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Ad hoc test functions for homogenization of compressible viscous
fluid with application to the obstacle problem in dimension two

Marco Bravin

Abstract. In this paper, we highlight a set of ad hoc test functions to study the homogenization of viscous
compressible fluids in domains with very tiny holes. This set of functions allows to improve previous results
in dimensions two and three. As an application, we show that the presence of a small obstacle does not
influence the dynamics of a viscous compressible fluid in dimension two.

1. Introduction

The study of the interaction of a large number of small holes and a viscous fluid falls
in the field of homogenization. Starting from theworks of Tartar [21] andAllaire [1,2],
it has been proved that the macroscopic behavior of an incompressible viscous fluid
in a perforated domain depends on the size of the holes and their mutual distances.
In particular, three regimes are possible. When the holes are tiny (subcritical case),
they do not influence the dynamic of the fluid in the limit. When the holes are large
(supercritical), they put large friction to the fluid and a rescaled fluid velocity satisfies
a Darcy’s law in the limit. The critical case leads to a Brinkman-type term in the limit
equations. The works [1,2] have been extended to the non-stationary setting in [6–16].

In the case the fluid is viscous and compressible and modeled by the compressible
Navier–Stokes, there is not such a complete picture as for the incompressible viscous
fluid. Masmoudi tackled the supercritical case in [15]. This result was then extended
in [10]. The critical case is open and the only available result is [3] where the authors
consider also the low Mach number limit. While the subcritical case has been tackled
in the stationary case in [7–17], the non-stationary case was studied only in dimension
three in [14–19].
The goal of this work is to introduce ad hoc test functions that allow to study the

homogenization in the subcritical regime of the non-stationary compressible Navier–
Stokes in dimension two and also allow to extend the result [14–19] for a larger class
of pressure laws.
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1.1. New ideas and possible applications

The homogenization of the compressible Navier–Stokes in the subcritical regime
has been studied in [7–19]. In these works, the number of holes is comparable to
ε−d where d is the dimension and the small parameter ε > 0 is a lower bound for the
distance between any couple of distinct holes. These types of results require in general
a lower bound on γ and α which appear respectively in the pressure law p(ρ) = ργ

and on the size εα of the holes. These limitations on γ and α are used in two points.
The first one is to show improved pressure estimates independent of ε. The second one
is to verify that the limit of the solutions of the compressible Navier–Stokes equations
in the domain with tiny holes satisfies the same system but in the domain without
holes. For example in [14], the limitations are

γ > 6, α > 3 and
γ − 6

2γ − 3
α > 3,

in [7] they are γ > 2, α > 3 and α(γ − 2) > 2γ − 3. Let us notice that the more
severe hypotheses are used to verify that the limit solves the compressible Navier–
Stokes equations, in fact in [7–19], the authors multiply the test functions for the
limiting system by cut-offs tomake them compatible with domains with tiny holes. Let
now for example consider the case of the non-stationary compressible Navier–Stokes
system outside a tiny holeSε = εS in dimension three. Following the strategy used
in [14], to show that the limit satisfies the compressible Navier–Stokes is enough to
multiply any smooth test function ϕ by ηε a scaling cut-off of the type ηε = η(x/ε)
where η1 is 1 inS and 0 outside 2S . In this way, ϕηε is an admissible test function for
the domain with the holeSε and it remains to pass to the limit in the weak formulation.
The term that gives the limitation is

∫
ργ

ε div (ηεϕ) =
∫

ργ
ε ηεdiv (ϕ) +

∫
ργ

ε ϕ · ∇ηε. (1)

The difficult term to tackle is the second one on the right-hand side. Notice that
‖∇ηε‖L p converges to 0 for p < 3. We can then conclude only if we are able to show
a uniform bound for ρε in Lq with q > 3γ /2. This condition together with the fact that
the improved pressure estimate holds for γ +θ ≤ 5γ /3−1, we deduce the limitation

5

3
γ − 1 >

3

2
γ if and only if γ > 6.

The situation is even worse in the case of dimension two because ‖∇ηε‖L p −→ 0
only for p < 2 and the improved pressure estimate holds for γ + θ < 2γ − 1. In
particular, 2γ − 1 > 2γ is false for any γ . For this reason, there are no results on
the homogenization of unsteady compressible Navier–Stokes equations in this setting
when the dimension is two.
To avoid this issue in dimension two, we introduce the ad hoc test function

	ε[ϕ] = ηεϕ + ∇⊥ηεx
⊥ · ϕ.
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This function has much better properties because if we define

	̃0
ε[ϕ] = (1 − ηε)ϕ(0) − ∇⊥ηεx

⊥ · ϕ(0),

we have

div (	̃0
ε[ϕ]) = 0.

This allows us to rewrite

div (	ε[ϕ]) − ηεdiv (ϕ) = div (	ε[ϕ]) + div (	̃0
ε[ϕ]) − ηεdiv (ϕ)

= ∇ηε(ϕ − ϕ(0)) + ∇⊥ηε ⊗ (ϕ − ϕ(0)) : ∇x⊥

+ ∇⊥ηε ⊗ x⊥ : ∇ϕ.

If, for example, ϕ is Lipschitz, the term of the type

∇ηε(ϕ − ϕ(0)) = |x |∇ηε

(ϕ(x) − ϕ(0))

|x |
converges to zero in any L p with p < +∞. In particular, we have that

∫
ργ

ε div (	ε[ϕ]) =
∫

ργ
ε ηεdiv (ϕ) +

∫
ργ

ε (div (	ε[ϕ]) − ηεdiv (ϕ))

−→
∫

ργ div (ϕ),

if we have a uniform bound of ρε in L p for some p > γ .
In dimension three, a possible set of ad hoc test functions is

	ε[ϕ] = ηεϕ +
⎛
⎝x2∂2ηεϕ1 − x2∂3ηεϕ3

x3∂3ηεϕ2 − x2∂1ηεϕ1

x1∂1ηεϕ3 − x3∂2ηεϕ2

⎞
⎠ ,

with

	̃0
ε[ϕ] = (1 − ηε)ϕ(0) −

⎛
⎝x2∂2ηεϕ1(0) − x2∂3ηεϕ3(0)
x3∂3ηεϕ2(0) − x2∂1ηεϕ1(0)
x1∂1ηεϕ3(0) − x3∂2ηεϕ2(0)

⎞
⎠ .

With the help of ad hoc test functions 	ε[ϕ], we can improve the hypothesis on γ

and α in the study of homogenization of compressible viscous fluid in the subcritical
regime. Moreover, the restrictions on the parameters will not come from the pressure
term, so we expect that [14] can be shown in the case γ > 3 and α > max{3, (2γ −
3)/(γ−3)}This result canbe extended also in the case of dimension two for appropriate
lower bounds of γ and α.
To verify that the idea introduced in this section works, we apply it to a simpler

problem that is the obstacle problem in dimension two. In particular, we show that the
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presence of a small hole does not influence the dynamic of a viscous compressible
fluid in dimension two.
Let us recall that in the case the hole is replaced by a rigid body, in [8], the authors

extend the result [5] and they show that the small object does not influence the dynamics
of a viscous compressible fluid in dimension three under the hypothesis γ > 3/2.
Finally, let us mention that homogenization of compressible Navier–Stokes has been
studied also in the setting of randomly perforated domains in [4].

2. The obstacle problem in dimension two

At a mathematical level, we consider� ⊂ R
2 an open, bounded, connected, simply

connected subset ofR2 withLipschitz boundary such that 0 ∈ �. For a small parameter
ε > 0, we consider a sequence of small holes Sε ⊂ Bε(0) ⊂ � such that they are
open, connected, simply connected and with Lipschitz boundary. The fluid domain
is Fε = � \ Sε and to model a viscous compressible fluid in Fε, we consider the
compressible Navier–Stokes equations that reads

∂tρε + div (ρεuε) = 0 for x ∈ Fε,

∂t (ρεuε) + div (ρεuε ⊗ uε) − div (S(uε)) + ∇ p(ρε) = 0 for x ∈ Fε,

uε = 0 for x ∈ ∂Fε,

ρε(0, .) = ρin
ε , (ρεuε)(0) = qin for x ∈ Fε,

(2)

where uε : R+ ×Fε −→ R
2 describes the velocity of the fluid, ρε : R+ ×Fε → R

+
is its density,

S(uε) − p(ρε)I = 2μD(uε) + (λ − μ)div (uε)I − ργ
ε I,

is the stress tensor, D(uε) is the symmetric gradient, in other words, 2D(uε) = ∇uε +
(∇uε)

T and I is the two-dimensional identity matrix. Moreover, we assume μ > 0,
λ ≥ 0 and γ > 1. Finally, ρin

ε ≥ 0 is the initial density and qinε is the initial momentum
which satisfies the condition

qinε (x) = 0 for any x ∈
{
y ∈ Fε such that ρ

in
ε = 0

}
. (3)

The above system has been widely studied in the past years, and the existence of finite
energy weak solutions has been proved by Lions and Feireisl see [12,18].
In this paper, we study the limit as ε goes to zero for solutions of (2), in particular

we show that under some mild assumption on ρin
ε and qinε solutions (ρε, uε) converge

in an appropriate sense to a solution (ρ, u) of the system (2) withFε replaced by �.

