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The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive
information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the
network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model
a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while
a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two
susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the
AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as
first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature,
we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common
belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not
opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an
hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in
the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

DOI: 10.1103/PhysRevE.92.030801 PACS number(s): 89.75.Hc, 87.10.Ed, 89.75.Fb

Over the past decade, many real-world networks have
been characterized via graph metrics [1–3] such as clustering,
assortativity, modularity, degree distribution, and spectral
properties. Recently, robustness characteristics and complex
dependences have been analyzed in networks of networks
[4], while a parallel track in network science has focused
on relatively simple dynamic processes on networks such as
epidemics [5,6], synchronization [7], and opinion diffusion
[8–10]. In most studies so far, the networks are considered fixed
or independent of the dynamic process. After the seminal work
of Gross et al. [11], the coupling between epidemic processes
and the underlying network topology has been extensively
studied [12–15].

The coupling between process and topology is natural
in many cases. In epidemics [16], for example, after the
observation of an infectious relative, one may either avoid
him or her (by changing the social contact network) or
increase the protection against the virus (without altering
the topology). In human brain networks, Hebbian learning
alters the connectivity between brain regions that are trained
or neurally excited. Although self-adaptation naturally occurs
in biology, adaptive networks, in which the process interacts
with the topology, are unfortunately difficult to analyze and we
barely understand the interplay between process and topology.
Twitter measurements [17,18] show that the topology of the
network adaptively changes connectivity towards users with
high popularity and the ordinary users tend to directly follow
the popular ones to get the information faster, instead of
awaiting the retweets from their current friends.

Gross et al. [11] have spotted complex patterns during the
evolution of the adaptive network through the healthy, the
oscillatory, the bistable, and the endemic state. Extensions of
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the analysis of Gross et al. are presented in [19–25]. Instead of
the discrete-time model with a unique rewiring rate in [11,22],
here we present two continuous-time models, the continuous-
time adaptive information diffusion (AID) model and the
adaptive susceptible-infected-susceptible (ASIS) model, with
separate link-breaking and -creating rates. The two seemingly
similar epidemic models, both representing real-world ap-
pearances but with opposite topology dynamics, surprisingly
exhibit a completely different stability of the metastable state.
Moreover, the two models possess a different scaling of the
epidemic threshold, while the properties of the metastable
topologies show similar but phase rotated shapes. Interestingly,
our analysis does not resort to mean-field approximations,
taking into account the topological and epidemic variations of
the nodes.

The epidemic (information) dynamic in the two models is
based on the standard susceptible-infected-susceptible (SIS)
epidemic process [26]. We describe the ASIS process, while
the terminology for the AID model is given in angular
brackets. The epidemic (information possession) state of
node i in a network G with N nodes is specified by a
Bernoulli random variable Xi(t) ∈ {0,1}: Xi(t) = 1 if node i is
infected (possesses the information) and Xi(t) = 0 otherwise.
At time t , a node i is infected (possesses the information)
with probability Pr[Xi(t) = 1]. The epidemic (information)
spreading process from an infected (information possessing)
node to its healthy (informationless) neighbors is a Poisson
process with rate β. Only when node i is infected (has the
information) it can infect (share the information) with the
direct neighbors with rate β. In an online social network, a user
can obtain the information via different sources (e.g., the social
reinforcement effect [27,28]) that are not necessarily related to
the network, which is modeled by the self-infection rate ε. An
infected (information possessing) node is cured (releases the
information) with a Poisson rate δ. The exact governing SIS
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equation for the infection (information possessing) probability
of node i is

d

dt
E[Xi] = E

⎡
⎣(−δ + ε)Xi + (1 − Xi)β

N∑
j=1

aijXj

⎤
⎦. (1)

The topology dynamics in the ASIS and AID models are
opposite. In both models, two Poisson processes, the link
breaking and link creating with rates ζ and ξ , respectively,
change the network’s topology. In the AID model the link-
creating process establishes a link between a node pair (i,j )
when exactly one node i or j has the information. The
link-breaking process removes an existing link between a node
pair (i,j ) when both i and j do not possess the information
and if there was no link in the original network [aij (0) = 0].
The AID governing equation for the link existence probability
E[aij (t)] = Pr[aij (t) = 1] is, for i �= j ,

d

dt
E[aij ] = [1 − aij (0)]E[−ζaij (1 − Xi)(1 − Xj )

+ ξ (1 − aij )(Xi − Xj )2]. (2)

