TU Delft

The impact of different methods of gradient descent on the spectral bias of
physics-informed neural networks

Alexander van den Arend Schmidt

Supervisors: Dr. Jing Sun®, Dr. Alexander Heinlein!, Dr. Tiexing Wang?

Examiner: Dr. Hayley Hung'

'EEMCS, Delft University of Technology, The Netherlands

2Shearwater GeoServices, UK

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Alexander van den Arend Schmidt
Final project course: CSE3000 Research Project
Thesis committee: Dr. Hayley Hung, Dr. Jing Sun, Dr. Alexander Heinlein, Dr. Tiexing Wang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Physics-Informed Neural Networks (PINNs) are in-
tended to solve complex problems that obey phys-
ical rules or laws but have noisy or little data.
These problems are encountered in a wide range
of fields including for instance bioengineering,
fluid mechanics, meta-material design and high-
dimensional partial differential equations (PDEs).
Whilst PINNs show promising results, they often
fail to converge in the presence of higher frequency
components; a problem known as the spectral bias.
Multiple studies have explored ways to overcome
or minimize spectral bias specifically for PINNs.
This paper builds on previous studies by investigat-
ing the impact of different gradient descent meth-
ods on the spectral bias.

1 Introduction

The study of partial differential equations (PDEs) is key to a
wide range of scientific fields [1] [2], yet these equations, of-
ten consisting of multiple partial derivatives, are challenging
to solve numerically. More recently, PDEs have been solved
using neural network-based approaches. One type of these
approaches, physics-informed neural networks (PINNs), has
shown success in solving inverse and forward problems in-
volving PDEs [3] [4].

However, for PDEs with significant discrepancy or high-
frequency components, PINNs fail to converge sufficiently
[5]1 [6]. This problem is known as spectral bias. Several new
methods and approaches have been researched to mitigate the
effect of spectral bias of PINNs [6] [7].

The effect that different methods of gradient descent have
on spectral bias for PINNs is not yet fully understood. This
paper explores the ability of different gradient descent meth-
ods to mitigate the spectral bias seen in PINNs that simulate
PDEs. By choosing multiple specific PDEs with varying fre-
quency this paper aims to show how the different manners of
gradient descent overcome or fail to overcome spectral bias
for PINNs.

To be able to analyze the dynamics of the training of the
PINN, the relatively new neural tangent kernel theory will be
used. The neural tangent kernel explores the connections of
deep neural networks and the corresponding kernel regression
methods which provide insights into the training and conver-
gence of deep learning models. More specifically, it has been
proven that, at initialization, fully connected networks are
equivalent to Gaussian processes in the infinite-width limit
[8]. Previous work using the neural tangent kernel for PINNs
has been performed [5] providing an insightful analysis of the
training dynamics and also concluding the presence of spec-
tral bias by using the eigenvalues of the neural tangent kernel
matrix of a PINN.

This paper is organized as follows. In Section 2 back-
ground information is provided and the most significant re-
search decisions are explained. In Section 3 the structure of
the performed experiments is given and the corresponding re-
sults are shown. The results are then discussed and compared

in Section 4. Finally, in Section 5 the conclusions and sug-
gestions for future research are given.

2 Methodology

In this section a general explanation of PINNs is given (Sec-
tion 2.1). Subsequently, this section highlights the research
decisions to investigate the effect of gradient descent meth-
ods on the spectral bias of PINNs for PDEs:

1. Firstly, the problems of spectral bias of PINNs are high-
lighted in Section 2.2 to discover how to measure this.

2. In Section 2.3 the gradient descent methods are chosen
based on their expected strengths and weaknesses re-
garding a PINN loss landscape.

3. In Section 2.4 PDEs are chosen specifically so that their
frequency can be varied while keeping other parameters
constant and still having an analytical solution for each
frequency.

4. Finally, combining Sections 2.2, 2.3 and 2.4, for all
methods of gradient descent, and for all PDEs, the effect
of increasing the frequency of the PDE on the conver-
gence will be explored. The way this is done in practice
is explained in Chapter 3.

