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ABSTRACT
In this paper, we introduce the Obstacle Detection & Avoidance
(ODA) Dataset for Drones, aiming at providing raw data obtained in
a real indoor environmentwith sensors adapted for aerial robotics in
the context of obstacle detection and avoidance. Our micro air vehi-
cle (MAV) is equipped with the following sensors: (i) an event-based
camera, the performance of which makes it optimized for drone ap-
plications; (ii) a standard RGB camera; (iii) a 24-GHz radar sensor to
enhance multi-sensory solutions; and (iv) a 6-axes IMU. The ground
truth position and attitude are provided by an OptiTrack motion
capture system. The resulting dataset consists of more than 1350
sequences obtained in four distinct conditions (one or two obstacles,
full or dim light). It is intended for benchmarking algorithmic and
neural solutions for obstacle detection and avoidancewith UAVs, but
also course estimation and in general autonomous navigation. The
dataset is available at: https://github.com/tudelft/ODA_Dataset [6].

CCS CONCEPTS
• Computer systems organization → Robotic autonomy;
Robotic control; Sensors and actuators.
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1 INTRODUCTION
Nowadays, it is possible to make autonomous UAVs perform feats
like autonomous drone racing (e.g. AlphaPilot 2019 [3] - Lockheed
Martin AI Drone Racing Innovation Challenge), or crossing win-
dows with aggressive maneuvers [17], or performing autonomous
aerial acrobatic maneuvers [9]. Yet, it is quite disconcerting to note
how difficult it is to autonomously achieve one of the most essential
tasks for drones, namely, obstacle detection and avoidance. The
complexity is essentially due to the difficulty to detect obstacles
in the focus of expansion, where the optic flow is close to zero.
This problem gets even harder in real environments where, for in-
stance, the light intensity can change, sometimes abruptly, making
it impossible to ensure the robustness of autonomous systems for
obstacle detection and avoidance.

In recent years, a series of datasets have been collected for indoor
navigation tasks. In 2015, [20] acquired a collection of more than
10k RGB-D images provided by multiple sensors such as the Kinect
v1 and v2, as well as the Intel RealSense depth sensor. By doing
so, they extended the NYU Depth v2 dataset which contains 1449
RGB-D images from the Kinect v1 [19]. Similarly, the ESAT dataset
was released for the purpose of indoor visual-based obstacle de-
tection and avoidance with a drone using a single RGB monocular
camera [2]. It consists of 20k RGB-D images collected from a Kinect
sensor by walking. The ESAT and the NYU Depth v2 datasets are
mostly used in the context of scene understanding (e.g., including
semantic segmentation, object detection and classification, context
reasoning, etc.), making them less relevant for the context of obsta-
cle detection and avoidance per se, particularly in case the obstacle
is located in the course of the drone/robot. In the meantime, [22]
proposed a dataset for obstacle avoidance onboard ground robots.
The dataset consists of 10k RGB images used to estimate the depth
and therefore allow safe navigation of a ground robot. More re-
cently, [15] released a collision avoidance video dataset collected
by means of a drone equipped with a frontward RGB camera. A
distinctive feature of this dataset is that it includes 100 samples of
actual collisions with static and moving obstacles.

Despite being very popular, the aforementioned datasets have
limited applications to robotics in general, and for MAVs in particu-
lar: (i) obstacles are highly textured and outside of the course of the
moving entity (robot/human), (ii) only a limited number of sensors
(i.e., the RGB-D Kinect sensor) is used, and (iii) the light intensity
is kept constant and optimal (dim light conditions not considered).
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Obstacle detection and avoidance onboard drones is a very chal-
lenging task for standard technologies such as RGB cameras, which
perform poorly in low-visibility conditions (e.g., dim light, smoke).

In recent years, the development of event-based cameras rev-
olutionized the way robots and drones can sense the world [7].
Unlike conventional cameras for which the images are produced
at a fix rate, typically 30-60 fps, event-based cameras like the Dy-
namic Vision Sensor (DVS, [11]) output a stream of asynchronous
events at extremely fast rate. An event is the combination of four
elements: the pixel coordinates x and y, the polarity p, and the
timestamp t . Events are generated whenever a pixel of coordinates
(x ,y) perceives a change of its brightness. If the change is positive,
the polarity is equal to +1, else it is equal to −1. The advantages
of DVS cameras over traditional cameras are decisive for complex
robotic tasks such as obstacle detection and avoidance:

(a) they feature a high dynamic range (often > 120 dB) which
allow applications in a wide range of lighting conditions (day-
light and moonlight), as well as extreme conditions where
the ambient light can suddenly change from high to low, and
vice versa (the so-called tunnel effect);

(b) because pixels are updated independently, DVS cameras
show a very low latency, often measured in the range of one
millisecond;

(c) they benefit from a high temporal resolution, with a microsec-
ond resolution for timestamps registration of events, thus
making them suitable for applications to fast motion and
insensitive to motion blur.