3. Definition of weak solutions and main result

In this section, we recall the definition of bounded energy weak solution for the
system (2) from [18], Definition 7.3. Then, we present the main result of the paper.
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In the following, we denote by P the function P(ρ) = ργ /(γ − 1). For simplicity,
we do not write the small parameter ε in the next definition.

Definition 1. Let T > 0 and let (ρin, qin) be an initial data satisfying (3) such that
P(ρin) ∈ L1(F ) and |qin|2/ρin ∈ L1(F ). Then, a triple (ρ, u) is a weak solution of
(2) in (0, T ) × F with initial datum (ρin, qin) if

– ρ ∈ L∞(0, T ; L1(F )) such that ρ ≥ 0 and P(ρ) ∈ L∞(0, T ; L1(F )).
– u ∈ L2(0, T ;W 1,2

0 (F )).
– (ρ, u) satisfies the continuity equation ∂tρ+div (ρu) = 0 in both a distributional

sense in [0, T ) × R
2 and in a renormalized1 sense where we extend ρ and u by

zero in the exterior of [0, T ) × F .
– the momentum equation is satisfied in the weak sense

∫
F

qinϕ(0, .) dx +
∫ T

0

∫
F

ρu · ∂tϕ + [ρu ⊗ u] : Dϕ + ργ divϕ dxdt

=
∫ T

0

∫
F

Su : Dϕ dxdt,

for any ϕ ∈ C∞([0, T ) × F ).
– for a.e. τ ∈ [0, T ] the following energy equality holds

∫
F

1

2
ρ|u|2(τ, .) + P(ρ(τ, .)) dx +

∫ τ

0

∫
F

μ|∇u|2 + λ|div u|2 dxdt

≤
∫
F

1

2

|qin|2
ρin

+ P(ρin) dx .

We can now recall the existence result of weak solutions.

Theorem 1. Let T > 0 and let (ρin, qin) be an initial data satisfying (3) such that
P(ρin) ∈ L1(F ) and |qin|2/ρin ∈ L1(F ). Then there exists a solution (ρ, u) of (2)
in (0, T ) × F in the sense of Definition 1 with initial datum (ρin, qin).

The proof is classical, see, for instance, [12] or Sect. 7 of [18].
In the following, for any function or vector field fε defined onFε we denote, with

an abuse of notation, by fε also its extension by zero in � or R2. We are now able to
state our main result.

Theorem 2. Let T > 0, let γ > 2, let (ρin
ε , qinε ) be a sequence of initial data satisfying

(3) such that P(ρin
ε ) ∈ L1(Fε), |qinε |2/ρin

ε ∈ L1(Fε) and let (ρin, qin) satisfying (3)
withFε = � such that P(ρin) ∈ L1(�) and |qin|2/ρin ∈ L1(�). If

– ρin
ε −→ ρin in Lγ (�),

– |qinε |2/ρin
ε −→ |qin|2/ρin in L1(�),

1We refer to Sect. 6.2 of [18] for the definition and some basic properties of renormalized solutions to the
continuity equation.
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then up to subsequence there exists (ρ, u) such that

ρε −→ ρ in Cw(0, T ; Lγ (�)) and uε
w−⇀ u in L2

(
0, T ;W 1,2

0 (�)
)

. (4)

Moreover (ρ, u) satisfies (2) in (0, T )×� and with initial data (ρin, qin), in the sense
of Definition 1.

Let us explain where we use the condition γ > 2.

Remark 1. Although the existence of weak solutions to (2) holds for γ > 1, in The-
orem 2 we consider the case γ > 2. This restriction comes from the fact that in
dimension two to pass to the limit in the term

∫ T

0

∫
Fε

ρεuε ⊗ uε : D	ε[ϕ] dxdt,

we use that ρε, uε and D	ε[ϕ] are uniformly bounded, respectively, in L∞(0, T ; Lγ

(Fε)), in L2(0, T ; L p(Fε)) for any p < +∞ and L∞(0, T ; L2(Fε)), together with
the condition

1

γ
+ 1

∞ + 1

∞ + 1

2
< 1 if and only if γ > 2.

In the remaining part of the paper, we show Theorem 2.

4. A priori estimates

By definition of weak solution to the system (2), any solution (ρε, uε) satisfies the
inequalities

‖ρε(t, .)‖L1(Fε)
= ‖ρin

ε ‖L1(Fε)

and ∫
Fε

1

2
ρε|uε|2(τ, .) + P(ρε(τ, .)) dx +

∫ τ

0

∫
Fε

μ|∇uε|2 + λ|div uε|2 dxdt

≤
∫
F

1

2

|qinε |2
ρin

ε

+ P(ρin
ε )dx .

By the hypothesis of Theorem 2, the right-hand side of the above inequalities are
uniformly bounded in ε. In particular, we deduce that

‖ρε‖L∞(0,T ;Lγ (�)) ≤ C,

‖√ρεuε‖L∞(0,T ;L2(�)) ≤ C,

‖uε‖L2(0,T ;W 1,2(�)) ≤ C. (5)

Moreover, we can show the following improved pressure estimates
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Lemma 1. Let γ > 2, under the hypothesis of Theorem 2, for any θ < γ −1 it holds

∫ T

0

∫
�\B2ε(0)

ργ+θ
ε ≤ C,

where C is independent of ε.

We postpone the proof of this estimate in “Appendix B” because it is classical.

5. Some appropriate cut-off

In this section, we introduce some cut-off functions that have been considered also
in [5,9]. These cut-offs have the property that they optimized the L2 norm of the
gradient and we denote them by ηε,αε . The parameter ε > 0 indicates that ηε,αε = 1
in the ball Bε(0) and αε that the support of the ηε,αε is contained in the ball of size
εαε.

Proposition 1. For any ε > 0 and αε ≥ 2, there exists a cut-off function ηε,αε ∈
C∞
c (Bεαε (0)) such that ηε,αε (x) = 1 for x ∈ Bε(0), ‖ηε,αε‖L∞ ≤ 1 and the following

bounds hold with constant C independent of ε and αε.

1. For 1 ≤ q < +∞

‖ηε,αε‖Lq (R2) + ‖|x |∇ηε,α‖Lq (R2) ≤ C(εαε)
2/q .

2. We have

∥∥∇ηε,αε

∥∥2
L2(R2)

+
∥∥∥|x |∇2ηε,αε

∥∥∥2
L2(R2)

≤ C

(logαε)
.

3. For 1 ≤ q < 2,

∥∥∇ηε,αε

∥∥q
Lq (R2)

+
∥∥∥|x |∇2ηε,αε

∥∥∥q
Lq (R2)

≤ C

2 − q

(εαε)
2−q

(logαε)q
.

4. For 2 < q < +∞„ for i = 1, 2,

∥∥∇ηε,αε

∥∥q
Lq (R2)

+
∥∥∥∇2ηε,αε xi

∥∥∥q
Lq (R2)

= C

q − 2

ε2−q

(logαε)q
.

In particular, if αε ≤ | log(ε)| and αε −→ +∞,

∥∥∇ηε,αε

∥∥
Lq (R2)

+
∥∥∥|x |∇2ηε,αε

∥∥∥
Lq (R2)

−→ 0 for 1 ≤ q ≤ 2

and

εαε

∥∥∇ηε,αε

∥∥
Lq (R2)

, εαε

∥∥∥∇2ηε,αε xi
∥∥∥
Lq (R2)

−→ 0 for 2 < q < +∞.
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The proof of the above proposition is a straightforward extension of Lemma 3 of
[9], so let us postpone the proof in “Appendix C.”
Under the assumption αε ≤ | log(ε)| and αε −→ +∞, we denote 1−η2ε,α2ε = nε.
Let now present another useful estimate. For a function ϕ ∈ L1(�), we denote by

	ε[ϕ] = nεϕ + ∇⊥nεx
⊥ · ϕ

and by

	0
ε[ϕ] = (1 − nε)〈ϕ〉ε(0) − ∇⊥nεx

⊥ · 〈ϕ〉ε(0)
where

〈ϕ〉ε(0) = 1

|B2εα2ε (0)|
∫

|B2εα2ε (0)|
ϕ.

The following holds.

