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Abstract

We study a class of stochastic models of mass transport on discrete vertex set V. For these
models, a one-parameter family of homogeneous product measures ®;cy Vg is reversible.
We prove that the set of mixtures of inhomogeneous product measures with equilibrium
marginals, i.e., the set of measures of the form

[ (@w)=(I]a)

ieV ieV

is left invariant by the dynamics in the course of time, and the “mixing measure” E evolves
according to a Markov process which we then call “the hidden parameter model”. This
generalizes results from De Masi et al. (Preprint arXiv:2310.01672, 2023) to a larger class
of models and on more general graphs. The class of models includes discrete and continuous
generalized KMP models, as well as discrete and continuous harmonic models. The results
imply that in all these models, the non-equilibrium steady state of their reservoir driven
version is a mixture of product measures where the mixing measure is in turn the stationary
state of the corresponding “hidden parameter model”. For the boundary-driven harmonic
models on the chain {1, ..., N} with nearest neighbor edges, we recover that the stationary
measure of the hidden parameter model is the joint distribution of the ordered Dirichlet
distribution (cf. Carinci et al., Preprint arXiv:2307.14975, 2023), with a purely probabilistic
proof based on a spatial Markov property of the hidden parameter model.
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1 Introduction

Recent developments in the study of the KMP model and related models have revealed
that the non-equilibrium steady state of the boundary driven version of such models is a
mixture of product measures of equilibrium marginals. In the simplest setting of the KMP
model [8], this means that the non-equilibrium steady state is a mixture of products of
exponential distributions, where the joint distribution of the parameters of these exponentials
is in turn a stationary distribution of an auxiliary model, the so-called hidden temperature
model [8]. For a related class of models, the generalized harmonic models [10-12], the non-
equilibrium steady state of the continuous model is given in closed form in terms of products
of gamma distributions, with identical shape parameters, and where the scale parameters
have the ordered Dirichlet distribution [4]. In the simplest setting of the harmonic model,
the non-equilibrium steady state is a product of exponential distributions, where the (scale)
parameters are distributed as the order statistics of i.i.d. uniforms [5]. The structure of the
stationary state as a mixture was already conjectured in [1] (for the KMP model), based on
macroscopic fluctuation theory.

So far, these results are all obtained in the setting of a chain geometry, with boundary
reservoirs at left and right ends. They are strongly based on dualities, which reduce the
computation of moments of order » in the non-equilibrium steady state to the computation of
absorption probabilities of n dual particles. For the characterization of the non-equilibrium
steady state of the generalized harmonic models of a chain, an additional input came from
integrability. Is it usually the latter which provides closed-form expressions for the absorption
probabilities of the dual process and is only applicable in the chain geometry, whereas duality
results are valid in a setting of general graphs.

In this paper, using a reformulation of duality as an intertwining relation, we prove that
for a large class of models on a general graph, there exist hidden parameter models. As a
consequence, the non-equilibrium steady state is a mixture of equilibrium product marginals
where the mixing measure (i.e., the joint distribution of the parameters of these marginals) is
the stationary measure of the corresponding hidden parameter model. This stationary measure
is usually inaccessible in explicit form on a general graph. In the case of the harmonic model
on a chain, we are able to prove that it coincides with the mixing measure found in [4], using
probabilistic arguments only based on a Markovian structure in the hidden parameter model.
This Markovian structure of the hidden parameter model, which we explain in Sect. 3.5 below,
is the key ingredient which makes the harmonic models different from the KMP models. It
allows to directly (i.e., without using explicit expressions of moments) obtain the mixture
measure identified earlier in [4]. The Markovian structure of the hidden parameter model also
implies that it is enough to understand the stationary state for a single site with left and right
reservoirs to understand the stationary measure of a general boundary driven chain. These
results show that in essence, the existence of hidden parameter models is based on duality,
and therefore not restricted to integrable models. However, the identification of the mixing
measure, i.e., the measure describing the joint distribution of the parameters, is only possible
when there is extra structure (i.e., extra symmetries) which makes it possible e.g. to use
the quantum inverse scattering method [11], or in probabilistic terms, to have a Markovian
structure of the mixing measure.

The rest of our paper is organized as follows. In Sect. 1.2, we sketch the general structure of
the models under consideration. In Sect. 2 we discuss the discrete and continuous generalized
KMP models, recovering and generalizing the hidden temperature models in [8]. In Sect.3
we deal with the generalized harmonic models. In particular, we identify the corresponding
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hidden parameter models and establish intertwining on a generic graph. For the boundary
driven chain we characterize the stationary measure of the hidden parameter model by using
a self-contained argument which rely on the particular structure of the model. In Sect. 4 we
extend the analysis to another model, the symmetric inclusion process (SIP) and prove that it
admits Poisson intertwining. As a consequence the non-equilibrium steady state is a mixture
of Poisson product measures, where the mixture measure is a non-equilibrium steady state of a
corresponding continuous model (the Brownian energy process). We also recover the simplest
setting of boundary driven independent random walks, where the intertwined dynamics is
deterministic and has a unique fixed point, which implies that the non-equilibrium steady
state is a product of Poisson measures. The latter is of course well-known but we believe it
is still insightful to recover it from the point of view of intertwining.

1.1 Summary of Main Results and Relation with Existing Literature

Summarizing, the main results of our paper are the following.

1. We show the existence of hidden parameter models for a general class of models on
general graphs using intertwining.

2. For a one parameter family of continuous and discrete KMP models, as well as harmonic
models, we show propagation of mixed product states, where the parameters evolve as
hidden parameter models.

3. Wereveal a dynamical Markov property for the hidden parameter model associated to the
harmonic models, and derive from it in a purely probabilistic way the non-equilibrium
steady state obtained in [4] for general s > 0, in [5] for s = 1/2, and predicted earlier in
[1].

4. Forthe boundary driven symmetric inclusion process (SIP), we derive a new representation
of the non-equilibrium steady state as a mixture of a product of Poisson distributions, where
the mixture measure is described via a diffusion process (BEP). This result generalizes to
the boundary driven case earlier Poisson intertwining between SIP and BEP obtained in
[16].

The novelty of our analysis w.r.t. existing literature [1, 2,4, 5, 8, 10—12], is thus threefold. First
we derive the existence of hidden temperature models on general graphs; second we obtain in
this same generality the propagation of mixed product states; third we derive the Markovian
structure of the non-equilibrium steady state of harmonic models in d = 1 (for general
parameters s > 0) directly via the generator, i.e., not passing via moment computations
relying on integrability (such as in [4]), but rather via conditional probabilities.

1.2 General Structure of the Models

We consider a finite set of vertices V, and a symmetric irreducible collection of edge weights
p(i,j) = p(j,i) = 0 where i, j € V. Here, by irreducibility we mean that for every
i, j € V there exists a finite discrete path y(0), ..., y(n) with y(0) = i, y(n) = j and
p(y@),y(i+1)) >0foralli =0,...,n— 1. We will then consider Markov processes on
either the state space NV = {0,1,2,.. .}V (discrete models) or the state space RY =0, c0)"
(continuous models). The generator of these processes will take the form

> pl. pLij,

i,jev
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where L;; is the so-called single edge generator, which acts only on the variables 7;, n; and
models the transport of mass along the edge connecting the sites i, j € V. For the boundary
driven version of the models we have a generator taking the form

Y pG.DLij+ Y c)Lgr,

i,jev ieV

where c(i) > 0 is a non-negative constant tuning the coupling of site i € V to a “reservoir”
with parameter 6; > 0. The single-site generator Lgi* is acting only on the variables n; and
models the input and output of mass at the vertex i € V, by fixing the average number of
particles to 6.

The system with generator Zi’ jev p(i, j)L;j will have a one parameter family of product
invariant measures ;. vg, where the parameter 6 > 0 labels the expected number of
particles (or mass) and corresponds to the conserved quantity (total number of particles or
total mass). Then the system coupled to reservoirs with identical parameters (6 = 6* for
i € V) has a unique stationary measure &),y ve+. If the reservoir parameters are different,
then the unique stationary measure is no longer a product measure, and is called a non-
equilibrium steady state, where non-equilibrium refers to the absence of reversibility.

