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Abstract
We study a class of stochastic models of mass transport on discrete vertex set V . For these
models, a one-parameter family of homogeneous product measures ⊗i∈V νθ is reversible.
We prove that the set of mixtures of inhomogeneous product measures with equilibrium
marginals, i.e., the set of measures of the form

∫ (⊗
i∈V

νθi

)
�

( ∏
i∈V

dθi

)

is left invariant by the dynamics in the course of time, and the “mixing measure” � evolves
according to a Markov process which we then call “the hidden parameter model”. This
generalizes results from De Masi et al. (Preprint arXiv:2310.01672, 2023) to a larger class
of models and on more general graphs. The class of models includes discrete and continuous
generalized KMP models, as well as discrete and continuous harmonic models. The results
imply that in all these models, the non-equilibrium steady state of their reservoir driven
version is a mixture of product measures where the mixing measure is in turn the stationary
state of the corresponding “hidden parameter model”. For the boundary-driven harmonic
models on the chain {1, . . . , N } with nearest neighbor edges, we recover that the stationary
measure of the hidden parameter model is the joint distribution of the ordered Dirichlet
distribution (cf. Carinci et al., Preprint arXiv:2307.14975, 2023), with a purely probabilistic
proof based on a spatial Markov property of the hidden parameter model.
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Harmonic model · KMP model
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1 Introduction

Recent developments in the study of the KMP model and related models have revealed
that the non-equilibrium steady state of the boundary driven version of such models is a
mixture of product measures of equilibrium marginals. In the simplest setting of the KMP
model [8], this means that the non-equilibrium steady state is a mixture of products of
exponential distributions, where the joint distribution of the parameters of these exponentials
is in turn a stationary distribution of an auxiliary model, the so-called hidden temperature
model [8]. For a related class of models, the generalized harmonic models [10–12], the non-
equilibrium steady state of the continuous model is given in closed form in terms of products
of gamma distributions, with identical shape parameters, and where the scale parameters
have the ordered Dirichlet distribution [4]. In the simplest setting of the harmonic model,
the non-equilibrium steady state is a product of exponential distributions, where the (scale)
parameters are distributed as the order statistics of i.i.d. uniforms [5]. The structure of the
stationary state as a mixture was already conjectured in [1] (for the KMP model), based on
macroscopic fluctuation theory.

So far, these results are all obtained in the setting of a chain geometry, with boundary
reservoirs at left and right ends. They are strongly based on dualities, which reduce the
computation of moments of order n in the non-equilibrium steady state to the computation of
absorption probabilities of n dual particles. For the characterization of the non-equilibrium
steady state of the generalized harmonic models of a chain, an additional input came from
integrability. Is it usually the latter which provides closed-form expressions for the absorption
probabilities of the dual process and is only applicable in the chain geometry, whereas duality
results are valid in a setting of general graphs.

In this paper, using a reformulation of duality as an intertwining relation, we prove that
for a large class of models on a general graph, there exist hidden parameter models. As a
consequence, the non-equilibrium steady state is a mixture of equilibrium product marginals
where the mixing measure (i.e., the joint distribution of the parameters of these marginals) is
the stationarymeasure of the corresponding hidden parametermodel. This stationarymeasure
is usually inaccessible in explicit form on a general graph. In the case of the harmonic model
on a chain, we are able to prove that it coincides with the mixing measure found in [4], using
probabilistic arguments only based on a Markovian structure in the hidden parameter model.
ThisMarkovian structure of the hidden parametermodel, whichwe explain in Sect. 3.5 below,
is the key ingredient which makes the harmonic models different from the KMP models. It
allows to directly (i.e., without using explicit expressions of moments) obtain the mixture
measure identified earlier in [4]. TheMarkovian structure of the hidden parameter model also
implies that it is enough to understand the stationary state for a single site with left and right
reservoirs to understand the stationary measure of a general boundary driven chain. These
results show that in essence, the existence of hidden parameter models is based on duality,
and therefore not restricted to integrable models. However, the identification of the mixing
measure, i.e., the measure describing the joint distribution of the parameters, is only possible
when there is extra structure (i.e., extra symmetries) which makes it possible e.g. to use
the quantum inverse scattering method [11], or in probabilistic terms, to have a Markovian
structure of the mixing measure.

The rest of our paper is organized as follows. In Sect. 1.2, we sketch the general structure of
the models under consideration. In Sect. 2 we discuss the discrete and continuous generalized
KMP models, recovering and generalizing the hidden temperature models in [8]. In Sect. 3
we deal with the generalized harmonic models. In particular, we identify the corresponding
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hidden parameter models and establish intertwining on a generic graph. For the boundary
driven chain we characterize the stationary measure of the hidden parameter model by using
a self-contained argument which rely on the particular structure of the model. In Sect. 4 we
extend the analysis to another model, the symmetric inclusion process (SIP) and prove that it
admits Poisson intertwining. As a consequence the non-equilibrium steady state is a mixture
of Poisson productmeasures,where themixturemeasure is a non-equilibrium steady state of a
corresponding continuousmodel (theBrownian energy process).We also recover the simplest
setting of boundary driven independent random walks, where the intertwined dynamics is
deterministic and has a unique fixed point, which implies that the non-equilibrium steady
state is a product of Poisson measures. The latter is of course well-known but we believe it
is still insightful to recover it from the point of view of intertwining.

1.1 Summary of Main Results and Relation with Existing Literature

Summarizing, the main results of our paper are the following.

1. We show the existence of hidden parameter models for a general class of models on
general graphs using intertwining.

2. For a one parameter family of continuous and discrete KMP models, as well as harmonic
models, we show propagation of mixed product states, where the parameters evolve as
hidden parameter models.

3. We reveal a dynamical Markov property for the hidden parameter model associated to the
harmonic models, and derive from it in a purely probabilistic way the non-equilibrium
steady state obtained in [4] for general s > 0, in [5] for s = 1/2, and predicted earlier in
[1].

4. For the boundary driven symmetric inclusion process (SIP),wederive a new representation
of the non-equilibriumsteady state as amixture of a product of Poissondistributions,where
the mixture measure is described via a diffusion process (BEP). This result generalizes to
the boundary driven case earlier Poisson intertwining between SIP and BEP obtained in
[16].

The novelty of our analysisw.r.t. existing literature [1, 2, 4, 5, 8, 10–12], is thus threefold. First
we derive the existence of hidden temperature models on general graphs; second we obtain in
this same generality the propagation of mixed product states; third we derive the Markovian
structure of the non-equilibrium steady state of harmonic models in d = 1 (for general
parameters s > 0) directly via the generator, i.e., not passing via moment computations
relying on integrability (such as in [4]), but rather via conditional probabilities.

1.2 General Structure of theModels

We consider a finite set of vertices V , and a symmetric irreducible collection of edge weights
p(i, j) = p( j, i) ≥ 0 where i, j ∈ V . Here, by irreducibility we mean that for every
i, j ∈ V there exists a finite discrete path γ (0), . . . , γ (n) with γ (0) = i, γ (n) = j and
p(γ (i), γ (i + 1)) > 0 for all i = 0, . . . , n − 1. We will then consider Markov processes on
either the state spaceNV = {0, 1, 2, . . .}V (discretemodels) or the state spaceRV+ = [0,∞)V

(continuous models). The generator of these processes will take the form

∑
i, j∈V

p(i, j)Li j ,
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where Li j is the so-called single edge generator, which acts only on the variables ηi , η j and
models the transport of mass along the edge connecting the sites i, j ∈ V . For the boundary
driven version of the models we have a generator taking the form

∑
i, j∈V

p(i, j)Li j +
∑
i∈V

c(i)Lθ∗
i
,

where c(i) ≥ 0 is a non-negative constant tuning the coupling of site i ∈ V to a “reservoir”
with parameter θ∗

i > 0. The single-site generator Lθ∗
i
is acting only on the variables ηi and

models the input and output of mass at the vertex i ∈ V , by fixing the average number of
particles to θ∗

i .
The systemwith generator

∑
i, j∈V p(i, j)Li j will have a one parameter family of product

invariant measures
⊗

i∈V νθ , where the parameter θ > 0 labels the expected number of
particles (or mass) and corresponds to the conserved quantity (total number of particles or
total mass). Then the system coupled to reservoirs with identical parameters (θ∗

i = θ∗ for
i ∈ V ) has a unique stationary measure

⊗
i∈V νθ∗ . If the reservoir parameters are different,

then the unique stationary measure is no longer a product measure, and is called a non-
equilibrium steady state, where non-equilibrium refers to the absence of reversibility.

The main aim of this paper is to understand for a family of models of this type the
propagation of inhomogeneous product measures

⊗
i∈V νθi in the course of time. Given

θ = (θi )i∈V , we will then find that these measures are mapped to a stochastic mixture of the
form

Eθ

( ⊗
i∈V

νθi (t)

)
,

where (θi (t), t ≥ 0, i ∈ V ) will evolve as a Markov process which we then call, following
[8], the “hidden parameter model”. As a consequence, the unique stationary measure (non-
equilibrium steady state) will be a mixture of product measures of the type

∫ (⊗
i∈V

νθi

)
�

( ∏
i∈V

dθi

)
.

The “mixingmeasure”� is then the unique invariant measure of the hidden parameter model.
Thus, in the reservoir-driven setup, the identification of the non-equilibrium steady state is
reduced to the identification of the stationary measure of the hidden parameter model.

The two most important examples of models having the property that the set of mixture
of equilibrium product measure is closed under the dynamics will be models of “KMP type”
(Sect. 2) or models of “harmonic type” (Sect. 3). For another class of models, namely the
symmetric inclusion process and the independent random walkers (Sect. 4), we will show
that the same happens with a product of Poissonmeasures, where the evolution of the Poisson
parameters is then either a Markov diffusion process or a deterministic process.