Lemma 2. Let p, q ∈ [1,+∞]. Then, there exist a constant cp,q(ε) such that cp,q(ε)
−→ 0 as ε −→ 0 and for any vector field ϕ : � −→ R

2, it holds

‖	ε[ϕ]−ϕ‖L p(�) ≤cp,q(ε)‖ϕ‖Lq (�) and ‖	ε[ϕ]−nεϕ‖L p(�) ≤cp,q(ε)‖ϕ‖Lq (�)

for p < q < ∞.

‖∇	ε[ϕ] − nε∇ϕ‖L p(�) ≤ cp,q(ε)‖ϕ‖W 1,q (�)

for p ≤ 2 and q > 2. Finally,

‖div (	ε[ϕ]) − nεdiv (ϕ)‖L p(�) ≤ cp,q(ε)‖ϕ‖Lq (�) (6)

for p < q < ∞.

In the following, we always omit the dependence on p and q for cp,q(ε) and we
write cp,q(ε) = c(ε).

Proof. The proof of these inequalities follows from the definition of 	ε[ϕ], Poincaré
inequality and Proposition 1. Let us recall that for any functions f ∈ C∞(Bεαε (0))
the Poincaré inequality reads

‖ϕ − 〈ϕ〉ε/2(0)‖Lq (Bεαε(0)) ≤ Cεαε‖∇ f ‖Lq (Bεαε (0)) (7)

where C is independent of ε and αε. The proof of (7) follows from a simple scaling
argument.
The most interesting inequality is (6), so we will prove it. First of all notice that

div (	0
ε[ϕ]) = 0, in fact
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div (	0
ε[ϕ]) = div ((1 − nε)〈ϕ〉ε(0) − ∇⊥nεx

⊥ · 〈ϕ〉ε(0))
= div (∇⊥((1 − nε)x

⊥ · 〈ϕ〉ε(0))) = 0.

Then,

div (	ε[ϕ]) − nεdiv (ϕ) = div (	ε[ϕ]) + div (	0
ε[ϕ]) − nεdiv (ϕ)

= ∇nε(ϕ − 〈ϕ〉ε(0)) + ∇⊥nε ⊗ x⊥ : ∇ϕ

+ ∇⊥nε ⊗ (ϕ − 〈ϕ〉ε(0)) : ∇x⊥.

Using the above equality, we estimate for 1/s = 1/p − 1/q

‖div (	ε[ϕ]) − nεdiv (ϕ)‖L p(�) ≤ ‖∇nε‖Ls (�)‖ϕ − 〈ϕ〉ε(0)‖Lq (B2εα2ε(0))

+ ‖∇⊥nε ⊗ x⊥‖Ls (�)‖∇ϕ‖Lq (�)

+ ‖∇⊥nε‖Ls (�)‖ϕ − 〈ϕ〉ε(0)‖Lq (B2εα2ε(0))

≤ 2εα2εC‖∇nε‖Ls (�)‖∇ϕ‖Lq (�)

+ C‖∇⊥nε ⊗ x⊥‖Ls (�)‖∇ϕ‖Lq (�)

+ 2εα2εC‖∇⊥nε‖Ls (�)‖∇ϕ‖Lq (�)

≤ c(ε)‖ϕ‖W 1,q (�),

where we use that p < q, the Poincaré inequality (7) and Proposition 1. �

6. Pass to the limit in the weak formulation

Using the estimates from (5), Lemma 1 and the fact that (ρε, uε) are solutions to
the system (2) the following convergences hold.

Lemma 3. Under the hypothesis of Theorem 2, we have after passing to subsequence
that

ρε
w−⇀ ρ in L2γ−1([0, T ] × �)

ρε −→ ρ in C0
w([0, T ); Lγ (�))

uε
w−⇀ u in L2(0, T ; H1

0 (�))

nερεuε + ρεuε · ∇⊥nεx
⊥ −→ ρu in C0

w([0, T ); L2γ /(γ+1)(�))(
nερεuε + ρεuε · ∇⊥nεx

⊥)
⊗ uε −→ ρu ⊗ u in D ′((0, T ) × �)

1�\B2ε(0)ργ
ε

w−⇀ ργ in L(2γ−1)/γ ([0, T ] × �)

where t ∈ (0, T ).
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Proof. Using (5), Lemma 1 and the fact that (ρε, uε) are solutions to the system (2), it
is easy to deduce all the convergence except the fourth one. By (5), we already know
that

‖ρεuε‖L∞(0,T ;L2γ /(γ+1)(Fε))
≤ ‖√ρε‖L∞(0,T ;L2γ (Fε))

‖√ρεuε‖L∞(0,T ;L2(Fε))
≤ C.

We deduce that ρεuε converges weakly star in L∞(0, T ; L2γ /(γ+1)(�)). To identify
the limit, we start by noticing that the convergence ρε → ρ in C0

w([0, T ); Lγ (�))

implies that ρε converges to ρ also in C0([0, T ); H−1(�)), see Lemma 6.2 of [18].

This together with the convergence uε
w−⇀ u in L2(0, T ; H1

0 (�)) shows that ρεuε

converges to ρu in a distributional sense in (0, T )×�. By uniqueness of the limit we
have

ρεuε
w∗−⇀ ρu in L∞([0, T ); L2γ /(γ+1)(�)). (8)

Using that |nε| and |∇⊥nε ⊗x⊥| are bounded, we deduce that nερεuε +ρεuε ·∇⊥nεx⊥
is uniformly bounded in L∞([0, T ); L2γ /(γ+1)(�)). Hence, we extract a weak-star
convergent subsequence. To identify the limit we notice that by an Hölder inequality

‖nερεuε + ρεuε · ∇⊥nεx
⊥ − ρεuε‖L∞(0,T ;Lq (�))

≤ C(‖1 − nε‖L2γ q/(γ q+q−2γ )(�)) + ‖∇⊥nε ⊗ x⊥‖L2γ q/(γ q+q−2γ )(�)))

‖ρεuε‖L∞(0,T ;L2γ /(γ+1)(�))

−→ 0

for any 1 ≤ q < 2γ /(γ + 1) because 1− nε and ∇⊥nε ⊗ x⊥ are bounded uniformly
in ε and their support converges to zero. We deduce

nερεuε + ρεuε · ∇⊥nεx
⊥ w∗−⇀ ρu in L∞([0, T ); L2γ /(γ+1)(�)).

To show the strong convergence in time, it is enough to prove that nερεuε + ρεuε ·
∇⊥nεx⊥ is continuous and equicontinuous in some H−s(�) for some s big enough
and to apply Appendix C of [11]. To do that, we will apply the following lemma. �

Lemma 4. Let H a Hilbert space and let fn : (0, T ) −→ H a sequence of functions.
If ∂t fn = g1n + g2n where

– ‖g1n‖L p(0,T ;H) ≤ C with C independent of n and p > 1,
– limn→+∞ ‖g2n‖L1(0,T ;H) = 0.

Then, the functions fn are continuous and equicontinuous.

For ϕ ∈ C∞((0, T ) × �), we notice that

∫ T

0

∫
�

(
nερεuε + ρεuε · ∇⊥nεx

⊥)
· ∂tϕ =

∫ T

0

∫
�

ρεuε · ∂t

(
nεϕ + ∇⊥nεx

⊥ · ϕ
)

=
∫ T

0

∫
�

ρεuε · ∂t	ε[ϕ]. (9)



J. Evol. Equ. Ad hoc test functions for homogenization Page 11 of 29    84 

We can now use the momentum equation of (2) tested with 	ε[ϕ] to deduce
∫ T

0

∫
�

ρεuε · ∂t	ε[ϕ] = −
∫ T

0

∫
�

ρεuε ⊗ uε : D	ε[ϕ]

+
∫ T

0

∫
�

Suε : D	ε[ϕ]

−
∫ T

0

∫
�

ργ
ε div (	ε[ϕ]). (10)

We now bound the terms on the right-hand side separately. Notice that
∫ T

0

∫
�

ρεuε ⊗ uε : D	ε[ϕ] =
∫ T

0

∫
�

ρεuε ⊗ uε : nεDϕ

+
∫ T

0

∫
�

ρεuε ⊗ uε : (D	ε[ϕ] − nεDϕ) .