The main aim of this paper is to understand for a family of models of this type the
propagation of inhomogeneous product measures &),y Ve, in the course of time. Given
0 = (6;)icv, we will then find that these measures are mapped to a stochastic mixture of the

form
Egy ( ® vef(z)),

ieV

where (6;(¢),t > 0,i € V) will evolve as a Markov process which we then call, following
[8], the “hidden parameter model”. As a consequence, the unique stationary measure (non-
equilibrium steady state) will be a mixture of product measures of the type

/ (® vgi) E( l_[ d@i).
ieV ieV
The “mixing measure” & is then the unique invariant measure of the hidden parameter model.
Thus, in the reservoir-driven setup, the identification of the non-equilibrium steady state is
reduced to the identification of the stationary measure of the hidden parameter model.

The two most important examples of models having the property that the set of mixture
of equilibrium product measure is closed under the dynamics will be models of “KMP type”
(Sect.2) or models of “harmonic type” (Sect.3). For another class of models, namely the
symmetric inclusion process and the independent random walkers (Sect.4), we will show
that the same happens with a product of Poisson measures, where the evolution of the Poisson
parameters is then either a Markov diffusion process or a deterministic process.

In what follows we will always use an upright L for the generator of the process under
study, and the symbol L for the corresponding hidden parameter model. We will always use
the notation E,, E¢ for expectations for process with discrete state space such as N v, E;
for the expectations of processes with continuous state space such as [0, oo)¥ and Ey for
expectations of processes of hidden parameter models (also with state space [0, c0)").
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2 Generalized KMP Processes

In this section we study the discrete, resp. continuous, generalized KMP models, parametrized
by a non-negative number s > 0. These models are a one-parameter generalization of the
original KMP model and were introduced in [13]. For arbitrary s > 0 we prove new dualities
with a generalized hidden parameter model. This in turn implies that products of discrete
gamma, resp. continuous gamma, distributions evolve in the course of time into mixtures of
such product measures, where the mixing measure is the distribution of the corresponding
hidden parameter model.

We start by first considering the bulk process and then we add reservoirs. The original
discrete and continuous KMP models [14] will be recovered for s = 1/2.

2.1 Discrete Generalized KMP

We consider a finite set of vertices V, and irreducible edge rates p(i, j), as outlined in
Sect. 1.2. The discrete generalized KMP process with parameter 2s > 0 is a Markov process
on NV and is defined via the generator

Lf(m =Y pli, HLijf(). )
i,jev
Here the single edge generator L;; acts on the variables »;, ; as
Lijf,») =E(f(X,x +y = X) = fx, ), 2)

where X is beta-binomial with parameters x + y, 2s, 2s, i.e.,

1
P(X = k) = / (x : Y ) P — p)* T *Beta(2s, 29)[dp], 3)
0
where k € {0, 1,...,x + y}and
1
Beta(2s, 25)[dp] = — p>*~ 11 — p)*~ 4 4
eta(2s, 25)[dp] B(zs,zs)p (1-p) p €]

denotes the Beta distribution with parameters (2s, 2s).
The discrete generalized KMP process has reversible product measures which are product
of discrete Gamma distributions parametrized as follows

L0 \'T@s+n) [ 1\
”9(")_E<1+9> T(2s) <1+9> ' ®)

The relation between the parameter 6 and the expectation of the marginals is given by

[ee}

vag(n) = 250 (6)

n=0
The discrete generalized KMP process is self-dual [3] with self-duality functions given by

B n;i! '(2s)
DF(%“J?)—l_[(m_gi)!l*(2s+éi). "

i
More precisely, we have

E,(Dr (&, n(®)) = E¢(Dr &), m). ®
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The subscript “F” is added to the duality function D to recall that, for a given £ € NV, the
expectation of the duality function w.r.t. a measure on the n variables gives essentially the
multivariate factorial moments (up to the factors F(Fzgiéi) ). In particular the relation between
the self-duality polynomials and product measures with marginals (5) reads

| Pen @vatam = []of ©)

ieV ieV

This equality completely characterizes the product measure ;. Vs, Via its factorial
moments.

The hidden parameter model associated to the discrete generalized KMP is a process on
[0, 00)Y which will determine the evolution of the parameters 0 = (6;,i € V) of product
measures of the type ); vg,. The process is defined in the spirit of [8] via its generator

LfO) = Zp(i, DLij f(6), (10)
i,J

where the single edge generator £;; acts on the variables 6;, 6; as follows

Ly f () =E(fGB+y(=BLxB+y(1-B) = f(x.,»), (D

where B has a Beta distribution with parameters (2s, 2s), i.e., it has density (4). More
explicitly we have

1
Lijf(x,y) = /0 (fGu+y(I —u), xu+ y(1 —u) — f(x, y))Beta(2s, 25)[du]. (12)

We then have the following duality result.

Proposition 2.1 The discrete generalized KMP process with generator (1) is dual to the
hidden parameter model with generator (10) with duality function

D& o) =[]6. (13)
ieV
Proof We act with the generator L;; in (2) on the £ variables and obtain, using the binomial
formula

Li6f0) =E (676) ") 60
&it§;

CLEN [l e .y
— Z <§l —Its]> / pk(l _ p)él+éj_k9lk9]§’+§j kBeta(zS, 2S)[dp] _ 9?195}
k=0 0
1
= / (pi + (1 — p)8;)5i*5iBeta(2s, 2s)[dp] —effef.-" ) (14)
0

This is now clearly the same as acting with the generator £;; in (12) on the 6 variables. O

We can then state a result on the evolution of product measures of the type (J); .y vg, under
the discrete generalized KMP model.

Theorem 2.1 Consider the discrete generalized KMP model with generator (1) and start it
from a product measure @), cv Ve; . Denote by (®l eV vgi)S (t) the evolved measure at time
t > 0, where (S(t));>0 is the semigroup. Then we have

(®va)s®) =Eo( @ varr)). (1s)
ieV

ieV
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where Eg denotes the expectation in the hidden parameter model with generator (10) initial-
ized from the configuration 6. As a consequence, the set of mixtures

/ (® ug,.) E[d6]
ieV
is closed under the evolution of the discrete generalized KMP model.
Proof The proof uses self-duality of the discrete generalized KMP process (stated in (8)), and

the duality between discrete generalized KMP and the hidden parameter model (Proposition
2.1). As a consequence of the identity (9) we obtain the following series of equality:

[ prn(@uw)stan = [ E,(Drnon) (v i

ieV ieV

- /Eg(DF(S(t), n))(@ Ve,»)[dﬂ]

ieV
- &)
Eg(il;l/el )
=E([To:0%)
ieV
=&y [ Dr (@ o )1 (16)

iev
Here in the second equality we used self-duality of the discrete generalized KMP process

and in the fourth equality we used Proposition 2.1. The proof is then completed by observing
that the functions n — D(&, n) are measure determining. O

The result of Theorem 2.1 can be reformulated as an intertwining result between the
hidden parameter process and the discrete generalized KMP process. We say that two Markov
processes with semigroups (S(¢),t > 0) and (S(¢), t > 0) are intertwined with intertwiner
Gifforallt >0

Ggs() = S(ng. a7

In Theorem 2.1 we have obtained
/ S@.£ (&) ve )1dml = S(1) f Fa (& va )ldnl, (18)
ieV ieV
where S(¢) is the semigroup of the discrete generalized KMP process and where S(¢) is the

semigroup of the hidden parameter model. Therefore, if we define for a function f : NV — R
the “discrete-gamma” intertwiner

61 @ = [ ron(@w)ian
ieV
where we implicitly assumed that f is integrable w.r.t. Q); .y vg,, then (18) reads
G f) =SnGf),

which is exactly the intertwining between the hidden parameter process and the discrete KMP
process.
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2.2 Continuous Generalized KMP

The continuous generalized KMP process with parameter 2s > 0 is a process on [0, 00)"
and is defined via the generator

Lf@) =Y pl, HLijf(©), (19)

i,jev
where the single edge generator L;; works on the variables 7;, n; as follows

Lijf(x,») =E(f(Bx+y), (1= B)(x+y) ~ fx,). (20)

Here B is a Beta(2s, 2s) distributed random variable.