In what follows we will always use an upright L for the generator of the process under
study, and the symbol L for the corresponding hidden parameter model. We will always use
the notation Eη,Eξ for expectations for process with discrete state space such as NV , Eζ

for the expectations of processes with continuous state space such as [0,∞)V and Eθ for
expectations of processes of hidden parameter models (also with state space [0,∞)V ).
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2 Generalized KMP Processes

In this sectionwe study the discrete, resp. continuous, generalizedKMPmodels, parametrized
by a non-negative number s > 0. These models are a one-parameter generalization of the
original KMPmodel and were introduced in [13]. For arbitrary s > 0 we prove new dualities
with a generalized hidden parameter model. This in turn implies that products of discrete
gamma, resp. continuous gamma, distributions evolve in the course of time into mixtures of
such product measures, where the mixing measure is the distribution of the corresponding
hidden parameter model.

We start by first considering the bulk process and then we add reservoirs. The original
discrete and continuous KMP models [14] will be recovered for s = 1/2.

2.1 Discrete Generalized KMP

We consider a finite set of vertices V , and irreducible edge rates p(i, j), as outlined in
Sect. 1.2. The discrete generalized KMP process with parameter 2s > 0 is a Markov process
on N

V and is defined via the generator

L f (η) =
∑
i, j∈V

p(i, j)Li j f (η) . (1)

Here the single edge generator Li j acts on the variables ηi , η j as

Li j f (x, y) = E
(
f (X , x + y − X) − f (x, y)

)
, (2)

where X is beta-binomial with parameters x + y, 2s, 2s, i.e.,

P(X = k) =
∫ 1

0

(
x + y

k

)
pk(1 − p)x+y−kBeta(2s, 2s)[dp], (3)

where k ∈ {0, 1, . . . , x + y} and

Beta(2s, 2s)[dp] = 1

B(2s, 2s)
p2s−1(1 − p)2s−1dp (4)

denotes the Beta distribution with parameters (2s, 2s).
The discrete generalized KMP process has reversible product measures which are product

of discrete Gamma distributions parametrized as follows

νθ (n) = 1

n!
(

θ

1 + θ

)n
	(2s + n)

	(2s)

(
1

1 + θ

)2s

. (5)

The relation between the parameter θ and the expectation of the marginals is given by

∞∑
n=0

nνθ (n) = 2sθ (6)

The discrete generalized KMP process is self-dual [3] with self-duality functions given by

DF (ξ, η) =
∏
i

ηi !
(ηi − ξi )!

	(2s)

	(2s + ξi )
. (7)

More precisely, we have

Eη

(
DF (ξ, η(t))

) = Eξ

(
DF (ξ(t), η)

)
. (8)
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The subscript “F” is added to the duality function DF to recall that, for a given ξ ∈ N
V , the

expectation of the duality function w.r.t. a measure on the η variables gives essentially the
multivariate factorial moments (up to the factors 	(2s)

	(2s+ξi )
). In particular the relation between

the self-duality polynomials and product measures with marginals (5) reads∫
DF (ξ, η)

⊗
i∈V

νθi [dη] =
∏
i∈V

θ
ξi
i . (9)

This equality completely characterizes the product measure
⊗

i∈V νθi via its factorial
moments.

The hidden parameter model associated to the discrete generalized KMP is a process on
[0,∞)V which will determine the evolution of the parameters θ = (θi , i ∈ V ) of product
measures of the type

⊗
i νθi . The process is defined in the spirit of [8] via its generator

L f (θ) =
∑
i, j

p(i, j)Li j f (θ), (10)

where the single edge generator Li j acts on the variables θi , θ j as follows

Li j f (x, y) = E

(
f (x B + y(1 − B), x B + y(1 − B)) − f (x, y)

)
, (11)

where B has a Beta distribution with parameters (2s, 2s), i.e., it has density (4). More
explicitly we have

Li j f (x, y) =
∫ 1

0

(
f (xu + y(1 − u), xu + y(1 − u)) − f (x, y)

)
Beta(2s, 2s)[du]. (12)

We then have the following duality result.

Proposition 2.1 The discrete generalized KMP process with generator (1) is dual to the
hidden parameter model with generator (10) with duality function

D(ξ, θ) =
∏
i∈V

θ
ξi
i . (13)

Proof We act with the generator Li j in (2) on the ξ variables and obtain, using the binomial
formula

Li jθ
ξi
i θ

ξ j
j = E

(
θ X
i θ

ξ j+ξi−X
j

)
− θ

ξi
i θ

ξ j
j

=
ξi+ξ j∑
k=0

(
ξi + ξ j

k

) ∫ 1

0
pk(1 − p)ξi+ξ j−kθki θ

ξi+ξ j−k
j Beta(2s, 2s)[dp] − θ

ξi
i θ

ξ j
j

=
∫ 1

0
(pθi + (1 − p)θ j )

ξi+ξ jBeta(2s, 2s)[dp] − θ
ξi
i θ

ξ j
j . (14)

This is now clearly the same as acting with the generator Li j in (12) on the θ variables. ��
We can then state a result on the evolution of product measures of the type

⊗
i∈V νθi under

the discrete generalized KMP model.

Theorem 2.1 Consider the discrete generalized KMP model with generator (1) and start it
from a product measure

⊗
i∈V νθi . Denote by

( ⊗
i∈V νθi

)
S(t) the evolved measure at time

t > 0, where (S(t))t≥0 is the semigroup. Then we have( ⊗
i∈V

νθi

)
S(t) = Eθ

(⊗
i∈V

νθi (t)

)
, (15)
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where Eθ denotes the expectation in the hidden parameter model with generator (10) initial-
ized from the configuration θ . As a consequence, the set of mixtures∫ ( ⊗

i∈V
νθi

)
�[dθ ]

is closed under the evolution of the discrete generalized KMP model.

Proof The proof uses self-duality of the discrete generalized KMP process (stated in (8)), and
the duality between discrete generalized KMP and the hidden parameter model (Proposition
2.1). As a consequence of the identity (9) we obtain the following series of equality:∫

DF (ξ, η)
( ⊗

i∈V
νθi

)
S(t)[dη] =

∫
Eη

(
DF (ξ, η(t))

)(⊗
i∈V

νθi

)
[dη]

=
∫

Eξ

(
DF (ξ(t), η)

)(⊗
i∈V

νθi

)
[dη]

= Eξ

( ∏
i∈V

θ
ξi (t)
i

)

= Eθ

( ∏
i∈V

θi (t)
ξi
)

= Eθ

∫
DF (ξ, η)

( ⊗
i∈V

νθi (t)

)
[dη]. (16)

Here in the second equality we used self-duality of the discrete generalized KMP process
and in the fourth equality we used Proposition 2.1. The proof is then completed by observing
that the functions η → D(ξ, η) are measure determining. ��

The result of Theorem 2.1 can be reformulated as an intertwining result between the
hidden parameter process and the discrete generalizedKMP process.We say that twoMarkov
processes with semigroups (S(t), t ≥ 0) and (S(t), t ≥ 0) are intertwined with intertwiner
G if for all t ≥ 0

GS(t) = S(t)G. (17)

In Theorem 2.1 we have obtained∫
S(t) f (η)

( ⊗
i∈V

νθi

)
[dη] = S(t)

∫
f (η)

(⊗
i∈V

νθi

)
[dη], (18)

where S(t) is the semigroup of the discrete generalized KMP process and where S(t) is the
semigroup of the hidden parametermodel. Therefore, if we define for a function f : NV → R

the “discrete-gamma” intertwiner

G f (θ) =
∫

f (η)
( ⊗

i∈V
νθi

)
[dη],

where we implicitly assumed that f is integrable w.r.t.
⊗

i∈V νθi , then (18) reads

G(S(t) f ) = S(t)(G f ),

which is exactly the intertwining between the hidden parameter process and the discrete KMP
process.
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2.2 Continuous Generalized KMP

The continuous generalized KMP process with parameter 2s > 0 is a process on [0,∞)V

and is defined via the generator

L f (ζ ) =
∑
i, j∈V

p(i, j)Li j f (ζ ), (19)

where the single edge generator Li j works on the variables ηi , η j as follows

Li j f (x, y) = E
(
f (B(x + y), (1 − B)(x + y)) − f (x, y)

)
. (20)

Here B is a Beta(2s, 2s) distributed random variable.
The reversible measures of the continuous generalized KMP process are products of

Gamma distribution with parameters (θ, 2s), where θ is the scale parameter and where 2s is
the shape parameter, i.e. the marginals are given by

νθ [dx] = x2s−1

θ2s	(2s)
e−x/θ dx . (21)

The continuous and discrete generalizedKMPprocesses are dual [3, 14] with duality function

Dm(ξ, ζ ) =
∏
i∈V

ζ
ξi
i

	(2 s)

	(2 s + ξi )
.

The subscript “m” is added to the duality function Dm to recall that, for a given ξ ∈ N
V ,

the expectation of the duality function w.r.t. a measure on the ζ variables gives essentially
the multivariate moments (up to the factors 	(2s)

	(2s+ξi )
). In particular the relation between the

duality functions and product measures with marginals (21) reads

∫
Dm(ξ, ζ )

( ⊗
i∈V

νθi

)
[dζ ] =

∏
i∈V

θ
ξi
i . (22)

This equality completely characterizes the product measure
⊗

i∈V νθi via its moments.
The main result on the evolution of product measures of the type

⊗
i∈V νθi under the

continuous generalized KMP model is stated in the following theorem.