As an initial graph we confine ourselves to the empty graph
with N nodes and no links [aij (0) = 0 for i �= j ]. The right-
hand side of (2) consists of two opposing processes. (a) While
either node i or j (but not both) possesses the information,
the link between nodes i and j is created with rate ξ , in
this way modeling the tendency for the informationless nodes
to obtain the information faster. This link-creating process is
applicable to information diffusion in online social networks,
where friendship and follower links can be changed adaptively.
(b) If two adjacent nodes i and j do not have the information,
the link between them is broken with rate ζ , due to the absence
of incentives of maintaining a link between the informationless
nodes. In the case that both node i and j have the information
(i.e., Xi = Xj = 1), the link is preserved, i.e., dE[aij ]

dt
= 0.

Hence, the link dynamics in (2) tends to increase the degree of
a node with information and to decrease the degree of a node
without information. For convenience, we define the effective
information expiring rate by δ∗ = δ − ε. By expressing the
time in units of δ∗, the model parameters in (1) and (2) can
be reduced to the effective information spreading rate τ = β

δ∗ ,
the effective link breaking rate ω = ζ

ξ
, and a choice of either

ξ , β, or ζ . Just like the SIS process on a fixed graph, the
AID process is Markovian1 with the overall-healthy state (or
absorbing state) as the steady state. The relevant physical
behavior happens in the metastable state in which the system
(the SIS process and network) above the epidemic threshold2

τc remains for a long time [26,29].
We verify that the AID model is realistic by using data from

Facebook, the most well-known social network nowadays.
Figure 1 shows that the AID model is realistic, by verifying
Facebook wall posts [30] from the New Orleans area for the

1We can enumerate the (huge) state space. From any state, there is
a uniquely defined transition to another state with constant rate.

2For τ < τc, node j is almost always healthy, Xj → 0, and the
link dynamics (2) shows that the metastable topology is close to the
original graph.
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FIG. 1. (Color online) Prevalence of the AID model and the real
Facebook data [30] from the New Orleans region (USA) for the last
three months of 2008. A good fit is obtained.

last three months3 of 2008. The rates in the AID model are
extracted [31] from the data and the process is detailed in [32].
Subsequently, the prevalences obtained from the AID model
and from Facebook data are compared in Fig. 1, illustrating a
good fit.

In the ASIS model [33], the topology changes in the
opposite way: (a) While either node i or j (but not both)
is infected, the link between node i and j is removed with rate
ζ in order to protect the susceptible node from infection and
(b) while both node i and j are susceptible, a link is created
between them with rate ξ . For the ASIS model, in the case that
both node i and j are infected (i.e., Xi = Xj = 1), the link is
preserved, whose link dynamic, opposite to (2), is

d

dt
E[aij ] = aij (0)E[−ζaij (Xi − Xj )2

+ ξ (1 − aij )(1 − Xi)(1 − Xj )]. (3)

The aim of this paper is to report a striking difference that
emerges from the two seemingly similar models, AID and
ASIS, that both reflect realistic physical phenomena. Both
models build upon the SIS epidemic model (1), but adaptively
change the topology in opposite ways given in (2) and (3) for
the AID and ASIS models, respectively. The factors −ζaij

and ξ (1 − aij ) multiply (1 − Xi)(1 − Xj ) and (Xi − Xj )2,
respectively, for the AID model in (2), while the order of
multiplication for the same factors is reverse in the ASIS model
in (3). Most importantly, the AID model shows instability and
nonexistence of the metastable state for some regions of τ and
ω, which is not the case for the ASIS model. The characteristic
differences between the ASIS and AID models are summarized
in Table I. We further proceed to explain those differences.

Without resorting to any mean-field approximation, we
provide exact expressions for the fraction of infected nodes
and the epidemic threshold for both models. These relations,
although not closed-form expressions, due to the existence of
probabilistic and variance terms, provide exact solutions and,
more interestingly, can explain the existence and stability of
the number of infected nodes in the metastable state for both
AID and ASIS models. The key observation that correlation
terms the same as E[aijXiXj ] appearing in (1)–(3) led to the

3After the major redesign of Facebook [32], allowing users to more
easily see friends’ posts (articles) on its own wall.
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TABLE I. Comparison of the adaptive models.

