three-player Tsirelson problem:

Conjecture 8.1.1 (T3). For all Γ = (k,m), the equality C
(3)
qa (Γ) = C

(3)
qc (Γ) holds.

As we will see, a lot is still unclear about the three-player case. Let us first talk about some
easy cases that we do know.

8.2 Known cases: finite dimensions & nuclearity

In finite dimensions, (T3) is easily proven. In fact, the proof of Theorem 5.2.4 still works in
exactly the same way, but now with 3 tensored spaces instead of 2.

Next, we prove (T3) in the nuclear case. It turns out that two players need to have a set of
operators that generates a nuclear C∗-algebra.

Proposition 8.2.1. Let A,B, C ⊆ B(H) be three C∗-algebras that are all in each other’s com-
mutant. Moreover, assume that A and B are nuclear. Let ω be a state on B(H). Then there
exists a state ω̃ on B(H⊗H⊗H) such that ω̃(a⊗ b⊗ c) = ω(a · b · c) for all a ∈ A, b ∈ B, c ∈ C.

Proof. Define the ∗-homomorphism ϕ : A⊗ B ⊗ C → B(H) by

ϕ(a⊗ b⊗ c) = abc.

Like before, we will be looking to extend this function to A ⊗min B ⊗min C. Here we refer to
Appendix A.7 where we look at associativity of triple tensor products:

A⊗minB⊗minC = A⊗min(B⊗minC) = A⊗min(B⊗maxC) = A⊗max(B⊗maxC) = A⊗maxB⊗maxC,

using nuclearity of B respectively A in the middle two steps. We finish the proof as in 5.4.1
with an application of the universal property for the triple maximal tensor product (the proof
of [7, B.9] extends analogously to the triple case).
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Corollary 8.2.2. Let P (a, b, c|x, y, z) ∈ Cqc be a correlation matrix, such that the measurement
operators of Alice and Bob generate nuclear C∗-algebras. Then P (a, b, c|x, y, z) ∈ Cqa.

Proof. Let ω ∈ B(H) be the state defining P (a, b, c|x, y, z) and Axa, B
y
b , C

z
c the respective mea-

surement operators. With A,B, C as the C∗-algebras generated by the respective measurement
operator sets, Proposition 8.2.1 implies that there exists a state ω̃ ∈ B(H ⊗H ⊗H) such that
ω̃(Axa⊗B

y
b ⊗C

z
c ) = P (a, b, c|x, y, z). By Theorem A.1.1, ω̃ can be approximated by vector states

ωn; therefore, ωn(Axa ⊗B
y
b ⊗C

z
c )→ P (a, b, c|x, y, z). In other words, P (a, b, c|x, y, z) ∈ Cqa.

8.3 Characterisation in terms of FJO-algebras

We can extend the proof of Proposition 6.2.3 to the three-player case completely analogously:

Proposition 8.3.1. We have

C(3)
qa (Γ) =

{
[ω(exa ⊗ e

y
b ⊗ e

z
c)]a,b,c;x,y,z : ω ∈ S

(
3⊗

min

∗kx=1`
m
∞

)}
(8)

and

C(3)
qc (Γ) =

{
[ω(exa ⊗ e

y
b ⊗ e

z
c)]a,b,c;x,y,z : ω ∈ S

(
3⊗

max

∗kx=1`
m
∞

)}
. (9)

Proof. Let P (a, b, c|x, y, z) ∈ C
(3)
qs (Γ) and ΦA,ΦB,ΦC the ucp maps describing the measure-

ments that exist by Proposition 6.1.2. Let ω ∈ S(B(HA ⊗HB ⊗HC)) be the shared state. To
show that the functional

ω̃(λ1 ⊗ λ2 ⊗ λ3) := ω(ΦA(λ1)⊗ ΦB(λ2)⊗ ΦC(λ3))

is a state, we need to show that the map ΦA ⊗min ΦB ⊗min ΦC : λ1 ⊗ λ2 ⊗ λ3 7→ ΦA(λ1) ⊗
ΦB(λ2)⊗ΦC(λ3) is positive. This follows from two applications of Proposition 6.2.1. The proof

for C
(3)
qa (Γ), i.e. for limits of these quantum correlations, is exactly the same as in Proposition

6.2.3.

For the converse, a representation π : ∗kx=1`
m
∞ → B(H) induces a representation

⊗3
max ∗kx=1`

m
∞ →

B(H ⊗ H ⊗ H) by definition of the ⊗min norm. The measurement operators are defined as
Aax := π(exa), Bb

y := π(eyb ), C
c
z := π(ezc). Now if P (a, b, c|x, y, z) is given by a state ω on⊗3

max ∗kx=1`
m
∞ → B(H ⊗ H ⊗ H), we can again use Theorem A.1.1 to approach ω by vector

states on B(H⊗H⊗H).

Next we consider (9). The inclusion ⊆ follows similarly as the one for (8), with maximal
tensor products and two applications of Proposition 6.2.2. For the converse, let ω be a state
on Gmax(Γ). Just as in Proposition 6.2.3, we can use the GNS-representation of ω to define a
vector state ω̃ on Hω satisfying ω = ω̃ ◦ πω. We define the operators Axa := πω(exa ⊗ 1 ⊗ 1),
By
b := πω(1 ⊗ eyb ⊗ 1) and Czc := πω(1 ⊗ 1 ⊗ ezc). Then the operators commute pairwise and

ω̃(AxaB
y
bC

z
c ) = ω(exa ⊗ e

y
b ⊗ e

z
c) = P (a, b, c|x, y, z), as required.

The above proposition shows that conjecture (T3) is implied by the tripartite variant of Kirch-
berg’s Conjecture (K3), i.e.

3⊗
min

∗kx=1`
m
∞ =

3⊗
max

∗kx=1`
m
∞.
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8.4 Characterisation in terms of LP

Next we use the results of chapter 7 to find a characterisation for (T3) (or for (K3) to be more
precise), and see what it means for a potential proof of (T2) ⇒ (T3).

The link between QWEP and (K2) came mostly from the tensorial characterisations of the WEP
given in Corollary 7.1.5 and 7.2.2. We will use this approach again here. Assuming QWEP
(and thus (K2)), we define the unique tensor product space

B = ∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞.

Then
⊗3

min ∗kx=1`
m
∞ and

⊗3
max ∗kx=1`

m
∞ are equal to ∗kx=1`

m
∞ ⊗min B and ∗kx=1`

m
∞ ⊗max B respec-

tively. By Corollary 7.2.2, it suffices to show that B has the WEP - or, by Proposition 7.1.10,
the LP.

However, this does not seem to follow directly from the QWEP-conjecture. As Ozawa pointed
out, it is not known whether the maximal or minimal tensor product preserves the LP [18, p.
15]. Therefore, it seems that to prove (K3) and thus (T3) we need the QWEP conjecture and
additionally the LP on the unique space B which is implied by QWEP.

Let us demonstrate a proof idea and highlight what the problem is. The tensor product of sepa-
rable spaces is still separable; therefore, by Lemma 7.2.3, it suffices to show that the identity map
π : B → C∗(F)/J is liftable. By Theorem 7.2.4, ∗kx=1`

m
∞ has the LP, so the restrictions π1, π2

given by π1(a) = π(a ⊗ 1), π2(b) = π(1 ⊗ b) are liftable. Let ψ1, ψ2 : ∗kx=1`
m
∞ → C∗(F) be the

ucp liftings. Then to finish the proof, we need to combine these in a ucp lifting ψ : B → C∗(F).
However, in order to apply Proposition A.2.8, we need ψ1 and ψ2 to have commuting ranges.
This seems unlikely to be possible, especially as it is generally hard for things in C∗(F) to
commute.

8.5 Converse implications

The true difficulty of the (T3) conjecture comes to light when considering converse implications.
Essentially, the problem comes from the fact that the implication (T3) ⇒ (K3) is open, as far
as we know:

Conjecture 8.5.1. The following statements are equivalent:

1. For all Γ = (k,m), it holds that C
(3)
qa (Γ) = C

(3)
qc (Γ)

2. For all k,m ∈ N, we have
3⊗

min

∗kx=1`
m
∞ =

3⊗
max

∗kx=1`
m
∞

In the two-player case, Ozawa in [19] originally proved that (T2) implies the Connes Embedding
Conjecture, which in turn implies (K2). As the number of players increases, we can just increase
the number of tensor products in the FJO algebras, but there is no clear way to expand the
Connes Embedding Conjecture or the QWEP conjecture. Therefore it is not clear how to extend
the proof of (T2) ⇒ (K2). Perhaps there exists some stronger version of Connes Embedding
that can be used as a link.
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The lack of proof for this conjecture leads to several issues with statements that we would
expect to be true but cannot prove (or at least in the same way as in the two-player case). For
example, as in the 2-player case (see Corollary 7.2.6), (K3) can be equivalently formulated as

1≤i≤3⊗
min

∗kix=1`
mi,x
∞ =

1≤i≤3⊗
max

∗kix=1`
mi,x
∞

But since we do not have an implication (T3) ⇒ (K3), it is not clear whether Tsirelson 3
depends on whether every player has the same number of inputs and outputs. Therefore it is
also not entirely clear if (T3) even implies (T2)! Given a 2-player scenario, one would expect
the proof to add a 3rd ‘trivial’ player with 1 in/output, but it is not clear whether this is allowed.