The reversible measures of the continuous generalized KMP process are products of
Gamma distribution with parameters (6, 2s), where 6 is the scale parameter and where 2s is
the shape parameter, i.e. the marginals are given by

2s—1

X _
voldx] = Tan* /9 dx. 1)

The continuous and discrete generalized KMP processes are dual [3, 14] with duality function

res)
Dy (&, ¢) = 1"[;, Tas 8"

The subscript “m” is added to the duality function D,, to recall that, for a given & € NV,
the expectation of the duality function w.r.t. a measure on the ¢ variables gives essentially
the multivariate moments (up to the factors (Fz(fié,) ). In particular the relation between the
duality functions and product measures with marginals (21) reads

/Dm(s, z)(®ve,-)[d;] =[] (22)

ieV ieV

This equality completely characterizes the product measure (X); .y vs; via its moments.
The main result on the evolution of product measures of the type ;. ve; under the
continuous generalized KMP model is stated in the following theorem.

Theorem 2.2 Start the continuous generalized KMP model with generator (19) from a prod-
uct measure (Q); cv Vo [d¢]. Then at time t > 0 we have the measure

(@ va)s1de1 = Eo( @ valds), 23)

ieV ieV

where {0(t),t > 0} is the hidden parameter model with generator (10) initialized from the
configuration 0.

Proof We use the duality between the continuous and discrete generalized KMP model,
combined with the duality between the discrete KMP model and the hidden parameter model.
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We then obtain

[ Pue.x(@ui)staci = [ £, (Dute.cn) (@ va i)

ieV ieV

= [E(Pac0. 0) (@ va )11
S(0e)

- Ee(llf[a-(rff)

—E, | Dt O(@wao)act @

ieV
We then conclude by observing that the functions { — D,, (&, ¢) are measure determining.
]

We then have the analogous result of Proposition 2.1 in the setting of the continuous
generalized KMP process.

Proposition 2.2 The continuous generalized KMP process with generator (19) and the hidden
parameter model with generator (10) are dual with duality function

Do) =[] (25)
ieV
Proof 1t suffices to prove the duality for the single edge generators. Acting with the single

edge generator of the continuous generalizd KMP model on the ¢ variables gives

Lije%%efiti

1
= / (e‘)f“@f+ff>+9f<1—”Wfﬂﬂ - e"fffe"fff)Beta(zs, 25)[du]
0

1
— / (e(u9i+(1—M)Gj)£f+(u9i+(1—u)9j)§j _ eGiZieijj) Beta(2s, 2s)[du], (26)
0

which is recognized as the action of the generator £;; in (12) on the 6 variables. O

Remark 2.1 Notice that we can find the duality function between continuous generalized
KMP and the hidden parameter model also via the generating function of the duality function
between discrete generalized KMP and the hidden parameter model, i.e.,

oo

enzn
Z o .
n!

n=0

Indeed, the continuous and discrete generalized KMP model are intertwined via the inter-
twiner

Af@ =Y F .
n=0 ’

More precisely denoting here by L, the generator of the discrete generalized KMP (1) and
by L. the generator of the continuous generalized KMP (19), we have for f : N - R

A(Laf) = Lc(Af),
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where with a small abuse of notation we denoted by A the tensorization of A, i.e., the A
acting on all the variables 7;

Af@) =) f(n)

neNV
where i
¢ I S
| N
n: ey M

Also here, we can reformulate Theorem 2.2 as an intertwining result. Indeed, by consid-
ering the Gamma distribution in (21) and by defining the “Gamma” intertwiner

610 = [ 1©) @atac]
ieV
it follows that Theorem 2.2 can be read as an intertwining between the hidden parameter
process and the continuous generalized KMP process, with intertwiner G.

2.3 Adding Driving

We will discuss the adding of driving for the continuous generalized KMP model only. The
results for the generalized discrete KMP model are completely analogous.

We start by describing the generator modelling the coupling to a reservoir. It is a generator
that acts on a single variable x € R as follows

Lo« f(x) = E(f((x + Y)B) — f(x)), 27)

where [E denotes expectation over the two independent random variables B, Y and where
Y is distributed as vg+ (Gamma distribution) and B is Beta(2s, 2s) distributed. Thus the
action of the boundary site reservoir generator is similar to the bulk edge generator, in the
sense that the redistribution of energies between the site and the reservoir occurs via a Beta
random variable; however now the energy of the “extra site” representing the reservoir is
sampled from a Gamma distribution with mean 2 s6*, which is exactly the marginal of the
invariant distribution of the model without reservoirs. Reservoirs of this form were introduced
originally in the setting of the KMP model (corresponding to 2s = 1) in [1] and are different
from the reservoirs in the original model [14]. Indeed, in the original model of [14] the
reservoir is given by

Lo f(x) =Ef(Y) — f(x)

where Y is a random variable which is gamma distributed with scale parameter 6* and shape
parameter 2s.
The corresponding boundary generator of the hidden parameter model is

1
Lo f(0) = / (f((l — )b + ub*) — f(9))Beta(2s, 25)[dul, (28)
0

which can be viewed as having an “extra site” from which always the value 6* is imported.
We then have the following intertwining result.

Lemma 2.1 Forafunction f : [0, +00) — R which is integrable with respect to the Gamma
distribution vy define the intertwiner

Gf @) = / FOox2 1oy

r@s )9%
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Then the boundary generator of the continuous generalized KMP process (27) and the bound-
ary generator of the hidden parameter model (28) are intertwined as

GLgx = Ly=G. (29)

Proof For simplicity we prove the case 2s = 1, the general case is obtained with a similar
proof. We have

—x/0

(GLo F)(O) = fo ax" Ly f ()

00 e—x/0 00 efy/O* 1
= [T [ (s - )

(30)

and we also have

1
(Lo-G)(0) = /O du(GF((1 —w) +ub*) —Gf(®))

s -
:/Odu</0 dxmf(x)—/o def(x)) 31)

It suffices to see (29) for the functions f, (x) = x"/n! (for all n € N). From the previous two
equations this in turn reduces to proving the following identity

oo e—x/@ 00 e—y/9* ((x +y)u)n e (- u)€+u(~1* x"
d d du d d
/0 "o /0 Yo /o f ”/ A= wo +uo nt”

(32)

The right-hand side of (32) equals

~ (woTu* n 1 1 n
/ duf dr—S = =f duué* + (1 —wo)" = —— Y ")k *,
A —wo+ub*nl _ Jy n+1&

(33)
where we used the identity
! kl(n — k)!
/ u*(1 = w)"*du = g,
combined with f >0 fq = (;/9 dx = 6". The left-hand side of (32) equals
0 —x/0 poo —y/0* 1 n
/ dxE / dye / du ((x + y)u)
0 0 0 o* 0 n!
00 —x/0 00 —y/0* 1 n k n—k
= / dx ¢ / dye Z L Y
0 0 Jo 0* (n+1) = k! (n —k)!
1 n
= PIAIC (34)
k=0
m}
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To define the general boundary driven model, we associate reservoirs with parameters 6*
at site i € V and the generator of the boundary driven continuous generalized KMP process
is then given by

LE@) =Y pli, HLijf @)+ Y e Lo f(0), (35)
i,jeVv ieV
where L; ; is read in (20) and Lgi* is defined in (27). As a consequence of Theorem 2.1 and
of the intertwining result of Lemma 2.1, we then have the following propagation of mixtures
of products of Gamma distributions.

Theorem 2.3 Consider the driven continuous generalized KMP model with generator (35).
Then we have the following.

(a) If we start the process from a product measure of the form Q); .y ve;, then at time t > 0

the distribution is given by
g ( &) va, (z)),
ieV

where the process (0;(t),i € V,t > 0) evolves according to the generator

Y P DL+ Y e L. (36)

i,jeVv ieV

(b) The driven generalized KMP process converges to a unique stationary measure which

reads
f Q) ve, ELa01,
ieV
where the mixture measure E is the unique stationary measures of the associated hidden
parameter model, with generator (36).
(c) Inparticular if all the reservoir parameters are equal to a fixed value, i.e. 0} = 0 for all
i € V, then this unique stationary measure is given by @),y ve+ and is also reversible.