Model Metastable state Threshold τc(ω) Topological metrics

ASIS always stable linear half elliptical
AID unstable (τ,ω) regions (mostly) constant rotated half elliptical

explicit relations of the prevalence, the fraction of information
possessing or infected nodes. We define by Z∗ = 1

N

∑N
j=1 X∗

j

the prevalence and the average metastable state prevalence by
y = E[Z∗] in a graph with N nodes. Interestingly, Var[Z∗]
� y � 1, where Var[Z∗] is the variance of the prevalence

holds.4 We also define T (N ) = E[
∑N

i=1 d∗
i (1−X∗

i )]
N2 , where dj

denotes the degree of node j . T (N ) is bounded by

0 � T (N ) �
E

[∑N
j=1 d∗

j

]
N2

= E[2L∗]

N2
� N (N − 1)

N2
< 1.

For the AID model we have [34]

y = 1

2

(
1 + ω − 2

2τN

)(
1 ±

√
1 − 4 Var[Z∗] + 2ωT (N )

[1 + (ω − 2)/2Nτ ]2

)
,

(4)

A key observation from (4), leading to the nonexistence of
the metastable state for AID in some parameter regime, is the
possibility that the argument under the square root is negative.
Indeed, let us consider a large network size, where N → ∞,
so that (4) simplifies to

y = 1
2 {1 ±

√
1 − (2ωT∞ + 4 Var[Z∗])}. (5)

Equation (5) shows that the metastable state does not exist for
AID if 4 Var[Z∗] + 2ωT∞ > 1 and hence

Var[Z∗] > 1
4

is sufficient for the nonexistence of the metastable state in AID.
Moreover, (5) leads to an upper bound for the link-breaking
rate ω:

ω � 1 − 4 Var[Z∗]

2T∞
� 1

2T∞
;

otherwise there will not be a metastable state solution.

4Due to the Cauchy-Schwarz inequality, we have (
∑N

j=1 Xj )2 �
N (

∑N

j=1 X2
j ) = N (

∑N

j=1 Xj ) because Xj ∈ {0,1}. Now, we can
apply this to Var[Z∗] = E[Z2] − (E[Z])2 � E[Z2] = 1

N2 E

[(
∑N

j=1 Xj )2] � 1
N2 E[N

∑N

j=1 Xj ] = 1
N

E[
∑N

j=1 Xj ] = E[Z] � 1.

The consequences of (5) are confirmed by extensive
simulations. There are regions for (τ,ω) where the metastable
state does not exist, as demonstrated in Figs. 2(a) and 2(b).
The instability area exhibits an hourglass shape: it is wider
close to the center of the coordinated system, further narrows,
and then widens again for higher τ and ω. The instability area
in AID finally vanishes for high enough τ and ω. Finally, as
a side note, we find that there are regions of instability even
in a model more general than ours, where the infection rates
change over time.5

The ASIS metastable state prevalence is [34]

y =
(

1 − 1

2N
+ ω∗ − 1/2

τN

)

×
(

1 ±
√

1 − 1 − 1/N + Var[Z∗] − T (N )

[1 − 1/2N + (ω∗ − 1/2)/τN]2

)
, (6)

where the value under the square root in (6) is always positive.
Hence, the metastable state always exists [33] and is given by
(7) with a minus sign. The prevalence y as a function of τ is
shown in Fig. 2(c). For N → ∞, (6) can be reduced to

y = 1 ±
√

T∞ − Var[Z∗]. (7)

In contrast to the AID model, there is in (7) no constraint on
ω for the ASIS metastable state.

For a combination of (β,δ,ζ,ξ ) with a relatively higher
link-breaking rate than the creating rate and small spreading
rate in the AID model, a small portion of nodes obtains the
information, which does not have the potential (the spreading
rate is small and the breaking rate relatively big) to stay long
nor can be considered as a metastable state. Consequently,
in such a combination, multiple and sharp changes, both
epidemically and topologically, are visualized in Fig. 3(a).
In the other case of a stable combination, there is a critical
mass of links and information-possessing nodes and although

5This is a case in the model of Huang et al. [35] for time-changing
activity-dependent infection rates. To not break the flow of the paper,
more details are given in [32].
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FIG. 2. (Color online) (a) Instability region for the AID model. (b) Prevalence y in the AID model. (c) Prevalence y the ASIS model. (a)
and (b) demonstrate the instability in the AID model. (c) demonstrates the stability in the ASIS model.
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FIG. 3. (Color online) Numbers of links and infected nodes as
functions of consecutive time moments in the AID model for N = 40,
ζ = 0.32, ξ = 0.1, δ = 1, ε = 10−3, and different spreading rates β:
(a) β = 0.152 and (b) β = 1.0. The points of instability or stability
are in accord with Fig. 2(a).

there are time changes, the forces of the epidemics reach an
equilibrium (e.g., one link is broken, but another is created),
which represents the metastable state as shown in Fig. 3(b).