Fortunately, the matrix-valued Tsirelson problem does survive the extension to three players.
Define the correlation sets

Cn,(3)
qa (Γ) := {[ω(Ei,j ⊗ exa ⊗ e

y
b ⊗ e

z
c)]a,b,c;x,y,z;i,j : ω ∈ S(Mn(

3⊗
min

∗kx=1`
m
∞))} (10)

and

Cn,(3)
qc (Γ) := {[ω(Ei,j ⊗ exa ⊗ e

y
b ⊗ e

z
c)]a,b,c;x,y,z;i,j : ω ∈ S(Mn(

3⊗
max

∗kx=1`
m
∞))}. (11)

Then the following analogue of theorem 6.3.1 holds:

Theorem 8.5.2. Let Γ = (k,m) be fixed. The following statements are equivalent:

(i) We have
3⊗

min

∗kx=1`
m
∞ =

3⊗
max

∗kx=1`
m
∞.

(ii) The matrix-valued three-player Tsirelson problem (T3M): for all n, we have C
n,(3)
qa (Γ) =

C
n,(3)
qc (Γ).

To give the proof, we need a tripartite version of the Pisier Linearisation Trick (Theorem A.3.3).
We include this in the following Lemma

Lemma 8.5.3. Let A,B, C be C∗-algebras that are generated by the respective sets (ux), (vy), (wz).
Define S = Span(ux ⊗ vy ⊗ wz). The space Mn(S) inherits ‖ · ‖min and ‖ · ‖max norms from
Mn(A⊗min B⊗min C) and Mn(A⊗max B⊗max C) respectively. Now the following statements are
equivalent:

i) A⊗min B ⊗min C = A⊗max B ⊗max C

ii) ‖x‖min = ‖x‖max for all self-adjoint x ∈Mn(S), n ∈ N.

Proof. One can copy the entire proof of Theorem A.3.3 and just replace every instance of A⊗αB
by A⊗α B ⊗α C (where α is min or max) to get a correct proof.

Proof of Theorem 8.5.2. By the definitions of (10) and (11) we need only prove (ii) ⇒ (i).
The proof runs mostly along the same lines as in Theorem 6.3.1. We now define the set S by
Span{exa ⊗ e

y
b ⊗ e

z
c} ⊆

⊗3 ∗kx=1`
m
∞. Then for x ∈Mn(S)sa, we can write

x =
∑

i,j,a,b,c,x,y,z

λi,jEi,j ⊗ exa ⊗ e
y
b ⊗ e

z
c
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Define (as in Chapter 6) G3
min(Γ) =

⊗3
min ∗kx=1`

m
∞ and G3

max(Γ) =
⊗3

max ∗kx=1`
m
∞. By the as-

sumption, it follows that for each ω ∈ S(Mn(G3
min(Γ))) there exists a ω̃ ∈ S(Mn(G3

max(Γ))) such
that ω(x) = ω̃(x), and vice versa. Thus:

‖x‖min = sup
ω∈S(Mn(G3min(Γ)))

|ω(x)| = sup
ω∈S(Mn(G3max(Γ)))

|ω(x)| = ‖x‖max.

The conclusion now follows from Lemma 8.5.3

So fortunately, the matrix-valued three player Tsirelson problem (T3M) does not have the
problems that (T3) does; in particular, it does imply (T2). To summarise, here is a diagram of
conjectures and the known implication arrows between them:

(T3M)

(T3) (K3)

(K2) QWEP

(T2) CE

6.2.3

7.1.10

8.6 Intermediate cases

In terms of choice of models, we have so far looked at the ‘extreme’ (and most natural) cases in
the sense that all measurements lie either in separate tensor legs or are all in the same Hilbert
space. In other words, we assume either the tensor product model or the commuting opera-
tor model, which in the Kirchberg picture corresponds to either maximal or minimal tensor
products. For the sake of mathematical interest, we can also look at intermediate cases of
FJO-algebras combining minimal and maximal tensor products and ask ourselves if there is a
sensible way to represent this in the Tsirelson picture as a combination of the tensor product
model and the commuting operator model. This intermediate case was considered for example
by Fritz in [7].

For three players, there are (modulo symmetry) two cases we can consider, corresponding to
which tensor norm we take first. Let us first consider the case

(∗kx=1`
m
∞ ⊗max ∗kx=1`

m
∞)⊗min ∗kx=1`

m
∞.

If we look at the correspondence between the Kirchberg and Tsirelson picture, we would expect
this scenario to correspond to joint measurement operators of the form (AxaB

y
b )⊗Czc . In terms

of representations of these operators, Axa and By
b should be commuting sets of operators on a

joint Hilbert space HAB, whereas Czc should be defined on a separate tensor leg HC . This leads
to the following correlation set:

Cqca(Γ) = closure
({ 〈

ψ
∣∣(AxaBy

b )⊗ Czc
∣∣ψ〉 : Axa, B

y
b ∈ B(HAB)+, Czc ∈ B(HC)+, [Axa, B

y
B] = 0, ...

})
where due to a lack of space we ommitted the following requirements: ψ ∈ Ball(HAB ⊗ HC),∑

aA
x
a =

∑
bB

y
b =

∑
cC

z
c = 1, and x, y, z ∈ {1, . . . , k}, a, b, c ∈ {1, . . . ,m}.

Indeed, a relation similar to Proposition 6.2.3 turns out to hold in this case

43



Proposition 8.6.1. We have

Cqca(Γ) = {ω(exa ⊗ e
y
b ⊗ e

z
c) : ω ∈ S((∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞)⊗min ∗kx=1`

m
∞).

Proof. The inclusion ⊆ is almost the same as in Proposition 6.2.3. Let P (a, b, c|x, y, z) ∈ Cqca(Γ)
be a quantum correlation with associated Hilbert spaces HAB and HC and vector state ω. We
define ucp maps ΦA,ΦB and ΦC describing the corresponding sets of measurements. We have
to show that the linear functional

ω̃(λ1 ⊗ λ2 ⊗ λ3) := ω
(
[ΦA(λ1) · ΦB(λ2)]⊗ ΦC(λ3)

)
, λ1, λ2, λ3 ∈ ∗kx=1`

m
∞

is positive. By an application of Proposition 6.2.1 followed by an application of Proposition 6.2.1,
we conclude that the map (ΦA⊗max ΦB)⊗min ΦC : λ1⊗ λ2⊗ λ3 7→ (ΦA(λ1) ·ΦB(λ2))⊗ΦC(λ3)
is ucp, and thus ω̃ is positive. The proof for a limit of such quantum correlations is completely
analogous to the one in Proposition 6.2.3.

For the converse inclusion, we need to find a faithful representation of the FJO-algebra of
the form HAB ⊗ HC ; then by Theorem A.1.1 we can approach ω by vector states. Take any
faithful representation ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞ ⊆ B(HAB) (this does not need to be the GNS

representation). Then we find measurement operators Axa := π(exa ⊗ 1) and By
b := π(1 ⊗ eyb ).

Let ∗kx=1`
m
∞ ⊆ B(HC) be another faithful representation; then by definition of ⊗min we have a

faithful representation (∗kx=1`
m
∞⊗max∗kx=1`

m
∞)⊗min∗kx=1`

m
∞ → B(HAB⊗HC). With an application

of Theorem A.1.1 we approach ω by vector states and we are done.

It turns out that we have a satisfying relation in this case. So surely, one would expect to have
one also in the other case, concerning the FJO-algebra

(∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞)⊗max ∗kx=1`

m
∞.

This corresponds to joint measurement operators of the form (Axa⊗B
y
b )Czc , where the operators

Axa and By
b should be represented on separate tensor legs HA,HB. The operators Czc need to

be defined on the same Hilbert space as the operators Axa ⊗ B
y
b to be able to compose them;

therefore we should have Czc ∈ B(HA ⊗HB). This leads to the following correlation set:

Cqac(Γ) = closure
({ 〈

ψ
∣∣(Axa ⊗By

b )Czc
∣∣ψ〉 : Axa ∈ B(HA)+, By

B ∈ B(HB)+, Czc ∈ B(HA ⊗HB)+,

[Czc , A
x
a ⊗B

y
B] = 0, ...

})
However, we have not been able to prove the following statement:

Conjecture 8.6.2. We have

Cqac(Γ) = {ω(exa ⊗ e
y
b ⊗ e

z
c) : ω ∈ S((∗kx=1`

m
∞ ⊗min ∗kx=1`

m
∞)⊗max ∗kx=1`

m
∞).

Let us attempt to prove this conjecture in similar fashion as the previous one. The inclu-
sion ⊆ poses no problems; it is essentially the same as above. For the backward inclusion,
we need to find a faithful representation of the FJO-algebra of the form HA ⊗ HB, on which
the operators are defined as in the definition of Cqac. Starting from a faithful representa-
tion π : ∗kx=1`

m
∞ ⊆ B(H), with the minimal tensor product we get a faithful representation

∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞ ⊆ B(H⊗H). Now how to represent the final maximal tensor product?

One plausible trick would be to ’enlarge’ the second Hilbert space to make space for the final
copy of ∗kx=1`

m
∞; i.e. we define H̃ = H⊗H and redefine By

b := π(eyb )⊗ 1H to be the identity on
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the second tensor leg. This gives a faithful representation ∗kx=1`
m
∞⊗min ∗kx=1`

m
∞ ⊆ B(H⊗H̃). We

can now define a representation ∗kx=1`
m
∞ ⊆ B(H⊗ H̃) by setting ezc 7→ 1H ⊗ 1H ⊗ π(ezc) =: Czc .

We now have two representations with commuting ranges - by the universal property, this gives
a representation (∗kx=1`

m
∞⊗min ∗kx=1`

m
∞)⊗max ∗kx=1`

m
∞ ⊆ B(H⊗H̃). However, this representation

need not be faithful!