3 Generalized Harmonic Models

In this section we consider the generalized discrete harmonic model [11] and the associated
generalized continuum harmonic model (also called integrable heat conduction model in
[10]). The aim here is to prove the existence of a hidden parameter model and to derive con-
clusions from it about the nature of the stationary measures in the one-dimensional boundary
driven set-up. Contrary to the KMP model, the invariant measure of the hidden parameter
model on the chain with left and right boundary reservoirs can be obtained explicitly. The
main reason is a hidden Markovian structure of the hidden parameter model, see section 3.5
and 3.8 below for details. This hidden Markovian structure can be seen as the probabilistic
counterpart of the integrability of this model, which was used in previous works [4, 10, 11]
to obtain the non-equilibrium steady state on the chain.

3.1 Mass Redistribution Models
In order to introduce the harmonic models, let us first consider the following general class of

generators (see also [2]) acting on two variables yg, y» > 0, and parametrized by a positive
measure M on the interval [0, 1].
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Linf(yi,y2) = LY £ (31, y2)

1
= /0 M dw)[(f(y1 —uyr, y2 +uyr) + f1 +uyz, y2 — uy2)2 f(y1, y2)1.
(37

In this process, with rate M (du), a fraction of mass is taken away from one of the two sites
and given to the other site. Notice that in these models, different from the KMP model, only
a fraction of the mass of one site is moved to the other site (rather than a fraction of the total
mass of the two sites).

In order to introduce the associated hidden parameter model, we consider the following
generator acting on two variables 61, 6, > 0

1
Liaf01,02) = /0 Mdw)[fO1(1 —u) +ub2,02) + f (O, uby + (1 —u)62) —2f (61, 62)].

(38)
We see that, contrary to the hidden parameter model for the generalized KMP processes, here
the parameters (or “local temperatures”) 61, 6, are replaced by convex combinations only
at one of the two sites, leaving the parameter at the other site untouched. Remark that the
process generated by (38) preserves the order. Indeed, if 6; < 6, then, for0 <u <1,

O01(1 —u) +ub <0,

and
01 <ubr+ (1 —u)bs.

We have the following duality result.

Proposition 3.1 The process with generator Ly, in (37) is dual to the process with generator
L12 in (38) with duality function

D.(01,02; y1, y2) = evitoy

Proof This follows from the simple observation

1 O1—uyD)+02(n2tuy) — ,O1(1=u)+02u)y1+02y2
and the similar equality obtained by interchanging the sub-indices 1 and 2. O

To understand associated intertwined discrete models, let us consider the Poisson inter-
twiner between functions f : N> — R and functions f : [0, 00)? — R

'y

AnfOry) = Y. [l k)22 (39)

ki,kpeN

Now we consider discrete models of mass redistribution, i.e., Markov processes on N2
depending on a positive measure M(k,n), k € N,n € N with support {(k,n) : k < n}.
The discrete models are then defined via their generator acting on functions f : N> — R as
follows
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Lf(ni,n2) = LI f(n1,n2)

= > Mk.n)(f(ny —k.na + k) = f(n1.n2))

k=1

n
+ ) Mk, n2)(f (ny +k,ny — k) = f(n1, n2)). (40)
k=1

We say that the discrete model (40) is associated to the the continuum model (37) if it is
Poisson intertwined with it, i.e., if

ALY = LY (An). 1)

Then we have the following lemma relating dualities of the continuous models to dualities
of the associated discrete models.

Lemma 3.1 If (41) holds, then the process with generator L{\Z/[ is dual to the process with
generator (38) with duality function

Dy(61, 625 n1,m2) = 616,

Proof This follows by the following two facts: i) the Poissonian generating function applied
to0 6]''65? equals e?1119232 (cf, Remark 2.1); ii) the duality between the discrete process with
generator Lf\z" with duality functions D; (61, 62; n1, ny) and the process with generator (38)
is equivalent with duality between the continuous process with generator L% and the process
with generator (38) with duality function

ny_na

Y1 ¥
nilng!

De(01,02;n1,m2) = Y Da(01, 02; n1, n2)

ni,ny

See e.g. [6] for a proof of this equivalence. The duality for continuum models of Proposi-
tion (3.1) therefore implies automatically the duality for discrete models which are Poisson
intertwined. O

3.2 The Harmonic Models

For the simplest version of the continuous harmonic model, we have M (du) = %du [10]
and for the associated discrete model M (k, n) = 1y (1 <k <n) [11]. We first consider the
model on a general graph with vertex set V and with edge weights p(i, j) and define the
generator acting on functions f : [0, o0)V — R as follows

1
. du
LF© = 3 pd) [ (€~ uti+uc) - 1)
ijev o U
+ (f(€ —ujdj +utisi) — f(£)). (42)
Here §; denotes the configuration with unit mass at site i and zero mass everywhere else. The
process corresponding to the generator (42) will be called the continuous harmonic process.

Its reversible product measures are products of exponentials with identical scale parameters,
i.e., with marginals

1
ve(dx) = ge_x/o, (43)
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with expectation 6 > 0. The associated discrete model is then defined via its generator acting
on functions f : NV — R:

ni 1 nj 1
Lf =) pl,j) (Z T 01— Ko+ ko) = FOD) + D L (F 01— kdj + ki) - f(c))) :

i,jev k=1 k=1

(44)
We call the corresponding process the discrete harmonic process. Its reversible product mea-
sures are products of geometric random variables with marginals

() (A 45
"“”“(m) (m) )

with mean 6. Finally, the corresponding hidden parameter model is defined via its generator
acting on f : [0, 0c0)¥ — R:

(46)
This generator was also considered in the literature of integrable systems, see for instance
Eq. (2.3.3) in [9] where it appears as a representation of the integrable XXX spin chain, and
Sect. 2.3 in [12] where a connection between the generator (46) and the continuous harmonic
generator was pointed out.

Theorem 3.1 We have the following duality and intertwining relations:

(a) The discrete harmonic model is self-dual with self-duality function

Dr&.m =[] (g) @)

ieV

(b) The discrete and continuous harmonic models are dual with duality function

;i&‘

Dm(é‘_a §)= g'

ieV

(48)

(c) The discrete and continuous harmonic model are Poisson intertwined.
(d) The continuous harmonic process and the hidden parameter model are dual with duality

function
D0, 0) =[] 4. (49)
ieV
(e) The discrete harmonic process and the hidden parameter model are dual with duality
Sfunction
Da@.m =[]6" (50)
ieV

Proof See [10, 11] for the statements (a) up to (c). From (c) it follows that (d) and (e) are
equivalent via Lemma 3.1, and (d) follows from Proposition 3.1. O

Remark 3.1 Notice that the duality between the discrete and continuous harmonic model can
also be used to show that the continuous model is well-defined. Indeed on a finite graph, the
discrete model is clearly a well-defined system: because of the conservation law it becomes
effectively a finite state space continuous Markov chain. The discrete model then defines the
time evolution of polynomials in the continuous model via the duality of Theorem 3.1(b).
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We can then turn the duality results into a result on propagation of mixtures of product

measures, or equivalently into an intertwining result.

Theorem 3.2 The following results hold.

(a)

(b)

Start the discrete harmonic process with generator (44) from a product measure with
geometric marginals @), .y ve,, where vg is as in (45). Then at time t > O the distribution

is equal to
(®va)s® =Eo( @ va0)- 1)
ieV

ieV

where (0(t), t > 0) is the hidden parameter process with generator (46), and Eg denotes
expectation in this process starting from 6. Equivalently, considering the “geometric”
intertwiner of an integrable function f : NV — R,

61 @) = [ ron(@w)ian

ieV

We have
G(Lf)=LG[)

which is the intertwining between the generator L of the hidden parameter process and
the generator L of the discrete harmonic process in (44).

Start the continuous harmonic process with generator (42) from a product measure with
exponential marginals ®vg,, where vy is as in (43). Then at time t > 0 the distribution

is equal to
(®va)s®) =Es( @ van)- (52)
ieV ieV

where 6(t),t > 0 is the hidden parameter process with generator (46), and Ey denotes
expectation in this process starting from 0. Equivalently, considering the “exponential”
intertwiner of an integrable function f : [0, 00)V — R

610 = [ 1)@ )1ac.

ieV

we have

G(Lf) = LGS),

which is the intertwining between the generator L of the hidden parameter process and
the generator L of the continuous harmonic process in (46).

Proof We will prove (52). The proof of (51) is analogous, replacing exponentials by geometric
distributions.