Theorem 2.2 Start the continuous generalized KMP model with generator (19) from a prod-
uct measure

⊗
i∈V νθi [dζ ]. Then at time t > 0 we have the measure

( ⊗
i∈V

νθi

)
S(t)[dζ ] = Eθ

(⊗
i∈V

νθi (t)[dζ ]
)
, (23)

where {θ(t), t ≥ 0} is the hidden parameter model with generator (10) initialized from the
configuration θ .

Proof We use the duality between the continuous and discrete generalized KMP model,
combined with the duality between the discrete KMPmodel and the hidden parameter model.
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We then obtain∫
Dm(ξ, ζ )

( ⊗
i∈V

νθi

)
S(t)[dζ ] =

∫
Eη

(
Dm(ξ, ζ(t))

)(⊗
i∈V

νθi

)
[dζ ]

=
∫

Eξ

(
Dm(ξ(t), ζ )

)(⊗
i∈V

νθi

)
[dζ ]

= Eξ

(∏
i

θ
ξi (t)
i

)

= Eθ

( ∏
i

θi (t)
ξi
)

= Eθ

∫
Dm(ξ, ζ )

( ⊗
i∈V

νθi (t)

)
[dζ ]. (24)

We then conclude by observing that the functions ζ → Dm(ξ, ζ ) are measure determining.
��

We then have the analogous result of Proposition 2.1 in the setting of the continuous
generalized KMP process.

Proposition 2.2 The continuous generalizedKMPprocesswith generator (19)and the hidden
parameter model with generator (10) are dual with duality function

D(θ, ζ ) =
∏
i∈V

eθi ζi . (25)

Proof It suffices to prove the duality for the single edge generators. Acting with the single
edge generator of the continuous generalizd KMP model on the ζ variables gives

Li j e
θi ζi eθ j ζ j

=
∫ 1

0

(
eθi u(ζi+ζ j )+θ j (1−u)(ζi+ζ j ) − eθi ζi eθ j ζ j

)
Beta(2s, 2s)[du]

=
∫ 1

0

(
e(uθi+(1−u)θ j )ζi+(uθi+(1−u)θ j )ζ j − eθi ζi eθ j ζ j

)
Beta(2s, 2s)[du], (26)

which is recognized as the action of the generator Li j in (12) on the θ variables. ��
Remark 2.1 Notice that we can find the duality function between continuous generalized
KMP and the hidden parameter model also via the generating function of the duality function
between discrete generalized KMP and the hidden parameter model, i.e.,

∞∑
n=0

θnzn

n! = eθ z .

Indeed, the continuous and discrete generalized KMP model are intertwined via the inter-
twiner


 f (z) =
∞∑
n=0

f (n)
zn

n! .

More precisely denoting here by Ld the generator of the discrete generalized KMP (1) and
by Lc the generator of the continuous generalized KMP (19), we have for f : NV → R


(Ld f ) = Lc(
 f ),

123
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where with a small abuse of notation we denoted by 
 the tensorization of 
, i.e., the 


acting on all the variables ηi


 f (ζ ) =
∑

η∈NV

f (η)
ζ η

η! ,

where
ζ η

η! =
∏
i∈V

ζ
ηi
i

ηi ! .

Also here, we can reformulate Theorem 2.2 as an intertwining result. Indeed, by consid-
ering the Gamma distribution in (21) and by defining the “Gamma” intertwiner

G f (θ) =
∫

f (ζ )
⊗
i∈V

νθi [dζ ]

it follows that Theorem 2.2 can be read as an intertwining between the hidden parameter
process and the continuous generalized KMP process, with intertwiner G.

2.3 Adding Driving

We will discuss the adding of driving for the continuous generalized KMP model only. The
results for the generalized discrete KMP model are completely analogous.

We start by describing the generator modelling the coupling to a reservoir. It is a generator
that acts on a single variable x ∈ R as follows

Lθ∗ f (x) = E( f ((x + Y )B) − f (x)), (27)

where E denotes expectation over the two independent random variables B, Y and where
Y is distributed as νθ∗ (Gamma distribution) and B is Beta(2s, 2s) distributed. Thus the
action of the boundary site reservoir generator is similar to the bulk edge generator, in the
sense that the redistribution of energies between the site and the reservoir occurs via a Beta
random variable; however now the energy of the “extra site” representing the reservoir is
sampled from a Gamma distribution with mean 2 sθ∗, which is exactly the marginal of the
invariant distribution of themodelwithout reservoirs. Reservoirs of this formwere introduced
originally in the setting of the KMP model (corresponding to 2s = 1) in [1] and are different
from the reservoirs in the original model [14]. Indeed, in the original model of [14] the
reservoir is given by

L̃θ∗ f (x) = E f (Y ) − f (x)

where Y is a random variable which is gamma distributed with scale parameter θ∗ and shape
parameter 2s.

The corresponding boundary generator of the hidden parameter model is

Lθ∗ f (θ) =
∫ 1

0

(
f ((1 − u)θ + uθ∗) − f (θ)

)
Beta(2s, 2s)[du], (28)

which can be viewed as having an “extra site” from which always the value θ∗ is imported.
We then have the following intertwining result.

Lemma 2.1 For a function f : [0,+∞) → Rwhich is integrable with respect to the Gamma
distribution νθ define the intertwiner

G f (θ) = 1

	(2 s)θ2 s

∫ ∞

0
f (x)x2 s−1e−x/θdx .
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Then the boundary generator of the continuous generalized KMPprocess (27) and the bound-
ary generator of the hidden parameter model (28) are intertwined as

GLθ∗ = Lθ∗G. (29)

Proof For simplicity we prove the case 2s = 1, the general case is obtained with a similar
proof. We have

(GLθ∗ f )(θ) =
∫ ∞

0
dx

e−x/θ

θ
Lθ∗ f (x)

=
∫ ∞

0
dx

e−x/θ

θ

∫ ∞

0
dy

e−y/θ∗

θ∗

∫ 1

0
du

(
f ((x + y)u) − f (x)

)

(30)

and we also have

(Lθ∗G f )(θ) =
∫ 1

0
du

(
G f ((1 − u)θ + uθ∗) − G f (θ)

)

=
∫ 1

0
du

( ∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗ f (x) −
∫ ∞

0
dx

e− x
θ

θ
f (x)

)
. (31)

It suffices to see (29) for the functions fn(x) = xn/n! (for all n ∈ N). From the previous two
equations this in turn reduces to proving the following identity

∫ ∞

0
dx

e−x/θ

θ

∫ ∞

0
dy

e−y/θ∗

θ∗

∫ 1

0
du

((x + y)u)n

n! =
∫ 1

0
du

∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗
xn

n! .

(32)

The right-hand side of (32) equals

∫ 1

0
du

∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗
xn

n! =
∫ 1

0
du(uθ∗ + (1 − u)θ)n = 1

n + 1

n∑
k=0

(θ∗)kθn−k,

(33)
where we used the identity

∫ 1

0
uk(1 − u)n−kdu = k!(n − k)!

(n + 1)! ,

combined with
∫ ∞
0

xn
n!

e−x/θ

θ
dx = θn . The left-hand side of (32) equals

∫ ∞

0
dx

e−x/θ

θ

∫ ∞

0
dy

e−y/θ∗

θ∗

∫ 1

0
du

((x + y)u)n

n!

=
∫ ∞

0
dx

e−x/θ

θ

∫ ∞

0
dy

e−y/θ∗

θ∗
1

(n + 1)

n∑
k=0

xk

k!
yn−k

(n − k)!

= 1

n + 1

n∑
k=0

θk(θ∗)n−k . (34)

��
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To define the general boundary driven model, we associate reservoirs with parameters θ∗
i

at site i ∈ V and the generator of the boundary driven continuous generalized KMP process
is then given by

L f (ζ ) =
∑
i, j∈V

p(i, j)Li j f (ζ ) +
∑
i∈V

c(i)Lθ∗
i
f (ζ ), (35)

where Li, j is read in (20) and Lθ∗
i
is defined in (27). As a consequence of Theorem 2.1 and

of the intertwining result of Lemma 2.1, we then have the following propagation of mixtures
of products of Gamma distributions.

Theorem 2.3 Consider the driven continuous generalized KMP model with generator (35).
Then we have the following.

(a) If we start the process from a product measure of the form
⊗

i∈V νθi , then at time t > 0
the distribution is given by

Eθ

( ⊗
i∈V

νθi (t)

)
,

where the process (θi (t), i ∈ V , t ≥ 0) evolves according to the generator∑
i, j∈V

p(i, j)Li j +
∑
i∈V

c(i)Lθ∗
i
. (36)

(b) The driven generalized KMP process converges to a unique stationary measure which
reads ∫ ⊗

i∈V
νθi �[dθ ],

where the mixture measure � is the unique stationary measures of the associated hidden
parameter model, with generator (36).

(c) In particular if all the reservoir parameters are equal to a fixed value, i.e. θ∗
i = θ∗ for all

i ∈ V , then this unique stationary measure is given by
⊗

i∈V νθ∗ and is also reversible.

3 Generalized Harmonic Models

In this section we consider the generalized discrete harmonic model [11] and the associated
generalized continuum harmonic model (also called integrable heat conduction model in
[10]). The aim here is to prove the existence of a hidden parameter model and to derive con-
clusions from it about the nature of the stationary measures in the one-dimensional boundary
driven set-up. Contrary to the KMP model, the invariant measure of the hidden parameter
model on the chain with left and right boundary reservoirs can be obtained explicitly. The
main reason is a hidden Markovian structure of the hidden parameter model, see section 3.5
and 3.8 below for details. This hidden Markovian structure can be seen as the probabilistic
counterpart of the integrability of this model, which was used in previous works [4, 10, 11]
to obtain the non-equilibrium steady state on the chain.