Let us recall that in dimension twoW 1,2 ⊂ L p for any p < +∞ and thatW 1,2 �⊂ L∞,
in particular, ‖ f ‖L p ≤ C‖ f ‖W 1,2 for any p < +∞. In the following, we denote by
‖ f ‖L∞− the norm ‖ f ‖L p for p big enough. We have

∣∣∣∣
∫ T

0

∫
�

ρεuε ⊗ uε : nεDϕ

∣∣∣∣
≤ ‖ρεuε‖L∞(0,T :L2γ /(γ+1)(Fε))

‖uε‖L2(0,T ;L∞−
(Fε))

‖Dϕ‖L2(0,T ;Lq (�)),

for q > 2γ /(γ − 1). Moreover,
∣∣∣∣
∫ T

0

∫
�

ρεuε ⊗ uε : (D	ε[ϕ] − nεDϕ)

∣∣∣∣
≤ ‖ρε‖L∞(0,T ;Lγ (�))‖uε‖2L2(0,T ;L∞−

(�))
‖D	ε[ϕ] − nεDϕ‖L1(0,T ;Lq̃ (�))

≤ c(ε)‖ρε‖L∞(0,T ;Lγ (�))‖uε‖2L2(0,T ;L∞−
(�))

‖ϕ‖L1(0,T ;W 1,q (�)) (11)

where 2 > q > q̃ > γ/(γ − 1) and c(ε) −→ 0 as ε −→ 0. In the last inequality, we
used Lemma 2. Let now move to the second term of right-hand side of (10). We have

∣∣∣∣
∫ T

0

∫
�

Suε : D	ε[ϕ]
∣∣∣∣ ≤ c‖uε‖L2(0,T ;W 1,2(�))‖ϕ‖L2(0,T ;W 1,2(�)).

We are left with the last term of (10). Using that 	ε[ϕ] = 0 in B2ε(0), we rewrite∫ T

0

∫
�

ργ
ε div (	ε[ϕ]) =

∫ T

0

∫
�

1�\B2ε(0)ργ
ε nεdiv (ϕ)

+
∫ T

0

∫
�

1�\B2ε(0)ργ
ε (div (	ε[ϕ]) − nεdiv (ϕ)) . (12)

Notice that∣∣∣∣
∫ T

0

∫
�

1�\B2ε(0)ργ
ε div (ϕ)

∣∣∣∣ ≤ ‖1�\B2ε(0)ργ
ε ‖L p((0,T )×�)‖div (ϕ)‖Lq ((0,T )×�)
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is uniformly bounded for any 1/p + 1/q = 1 and p < (2γ − 1)/γ .
The same estimate holds for the second term of (12); moreover, from Lemma 2, we

have
∣∣∣∣
∫ T

0

∫
�

1�\B2ε(0)ργ
ε (div (	ε[ϕ]) − nεdiv (ϕ))

∣∣∣∣
≤ ‖1�\B2ε(0)ργ

ε ‖L p((0,T )×�)‖div (	ε[ϕ]) − nεdiv (ϕ)‖Lq ((0,T )×�)

≤ c(ε)‖1�\B2ε(0)ργ
ε ‖L p((0,T )×�)‖ϕ‖Lq (0,T ;W 1,q̃ (�)) (13)

with q̃ > max{2, q} and with c(ε) −→ 0 as ε −→ 0.
We can now apply Lemma 4 and deduce

nερεuε + ρεuε · ∇⊥nεx
⊥ −→ ρu in C0

w([0, T ); L2γ /(γ+1)(�)).

We will now pass to the limit in the weak formulation satisfied by ρε and uε. Let
us recall that (ρε, uε) satisfies the continuity equation ∂tρε + div (ρεuε) = 0 in a
distributional sense in [0, T ) × R

2 in other words for any ψ ∈ C∞
c ([0, T ) × R

2) it
holds

∫
R2

ρin
ε ψ(0, .) +

∫ T

0

∫
R2

ρε∂tψ + ρεuε · ∇ψ = 0. (14)

FromLemma3,we have thatρε −→ ρ inC0
w([0, T ); Lγ (�)), moreoverρεuε

w∗−⇀ ρu
in L∞(0, T ; L2γ /(γ+1)(�)) from (8). We now pass to the limit in (14) to deduce that
(ρ, u) is a distributional solution of ∂tρ + div (ρu) = 0 in [0, T ) × R

2. From the
assumption γ > 2, we have ρ ∈ L∞(0, T ; L2(R2)). Lemma 6.9 of [18] implies that
(ρ, u) satisfies the continuity equation also in the renormalized sense.
We now explain how to pass to the limit in the momentum equation. For ϕ ∈

C∞
c ([0, T ) × �) we test the weak formulation of the momentum equation satisfied

by ρε, uε with 	ε[ϕ] = nεϕ + ∇⊥nεx⊥ · ϕ. We deduce that

∫
Fε

qinε 	ε[ϕ](0, .) +
∫ T

0

∫
Fε

(ρεuε) · ∂t	ε[ϕ]

+
∫ T

0

∫
Fε

[ρεuε ⊗ uε] : D	ε[ϕ] + ργ
ε div	ε[ϕ] =

∫ T

0

∫
Fε

Suε : D	ε[ϕ].

We will pass to the limit in ε in any term separately. First of all, notice that

	ε[ϕ](0, .) = nεϕ(0, .) + ∇⊥nεx
⊥ · ϕ(0, .) −→ ϕ(0, .) in Lq(�)

for any q < +∞ by dominate convergence. We deduce that
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∫
Fε

qinε 	ε[ϕ](0, .) =
∫
Fε

qinε√
ρin

ε

√
ρin

ε 	ε(0, .) −→
∫

�

qin√
ρin

√
ρinϕ(0, .)

=
∫

�

qinϕ(0, .)

where we used qinε /
√

ρin
ε −→ qin/

√
ρin in L2(�) and

√
ρin

ε −→ √
ρin in L2γ (�).

Using (9), we notice that

∫ T

0

∫
Fε

(ρεuε) · ∂t	ε[ϕ] =
∫ T

0

∫
Fε

(nερεuε + ρεuε · ∇⊥nεx
⊥) · ∂tϕ

−→
∫ T

0

∫
�

ρu · ∂tϕ

where we use the convergence from Lemma 3. For the next term, let us rewrite

∫ T

0

∫
Fε

[ρεuε ⊗ uε] : D	ε[ϕ] =
∫ T

0

∫
Fε

[(
nερεuε + ρεuε · ∇⊥nεx

⊥)
⊗ uε

]
: Dϕ

+
∫ T

0

∫
Fε

[ρεuε ⊗ uε] : (D	ε[ϕ] − nεDϕ)

(15)

−
∫ T

0

∫
Fε

[
ρεuε · ∇⊥nεx

⊥ ⊗ uε

]
: Dϕ.

Notice that
∫ T

0

∫
Fε

[(
nερεuε + ρεuε · ∇⊥nεx

⊥)
⊗ uε

]
: Dϕ −→

∫ T

0

∫
�

ρu ⊗ u : Dϕ,

due to Lemma 3. Moreover, the second term of the right-hand side of (15) converges
to zero due to (11). Finally, the last term of (15)

∣∣∣∣
∫ T

0

∫
Fε

[
ρεuε · ∇⊥nεx

⊥ ⊗ uε

]
: Dϕ

∣∣∣∣
≤ ‖ρε‖L∞(0,T ;Lγ (�))‖uε‖2L2(0,T ;L∞−

(�))
‖∇⊥nεx

⊥‖L2(�)

−→ 0,

where we use Proposition 1. We deduce

∫ T

0

∫
Fε

[ρεuε ⊗ uε] : D	ε[ϕ] −→
∫ T

0

∫
�

ρu ⊗ u : Dϕ.

The next term is
∫ T

0

∫
Fε

ργ
ε div	ε[ϕ] =

∫ T

0

∫
Fε

1�\B2ε(0)ργ
ε nεdivϕ
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+
∫ T

0

∫
Fε

1�\B2ε(0)ργ
ε (div (	ε[ϕ]) − nεdiv (ϕ))

−→
∫ T

0

∫
�

ργ divϕ,

where we used Lemma 3 for the convergence of the first term and (13) for the second
one. Finally,

∫ T

0

∫
Fε

Suε : D	ε[ϕ] =
∫ T

0

∫
Fε

Suε : nεDϕ +
∫ T

0

∫
Fε

Suε : (D	ε[ϕ] − nεDϕ)

−→
∫ T

0

∫
�

Su : Dϕ

where we used the weak convergence of uε from Lemma 3 and the strong convergence
of nεDϕ −→ Dϕ in L2. The second term converges to zero from Lemma 2.

Putting all this convergence together, we deduce that ρ and u satisfy

∫
�

qinϕ(0, .) +
∫ T

0

∫
�

ρu · ∂tϕ +
∫ T

0

∫
�

[ρu ⊗ u] : Dϕ + ργ divϕ

=
∫ T

0

∫
�

Su : Dϕ.

It now remains to show that ργ = ργ . We will show this in the next section.

7. Identification of the pressure

We now show that ργ = ργ to do that we follow the strategy introduced by Lions in
[12]. Let us recall that we are in the case γ > 2 and dimension two, it is then enough
to show the following lemma.

