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Abstract

We propose an operator preconditioner for general elliptic pseudodifferential equa-
tions in a domain §2, where §2 is either in R” or in a Riemannian manifold. For
linear systems of equations arising from low-order Galerkin discretizations, we obtain
condition numbers that are independent of the mesh size and of the choice of bases
for test and trial functions. The basic ingredient is a classical formula by Boggio for
the fractional Laplacian, which is extended analytically. In the special case of the
weakly and hypersingular operators on a line segment or a screen, our approach gives
a unified, independent proof for a series of recent results by Hiptmair, Jerez-Hanckes,
Nédélec and Urzda-Torres. We also study the increasing relevance of the regularity
assumptions on the mesh with the order of the operator. Numerical examples validate
our theoretical findings and illustrate the performance of the proposed preconditioner
on quasi-uniform, graded and adaptively generated meshes.
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1 Introduction

This article considers the Dirichlet problem for an elliptic pseudodifferential operator
A of order 2s in a bounded Lipschitz domain §2, where §2 is either a subset of R”, or,
more generally, in a Riemannian manifold I":

Au=f ing2,

u=0 inI\£. )

Such pseudodifferential boundary problems are of interest in several applications.
For instance, the integral fractional Laplacian A = (—A)® and its variants A =
div(c(x)V*~1u) in a domain £2 C R” arise in the pricing of stock options [13,
Chapter 12], image processing [22], continuum mechanics [14], and in the movement
of biological organisms [15,16] or swarm robotic systems [17]. By considering £2 C I
(with I" a Riemannian manifold), one can also study the equations for the weakly
singular (A = V) or hypersingular (A = W) operators arising from boundary integral
formulations of the first kind for an elliptic boundary problem on curve segments or on
open surfaces [46, Section 3.5.2]. Another interesting example would be, in potential
theory, where boundary problems of negative order arise for the Riesz potential [38,
Chapter 1, Section 3].

On the one hand, the bilinear form associated to A is nonlocal, and its Galerkin
discretization results in dense matrices. On the other hand, the condition number of
the Galerkin matrices when using low-order piecewise polynomial basis function is
of order O(h—2151), where 4 is the size of the smallest cell of the mesh. Therefore, the
solution of the resulting linear system via iterative solvers becomes prohibitively slow
on fine meshes.

The preconditioning of pseudodifferential equations has been considered in dif-
ferent contexts. Classically, boundary element methods have been of interest, where
multigrid and additive Schwarz methods [5,20,57], [46, Chapter 6], as well as operator
preconditioners [49] have been studied. A popular choice is operator preconditioning
based on an elliptic pseudodifferential operator of the opposite order —2s, yet it leads
to growing condition numbers when boundary conditions are not respected. Indeed, in
the case s = %, the achieved condition number grows like | log(h)|"*! forn = 1 [41,
Theorem 4.1] and n = 2 [12, Proposition 1.3.5]. We prove that the situation worsens
for |s| > %, and the condition number may increase like #' =215, as we discuss in
Sect. 5. Therefore, the “opposite order” strategy for A in (1) could be far from opti-
mal. This motivates the approach we pursue here, which incorporates the boundary
conditions.

The aforementioned suboptimality was recently overcome for the weakly singular
and hypersingular operators V and W on open 2d surfaces [34] and curve segments
[32], respectively. The proposed preconditioners were based on new exact formulas
for the inverses of these operators on the flat disk [33] and interval [—1, 1] [37], see
also [42]. It is important to mention that, in this context, this article provides a novel
and independent approach to the preconditioners used in [33,34]: As discussed in
Remark 2, by identifying £2 C R”" with the flat screen £2 x {0} ¢ R"*!, W coincides
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with the fractional Laplacian %(—A)S for s = %, while V coincides with %(—A)S for

s = — % Boggio’s classical formula (Equation (10) below) for the fractional Laplacian
in the unit ball of R", respectively its analytic extension to s € C, therefore recovers
the exact formulas for V-! and W~ from [33,37] as special cases. This connection
between the fractional Laplacian and boundary integral equations was only known
in 1D [37], and we extend it to arbitrary dimension. As a consequence, we obtain a
unified and general preconditioning strategy for pseudodifferential problems, which
includes V, W and (—A)%.

Recently, the fractional Laplacian has attracted interest in itself. Multigrid precon-
ditioners have been briefly mentioned in [4], while additive Schwarz preconditioners
of BPX-type are currently being investigated [9,18]. Applied to this particular operator
A, our results lead to the first operator preconditioner. This offers the advantage of ben-
efiting from all the rigorous results of the operator preconditioning theory, including
its applicability to non-uniformly refined meshes, while being easily implementable.
Indeed, solutions to (1) feature edge singularities, analogous to those for the fractional
Laplacian [29, Theorem 4]. Therefore, when discretizing with low-order finite ele-
ments, one requires local refinement to recover optimal convergence rates. Hence, it
becomes mandatory that preconditioners can deal with these non-uniform meshes.

Our main result for preconditioning can be found in Theorem 2; the proposed
preconditioner P is optimal in the sense that the bound for the condition number
neither depends on the mesh refinement, nor on the choice of bases for trial and test
spaces.

We verify that the preconditioner may be used on shape regular algebraically graded
meshes, which lead to quasi-optimal convergence rates for piecewise linear elements.
We prove that the required mesh assumptions also hold for a natural class of adaptively
refined meshes. By doing this, we show for the first time that operator precondition-
ing with standard low-order primal-dual finite element discretization does apply to
these adaptive meshes. Our proof in fact shows the H ' (£2)-stability of the generalized
(Petrov-Galerkin) L?(£2) projection on low-order finite element spaces, which may
also have applications beyond preconditioning.

Outline of this article: Section 2 recalls basic notions of fractional Sobolev spaces.
The fractional Laplacian and Boggio’s formula are discussed in Sect. 3. There we also
explain how to use the latter to define a bilinear form associated to the solution operator
in the ball. As special cases, we recover the recent solution formulas for the weakly
and hypersingular operators V and W. Section 4 introduces the pseudodifferential
Dirichlet problem (1). Next, in Sect. 5, we recall the operator preconditioning theory
and summarize discretization strategies under which Theorem 2 holds. In particular,
Sect. 5.2 discusses the case of adaptively refined meshes. The article concludes with
numerical experiments and their discussion in Sect. 6.

2 Sobolev spaces

We recall some basic definitions and properties related to Sobolev spaces of non-
integer order and to the fractional Laplacian. For further details we refer to [1,3,21].

@ Springer
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Let £2 C R" be a bounded Lipschitz domain, and for s € Ny, H*(§2) the Sobolev
space of functions in L2(£2) whose distributional derivatives of order s belong to
L2(£2). For s € (0, 00), we write m = |s] and 0 = s — m and define the Sobolev
space H®(£2) as

H*(2) :={v e H"(£2) : |0%|pno(2) < 00 V]a| =m} .

Here | - | go () is the Aronszajn-Slobodeckij seminorm

() —v(y)?
|U|H"(.Q) —//QXQ |x—y|"+20 dydx

H®(£2) is a Hilbert space endowed with the norm

10135 2y = I0lmegy + D 180150 q)-

lo|=m

Particularly relevant for this article are the Sobolev spaces [30, Chapter 4.1], [40,
Chapter 3]

H*(22) :={ve H*R") : supp v C 2}

of distributions whose extension by 0 belongs to H*(R"). In the literature, the spaces
HS (§2) are sometimes denoted by Hj,(£2).
We recall that when £2 is Lipschitz and % # 5 € (0,1), H* (£2) coincides with the
space H; (£2), which is the closure of C§°(§2) with respect to the H*-norm. Moreover,
for s € (0, %), ﬁs(.Q) = H°(£2) = Hy(£2). All three spaces differ when s = é
For negative s the Sobolev spaces are defined by duality, and in this article we denote
the duality pairing between H*(§2) and H *(£2) by (-, ‘) o. Using local coordinates,
the definition of the Sobolev spaces extends to a bounded domain £2 of a Riemannian
manifold I". For |s| < 1 the definition is independent of the choice of local coordinates,
if £2 is Lipschitz [3, Section 9].

3 The fractional Laplacian

Fors € (0, 1), we define the fractional Laplacian of a function u in the Schwartz space
S(R") by

u(x) —u(y)
A'u(x) =c lim _—
(=A)u(x) == ns lim, By [t —

v, (2)
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where B, (x) the n-dimensional ball of radius £ > 0 centered at x. The normalization
constant ¢, s is defined in terms of I functions:

2‘
B 22ssr(n4é s)
Cn,s A n M
72l (1 —%)
For generals > 0,wesetm := |s|,0 := s—m,anddefine (—A)’u = (—A)"(—A)°u
for u in the Schwartz space.