In general, when A and B are C∗-algebras, the usual trick to get a faithful representation on
the maximal tensor product is to take A⊗max B ⊆ B(Ĥ), where Ĥ =

⊕
πHπ. Here the direct

sum is taken over all representations π = (πA, πB) with πA : A → B(H), πB : B → B(H) and
[πA, πB] = 0. In our case, we have A = ∗kx=1`

m
∞ ⊗min ∗kx=1`

m
∞, where we need the representation

to be of the form πA : A → B(HA ⊗HB). In general, as far as we know, a representation of a
minimal tensor product cannot always be written of this form. For that reason, it is not clear
how to construct a faithful representation here!

It could well be that there is no suitable Tsirelson picture corresponding to this FJO-algebra.
After all, it is somewhat artificial to combine the two quantum models in this way; usually one
either assumes one model or the other. In particular, assuming a commuting operator model
after a tensor product model leads to seemingly unnatural situations. To further illustrate this
point, let us consider one more FJO-algebra with 4 players:

(∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞)⊗max (∗kx=1`

m
∞ ⊗min ∗kx=1`

m
∞).

If Dw
d are the measurement operators of the fourth player Dirk, then the joint measurement

operator would have to look like (Axa⊗B
y
b ) · (Czc ⊗Dw

d ). This means that the operators Axa⊗B
y
b

and Czc ⊗ Dw
d need to be defined in the same ‘universal’ Hilbert space while commuting with

each other. At the same time, each operator needs to be defined on its own Hilbert space;
to summarise, we need H = HA ⊗ HB = HC ⊗ HD. While this sort of makes sense from a
mathematical view, how would we physically imagine this experiment? At the one hand each
player needs to have its own Hilbert space (the tensor product model). On the other hand,
when Alice and Bob respectively Charlie and Dirk combine their operators they need to end up
in a sort of universal Hilbert space.
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Appendices

A Proofs of related theorems

In the following, A and B are always C∗-algebras.

A.1 General useful theorems

We start by showing density of vector states in the state space with the weak-∗ topology.
Note that in the theorem below this concerns mixed states, not pure states. In proofs of e.g.
Proposition 6.2.3 we assume pure states, so there seems to be a bit of a gap here. This is solved,
however, by remark 3.5.3, which shows that in the definition of correlation sets it would be
equivalent to consider mixed states instead.

Theorem A.1.1. Let A ⊆ B(H) be a concretely represented C∗-algebra with state space S(A).
Let

VS(A) := {ρ : a 7→
n∑
i=1

λi〈aξi, ξi〉 | λi ≥ 0,
n∑
i=1

λi = 1, ξi ∈ H}

be the set of (mixed) vector states of A. Then for every state ρ ∈ S(A), every finite set of
elements x1, . . . , xn ∈ A and every ε > 0, there is a vector state ρ′ ∈ VS(A) such that

|ρ(xi)− ρ′(xi)| < ε, i = 1, . . . , n.

This implies that VS(A) is weak-∗ dense in S(A).

Proof. Consider the finite-dimensional subspace S = Span{1, x1, . . . , xn} and let S+ be the cone
of positive elements within S. Note that every state ρ ∈ S(A) can be reduced to an element of
S∗+ by restricting to S. Similarly, elements in VS(A) can be restricted to S+ and thus considered
elements of S∗+.

Let V = {λρ : ρ ∈ VS(A), λ ≥ 0} be the set of unnormalised vector states. We claim that
V , as a subset of S∗+, is dense in S∗+ (in the norm topology, which is anyway the same as the
weak-∗ topology on finite dimensional spaces). Indeed, if we assume otherwise, then there is
an element ρ ∈ S∗+ \ V̄ , which we can assume to be a state. Now by (a corollary of) the Hahn-
Banach theorem, there exists a ’separating element’ x ∈ S∗∗. Because S is finite dimensional,
we have S∗∗ ∼= S, so we can assume x ∈ S. This means that ρ′(x) = 0 for all ρ′ ∈ V and ρ(x) = 1.

But then in particular 〈(1 − 2x)ξ, ξ〉 = 1 > 0 for all ξ ∈ H with ‖ξ‖ = 1, which implies that
1− 2x is positive. On the other hand, ρ(1− 2x) = −1, which is a contradiction since ρ is also
a positive linear functional.

The finite-dimensional subspaces form a net in A. If ρ ∈ S(A) is a state, then for any finite-
dimensional subspace E ⊆ A we can find a state ρE such that |ρ(x) − ρE(x)| < 1/|E| for all
x ∈ E. Then the ρE form a weak-∗ convergent net to ρ. (Note that this is no longer a norm
convergence!)

The Stinespring dilation theorem is a fundamental result in quantum information theory.

Theorem A.1.2 (Stinespring dilation theorem). Let Φ : A → B(H) be a ucp map. Then
Φ(a) = PHπ(a)PH, where π : A → B(Ĥ) is some ∗-homomorphism to a Hilbert space Ĥ that
isometrically contains H.
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The proof is well-known, and can be seen as a generalisation of the GNS construction, where
the ucp map Φ takes the role of the state. Note here that the second PH is really the inclusion
of H in Ĥ (or the ∗ of the projection Ĥ → H).

Proof. In the GNS representation the Hilbert space was constructed from A. Here, we construct
the Hilbert space from the tensor product of complex vector spaces A⊗C H instead. This way
we can construct a ‘potential’ inner product from the map Φ by defining:

〈a⊗ ξ, b⊗ ξ′〉 := 〈Φ(b∗a)ξ, ξ′〉H (12)

and extending by sesquilinearity. Conjugate symmetry follows because positive maps preserve
involution, i.e. Φ(x)∗ = Φ(x∗) (one can see this by writing x as a linear combination of 4
positive elements). To check positive semidefiniteness, we really need complete positivity:〈

n∑
i=1

ai ⊗ ξi,
n∑
i=1

ai ⊗ ξi

〉
=

n∑
i,j=1

〈Φ(a∗i aj)ξi, ξj〉.

If we define ξ = (ξ1, . . . , ξn) ∈ Hn and a =


a1 . . . an
0 . . . 0
...

...
0 . . . 0

 ∈ Mn(A), then one can check that

a∗a = (a∗i aj)i,j and the RHS is equal to 〈Φ(n)(a∗a)ξ, ξ〉Hn ≥ 0. Here Φ(n) = 1Mn ⊗ Φ.

Of course, (12) is not yet positive definite since there are non-zero elements with zero inner
product. Therefore, we quotient out the space of ‘zero elements’. Define

N := {x ∈ A⊗C H : 〈x, x〉 = 0}.

Then (12) defines an inner product on the space (A ⊗C H)/N . After completion with respect
to this inner product, we have finally got our desired Hilbert space: Ĥ := (A⊗C H)/N . This
Hilbert space isometrically contains H via the embedding ξ 7→ 1⊗ ξ +N .

We define π(a)(b ⊗ ξ + N ) = ab ⊗ ξ + N (the ‘left regular representation’). We need to
check that this is well-defined and bounded (so that we can extend to the completion). If∑n

i=1 ai ⊗ ξi ∈ A⊗C H and b ∈ A, then〈
n∑
i=1

bai ⊗ ξi,
n∑
i=1

bai ⊗ ξi

〉
=

n∑
i,j=1

〈Φ(a∗i b
∗bai)ξi, ξj〉 ≤

n∑
i,j=1

‖b∗b‖〈Φ(a∗i ai)ξi, ξj〉,

where the last estimate follows from Theorem 3.3.7 from Murphy by defining positive linear
functionals x 7→ 〈Φ(x)ξi, ξj〉 (that are only positive because Φ is positive). If

∑n
i=1 ai ⊗ ξi ∈ N ,

then the RHS is 0, which shows well-definedness. At the same time, the estimate shows that π
is bounded, so it defines a ∗-homomorphism A → B(Ĥ).

Finally, we check that Φ(a) = PHπ(a)PH holds. To be precise, we need to have Φ(a)ξ =
PHπ(a)PH(1⊗ ξ +N ) for any ξ ∈ H. We check this via the inner product:

〈PHπ(a)PH1⊗ ξ,1⊗ ξ〉Ĥ = 〈π(a)1⊗ ξ, PH1⊗ ξ〉Ĥ = 〈a⊗ ξ,1⊗ ξ〉Ĥ = 〈Φ(a)ξ, ξ〉.

This finishes the proof.
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Remark A.1.3. For contractive completely positive (so non-unital) maps, we also have a
Stinespring Dilation Theorem. However, there is no longer an isometric inclusion H ⊆ Ĥ, so
instead of the projection PH we have a map V : H → Ĥ such that Φ(a) = V ∗π(a)V .

Theorem A.1.4 (Arveson extension theorem). Let S ⊆ A be a self-adjoint subspace containing
1A. Then any ucp map Φ : S → B(H) can be extended to a ucp map Φ̃ : A→ B(H).

We refer to [6, Thm. 4.1.5] for the proof.

A.2 Tensor products on operator systems

In this section, we give a brief introduction of tensor products of abstract operator systems,
culminating in Theorems A.2.7 and A.2.8. More details can be found in [13].

Definition A.2.1. Let V be a ∗-algebra. {Cn}∞n=1 is called a matrix ordering on V if

(1) Cn is a cone in Mn(V )h, the hermitian elements of Mn(V ),

(2) Cn ∩ −Cn = {0} for n ∈ N,

(3) X∗CnX ⊆ Cm for each X ∈Mn,m and m,n ∈ N.

In this case we call (V, {Cn}∞n=1) an (abstract) operator system.

In the following, let (S, {Pn}∞n=1), (T , {Qn}∞n=1) be operator systems.