The duality functions between the continuous and discrete harmonic model are given by

i&i
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Then we obtain,

[ Pute. o (@ utact)s = / (D&, 20) (@ wa 1)

ieV ieV

(D). ) va L)
ieV
_r (l—[ es,m)

ieV

=B ([To0%)

ieV
:Eg(fDm(f,i)(®v9i(z)[d§i]))- (53)
ieV

Here we used duality between the continuous and the discrete model in the second equality,
and duality between the discrete model and the hidden parameter model in the third equality.
We can then conclude (52) because the functions { — D,, (£, ¢) are measure determining.

O

I
\

3.3 Boundary Reservoirs
We now discuss the intertwining of the boundary generator of the continuous harmonic
model. This reads [10]

oo

La d
Lo f(x) = /0 e - - fon + [0 Lo (f e+ ut?y  f). (5

For a discussion on the form of this generator we refer to Remark 3.2 and Lemma 3.7. This
generator is reversible w.r.t. the exponential distribution with mean 6* > 0. The correspond-
ing boundary hidden parameter generator has the same structure of the boundary hidden
parameter KMP generator, the main difference being that the uniform measure of the KMP
model is here replaced by the measure du /u. It reads

! " du
Lo fO) = [ (£ =0 +u8) - 10)) - (55)
0 u

We then have the following intertwining result.

Lemma 3.2 For a function f : [0, +00) — R which is integrable with respect to the Expo-
nential distribution vy define the intertwiner

—x/0

GF6) = /0 Fo°

The boundary generator of the continuous harmonic process (54) and the boundary generator
of the hidden parameter model (55) are intertwined as

GLpx = Lg*G. (56)
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Proof We have

—x/0

(Lo £)(0) = /O dxS " Lo f(x) 57)

00 —x/0 1 d © g
=f dx* - </ Zirea 7u>>ff(x))+/ —”e‘"(f(xwa*)ff(x)))
0 0o Uu 0 u

and we also have
1

du "
(LoxG )(0) = /O 7(91’((1 —u)0 +ub™) — gf(9)> (58)

1 % BT © 3
:/0 i—u(/o dx(le_(u)ﬁf(x)—/é dx%f(x)).
It suffices to see (56) for the functions f(x) = x"/n! (for all n € N). Le., we have to prove
GLo+ f = Lo+G f (59
for those f. Plugging this f into (57) we get

o) —x/0 1 nel _ g0\ n o] *\ 1 n
GLrn© = [ it (f du (x (1 —u) _L> b [T (4(””9 ) _L>)
0 0 0 U n! n! 0o u n! n!

Udu z 1 [ du
__pn o E:n—k s\ k —u k
_9./(; M((l Wb+ (e)k!./(; w !

k=1

1 n
=9"/ d—u((lfu)”fl)+29”_k(0*)kl. (60)
0o u =1 k
Plugging f(x) = x"/n! into (58) we get
Ydu [ ¢~ Mmoo xn %0 Th x"
Log* 0) = — dx———— — — d —
(L6-G f)(®) /0 u</0 A= 00 + uo* n! /0 7 n!>
1
d
:/ l(((l — )6 + ub®)" —9")
0o u

__pn ldu n - n—k *kl
=9 /0 — (1 —uw —D+Y 0 ol ©1)

k=1

This completes the proof. 0

We define the generator of the boundary driven continuous harmonic process

1]
Lf() = Z p(i,j)/o - ((F@ —ugisi +ugidj) — fO) + (f(& —ugjd; +ulis) — f(£)))

i,jeV

. Vdu Udu P " )
+3 e /0 P~ utis) — f©) + fo W onir @ +utan - 1en).
ieV
(62)
Here we associate reservoirs with parameters 6 to site i € V.
As a consequence of Theorem 3.2 and of the intertwining result of Lemma 3.2, we then

have for the boundary driven continuous harmonic process the following propagation of
mixtures of product of exponential distribution.
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Theorem 3.3 Consider the resevoir driven continuous harmonic model with generator (62).

—x/6;
Start the model from a product measure of the form ®iev Vg, , where vy, (dg;) = © 5 ~di;.
Then at time t > 0 the distribution is given by

Egy ( ® ve,-(z)),
ieV
where the process (0;(t),i € V,t > 0) evolves according to the generator
L U du
Lf®) = Z p(, /)/0 " ((f (O — ub;si +ub;d;) — f(©) + (f(6 —ub;d; +ub;s;) — f(6)))
ijev

+Zc(i)/ (£ @ — ubisi +u675) — 1))

ieV

(63)

du
.

When t — 00, the reservoir driven continuous harmonic process converges to a unique
stationary measure which reads

[ (@w)=(I]an)

where the mixture measure E is the unique stationary measures of the associated hidden
parameter model, with generator (36).

3.4 Invariant Measure of the Single Site Hidden Parameter Model

When we consider the harmonic model with a single site in contact with two reservoirs with
fr, = 0 and Og = 1, the generator of the associated hidden parameter model reads as follows
(cf. (59))

u

1
01 £(6) = /0 (O ) — £O))du

1
-l—/o ;(f(u—l—@(l —u)) — f(9))du. (64)
We then prove the following.

Proposition 3.2 The unique stationary distribution of the process with generator (64) is the
uniform distribution on [0, 1].

Proof To infer the stationarity of the uniform measure for the generator (64) it is convenient
to consider the harmonic model on a single edge which is given by

La
Linf(t1.60) = fo 7” F@ =), e+ Cu) — £(21,22))

1
du
+/O ” (f &1+ Sou, L1 —u)) — f(61,82)) -
In this model ¢; + & is conserved. Therefore, if we fix {1 + ¢» = 1 then, substituting

¢ = 1—¢1, we see that the action of the generator L1 on the ¢ variable is exactly the same
as the action of the generator (64) on the 6 variable. We know that the reversible measures
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for the generator L1, are product measures with marginals exponentials with identical scale
parameter, i.e., with joint density given by

Lze—zl/ee—zz/e_
0

As a consequence, considering two independent exponential random variables, the distri-
bution of the first conditional to their sum being 1 is invariant for the generator (64). This is
exactly the uniform distribution. O

For general reservoir case 0 < 6;, < 0 the generator of the single-site hidden parameter
model reads

|
L000R £(9) = /0 —(fOru+0(1—w) — f©)du

1

1

—I—/ ;(f(ORu +6(1 —u)) — f(6))du. (65)
0

Using the change of variable x +— 61 + x(6g —0), Proposition 3.2 implies that the uniform

distribution on [0y, Og] is invariant for the process with generator £0L0r,

3.5 The Invariant Measure of the Hidden Parameter Model on the Chain

In this section we consider the geometry of the chain {1, ..., N} with boundary reser-
voirs at left and right end. The hidden parameter model is then a model on the state space
Qy = [0, co)LN Tt is parametrized by the left and right reservoir parameters 0y, 0.
The generator of the hidden parameter model is given by

N
LEO)=LEFO) + LY FO + Y Liin1 fO), (66)

i=1

with boundary single site generators

Ld
C?Lf(e) = /0 7“ (f(6 —ub181 +ubr81) — f(0)) (67)

Or — ]dl _ _
Ly fO) = T (f(0@ —ubnSdn + ubréy) — f(6)) (63)

and with single edge generators

L du
(Liir1 )O) = /O PO — us; + 18
+£(0 —ub;118; 41 +ub;8;11) — 2£(0)). (69)

In this subsection we identify the stationary measure of the boundary driven hidden parameter
model on the chain. As a consequence of Theorem 3.3 this yields also a full characterization
of the non-equilibrium steady state of the boundary driven continuous harmonic model on
the chain (cf. also [4, 5, 11]).

Theorem 3.4 The invariant measure of the hidden parameter model with generator (66)
is the joint distribution of (U1.1, ... UN-N), the order statistics of N independent uniforms
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on [0, 6r]. As a consequence, the invariant measure of the boundary driven continuous
harmonic model on the chain is a mixture of product of exponential distributions with means

(Ur:1, - .- Un:N).