Equivalently, the fractional Laplacian may be defined in terms of the Fourier trans-
form on R" as

F((—=A)u) = |&|* Fu, )

see for example [45, Equation 25.2]. For s > 0 this formula extends (—A)*® to an
unbounded operator on L*(R"), as well as to an operator on the space of tempered
distributions S’ (R").

To continue the definition of (—A)* to complex values of s, recall that the homo-
geneous function 0 # £ +> |£|?* admits an extension to a (tempered) homogeneous
distribution on R" for s € C \ P [45, Equation 25.19] , with

P::{me%Z:mS—ﬁ}. 4)

Formula (3) then defines (—A)* fors € C\ P. As |£|* extends to a meromorphic
function of s € C with values in the space of tempered distributions, in the sense of
[26], so does (—A)* = F~! o |€|* o F as a meromorphic family in the space of
operators from S(R") to S’ (R"). We refer to [45, Section 25] for details, as well as for
the fact that (— A)® admits a holomorphic continuation to s = m € P on the subspace

D, = {u e SR") : Yo € N with |a| < —2m —n: (x%, u)pr = O} . 0B

For a careful investigation when s = —%, where @,,, consists of functions of mean 0,
see also [53, Section 3].

Formula (3) finally shows that (—A)® is an operator of order 2Re(s) and that for
s = 1 one recovers the ordinary Laplace operator. For a bounded domain £2 C R”,
the former can be stated as: there holds the continuity (—A)* : H* (£2) > H5(2)
fors € R.

3.1 Dirichlet problem for the fractional Laplacian
In this article the homogeneous Dirichlet problem for the fractional Laplacian plays

a special role as an “auxiliary problem”, which will help us construct preconditioners
for (1).
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For a bounded Lipschitz domain £2 € R" and f € L*(£2), it is formally given by:

{(—A)Su = f ing, ©

u=20 inR"\ 2.

For s € (0, 1), its variational formulation is expressed in terms of the bilinear form ¢
on HS(£2),

c(u,v) :=

Cn,s // (u(x) —u(y) W) —v(y) dy dx | )
D

2 |x _ y|n+23

where D := (R" x 2)U (2 xR")= (R" x R") \ (§£2¢ x £2¢). Similar formulas for
s > 1 may be found in [1, Section 1.1].
Note that formally

(. v) = (=AY, v)pn — an,s // N () —u(y) W) —v(y) dydx.

|x — y|rt2s

when u, v € H*(R"), and the second term vanishes on H 5(£2). Here (-, -)grn denotes
the duality pairing from Sect. 2.
Using the Fourier definition (3), the bilinear form

c(u, v) = (=) u, v)ge = (FL(E* Fu), v)gn = (FEP) % u, v)pn (8)

extends meromorphically to s € C \ P. Here, * denotes convolution. For Re(s) < 0
the inverse Fourier transform F~1|&|%* is locally integrable and the integrand is only
weakly singular. Specifically, F~ &[> = ¢, ¢|x| ™"~ for Re(s) < 0, s ¢ P ( [45,
Equation 25.25]). For s > O the relation between (8) and (7) is discussed in [45,
Section 25.4].

The weak formulation of (6) reads as follows:
Find u € H*(£2) such that

c(u, v) :/ fodx, Yve H(R). 9)
2

Moreover, the bilinear form c is continuous and elliptic for s > —% real: there exist
Ce, Bc > 0 with

c(u,v) < CC”u”ﬁS(Q)”v”ﬁS(Q)v C(u,u) > ,3c||u||2ﬁs(9) .

The ellipticity for s > 0 follows by definition of the H* (£2)-norm, while the case
s € (=7, 0) is a classical result in potential theory [38, Page 358].

Therefore, by the Lax-Milgram theorem, the variational problem (9) admits a unique
solution, and the solution operator f — u extends to an isomorphism from H ~*(£2)

to H%($2) forall s > -3
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For s < —7 ellipticity requires additional assumptions, as in (5). Although we
refrain from discussing these modifications in this article, it is worth pointing out that
ellipticity is well known forn = 1 and s = —% in the case of the weakly singular
integral operator from Remark 2 [37].

3.2 Solution operator in the unit ball

Let us write B for the unit ball B1(0) C R”". When £2 = By, explicit solution formulas
are available. For s > 0, the Green’s function in this case is given by

ts—l

- n
TR dt, Vx,y e R", x #£y. (10)

5 r(x,y)
Gs(x,y) = kn,s|x -l S_n/
0

(1= x4 =¥+ 2%
Here r(x, y) := Xy , Z+ = max{z, 0} and k, ; := BT )

For s € N, Formula (10) goes back to [6], while for s € (0, 1) it has long been
known in potential theory and Lévy processes (see e.g. [38, Chapter 1, Section 3] and
[44, Chapter 5, Equation 3]). The extension to arbitrary order s > 0 is more recent
and may be found in [1].

The following theorem from [1] shows that G in formula (10) indeed defines the
weakly singular integral kernel of the solution operator to (6) for s > 0. More precisely,
we have the following explicit formula for the solution of the Dirichlet problem for
the fractional Laplace operator in the unit ball By:

Theorem 1 (E, Theorem 1.4]) Let s, > 0,2s +« ¢ N, m := |s],and o := s —m.
For f € C*(B)), define

0, forx e R\ B
u(x) = )
fBl G‘Y(x’ y)f(y) dY7 fO}”x S B]

Thenu € CET4(By), 8'=%u € C"™9(B,) and
(=A)u=finB;, u=0inR"\Bj.

Here §(x) := dist(x, dB)) for x in a neighborhood of d13;.

In particular, u defines a solution to the weak formulation (9) relevant for finite element
approximations.
The previous theorem motivates us to

— derive formulas for G4 (x, y) which are easily computable for use as a precondi-
tioner; and
— extend the aforementioned formula to negative values of s.

With these purposes in mind, the following Lemma shows that Boggio’s formula
(10) can be implemented efficiently and allows further insight for general values of n
and s:
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Lemma1 Lets > 0. Then
_ _ n
Gy(x,y) = s Yknslx — y*7"r(x, y)* 2 Fy (5, s;s+ 15 —r(x, y)) ,

where 3 F) is the hypergeometric function.

Proof We need to prove

/r tsfl dt 7S . (I’l +1 )
s dt= — 58 ;).
o (t+ 1)}1/2 P 2171 2 S, 8

This, however, follows directly from the integral representation of > F7 [56],

r n !
2 F (E,s;s+ 1;—r> = fs+1)
2 res) Jo

—\' /-r ts—]
=sr —dt .
0o (1+1):2

SN )77 dt

O

Remark 1 For a generic value of s computational libraries are available to efficiently
evaluate the hypergeometric function 7 F71, see for example [43, Section 4]. For specific
values of s, explicit formulas for G, in terms of elementary functions are available
and allow for more efficient computations as highlighted in Remark 3.

The following result provides an explicit formula for the holomorphic continuation
of the integral kernel G from (10). We restrict ourselves to the case Re(s) > —%
relevant for applications.

Lemma2 The map (0, ) > s — G,(x,y) € D'(B x By) extends to a holomorphic
family of distributions for s > —%5. For N € Ny, the holomorphic continuation of
Gy (x, y) to the half-plane Re(s) > max{—N — 1, —5} is given by

N
Gs(x,y) = kn,s lx — Y|2S_n 1_[

% +j /r(x,y) SN i
pin s+ 0 (t+ 1)1+N+n/2
N (k-1 .
+S (1T 3t rix, y) . an
S\ s+ ] GHRE@ )+ D2

Proof Using integration by parts, for Re(s) > 0 we observe the identity

r(x,y) ts—l n r(x,y) 5 r(x y)s
——dt = — dt . .12
/0 (14 1)n/? 2s fo (14 0)t+n/2 +s(r(x, y) + 1)n/? (12)

@ Springer



Optimal operator preconditioning for pseudodifferential. ..

Together with (10), we obtain

_ no [T 15 dt r(x, y)*
Gs(x,y) = kyslx — y[» 7" ( /0 + Y (13)

g (1 + t)l+n/2 S(r(x, y) + 1)n/2

with the right hand side defined for s # 0, Re(s) > max{—1, —5}. Because '(s) has
1-2s

simple poles for s € —Np, but no zeros, and k,, ; = for x # y the kernel

0BT (s)%]
G, (x, y) extends holomorphically to s = 0, with a simple zero in s = 0. The asserted
formula follows for N = 0.