Definition A.2.2. An operator system structure on S ⊗ T consists of a family of cones τ =
{Cn}∞n=1, with Cn ⊆Mn(S ⊗ T ), satisfying:

(i) (S ⊗ T , {Cn}∞n=1) is an operator system denoted by S ⊗τ T ,

(ii) Pn ⊗Qm ⊆ Cnm, for all n,m ∈ N,

(iii) If Φ : S → B(HA) and Ψ : T → B(HB) are ucp maps, then Φ⊗Ψ : S⊗τ T → B(HA⊗HB)
is also an ucp map.

Analogously to the C∗-algebra case, we will define a minimal and a maximal tensor product on
operator systems.

Definition A.2.3. For each n ∈ N, we let

Cmin
n = {t ∈Mn(S⊗T ) : (Φ⊗Ψ)(n)(t) ≥ 0 for all ucp maps Φ : S → B(HA), Ψ : T → B(HB)}.

We define the minimal tensor product operator system S ⊗OSmin T to be the algebraic tensor
product S ⊗ T with operator system structure {Cmin

n }∞n=1.

Intuitively, this is the operator system structure generating the minimal amount of ucp maps.
Indeed, we define every element t ∈Mn(S ⊗T ) to be positive as long as it can be made positive
without violating requirement (iii), so that we have the largest possible number of positive
elements. The more positive elements, the harder it is for a map to be completely positive.

Definition A.2.4. For each n ∈ N, we let

Ccmax
n ={t ∈Mn(S ⊗ T ) : (Φ ·Ψ)(n)(t) ≥ 0 for all ucp maps Φ : S → B(H), Ψ : T → B(H)

with commuting ranges}.

We define the commuting maximal tensor product operator system S⊗cmax T to be the algebraic
tensor product S ⊗ T with operator system structure {Ccmax

n }∞n=1.
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Intuitively, this is the operator system structure generating the least amount of ucp maps such
that in addition to satisfying requirement (iii), every map of the form Φ ·Ψ is ucp, where (Φ,Ψ)
are pairs of ucp maps on S respectively T . Note that we have not called this the maximal
operator system tensor product. The reason is that it is not actually ’maximal’, in the sense
that it does not contain the least number of positive elements (i.e. the largest number of ucp
maps). However, when S and T are C∗-algebras, this is actually true. For more details and
a more thorough discussion about tensor products on operator systems, we refer to [13]. In
particular, we will use the following two theorems:

Theorem A.2.5. [13, 4.10] Let A, B be C∗-algebras. Then the minimal operator system tensor
product A ⊗OSmin B is completely order isomorphic to the image of A ⊗ B inside the minimal
C∗-algebraic tensor product A⊗min B.

Theorem A.2.6. [13, 5.12 and 6.6] Let A, B be C∗-algebras. Then the commuting maximal
operator system tensor product A⊗cmaxB is completely order isomorphic to the image of A⊗B
inside the maximal C∗-algebraic tensor product A⊗max B.

For this last theorem, note that Kavruk et al. denote the commuting maximal tensor product
by ⊗c, and the actual maximal tensor product by ⊗max.

Theorem A.2.7. Let ϕ : A → C and ψ : B → D be ucp maps of C∗-algebras. Then the map
ϕ⊗ψ : a⊗ b→ c⊗ d extends to a ucp map on both the minimal and maximal tensor products.

Proof. Let S = A⊗ B be the algebraic tensor product, and let the operator systems Smin and
Smax be the subspaces of A⊗min B respectively A⊗max B. Then by Theorems A.2.5 and A.2.6,
Smin and Smax are completely order isomorphic to A⊗OSmin B and A⊗cmax B.

We define maps ΦA ⊗min ΦB and ΦA ⊗max ΦB on Smin respectively Smax to C ⊗D by mapping
a⊗ b to ΦA(a)⊗ΦB(b). Because Smin and Smax are also abstract operator systems, they satisfy
requirement (iii) of Definition A.2.4. Therefore, ΦA ⊗min ΦB and ΦA ⊗max ΦB are ucp maps
(to be precise, we should choose representations C ⊆ HC and D ⊆ HD to use requirement (iii),
and then note that we can restrict the range of ΦA ⊗ ΦB). By Proposition 2.1.2, these maps
are contractive and can thus be extended to unital maps

ΦA ⊗min ΦB : A⊗min B → C ⊗min D

and
ΦA ⊗max ΦB : A⊗max B → C ⊗max D.

Because positive elements in a closure are precisely the limits of positive elements in the original
space, these maps are again completely positive (and thus ucp).

See [1, 3.5.3] for a different proof using the Stinespring dilation theorem.

Theorem A.2.8. If ϕ : A → B(H) and ψ : B → B(H) are ucp maps with commuting ranges,
then the map ϕ · ψ : A⊗max B → B(H) is well-defined and ucp.

Proof. This proof is similar to the previous one. Here we use that in Definition A.2.4, the
positive elements are chosen in such a way that for ucp maps Φ : S → B(H) and Ψ : T → B(H),
the map Φ · Ψ is again ucp. This allows us to show via Theorem A.2.6 that the map ϕ · ψ is
ucp and thus contractive on the algebraic tensor product with respect to the maximal norm, so
that we can extend it to a ucp map on the maximal one.

A different proof using a variant of the Stinespring dilation theorem can be found in [7, B.12]
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A.3 The Pisier Linearisation trick

Here we prove the Pisier Linearisation trick (Theorem A.3.3) as used in Theorem 6.3.1. We
start by introducing the concept of multiplicative domains.

Definition A.3.1. Let Φ : A → B be a ucp map between C∗-algebras. Then the set of all
elements a ∈ A satisfying

Φ(a∗a) = Φ(a∗)Φ(a), and Φ(aa∗) = Φ(a)Φ(a)∗

is called the multiplicative domain of Φ.

Theorem A.3.2 (Multiplicative Domains). ([7, A.6]) Let Φ : A → B be a ucp map between C∗-
algebras. Then for each x ∈ A and a in the multiplicative domain, we have Φ(ax) = Φ(a)Φ(x)
and Φ(xa) = Φ(x)Φ(a). Moreover, the multiplicative domain of Φ is a C∗-subalgebra of A, and
the restriction of Φ to the multiplicative domain is a ∗-homomorphism.

Proof. Let B ⊆ B(H) be a faithful representation. Then by the Stinespring Dilation Theorem
A.1.2, there is a Hilbert space Ĥ ⊇ H and a ∗-homomorphism π : A → B(Ĥ) such that
Φ(a) = PHπ(a)PH. The difference between Φ(a∗a) and Φ(a)∗Φ(a) in terms of this Stinespring
formulation is given by

Φ(a∗a)− Φ(a)∗Φ(a) = PHπ(a)∗(1Ĥ − PH)π(a)PH =
[
(1Ĥ − PH)π(a)PH

]∗
(1Ĥ − PH)π(a)PH

Therefore, the above is 0 iff (1Ĥ − PH)π(a)PH = 0. But this implies that for a in the multi-
plicative domain and x ∈ A

Φ(xa)− Φ(x)Φ(a) = PHπ(x)(1Ĥ − PH)π(a)PH = 0.

Switching the roles of a∗ and a we also deduce that Φ(ax) = Φ(a)Φ(x). By linearity of Φ, this
property is preserved under linear combinations, and it is clearly preserved under products. It
was already clear that the multiplicative domain is ∗-closed, so it follows that the multiplicative
domain is a C∗-subalgebra of A and that the restriction of Φ to the multiplicative domain is a
∗-homomorphism.

Theorem A.3.3 (Pisier’s trick). [24, Thm. 1] & [7, B.14] Let A,B be C∗-algebras that are
generated by the respective sets (ux), (vy). Define S = Span(ux⊗vy). The space Mn(S) inherits
‖·‖min and ‖·‖max norms from Mn(A⊗minB) and Mn(A⊗maxB) respectively. Now the following
statements are equivalent:

i) A⊗min B = A⊗max B

ii) ‖x‖min = ‖x‖max for all self-adjoint x ∈Mn(S), n ∈ N.

Proof. The direction i) ⇒ ii) is obvious. For the other direction, note that the identity
A⊗algB → A⊗minB is contractive. Therefore, it extends to a ∗-homomorphism Φ : A⊗maxB →
A⊗min B. We will prove i) by constructing an inverse to this map.

We denote Smin and Smax as the set S equipped with the min- and max norm respectively. We
consider the identity mapping Smin → A ⊗max B, which is clearly unital. We first show that
this map is also completely positive, so that we can call on Arveson’s extension theorem A.1.4.
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Let n ∈ N be fixed and let a ∈Mn(Smin)+ ⊆ (A⊗minB)+. Then, by Lemma 2.2.2 from Murphy,
we have ‖a− ‖a‖1A‖min ≤ ‖a‖min. Since a− ‖a‖1A ∈Mn(S), we have

‖a− ‖a‖1A‖max
ii)
= ‖a− ‖a‖1A‖min ≤ ‖a‖min = ‖a‖max.

Again by Lemma 2.2.2 from Murphy, we find that a ∈Mn(Smax)+ ⊆ (A⊗maxB)+, which implies
that the identity mapping is completely positive.

Embed B ⊆ B(H) and note that S contains only self-adjoint elements. Then by Arveson’s
extension theorem, we can extend the identity mapping to a ucp map Ψ : A ⊗min B → B(H).
Now we claim that the range of Ψ is contained in A⊗max B. Indeed, since Ψ is the identity on
S, it is clear that S is in the multiplicative domain of Ψ. Now since Smin generates A⊗min B, it
is also true that Ψ(S) generates the range of Ψ, which is also a C∗-algebra. Since S is contained
in A⊗max B, it follows that Ψ maps into A⊗max B.