Proof We will prove the case N = 2,6, = 0, 6g = 1. As will turn out from the proof, there
is no loss of generality in considering the case N = 2, due to the Markovian structure of the
joint distribution of order statistics. The restriction 87, = 0, g = 1 can be generalized via
elementary translation and scaling. Let us call A(Q)‘1 the joint distribution of the order statistics

of two independent uniforms on [0, 1]. Let us call A ; » the distribution of one uniform on
[a, b]. Then we have the following conditional distributions

AG1(d0216) = a) = A} (d6r), AG (61102 =b) = Ag,(d6r).

So let us now consider the generator (66) for N = 2, 6;, = 0, g = 1. Then we want to prove
that

/ Lf(61,62)AF,(d61,dbr) =0, (70)

where
U du
Lf(®,02) = /o - (f (I =u)by, 62) — f(61,62))
L du
+/0 o (f((A =u)01 +ub, 02) — f(01,62))
L du
+/0 o (f (@1, (1 —u)02 +uby) — f(01,62))

Ld
+/0 714 (fOr,u+ (1 —u)b) — f(61,60). (71)

Now we observe that for the first two terms in the right-hand side of (71) the action of the
generator on the 0 variable is the same as the action of a reservoir generator on one site,
with left parameter 7 = 0 and right parameter 6g = 6, (cf. (65)). For this generator, we
know that the invariant measure is uniform on [0, 6;], which coincides with the conditional
distribution A%, 1(d611602). Therefore,

g
f A\ (d6y,d6r) /0 7” (F((1 =061, 6) — f(61,6))
La
+ / A}, (61, ) /0 7” (F((1 = w6y + ubs, 62) — £(61.62))
g
= / AZ2(d6) ( / A}, (d6116) /0 f(f((l — w01, 0) — f(61.6))
L du
+ /O S = w0y + ubs, 6) - f(el,ez») =0. (72)

Here we used the notation A%:% (d6) for the second marginal of the measure A(z)’ 1(dBy, dB),

and in the last step we used the invariance of the conditional distribution A% 1(d611602) for the
reservoir generator with one site and left parameter zero, right parameter 8. Similarly, the
action of the last two terms of the generator in the right-hand side of (71) on the 6, variable
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is the same as the action of a reservoir generator on one site, with left parameter 6;, = 0; and
right parameter g = 1. As a consequence

Vd
/A%,l(dﬁ,d@z)/o 714 (f 61, (1 —u)br + uby) — f(61,62))
Vd
+/A%,1<d91,dez>/0 f(f(el,uﬂl — w)h) — f(61.62))
ld
=/Aégi<d01)/A%,l(dez|el) </O 7”<f(01,<1 — )6 + uby) — f(61.62))
U du
+ /0 — (O u+ (1= wy) — f6r. 92») =0. (73)

Here we used A%Z} (dOy) for the first marginal of the measure A(Q)yl(del, df,), and in the
last step we used the invariance of the conditional distribution A%’l (d6,161) for the reservoir
generator with one site and left parameter 6y, right parameter 1. This finishes the proof of
the case N = 2.

The general case is now a straightforward generalization via the Markovian struc-
ture of the joint distribution of order statistics. Indeed, let us call AN(@e,, ..., doy) the
joint distribution of the order statistics of N uniforms on [0, 6g]. Then conditional on
01,...,0i—1,0i41, ..., 0y, the variable 6; is uniform on [6;,_1, 6;4+1] and the terms in the
generator acting on the variable ; exactly coincide with the action of the reservoir generator
on a single site with left reservoir parameter 6; _; and right reservoir parameter 6;, where
we made the convention 6y = 01, Oy = Or. O

The main reason why we are able to identify the invariant measure for the hidden parameter
model on the chain can be summarized as follows. Consider the chain with left boundary
parameter 67, and right boundary parameter 5. Then the generator of the hidden parameter

model has the form
N

)
L=LP 4+ Liipa+Ly" (74)
i=1
The action of this generator on the variable 6; coincides with the action of the generator (65)
with 67, = 6,_1, Og = 6;4+1. In other words, the generator from (74) can be rewritten as

N
L=l (75)
i=1

where E?"‘I’HM is the generator (65) with 8, = 6;_1, g = 6,41 acting on the ; variable.

Therefore, if we call AéLﬁR (d6) the invariant measure of the process with generator (65)
describing the action of a left and right reservoir on a single site (which is uniform for the
generator (65)), then we can describe the invariant measure of the generator (74) as follows.
Let AQ(’) Ot (dO1, ...,d6N) be a probability measure such that its conditional distributions
are given by

AggﬂNH(dQ,-wl, ces0i21,0i41,...0N) = Aéi—lqeiﬂ de,),

then A%’GNH (d0O1, ...,dOy) is invariant for the generator (74).

So we conclude that for every model for which one has this structure of the generator
(i.e., (75)), one can obtain its invariant measure once one has identified the invariant measure
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Aéb g (d0) of the model with a single site between a left and right reservoir. As we will see
below, this is the case for the generalized harmonic models parametrized by s > 0.

3.6 The Generalized Harmonic Model with Parameter s > 0: Bulk Generator

The model from the previous section is a special case of a one-parameter family of so-called
generalized “harmonic models”. For these models, the measure M in (37) reads

_ 251
M(du) = %du. (76)

The corresponding discrete harmonic models have the measure

I1T(n+ DI'(n — k + 2s)

MEm) = 29T —k+ 1)’

(7"

Considering the generalized harmonic models on a graph, we have then duality between the
discrete model and the continuous model with duality functions

Dy (&, x) = [ | dni, x), (78)

ieV

with dp, (k, x) = I“fgﬁ;c)) and self-duality of the discrete model with self-duality functions

Dp, n) = [[dr&. n), (79)

ieV

with dp(k,n) = I(k < n)% Moreover, the continuum model and the discrete
model are Poisson intertwined. See [10, 11] for a proof of these dualities. As a consequence,
we have the analogue of Theorem 3.1, if one replaces the duality functions D,, and D by the
ones in (78), resp. (79). The reversible product measures are now given by products of Gamma
distributions for the continuum model, and by products of discrete Gamma distributions
for the discrete model. As a consequence, we also have the analogue of Theorem 3.2 if
one replaces the exponential vy marginals by the corresponding Gamma marginals for the
continuum model, i.e., ot

S—

A —x/0 4 80
resez’ (80)

ve(dx) =

or by the corresponding discrete Gamma marginals for the discrete model

l( 0 )"F(2s+n)

v ="\153 T 2s)

(1+6)725.
n!

3.7 The Generalized Harmonic Model with Parameter s > 0: Boundary Generator

The boundary generator with reservoir parameter 6* is [10] (see also Remark 3.2)

Lo+ f(x) = /
0

g
+f0 7”(“ (fCx +ub®) = F()). 81)

1

d )
7”0 — >N = w)x) — f(x))
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The first term models the exit of mass to the reservoir, the second term models the input of
mass from the reservoir. Denoting by vg the Gamma distribution (80), the natural candidate
intertwiner then reads

GFO) = fo F)ve(dx). 82)

The candidate generator associated to a reservoir with parameter 6* in the corresponding
hidden parameter model is given by

" du 25—1 *
Lo+ f(0) = 7(1 —w* (A = w)b +ub*) = £(6)). (83)
0
We can now state the analogue of the intertwining relation of Lemma 3.2.

Lemma 3.3 The boundary generator of the generalized continuous harmonic process (81)
and the boundary generator of the hidden parameter model (83) are intertwined as

GLo+f = Lo+G f. (84)
Proof Tt suffices to see (84) for the functions f(x) = x" r{z(?i)n) (for all n € N). We have
(GLo+ )(0)
- /OO i (/1 du gy (x"(1 = u)" — x")
0 0 0o u

©du _, o " I'(2s)
+/0 76‘ ((x+u9 ) —x )) 7F(2s+n)

1
=0"f (U =y = 1)
0 u

+Xn:9”—k(9*)k7”! LN ]
0

k=1 k'(l’l—k)' u F(2S+n)
1
= 9"/ dl(l _ u)2s—l((1 _ I/l)n _ 1)
0o U
" ke LTS 1= T4 D
+I;9 % C@2s+n) T(n+2s) (85)

and we also have

(Lo=G )(0)
1 00 ~ T=wosue® 00 -3
:/ dl(l —u)2s_1</ xS e x" —/ dx Gx")ir(zs)
0o u 0 (1 —u)d + ub* 0 0 r'@2s+n)

1
- / D st (1 = w6 +ue™y —6")
0o Uu

(IT@s+n—k) T+ 1)
k TQRs+n) T(n+2s)

(86)

=0" /1 D P Ty = 1) + Xn:e)"—"(e*)
0o u

k=1

This completes the proof. O
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The generator of the hidden parameter model associated to two reservoirs acting on a
single site is then given by

LOORf(60) = Lo, f(6) + Log £(6). (87)
The following lemma identifies the invariant measure of £%!.