The proof for general N follows by induction: We assume that (11) holds for

N € Np. Note that for Re(s) > max{—N — 1, —%},

fr(x,)') $s+N % +N+1 /r(x,y) SN+
0 0

t= —————dt
(1+ t)1+N+n/2 s+ N+1 1+ t)2+N+”/2
r(x, y)

+ (s + N+ D(r(x,y) + DItN+n/2"

The right hand side of (12) is defined for s ¢ —No, Re(s) > max{—N —2, —5}. We
conclude,

ﬁ % +j r(x,y) SN it
L'l ; 0 (r + 1)1+N+n/2

Jj=0 tJ
N k—1 .

+Z 1—[%"‘1 r(x,Y)SH(
oSt ] 5+, y)+ 1)ktn/2
= ]:()

_ ﬁ 7+ 5+N+1 /f(w) AREARS dt
i S +J s+N+1Jo (1 + )2t N+n/2
r(x y)x+N+1

n .
(s + N+ D(r(x, y) + DHIFN+n/2 }
N k—1 .

+STI 3+ rix, y) _
izo \j=0 * +Jj ] G+l (x, y) 4+ DE/2

Equation (11) for N 4 1 follows. As above, (11) extends to s = —N — 1 because the
simple pole in the denominator is cancelled by the zero of the prefactor &, . O

Proposition 1 Let Re(s) > —75 and f € C3°(Bi). Then the distribution us :=
op(Gy) f € D'(B)) defined by

<Op(GS)f7 v)Bl = <GS7 f ® v)B[@Blﬂ Vv e C(?O(Bl)a
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belongs to H Re($)(B)) and satisfies the weak formulation (9),
c(ug, v) = / fvdx, Vve HR®) ().
2

Here, (—A)® is defined by the continuation of (3).

Proof From Theorem 1, note that for s € (0, 1) the function u; satisfies (—A)Su; =
(—A)* (op(Gy) f) = fin H™*(£2),1.e. uy satisfies the weak formulation (9). As both
the operator (—A)® with Dirichlet exterior conditions and op(G;) are holomorphic
for s in the connected set Re(s) > —%, the identity extends from s € (0, 1) to
Re(s) > —75. O

For numerical applications, we require the bilinear form of the solution operator
op(Gy). It is defined as

by (u, v) :=p-f./6/8Gs(x,y)u(y)v(X)dydx, (14)

for u, v € C®(B)).

The continuity and ellipticity of by in H*(B)) for all s > 0 follow from the conti-
nuity and ellipticity of c, as its inverse bilinear form. From the density of C*° (1) in
H~%(By), we conclude:

Lemma3 Let s > —35. The bilinear form by extends to a continuous and elliptic
bilinear formb; : H™* (B1)x H™*(B1) — R. More precisely, there exist Cy_, Bp, > 0,
such that

2
bs(u, v) < Colullp—Bylvla—sw) > bsu,u) = By llullfy—g,)-

At the time of writing this article, such explicit solution formulas are known for
very few specific domains other than 5 : the full space R” (from the Fourier transform
of |x|™¥), and the half space R’ (by antisymmetrization).

Remark 2 Problem (6) is closely related to boundary integral formulations. Let us
consider the restriction operator Ry : H(R") — H®(£2). By identifying 2 Cc R”
with the flat screen I" := £ x {0} ¢ R"T!, the hypersingular operator W for the
Laplace equation in the exterior domain R+ \ T coincides with R_; /20 %(—A) I/ 2,
while the weakly singular operator V coincides with Ry/; o %(—A)’l/ 2. Indeed, K
and K’ vanish on I'. Therefore, W is a multiple of the Dirichlet-to-Neumann operator
[46, Section 3.7] for the Laplace equation in the exterior domain R**! \ T [30,
Section 12.3], asis R_12 o (—A)l/2 [27, Chapter 11, Equation 11.72]. Similarly, V
and Ryp0(—A)" 1/2 are both multiples of the Neumann-to-Dirichlet operator. In these
cases, (10) and (13) recover recent formulas for the inverses of V and W, which have
been of interest in boundary integral equations. Let us compute these simplifications
for the relevant values of n, s:
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_ _ 1. . r -l _
a)n =2,s = 5: In this case fo T dt = 2 arctan(+/r), so that

1 _
Gipp(x,y) = —5lx =] Varctan(y/r(x, y)) .

Note that G/ coincides, up to a factor 2, with the kernel of the operator V for the
flat circular screen in 3d [33].
s—1
bn=1s= %: Here [ W dt = 2arsinh(+/r), and hence

G12(x, y) = 2ky1 parsinh(y/r (x, y)) = 2k1,1/21n (\/r(x, y) + /14 r(x, y)) )

Writing w(x) = +/1 — x2, one obtains

2 2 _
SrE + VTG = o(x)w(y) n 1+w(x) w(i) _ o@)w(y)+1—xy
|x — ¥l |x — ¥ |x — yl
_ 2 (0=0+ ©@® +0()))
Ix — yl '

This agrees with the kernel of the operator V from [32,37] up to a factor 2. Note
that k112 = %, and see [10] for a detailed discussion of the prefactor k, s in the
degenerate case n = 2s.

On=21s= —%: ‘We obtain
1 1 arctan(\/r(x, y))
Goipx,y)=—— 3+ 3 .
T \Vr(x, y)lx =yl lx —

Again, G_1, recovers, up to a factor 2, the kernel of the operator W for the flat
circular screen in 3d [33].

_ 1. : n [T t _ NG
dn=1s5= —3: In this case Xfo Wdt =~ so that

G_1(x,y) =— My et
—12(x,y) = Tlx —y2rix,y) wlx — yPo@o(y)

G _1/> matches, up to a factor —2, the kernel of the operator W for the interval in
2d, Formula (4.21) in [37].
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Remark 3 For the numerical experiments below, the cases whenn = 2 and s = }1, %,
and s = %, are also relevant. There we obtain:

Gija(x, y) = =2k 1 jalx — y| /2> ™/ (arctan((‘/Fe"”/“) + artanh(éﬁei”/“)) ,

Gj1o(x, ¥) = = 2k t0lx = y177 (arctan( V) + ¥/ Vartanh (Ve ™/1%)
+e9i”/10artanh( %631'71/10) + ein/]Oartanh( %e7in/10)
+¢"7/1%artanh( %691'71/10)) ’

Giya(x,y) = 2kp 3/alx — y| 7124 (arctan((‘/?ei”/“) - artanh((‘/?ei”/4)) .

Remark 4 Similar explicit formulas are available for other rational values of s, in terms
of the Lerch Phi function [55] when n = 2 and in terms of elementary functions for
special values of s.

4 Pseudodifferential Dirichlet problems

In this Section, we introduce the family of problems we aim tosolve. Let A : H*(I") —
H™(I") be a continuous operator of order 2s on an n-dimensional C"?-regular
Riemannian manifold I', |s| < m 4 o. Examples include pseudodifferential operators
of order 2s [27, Chapter 7-8], as well as their generalizations like the weakly or
hypersingular boundary integral operators on a manifold I" with edges or corners, or
Riesz potentials in potential theory.

Recall the Dirichlet problem for A in a domain £2 C I” from (1), which is formally
given by

Au=f in$2,
u=0 inl\£.

The weak formulation of Problem (1) involves the bilinear form a4 on C§°(£2),
defined by

aa(u,v) == (Au,v)r = (Au, v)o . (15)

From the mapping properties of A and the fact that H*(22) C H*(I"), we note
laa(u, v)| = Callull gs oy IVl gs (o) -

Thus, by continuity, a4 extends to a bilinear form on o (£2). Then, for f €
H™5(£2), we obtain the following weak formulation of the homogeneous Dirichlet
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problem (1): Find u € ﬁs(.Q), such that
ar(u,v) =(f,v), VveH(Q). (16)
For simplicity, we assume that a4 satisfies the inf-sup condition

aa(u,v)
supveﬁs(g)—”U”ﬁs(Q) = ﬂA”u”ﬁf(Q) (17)

forall u € ﬁS(Q), and some 84 > 0.

Remark 5 We remind the reader that ellipticity of the bilinear form a4 is sufficient
for the inf-sup condition (17) to hold. Ellipticity of nonlocal Dirichlet problems is
discussed in [21], for example.