By Theorem A.3.2, the multiplicative domain has to be a C∗-subalgebra of A⊗minB. But since
Smin generates A⊗min B as a C∗-algebra, it follows that the multiplicative domain is the whole
of A ⊗min B, and thus (again by Theorem A.3.2) Ψ is a ∗-homomorphism. Since Φ ◦ Ψ and
Ψ ◦ Φ are the identity on S, it follows that they must be the identity on A⊗min B respectively
A⊗max B (again using the fact that Smin respectively Smax are generating sets). Thus these are
both ∗-isomorphisms, which are automatically isometric (see Theorem 2.1.7 from Murphy).

A.4 Factors over finite dimensional Hilbert spaces

Here we prove that every factor over a finite dimensional Hilbert space is spacially isomorphic
to 1Md(C)⊗Mq(C) for suitable d, q ∈ N (Lemma A.4.2). This result was used in Theorem 5.2.1.

We first prove the following Lemma, which is a simple case of [12, 6.6.1], stating that type In

factors are ∗-isomorphic to B(K) where K has dimension n. We prove our simple case without
using any theory not in Murphy’s book:

Lemma A.4.1. Let M ⊆ B(H) be a factor, where H is a finite dimensional Hilbert space.
Then M is ∗-isomorphic to B(K) for some finite dimensional Hilbert space K.

Proof. One property of a von Neumann algebra is that is has many projections; for example,
by Theorem 4.1.9 from Murphy, it contains all the range projections of its elements. Since H is
finite dimensional, there must exist minimal projections (i.e. non-zero projections so that 0 is
its only proper subprojection). Let {pi} be a maximal set of minimal (orthogonal) projections.
Then

∑q
i=1 pi = 1H; indeed, if 1H −

∑q
i=1 pi 6= 0, then it is either a minimal projection or has

a minimal subprojection, which contradicts maximality. We will use this fact at the very end
of the current proof.

Let p′ be any minimal projection in M′. We show that the map M→Mp′ given by A 7→ Ap′

is a ∗-isomorphism. Using commutativity of p′ and M, it can be easily checked that this map
is a ∗-homomorphism, and surjectivity is clear. It remains to prove injectivity. To show this,
let T ∈M such that Tp′ = 0.

Define Γ as the set of all projections E′ in M′ such that TE′ = 0. Let Q be the union over all
projections in Γ. Note that Q is the range projection of

∑
E′∈ΓE

′ ∈ M′, therefore Q ∈ M′.
Also, it is clear that TQ = 0.
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We show that Q ∈ M ∩M′, for which it suffices to show that Q ∈ M′′ = M. To this end,
let F ′ ∈ M′ be a fixed projection. Then TF ′Q = F ′TQ = 0. Since F ′Q and thus its range
projection is inM′, it follows by the construction of Q that ran(F ′Q) ⊆ ran(Q). We show that
F ′Q = QF ′ with the following surprising trick:

F ′Q = QF ′Q = (QF ′Q)∗ = (F ′Q)∗ = QF ′.

It follows that Q ∈M∩M′. But sinceM is a factor, it follows that Q = λ1H. Thus λT1H = 0,
which means T = 0. This shows injectivity.

The above shows that the spaceMp′, acting on the Hilbert space K := p′(H), is a von Neumann
algebra. We next show thatMp′ = B(K). The first step is to show that the commutant ofMp′

is p′M′p′. Let T ′ ∈ B(K) such that T ′ commutes with Mp′, and denote by T ′ the extension to
H by setting it 0 on (1H − p′)(H). If T ∈M, then

T ′T = T ′p′T = T ′(Tp′) = (Tp′)T ′ = TT ′.

Therefore T ′ ∈ M′. Since, clearly, T ′ = p′T ′p′, we have T ′ ∈ p′M′p′. Conversely, if p′T ′p′ ∈
p′M′p′ and Tp′ ∈Mp′, then

(p′T ′p′)(Tp′) = p′T ′Tp′ = p′TT ′p′ = (Tp′)(p′T ′p′).

Therefore p′M′p′ is the commutant of Mp′.

For the second step, note that the only projections in p′M′p′ are 0 and p′, since p′ is mini-
mal. Since a von Neumann algebra is the closed linear span of its projections, it follows that
p′M′p′ = Cp′ = C1K. As Mp′ is a von Neumann algebra with trivial commutant, we find
Mp′ = B(K).

Combining our findings, we find a ∗-isomorphism Φ : M → B(K). Note that all orthogonal
projections Φ(pi) are minimal, and thus rank 1 projections in B(K). Since the q orthogonal rank-
one projections Φ(pi) add up to the identity, we find that K ∼= Cq, and thus M∼= Mq(C).

Next, we show how this implies a spatial isomorphism onto 1Md(C) ⊗ Mq(C), where d =
dim(H)/q.

Lemma A.4.2. Let M ⊆ B(H) be a factor, where H is a finite dimensional Hilbert space.
Then there exists a unitary u ∈ B(H) such that uMu∗ = 1Md(C) ⊗Mq(C) for some d, q ∈ N
(and thus H ∼= Cdq ∼= Cd ⊗ Cq).

Proof. Let p be any of the projections p1, . . . , pn from the previous proof. First, we show that
for x ∈ p(H), the projection on Hx := [Mx] is a minimal projection in M′ (which we can then
use for the previous proof). This is essentially Proposition 6.4.4 in [12]

Let x ∈ p(H) be non-zero and let G ∈ B(p(H)) be the (minimal) projection on the one-
dimensional span of x. Switching the roles of M and M′, we can use the same proof as before
to show that M′p = B(p(H)), therefore G ∈ M′p. Also as before, we can show that the map
M′ → M′p given by T ′ 7→ T ′p is a ∗-isomorphism; this means that there is some minimal
projection G′ ∈M′ such that G′p = G.

We have G′x = G′px = Gx = x. So if T ∈ M, then Tx = TG′x = G′Tx ∈ G′(H). This means
that Hx ⊆ G′(H). If we define p′ as the projection on Hx, then it follows that p′ ≤ G′. Since
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Hx is invariant under M, it follows that p′ ∈ M′. Since G′ is a minimal projection in M′ and
p′ 6= 0, it follows by the claim that p′ = G′ and thus p′ is a minimal projection in M′. By the
previous proof, we conclude that

if x ∈ p(H), then Hx ∼= Cq and M∼= B(Hx). (13)

We now use a trick similar to the one in Theorem 5.1.3 in Murphy. Let Λ = {x1, . . . , xd} be a
maximal set of non-zero elements of

⋃q
i=1 pi(H) such that the spaces Hx are orthogonal for all

x ∈ Λ (in infinite dimensions this would require Zorn’s Lemma, but in the finite dimensional
case we do not need it).

Let y ∈
(⋃

x∈ΛHx
)⊥

. Then for x ∈ Λ and a, b ∈ A arbitrarily, we have

〈ay, bx〉 = 〈y, a∗bx〉 = 0.

Therefore Hy is orthogonal to Hx. Let i ∈ {1, . . . , q}. Since Hpi(y) ⊆ Hy for all i, this means
that Hpi(y) is orthogonal to Hx for all x ∈ Γ.
But due to our maximality assumption, this means that pi(y) = 0 for all i = 1, . . . , q. Since∑q

i=1 pi = 1H, this means that y = 0. Therefore we can write H ∼=
⊕d

i=1Hxi as the direct sum
of M-invariant orthogonal subspaces. Through a suitable basis transformation, we can thus
write T =

⊕d
i=1 Ti for T ∈M, where Ti ∈ B(Hxi).

By (13) we have that M ∼= B(Hx) ∼= Mq(C) for each x ∈ Γ. This gives automorphisms

ϕi,j : Mq(C) → Mq(C) such that an element T =
⊕d

i=1 Ti has to satisfy Tj = ϕi,jTi. All
automorphisms of Mq(C) are inner, so there are unitaries ui,j such that Tj = u∗i,jTiui,j . Now

the unitary
⊕d

i=1 ui,1 ∈ B(H) (where u1,1 is the identity) gives rise to a spatial ∗-isomorphism,
which combined with the earlier basis transformation gives the spatial ∗-isomorphism

M∼= {
d⊕
i=1

T : T ∈Mq(C)} = 1Mp(C) ⊗Mq(C).

A.5 Kirchberg equivalent statements

The Kirchberg conjecture on tensor products of maximal C∗-group algebras can be formulated
in several equivalent ways. Here are a few:

Theorem A.5.1. The following statements are equivalent.

1. C∗(F2)⊗min C
∗(F2) = C∗(F2)⊗max C

∗(F2)

2. C∗(Fk)⊗min C
∗(Fk) = C∗(Fk)⊗max C

∗(Fk) for any k ≥ 2 or k =∞.

3. For some k,m ≥ 2, (k,m) 6= (2, 2) we have

∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞.

We start with several Lemmas. We state the first two without proof. The first one leads to the
method of showing that groups are subgroups of each other to conclude that the tensor norms
are equal.
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Lemma A.5.2. [7, C.4] Let H1 ⊆ G1 and H2 ⊆ G2 be subgroups. Then

C∗(G1)⊗min C
∗(G2) = C∗(G1)⊗max C

∗(G2)

implies that
C∗(H1)⊗min C

∗(H2) = C∗(H1)⊗max C
∗(H2).

The second lemma gives a way to check if the subgroup generated by specific elements is free.

Lemma A.5.3 (Ping-pong lemma). Let G be a group acting on a set X and g1, . . . , gk be
elements of infinite order. Suppose there are non-empty pairwise disjoint subsets

X+
1 , . . . , X

+
k , and X−1 , . . . , X

−
k

such that
gi(X \X−i ) ⊆ X+

i

g−1
i (X \X+

i ) ⊆ X−i
for i = 1, . . . , k, then the subgroup H generated by the gi is free (with generators g1, . . . , gk).