3.1 Mass RedistributionModels

In order to introduce the harmonic models, let us first consider the following general class of
generators (see also [2]) acting on two variables y1, y2 ≥ 0, and parametrized by a positive
measure M on the interval [0, 1].
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L12 f (y1, y2) = LM
12 f (y1, y2)

=
∫ 1

0
M(du)[( f (y1 − uy1, y2 + uy1) + f (y1 + uy2, y2 − uy2)2 f (y1, y2))].

(37)

In this process, with rate M(du), a fraction of mass is taken away from one of the two sites
and given to the other site. Notice that in these models, different from the KMP model, only
a fraction of the mass of one site is moved to the other site (rather than a fraction of the total
mass of the two sites).

In order to introduce the associated hidden parameter model, we consider the following
generator acting on two variables θ1, θ2 ≥ 0

L12 f (θ1, θ2) =
∫ 1

0
M(du)[ f (θ1(1− u)+ uθ2, θ2)+ f (θ1, uθ1 + (1− u)θ2)− 2 f (θ1, θ2)].

(38)
We see that, contrary to the hidden parameter model for the generalized KMP processes, here
the parameters (or “local temperatures”) θ1, θ2 are replaced by convex combinations only
at one of the two sites, leaving the parameter at the other site untouched. Remark that the
process generated by (38) preserves the order. Indeed, if θ1 ≤ θ2 then, for 0 ≤ u ≤ 1,

θ1(1 − u) + uθ2 ≤ θ2,

and
θ1 ≤ uθ1 + (1 − u)θ2.

We have the following duality result.

Proposition 3.1 The process with generator L12 in (37) is dual to the process with generator
L12 in (38) with duality function

Dc(θ1, θ2; y1, y2) = eθ1y1+θ2 y2 .

Proof This follows from the simple observation

eθ1(y1−uy1)+θ2(y2+uy1) = e(θ1(1−u)+θ2u)y1+θ2 y2

and the similar equality obtained by interchanging the sub-indices 1 and 2. ��

To understand associated intertwined discrete models, let us consider the Poisson inter-
twiner between functions f : N2 → R and functions f : [0,∞)2 → R


12 f (y1, y2) =
∑

k1,k2∈N
f (k1, k2)

yk11
k1!

yk22
k2! . (39)

Now we consider discrete models of mass redistribution, i.e., Markov processes on N
2

depending on a positive measure M(k, n), k ∈ N, n ∈ N with support {(k, n) : k ≤ n}.
The discrete models are then defined via their generator acting on functions f : N2 → R as
follows
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L f (n1, n2) = LM
12 f (n1, n2)

=
n1∑
k=1

M(k, n1)( f (n1 − k, n2 + k) − f (n1, n2))

+
n2∑
k=1

M(k, n2)( f (n1 + k, n2 − k) − f (n1, n2)). (40)

We say that the discrete model (40) is associated to the the continuum model (37) if it is
Poisson intertwined with it, i.e., if


12(L
M
12 ) = LM

12(
12). (41)

Then we have the following lemma relating dualities of the continuous models to dualities
of the associated discrete models.

Lemma 3.1 If (41) holds, then the process with generator LM
12 is dual to the process with

generator (38) with duality function

Dd(θ1, θ2; n1, n2) = θ
n1
1 θ

n2
2 .

Proof This follows by the following two facts: i) the Poissonian generating function applied
to θ

n1
1 θ

n2
2 equals eθ1 y1+θ2 y2 (cf. Remark 2.1); ii) the duality between the discrete process with

generator LM
12 with duality functions Dd(θ1, θ2; n1, n2) and the process with generator (38)

is equivalent with duality between the continuous process with generator LM
12 and the process

with generator (38) with duality function

Dc(θ1, θ2; n1, n2) =
∑
n1,n2

Dd(θ1, θ2; n1, n2) y
n1
1 yn22
n1!n2! .

See e.g. [6] for a proof of this equivalence. The duality for continuum models of Proposi-
tion (3.1) therefore implies automatically the duality for discrete models which are Poisson
intertwined. ��

3.2 The Harmonic Models

For the simplest version of the continuous harmonic model, we have M(du) = 1
u du [10]

and for the associated discrete model M(k, n) = 1
k I (1 ≤ k ≤ n) [11]. We first consider the

model on a general graph with vertex set V and with edge weights p(i, j) and define the
generator acting on functions f : [0,∞)V → R as follows

L f (ζ ) =
∑
i, j∈V

p(i, j)
∫ 1

0

du

u
(( f (ζ − uζiδi + uζiδ j ) − f (ζ ))

+ ( f (ζ − uζ jδ j + uζ jδi ) − f (ζ ))). (42)

Here δi denotes the configuration with unit mass at site i and zero mass everywhere else. The
process corresponding to the generator (42) will be called the continuous harmonic process.
Its reversible product measures are products of exponentials with identical scale parameters,
i.e., with marginals

νθ (dx) = 1

θ
e−x/θ , (43)

123



Intertwining and Propagation of Mixtures… Page 15 of 33 21

with expectation θ > 0. The associated discrete model is then defined via its generator acting
on functions f : NV → R:

L f (η) =
∑
i, j∈V

p(i, j)

(
ηi∑
k=1

1

k
( f (η − kδi + kη j δ j ) − f (η)) +

η j∑
k=1

1

k
( f (η − kδ j + kδi ) − f (ζ ))

)
.

(44)
We call the corresponding process the discrete harmonic process. Its reversible product mea-
sures are products of geometric random variables with marginals

νθ (n) =
(

θ

1 + θ

)n (
1

1 + θ

)
, (45)

with mean θ . Finally, the corresponding hidden parameter model is defined via its generator
acting on f : [0,∞)V → R:

L f (θ) =
∑
i, j∈V

p(i, j)
∫ 1

0

du

u

(
( f (θ − uθi δi + uθ j δi ) − f (θ)) + ( f (θ − uθ j δ j + uθi δ j ) − f (θ))

)
.

(46)
This generator was also considered in the literature of integrable systems, see for instance
Eq. (2.3.3) in [9] where it appears as a representation of the integrable XXX spin chain, and
Sect. 2.3 in [12] where a connection between the generator (46) and the continuous harmonic
generator was pointed out.

Theorem 3.1 We have the following duality and intertwining relations:

(a) The discrete harmonic model is self-dual with self-duality function

DF (ξ, η) =
∏
i∈V

(
ηi

ξi

)
. (47)

(b) The discrete and continuous harmonic models are dual with duality function

Dm(ξ, ζ ) =
∏
i∈V

ζ
ξi
i

ξi ! . (48)

(c) The discrete and continuous harmonic model are Poisson intertwined.
(d) The continuous harmonic process and the hidden parameter model are dual with duality

function
Dc(θ, ζ ) =

∏
i∈V

eθi ζi . (49)

(e) The discrete harmonic process and the hidden parameter model are dual with duality
function

Dd(θ, η) =
∏
i∈V

θ
ηi
i . (50)

Proof See [10, 11] for the statements (a) up to (c). From (c) it follows that (d) and (e) are
equivalent via Lemma 3.1, and (d) follows from Proposition 3.1. ��
Remark 3.1 Notice that the duality between the discrete and continuous harmonic model can
also be used to show that the continuous model is well-defined. Indeed on a finite graph, the
discrete model is clearly a well-defined system: because of the conservation law it becomes
effectively a finite state space continuous Markov chain. The discrete model then defines the
time evolution of polynomials in the continuous model via the duality of Theorem 3.1(b).
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We can then turn the duality results into a result on propagation of mixtures of product
measures, or equivalently into an intertwining result.

Theorem 3.2 The following results hold.

(a) Start the discrete harmonic process with generator (44) from a product measure with
geometric marginals

⊗
i∈V νθi , where νθ is as in (45). Then at time t > 0 the distribution

is equal to (⊗
i∈V

νθi

)
S(t) = Eθ

(⊗
i∈V

νθi (t)

)
, (51)

where (θ(t), t ≥ 0) is the hidden parameter process with generator (46), andEθ denotes
expectation in this process starting from θ . Equivalently, considering the “geometric”
intertwiner of an integrable function f : NV → R,

G f (θ) =
∫

f (η)
( ⊗

i∈V
νθi

)
[dη].

We have
G(L f ) = L(G f )

which is the intertwining between the generator L of the hidden parameter process and
the generator L of the discrete harmonic process in (44).

(b) Start the continuous harmonic process with generator (42) from a product measure with
exponential marginals ⊗νθi , where νθ is as in (43). Then at time t > 0 the distribution
is equal to (⊗

i∈V
νθi

)
S(t) = Eθ

(⊗
i∈V

νθi (t)

)
, (52)

where θ(t), t ≥ 0 is the hidden parameter process with generator (46), and Eθ denotes
expectation in this process starting from θ . Equivalently, considering the “exponential”
intertwiner of an integrable function f : [0,∞)V → R

G f (θ) =
∫

f (ζ )
( ⊗

i∈V
νθi

)
[dζ ].

we have
G(L f ) = L(G f ),

which is the intertwining between the generator L of the hidden parameter process and
the generator L of the continuous harmonic process in (46).

Proof Wewill prove (52). Theproof of (51) is analogous, replacing exponentials bygeometric
distributions.

The duality functions between the continuous and discrete harmonic model are given by

Dm(ξ, ζ ) =
∏
i

ζ
ξi
i

ξi ! .
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Then we obtain,
∫

Dm(ξ, ζ )
( ⊗

i∈V
νθi [dζi ]

)
S(t) =

∫
Eζ

(
Dm(ξ, ζ(t))

)(⊗
i∈V

νθi [dζi ]
)

=
∫

Eξ

(
Dm(ξ(t), ζ )

)(⊗
i∈V

νθi [dζi ]
)

= Eξ

( ∏
i∈V

θ
ξi (t)
i

)

= Eθ

( ∏
i∈V

θi (t)
ξi
)

= Eθ

( ∫
Dm(ξ, ζ )

( ⊗
i∈V

νθi (t)[dζi ]
))

. (53)

Here we used duality between the continuous and the discrete model in the second equality,
and duality between the discrete model and the hidden parameter model in the third equality.
We can then conclude (52) because the functions ζ → Dm(ξ, ζ ) are measure determining.