On the other hand, coercive pseudodifferential boundary problems, as the boundary
integral formulations of the Helmholtz equation, also satisfy the inf-sup condition
(17). Indeed, Garding inequalities are easily discussed when A is a pseudodifferential
operator of order 2s on I with symbol p4(x, §) [28]. If A satisfies pa(x, &) > c|& |2S
with ¢ > 0, then for any § < s the associated bilinear form satisfies a Garding
inequality on I,

2 -
H(I')

(Au,u)p = Eallullzs ry — Callul
for some ¢4, C'A > 0, see [30, Theorem B.4]. By restriction to u € ﬁs(.Q), a
Garding inequality is satisfied by a4, and the inf-sup condition (17) then holds on
the complement of a finite dimensional kernel.

In the following we assume that £2 is diffeomorphic to the unit ball B; C R” under
a C"™?-diffeomorphism x : By — £2. For |s| < m + o, by the chain rule it induces
an isomorphism x* : H~%(£2) — H~*(B1) by composition with x. From x* and the
bilinear form by on B; defined by Boggio’s kernel (10), we obtain a bilinear form on
£2:

by, (u, v) == bs (x"u, x*v). (18)

The proof of the next Lemma then follows from the continuity and ellipticity of the
bilinear form by, provided in Lemma 3.

Lemma4 For Re(s) > —% the bilinear form by , defined in (18) extends to a con-
tinuous and elliptic bilinear form by , : H™*(§2) x H™*(§2) — R. More precisely,
there exist Cs ., Bs.y > 0, such that

2
by (u, v) < Csyllullg—s@) IVl m-—sc2) »  bsx (1) = By y llullg—s -

__ Given its mapping and pseudospectral properties, the operator By y : H™*(£2) 5
H* (§2) associated to by, will be used to build a suitable preconditioner for the homo-
geneous Dirichlet problem (16).
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Remark 6 1f (17) does not hold on H (£2) but on the complement of a finite dimensional
kernel, one can still use the operator By , to build a suitable operator preconditioner.
We refer to [49] for a detailed discussion.

5 Preconditioning and discretization

As we saw in the previous section, the bilinear forms a4 and b, , are continuous
and satisfy inf-sup conditions in their corresponding spaces. Moreover, their associ-
ated operators A and By y are isomorphisms which map in opposite directions. Their
composition By , A : H* (£2) — H?(£2) therefore is an endomorphism.

In this section, we discuss the missing piece to properly apply the operator pre-
conditioning theory: We look for adequate discretizations such that the composition
By , Aremains well-conditioned in the discrete setting, and thereby defines an optimal
operator preconditioner. We follow the approach from [12, Section 1.2.2], [31].

Define the bilinear form d : H* (2) x H*(£2) —> R as

d(v,¢) = (v, p)g, veH (2),peH*(R),

where (-, -) o denotes the duality pairing from Sect. 2.

Let {7, }, be a family of ' triangulations of §2, whose members are labelled by their
mesh width A. Let Vh C H* (£2) and W, C H™°(£2) be conforming finite element
spaces associated to 7;,. We assume that the restrictions of the bilinear forms a4 and
d to these finite dimensional spaces satisfy an inf-sup condition uniformly in /:

ag(up, vp) &
———— = Ballunllgs (o),  forallup € Vy, (19)

eV, llvp ||ﬁs(g)
d(vs, ¢n)

> Ballvall o). forall vy € ¥y, (20)
onew, 1ol a-s(2)

with B4, B4 > 0 independent of /. Due to ellipticity, an analogous inf-sup condition
for by , holds by Lemma 4.
Then, for any sets of bases

§V/h = span {w,}N | and Wj = span {¢>]}
such that
N :=dim V), = dimW, =: M, Q1)
the Galerkin matrices
Aiji=aa(i, ¥j), Biji=bsy(di, ), Dij:i=dW;, d)),
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satisfy the following bound for the spectral condition number

Cs.xCald)?
K (D‘IBD‘TA) < ’X—AHZH (22)
IBA ﬂs,x ﬁd
Here ||d|| is the operator norm of d [31, Theorem 2.1].
We propose the preconditioner
P:=D'BD T, (23)

and point out that we only need to choose ’%711 and W}, such that (20) and (21) are
guaranteed.

As a consequence of the general framework for operator preconditioning [31, Theo-
rem 2.1] we obtain:

Theorem 2 Let A be the Galerkin matrix of A and P the preconditioner in (23). Then
there exists a constant C > 0 independent of h and such that for any discretization
satisfying (19), (20) and (21) the spectral condition number k (PA) is bounded by C.

In the following, we illustrate how these assumptions can be met on common dis-
cretizations by triangular meshes.

5.1 Discretization

Let us begin by motivating the dicussion and reminding the reader that solutions to
(1) feature edge singularities, and can also have corner singularities when £2 is not
smooth. These singularities are analogous to those for the fractional Laplacian for
s € (0, 1): Even when 952 is smooth, [29, Theorem 4] shows that the solution u to
(1) behaves like u(x) ~ dist(x, 0§2)° in a neighborhood of d§2. Similarly, near a
corner C of a polygon u(x) ~ dist(x, C)*, where the exponent A depends on s and the
geometry of the corner [23]. When discretizing with low-order finite elements, these
singularities are often resolved by local refinements to recover optimal convergence
rates.

Consequently, it makes sense that preconditioners devised for these kind of prob-
lems are required to work on meshes which are not quasi-uniform. While other
preconditioners have been extensively studied on locally refined meshes [5,18,20,39],
this analysis is still incomplete for operator preconditioning.

Usually, local refinements are implemented via two strategies:

1. Using a priori error convergence knowledge to choose suitable algebraically or
geometrically graded meshes;
2. Employing a posteriori error estimates to implement adaptively refined meshes.

We remark that both approaches are broadly used in the numerical solution of PDEs
and relevant for the problems this article is interested in. Moreover, from a practical
point of view, and since we aim for a general preconditioner that can be used for a
large range of problems of the form (1), we take pains to ensure that the proposed
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preconditioner works for both refinement strategies. In order to achieve this, we exploit
that Theorem 2 tells us exactly which conditions we need to verify to make this happen.

In the following we restrict to the 2-dimensional case, n = 2. For simplicity of
notation, assume that I” is a polyhedral surface and §2 has a polygonal boundary. Let
{7} be a family of triangulations of £2, and let SP (7)) the finite element spaces
consisting of piecewise polynomial functions of degree p on a mesh 7, (continuous
for p > 1). We choose Vj, = SP(7;,) N Hx(.Q)

When |s| < 1, the requirements (20) and (21) are known to be satisfied for a wide
class of discretizations based on dual meshes Th of 7, with W, = S4 (Th) and g
suitably chosen depending on p [48, Chapter 2]. A typical example of the possible
combinations of degrees p and ¢ would be (p,q) = (1,0) for 0 < s < 1. We note
that the results for such primal-dual discretizations include quasi-uniform meshes and
a broad family of non-uniform meshes generated via the first local refinement strategy
described above. Indeed, when |s| < 1 and n = 1, one can prove that (20) holds on
shape regular algebraically 2-graded meshes, and shape regular geometrically r-graded
meshes with some conditions on the grading parameter » following the arguments
from [32, Section 4.3]. For higher dimensions, one typically verifies this numerically..
However, the stability requirement (20) has not been shown for meshes generated via
the second local refinement strategy. We dedicate the next subsection to address this
question.

On thg other hand, recent work by [50,51] offers an alternative yet suitable construc-
tion for Vj; and W), which avoids the dual mesh approach. It works for p = 0, 1 and
also higher order polynomials. Furthermore, it can also tackle non-uniform meshes
with the advantage that it requires no mesh conditions besides the so-called K-mesh
property.

For s > 1, there have been no results to the best of the authors’ knowledge.

5.2 Stability of primal-dual discretization on locally refined meshes

In this section, we prove for the first time that operator preconditioning with standard
primal-dual finite element discretization also leads to bounded condition numbers for
adaptively refined meshes.

We believe this is an interesting result on its own account. On the one hand, one may
argue that adaptive refinements are particularly relevant when thinking on a general
preconditioning strategy, as they can be implemented with the same generality as the
preconditioner itself (i.e., no a priori information about the geometry, like smoothness
or symmetry, is needed to deliver an optimal output). On the other hand, this result
also implies the H'—stability of a generalized L>—projection, a fundamental question
of independent interest [7,11,47].

As an extensive presentation of adaptivity is outside the purposes of this article,
we focus this section on key ideas and keep presentation as concise as possible to
communicate this novel and relevant extension to a general audience. Nevertheless,
the interested reader may find the technical details and proofs in Appendix A.