Lemma 5. For any ψ ∈ C∞
c (�), it holds

lim
ε−→0

∫ T

0

∫
�

ψ2nε

(
ργ

ε −(2μ+γ )div (uε)
)
ρε =

∫ T

0

∫
�

ψ2 (
ργ −(2μ+λ)div (u)

)
ρ

up to subsequence.

Proof. Consider φε = ψ	ε[∇�−1[ψρε]] = ψnε∇�−1[ψρε] + ψ∇⊥nεx⊥ · ∇�−1

[ψρε] and φ = ψ∇�−1[ψρ]. Here, ∇�−1 is the integral operator defined by the
singular kernel

K (x, y) = 1

2π

x − y

|x − y|2 for (x, y) ∈ R
2 with x �= y.

From Calderón–Zygmund theory, see Sect. 5 of Chapter I of [20], we deduce that

∇�−1 : L p
c (R2) −→ W 1,p

loc (R2)
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for p ∈ (1,∞) and ‖∇�−1 f ‖W 1,p(K ) ≤ C(R, K )‖ f ‖L p(R2) where the support of f
is contained in the ball BR(0) and K ⊂ R

2 is compact. Moreover, for any vector field
F ∈ L p

c (R2) it holds ‖∇�−1div (F)‖L p(K ) ≤ C(R, K )‖F‖L p(R2) where the support
of F is contained in the ball BR(0) and K ⊂ R

2 is compact.
From the a priori estimates on the solutions ρε, uε, we notice that∇�−1[ψρε] is uni-

formly bounded in L∞(0, T ;W 1,γ (�)) and ∂t∇�−1[ψρε] = −∇�−1[ψdiv (ρεuε)]
is uniformly bounded is some L p spaces. We can now test the weak formulation sat-
isfied by ρε, uε by φε and the one of ρ, u by φ. Using the convergence of initial data,
we deduce

lim
ε→0

∫ T

0

∫
�

ρεuε · ∂tφε + ρεuε ⊗ uε : ∇φε + ργ
ε div (φε) − Suε : ∇φε

=
∫ T

0

∫
�

ρu · φ + ρu ⊗ u : ∇φ + ργ div (φ) − Su : ∇φ. (16)

We will now rewrite the above equality in an appropriate way. To simplify the calcu-
lations, let us introduce the notation

	T
ε [ϕ] = nεϕ + ϕ · ∇⊥nεx

⊥, (17)

for any measurable velocity field ϕ. Notice that

∂tφε = ψ	ε[∇�−1(ψ∂tρε)]
= −ψ	ε[∇�−1(div (ψρεuε)] + ψ	ε[∇�−1[∇(ψ)ρεuε]].

We deduce that
∫ T

0

∫
�

ρεuε · ∂tφε = −
∫ T

0

∫
�

ψρεuε · 	ε[∇�−1[div (ψρεuε)]]

+
∫ T

0

∫
�

ρεuε · ψ	ε[∇�−1[∇(ψ)ρεuε]]

= −
∫ T

0

∫
�

ψ	T
ε [ρεuε] · ∇�−1[div (ψρεuε)]

+
∫ T

0

∫
�

ψ	T
ε [ρεuε] · ∇�−1[∇(ψ)ρεuε].

Lemma 3 implies that 	T
ε [ρεuε] converges to ρu in Cw(0, T ; L2γ /(γ+1)(�)), while

∇�−1[∇(ψ)ρεuε] convergesweakly star to∇�−1[∇(ψ)ρu] in L∞(0, T ;W 1,2γ /(γ+1)
(�)). We deduce that

∫ T

0

∫
�

ρεuε · ∂tφε = −
∫ T

0

∫
�

ψ	T
ε [ρεuε] · ∇�−1[div (ψρεuε)] (18)

+
∫ T

0

∫
�

ψρu · ∇�−1[∇(ψ)ρu)] + c(ε),
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with c(ε) −→ 0 as ε −→ 0. Similarly, we have
∫ T

0

∫
�

ρεuε ⊗ uε : ∇φε =
∫ T

0

∫
�

ρεuε ⊗ uε : (∇ψ ⊗ 	ε[∇�−1[ψρε]])

+
∫ T

0

∫
�

ψρεuε ⊗ uε : ∇	ε[∇�−1[ψρε]].

For the first term of the right-hand side, we rewrite
∫ T

0

∫
�

ρεuε ⊗ uε : (∇ψ ⊗ 	ε[∇�−1[ψρε]])

=
∫ T

0

∫
�

ρεuε ⊗ uε : (∇ψ ⊗ (	ε − nεI)[∇�−1[ψρε]])

+
∫ T

0

∫
�

	T
ε [ρεuε] ⊗ uε : (∇ψ ⊗ ∇�−1[ψρε])

−
∫ T

0

∫
�

ρεuε · ∇⊥nεx
⊥ ⊗ uε : (∇ψ ⊗ ∇�−1[ψρε])

Using Lemma 2, using that 	T
ε [ρεuε] ⊗ uε converges to ρu ⊗ u in L1(0, T ; Lq(�))

for any q < γ , that ∇�−1[ψρε] converges to ∇�−1[ψρ] in C0
w(0, T ;W 1,γ (�)) and

‖∇⊥nε ⊗ x‖L p(R2) converges to zero for any p < ∞, we deduce

∫ T

0

∫
�

ρεuε ⊗ uε : (∇ψ ⊗ 	ε[∇�−1[ψρε]])

=
∫ T

0

∫
�

ρu ⊗ u : (∇ψ ⊗ ∇�−1[ψρ]) + c(ε), (19)

with c(ε) −→ 0 as ε −→ 0. Similarly,
∫ T

0

∫
�

ψρεuε ⊗ uε : ∇	ε[∇�−1[ψρε]]

=
∫ T

0

∫
�

ψρεuε ⊗ uε : (∇	ε − nε∇)[∇�−1[ψρε]]

+
∫ T

0

∫
�

ψ	T
ε [ρεuε] ⊗ uε : ∇(∇�−1[ψρε])

−
∫ T

0

∫
�

ψρεuε · ∇⊥nεx
⊥ ⊗ uε : ∇(∇�−1[ψρε])

Lemma 2 and the convergences of 	T
ε [ρεuε] ⊗ uε, ∇�−1[ψρε], ∇⊥nε ⊗ x , used to

show (19), imply that
∫ T

0

∫
�

ψρεuε ⊗ uε : ∇	ε[∇�−1[ψρε]]

=
∫ T

0

∫
�

ψ	T
ε [ρεuε] ⊗ uε : ∇(∇�−1[ψρε]) + c(ε), (20)
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with c(ε) −→ 0 as ε −→ 0. From the equalities (19) and (20), we deduce

∫ T

0

∫
�

ρεuε ⊗ uε : ∇φε =
∫ T

0

∫
�

ρu ⊗ u : (∇ψ ⊗ ∇�−1[ψρ]) (21)

+
∫ T

0

∫
�

nεψρεuε ⊗ uε : ∇(∇�−1[ψρε]) + c(ε),

with c(ε) −→ 0 as ε −→ 0. The next term is
∫ T

0

∫
�

ργ
ε div (φε) =

∫ T

0

∫
�

ργ
ε ∇ψ · 	ε[∇�−1[ψρε]]

+
∫ T

0

∫
�

nεψ
2ργ

ε ρε

+
∫ T

0

∫
�

ψργ
ε

(
div (	ε[∇�−1[ψρε]])−nεdiv (∇�−1[ψρε])

)
.

Using the weak convergence of 1R2\B2ε(0)ρ
γ
ε to ργ in L(γ+θ)/γ and the convergence

of ∇�−1[ψρε] to ∇�−1[ψρ] in C0
w(0, T ;W 1,γ (�)), we deduce that the first term of

the right-hand side converges to

∫ T

0

∫
�

ργ ∇ψ · ∇�−1[ψρ],

and the last term converges to zero from Lemma 2. We deduce that

∫ T

0

∫
�

ργ
ε div (φε) =

∫ T

0

∫
�

ργ ∇ψ · ∇�−1[ψρ] (22)

+
∫ T

0

∫
�

nεψ
2ργ

ε ρε + c(ε),

with c(ε) −→ 0 as ε −→ 0. Finally

∫ T

0

∫
�

Suε : ∇φε =
∫ T

0

∫
�

Suε : (∇ψ ⊗ 	ε[∇�−1[ψρε]])

+
∫ T

0

∫
�

ψnεSuε : ∇(∇�−1[ψρε])

+
∫ T

0

∫
�

ψnεSuε : (∇	ε − nε∇)[∇�−1[ψρε]].