��

3.3 Boundary Reservoirs

We now discuss the intertwining of the boundary generator of the continuous harmonic
model. This reads [10]

Lθ∗ f (x) =
∫ 1

0

du

u
( f (x(1 − u)) − f (x)) +

∫ ∞

0

du

u
e−u( f (x + uθ∗) − f (x)). (54)

For a discussion on the form of this generator we refer to Remark 3.2 and Lemma 3.7. This
generator is reversible w.r.t. the exponential distribution with mean θ∗ > 0. The correspond-
ing boundary hidden parameter generator has the same structure of the boundary hidden
parameter KMP generator, the main difference being that the uniform measure of the KMP
model is here replaced by the measure du/u. It reads

Lθ∗ f (θ) =
∫ 1

0

(
f ((1 − u)θ + uθ∗) − f (θ)

)du
u

. (55)

We then have the following intertwining result.

Lemma 3.2 For a function f : [0,+∞) → R which is integrable with respect to the Expo-
nential distribution νθ define the intertwiner

G f (θ) =
∫ ∞

0
f (x)

e−x/θ

θ
dx .

The boundary generator of the continuous harmonic process (54) and the boundary generator
of the hidden parameter model (55) are intertwined as

GLθ∗ = Lθ∗G. (56)
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Proof We have

(GLθ∗ f )(θ) =
∫ ∞

0
dx

e−x/θ

θ
Lθ∗ f (x) (57)

=
∫ ∞

0
dx

e−x/θ

θ

(∫ 1

0

du

u
( f (x(1 − u)) − f (x)) +

∫ ∞

0

du

u
e−u( f (x + uθ∗) − f (x))

)

and we also have

(Lθ∗G f )(θ) =
∫ 1

0

du

u

(
G f ((1 − u)θ + uθ∗) − G f (θ)

)
(58)

=
∫ 1

0

du

u

( ∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗ f (x) −
∫ ∞

0
dx

e− x
θ

θ
f (x)

)
.

It suffices to see (56) for the functions f (x) = xn/n! (for all n ∈ N). I.e., we have to prove

GLθ∗ f = Lθ∗G f (59)

for those f . Plugging this f into (57) we get

(GLθ∗ f )(θ) =
∫ ∞

0
dx

e−x/θ

θ

(∫ 1

0

du

u

(
xn(1 − u)n

n! − xn

n!
)

+
∫ ∞

0

du

u
e−u

(
(x + uθ∗)n

n! − xn

n!
))

= θn
∫ 1

0

du

u
((1 − u)n − 1) +

n∑
k=1

θn−k(θ∗)k 1

k!
∫ ∞

0

du

u
e−uuk

= θn
∫ 1

0

du

u
((1 − u)n − 1) +

n∑
k=1

θn−k(θ∗)k 1
k
. (60)

Plugging f (x) = xn/n! into (58) we get

(Lθ∗G f )(θ) =
∫ 1

0

du

u

( ∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗
xn

n! −
∫ ∞

0
dx

e− x
θ

θ

xn

n!
)

=
∫ 1

0

du

u

(
((1 − u)θ + uθ∗)n − θn

)

= θn
∫ 1

0

du

u
((1 − u)n − 1) +

n∑
k=1

θn−k(θ∗)k 1
k
. (61)

This completes the proof. ��
We define the generator of the boundary driven continuous harmonic process

L f (ζ ) =
∑
i, j∈V

p(i, j)
∫ 1

0

1

u

(
( f (ζ − uζi δi + uζi δ j ) − f (ζ )) + ( f (ζ − uζ j δ j + uζ j δi ) − f (ζ ))

)

+
∑
i∈V

c(i)

(∫ 1

0

du

u
( f (ζ − uζi δi ) − f (ζ )) +

∫ 1

0

du

u
e−u( f (ζ + uθ∗

i δi ) − f (ζ ))

)
.

(62)

Here we associate reservoirs with parameters θ∗
i to site i ∈ V .

As a consequence of Theorem 3.2 and of the intertwining result of Lemma 3.2, we then
have for the boundary driven continuous harmonic process the following propagation of
mixtures of product of exponential distribution.
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Theorem 3.3 Consider the resevoir driven continuous harmonic model with generator (62).
Start the model from a product measure of the form

⊗
i∈V νθi , where νθi (dζi ) = e−x/θi

θi
dζi .

Then at time t > 0 the distribution is given by

Eθ

( ⊗
i∈V

νθi (t)

)
,

where the process (θi (t), i ∈ V , t ≥ 0) evolves according to the generator

L f (θ) =
∑
i, j∈V

p(i, j)
∫ 1

0

du

u

(
( f (θ − uθi δi + uθ j δi ) − f (θ)) + ( f (θ − uθ j δ j + uθi δ j ) − f (θ))

)

+
∑
i∈V

c(i)
∫ (

f (θ − uθi δi + uθ∗
i δi ) − f (θ)

)du
u

. (63)

When t → ∞, the reservoir driven continuous harmonic process converges to a unique
stationary measure which reads

∫ ( ⊗
i∈V

νθi

)
�

( ∏
i∈V

dθi

)
,

where the mixture measure � is the unique stationary measures of the associated hidden
parameter model, with generator (36).

3.4 Invariant Measure of the Single Site Hidden Parameter Model

When we consider the harmonic model with a single site in contact with two reservoirs with
θL = 0 and θR = 1, the generator of the associated hidden parameter model reads as follows
(cf. (55))

L0,1 f (θ) =
∫ 1

0

1

u
( f (θ(1 − u)) − f (θ))du

+
∫ 1

0

1

u
( f (u + θ(1 − u)) − f (θ))du. (64)

We then prove the following.

Proposition 3.2 The unique stationary distribution of the process with generator (64) is the
uniform distribution on [0, 1].

Proof To infer the stationarity of the uniform measure for the generator (64) it is convenient
to consider the harmonic model on a single edge which is given by

L12 f (ζ1, ζ2) =
∫ 1

0

du

u
( f (ζ1(1 − u), ζ2 + ζ1u) − f (ζ1, ζ2))

+
∫ 1

0

du

u
( f (ζ1 + ζ2u, ζ2(1 − u)) − f (ζ1, ζ2)) .

In this model ζ1 + ζ2 is conserved. Therefore, if we fix ζ1 + ζ2 = 1 then, substituting
ζ2 = 1− ζ1, we see that the action of the generator L12 on the ζ1 variable is exactly the same
as the action of the generator (64) on the θ variable. We know that the reversible measures
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for the generator L12 are product measures with marginals exponentials with identical scale
parameter, i.e., with joint density given by

1

θ2
e−ζ1/θe−ζ2/θ .

As a consequence, considering two independent exponential random variables, the distri-
bution of the first conditional to their sum being 1 is invariant for the generator (64). This is
exactly the uniform distribution. ��

For general reservoir case 0 ≤ θL ≤ θR the generator of the single-site hidden parameter
model reads

LθL ,θR f (θ) =
∫ 1

0

1

u
( f (θLu + θ(1 − u)) − f (θ))du

+
∫ 1

0

1

u
( f (θRu + θ(1 − u)) − f (θ))du. (65)

Using the change of variable x �→ θL + x(θR − θL), Proposition 3.2 implies that the uniform
distribution on [θL , θR] is invariant for the process with generator LθL ,θR .

3.5 The Invariant Measure of the Hidden Parameter Model on the Chain

In this section we consider the geometry of the chain {1, . . . , N } with boundary reser-
voirs at left and right end. The hidden parameter model is then a model on the state space
�N = [0,∞){1,...,N }. It is parametrized by the left and right reservoir parameters θL , θR .
The generator of the hidden parameter model is given by

L f (θ) = LθL
1 f (θ) + LθR

N f (θ) +
N∑
i=1

Li,i+1 f (θ), (66)

with boundary single site generators

LθL
1 f (θ) =

∫ 1

0

du

u
( f (θ − uθ1δ1 + uθLδ1) − f (θ)) (67)

LθR
N f (θ) =

∫ 1

0

du

u
( f (θ − uθN δN + uθRδN ) − f (θ)) (68)

and with single edge generators

(Li,i+1 f )(θ) =
∫ 1

0

du

u
( f (θ − uθiδi + uθi+1δi )

+ f (θ − uθi+1δi+1 + uθiδi+1) − 2 f (θ)). (69)

In this subsectionwe identify the stationarymeasure of the boundary driven hidden parameter
model on the chain. As a consequence of Theorem 3.3 this yields also a full characterization
of the non-equilibrium steady state of the boundary driven continuous harmonic model on
the chain (cf. also [4, 5, 11]).

Theorem 3.4 The invariant measure of the hidden parameter model with generator (66)
is the joint distribution of (U1:1, . . .UN :N ), the order statistics of N independent uniforms

123



Intertwining and Propagation of Mixtures… Page 21 of 33 21

on [θL , θR]. As a consequence, the invariant measure of the boundary driven continuous
harmonic model on the chain is a mixture of product of exponential distributions with means
(U1:1, . . .UN :N ).

Proof We will prove the case N = 2, θL = 0, θR = 1. As will turn out from the proof, there
is no loss of generality in considering the case N = 2, due to the Markovian structure of the
joint distribution of order statistics. The restriction θL = 0, θR = 1 can be generalized via
elementary translation and scaling. Let us call
2

0,1 the joint distribution of the order statistics

of two independent uniforms on [0, 1]. Let us call 
1
a,b the distribution of one uniform on

[a, b]. Then we have the following conditional distributions


2
0,1(dθ2|θ1 = a) = 
1

a,1(dθ2), 
2
0,1(dθ1|θ2 = b) = 
1

0,b(dθ1).