As a proof of concept, we address this questlon for operator preconditioning using
classical primal-dual discretization Vh stz N Hs(.Q) C HS(.Q) and W) =
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§0(7v7,) C H(£2) for 0 < s < 1, as introduced in Sect. 5.1 1 By construction of
V5, and Wy, (19) and (21) hold. Therefore, we only need to show that the stability
requirement (20) is satisfied with the chosen discretizations to be able to use Theorem 2
on adaptively refined meshes. In order to do this, we briefly introduce some general
notions about adaptivity.

Given an initial triangulation 7;,(0) , the adaptive algorithm generates a sequence 7;,([)
of triangulations based on error indicators n(z)(r), T € ,];l(e)’ a refinement criterion
and a refinement rule, by following the established sequence of steps:

SOLVE — ESTIMATE — MARK — REFINE.

This procedure is summarized in the following algorithm:

Algorithm A Inputs: Triangulation ’];l(o), refinement parameter 6 € (0, 1), tolerance

e >0, data f.

Fort=0,1,2,...

1. Solve problem (1), for u, on T,".

2. Compute error indicators n© (v) in each triangle T € ,2;1(6)’
3. Stop if Yy (m) <e.

4. Find n,(,fz,x = max; 17(()(1').

5. Mark all T with n© (7) > 0%,

6. Refine each marked triangle to obtain new mesh 7;(“1).
end

Output: Solution uy,.

Let us assume that we start with an initial triangulation 7;,(0) such that (20) holds
for our choice of V;, and W,. Clearly, step 6 is the only stage in Algorithm A where
one could alter (20) for subsequent refinements. Therefore, this is the part one has to
consider carefully. For the sake of illustration, in this paper we will show how to do
with this for the red-green refinement (see Appendix A for details).

Lemma5 Let Th(o) be a shape regular and locally quasi-uniform initial triangulation

of 2. We consider a family of meshes E := {’];l(z)}geN generated from 7;;0) by the
adaptive refinement described in Algorithm A using red-green refinement. Let ) < s <
1. On each level £ € N, we choose Vy = Sl(%(f)) N H*(£2) and Wy = S°(7,(0)).

Then, under some mild conditions* on the local quasi-uniformity constant of Th(o),
the following inf-sup constant holds

d(vp, ¢n)

> Ballvnll sy, forall vy € Yy, (24)
oneW, 1onll -5 (2)

U It is worth pointing out that the same arguments apply to show stability for the case V;, = st (7Tp) C
H*(£2) and Wh = SO(’f},) CcH™S (£2) for 0 < s < 1. By duality arguments, this will also imply (20) for
the combination Q/h =s%7)n H*(2) c H*(2) and Wy, = Sl(’j'h) CH5(2) for—1 <s<0.

2 condition (27) in Appendix A.
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for all ’Z;l(g) € Z, and with By independent of £ € N.

The proof of this Lemma, together with the incumbent definitions of shape regularity,
local quasi-uniformity and the mild conditions on 7, © can be found in the Appendix A.
Let us now discuss the result for the generahzed Lz—prgectlon Let 7, be a mesh
of £2. As before, we consider finite dimensional spaces V;, C H (£2) and W), C
H™5(82) for 0 < s < 1. We define a generalized Lz—pIOJeCtIOH Qh T cLA(R2) >
Vi C L*(I") by a Galerkin—Petrov variational problem,

(On g1, wi)gy = (u, wh)g  for all wy, € W, . (25)
As a direct consequence of Lemma 5 and [48, Theorem 2.2], we obtain:

Corollary 1 Consider a shape regular triangulation 7;1(0) under the same assump-
tions as in Lemma 5. Then Qh T® is bounded on H®(S2), with operator norm
*h

I éh 7© s 2y < C forall £ € Nwith a constant C independent of €.
*Th

Related results for the orthogonal L’—projection have been of interest, e.g. in the
analysis of adaptive mesh refinement procedures.

Remark 7 By [7] the stability condition (20) is satisfied when W;, = ’%V/h for s > 0.
Therefore, Theorem 2 also holds in that case.

5.3 Opposite order preconditioning

As an alternative to our preconditioner, if A is of order 2s, one may consider to use the
bilinear form c_; arising from the Dirichlet problem (15) for the operator (—A)™* to
build a preconditioner for a4. In the case of boundary integral equations this approach
is well-established as Calderdén preconditioning, specially on closed surfaces. For the
boundary problems here, we note that the resulting spectral condition number may
not be #-independent, due to the mismatch of the mapping properties of the operators.
Indeed, we obtain the following condition number bound in terms of /.

Proposition2 Let |s| € (1/2, 1] andsethfh =SP(7,) N ﬁx(fz), p=0,1. Let Cs be
the Galerkin matrix induced by c_g in Vj,. Then, the following bound on the spectral
condition number is satisfied when h is sufficiently small:

e Gy Calldl?.

26
BaBy By 2o

« (D7IC,DTA) <O~
(07'EDTA) = O

where C,, and B, are the continuity and ellipticity constants of c_.

The proof follows similar arguments to those in [12] and is provided in Appendix B.
For s = :I:% a logarithmic growth of the condition number in % is well-known for
Calder6n preconditioning on screens [32,34].
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6 Numerical experiments

In order to test our preconditioner, we study different pseudodifferential operators
A and implement their bilinear forms a4 in Vh =S"(7») N H* (£2) as described in
[4,24]. The bilinear form by , is implemented in W;, = SO (’];l’) on the corresponding
(barycentric) dual mesh [36, Section 3].

When operators have singular kernels, as it is the case for b, , , the implementations
of the bilinear forms split the integral into a singular part near x = y and a regular
complement. The singular integral is evaluated using a composite graded quadrature
rule, which converts the integral over two elements into an integral over [0, 1]4 and
resolves the singular integral with a geometrically graded composite quadrature rule.
The regular part is evaluated using a standard composite quadrature rule. This approach
is standard in boundary element methods, see [46, Chapter 5] 3.

For the specific values of s used in the experiments we employ formulas from
Remark 3. For general values of s, due to Lemma 1, one can make use of computational
libraries such as [43, Section 4] for the hypergeometric function  F1.

Numerical results for the weakly singular and hypersingular operators on open
curves and surfaces, where s = :I:%, may be found in [32,34].

Here we perform numerical experiments for pseudodifferential operators related to
the fractional Laplacian on quasi-uniform meshes; on graded triangular meshes, which
lead to quasi-optimal convergence rates [2,23]; and on adaptively generated triangular
meshes obtained using Algorithm A. In all cases we report the achieved spectral
condition numbers (denoted as «) and iterations needed to solve the linear system
(labeled It.). We use conjugate gradient (CG) when A is symmetric, and GMRES
when it is not. N denotes the number of degrees of freedom (dofs). The CG/GMRES
iterations were counted until the relative Euclidean norm of the residual was 10719,

Note that we report condition numbers and iteration counts to measure the perfor-
mance of our preconditioner. A theoretical discussion of runtime complexity is beyond
the scope of this work. We mention, however, that implementations which avoid the
barycentric dual mesh have been investigated in [50,51] and multilevel preconditioners
for negative order operators with linear complexity have been addressed in [52].

Remark 8 For the numerical experiments below, we follow Algorithm A with the
following considerations:

— In step 2, we use the residual error indicators introduced in [4,24]. This means: For
a > 0, we approximate the dual norms ||v || -« () and [[vp || g« () by the scaled
L?-norms h%||vy | 12(2) and h ™ |lvp || L2z » Tespectively. We define the local error

indicators r;(e)(tk) for all elements 7} € ’Z;l(l):

n© @) = Y P Nn = il
ieN,

3 MATLAB code for the assembly of the preconditioner for s > 0 is available on
github.com/nc09jsto/preconditionercode. The case s = —1/2 was assembled using BETL2 [35], which
currently cannot handle adaptive refinements.
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Fig. 1 Meshes for B;

where, V}, is the set of all vertices in ’Z;,(D, rp = f—(—=A)Sup,and rp := %
for the interior verticesi € N, ,Nand r, = O otherwise. Here, ¢; is a piecewise lirllear
basis function in the span of V;, and w; := supp ¢;. All integrals are evaluated
using a Gauss-Legendre quadrature.

— Instep 6, we use red-green refinement subject to the 1-irregularity and 2—neighbour
rules (see Definitions 3—4 in Appendix A or [8] for further details).