In light of these advantages, DVS cameras represent a pow-
erful alternative to conventional cameras in the field of visual-
based obstacle detection and avoidance, where motion perception
is crucial to achieve robust and accurate performances. This is fur-
ther supported by the growing number of datasets now available
with applications for Visual Inertial Odometry (VIO, [4, 12]), depth-
estimation [8], and image reconstruction [14, 18]. However, and to
the best of our knowledge, none of the available datasets addresses
the problem of obstacle detection when the obstacle is located in
the drone’s course, thus implying avoidance maneuvers.

Visual-based detection of obstacles in dim light represents a very
challenging task, even for DVS cameras, particularly when explo-
ration is performed in the total darkness. Alternatively, millimeter
wave (MW) radars could help in obstacle detection regardless of
the lighting conditions. Recent work showed the growing inter-
est for radar applications to MAVs for autonomous exploration of
unknown environments [10, 23]. MW radar sensors also have the
advantage of being able to detect the Doppler signature of moving
objects, from which the radial velocity can be extracted. Nowadays,
the form factor of radars is small enough to be used onboard MAVs:
typical MW radars weigh 10−30 д, for a total surface in the range of
25−30 cm2. So far, MW radars remain quite unused in drones appli-
cations, where embedded vision remains the major type of sensing
for robots. The side effect of this under-representation of radars in
obstacle detection and avoidance onboard MAVs is a complete lack
of datasets including MW radar sensors.

In this paper, we introduce the Obstacle Detection and Avoidance
(ODA) dataset for applications in UAVs. This is a generic dataset
specifically designed to address the problem of obstacle detection in

Figure 1: The MAV equipped with the sensors used in the
ODAdataset, and the embeddedCPU for data collection. The
IMU is built in the DVS sensor.

varying challenging contexts: (i) obstacle(s) located in the drone’s
course, (ii) low-light conditions, and (iii) low-textured visual cues.
In this respect, we provide a set of more than 1350 indoor navigation
tests featuring data from the following sensors:

(a) the DVS240 event-based camera;
(b) a standard RGB Full HD camera;
(c) a 24-GHz radar sensor;
(d) a 6-axes inertial measurement unit (IMU).

For each run, the ground truth position and attitude of the drone is
given by the OptiTrack motion capture system.

2 MATERIAL AND METHODS
2.1 The hardware architecture
During the dataset collection, we used the Parrot Bebop-2 drone
equipped with additional sensors and embedded CPU for data ac-
quisition. More precisely, the drone embeds an Odroid XU4 board
running the Linux Kernel 4.14 LTS. For the purpose of obstacle
detection and avoidance in MAVs flying through challenging envi-
ronments, the following sensors have been integrated on the drone:
(i) the DVS240 event-based camera [1]; (ii) a 6-axes IMU, integrated
with the DVS240 camera; and (iii) the Infineon XENSIV 24GHz
Position2Go radar sensor. Integrated to the Bebop 2 drone, a full
HD RGB camera is mounted at the front and provides wide-angle
video recordings on flight. The hardware architecture is detailed in
Table 1 and Fig 1.

The DVS2401 is an event-based camera with a frame resolution
of 240 × 180 pixels. It outputs a stream of events characterized by
bandwidth of 12 · 106 events per second, a high dynamic range
of 120 dB, and an extremely low latency (12 us). Its low power
consumption (180 mA at 5 V DC) makes it suitable for embedded
applications. However, the form factor of the sensor limits the use
in MAVs. For that reason, the protecting case of the sensor was re-
moved, and the lens was replaced by a miniature lens, mounted on
a custom-made, 3d-printed mount designed for the camera, thus re-
sulting in a drop of the total weight by 75%, at 35 g. In order to allow
applications of obstacles detection in challenging environments,
e.g., in the dark or in a room filled with smoke, we included the
Infineon Position2Go 24GHz radar sensor. It features a fast-chirp

1https://inivation.com/wp-content/uploads/2020/04/DVS240.pdf
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Table 1: General overview of the hardware required for the drone setup.