The epidemic thresholds can be determined from the
equations of both AID and ASIS models [34]. Surprisingly,
the threshold is linear in ω only for the ASIS model,

τc(ω; ξ ) = 2ω − 1

N [hASIS(ω; ξ ) − 2 + 1/N]
, (8)

where 1 � hASIS(ω; ξ ) � 2 + 1
N

( 1
a

− 1) and a = ∂τc(ω;ξ )
∂ω

|ω→∞
is almost a constant. The function hASIS(ω; ξ ) is positive,
slowly varying, and obeys hASIS( 1

2 ; ξ ) = 2 − 1
N

for the ASIS
model, for all ω > 0.

For AID, on the other hand, the information threshold is the
quotient of two linear functions, which approaches a constant
for large ω,

τc(ω; ξ ) = ω − 2

2N [hAID(ω; ξ ) − 1]
, (9)

where hAID(ω; ξ ) � 1 + max{1,1 + ω−2
2Na

} and a =
limω→∞ ∂hAID(ω;ξ )

∂ω
is almost a constant. For ω > 2, the function

hAID(ω; ξ ) is almost linear in ω, obeying hAID(2; ξ ) = 1 for
the AID model.

The simulations shown in Fig. 4(b) indicate that τc(ω; ξ )
increases almost linearly in ω, confirming (8) for the ASIS
model, while Fig. 4(a), for the AID model, demonstrates that
the epidemic threshold is the quotient of two linear functions in
ω and is almost constant for large ω. Finally, a noisy epidemic
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FIG. 4. (Color online) Threshold τc versus effective link-
breaking rate ω for N = 40 (the inset shows the large range of ω) for
the (a) AID model and (b) ASIS model.
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FIG. 5. (Color online) Modularity in the (τ,ω) plane in the stable
region for ξ = 0.1 for the (a) AID model and (b) ASIS model.

threshold in Fig. 4(a) is an identifying characteristic of the
instability in the AID model.

Figure 5 shows, as a contour plot in the (τ,ω) plane, the
modularity value of the networks in the metastable for both
ASIS and AID (where stable) models. The contour lines
resemble roughly concentric half ellipses for the effective
infection rate τ well above the epidemic threshold where
the epidemic is active in the metastable state. A remarkable
observation is that, for a fixed effective infection rate τ , there
are two different values for ω reaching the same value of
the metric, each representing the regimes of very small or
very high effective link-breaking rates ω. The half-elliptical
contour lines of the modularity in the ASIS and AID models
only differ in two aspects: (i) the order of the contour lines (the
inner contour lines show higher modularity in the ASIS model
and lower in AID) and (ii) they are rotated from one another,
although the shape is surprisingly similar. In the (τ,ω) plane,
the instability area, which has an hourglass shape [Fig. 2(a)],
exists only for the AID model, is just below the half-ellipse
extremal node, looks like their natural extension, and is close
to the center of the coordinate system.

The metastable state (where it exists) of the AID model
is a random graph, while the metastable state in the ASIS
model is a graph with two separated components that are
loosely connected, each representing the susceptible (close to
a complete graph) and infected nodes (random graph). In the
absolute stable state in both ASIS and AID models all nodes
are susceptible. However, the final stable state topology in AID
is an empty graph, while it is a complete graph in the ASIS
model. The metastable states are physically more interesting
and those states are the focus of this paper.

Summarizing, our analysis of the adaptive ASIS and AID
epidemic models, with opposite topology dynamics, leads to
the following contributions.

(i) In the metastable state, there is an hourglass-shape area
of instability only for the AID model. The ASIS metastable
state always exists.

(ii) The AID epidemic threshold τc is almost constant in the
effective link-breaking rate ω, while τc(ω) linearly increases
with ω for the ASIS model.

(iii) In the (τ,ω) plane, topological metrics of both adaptive
epidemic models exhibit concentric half ellipses. The ASIS
and AID models differ in the order of the ellipses and the
rotation.

(iv) By extracting the model rates (detailed in [32]), we
validate the AID model with data [30] from Facebook, the
most well-known social network nowadays.
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