Lemma 3.4 The unique invariant measure of the process with generator (87) with 8 =
0, 6r = 1 is equal to the conditional distribution

A% (dy1) = ve @ v(dyily1 +y2 = 1.
In particular; this is given by the Beta distribution

925—1 1—6 2s—1
Beta(2s.25)(d0) = L= 4o
B(2s,25)

where B(a, b) denotes the Beta function.

Proof The action of £9! on the 6 variable coincides with the action of the generator (37) with
M(du) = d;"(l — u)%5~! when we start from y1 + y2 = 1, and consider the action on the y;
variable. The product measure vg ® vy is a reversible measure, and the event y; 4+ y, = 1 is
invariant. As a consequence, the conditioned measure vy ® vy (dy;|y; + y2 = 1) is invariant.
Since vy is Gamma distributed with shape parameter 2s, then the conditional distribution
vg ® vo(dy1]y1 + y2 = 1) is the symmetric Beta distribution with parameter 2s. ]

3.8 Invariant Measure of the Generalized Harmonic Model on the Chain

As a consequence of the intertwining of the boundary generator described in Sect. 3.7, we
obtain the analogue of Theorem 3.3 for the full set of boundary-driven generalized harmonic
models with parameter s. In order to understand the structure of the invariant measure in the
setting of the chain with left and right boundary reservoirs, we have to understand the invariant
measure of the hidden parameter model. We have seen in Lemma 3.5 that the measure A(l)’1 is
the distribution Beta(2s, 2s)[d0]. Let us call By, g, (d0) the corresponding recentered and
rescaled distribution which is such that under this distribution

0 —6r

Or — 6L

is Beta(2s, 2s) distributed.
Then, following the line of argument of the proof of Theorem 3.4 the invariant measure
AN(d0y, ..., dOy) is such that its conditional distributions are given by

AN (d0;160, ..., 01,y Oy, ONg1) = By, 6,4, (d6;).
This yields exactly the joint distribution obtained in [4], i.e.,

N+1
AN@d6r, ..., doy) = C(N,2s,600,08) [ [0 —6-)> "6, <61 < ... <Oy < 0p),
i=1
(88)
where C(N, 2s, 01, Og) is the normalization constant
1 r2s(N +1))
(O — QL)2s(N+1)—1 F(2s)N+1

We summarize the finding of this section in the following theorem.

C(N,2s,01,0r) =
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Theorem 3.5 The invariant measure of the hidden parameter model with generator

du 25—1
Lf®) =/7<1—u) (O —ubr81 +uoL80) — £(©))

N U du
+ Zf - 4= W (f O — ubidi + ubi18)
i=170
+ f(0 —ub;118i41 + ub6;8;+1) —2f(9))
+/ 6i—“(l — >l (f(9 — uBN Sy + ubrdy) — f(e)) (89)

is the measure (88). As a consequence, the invariant measure of the boundary driven contin-
uous harmonic model with parameter s defined by the generator

Lf@©)
U du 25—1 Fdu
:/0 - (f(;_ua]>—f(;>)+/0 S (& +ubrd) ~ F©)

N ld
+y /O S =P (@~ i+ utidig)) + FE w181+ ubi18) = 2/©)
i=1
la g
[ R e s — fen+ [ TS (e uran) - £ 00

is a mixture of product of Gamma distributions with mixing measure (88).

3.9 General Redistribution Rules and Reservoirs

We close this section by investigating intertwining for the general mass redistribution model
with generator (37). We also discuss a general definition of reservoirs which is naturally
associated to the the general mass redistribution model.

We assume that the measure M in (37) is chosen in such a way that the corresponding
process has a one-parameter family of reversible product measures with marginals denoted
by vg(dx). E.g. for the choice M(du) = (1/u)du, vg(dx) = %e’x/gdx; for the choice
M(du) = (1/u)(1 —uw)*~'du, vg(dx) = }e=*/°x25~1dx. The natural boundary generator
with reservoir parameter 0 is given by

1
Lo+ fx) = /O M(du) (F((1 = u)x) — £()

[e’s) 1
+ fo v (dy) /0 M(du) (f (x +uy) — F(0)). 1)

As in the KMP process, this choice of the reservoir in inspired by the idea that a site interacts
with the reservoir as it does with the bulk sites it is connected to; however the energy of the
reservoirs is random and sampled from the distribution vg«.

In the corresponding hidden parameter model, the candidate generator associated to a
reservoir with parameter 6* is then given by

1
Lo+ [(0) = /0 M(du) (f((1 = wb +ub™) — f(©)) 92)
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and the generator of the hidden parameter model associated to two reservoirs acting on a
single site is

£O99 £(0) = Lo, £6) + Loy £(6). 93)

The following lemma identifies the invariant measure of £%! in terms of the measure vy.

Lemma 3.5 The unique invariant measure of the process with generator (93) with 8 =
0, 0g = 1 is equal to the conditional distribution

A% (dx1) = vg ® v (dxi|x1 +x2 = 1).
In particular, the latter does not depend on 6.

Proof The action of £%! on the 6 variable coincides with the action of the generator (37)
when we start from y; + y» = 1, and consider the action on the y; variable. By assumption,
vy ® vy is a reversible measure, and the event y; 4+ y» = 1 is invariant. As a consequence,
the conditioned measure vg ® vg(dy1|y1 + y2 = 1) is invariant. m]

‘We introduce the natural candidate intertwiner as
o0
Gf®) = /0 £ (v (dx) ©4)

and its tensorization
61 (@xe) = [ Ficsien) @va([]ax) 95)

To discuss intertwining for the boundary-driven model we need to establish conditions guar-
anteeing that
GLox = Lo+G. (96)

In order to obtain the intertwining (96) we make the following natural scaling assumption on
the measure vg:

/ve(dx)x” = R,0". 7)

Here we implicitly assumed that all the moments are finite. We moreover assumed that the
measures vg are uniquely determined by their moments. Then we have the following.

Lemma 3.6 The intertwining relation (96) is satisfied if and only if foralln and k € {0, ..., n}
we have

1 1
R,,,kRk/ u® M(du) = Rn/ M(du)u®(1 — u)" . (98)
0 0
Proof We start from (96) and fill in the function f(x) = x”. Then the left-hand side equals
1
(G(Lo» f))(O) = Rn@”/O M(du)((1 —uw)" — 1)

n 1
£ 30O Ry, (Z> /0 M(duyk. (99)

k=1
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The right-hand side equals
1
(Lox (G fO) = Rn9"/0 (1 —uw)" — M (du)
n 1
+3 0" KO R, <Z>/ WK (1= )" * M (du). (100)
k=1 0

Because both expressions have to be equal for all values of 6, 6*, we obtain (98). O

The following corollary then proves that (98) is satisfied for the harmonic model with
s > 0.

Corollary 3.1 Let vg be the Gamma distribution with scale parameter 6 and shape parameter
2s, i.e., the probability measure given in (80), and assume

_ 251
M(du) = %du. (101)

Then the moment relation (98) is satisfied.

Proof For the measure (101) we have R, = rf}ég’). Therefore, using (101), the left-hand

side of (98) equals

I'n—k+2s)Tk+2s) TR 2s)
'2s) res)y Tk+2s)

1
Rn_kRk/ uk M(du) =
0

and the right-hand side of (98) equals

Frn+2s) TkK)(n—k+2s)
r'Q2s) C(n+2s) ’

1
R, / M(duyu* (1 —u)"* =
0
Hence both expressions are indeed equal and the relation (98) is satisfied. O

Remark 3.2 1. Equation (98) can in principle allow other solutions than those of Corollary
3.1. We conjecture however that this is not the case, i.e., that (101) provides the only
solution.