So let us now consider the generator (66) for N = 2, θL = 0, θR = 1. Then we want to prove
that ∫

L f (θ1, θ2)

2
0,1(dθ1, dθ2) = 0, (70)

where

L f (θ1, θ2) =
∫ 1

0

du

u
( f ((1 − u)θ1, θ2) − f (θ1, θ2))

+
∫ 1

0

du

u
( f ((1 − u)θ1 + uθ2, θ2) − f (θ1, θ2))

+
∫ 1

0

du

u
( f (θ1, (1 − u)θ2 + uθ1) − f (θ1, θ2))

+
∫ 1

0

du

u
( f (θ1, u + (1 − u)θ2) − f (θ1, θ2)) . (71)

Now we observe that for the first two terms in the right-hand side of (71) the action of the
generator on the θ1 variable is the same as the action of a reservoir generator on one site,
with left parameter θL = 0 and right parameter θR = θ2 (cf. (65)). For this generator, we
know that the invariant measure is uniform on [0, θ2], which coincides with the conditional
distribution 
2

0,1(dθ1|θ2). Therefore,
∫


2
0,1(dθ1, dθ2)

∫ 1

0

du

u
( f ((1 − u)θ1, θ2) − f (θ1, θ2))

+
∫


2
0,1(dθ1, dθ2)

∫ 1

0

du

u
( f ((1 − u)θ1 + uθ2, θ2) − f (θ1, θ2))

=
∫



2,2
0,1(dθ2)

(∫

2

0,1(dθ1|θ2)
∫ 1

0

du

u
( f ((1 − u)θ1, θ2) − f (θ1, θ2))

+
∫ 1

0

du

u
( f ((1 − u)θ1 + uθ2, θ2) − f (θ1, θ2))

)
= 0. (72)

Here we used the notation

2,2
0,1(dθ2) for the second marginal of the measure
2

0,1(dθ1, dθ2),

and in the last step we used the invariance of the conditional distribution
2
0,1(dθ1|θ2) for the

reservoir generator with one site and left parameter zero, right parameter θ2. Similarly, the
action of the last two terms of the generator in the right-hand side of (71) on the θ2 variable
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is the same as the action of a reservoir generator on one site, with left parameter θL = θ1 and
right parameter θR = 1. As a consequence

∫

2

0,1(dθ1, dθ2)

∫ 1

0

du

u
( f (θ1, (1 − u)θ2 + uθ1) − f (θ1, θ2))

+
∫


2
0,1(dθ1, dθ2)

∫ 1

0

du

u
( f (θ1, u + (1 − u)θ2) − f (θ1, θ2))

=
∫



2,1
0,1(dθ1)

∫

2

0,1(dθ2|θ1)
(∫ 1

0

du

u
( f (θ1, (1 − u)θ2 + uθ1) − f (θ1, θ2))

+
∫ 1

0

du

u
( f (θ1, u + (1 − u)θ2) − f (θ1, θ2))

)
= 0. (73)

Here we used 

2,1
0,1(dθ1) for the first marginal of the measure 
2

0,1(dθ1, dθ2), and in the

last step we used the invariance of the conditional distribution 
2
0,1(dθ2|θ1) for the reservoir

generator with one site and left parameter θ1, right parameter 1. This finishes the proof of
the case N = 2.

The general case is now a straightforward generalization via the Markovian struc-
ture of the joint distribution of order statistics. Indeed, let us call 
N (dθ1, . . . , dθN ) the
joint distribution of the order statistics of N uniforms on [θL , θR]. Then conditional on
θ1, . . . , θi−1, θi+1, . . . , θN , the variable θi is uniform on [θi−1, θi+1] and the terms in the
generator acting on the variable θi exactly coincide with the action of the reservoir generator
on a single site with left reservoir parameter θi−1 and right reservoir parameter θi+1, where
we made the convention θ0 = θL , θN+1 = θR . ��

Themain reasonwhywe are able to identify the invariantmeasure for the hidden parameter
model on the chain can be summarized as follows. Consider the chain with left boundary
parameter θL and right boundary parameter θR . Then the generator of the hidden parameter
model has the form

L = Lθ0
1 +

N∑
i=1

Li,i+1 + LθN+1
N . (74)

The action of this generator on the variable θi coincides with the action of the generator (65)
with θL = θi−1, θR = θi+1. In other words, the generator from (74) can be rewritten as

L =
N∑
i=1

Lθi−1,θi+1
i , (75)

where Lθi−1,θi+1
i is the generator (65) with θL = θi−1, θR = θi+1 acting on the θi variable.

Therefore, if we call 
1
θL ,θR

(dθ) the invariant measure of the process with generator (65)
describing the action of a left and right reservoir on a single site (which is uniform for the
generator (65)), then we can describe the invariant measure of the generator (74) as follows.
Let 
N

θ0,θN+1
(dθ1, . . . , dθN ) be a probability measure such that its conditional distributions

are given by

N

θ0,θN+1
(dθi |θ1, . . . , θi−1, θi+1, . . . θN ) = 
1

θi−1,θi+1
(dθi ),

then 
N
θ0,θN+1

(dθ1, . . . , dθN ) is invariant for the generator (74).
So we conclude that for every model for which one has this structure of the generator

(i.e., (75)), one can obtain its invariant measure once one has identified the invariant measure
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1
θL ,θR

(dθ) of the model with a single site between a left and right reservoir. As we will see
below, this is the case for the generalized harmonic models parametrized by s > 0.

3.6 The Generalized Harmonic Model with Parameter s > 0: Bulk Generator

The model from the previous section is a special case of a one-parameter family of so-called
generalized “harmonic models”. For these models, the measure M in (37) reads

M(du) = (1 − u)2s−1

u
du. (76)

The corresponding discrete harmonic models have the measure

M(k, n) = 1

k

	(n + 1)	(n − k + 2s)

	(n + 2s)	(n − k + 1)
. (77)

Considering the generalized harmonic models on a graph, we have then duality between the
discrete model and the continuous model with duality functions

Dm(ξ, x) =
∏
i∈V

dm(ξi , xi ), (78)

with dm(k, x) = xk	(2s)
	(2s+k) and self-duality of the discrete model with self-duality functions

DF (ξ, η) =
∏
i∈V

dF (ξi , ηi ), (79)

with dF (k, n) = I (k ≤ n)
n!	(2s)

(n−k)!	(2s+k) . Moreover, the continuum model and the discrete
model are Poisson intertwined. See [10, 11] for a proof of these dualities. As a consequence,
we have the analogue of Theorem 3.1, if one replaces the duality functions Dm and DF by the
ones in (78), resp. (79). The reversible productmeasures are nowgiven by products ofGamma
distributions for the continuum model, and by products of discrete Gamma distributions
for the discrete model. As a consequence, we also have the analogue of Theorem 3.2 if
one replaces the exponential νθ marginals by the corresponding Gamma marginals for the
continuum model, i.e.,

νθ (dx) = x2s−1

	(2s)θ2s
e−x/θdx (80)

or by the corresponding discrete Gamma marginals for the discrete model

νθ (n) = 1

n!
(

θ

1 + θ

)n
	(2 s + n)

	(2 s)
(1 + θ)−2 s .

3.7 The Generalized Harmonic Model with Parameter s > 0: Boundary Generator

The boundary generator with reservoir parameter θ∗ is [10] (see also Remark 3.2)

Lθ∗ f (x) =
∫ 1

0

du

u
(1 − u)2s−1 ( f ((1 − u)x) − f (x))

+
∫ ∞

0

du

u
e−u (

f (x + uθ∗) − f (x)
)
. (81)
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The first term models the exit of mass to the reservoir, the second term models the input of
mass from the reservoir. Denoting by νθ the Gamma distribution (80), the natural candidate
intertwiner then reads

G f (θ) =
∫ ∞

0
f (x)νθ (dx). (82)

The candidate generator associated to a reservoir with parameter θ∗ in the corresponding
hidden parameter model is given by

Lθ∗ f (θ) =
∫ 1

0

du

u
(1 − u)2s−1 (

f ((1 − u)θ + uθ∗) − f (θ)
)
. (83)

We can now state the analogue of the intertwining relation of Lemma 3.2.

Lemma 3.3 The boundary generator of the generalized continuous harmonic process (81)
and the boundary generator of the hidden parameter model (83) are intertwined as

GLθ∗ f = Lθ∗G f . (84)

Proof It suffices to see (84) for the functions f (x) = xn 	(2 s)
	(2 s+n)

(for all n ∈ N). We have

(GLθ∗ f )(θ)

=
∫ ∞

0
dx

e−x/θ

θ

(∫ 1

0

du

u
(1 − u)2s−1 (

xn(1 − u)n − xn
)

+
∫ ∞

0

du

u
e−u (

(x + uθ∗)n − xn
)) 	(2s)

	(2s + n)

= θn
∫ 1

0

du

u
(1 − u)2s−1((1 − u)n − 1)

+
n∑

k=1

θn−k(θ∗)k n!
k!(n − k)!

∫ ∞

0

du

u
e−uuk

	(2s + n − k)

	(2s + n)

= θn
∫ 1

0

du

u
(1 − u)2s−1((1 − u)n − 1)

+
n∑

k=1

θn−k(θ∗)k 1
k

	(2s + n − k)

	(2s + n)

	(n + 1)

	(n + 2s)
(85)

and we also have

(Lθ∗G f )(θ)

=
∫ 1

0

du

u
(1 − u)2s−1

( ∫ ∞

0
dx

e− x
(1−u)θ+uθ∗

(1 − u)θ + uθ∗ x
n −

∫ ∞

0
dx

e− x
θ

θ
xn

) 	(2s)

	(2s + n)

=
∫ 1

0

du

u
(1 − u)2s−1

(
((1 − u)θ + uθ∗)n − θn

)

= θn
∫ 1

0

du

u
(1 − u)2s−1((1 − u)n − 1) +

n∑
k=1

θn−k(θ∗)k 1
k

	(2s + n − k)

	(2s + n)

	(n + 1)

	(n + 2s)
.