From the weak convergence of Suε to Su in L2((O, T ) × �), the convergence
∇�−1[ψρε] to ∇�−1[ψρ] in C0

w(0, T ;W 1,γ (�)) and Lemma 2, we have

∫ T

0

∫
�

Suε : ∇φε =
∫ T

0

∫
�

Su : (∇ψ ⊗ ∇�−1[ψρ]) (23)

+
∫ T

0

∫
�

ψnεSuε : ∇(∇�−1[ψρε]) + c(ε),
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with c(ε) −→ 0 as ε −→ 0. Using (18)–(21)–(22)–(23), we rewrite (16)

lim
ε→0

∫ T

0

∫
�

(
− ψ	T

ε [ρεuε] · ∇�−1[div (ψρεuε)]

+ψ	T
ε [ρεuε] ⊗ uε : ∇(∇�−1[ψρε])+nεψ

2ργ
ε ρε−nεψSuε : ∇(∇�−1[ψρε])

)

=
∫ T

0

∫
�

(
− ψρu · ∇�−1[div (ψρu)] + ψρu ⊗ u : ∇(∇�−1[ψρ])

+ ψ2ργ ρ − ψSu : ∇(∇�−1[ψρ])
)

. (24)

We will now show that

lim
ε→0

∫ T

0

∫
�

−ψ	T
ε [ρεuε] · ∇�−1[div (ψρεuε)]+ψ	T

ε [ρεuε] ⊗ uε : ∇(∇�−1[ψρε])

=
∫ T

0

∫
�

−ψρu · ∇�−1[div (ψρu)] + ψρu ⊗ u : ∇(∇�−1[ψρ]). (25)

In the case γ > 2, this equality can be verified by using the commutator estimates
from Step 3 of proof of Theorem 5.1 of [12].

Finally, notice that

∫ T

0

∫
�

nεψSuε : ∇(∇�−1[ψρε]) =
∫ T

0

∫
�

nεψμDuε : ∇(∇�−1[ψρε])

+
∫ T

0

∫
�

nεψ
2(μ + λ)div (uε)ρε.

From some integrations by parts and using the density of smooth functions in Sobolev
spaces, we have

∫ T

0

∫
�

nεψμDuε : ∇(∇�−1[ψρε]) −
∫ T

0

∫
�

nεψ
2μdiv (uε)ρε

=
∫ T

0

∫
�

ψμDu : ∇(∇�−1[ψρ]) −
∫ T

0

∫
�

ψ2μdiv (u)ρ + c(ε)

with c(ε) −→ 0 as ε −→ 0. We deduce that

∫ T

0

∫
�

nεψSuε : ∇(∇�−1[ψρε]) =
∫ T

0

∫
�

nεψ
2(2μ + λ)div (uε)ρε

−
∫ T

0

∫
�

ψμDu : ∇(∇�−1[ψρ]) +
∫ T

0

∫
�

ψ2μdiv (u)ρ + c(ε). (26)

The statement of the lemma follows from (24)–(25) and (26). �
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Appendix A: The Bogovskiı̆ operator in domains with holes

In this appendix, we recall a definition of Bogovskiı̆ operator for domains with a
hole. Moreover, we show estimates independent of the size of the hole when it is
assumed to be small enough.
Let us recall that a Bogovskiı̆ operator is a right inverse of the divergence on L̃ p

which is the space of L p functions with integral zero. Due to the non-uniqueness of
this operator, we choose B� to satisfy the following extra properties.

Theorem 3. There exists a Bogovskiı̆ operator B� such that

B� : L̃ p(�) −→ W 1,p
0 (�)

and it is linear and continuous for any 1 < p < +∞,

div (B�[ f ]) = f for any f ∈ L̃ p(�) and ‖B�[ f ]‖L∞(�) ≤ ‖ f ‖L2(�).

Moreover, for any vector field F ∈ L p(�) such that F · n = 0 on ∂�, it holds

‖B�[div (F)]‖L p(�) ≤ ‖F‖L p(�).

We refer to Sect. 3.3.1.2 of [18] for a proof of the above theorem and more details.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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To define the Bogovskiı̆ operator on the domain with hole �\Bε(0), we use an idea
from [14], more precisely we define B�\Bε(0) as the composition of three operators.
The extension by zero operator Eε : L̃ p(�\Bε(0)) −→ L̃ p(�), the Bogovskiı̆ oper-
ator on � and the restriction operator Rε : W 1,p

0 (�) −→ W 1,p
0 (�\Bε(0)) which is

defined as follows.
Let η : [0,+∞) −→ [0, 1] an increasing smooth function such that η(x) = 0

for x ∈ [0, 1] and η(x) = 1 for x ∈ [2,+∞) and let B1 = BB2(0)\B1(0) a Bogov-
skiı̆ operator. For ε > 0 let introduce the functions ηε(x) = η(x/ε) and similarly
Bε[ f ](x) = εB1[ f (εy)](x/ε). We define the restriction operator

Rε[F] = ηεF + Bε[div (1 − ηε)F)− � div ((1 − ηε)F) �],
where

� f �= 1

|B2ε(0) \ Bε(0)|
∫
B2ε(0)\Bε(0)

f.

We can define the Bogovskiı̆ operator on the domain with hole �\Bε(0).

B�\Bε(0)[ f ] = Bε[ f ] = Rε ◦ B� ◦ Eε[ f ]. (27)

Moreover, they satisfy the following estimates uniformly in ε.

Proposition 2. The operatorsBε defined in (27) are Bogovskiı̆ operators; moreover,
for 1 < p ≤ 2 they satisfy the uniform bounds

‖Bε[ f ]‖W 1,p
0 (�\Bε(0))

≤ C‖ f ‖L p(�\Bε(0)) and ‖Bε[ f ]‖L∞(�\Bε(0))

≤ C‖ f ‖L2(�\Bε(0)),

with C independent of ε. For any vector field F ∈ Lq(�\Bε(0)) such that F · n = 0
on ∂� ∪ ∂Bε(0), it holds

‖Bε[div (F)]‖Lq (�\Bε(0)) ≤ ‖F‖Lq (�\Bε(0)). (28)

for any 1 < q < +∞.

Proof. The proof follows from the definition of the operator Bε. Compared with
the correspondent result in [14] (Proposition 2.2), we notice that (28) holds also for
1 < q ≤ 2. So let us show this result. By definition, we have

Bε[div (F)]=Rε ◦ B�[div (F)]=ηεB�[div (F)]+Bε[div ((1−ηε)B�[div (F)])]
= ηεB�[div (F)] − Bε[∇ηε · B�[div (F)]] + Bε[div ((1 − ηε)F)]

+ Bε[∇ηε · F]
We estimate the right-hand side separately. It is straightforward to see that

‖ηεB�[div (F)]‖Lq (Fε) ≤ C‖F‖Lq (Fε)
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For the second term, we denote by q∗ = 2q/(2− q) and we notice that the support of
Bε is contained in B2ε(0)\Bε(0) = Aε. Then,

‖Bε[∇ηε · B�[div (F)]]‖Lq (Aε) ≤ Cε‖Bε[∇ηε · B�[div (F)]]‖Lq∗
(Aε)

≤Cε‖∇Bε[∇ηε · B�[div (F)]]‖Lq (Aε) ≤ Cε‖[∇ηε · B�[div (F)]‖Lq (Aε)

≤Cε‖∇ηε‖L∞(Aε)‖B�[div (F)]‖Lq (Aε) ≤ ‖F‖Lq (Fε).

The same strategy gives

‖Bε[∇ηε · F]‖Lq (Aε) ≤ C‖F‖Lq (Fε).

We are left to show the estimates for Bε[div ((1− ηε)F)]. To simplify the notation let
G = (1 − ηε)F . By definition of Bε, we have

Bε[div x (G)](x) = εB1[div x (G(εy))](x/ε) = B1[div y(G(εy))](x/ε)
We deduce that

‖Bε[div x (G)](x)‖Lq (Aε) =ε2/q‖B1[div y(G(εy))]‖Lq (A1) ≤ Cε2/q‖G‖Lq (A1)

= ‖G‖Lq (Aε).

After recalling that G = (1 − ηε)F , we obtain the desired result.
�

Appendix B: Improved pressure estimates

This section is devoted to the proof of the improved pressure estimates from Propo-
sition 1.

Proof. Let us recall that classical regularity ensures that

ρε ∈ Lq((0, T ) × Fε) for any q < 2γ − 1. (29)

Here, we are interested in showing a bound independent of ε. The idea is then to test
the momentum equation of (2) with

ϕε = φBε[ψερ
θ
ε − 〈ψερ

θ
ε 〉], (30)

where φ ∈ C∞
c ([0, T )), ψε = (ψ̃ε)

2 with ψ̃ε(x) = 1 − ηε(|x |) and

〈ψερ
θ
ε 〉 = 1

|� \ Bε(0)|
∫

�\Bε(0)
ψερ

θ
ε .