Example T We consider the discretization of the Dirichlet problem (16) with A =
(—=A)* and f = linthe unitdisk B C R2. The exact solution for this problemis given
[(n/2)

22T+ )l (s +n/2)
by three meshes: quasi-uniform, 2-graded, and adaptively generated triangular meshes

. . o . . _ _l l l § . .
as depicted in Fig. 1. We consider fractional exponents s = 3> 1> 100 1° 1O indicate

the general applicability of our methods.

by u(x) =an(1— |x|2)*, where ans i= . By is approximated

Tables 1, 2 and 3 show the results of the Galerkin matrix A and its preconditioned
form PA for the different fractional exponents on the three families of meshes under
consideration.

On all three classes of meshes, the condition number and the number of solver
iterations for A show the expected strong growth when increasing N, while they are
small and bounded for PA. We remark that the reduction of CG iterations achieved by
our preconditioner is significant, with a higher reduction for larger |s|. Furthermore,

« (PA) remains almost constant across the refinement levels when s = %. We note,
7

however, a very slow growth for s = {5 and s = % for the considered dofs. For
s = —% we obtain larger condition numbers consistent with previous observations
[34]. We note the larger condition number for the last data point on 2-graded meshes of
the preconditioned problem. We attribute this to a discretization error of the particular
implementation. Even though we use the exact inverse on the unit disk to build our
preconditioner, it is worth noticing that in this case PA achieves only an approximate
identity after discretization. This approximation error, together with the tolerance of
10710 for the residual, explain why condition numbers and CG iteration counts are
larger than 1.

To gain further insight about this small growth in k¥ (PA), we also inspect the eigen-
values of A and PA for the two families of meshes where this behaviour is more
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Table 3 Condition numbers and CG iterations on adaptively generated meshes (Fig. 1c), Example 1

N s=1/4 s =7/10 s =3/4

A PA A PA A PA

K It. K It. K It. K It. K It. K It.
123 1.98 12 .16 6 6.85 15 1.50 10 8.24 16 .54 9
238 5.39 22 1.17 6 7.82 21 1.60 10 9.22 21 1.67 11
518 15.46 37 120 7 11.27 28 1.76 11 12.55 29 1.89 12
1098 45.30 58 1.21 7 17.53 37 1.83 11 18.15 38 2.01 12
2278 131.77 85 123 7 28.28 48 1.91 12 27.17 48 216 13
4658 386.95 121 126 8 46.65 65  2.00 12 4148 o6l 2.35 14
9438 1138.72 165 127 8 78.41 85  2.08 13 6430 77 250 14

notorious. These are displayed in Fig. 2. We see in plots (a), (c), (e) that the spectra
on quasi-uniform meshes are as expected, while on graded meshes, plots (b), (d), (f)
reveal that the clustering of eigenvalues for the preconditioned matrix still increases
slowly with the dofs. As the slope of this small growth tends to 0 when augmenting
the number of dofs, we attribute it to the preasymptotic regime.

The next example illustrates the performance of the preconditioner defined by the
bilinear form (18) on a domain bi-Lipschitz to B;.

Example 2 We consider the discretization of the Dirichlet problem (16) with A =
(—A)* and f = 1 in the L-shaped domain £2 = [—1, 3]\ [1, 3]> c R? depicted in
Fig. 4a. We examine fractional exponents s = %, %, % on quasi-uniform, geometrically
and algebraically graded meshes, see Fig. 3 for an illustration. A numerical solution
on a mesh with 3968 elements is shown in Fig. 4b. The preconditioner is computed
using the radial projection x from the L-shaped domain to ;. Here,

1 x
x:82 — B, x&x)=—7—,
r(x) |x|

where r(x) := sup{A € [1,00) : Ax € £2}.

Tables 4, 5, 6 and 7 display the results of the Galerkin matrix A and its precon-
ditioned form PA on a sequence of corresponding meshes. As in the unit disk Bj in
Example 1, the condition number and the number of solver iterations for A show a
strong increase with augmenting the dofs N, while the growth is small and of slope
tending to O for PA. We also note that the size of the condition numbers is slightly
bigger than those from Example 1. This is a consequence of the fact that the precondi-
tioner is no longer defined from an exact solution operator to the continuous problem,
and thus the bound on the condition number is i-independent, yet larger than in the
previous example. Indeed, as predicted by the theory, we see that the condition num-
bers and CG iterations obtained with the preconditioner remain small and bounded
on quasi-uniform and geometrically graded meshes. However, the condition numbers
of PA for the algebraically graded meshes (Fig. 3c) do not remain bounded. This is
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1

consistent with the theory, which applies to shape regular meshes, a condition not
satisfied here. In order to illustrate this further, we also study a shape regular variant of
the algebraically graded meshes (Fig. 3d). The obtained results are reported in Table 7,
which reveals that the condition numbers are bounded again. We point out that the
assumptions of Theorem 2 are satisfied under certain mesh conditions introduced in
Appendix A.2. The algebraically graded meshes from Fig. 3c) violate the shape reg-
ularity condition (C1) (and also condition (C3) for s = %), while all other meshes

considered verify all mesh conditions.
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(a) Quasi-uniform

=ebate |

(b) Geometrically
graded

(c) Algebraically

2-graded

Fig.3 Meshes used for L-shaped domain, Example 2
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(d) Algebraically
2-graded shape regular
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AR
AN

Fig.4 Numerical solutions for Example 2 (a) and Example 4 (b) with s = %

Table 4 Condition numbers and CG iterations on quasi-uniform meshes for L-shape (Fig. 3a), Example 2

N s=1/4 s=1/2 s=3/4

A PA A PA A PA

K It. K It. K It. K It. K It. K It.
248 2.35 15 124 8 4.00 16 148 9 8.90 23 2.35 12
992 2.86 16 127 8 822 24 1.58 9 26.22 40 2.68 13
3968 4.25 19 1.30 8 17.02 36 1.65 10 77.35 70 2.92 13
15872 6.73 24 132 8 35.00 52 1.69 10 226.56 118 3.11 14

Table 5 Condition numbers and CG iterations on 2—graded (geometrically) meshes for L-shape (Fig. 3b),

Example 2
N s=1/4 s=1/2 s =3/4

A PA A PA A PA

K It. K It. K It. K It. K It. K It.
288 4.28 20 1.24 8 7.08 21 1.51 9 14.06 26 236 13
720 12.53 34 1.29 8 18.65 34 1.60 10 35.02 38 246 14
1632 36.44 53 1.33 9 47.03 50 1.68 11 82.34 57 256 15
3504 105.28 76 1.37 9 114.49 76 1.75 11 185.29 83 267 15
7296 302.23 111 1.39 10 27120 109 1.79 12 40392 122 275 15
14928 86291 162 1.39 10 62832 155 1.76 11 859.51 172 284 15
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Table7 Condition numbers and CG iterations on 2—graded (algebraically shape regular) meshes for L-shape
(Fig. 3d), Example 2

N s=1/4 s=1/2 s=3/4

A PA A PA A PA

K It. K It. « It. K It. K It. K It.
528 13.12 36 1.28 12.99 31 1.67 11 25.12 33 2.64 15

8
912 19.15 44 1.30 8 19.78 37 1.71 11 42.33 43 287 16
2736 43.93 66 134 9 44.51 58 178 12 111.22 76 401 19
4920 63.79 79 136 9 67.06 73 1.79 12 183.65 99 422 19
9072 97.20 96 137 9 102.45 91 1.76 12 306.14 129 439 20
14784  140.13 114 138 9 142.72 108 1.73 11 458.32 161 449 20

(@2:1 () 4:1

Fig.5 Meshes for rectangles with varied aspect ratio

Example 3 We consider the discretization of the Dirichlet problem (16) with A =
(—A)* and f = 1 in rectangular domains [—a, a] x [—1, 1] C R? with varying
aspect ratio a : 1. We examine fractional exponents s = 4—1‘, % % on quasi-uniform
meshes, see Fig. 5 for illustration. The preconditioner is computed using the radial
projection x from the rectangular domain to B (0).

Tables 8, 9 and 10 display the results of the Galerkin matrix A and its preconditioned
form PA on a sequence of corresponding meshes. In most cases, the preconditioner
performs qualitatively the same as we already observed for Example 2: the condition
numbers and the number of solver iterations for PA tend to remain constant with
respect to h.

The novelty here is how results change when the aspect ratio a : 1 increases.
Indeed, as expected from the theory, condition numbers, and consequently CG iteration
counts, grow when the “distortion” from the unit disk is more significant, i.e. for bigger
aspect ratios. Moreover, how the transformation impacts condition numbers depends
on the related Sobolev norms, reason why they are actually s-dependent. This is
clearly reflected in our experiments where the difference between the results when
the aspect ratio is 1 : 1 and 16 : 1 is relatively small for s = 0.25, but notorious
for s = 0.75. Nevertheless, as the original system for these distorted geometries are
more ill-conditioned, PA still reduces the number of iteration counts in a meaningful
manner.