(86)

This completes the proof. ��
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The generator of the hidden parameter model associated to two reservoirs acting on a
single site is then given by

LθL ,θR f (θ) = LθL f (θ) + LθR f (θ). (87)

The following lemma identifies the invariant measure of L0,1.

Lemma 3.4 The unique invariant measure of the process with generator (87) with θL =
0, θR = 1 is equal to the conditional distribution


0,1(dy1) := νθ ⊗ νθ (dy1|y1 + y2 = 1).

In particular, this is given by the Beta distribution

Beta(2 s, 2 s)(dθ) = θ2 s−1(1 − θ)2 s−1

B(2 s, 2 s)
dθ,

where B(a, b) denotes the Beta function.

Proof The action ofL0,1 on the θ variable coincides with the action of the generator (37) with
M(du) = du

u (1− u)2 s−1 when we start from y1 + y2 = 1, and consider the action on the y1
variable. The product measure νθ ⊗ νθ is a reversible measure, and the event y1 + y2 = 1 is
invariant. As a consequence, the conditioned measure νθ ⊗ νθ (dy1|y1 + y2 = 1) is invariant.
Since νθ is Gamma distributed with shape parameter 2s, then the conditional distribution
νθ ⊗ νθ (dy1|y1 + y2 = 1) is the symmetric Beta distribution with parameter 2s. ��

3.8 Invariant Measure of the Generalized Harmonic Model on the Chain

As a consequence of the intertwining of the boundary generator described in Sect. 3.7, we
obtain the analogue of Theorem 3.3 for the full set of boundary-driven generalized harmonic
models with parameter s. In order to understand the structure of the invariant measure in the
setting of the chainwith left and right boundary reservoirs, we have to understand the invariant
measure of the hidden parameter model. We have seen in Lemma 3.5 that the measure


0,1
1 is

the distribution Beta(2s, 2s)[dθ ]. Let us call BθL ,θR (dθ) the corresponding recentered and
rescaled distribution which is such that under this distribution

θ − θL

θR − θL

is Beta(2s, 2s) distributed.
Then, following the line of argument of the proof of Theorem 3.4 the invariant measure


N (dθ1, . . . , dθN ) is such that its conditional distributions are given by


N (dθi |θ0, . . . , θi−1, . . . , θi+1, . . . , θN+1) = Bθi−1,θi+1(dθi ).

This yields exactly the joint distribution obtained in [4], i.e.,


N (dθ1, . . . , dθN ) = C(N , 2s, θL , θR)

N+1∏
i=1

(θi − θi−1)
2s−11l(θL ≤ θ1 ≤ . . . ≤ θN ≤ θR),

(88)
where C(N , 2s, θL , θR) is the normalization constant

C(N , 2 s, θL , θR) = 1

(θR − θL)2 s(N+1)−1

	(2 s(N + 1))

	(2 s)N+1 .

We summarize the finding of this section in the following theorem.
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Theorem 3.5 The invariant measure of the hidden parameter model with generator

L f (θ) =
∫

du

u
(1 − u)2s−1

(
f (θ − uθ1δ1 + uθLδ1) − f (θ)

)

+
N∑
i=1

∫ 1

0

du

u
(1 − u)2s−1 ( f (θ − uθiδi + uθi+1δi )

+ f (θ − uθi+1δi+1 + uθiδi+1) − 2 f (θ))

+
∫

du

u
(1 − u)2s−1

(
f (θ − uθN δN + uθRδN ) − f (θ)

)
(89)

is the measure (88). As a consequence, the invariant measure of the boundary driven contin-
uous harmonic model with parameter s defined by the generator

L f (ζ )

=
∫ 1

0

du

u
(1 − u)2s−1 ( f (ζ − uδ1) − f (ζ )) +

∫ ∞
0

du

u
e−u ( f (ζ + uθLδ1) − f (ζ ))

+
N∑
i=1

∫ 1

0

du

u
(1 − u)2s−1 (

f (ζ − uζi δi + uζi δi+1) + f (ζ − uζi+1δi+1 + uζi+1δi ) − 2 f (ζ )
)

+
∫ 1

0

du

u
(1 − u)2s−1 ( f (ζ − uδN ) − f (ζ )) +

∫ ∞
0

du

u
e−u ( f (ζ + uθRδN ) − f (ζ )) (90)

is a mixture of product of Gamma distributions with mixing measure (88).

3.9 General Redistribution Rules and Reservoirs

We close this section by investigating intertwining for the general mass redistribution model
with generator (37). We also discuss a general definition of reservoirs which is naturally
associated to the the general mass redistribution model.

We assume that the measure M in (37) is chosen in such a way that the corresponding
process has a one-parameter family of reversible product measures with marginals denoted
by νθ (dx). E.g. for the choice M(du) = (1/u)du, νθ (dx) = 1

θ
e−x/θdx ; for the choice

M(du) = (1/u)(1− u)2s−1du, νθ (dx) = 1
θ
e−x/θ x2 s−1dx . The natural boundary generator

with reservoir parameter θ∗ is given by

Lθ∗ f (x) =
∫ 1

0
M(du) ( f ((1 − u)x) − f (x))

+
∫ ∞

0
νθ∗(dy)

∫ 1

0
M(du) ( f (x + uy) − f (x)) . (91)

As in the KMP process, this choice of the reservoir in inspired by the idea that a site interacts
with the reservoir as it does with the bulk sites it is connected to; however the energy of the
reservoirs is random and sampled from the distribution νθ∗ .

In the corresponding hidden parameter model, the candidate generator associated to a
reservoir with parameter θ∗ is then given by

Lθ∗ f (θ) =
∫ 1

0
M(du)

(
f ((1 − u)θ + uθ∗) − f (θ)

)
(92)
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and the generator of the hidden parameter model associated to two reservoirs acting on a
single site is

LθL ,θR f (θ) = LθL f (θ) + LθR f (θ). (93)

The following lemma identifies the invariant measure of L0,1 in terms of the measure νθ .

Lemma 3.5 The unique invariant measure of the process with generator (93) with θL =
0, θR = 1 is equal to the conditional distribution


0,1(dx1) := νθ ⊗ νθ (dx1|x1 + x2 = 1).

In particular, the latter does not depend on θ .

Proof The action of L0,1 on the θ variable coincides with the action of the generator (37)
when we start from y1 + y2 = 1, and consider the action on the y1 variable. By assumption,
νθ ⊗ νθ is a reversible measure, and the event y1 + y2 = 1 is invariant. As a consequence,
the conditioned measure νθ ⊗ νθ (dy1|y1 + y2 = 1) is invariant. ��

We introduce the natural candidate intertwiner as

G f (θ) =
∫ ∞

0
f (x)νθ (dx) (94)

and its tensorization

G f ((θi )i∈V ) =
∫

f ((xi )i∈V )
⊗

νθi

(∏
i

dxi
)
. (95)

To discuss intertwining for the boundary-driven model we need to establish conditions guar-
anteeing that

GLθ∗ = Lθ∗G. (96)

In order to obtain the intertwining (96) we make the following natural scaling assumption on
the measure νθ : ∫

νθ (dx)x
n = Rnθ

n . (97)

Here we implicitly assumed that all the moments are finite. We moreover assumed that the
measures νθ are uniquely determined by their moments. Then we have the following.

Lemma 3.6 The intertwining relation (96) is satisfied if and only if for all n and k ∈ {0, . . . , n}
we have

Rn−k Rk

∫ 1

0
uk M(du) = Rn

∫ 1

0
M(du)uk(1 − u)n−k . (98)

Proof We start from (96) and fill in the function f (x) = xn . Then the left-hand side equals

(G(Lθ∗ f ))(θ) = Rnθ
n
∫ 1

0
M(du)((1 − u)n − 1)

+
n∑

k=1

θn−k(θ∗)k Rn−k Rk

(
n

k

) ∫ 1

0
M(du)uk . (99)
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The right-hand side equals

(Lθ∗(G f ))(θ) = Rnθ
n
∫ 1

0
((1 − u)n − 1)M(du)

+
n∑

k=1

θn−k(θ∗)k Rn

(
n

k

) ∫ 1

0
uk(1 − u)n−kM(du). (100)

Because both expressions have to be equal for all values of θ, θ∗, we obtain (98). ��

The following corollary then proves that (98) is satisfied for the harmonic model with
s > 0.

Corollary 3.1 Let νθ be the Gamma distribution with scale parameter θ and shape parameter
2s, i.e., the probability measure given in (80), and assume

M(du) = (1 − u)2s−1

u
du. (101)

Then the moment relation (98) is satisfied.

Proof For the measure (101) we have Rn = 	(2 s+n)
	(2 s) . Therefore, using (101), the left-hand

side of (98) equals

Rn−k Rk

∫ 1

0
uk M(du) = 	(n − k + 2 s)

	(2 s)

	(k + 2 s)

	(2 s)

	(k)	(2 s)

	(k + 2 s)

and the right-hand side of (98) equals

Rn

∫ 1

0
M(du)uk(1 − u)n−k = 	(n + 2 s)

	(2 s)

	(k)	(n − k + 2 s)

	(n + 2 s)
.

Hence both expressions are indeed equal and the relation (98) is satisfied. ��

Remark 3.2 1. Equation (98) can in principle allow other solutions than those of Corollary
3.1. We conjecture however that this is not the case, i.e., that (101) provides the only
solution.