2.1 Physics-informed neural networks (PINNs)

This section describes what a PINN is and how it can be used
to solve a PDE. A PINN is a type of deep neural network that
uses known (physics) rules or conditions about a system com-
pensate for a lack of data or improve the convergence. There-
fore, the main difference between a deep neural network and
a PINN is in the structure of the loss function. Where a classic
deep neural network uses known labeled data to calculate the
current loss of a neural network, a PINN uses rules and cal-
culates how closely the neural network adheres to the rules.
To describe how a PINN works, consider the example of the
general 1D Wave PDE below in Equation 1 [9]:

2 2
Ou_ 0 (1)
ot? Ox?

This PDE describes a wide set of general waves. This equa-

tion describes that the second order derivative of a function

(u) with respect to the time (¢) variable should be equal to the

second order derivative of a function (u) with respect to the

position () variable multiplied by ¢2. In this equation c is the
velocity of the wave. For the example below, ¢ = 1 is used.

One possible analytical solution is shown below in Equation
2 [10]:

u(t, z) = sin(brz) cos(bmt) + 2sin(7wx) cos(Tnt) (2)

Next to the main equation, to make sure that this unique so-
lution is described, a set of boundary or initial conditions are
used. For this example, the following rules are used.

Initial Conditions:

(0, z) = sin(57z) + 2sin(7mx) ze€l[0,1] (3
Ou
E(O,x) =0 x €[0,1) “4)

Boundary Conditions:

u(t,1) = u(t,0) =0 te0,1] (5)

There are now four rules describing the function, namely the
1D Wave PDE (Equation 1), the two initial conditions (Equa-
tions 3 and 4), and the two boundary conditions (Equation 5).
All of these five rules must be met to correctly predict the ac-
tual wave function. Therefore, the loss function of a PINN
must include all these rules.

L(0) = Lb(0) + Li(0) + L(0) (6)

In Equation 6 above, it is shown that the loss function con-
sists of the boundary loss (Ly(6)), the initial loss (£;(6)),
and the residual loss (£, ()) respectively. The variable 6 in
Equation 6 describes the set of parameters and weights used
in the PINN. Using only these rules (shown in Equations 1,
3, 4, 5) describing the wave function, a PINN can model the
whole wave equation without ever needing actual labeled data
points from the equation (next to the initial and boundary con-
ditions).

2.2 Spectral Bias for Physics-informed neural
networks (PINNSs)

For this section, the problem of spectral bias for PINNs is
shown and explained. Spectral bias, also known as the fre-
quency principle describes the way that (deep) neural net-
works fit a target function by approaching it from lower fre-
quency predictions to higher frequency predictions [11]. The
neural network can get stuck on a predicted solution that has
a lower frequency than the actual solution. This leads to the
neural network not converging sufficiently.

For PINNS, specifically, spectral bias has been shown to be
strongly present [5] [6]. The problem of spectral bias is so
apparent for PINNs for two main reasons. Firstly, PINNs are
often used to model highly nonlinear formulas such as PDEs
that may not have an analytical solution [12]. Because the
actual solutions to PDEs usually have high frequency and a
lot of discrepancy, they are harder to simulate.

The other reason PINNs are more affected by spectral bias

than normal neural networks is due to the difference in loss
function. As shown in Equation 6 the loss function of a PINN
consists of multiple components. Because each component
describes a different rule that can be satisfied by multiple
functions, the different components of the loss function do not
always cooperate and sometimes even counteract each other,
resulting in a sub-optimal solution. To show an example of
this, the 1D Wave PDE also described in Section 2.1 will be
used.
The wave equation is described by 4 equations. Main
wave equation shown in Equation 1. The initial condi-
tions shown in Equations 3 and 4. The boundary conditions
shown in Equation 5. Simply training a PINN on these four
rules/conditions will result in the outcome seen in the Figures
1 and 2:

Exact u(t, x) Predicted u(t, x)

- -
- -
06- -
-

- -
- -

0.0 10 00 02 04 06 08 10

t

Figure 1: 1D Wave PDE: PINN trained on all rules and conditions
equally.

Wave Function at t=0

| i i

27 — Actual
predicted

N w
! !

-
L

u(t, x)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Space (x)

Figure 2: 1D Wave PDE: Function at t = 0 for PINN trained on all
rules and conditions equally.