Proofs can be found in many places, such as [3, II.B] (or even Wikipedia).

Lemma A.5.4. For any k ∈ N or k =∞, the group F2 has a subgroup isomorphic to Fk.

Proof. Let a and b be the generators of F2. Then the elements

gi = aib−i, i = 1, . . . , k

(where i ∈ N if k =∞) generate a subgroup of F2. We can consider this subgroup to be acting
on F2 by left multiplication. Define X−i and X+

i as the classes of words of reduced form aix
respectively bix. These subsets satisfy the conditions of the Ping-pong lemma, so therefore the
group generated by the gi is a free group with k generators, and therefore isomorphic to Fk.

Lemma A.5.5. The Fourier transform gives a ∗-isomorphism ∗kx=1`
m
∞
∼= C∗(Zm ∗ · · · ∗ Zm).

Proof. In Lemma 7.2.5, we showed that `m∞
∼= C∗(Zm). Taking the free product, we get

∗kx=1`
m
∞
∼= ∗kx=1C

∗(Zm). Upon writing out what elements from the latter space look like, we see
that this space is the same as C∗(Zm ∗ · · · ∗ Zm).

Lemma A.5.6. Any group G = ∗kx=1Zm for k,m ≥ 2, (k,m) 6= (2, 2) has a subgroup isomorphic
to F2.

Proof. Note that for any k ≥ 2, Zm ∗ Zm is a subgroup of ∗kx=1Zm. Thus, it suffices to show
that Zm ∗ Zm has a subgroup isomorphic to F2. However, this will only work for m ≥ 3. In
that case, let a and b be the generators of the first respectively second instance of Zm. We
define elements g1 = ab, g2 = ba and sets X−1 , X

+
1 , X

−
2 , X

+
2 as classes of words of reduced forms

respectively b−1x, ax, a−1x, bx. These satisfy the conditions of the ping-pong lemma, thus the
subgroup generated by {g1, g2} is isomorphic to F2.

For m = 2, the ping-pong lemma cannot be applied in the same way since a = a−1 (hence the
exclusion of the case (k,m) 6= (2, 2)). Therefore we can only prove this case for k ≥ 3; here it
suffices to consider k = 3, i.e. Z2 ∗ Z2 ∗ Z2. Let a, b, c be the respective generators. Now, we
define g1 = abc and g2 = acb and sets X−1 , X

+
1 , X

−
2 , X

+
2 as classes of words of reduced forms

respectively cbx, abx, bcx, acx. Again, these satisfy the conditions of the ping-pong lemma, thus
the elements g1, g2 generate the required free subgroup isomorphic to F2.
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In addition to these lemmas, we will need some results from section 7.

Proof of Theorem A.5.1. 1.⇒ 2. This is a combination of lemmas A.5.2 and A.5.4.

2. ⇒ 3. Let k,m ∈ N. Note that ∗kx=1`
m
∞ is separable. Indeed, the set of finite words in Qm is

dense, and since it corresponds to finite Qm-valued sequences, it is also countable. Therefore,
by Corollary 7.2.1, we have ∗kx=1`

m
∞
∼= C∗(Fk)/J for some countable free group Fk and some

ideal J . By Theorem 7.2.4, there exists a ucp lifting ψ : ∗kx=1`
m
∞ → C∗(Fk).

Now note that by Theorem A.2.7, the map ψ⊗ψ : ∗kx=1`
m
∞⊗min ∗kx=1`

m
∞ → C∗(Fk)⊗min C

∗(Fk)
is ucp (specifically contractive). If π : C∗(Fk)→ ∗kx=1`

m
∞ is the quotient map, then the map

∗kx=1`
m
∞ ⊗min ∗kx=1`

m
∞

ψ⊗ψ−→ C∗(Fk)⊗min C
∗(Fk) = C∗(Fk)⊗max C

∗(Fk)
π⊗π−→ ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞

is a contraction. Since the minimum norm is obviously smaller than the maximum norm, this
means that both are equal, i.e. ∗kx=1`

m
∞ ⊗min ∗kx=1`

m
∞ = ∗kx=1`

m
∞ ⊗max ∗kx=1`

m
∞. (Compare to the

proof of Corollary 7.2.2)

3.⇒ 1. This is a combination of lemmas A.5.5, A.5.6 and A.5.2.

A.6 Theory behind QWEP

Theorem A.6.1. For any countable free group Fn (i.e. n ∈ N or n =∞), the group C∗-algebra
C∗(Fn) has the LP.

Proof. We prove only that every ∗-homomorphism θ : C∗(Fn)→ B/J is liftable. The generali-
sation to ucp maps requires some heavy machinery such as the Kasparov dilation theorem and
the noncommutative Tietze extension theorem; we refer to [18, Thm. 3.8].

Let us assume n = ∞ (the case n ∈ N is the same). We begin by choosing representants
x1, x2, · · · ∈ B from the equivalence classes θ(U1), θ(U2), . . . . Since the θ(Ui) have norm ≤ 1, we
can also take the xi to have norm ≤ 1. Our aim is to extend this choice to a u.c.p. lifting of θ.
The easiest way would be to extend to a ∗-homomorphism, but the problem is that the xi need
not be unitary. Therefore, we use what are called unitary dilations:

x̂i =

(
xi (1− xix∗i )1/2

(1− x∗ixi)1/2 −x∗i

)
∈M2(B).

One can easily check that these are indeed unitary. Therefore, we can extend the map Ui 7→ x̂i
to a unitary representation Fn → M2(B). By the universal property of the maximal group
C∗-algebra, there is a ∗-homomorphism ρ : C∗(Fn)→M2(B) extending this map.

We now claim that the (1,1)-corner of ρ is a ucp lifting of θ. The completely positive part
follows from the fact that the upper left square matrix of a positive matrix is positive. To show
that it is a lifting, we need to prove that q ◦ ρ(1,1) = θ, where q : B → B/J is the quotient map.
This is clear for linear combinations of the generators Ui. We show that it is also true for a
product UiUj . Indeed,

q(ρ(UiUj)(1,1)) = q(xixj + (1− xix∗i )1/2(1− x∗jxj)1/2)

= θ(UiUj) + q(1− xix∗i )1/2q(1− x∗jxj)1/2 = θ(UiUj)

(since q(x∗ixi) = UiU
∗
i = 1).

55



Before stating the next theorem we introduce the notion of completely bounded maps, which is
similar in spirit to completely positive maps. Similar to completely positive maps, completley
bounded maps can be defined on a more general sort of space (operator spaces) but we will not
need that here.

Definition A.6.2. A map Φ : A → B is called completely bounded if

‖Φ‖cb := sup
n∈N
‖1Mn(C) ⊗ Φ‖ <∞.

If ‖Φ‖cb ≤ 1 we call Φ completely contractive.

Proposition A.6.3. Let Φ : A → B be completely bounded and let H be any Hilbert space.
Then

‖1B(H) ⊗ Φ‖ ≤ ‖Φ‖cb.

Proof. Let Λ be the net of finite dimensional projections on H and let B ⊆ B(HB) be a faithful
representation. Let z ∈ B(H)⊗A. We claim that

‖(1B(H) ⊗ Φ)(z)‖ = lim
p∈Λ
‖(p⊗ 1HB )(1B(H) ⊗ Φ)(z)(p⊗ 1HB )‖.

Let ε > 0. Let ξ =
∑

i ξiηi ∈ H ⊗HB be such that

|(1B(H) ⊗ Φ)(z)ξ‖ ≥ |(1B(H) ⊗ Φ)(z)‖ − ε,

and write (1B(H) ⊗ Φ)(z)ξ = ξ̂ =
∑

i ξ̂iη̂i. Now let p be a finite rank projection such that

ξi, ξ̂i ∈ p(H) for all i. Then

‖(p⊗ 1HB )(1B(H) ⊗ Φ)(z)(p⊗ 1HB )‖ ≥ ‖(p⊗ 1HB )(1B(H) ⊗ Φ)(z)(p⊗ 1HB )ξ‖
= ‖(p⊗ 1HB )(1B(H) ⊗ Φ)(z)ξ‖
= ‖(1B(H) ⊗ Φ)(z)ξ‖
≥ |(1B(H) ⊗ Φ)(z)‖ − ε

Hence the claim holds. Thus we have

‖(1B(H) ⊗ Φ)(z)‖ = lim
p∈Λ
‖(p⊗ 1HB )(1B(H) ⊗ Φ)(z)(p⊗ 1HB )‖

= lim
p∈Λ
‖(1B(H) ⊗ Φ)((p⊗ 1HA)z(p⊗ 1HA))‖

= lim
p∈Λ
‖(1B(p(H)) ⊗ Φ)((p⊗ 1HA)z(p⊗ 1HA))‖

≤ ‖Φ‖cb lim
p∈Λ
‖(p⊗ 1HA)z(p⊗ 1HA)‖ ≤ ‖Φ‖cb‖z‖

where the second step holds by writing z explicitly as sum of elementary tensors and calculating
out. This concludes the proof.

Theorem A.6.4. For any free group F and any Hilbert space H, we have

C∗(F)⊗max B(H) = C∗(F)⊗min B(H).

We give the proof from [24]. We start with some preparations before stating one lemma. Let
(Ui)i∈I be the unitary generators of C∗(F). We define S = Span{Ui ⊗ x;x ∈ B(H)}. Note
that S is of the required form of Theorem A.3.3. Let z =

∑n
i=1 Ui ⊗ xi ∈ S. We define an

associated operator Tz : `n∞ → B(H) by (αi)
n
i=1 7→

∑n
i=1 αixi. The first lemma states that there

is a duality relation between the elements z and the operators Tz.
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Lemma A.6.5. For any z =
∑n

i=1 Ui ⊗ xi, the norm equality ‖z‖min = ‖Tz‖cb holds.