2. As a consequence of Corollary 3.1 we deduce that the boundary-driven generalized
harmonic models with reservoirs (81) and the boundary-driven generalized harmonic
models with reservoirs

Lθ∗ f (x) =
∫ 1

0

du

u
(1 − u)2s−1 ( f ((1 − u)x) − f (x))

+
∫ ∞

0
νθ∗(dy)

∫ 1

0

du

u
(1 − u)2s−1 ( f (x + uy) − f (x)) (102)

have the same hidden parameter model. In fact, the generator (81) and the generator
(102) are the same as can be seen from an explicit computation which we detail below
for the readers convenience.

Lemma 3.7 On the functions f (x) = xn the generators (81) and (102) have identical action.
As a consequence they are equal.
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Proof To prove identical action on f (x) = xn , we have to prove that

∫
νθ∗(dy)

∫ 1

0

du

u
(1 − u)2s−1((x + uy)n − xn) =

∫ ∞

0

du

u
e−u((x + uθ∗)n − xn).

(103)

Herewe recall that νθ∗ is theGammadistributionwith shape parameter 2s and scale parameter
θ∗ defined in (21) above.After applying the binomial formula combinedwith

∫ ∞
0 xne−xdx =

n!, the right hand side of (103) equals,
∫ ∞

0

du

u
e−u((x + uθ∗)n − xn) =

n−1∑
k=0

(
n

k

)
xk(θ∗)n−k	(n − k).

After applying the binomial formula combined with exchanging the integral over y with the
integral over u, the left hand side of (103) equals:

∫ ∞

0

du

u
(1 − u)2s−1

∫ ∞

0
νθ∗(dy)

(
n−1∑
k=0

(
n

k

)
xk(uy)n−k

)

=
n−1∑
k=0

(
n

k

)
xk

∫ 1

0
du(un−k−1(1 − u)2s−1

∫ ∞

0
νθ∗(dy)yn−k

=
n−1∑
k=0

(
n

k

)
xk

	(n − k)	(2s)

	(n − k + 2s)
(θ∗)n−k 	(2s + n − k)

	(2s)

=
n−1∑
k=0

(
n

k

)
xk(θ∗)n−k	(n − k). (104)

The consequence that the generators (81) and (102) are equal follows from linearity and the
fact that polynomials are a core. ��

4 Poisson Intertwining

The class of models for which the non-equilibrium steady state is a mixture of product
measures is not limited to models of KMP or harmonic type. In this section we consider the
boundary driven symmetric inclusion process (SIP) and we prove that the stationary measure
is a mixture of Poisson product measures. This is a different situation compared to the
previous sections, because the Poisson product measures are not the stationary measures of
the SIP. The stationary measures of SIP are product of discrete Gamma distributions, which
are however themselves mixtures of Poisson product measures. The Gamma intertwiners
which produce hidden parameter models for KMP and harmonic models do not lead to
an intertwined Markov process for SIP. One can verify by explicit computation that this
Gamma intertwiner leads to a second order differential operator with non-positive definite
second order part, which therefore can not be interpreted as the generator of a Markov
process. To prove the intertwining result for SIP, we use the Poisson intertwiner of the
classical creation and annihilation operators which transforms the boundary generators into
the boundary generators of the Brownian energy process (BEP). Using this same intertwiner,
we also revisit the simplest example of independent random walkers, by which we then
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recover the propagation of Poisson product measures, which is a version of Doob’s theorem
[7], or alternatively, of the random displacement theorem in point process theory [15].

4.1 Boundary Driven SIP

First, the SIP on two sites is the Markov process on N
2 with generator

L f (n1, n2) = n1(2s + n2)( f (n1 − 1, n2 + 1) − f (n1, n2))

+n2(2s + n1)( f (n1 + 1, n2 − 1) − f (n1, n2)). (105)

Given a vertex set V and irreducible edge weights p(i, j), we define the SIP as the Markov
process with generator ∑

i j

p(i, j)Li j , (106)

where, as usual, Li j is the generator (105) acting on the variables ηi , η j . The boundary
generator is given by

Lα,γ f (n) = α(2s + n)( f (n + 1) − f (n)) + γ n( f (n − 1) − f (n)). (107)

We assume α < γ , in that case Lα,γ admits a unique stationary measure which is the discrete
Gamma distribution (5) with θ = α

γ−α
.

The boundary driven model with boundary reservoirs is then given by∑
i j

p(i, j)Li j +
∑
i∈V

c(i)Lαi ,γi
i , (108)

where Li denotes the generator (107) acting on the variable ηi .
We first rewrite the boundary generators in terms of creation and annihilation operators.

The latter are defined as acting on a function f : N → R via

a f (n) = n f (n − 1)

a† f (n) = f (n + 1), (109)

where in (109) it is understood a f (0) = 0.We denote by ai , resp. a
†
i these operators acting on

the variable ηi . Then these operators satisfy the conjugate Heisenberg algebra commutation
relations, i.e.

[ai , a j ] = [a†i , a†j ] = 0, [a†i , a j ] = δi, j (110)

and we can rewrite the boundary generator (107) as

Lα,γ = 2sα(a† − I ) + α(aa†a† − aa†) + γ (a − aa†). (111)

We first define the Poisson intertwining which turns the operators a, a† into differential
operators.

Lemma 4.1 Define, for f : N → R and z ≥ 0

G f (z) =
∞∑
n=0

zn

n! e
−z f (n). (112)

Then we have

Ga f = AG f , Ga† f = A†G f , (113)
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with

A f (z) = z f (z), A† f (z) = f ′(z) + f (z). (114)

As a consequence
GLα,γ = Lα,γ G, (115)

with
Lα,γ = αz∂2z + (2sα − (γ − α)z)∂z . (116)

Proof The intertwinings (113) follow from a direct computation. Then (115) follows from
(111) and (113). ��

Notice that G f (z) = ∫
f (n)πz(dn) where πz is the Poisson measure with parameter z. We

extend as usual the intertwining 
 by tensorization, i.e., for f : NV → R

G f (ζ ) =
∫

f (η)(⊗πζi )(dη),

then we have the following intertwining result.

Theorem 4.1 The boundary driven SIP with generator (108) is Poisson intertwined with the
boundary driven BEP process with generator

L =
∑
i, j∈V

p(i, j)Li j +
∑
i∈V

c(i)Lαi ,γi
i . (117)

Here Li j is the single edge generator of the Brownian enery process (BEP), given by

Li j = ζiζ j (∂i − ∂ j )
2 − 2s(ζi − ζ j )(∂i − ∂ j ). (118)

Here ∂i denotes partial derivative w.r.t. ζi , and Lαi ,γi
i is (116) acting on the variable ζi .

As a consequence we have the following result on propagation of Poisson product mea-
sures. If we start the boundary driven SIP from the product Poisson measure ⊗i∈Vπζi then
we have

(⊗i∈Vπζi )S(t) = Eζ

(⊗i∈Vπζi (t)
)
, (119)

where ζ(t) evolves according to the generator L in (117). As a further consequence the
unique stationary measure of the boundary driven SIP is a mixture of Poisson measures with

∫
(⊗i∈Vπζi )�

( ∏
i∈V

dζi

)
,

where the mixture measure � is the unique stationary measure of the process with generator
(117).

Proof The intertwining follows from the combination of Lemma 4.1 with the fact that the
single edge generators of SIP and BEP are Poisson intertwined see e.g. [16], or [6], i.e., for
all i j

GLi j = Li jG.

��
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4.2 Independent RandomWalkers

The independent random walk process on two sites is given by the generator

L12 f (n1, n2) = n1( f (n1 − 1, n2 + 1) − f (n1, n2)) + n2( f (n1 − 1, n2 + 1) − f (n1, n2))

and the boundary generator

L f (n) = α( f (n + 1) − f (n)) + γ n( f (n − 1) − f (n)).

Then the full boundary driven model for independent random walkers reads as follows,

L =
∑
i, j∈V

p(i, j)Li j +
∑
i∈V

c(i)Lαi ,γi
i . (120)

In terms of the creation and annihilation operators the generators read

Li j = −(ai − a j )(a
†
i − a†j ) (121)

for the single edge generator and

Lαi ,γi
i = αi (a

†
i − I ) + γi (ai − aia

†
i ) (122)

for the boundary generator. Therefore, using Lemma 4.1, we obtain that the boundary gen-
erator is Poisson intertwined with the operator

Lαi ,γi
i = αi (A

†
i − I ) + γi (Ai − Ai A

†
i ) = (αi − γi zi )∂i (123)

and the single edge generator is intertwined with the operator

Li j = −(ζi − ζ j )(∂i − ∂ j ). (124)

Notice that Lαi ,γi
i and Li j are first order differential operators and therefore the process build

from them is a deterministic system of ODEs. We then immediately obtain the following
analogue of Theorem 4.1.

Theorem 4.2 The boundary driven independent random walkers with generator (120) is
Poisson intertwined with the boundary driven deterministic process with generator

L =
∑
i, j∈V

p(i, j)Li j +
∑
i∈V

Lαi ,γi
i . (125)

Here Li j is the single edge generator (124) and Lαi ,γi
i is (123).

As a consequence we have the following. When we start the boundary driven SIP from the
product Poisson measure ⊗i∈Vπζi then we have

(⊗i∈Vπζi )S(t) = ⊗i∈Vπ
Z ζ
i (t)

, (126)

where Z ζ (t) evolves according to the deterministic generator L in (125). As a further conse-
quence the unique stationary measure of the boundary driven independent random walkers
is a Poisson product measure

⊗i∈Vπζ ∗
i
.

ζ ∗ is the unique fixed point of the deterministic system Z ζ (t).
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