The Figure 1 shows the actual solution on the left and the
predicted solution on the right. The range of both the x and
y axes is [0, 1]. In Figure 2 the function is shown at time 0
(t=0). The blue line represents the actual solution, and the or-
ange line is the predicted solution. As can be seen in Figures
1 and 2, the predicted solution stays very close to O instead
of converging to the actual solution. This can be explained
because a function such as the one below, where all values
are 0, satisfies both the main wave equation, one of the initial
conditions, and the boundary condition.

u(t,z) =0 z € [0,1] t€0,1] (7

Only one of the initial conditions is not satisfied but because
all the other rules are satisfied the different components of the
loss function will counteract each other and the PINN will get
stuck on a simple low frequency solution. By simply increas-
ing the amount by which the initial condition affects the total
loss function, the predicted solution is already much better.
This can be done by multiplying the loss of the initial con-
dition by a value (for Figures 3 and 4 this value is 9). The
Figure 3 shows the actual solution on the left and the pre-
dicted solution on the right. The range of both the x and y
axes is [0, 1].

By comparing the predicted solution in Figure 1 with the
predicted solution in Figure 3 it can be seen that Figure 3

Exact u(t, x) Predicted u(t, x)

B
o0 - - - e ’
. .
L . e - -)
- - - » |
“ - o
'S »
02 - - - 02
-
.

00 02 04 06 o 10 00 02 04 06 08 10

Figure 3: 1D Wave PDE: PINN trained on all rules and conditions,
the initial condition loss weighs 9 times as much as other loss com-
ponents in the loss function.

Wave Function at t=0

/|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Space (x)

= ~

uf(t, x)

£

1 — Actual
Predicted

Figure 4: 1D Wave PDE: Function at t = 0 for PINN trained on
all rules and conditions, the initial condition loss weighs 9 times as
much as other loss components in the loss function.

provides a prediction much closer to the actual solution. This
can also be concluded by looking at Figure 2 and Figure 4,
the predicted solution in Figure 4 follows the actual solution
much better than in Figure 2.

2.3 Gradient descent methods for PINNs

In this section, the gradient descent methods that have been
experimented with are explained. For both understanding the
initial choice of gradient descent methods and understanding
comparisons between different methods, a general knowledge
of gradient decent methods is necessary. In this first section,
a general overview of gradient descent methods is given. In
the next subsection, the choices of gradient descent methods
used in this paper are explained.

Overview of gradient descent methods

There are many different gradient descent methods and
optimizers. In the following subsections, the most important
gradient descent methods are outlined, and a short expla-
nation of their strengths and weaknesses is given. This
overview made use of paper [13] and shows the most relevant
sections specific for this paper. The variables that are used
in Equations 8, 9, 10 and 11 are described below. Firstly, 6
describes the parameters and weights of the neural network.

v, is the current update step and v, is the previous update
step. Vo J(6) is the gradient of the loss function with respect
to §. Lastly, v describes the amount of momentum (usually
0.9) and 7 describes the current learning rate.

Momentum

Normal SGD converges very slowly when navigating ravines.
Ravines are places in the loss landscape where the surface
is much more steep in one dimension than it is in another,
leading SGD to bounce side to side within the ravine instead
of going in the direction of the minimum. These ravines are
common around local optima. This is visualized in Sa.

(a) SGD without momentum (b) SGD with momentum

Figure 5: Source: Genevieve B. Orr

Momentum attempts to diminish this problem by adding a
fraction of the previous gradient descent step to the current
step as can be seen in the gradient descent with momentum
formula below in Equation 8.

vy =yvi—1 +nVeJ(0)

0=0—uv ®

Nesterov Accelerated Gradient

Nesterov is strongly related to momentum. When using
SGDM, it is possible to overshoot a minimum due to the
component of the previous step having a large impact on
the current step. Nesterov aims to solve this problem by
decreasing the steps when nearing the (local) minimum.