Proof. Let E = Span{Ui : i = 1, . . . , n}. We note that z = (1E ⊗ Tz)((Ui)
n
i=1). Since

‖(Ui)ni=1‖E⊗`n∞ = 1 , we have by Proposition A.6.3

‖z‖min = ‖(1E ⊗ Tz)((Ui)ni=1)‖ ≤ ‖Tz‖cb.

For the converse inequality, let k ∈ N and (ai)
n
i=1 ∈Mk(C)⊗ `n∞. Let θ : E →Mk(C) be defined

as θ(Ui) = ai. Then we have

(1Mk(C) ⊗ Tz)((ai)ni=1) =

n∑
i=1

ai ⊗ xi =

n∑
i=1

θ(Ui)⊗ xi = (θ ⊗ 1B(H))(z).

Therefore we are done if we can prove that θ is completely contractive. We do this via a
trick by Ozawa: let âi be the unitary dilations of ai. Similarly to Theorem A.6.1, the map ϕ
given by Ui 7→ â−1

0 âi extends to a ∗-homomorphism on C∗(F). Note that θ(Ui) = (âi)(1,1) =
(â0ϕ(Ui))(1,1). Since ∗-homomorphisms are completely contractive and â0 has norm 1, it follows
that θ is completely contractive.

Proof of Theorem A.6.4. Recall that S = Span{Ui⊗x;x ∈ B(H)}; by Theorem A.3.3 it suffices
to prove that ‖z‖min = ‖z‖max for all z ∈ Mn(S). Note that S can in fact be written as
Span{Ui} ⊗ B(H), so

Mn(S) ∼= Mn(C)⊗ Span{Ui} ⊗ B(H) ∼= Span{Ui} ⊗Mn(B(H)) ∼= Span{Ui} ⊗ B(Hn).

But since H and Hn have the same cardinality (they are both separable), they are actually iso-
morphic Hilbert spaces, so we can assume that z ∈ S. Let ‖z‖min = 1. Then by the preceding
lemma, ‖Tz‖cb = 1; in other words, Tz is completely contractive. Now, we refer to a generali-
sation of the Stinespring theorem known as the factorization theorem for completely bounded
maps (see [1, Thm. A.6]). This theorem says that we can write Tz(α) = V ∗π(α)W , where π :
`n∞ → B(Ĥ) is a ∗-homomorphism and V,W ∈ B(H, Ĥ) are isometries with ‖V ‖‖W‖ = ‖Tz‖cb.
Again, Ĥ can be taken separable and therefore isomorphic to H, so we can assume that H = Ĥ.

Next, we define ai = V ∗π(ei) and bi = π(ei)W , so that xi = aibi. Note that
∑n

i=1 aia
∗
i =

V ∗π(
∑n

i=1 ei)V = V ∗1HV = 1H. Similarly,
∑n

i=1 b
∗
i bi = 1H. Then we can estimate as follows:

‖z‖max =

∥∥∥∥∥
n∑
i=1

Ui ⊗ xi

∥∥∥∥∥
max

=

∥∥∥∥∥
n∑
i=1

(1⊗ ai)(Ui ⊗ bi)

∥∥∥∥∥
max

C−S
≤

∥∥∥∥∥
n∑
i=1

(1⊗ ai)(1⊗ ai)∗
∥∥∥∥∥

1/2

max

∥∥∥∥∥
n∑
i=1

(Ui ⊗ bi)∗(Ui ⊗ bi)

∥∥∥∥∥
1/2

max

=

∥∥∥∥∥1⊗
n∑
i=1

aia
∗
i

∥∥∥∥∥
1/2

max

∥∥∥∥∥1⊗
n∑
i=1

b∗i bi

∥∥∥∥∥
1/2

max

= 1.

And thus ‖z‖max = ‖z‖min = 1. This finishes the proof.
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A.7 Triple tensor products

Here, we review in detail some properties about norms on triple tensor products.

Hilbert spaces

If HA,HB,HC are Hilbert spaces, then we can naturally define an inner product on HA ⊗
HB ⊗ HC by 〈a1 ⊗ b2 ⊗ c2|a2 ⊗ b2 ⊗ c2〉 = 〈a1|a2〉 〈b1|b2〉 〈c1|c2〉. We denote the Hilbert space
completion as HA⊗̂HB⊗̂HC .

We can also define a Hilbert space by using two consecutive completions on two tensor legs:
HA⊗̂(HB⊗̂HC). In other words, we first form a Hilbert space HB⊗̂HC taking the completion,
and then tensor that with the Hilbert space HA using another completion. One can easily check
that the inner product defined this way is the same as before. To conclude that both Hilbert
spaces are the same, we need to show that HA ⊗ (HB⊗̂HC) ⊆ HA⊗̂HB⊗̂HC .

If z =
∑

i∈I ai ⊗ yi, for ai ∈ HA and yi ∈ HB⊗̂HC , then we can find sequences (yni )n∈N ∈
HB ⊗HC such that yni → yi in HB⊗̂HC . Thus

‖z −
∑
i∈I

ai ⊗ yni ‖HA⊗̂HB⊗̂HC ≤
∑
‖ai ⊗ (yi − yni )‖HA⊗̂HB⊗̂HC

=
∑
‖ai ⊗ (yi − yni )‖HA⊗̂(HB⊗̂HC)

=
∑
‖ai‖‖yi − yni ‖ → 0

Therefore z ∈ HA⊗̂HB⊗̂HC and thus HA⊗ (HB⊗̂HC) ⊆ HA⊗̂HB⊗̂HC holds . Finally, we take
the Hilbert space completion of the left tensor leg; since the associated norm is the same as the
norm on HA⊗̂HB⊗̂HC , it follows that

HA⊗̂HB⊗̂HC = HA⊗̂(HB⊗̂HC) = (HA⊗̂HB)⊗̂HC .

(The last equality follows by symmetry).

Minimal tensor norm on C∗-algebras

We assume for simplicity that we have 3 C∗-algebras A ⊆ B(HA), B ⊆ B(HB) and C ⊆ B(HC)
(otherwise such an identification can be found through Gelfand-Naimark).

The straightforward way to define the minimal tensor norm on the triple tensor productA⊗B⊗C
is via the embedding A⊗B⊗C ⊆ B(HA⊗̂HB⊗̂HC); we define the completion as A⊗minB⊗minC.
On the other hand, we can proceed again by doing two C∗-completion steps of 2-leg tensor
norms. First, A⊗ (B ⊗min C) is the tensor product of C∗-algebras on B(HA) and B(HB⊗̂HC),
respectively. After the final C∗-completion, we obtain the space

A⊗min (B ⊗min C) ⊆ B(HA⊗̂(HB⊗̂HC)) = B(HA⊗̂HB⊗̂HC)

where in the last step we used the Hilbert space result. We see that the norms on both spaces
are the same. Again, we need to check whether A⊗ (B ⊗min C) ⊆ A⊗min B ⊗min C; the proof is
precisely the same as in the Hilbert space setting. Therefore, we can conclude (by symmetry)
that

A⊗min B ⊗min C = A⊗min (B ⊗min C) = (A⊗min B)⊗min C.
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Maximal tensor norm on C∗-algebras

Let A ⊆ B(HA), B ⊆ B(HB) and C ⊆ B(HC) again be (unital) C∗-algebras. The maximal
norm on A ⊗ B ⊗ C is defined as ‖ · ‖max = supπ π(·), where the supremum is taken over all
representations π : A ⊗ B ⊗ C → B(H) of the algebraic tensor product. The completion is
denoted as A⊗max B ⊗max C.

We prove that A⊗max B ⊗max C = A⊗max (B ⊗max C) by constructing ∗-homomorphisms from
left to right and right to left that are each other’s inverses.

First, define π : A⊗B ⊗ C → A⊗max (B ⊗max C) by the natural action a⊗ b⊗ c 7→ a⊗ (b⊗ c).
Upon a choice of faithful representation A⊗max (B ⊗max C) ⊆ B(H), π defines a representation
of A⊗B⊗C, so ‖π(z)‖ ≤ ‖z‖max for all z ∈ A⊗B⊗C. In other words, π is a contraction; this
means that π can be extended to a (contractive) ∗-homomorphism on A⊗max B ⊗max C.

For the inverse mapping we need to take a two-step approach and use the universal property
of the maximal tensor norm. We start with a map ϕ′ : B ⊗ C → A ⊗max B ⊗max C given by
ϕ′(x) = 1A ⊗ x. Then upon a choice of faithful representation A ⊗max B ⊗max C ⊆ B(H), ϕ
defines a representation of B ⊗ C, so ‖ϕ′(x)‖ ≤ ‖x‖max. Therefore, again, ϕ′ is a contraction
and can be extended to a ∗-homomorphism on B ⊗max C.

Now define ϕ̄ : A → A⊗max B ⊗max C by ϕ̄(a) = a⊗ 1B ⊗ 1C . Clearly, every element of ϕ̄(A)
commutes with every element of ϕ′(B ⊗max C). So by the universal property of the maximal
tensor norm, there exists a (unique) ∗-homomorphism ϕ : A⊗max (B⊗maxC)→ A⊗maxB⊗maxC
such that

ϕ(a⊗ x) = ϕ̄(a)ϕ′(x).