Although it is hard to draw general conclusions, with these results we expect to
convey two messages: On the one hand, we highlight the robustness of this precondi-
tioning approach. On the other hand, we warn the reader that there may be geometries
for which, despite of the quasi-uniform mesh on the original geometry, “the mapping
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Table 11 Condition numbers and GMRES iterations on quasi-uniform mesh, Example 4

N s=1/2 s=17/10 s =3/4

A PA A PA A PA

K It. K It. K It. K It. K It. K It.
123 3.11 14 1.08 12 6.69 17 1.48 11 8.11 18 1.49 11
492 7.02 22 1.15 12 20.39 29 1.50 11 26.59 32 1.53 11

1968 15.08 35 1.19 12 60.87 48 1.54 11 8593 55 1.71 11
7872 31.85 54 1.22 13 172.73 83 1.77 11 264.01 95 215 12

Table 12 Condition numbers and GMRES iterations on graded mesh, Example 4

N s=1/2 s =7/10 s=3/4

A PA A PA A PA

K It. K It. K It. K It. K It. K It.
123 3.31 19 117 12 4.42 17 1.70 12 5.07 18 193 12

1068 1424 31 126 12 27.78 36 239 14 33.07 38 291 15
4645 4415 54 134 12 104.49 69 284 15 13143 79 3.64 16
13680  101.41 73 137 12 277.05 103 296 15 358.78 117 387 16

trick” from (18) can lead to large, yet bounded, condition numbers and thereby may
no longer be a practical strategy to construct a preconditioner.

As a final example, we apply the preconditioner to a non-symmetric model problem
motivated by the fractional Patlak-Keller-Segel equation for chemotaxis [16].

Example 4 We consider the discretization of the Dirichlet problem (16) with A =
(=AY +¢-V,c = (03,07 and f = 1 on the unit disk B; C R? with s = %,
s = 17—0 and s = %. Quasi-uniform and algebraically 2-graded meshes are considered.
A numerical solution on a uniform mesh with 7872 elements is depicted in Fig. 4.

Tables 11 and 12 display the condition numbers of the Galerkin matrix A and
its preconditioned form PA for the different fractional exponents on sequences of
quasi-uniform meshes, and on algebraically graded meshes. The number of GMRES
iterations is given for this non-symmetric problem.

As in the earlier examples, on both quasi-uniform and graded meshes the condition
number and the number of solver iterations for A show a strong increase with N.
For PA they are bounded with a slight growth, with numbers very close to those in
Example 1 for s = 17—0, %. Note that for s = % the gradient term is of the same order
as (—A)S.

A Proof of results for operator preconditioning on adaptive meshes

For the sake of presentation, we dedicate the next two subsections to briefly summarize
some key concepts about adaptivity and the mesh conditions we need to fulfill for
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stability. Finally, we combine these preliminaries to state and and prove the new
results on operator preconditioning in adaptively refined meshes.

A.1 Adaptivity preliminaries

We begin by reminding the reader of some of the concepts introduced in Sect. 5.2.
Given an initial triangulation Th(o), the adaptive Algorithm A generates a sequence Th([)

of triangulations based on error indicators r/(g) (), T € ,];l(e)’ a refinement criterion
and a refinement rule, by following the established sequence of steps:

SOLVE — ESTIMATE — MARK — REFINE.

There are different refinement rules that one can choose for the step REFINE. We
now present some of the most common ones: red refinement, green refinement, and
red-green refinement.

Definition 1 Let 7;1(@) be a triangulation. A triangle T € 7;1([) is red refined by con-
necting edge midpoints of 7, thus splitting t into 4 similar triangles.

Definition 2 Let 7;1([) be a triangulation. A triangle t € 7;1([) is green refined by
connecting an edge midpoint with the opposite vertex of t, thus splitting 7 into 2
triangles.

Next, in order to define a red-green refinement, we introduce two related properties.
Definition 3 (a) A triangulation ’Z;I(Z) is called 1-irregular if the property
[lev(tk) — lev(tm)| < 1,

holds for any pair of triangles i, 7, € 7;(6) such that 7 N 7, # @.
Here lev(ty) corresponds to the number of refinement steps required to generate
7x from the initial triangulation 7;'(0)'

(b) The 2—neighbour rule: Red refine any triangle 7; with 2 neighbours that have
been red refined. Two triangles are neighbours, if they have a common edge.

Definition 4 A Red-green refinement for a triangulation 'Z;,(e) proceeds as follows:

1. Remove edges from any triangles that have been green refined.

2. All marked triangles are red refined.

3. Any triangles with 2 or more red refined neighbours are red refined, by 2—neighbour
rule.

4. Any triangles that do not fulfil 1—irregularity rule are further refined.

5. Any triangles with hanging nodes generated during the refinement are green refined

See Figs. 6 and 7 for an illustration of the refinement rules. For a further description
we refer to [8,25].
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/NTAN NN

Fig.6 Example of red refined triangle (left) and green refined triangle (right) (color figure online)

Fig.7 Example of a sequence of

red-greer.l refinement. Top —
element is marked by (o) and

therefore is red refined in the O

first step. Bottom triangle then

has a hanging node and is green

refined in the consequent step

(color figure online)

A.2 Mesh conditions
We recall that we aim to show (20), i.e.

d(vp, @n)

> Ballvnll sy, forallvy € Vy,
onew;, 19l =5 (2)

(see Sect. 5 for notation).

In the case of the discretizations based on dual meshes, this inf-sup stability is a
consequence of three regularity conditions on the triangulation 7j, see [48, Chapters
1-2]. We now proceed to introduce some notation to properly summarize this result.

Let 7, be a triangulation of 2 C R”. For each triangle tx € 7, we define its
area A = ftk dx; its local element size h; = A,]C/ " and its diameter d; :=
SUP, yeq X — ¥l B

Let ¢; be a piecewise linear basis function in the span of V;,. We write w; :=
supp ¢; and define its associated local mesh size h j as

A 1
TUTHIG)

m-
mel(j)

Here, 1(j) == {m € {1,...,#T4} : tw Nwj # W}, for j = 1,..., N, is the index
set of triangles t,, € 7;, where the basis function ¢ ;18 not identically zero.

Definition 5 For a triangulation 7, we define the following mesh conditions

(C1) Shape regularity: there exists cg > 0 such that for all ty € 7

0 e
< CR < — < I.
R e
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(C2) Local quasi-uniformity: for all t, 7, € 7 with tx N7, # @

hi
— =<cL,
m

with C a (uniform) positive constant.
(C3) Local s-dependent condition: there exists ¢ > 0 such that for all T € 7,

S Y i 20,

jeJ(m) jeJ(m)

with J(m) :={i e {l,...,N}:w; Nty %0} form = 1, ..., #7}, the index
set of basis functions ¢; which are not identically zero on triangle t,,,.

Theorem A1 ([47, Theorems 2.1 and 2.2]) Let 7;, be a triangulation of 2 such that
cn, (C2) and (C3) are satlsﬁed Consider the primal-dual discretization Vh =
ST N HS(2) and Wy, = SU(Ty) for 0 < s < 1 (see Sect. 5.1).

Then, the discrete inf-sup condition (20) holds with a positive constant Bq indepen-
dent of h.

A.3 Results on adaptively refined meshes

Now we turn our attention to study these conditions for a sequence of adaptive trian-

gulations generated by Algorithm A. For this, we write the constants from conditions

(C1), (C2) and (C3) associated to a triangulation Th(e) as c%), © and c(l) respectively.
The next Lemma is the complete version of Lemma 5 1ntr0duced in Sect. 5.2.

Lemma 6 Consider an initial triangulation ’T(O) satisfying the mesh conditions from

Definition 5, and such that its local quasi-uniformity constant c( )

1/ls]
O 1 ayf1129 219 . o
=2V 49 2

Let & = {’];l([)} teN be a family of meshes generated from ’Th(o) by the adaptive
refinement described in Algorithm A, using red-green refinements. Then (C1), (C2) and

verifies

(C3) hold for all Th(z) € & for some constants cg, cr, co > 0, which are independent
of £ € N. _ ~
In particular, the inf-sup condition (20) holds for |s| < 1, Vi, = SP (7)) N H5($2),
= S(T7})), and for all ,];l(e) independent of .

Proof The proof proceeds by induction on £. By hypothesis, the initial triangulation
,];1(0) satisfies (C1) and (C2). Therefore, for the initial triangulation 7;[(0) we only need
to check (C3).