The momentum term ~ v;—1 (a fraction of the previous
step) is used in the current update. Therefore, updating using
only vy v;_; gives us an approximation of the next position of
the parameters. Using this rough approximation of the future
position, it is possible to look ahead by calculating the gra-
dient at the approximated future position of our parameters.
The formula used is shown below in Equation 9.

v =y V-1 + Ve (0 — yv4—1)

0=0—v 2

Adagrad

Both Momentum and Nesterov adapt their updates for each
parameter equally. Adagrad on the other hand, adapts the
learning rate to the parameters individually, performing
larger updates for infrequent parameters and smaller updates
for frequent parameters. A downfall of this method is that
the learning rates can become infinitesimally small, halting
convergence.

Adam

https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Adaptive Moment Estimation (ADAM) uses momentum
as well as individually updating parameters. m; and v; in
Equation 10 are estimates of the first moment (the mean)
and the second moment (the uncentered variance) of the
gradients. In Equation 10 37 and (3> are decay rates and the
authors of Adam propose the use of the values 0.9 for gy,
0.999 for fs.

me = Pimy—1 + (1 — B1)ge

(10

vy = Bove—1 + (1= B2)g;
These values m; and v, are then used to update the parame-
ters using Equation 11. In Equation 11 the value of 1078 is
recommended for € by the authors.

U
Vor + e

Choosing gradient descent methods for PINNs

After having seen an overview of gradient descent methods,
the choices of which gradient descent methods to experiment
with will be explained. In previous works such as the papers
[7] [14] covering gradient descent for PINNs, the ADAM
optimizer is shown to be strongly outperforming normal
SGD. The paper [14] explains and shows that the PINN loss
landscape has a higher density of local optima compared to
deep neural networks. Using these findings, the choices of
which gradient descent methods to experiment with were
made.

Ors1 =0 — i an

Types of gradient descent:
1. Normal Stochastic Gradient Descent (SGD)
2. Stochastic Gradient Descent with Momentum (SGDM)
3. Nesterov Accelerated Gradient Descent (Nesterov)
4. Adagrad gradient descent (Adagrad)
5. ADAM gradient descent (ADAM)

SGD is chosen to be able to compare the other gradient de-
scent methods fairly. Because the loss landscape of PINNs
is known to have a large density of local minima, SGDM is
selected because momentum performs well close to local op-
tima [13]. Nesterov is often seen as an addition to SGDM. To
see if Nesterov outperforms SGDM, Nesterov is chosen. Fur-
ther, Adagrad is chosen to analyze whether individually tun-
ing the parameters of a PINN results in better convergence.
Lastly, ADAM is selected because it has shown promising re-
sults for PINNS in previous works [15], and because it com-
bines previously described methods (momentum and individ-
ual parameter tuning).

2.4 PDEs for measuring Spectral Bias

This section explains what PDEs are used in this paper and
why they were chosen. To successfully measure the degree of
spectral bias of a PINN model for a type of gradient descent
method, it must be possible to change only the frequency
of the PDE while all other variables remain constant. This
strongly narrows the set of possible PDEs down. Further, to
be able to compute the L2 error after training, between the

prediction of a PINN and the actual solution, a set of ana-
lytical solutions with varying frequency is necessary. As de-
scribed in Section 2.2 the loss function of a PINN strongly
affects its ability to converge. Therefore, two PDEs are in-
vestigated, one with a more complex loss function (1D Wave
PDE) and one with a simpler loss function (1D Poisson PDE),
with respectively 4 and 2 components in the loss function.

These limitations resulted in the choice of the following
two PDE:s:

Types of PDEs:
1. 1D Wave Equation (Equation 1)
2. 1D Poisson Equation (Equation 14)

3 Experimental Setup and Results

In this section, the experiments that have been performed are
explained and the results that have been found are shown. To
show the effects that different manners of gradient descent
have on the spectral bias for physics-informed neural net-
work, this paper looks at five methods of gradient descent,
each on two different PDEs. To measure the degree of spec-
tral bias, certain values within the PDE will be altered to
change the frequency of the PDE.

All experiments were performed in Python using Tensor-
Flow. Each experiment was performed using a sufficiently
large architecture and optimized hyperparameters specific for
the PDE. The architecture for the 1D Wave PDE consisted of
3 hidden layers of 500 nodes. For the 1D Poisson PDE a sin-
gle hidden layer of 2048 nodes was used. Hyper parameters
such as learning rate and activation functions were optimized
using previous works [15] [16] and by testing. In addition,
for my experiments, the lambda values in the loss function of
the PINNs were optimized only at the start of training. To
do this, the neural tangent kernel of the different loss com-
ponents was used [5]. Throughout the training of the PINN
however, the lambdas were kept constant.