The functions ϕε are not smooth enough in the time variable to be test functions
in the weak formulations, so to be rigorous we should smooth them out by using a
convolution kernel as in Sect. 7.9.5 of [18]. We will not consider this regularization
here because it will not influence the estimates we are going to do.
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If we use (30) in the momentum equation of (2), we deduce

∫ T

0

∫
Fε

φψερ
γ+θ
ε =

∫ T

0

∫
Fε

φργ 〈ψερ
θ
ε 〉−

∫
Fε

qinε · ϕε(0, .)+2μ
∫ T

0

∫
Fε

Duε : Dϕε

+(λ+μ)

∫ T

0

∫
Fε

div (uε)div (ϕε) −
∫ T

0

∫
Fε

ρεuε ⊗ uε : Dϕε

−
∫ T

0

∫
Fε

ρεuε∂tϕε =
6∑

i=1

Ii .

We will now show that the right-hand side of the above expression is bounded by a
constant independent of ε multiplied by the norm of the initial data. To do that, we
estimate the Ii separately.

|I1| =
∣∣∣∣
∫ T

0

∫
Fε

φργ
ε 〈ψερ

θ
ε 〉

∣∣∣∣ ≤ C‖ρε‖γ+θ

L∞(0,T ;Lγ (Fε))
≤ C

where we use θ ≤ γ . Using the definition of ϕε, we have

|I2| ≤
∣∣∣∣
∫
Fε

qinε · φ(0)Bε

[
ψε(ρ

in
ε )θ − 〈ψε(ρ

in
ε )θ 〉

]∣∣∣∣

≤
∥∥∥∥∥

qinε√
ρin

ε

∥∥∥∥∥
L2(Fε)

∥∥∥∥
√

ρin
ε

∥∥∥∥
L2γ (Fε)

‖Bε

[
(ψερ

in
ε )θ − 〈ψε(ρ

in
ε )θ 〉

]
‖L2γ /(γ−1)(Fε)

≤ C

∥∥∥∥∥
qinε√
ρin

ε

∥∥∥∥∥
L2(Fε)

∥∥∥∥
√

ρin
ε

∥∥∥∥
L2γ (Fε)

‖(ψερ
in
ε )θ − 〈ψε(ρ

in
ε )θ‖L2γ /(2γ−1)(Fε)

≤ C,

for 2θ ≤ 2γ − 1. In the third inequality, we use that

‖Bε[ f ]‖L p∗ ≤ ‖Bε[ f ]‖W 1,p ≤ ‖ f ‖L p for 2 < p∗ = 2p/(2 − p).

|I3| ≤
∣∣∣∣μ

∫ T

0

∫
Fε

Duε : DBε

[
φψερ

θ
ε − 〈φψερ

θ
ε 〉]

∣∣∣∣
≤C‖Duε‖L2(0,T ;L2(Fε))

‖(φψε)
1/θρ‖1/2

L2θ (0,T ;L2θ (Fε))
.

Notice that the last term of the right-hand side can be absorbed in the left-hand side
for any θ ≤ γ .

|I4| ≤
∣∣∣∣(μ + λ)

∫ T

0

∫
Fε

div (uε)
[
φψερ

θ
ε − 〈φψερ

θ
ε 〉]

∣∣∣∣
≤C‖div (uε)‖L2(0,T ;L2(Fε))

‖(φψε)
1/θρε‖1/2L2θ (0,T ;L2θ (Fε))

.
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As before, we can absorb the last term of the right-hand side in the left-hand side if
θ ≤ γ . The next term is

|I5| ≤
∣∣∣∣
∫ T

0

∫
Fε

ρεuε ⊗ uε : DBε

[
φψερ

θ
ε − 〈φψερ

θ
ε 〉]

∣∣∣∣
≤ ‖ρε‖L∞(0,T ;Lγ (Fε))‖uε‖2L2(0,T ;L∞−

(Fε))
‖ρθ

ε ‖L∞(0,T ;Lγ /θ (Fε))
,

in the above inequality we need γ /θ ≤ 2 for the estimates on DBε; moreover, from

1

γ
+ 1

∞− + 1

∞− + θ

γ
≤ 1

we have the classical bound θ < γ − 1 and from γ /θ ≤ 2 we have also γ > 2.
We are now left with the estimates of I6. Recall from (29) that for any ε we already

know that ρε ∈ Lq((0, T ) ×Fε) for any q < 2γ − 1 but we do not have a control of
this norm uniform in ε. Lemma 6.9 of [18] ensures that ρε and uε satisfy the equation

∂tρ
θ
ε + div (uερ

θ
ε ) + div (uε)(θ − 1)ρθ

ε = 0,

in a distributional sense for any θ < γ − 1/2. Using the equation, we have that

∂t (ϕε) = ∂tφBε

[
ψερ

θ
ε − 〈ψερ

θ
ε 〉] + φBε

[
ψε∂tρ

θ
ε − 〈ψε∂tρ

θ
ε 〉]

= ∂tφBε

[
ψερ

θ
ε − 〈ψερ

θ
ε 〉] − φBε

[
div (ψε · uερ

θ
ε ) − 〈div (ψε · uερ

θ
ε )〉]

+ φBε

[∇ψε · uερ
θ
ε − 〈∇ψε · uερ

θ
ε 〉]

− φBε

[
ψεdiv (uε)(θ − 1)ρθ

ε − 〈ψεdiv (uε)(θ − 1)ρθ
ε 〉]

=
4∑
j=1

J j .

We can now estimate

|I6| ≤
4∑
j=1

∣∣∣∣
∫ T

0

∫
Fε

ρεuε · J j
∣∣∣∣ ≤ ‖ρε‖L∞(0,T ;Lγ (Fε))‖uε‖L2(0,T ;L∞−

(Fε))

‖J j‖L2(0,T ;L(γ /θ)−(Fε))
.

We are left with the estimates of J j . Notice that

‖J1‖L2(0,T ;L(γ /θ)−(Fε))
≤ C‖∂tφ‖L2(0,T )‖ρθ

ε ‖L∞(0,T ;Lγ /θ (Fε))
.

Then we have

‖J2‖L2(0,T ;L(γ /θ)−(Fε))
≤ C‖uερ

θ
ε ‖L∞(0,T ;L(γ /θ)−(Fε))

≤ ‖uθ
ε‖L2(0,T ;L∞−

(Fε))
‖ρθ

ε ‖L∞(0,T ;Lγ /θ (Fε))
.
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Using that
((

2γ

γ + 2θ

)−)∗
=

(γ

θ

)−
for γ > 2θ,

we have

‖J3‖L2(0,T ;L(γ /θ)−(Fε))
≤ C‖div (uε)ρ

θ
ε ‖L2(0,T ;L2γ /(γ+2θ)(Fε)

≤ C‖uε‖L2(0,T ;L2(Fε))
‖ρθ

ε ‖L∞(0,T ;Lγ /θ (Fε))

and similarly

‖J4‖L2(0,T ;L(γ /θ)−(Fε))
≤ C‖∇ψεuερ

θ
ε ‖L2(0,T ;L(2γ /(γ+2θ)− (Fε)

≤ C‖∇ψε‖L2(Fε)
‖uε‖L2(0,T ;L∞−

(Fε))
‖ρθ

ε ‖L∞(0,T ;Lγ /θ (Fε))
.

For θ = γ /2, we use a different estimate. First of all notice that from interpolation
we have

‖ρεuε‖L6(0,T ;L(3/2)+ (Fε))
≤ ‖ρεuε‖1/3L2(0,T ;Lγ−

(Fε))
‖ρεuε‖2/3L∞(0,T ;L2γ /(γ+1))

under the hypothesis γ > 2. For j = 3, 4, we have
∣∣∣∣
∫ T

0

∫
Fε

ρεuε · J j
∣∣∣∣ ≤ ‖ρεuε‖L6(0,T ;L(3/2)+ (Fε))

‖J j‖L6/5(0,T ;L3− (Fε)

We then estimate

‖J3‖L6/5(0,T ;L3− (Fε)
≤ ‖div (uε)‖L2(0,T ;L2(Fε)

‖φψερ
γ/2
ε ‖L3(0,T ;L3(Fε))

in particular we can absorb the last term on the right hand side.
Recall that we assume ψε = ψ̃2

ε . Similarly,

‖J4‖L6/5(0,T ;L3− (Fε)
≤ Cε‖∇ψεuεψ

γ/2
ε ‖L2(0,T ;L2− (Fε)

≤ C‖∇ψ̃ε‖L2(Fε)
‖uε‖L2(0,T ;L∞−

(Fε))
‖φψ̃ερ

γ/2
ε ‖L3(0,T ;L3(Fε))

.