For the sake of convenience, let us re-label the basis functions j € J(m) by m;,
withi =1, ..., #J(m). We note that max,, #J (m) = 3 and that this is our worst case
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scenario. Therefore, it suffices to verify (C3) in this case:

Without loss of generality, let fzml > ﬁmz > ﬁm3. Then

3 R 3 R 5 21s| i 2|s] i 2|s|
S i = () 4 () ()
":1 l:1 m2 m3 ’I’I'
A 2ls| 3 2ls| i 2ls|
() () )
(hl‘l13 hm1 hm2
i 2|s| A 2|s| i 2|s| i 2|s|
my _ma _m3 m
cara ()" () () ) <7 ()

where we use the rearrangement inequality. We conclude that (C3) is satisfied for 7;!(0)

provided that
3 2|s|
(#) < 32 (28)

mp

A simple calculation using the mesh conditions yields - < (c(LO))Z, so that (28)

m3

holds and (C3) is satisfied for 7,
For the inductive step, assume that conditions (C 1)—(C3) are satisfied on an adaptively
refined triangulation ’]71([) using red-green refinements subject to 1—irregularity and

2-neighbour rules. In order to generate a new triangulation ’Z;I(HI), the appropriate
triangles are marked.

We note that red-refinement does not change the shape regularity constant, but green
refinement worsens the shape regularity constant by at most a factor of % However,

due to the removal of green edges, the constant does not degenerate as £ — oo. Thus

condition (C1) is satisfied with cgﬂ) > chgg) for 7;1(13—%1).

Condition (C2) remains satisfied due to the 1-irregularity condition in the refine-
ment procedure. This restriction guarantees that Z—’ < c(LEH) < ZC(LO).
J

As for the initial triangulation ,];1(0)’ we know that condition (C3) is satisfied for

hm 1

7;1(13-5-1) when (28) holds. Due to the 1-irregularity condition, we have that <

(0) 1(1129)1/4\SI' "

(2c(LO))2, so the estimate (28) is satisfied provided ¢;” < (45

We conclude that (C1), (C2), (C3) are satisfied for {'Z}lm }72, independently of £.
O
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Remark 9 a) We note that the estimates in Lemma 6 are not sharp. Still, the local
quasi-uniformity assumption on the initial triangulation 7® becomes more
restrictive as |s| increases. Thus, the initial mesh needs to be of increasingly higher
regularity for higher values of |s|.

b) Let I"CR" be a polyhedral domain which satisfies an interior cone condition. Then
the assumptions in Lemma 6 can be satisfied for a sufficiently fine 7;,(0).

Remark 10 Similar results can be shown for alternative refinement strategies, such as
the newest vertex bisection [19, Section 2.2]. See [54, Chapter 4] for details.

B Proof of Proposition 2

The idea for the proof is like in [12] where the case W), = @’h is shown. Here we
generalize the proof to different discrete test and trial space. For the sake of brevity we
will discuss the case when s € (1/2, 1] and remark that the proof for s € [—1, —1/2)
follows analogously. We remind the reader that in this setting H* (£2) = H (£2) #
H*(£2), but that [lull gs o) = llullms2), Yu € H*(82).

Let 7, SP(7y), p € N be as in Sect. 5. Moreover, we recall that for this setting
we consider the finite element spaces Vh =sY 7)) n H (£2) and W), € H™¥(£2).
Additionally, we denote V;, = SY(7,) c H*(£2) and note that Vh C Vy,. Indeed, Vh
is the space of affine continuous functions that are zero on the boundary, while Vy, is
analogous to V},, but admits non-zero values on 952. -

Let us introduce the generalized L2-projection On : L2(Q) — V), fora given
u € L%(£2), as the solution of the variational problem

(Onut. Yn)g = (. Yn)g. V¥n € Wp. (29)

From [48, Chapter 2], [36], we know that it satisfies

1Onull sy < By Nullgogy.  Yu € H (). (30)

where By is the inf-sup constant from (20).
Given that we are igterested in the case where we have a space mismatch, i.e. when
u e H*(2) butu ¢ H*(§2), we additionally prove the following:

Lemma 7 The projection Qh satisfies

1)
—1/2

I Onun sy < (1 + R 2wl gs @y, Yun € Vi, (31)

with ¢y > 0 and independent of h.

Proof Set ”2 e V, to be the function defined by

(32)

0 up, inall interior nodes,
u, =
h 0, on d052.
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Then, by definition

A 0 1/2
lun — Qnunlz2ey = llun —upllp2) < h / lunllz2 o)

where the last inequality holds by basic computations (c.f. [12, Equation 1.3.27]).

L with
) wll s (2)s

From the trace theorem, we have that [[upll 250y <

¢t > 0 independent of /.
Therefore, combining all the above, we obtain

1Qnunllgs2y < llunllas2) + |Qntn — unllgs(2)

< llunllus@) +c1h™ | Qnun — unll 2.0

CiCit 1 1/2—s
<1+ ———h S(0).
_< +S_1/2 )IIuhllH(m

O
Now, let us also introduce the finite element space Wh cC H (£2). We consider

the generalized L2-pr0jection ﬁh : L2(2) > W, for a given ¢ € L%(£2), as the
solution of the variational problem

(ﬁhw, vh>9 = (g, o, Yu, €V (33)
Then, in analogy with Lemma 7, we have that

Lemma 8 The projection Py satisfies

~ c2 _
1Pk @nll -2y < e3(1 + mh”z Mullu-si2y,  YPr €Wy, (34)

with ¢, c3 > 0 and independent of h.

Proof Let us use the norms’ properties and write

~ ~ <Fh®h , M)
IPh®nllg—s2) < WPhPhll sy = sup ——=—2
0ucH(2) lullms(2)

Then, using the definition of é 5 and the estimates above, we get

~ 2 B Py, Qnu
1 Ph®pll (o) < (1+ h'275)  sup Bion. Qutjg
s—1/2 0£uchHs(2) |1Onullas(2)
(ﬁh(ph, Un)g

2 1/2—s
<(+——xh ) sup
s—1/2 0¥, NunllEs2)
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Now, by definition of f’h, and since i?h C Vj,, we have

2 h1/2_s) su (P, up) o

I B ®nll -5 2y < (1 +
) s—1/2 0, ¥, 1unllEs(2)

2 1/2—s
<ca(l+—=2_p Dl —sion.
< c3( +S 12 WPnll -5 (2)

Lemma9 Lets € (1/2,1). Then, the following inf-sup condition holds

sup (v, Pn) e - Bd

—1
1653 _ ~
> (1 + —hl/Z s) ||Uh||ﬁ5(_(2)v Yv, € Vy,, (35)
snewr, 1Pnlla—s2) — 3

s—1/2

with c3, co > 0 and independent of h.

Proof Let us introduce the operator ITj, : ﬁ“(.Q) — W, ¢ H5(£2) fors € (0, 1],
defined by the variational formulation

(M, va)g = (. v) (). Yon € Vi, (36)

where (-, -) gs @) denotes the H* (£2)-inner product. This operator is analogous to [48,
Equation 1.75] [34, Equation 4.22], and thus it verifies

ITTull sy < By lullgo @y Yu € H' (). (37)
Next, we have that for any v, € ’\ﬁh

Wh, Vi) sy (on, Tavn)g

lvnll s 2y = =
O ol s ) lvnll 75 )

< —1 (U/’l 5 Hhvh>_Q _ _1(v/’l ) Phnhvh)g

= sl g2 4 TMponllg-sco)

where in the last step we used that [1,v;, € W), and the definition of ﬁh.
Now, let us use our previous estimates to derive

onll oy < (1 4+ —2 ppl/2=s (lih’ PpIljvn) .
2 = gy s—1/2 | Pr T pvnll g5 (2)

Set ¢, == Fh [T, vy, and note that ¢p, € Wh. Therefore, this gives

3 ) 12—5 \ {vns onle
lonl 7+ §—<1+—h >—
@) = gy s—1/2 lenll -5 )

L8 (H— &) hl/z—s> sup (vn s &) .
Bd s—1/2 onew, 1901l =5 (2)
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Finally, move the factors to the other side and one gets the desired result. O

Proof of Proposition 2 First notice that in this context the inf-sup constant of d is

3 Bd 2 1/2—s -
=— 14+ ——h7"" )
fa= S\ T

Then, we plug this in (22) and get

1)
CyCalld|*c3 (1 M

Baby B

2
hl/2s)
K (D_ICYD_TA) < ~ Oh'>). (38)
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