Firstly, for all combinations of gradient descent and PDE
the PINN will be trained and the results will be analyzed and
compared to show which type of gradient descent provides
the best solution.

This section is split into two subsections, firstly experi-
ments are done for the 1D Wave PDE. After that, experiments
will be performed for the 1D Poisson PDE.

3.1 1D Wave PDE

In this subsection, all types of gradient descent are tested on
2 different types of the 1D wave PDE with varying frequency
and the results are shown as heat maps and values. No other
variables are altered. First the experiment is explained then
the result are shown.

Experiment setup

To vary the frequency of the 1D Wave PDE the value ¢, in
the main wave equation shown in Equation 1, is altered.

The variable c in the 1D Wave PDE corresponds to the speed
of the wave. Using the formula for the speed of a wave
given below in Equation 12, because the wavelength ()\) is
constant, increasing the speed (c) by a factor of two will

increase the frequency (f) by a factor of two.

v=f*A (12)

Using the analytical solution below in Equation 13 which also
has the variable c in it, the frequency of the PDE can now
be varied easily. For c the values 0.5 and 1 are chosen to
show a clear difference between the gradient descent methods
while also showing the decrease in accuracy as the frequency
increases.

u(t, z) = sin(brz) cos(bemt) + 2sin(Trx) cos(7ent) (13)

Results

Table 1: Heat-maps created using different methods of gradient de-
scent when training a PINN on two versions of the 1D Wave PDE,
versus the actual solution (top).

1D Wave ¢ = 0.5 IDWavec=1

Table 1 shows heat-maps of the predicted functions of the
PINN model after training for the corresponding problem and
gradient descent method. In Table 1, the value of c that has
been used in the 1D Wave PDE is shown in the column head-
ing. The type of gradient descent is shown on the left of the
table, with the top one (Actual) being the actual analytical so-
lution. For each heat-map, the domain is the same, that is, the
x and y axes both have the range [0, 1]. In Table 2 the L2
errors corresponding to the difference between the predicted
solution and the analytical solution are also given as values.

Table 2: L2 errors between the predicted graph and the actual solu-
tion for the 1D Wave PDE.

1IDWavec=0.5 | IDWavec=1

SGD 0.8249 1.2652

Adagrad 1.0301 1.1740

Nesterov 0.3592 0.7204

SGDM 0.1406 0.7024

Actual

090 02 04 06 08 L
t

%%0 02 04 06 08 10
SGD t

%% 02 04 06 08 1.0
Adagrad t

ool M Tl
%0 02 04 06 08 1.

Nesterov t

1.0
0.8
0.6
0.4
0.2

0'%.0 0.2 0.4 0.6 0.8 1.

SGDM ¢

1.0
0.8
0.6
0.4
0.2

[a—) [a—) [—) [aaa— [aa—)
|

%90 02 04 06 08 L
ADAM t

ADAM 0.0034 0.5147

3.2 1D Poisson PDE

For the 1D Poisson PDE two experiments are performed.
Firstly, all 5 types of gradient descent are tested on 2 differ-
ent types of the 1D Poisson PDE. For the other experiment,
for each type of gradient descent, the frequency of the 1D
Poisson PDE is increased in steps, and the results are stored.
For each method of gradient descent, the learning rate is opti-
mized, but all other hyperparameters are kept constant. In the
first subsection, the 1D Poisson PDE is described and the ex-
periments are explained. The final subsection will show the
results of the experiments as a table of the L2 errors and a
graph showing how the loss changes when the frequency is
increased.

Experiment setup

In this section the 1D Poisson PDE is described and the exper-
iments are explained. The general 1D Poisson PDE is shown
in Equation 14. The Poisson equation is known as a general
form of the well-known Laplace equation. Again for this PDE
it is necessary to find a set of analytical solutions that only
vary in frequency. Therefore, the equation shown in Equation
15 has been chosen.