2. As a consequence of Corollary 3.1 we deduce that the boundary-driven generalized
harmonic models with reservoirs (81) and the boundary-driven generalized harmonic
models with reservoirs

! du 2s—1
Lo+ f(x) = /O 7(1 —u) (f (I =u)x) — f(x))

00 1
du 251
+ v+ (dy) 7(1 —w)” T (f(x+uy) — f(x)  (102)
0 0
have the same hidden parameter model. In fact, the generator (81) and the generator
(102) are the same as can be seen from an explicit computation which we detail below

for the readers convenience.

Lemma 3.7 On the functions f(x) = x" the generators (81) and (102) have identical action.
As a consequence they are equal.
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Proof To prove identical action on f(x) = x", we have to prove that

! du 2s5—1 n n < du —u kN1 n
/Ve*(dy)/ — =)™ ((x +uy) _x):/ —e ((x +ub™)" —x").
0o Uu 0o u
(103)

Here we recall that vy« is the Gamma distribution with shape parameter 2s and scale parameter
0* defined in (21) above. After applying the binomial formula combined with fooo xte Xdx =
n!, the right hand side of (103) equals,

n—1

Oodu —U *\N n n *k\N—
/0 —e ((x + ub™) —x):Z<k>xk(0) kT — k).

k=0

After applying the binomial formula combined with exchanging the integral over y with the
integral over u, the left hand side of (103) equals:

0 4 00 n—1

k=0

n—1 1 00
= Z " xk/ du(u 11 - u)zs_]/ Ve*(d)’)yn_k
=0 k 0 0

n—1

_ Z <Z>xk I'(n—k)T(Q2s) 6%y '2s+n—k)
k=0

I'(n —k+2s) I'(2s)
n—1 n
= Z <k>xk(9*)"_kF(n — k). (104)
k=0
The consequence that the generators (81) and (102) are equal follows from linearity and the
fact that polynomials are a core. O

4 Poisson Intertwining

The class of models for which the non-equilibrium steady state is a mixture of product
measures is not limited to models of KMP or harmonic type. In this section we consider the
boundary driven symmetric inclusion process (SIP) and we prove that the stationary measure
is a mixture of Poisson product measures. This is a different situation compared to the
previous sections, because the Poisson product measures are not the stationary measures of
the SIP. The stationary measures of SIP are product of discrete Gamma distributions, which
are however themselves mixtures of Poisson product measures. The Gamma intertwiners
which produce hidden parameter models for KMP and harmonic models do not lead to
an intertwined Markov process for SIP. One can verify by explicit computation that this
Gamma intertwiner leads to a second order differential operator with non-positive definite
second order part, which therefore can not be interpreted as the generator of a Markov
process. To prove the intertwining result for SIP, we use the Poisson intertwiner of the
classical creation and annihilation operators which transforms the boundary generators into
the boundary generators of the Brownian energy process (BEP). Using this same intertwiner,
we also revisit the simplest example of independent random walkers, by which we then
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recover the propagation of Poisson product measures, which is a version of Doob’s theorem
[7], or alternatively, of the random displacement theorem in point process theory [15].

4.1 Boundary Driven SIP

First, the SIP on two sites is the Markov process on N? with generator
Lf(ni,n2) =ni2s +n2)(f(n1 —1,na+ 1) — f(ny, n2))
+n22s +n)(f(ni + 1,na — 1) — f(n, n2)). (105)

Given a vertex set V and irreducible edge weights p(i, j), we define the SIP as the Markov
process with generator

> pl, HLij, (106)
ij

where, as usual, L;; is the generator (105) acting on the variables #;, ;. The boundary
generator is given by

LYY f(n) =a@s+n)(f(n+1) = f(m) +yn(f(n—1) = f(n)). (107)

We assume o < Y, in that case L*? admits a unique stationary measure which is the discrete

Gamma distribution (5) with § = ~%—.

The boundary driven model with boundary reservoirs is then given by
D pG. pHLij+ Y@L, (108)
ij ieV
where L; denotes the generator (107) acting on the variable 7;.

We first rewrite the boundary generators in terms of creation and annihilation operators.
The latter are defined as acting on a function f : N — R via

af(n) =nf(n—1)
a'fn) = fn+ 1, (109)

where in (109) it is understood a f (0) = 0. We denote by a;, resp. a;r these operators acting on
the variable n;. Then these operators satisfy the conjugate Heisenberg algebra commutation
relations, i.e.

[ai,aj]=[af,a;]=0, [a,-T,a,-]=5i,j (110)
and we can rewrite the boundary generator (107) as
L% =2sa(a" — 1)+ a(aa’a’ — aa®) + y(a — aa). (111)

We first define the Poisson intertwining which turns the operators a, a' into differential
operators.

Lemma 4.1 Define, for f : N — Randz >0

o0

o,
Gf(2) :;Ee f(n). (112)
Then we have
Gaf = AGf, Ga'f = ATG 7/, (113)
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with
Af(@) =z2f@), ATf (@) = f'@ + f . (114)
As a consequence
GL*Y = L%7G, (115)
with
LYY = azaf + 2sa — (y —a)z)0;. (116)

Proof The intertwinings (113) follow from a direct computation. Then (115) follows from
(111) and (113). O

Notice that G f(z) = f f(n)m;(dn) where m, is the Poisson measure with parameter z. We
extend as usual the intertwining A by tensorization, i.e., for f : NV — R

61 = [ fan@mg)an.
then we have the following intertwining result.

Theorem 4.1 The boundary driven SIP with generator (108) is Poisson intertwined with the
boundary driven BEP process with generator

L= pli,)Lij+ Y c)L". (117)
i,jeVv ieV
Here L;j is the single edge generator of the Brownian enery process (BEP), given by

Lij = &&j(d —0;)% — 255 — &)@ — 8)). (118)

Here 0; denotes partial derivative w.r.t. {;, and L5V s (116) acting on the variable ¢;.
1

As a consequence we have the following result on propagation of Poisson product mea-
sures. If we start the boundary driven SIP from the product Poisson measure Q;cyy; then
we have

(®ievm)S(1) = B¢ (Qievmy 1)) » (119)

where {(t) evolves according to the generator L in (117). As a further consequence the
unique stationary measure of the boundary driven SIP is a mixture of Poisson measures with

[@evmoz([]as).
ieV
where the mixture measure E is the unique stationary measure of the process with generator

(117).

Proof The intertwining follows from the combination of Lemma 4.1 with the fact that the
single edge generators of SIP and BEP are Poisson intertwined see e.g. [16], or [6], i.e., for
allij

GLij = Li;G.

[}
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4.2 Independent Random Walkers

The independent random walk process on two sites is given by the generator

Lipf(ny,na) =ni(fni — Lna+ 1) — f(ny,n2) +n2(f(ny — 1, na + 1) — f(ny, n2))

and the boundary generator

Lfm)=a(f(n+1) — f(n)+yn(f(n—1) — f(n).
Then the full boundary driven model for independent random walkers reads as follows,
L= Y pl, )Lj+ Y cL". (120)
i,jev ieV
In terms of the creation and annihilation operators the generators read
Lij = —(ai — aj)(a —a)) (121)
for the single edge generator and

LYY = o (alT -1 +vyiai — aiaz‘) (122)

1

for the boundary generator. Therefore, using Lemma 4.1, we obtain that the boundary gen-
erator is Poisson intertwined with the operator

LI = i (Al = D)+ vi(Ai = AiA]) = (i — vizi)d, (123)
and the single edge generator is intertwined with the operator

Lij = —(& — ¢j)(0; — 9;). (124)

Notice that Cf" Y and £; ; are first order differential operators and therefore the process build
from them is a deterministic system of ODEs. We then immediately obtain the following
analogue of Theorem 4.1.

Theorem 4.2 The boundary driven independent random walkers with generator (120) is
Poisson intertwined with the boundary driven deterministic process with generator

L= pli, DLij+y L. (125)

i,jeVv ieV
Here L;j is the single edge generator (124) and Lf”’w is (123).
As a consequence we have the following. When we start the boundary driven SIP from the
product Poisson measure Q;cy 1y, then we have

(126)

®ievmy)S(t) = ®iev iz ()

where Z¢ (t) evolves according to the deterministic generator L in (125). As a further conse-
quence the unique stationary measure of the boundary driven independent random walkers
is a Poisson product measure

RieyTrr-

C* is the unique fixed point of the deterministic system Z5 (t).
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