�

Appendix C: Proof of Proposition 1

In this section, we prove Proposition 1 which is a straightforward extension of
Lemma3of [9]. First of all for A, B ∈ Rwith 0 < A < B, we denote byα = B/A > 1
and we define the functions

f A,B(z) =

⎧⎪⎪⎨
⎪⎪⎩
1 for 0 ≤ z < A,
log z−log B
log A−log B for A ≤ z ≤ B,

0 for z > B.
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It holds that f A,B ∈ W 1,∞(R+). We define the cut-off

η̃ε,αε (x) = fε,αεε(|x |),
for x ∈ R

2 and αε > 1.

Proposition 3. Under the hypothesis that αε ≤ | log(ε)| and αε −→ +∞, it holds

1. The functions 1 − η̃ε,αε −→ 0 in Lq(R2) for 1 ≤ q < +∞.
2. For 1 ≤ q < 2,

∥∥∇η̃ε,αε

∥∥q
Lq (R2)

= 2π

2 − q

α
2−q
ε − 1

(logαε)q
ε2−q .

3. We have

∥∥∇η̃ε,αε

∥∥2
L2(R2)

= 2π

logαε

.

4. For 2 < q < +∞, for i = 1, 2,

∥∥∇η̃ε,αε

∥∥q
Lq (R2)

+
∥∥∥∇2η̃ε,αε xi

∥∥∥q
Lq (Bεαε (0))

≤ C

q − 2

1

(logαε)q
ε2−q

(
1 − 1

(αε)q−2

)
.

In particular
∥∥∇η̃ε,αε

∥∥
Lq (R2)

−→ 0 for 1 ≤ q ≤ 2

and

εαε

∥∥∇η̃ε,αε

∥∥
Lq (R2)

, εαε

∥∥∥∇2η̃ε,αε xi
∥∥∥
Lq (Bεαε (0))

−→ 0 for 2 < q < +∞.

Proof. After passing to radial coordinates, the proof is straightforward. For example
to show part 3., we compute

∥∥∇η̃ε,αε

∥∥2
L2(R2)

=
∫ 2π

0

∫ εαε

ε

∣∣∣∣1r
1

log(ε) − log(εαε)

∣∣∣∣
2

r drdθ

= 2π

(log(αε))2

[
log(r)

]εαε

ε

= 4π

log(αε)
.

�

The cut-offs η̃ε,αε satisfy all the bounds of Proposition 1, but they are not smooth; in
particular, they are not C2 on ∂Bε(0)∪ ∂Bεαε (0). To solve this issue, we modify these
functions as in [9]. Let introduce a function g ∈ C∞

c ([0, 12/10)) such that 0 ≤ g ≤ 1
and g(y) = 1 for y ∈ [0, 11/10]. Then, we define

ηε,αε (x) = 1 +
(
1 − g

( |x |
ε

))(
η̃ε,αε (x)g

(
13

10

|x |
αεε

)
− 1

)
, (31)
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which rewrites

ηε,αε (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for |x | < 11
10ε,

1 +
(
1 − g

( |x |
ε

)) (
η̃ε,αε (x) − 1

)
for 11

10ε ≤ |x | < 12
10ε,

η̃ε,αε (x) for 12
10ε ≤ |x | < 11

13εαε,

η̃ε,αε (x)g
(
13
10

|x |
αεε

)
for 11

13εαε ≤ |x | < 12
13εαε,

0 for |x | ≥ 12
13εαε.

The functions ηε,αε are smooth. It remains to show that they satisfy all the properties
stated in Proposition 1.

Proof of Proposition 1. We verify that the family ηε,αε defined in (31) satisfies all
the properties stated in Proposition 1. First of all by definition ηε,αε ∈ C∞

c (Bεαε (0)),
ηε,αε (x) = 1 for x ∈ Bε(0) and ‖ηε,αε‖L∞ ≤ 1. Let us now bound the Lq norm of
∇ηε,αε . As in [9], we denote by

g1ε (x) =
(
1 − g

( |x |
ε

))
, g2ε (x) = g

(
13

10

|x |
αεε

)

and by Ar,R = BR(0) \ Br (0) the annulus for 0 < r < R. Finally, we notice that

‖η̃ε,αε − 1‖
L∞

(
A 11
10 ε, 1210 ε

) =
∥∥∥∥ log(|x |/ε)log(αε)

∥∥∥∥
L∞

(
A 11
10 ε, 1210 ε

) ≤ C

log(αε)

and similarly

‖η̃ε,αε‖
L∞

(
A 11
13 εαε, 1213 εαε

) =
∥∥∥∥ log(|x |/(εαε))

log(αε)

∥∥∥∥
L∞

(
A 11
13 εαε, 1210 εαε

) ≤ C

log(αε)
.

For 1 ≤ q < +∞, we estimate

‖∇ηε,αε‖Lq (R2) ≤ ‖∇(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11
10 ε, 1210 ε

) + ‖∇η̃ε,αε‖
Lq

(
A 12
10 ε, 1113 εαε

)

+ ‖∇(g2ε η̃ε,αε )‖
Lq

(
A 11
13 εαε, 1210 εαε

)

≤ ‖∇η̃ε,αε‖Lq (R2)

(
‖g1ε‖L∞(R2) + 1 + ‖g2ε‖L∞(R2)

)

‖η̃ε,αε − 1‖
L∞

(
A 11
10 ε, 1210 ε

)‖∇g1ε‖Lq (R2)

+ ‖η̃ε,αε‖
L∞

(
A 11
13 εαε, 1213 εαε

)‖∇g2ε‖Lq (R2)

≤C‖∇η̃ε,αε‖Lq (R2) + C

log(αε)
((αεε)

(2−q)/q + ε(2−q)/q),

where we use that 1−g1ε and g
2
ε are appropriate rescaling of g to estimate the Lq norm

of∇g1ε and∇g2ε . The bounds of the L
q norm of∇ηε,αε follows from the above estimate
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andProposition 3, after noticing that in the caseq ≤ 2 it holds (αεε)
(2−q)/q ≥ ε(2−q)/q ,

while for q ≥ 2 it holds (αεε)
(2−q)/q ≤ ε(2−q)/q . This explains the slightly different

bounds in points 3. and 4.
Similarly, we estimate for q �= 2

‖|x |∇ηε,αε‖Lq (R2) ≤ ‖|x |∇(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11
10 ε, 1210 ε

)+‖|x |∇η̃ε,αε‖
Lq

(
A 12
10 ε, 1113 εαε

)

+ ‖|x |∇(g2ε η̃ε,αε )‖
Lq

(
A 11
13 εαε, 1210 εαε

)

≤ ‖|x |∇η̃ε,αε‖Lq (R2)

(
‖g1ε‖L∞(R2) + 1 + ‖g2ε‖L∞(R2)

)

+ ‖η̃ε,αε − 1‖
L∞

(
A 11
10 ε, 1210 ε

)‖|x |∇g1ε‖Lq (R2)

+ ‖η̃ε,αε‖
L∞

(
A 11
13 εαε, 1213 εαε

)‖|x |∇g2ε‖Lq (R2)

≤C
(‖|x |∇η̃ε,αε‖Lq (R2)

) + C

log(αε)
((αεε)

2/q + ε2/q).

where we use that 1 − g1ε and g2ε are appropriate rescaling of g to estimate the L∞
norm of |x |∇g1ε and |x |∇g2ε . Finally, we estimate for q �= 2

‖|x |∇2ηε,αε‖Lq (R2) ≤‖|x |∇2(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11
10 ε, 1210 ε

)+‖|x |∇2η̃ε,αε‖
Lq

(
A 12
10 ε, 1113 εαε

)

+ ‖|x |∇2(g2ε η̃ε,αε )‖
Lq

(
A 11
13 εαε, 1210 εαε

)

≤‖|x |∇2η̃ε,αε‖Lq (Bεαε (0))

(
‖g1ε‖L∞(R2) + 1 + ‖g2ε‖L∞(R2)

)

+ ‖∇η̃ε,αε‖Lq (R2)

(
‖|x |∇g1ε‖L∞(R2) + ‖|x |∇g2ε‖L∞(R2)

)

+ ‖η̃ε,αε − 1‖
L∞

(
A 11
10 ε, 1210 ε

)‖|x |∇2g1ε‖Lq (R2)

+ ‖η̃ε,αε‖
L∞

(
A 11
13 εαε, 1213 εαε

)‖|x |∇2g2ε‖Lq (R2)

≤C
(
‖|x |∇2η̃ε,αε‖Lq (Bεαε (0)) + ‖∇η̃ε,αε‖Lq (R2)

)

+ C

log(αε)
((αεε)

(2−q)/q + ε(2−q)/q).

where as before we use that 1 − g1ε and g2ε are appropriate rescaling of g to estimate
the Lq norm of |x |∇2g1ε and |x |∇2g2ε . �
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