(14)

9%y

- 15
52 15)

= —(ma)? sin(rax)

This gives the set of analytical solutions shown in Equation
16. The variable a in Equation 15 and Equation 16 now de-
scribes the frequency of the analytical solution. As a result,
the value a can now be varied in the experiments to change
the frequency of the PDE.

sin(rax) (16)

For the first experiment, the values 10 and 20 have been cho-
sen for the variable a. For the 1D Poisson equations for both
values of a, all gradient descent methods are tested and the
L2 errors are stored. For the second experiment, the fre-
quency (a) of the 1D Poisson PDE is increased from 10 to
40 in steps of two. For this experiment, the L2 residual loss
is determined three times for each combination of frequency
and gradient descent method, and the average is stored.

Results

In Table 3 the L2 errors are given between the predicted so-
lution and the analytical solution. The predicted solution is
the solution obtained by training a PINN on the 1D Poisson
PDE shown in the header of the columns with the different
gradient descent methods shown on the rows.

Table 3: L2 errors between the predicted graph and the actual solu-
tion for the 1D Poisson PDE.

1D Poisson ¢ = 10 | 1D Poisson a = 20
SGD 0.0199 1.1696
Adagrad 0.0050 2.1572
Nesterov 0.0030 0.0335
SGDM 0.0007 0.0050
ADAM 0.0002 0.0024

In Figure 6 a graph is given showing the L2 residual loss for
different methods of gradient descent for different frequen-
cies of the 1D Poisson PDE. This graph uses the L2 residual
loss instead of the L2 error between the predicted solution
and the actual solution. This was chosen to more accurately
assess how well the different methods of gradient descent per-
formed. When the PINN does not converge to the correct so-
lution the L2 residual loss is 1, the actual L2 error however
becomes extremely large and inconsistent, making it a bad
measure of accuracy when a model does not converge.

The frequency in this experiment is shown from (a = 10)
up to (a = 40) using steps of two. In this graph, a L2 residual
loss of 1 means that the PINN did not converge to the actual
solution. A L2 residual loss close to 0 means that a good
solution was acquired.

4 Discussion

In line with expectations [5] [6], Tables 1, 2 and 3 and Figure
6 show that spectral bias is present for PINNs even for simple
partial differential equations such as the 1D Wave PDE and
the 1D Poisson PDE.

Firstly, analyzing the results of the experiments on the 1D
Wave PDE in Tables 1 and 2, it is apparent that the 1D Wave
PDE with higher frequency (c = 1) is predicted less accurately
than the 1D Wave PDE with lower frequency (c = 0.5) for all
gradient descent methods. Further, in Table 1 it is shown that
even for the wave equation with lower frequency (c = 0.5)
Adagrad does not converge properly. This is also confirmed
in Table 2. For the higher frequency (c = 1) none of the gradi-
ent descent methods achieves a visually correct solution (Ta-
ble 1). Still, gradient descent methods that use momentum

1.0 Gradient descent methods
m— SGD
Adagrad I 4

" 0.8+ e Nesterov
0 m— SGDM /
(e}
- m— Adam
~ 0.6
—
E
3 0.4
0
(]
o

0.2

0.0

10 15 20 25 30 35 40

Frequency (a)

Figure 6: Residual L2 losses for different gradient descent methods
and varying frequency of the 1D Poisson PDE.

achieve a (visually) better solution than those that do not. Ta-
ble 2 also shows that the gradient descent methods using mo-
mentum outperform those that do not. Of the methods utiliz-
ing momentum, Nesterov performs worst and ADAM results
in the best solution for both frequencies of the wave equation
(Table 2). For the wave equation with lower frequency (c =
0.5), ADAM is clearly the best, with a L2 error which is 41
times smaller then SGDM (J:559%) as shown in Table 2. At
the higher frequency (c = 1) wave equation ADAM still out-
performs SGDM but now only has an L2 error that is 1.36
times smaller than the L2 error for SGDM (3:1921) (Table 2).