When restricted to A ⊗ B ⊗ C, it is clear that ϕ ◦ π = π ◦ ϕ = 1A⊗B⊗C . By density of
A⊗ B ⊗ C ⊆ A⊗max B ⊗max C, we find that ϕ ◦ π = 1A⊗maxB⊗maxC . For the converse, we show
that A ⊗ (B ⊗ C) is dense in A ⊗max (B ⊗max C). By definition, A ⊗ (B ⊗max C) is dense in
A⊗max (B ⊗max C), hence it suffices to show that A⊗ (B ⊗ C) is dense in A⊗ (B ⊗max C), with
respect to the max norm on the outer tensor product.

Indeed, let
∑

i ai⊗xi ∈ A⊗ (B⊗max C). Then for each xi there is a sequence (yni ) ∈ B⊗C such
that yni → xi with respect to the max norm. By Corollary 2.3.6, we have

‖
∑
i

ai ⊗ xi −
∑
i

ai ⊗ yni ‖max ≤
∑
i

‖ai‖A‖xi − yni ‖max → 0.

Note here that the max norm in the left hand side is the one from the outer tensor product,
while the one in the right hand side is from the inner tensor product B⊗max C. This shows that
π ◦ ϕ = 1A⊗max(B⊗maxC). Hence we have

A⊗max B ⊗max C ∼= A⊗max (B ⊗max C) ∼= (A⊗max B)⊗max C.
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B An introduction to Quantum Mechanics

States

At the beginning, we have pure states, represented as unit vectors om some Hilbert space H.
In quantum mechanics, they are usually denoted as |ψ〉, the so-called ket notation. A qubit is
the equivalent of a pure state for H = C2.

There is also a corresponding ‘bra’ notation 〈ψ|, which stands for the linear functional that
sends a state |ϕ〉 to the inner product 〈ψ|ϕ〉. Note how the notations ‘morph’ to become the
inner product. This is also the idea behind the ‘bra-ket’ word choice; once put together, they
form the word ‘bracket’. Typically, operators are not put inside the bra/ket but instead written
as A |ψ〉 and correspondingly 〈ψ|A∗.

One can do two things with states: one can either do a measurement, or one can do a unitary
operation. A measurement allows us to actually get some concrete information out of a quantum
state, at the cost of destroying part of the information. A unitary operation changes a quantum
state without destroying any information, but we cannot get any concrete information from it.
We will not go into operations here.

Measurements

A measurement corresponds to a set of orthogonal projections {P1, . . . , Pn} such that
∑n

i=1 Pi =
1H, with an associated set of ‘outcomes’ λ1, . . . , λn ∈ R. Measuring a state |ψ〉 with this mea-
surement yields one of the results λi. Intuitively, the probability of getting a result λi depends
on how ‘close’ the state ψ is to the projection range Pi. To be precise, the probability to get
a specific λi is given by ‖Pi |ψ〉 ‖2 = 〈ψ|P ∗i Pi|ψ〉 = 〈ψ|Pi|ψ〉 (using that a projection satisfies
P ∗i = Pi and P 2

i = Pi). This is illustrated in the picture below.

−1. 1.

−1.

1

0

Pi

|ψ〉

〈ψ|Piψ〉

|ϕ〉

The state after the measurement will collapse to the projection range that resulted from the
measurement. In the picture, it would be the unit vector indicated by |ϕ〉.
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We can associate to this measurement a matrix M =
∑n

i=1 λiPi ∈ Mn(C), called an observ-
able. Note that this matrix is self-adjoint, and that its set of eigenvalues is {λ1, . . . , λn} and
the corresponding eigenspaces are {ran(P1), . . . , ran(Pn)}.

In fact, measurements and observables are in one-to-one correspondence; indeed, a self-adjoint
matrix M has a spectral decomposition M =

∑m
i=1 λiPi, where Pi is the projection on the

eigenspace corresponding to the eigenvalue λi. So the result of a measurement corresponding
to an observable is some eigenvalue of the observable; the state collapses to the corresponding
eigenspace. The terms measurement and observables are sometimes used interchangeably.

Entangled states

A state is called bipartite if it is defined on a Hilbert space H = HA ⊗ HB that is a tensor
product of Hilbert spaces. These Hilbert spaces are usually attributed to fictional people ‘Alice’
and ‘Bob’ who can do measurements or unitary operations on their respective Hilbert spaces.
This means that Alice has operators Ai ∈ B(HA) that, when applied to a state on H, are the
identity on the other tensor leg, i.e. Ai ⊗ 1HB . Similarly, Bob has operators 1HA ⊗Bi.

Sometimes, a state can be seen as a combination of a state on Alice’s and a state on Bob’s
Hilbert space, i.e. |ψ〉 = |ψA〉 ⊗ |ψB〉. When this is not the case, so when a state cannot be
written in tensor product form (which easily happens when taking linear combinations of states
of this form), we say that it is entangled.

Entangled states can lead to strange, non-local behaviour: say Alice and Bob are so far apart
that they cannot communicate in any way, and Alice performs a measurement on an entangled
state. Then this will have influence on measurements that Bob does immediately after that,
even though no information has passed between them! This is what makes quantum mechanics
so ’scary’ but at the same time so interesting - it leads to a a whole new realm of possibilities,
like the quantum correlations (see Chapter 3).

Mixed states

Next, we turn our attention to mixed states and density matrices. A mixed state is, so to speak,
a probability distribution over a set of pure states. Think of this as the situation where we don’t
know in which pure state the system is, but we only know the probabilities that the system is
in a certain state.

In the case of finite dimensional Hilbert spaces, a common way to describe a mixed state is
through a density matrix. To show how this works, we first describe how a pure state can be
written down as a density matrix. If |ψ〉 is a pure state, then its corresponding density matrix
is |ψ〉〈ψ|, i.e. the projection on the one-dimensional subspace spanned by |ψ〉. (Indeed: if ϕ is
another pure state, then |ψ〉〈ψ| |ϕ〉 = |ψ〉 〈ψ|ϕ〉 = 〈ψ|ϕ〉 |ψ〉, which corresponds to the projection
of |ϕ〉 on the one-dimensional subspace spanned by |ψ〉).

Since it is the projection on a one-dimensional subspace, the trace of such a matrix |ψ〉〈ψ| is 1.
Now, if a mixed state is in state |ψj〉 with probability pj , then its density matrix is given by∑m

j=1 pj |ψj〉〈ψj |. One can check that the trace of this matrix is still 1, since the trace is linear
and the pj ’s add up to 1. Also, since a projection is positive, this matrix has to be positive
definite. This leads to the general definition of a density matrix:

61



Definition B.0.1. A density matrix Φ ∈ L(Cn) = Mn(C) is a matrix such that:

1. Tr(Φ) = 1,

2. Φ ≥ 0 (positive definite).

Note that for a pure state, we have that (using the cyclic property of the trace):

Tr(|ψ〉〈ψ| · Pi) = Tr(〈ψ|Pi|ψ〉) = 〈ψ|Pi|ψ〉 .

So we can define the probability of a measurement of |ψ〉 to yield λi by the trace. We can
extend this to density matrices as follows: doing a measurement of a mixed state with density
matrix Φ =

∑n
j=1 pi |ψj〉〈ψj | should yield λi with probability

∑
j

pj 〈ψj |Piψj〉 =
∑
j

pjTr(|ψ〉〈ψ| · Pi) = Tr

∑
j

pj |ψ〉〈ψ| · Pi

 = Tr(Φ · Pi).

POVMs

The definition of measurement given above is also called a projective measurement. There ex-
ists a more general form of measurement called a Positive Operator-Valued Measurement, or
POVM in short. A POVM is defined as a set of positive operators {A1, . . . , An} such that∑n

i=1Ai = 1H. Every operator Ai still corresponds to an outcome λi, which is attained upon
measuring state |ψ〉 with probability 〈ψ|Ai|ψ〉.

The physical intuition behind POVMs might not be clear immediately. One way that they
naturally appear has to do with restrictions from measurements on a bipartite state to one of
the tensor legs. If ρ is a bipartite mixed state on a Hilbert space H = HA ⊗HB, then we can
‘trace out’ Bob’s part of that state by applying 1HA ⊗Tr. The resulting state, which describes
Alice’s part of the state, is denoted by ρA. Now imagine we have a projective measurement on
H and we want to describe what it does on Alice’s part of the state. We can define this again by
tracing out, but the outcome is no longer a projective measurement; however, it is still a POVM.

In fact, a converse statement to this construction holds true: every POVM can be extended
to a projective measurement by ‘enlarging’ the state, i.e. adding an ancilla. This is known as
Naimark’s dilation theorem, and can be seen as a consequence of Stinespring’s dilation theorem
(cf. Theorem A.1.2 and Propositions 6.1.2 and 6.1.3).
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[16] M. Navascués, T. Cooney, D. Pérez-Garćıa, and N. Villanueva. A physical approach to
Tsirelson’s problem. Found. Phys., 42(8):985–995, 2012.

[17] A. Nica and R. Speicher. Lectures on the combinatorics of free probability. Cambridge
Univ. Press, 2006.

[18] N. Ozawa. About the QWEP conjecture. Internat. J. Math., 15(5):501–530, 2004.

[19] N. Ozawa. About the Connes embedding conjecture: algebraic approaches. Jpn. J. Math.,
8(1):147–183, 2013.

63



[20] N. Ozawa and G. Pisier. A continuum of C∗-norms on B(H) ⊗ B(H) and related tensor
products. Glasg. Math. J., 58(2):433–443, 2016.

[21] C. Palazuelos. Quantum nonlocality , tensor norms and operator spaces. 2016.

[22] V.I. Paulsen. Completely bounded maps and operator algebras. Cambridge University Press,
2002.
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