Analyzing the results of Table 3 for the experiments with
the 1D Poisson PDE; the Poisson equation with the lower
frequency (a= 10) is resolved by all gradient descent meth-
ods, while at higher frequency (a=20) only the methods with
momentum converge. Within the methods with momentum,
Nesterov performs worst, and ADAM performs best. Figure
6 shows: an L2 residual loss of 0 means that the PINN con-
verged sufficiently, an L2 residual loss of 1 means that the
PINN did not converge to the correct solution, and the fre-
quency (a) at which the convergence fails is the point at which
the line increases from O to 1. It can be seen that this point
(frequency, a) differs per gradient descent method. The first
methods to fail are the methods without momentum (SGD
and Adagrad), and the gradient descent methods that use mo-
mentum (Nesterov, SGDM and ADAM) perform up to higher
frequencies. ADAM performs up to the highest frequency
for the 1D Poisson PDE. Furthermore, Figure 6 shows that
methods that use only momentum (SGDM and Nesterov) fail
fairly abruptly. In contrast, those methods that use individ-
ual parameter tuning (Adagrad and ADAM) fail more gradu-
ally and continue to provide an approximation of diminishing
quality.

Comparing the different methods of gradient descent look-
ing at the results of the experiments for both the 1D Wave
PDE and the 1D Poisson PDE (Tables 1, 2 and 3 and Figure
6) some common results can be noted. First, all experiments
show that individual parameter tuning (Adagrad) does not im-
prove over normal SGD. The methods deploying momentum
(Nesterov, SGDM and ADAM) outperform those that do not
(SGD, Adagrad). The improvement of using a momentum

component in the gradient descent method was expected as
the loss landscape of PINNs has a relatively large amount of
local minima, and gradient descent methods with momentum
are known to deal better with local minima [14] [13]. Nes-
terov, which is often seen as an improvement over SGDM,
performed worse than SGDM for both PDEs. Apparently, its
ability to not overshoot minima is a disadvantage given the
many local minima in the loss landscape of PINNs. Of all the
gradient descent methods, ADAM produced the best results
and was the last to fail whilst increasing the frequency of the
PDEs. Still, none of the gradient descent methods was able to
mitigate the spectral bias all together. As described in Section
2.2 the complexity of a PINN loss function could affect the
results. The 1D Wave PDE has a loss function of 4 compo-
nents, the 1D Poison PDE just two components. Despite the
difference in the complexity of the loss function, the relative
performance of the gradient descent methods and the obser-
vations are the same across the experiments for both PDEs.

5 Conclusions and Future Work

It is concluded that the method of gradient descent has a
significant impact on the spectral bias of PINNs. Momentum
seems to be the most important component of a gradient
descent optimizer when training high-frequency PDEs with
PINNs. Methods of gradient descent using a component of
momentum outperform other methods of gradient descent.
Nesterov Accelerated Gradient results in slightly worse out-
comes compared to normal SGDM, and ADAM outperforms
both. In addition, ADAM’s performance deteriorates more
gradually than the other tested gradient descent methods
using momentum (Nesterov and SGDM), still providing an
rough approximation of the target function at the higher
frequency levels rather than complete failure. Overall, it is
concluded that ADAM performs best of all tested gradient
descent methods and is least affected by spectral bias,
although spectral bias cannot be completely mitigated with
the evaluated gradient descent methods.

This paper shows results based on two PDEs (1D Wave
PDE and the 1D Poisson PDE) and does not cover higher-
order PDEs or non-linear PDEs. Investigating more complex
PDEs could be a valuable addition to this work. Although
it is clear that momentum is important to capture the higher
frequency components in PINNSs, there are differences in
the performance of different implementations of momen-
tum. It would be interesting to understand the underlying
interactions that may allow for further optimization of these
momentum gradient decent methods for PINNs. Also,
this paper focused on common gradient descent methods.
Researching more complex gradient descent methods such
as quasi-Newtonian gradient descent methods might provide
new insights.

6 Responsible Research

To ensure that research is done responsibly, all results should
be reproducible and data should be publicly available. In ad-
dition, all conclusions drawn should be fully supported by the
results provided and the referenced papers.

To make this research reproducible, all optimizations and
research decisions used in the research process have been
stated in this paper. Also all hyperparameters used for
training the PINNs in this paper are also explained. Fur-
thermore, the code used for the research and for the ex-
periments is available online at (https://cse3000-research-
project.github.io/) and is documented to make it more under-
standable and easy to use. Due to the weight initialization and
the data sampling used for PINNs, the outcomes are not de-
terministic. Although the PINNs used in this paper are not de-
terministic, no significantly large differences were discovered
between runs. To further ensure reliable results for this paper,
all experiments have been performed at least three times and
the average results are displayed.

No data was used in the training process because PINNs
do not use data but rules and conditions to train. It is possible
that for a PDE no analytical solution exists; in that case data
would be needed to test the accuracy of the PINN. However,
for this paper, both PDEs have analytical solutions, and for
both PDE:s all rules and analytical solutions are provided in
the paper and in the code.

Lastly, the conclusions in this paper are exclusively sup-
ported by the results represented in this paper and the refer-
enced papers.

References

[1] Burger Martin, Caffarelli Luis, and Markowich Peter
A. Partial differential equation models in the socio-
economic sciences. Phil. Trans. R. Soc., 2014.

[2] Antontsev S., Diaz J., and Shmarev S. Energy methods
for free boundary problems: Applications to nonlinear
pdes and fluid mechanics. ASME., 48, 2002.

[3] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca
Dal Negro. Physics-informed neural networks for in-
verse problems in nano-optics and metamaterials. Op-
tics express, 28(8):11618-11633, 2020.

[4] Jie Zhang, Yihui Zhao, Fergus Shone, Zhenhong Li,
Alejandro F Frangi, Sheng Quan Xie, and Zhi-Qiang
Zhang. Physics-informed deep learning for muscu-
loskeletal modeling: Predicting muscle forces and
joint kinematics from surface emg. [EEE Transac-
tions on Neural Systems and Rehabilitation Engineer-
ing, 31:484-493, 2022.

[5] Sifan Wang, Xinling Yu, and Paris Perdikaris. When
and why pinns fail to train: A neural tangent kernel per-
spective. Journal of Computational Physics, 449, 2022.

[6] Xintao Chai, Wenjun Cao, and Jianhui Li. Overcom-
ing the spectral bias problem of physics-informed neu-
ral networks in solving the frequency-domain acoustic
wave equation. /EEE, 2024.

[7] Ghazal Farhani, Alexander Kazachek, and Boyu Wang.
Momentum diminishes the effect of spectral bias in
physics-informed neural networks. Cornell University,
2022.

[8] Greg Yang. Scaling limits of wide neural networks
with weight sharing: Gaussian process behavior, gradi-

ent independence, and neural tangent kernel derivation.
arXiv, 2019.

[9] Harpreet Sethi, Doris Pan, and Pavel Dimitrov. Physics-
informed neural networks for acoustic wave propaga-
tion. Cornell University, 2020.

[10] Joel Feldman. Solution of the wave equation by separa-
tion of variables. UBC Mathematics Department, 2007.

[11] Yuan Cao, Zhiying Fang, and Yue Wu. Towards un-
derstanding the spectral bias of deep learning. Cornell
University, 2019.

[12] Edward R, Benton, and George W. Platzman. A table
of solutions of the one-dimensional burgers equation.
Quarterly of Applied Mathematics, 30:195-212, 1972.

[13] Sebastian Ruder. An overview of gradient descent opti-
mization algorithms. arXiv, 2016.

[14] Pratik Rathore, Weimu Lei, and Zachary Frangella.
Challenges in training pinns: A loss landscape perspec-
tive. arXiv, 2024.

[15] Nima Hosseini Dashtbayaz, G. Farhani, and Boyu
Wang. Physics-informed neural networks: Minimizing
residual loss with wide networks and effective activa-
tions. International Joint Conference on Artificial Intel-
ligence, 2024.

[16] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou,
and Quanquan Gu. Understanding and mitigating gra-
dient pathologies in physics-informed neural networks.
arXiv, 2020.

	Introduction
	Methodology
	Physics-informed neural networks (PINNs)
	Spectral Bias for Physics-informed neural networks (PINNs)
	Gradient descent methods for PINNs
	Overview of gradient descent methods

	PDEs for measuring Spectral Bias

	Experimental Setup and Results
	1D Wave PDE
	Experiment setup
	Results

	1D Poisson PDE
	Experiment setup
	Results

	Discussion
	Conclusions and Future Work
	Responsible Research