Property Description Details
Dimensions 382 mm x 328 mm x 140 mm
Weight 600 g Battery included
Flight performance 15 minutes 11.1 V 3100 mAh LiPo battery
Onboard processing - Parrot P7 dual-core CPU Cortex 9
(for autopilot) - Quad-core GPU

Odroid XU4 ft.:
Embedded CPU - Samsung Exynos5422 Cortex A15 2Ghz
(for dataset collection) - Cortex A7 octa-core CPUs

- Linux Kernel 4.14 LTS
- DVS240 event-based camera (iniVation) Resolution: 240×180 pixels

Embedded sensors - Full HD wide-angle RGB camera Resolution: 1920×1080 pixels
- 24 GHz radar sensor Position2Go (Infineon) FOV: 76◦×19◦
- 6-axes IMU sensor Integrated to DVS240 camera

frequency-modulated continuous wave (FMCW) radar transmitter
and two receiver antennas to determine the range, bearing and ra-
dial velocity of obstacles and direction of motion. The radar sensor
can detect obstacles at a maximum distance of 25 m, and has an
FOV 76◦ (horizontal) × 19◦ (vertical). It is particularly adapted for
MAVs applications, with a total weight of 10 g. In addition to the
aforementioned sensors, we collected video recordings of the drone
front view using the built-in RGB camera with full HD (1080p)
settings. The output frame rate is equal to 30 fps.

2.2 The ROS-based acquisition framework
The dataset was collected by means of a dedicated ROS package
running onboard the embedded CPU (Odroid XU4). This package
manages communication with and data logging from the event-
based camera, the 6-axes IMU, and the radar sensor. The embedded
CPU clock allows to time-synchronize ROS bags. The ROS dri-
vers for the DVS240 camera are provided by Robotics Perception
Group2 [13]. The events streamed by the camera consist of a set
of pixel coordinates (x ,y), a polarity p ∈ {−1,+1}, and the corre-
sponding timestamp. Radar data are saved as raw ADC samples: the
(I ,Q) values of antennas 1 and 2 respectively, with 128 samples per
chirp, 16 chirps per frame, and 300 microsecond per chirp as default
settings. As a result, for each timestamp, the raw output consists
of 4 vectors (2 antennas ×(I ,Q) vectors), each vector containing
16 × 128 = 2048 samples. The average acquisition rate of the radar
is equal to 15.7 Hz.

2.3 The experimental setup
The obstacle avoidance dataset has been collected in the Cyber Zoo,
the flying arena of the Delft University of Technology (10 × 10 × 7
meters). The arena is equipped with the OptiTrack motion capture
system, featuring a total of 16 Prime X-13 cameras, allowing to real-
time track drones (position and attitude) with millimeter precision.
The MAV was equipped with IR LEDs and the OptiTrack cameras
lights were turned off to avoid visual disturbances caused by the
IR flickering from the cameras. For each trial, a pilot flies the MAV
towards the center of the Cyber Zoo where one or two obstacles (i.e.

2https://github.com/uzh-rpg/rpg_dvs_ros

Figure 2: The experimental context. (Left) Rendering of the
Cyber Zoo with two poles at the centre. (Right) View of the
drone facing a pole before an avoidance maneuver.

Figure 3: Examples of trajectories including one (left) and
two (right) obstacles. These trajectories show the coordi-
nates of the manually controlled MAV provided by Opti-
Track.

poles) are placed (Fig. 2.) Depending on the position of the MAV,
the pilot chooses to either turn left or right (avoidance), or continue
straight-forward. An example is provided in Fig. 3. The samples (i.e.,
a collection of data gathered during one obstacle avoidance task)
were recorded under the following lighting conditions: full light
(100 Lux), and dim light (1–3 Lux). Also, the number of obstacles
available in the flying arena varied between one and two poles.
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Table 2: Multimedia extensions available in the ODA Dataset.

Extension Media type Folder/File name Description
1 ./dataset/ Folder containing the raw data collected.
2 Data – trial_overview.csv Overview of the dataset (lighting, obstacles, etc.).
3 Data – <ID>/<ID>.bag ROS bag for trial <ID> containing data.
4 Data – <ID>/dvs.csv Log files from the DVS240 event-based camera.
5 Data – <ID>/imu.csv Log files from the 6-axes IMU sensor.
6 Data – <ID>/radar.csv Log files from the 24-GHz radar sensor.
7 Data – <ID>/optitrack.csv Log files from OptiTrack (ground truth).
8 Video – <ID>/<ID>.avi Video output from RGB camera.
9 Calibration ./calibration/dvs/ Folder with calibration files for DVS camera.
10 Calibration ./calibration/camera/ Folder with calibration files for RGB camera.
11 Code ./test_<sensor>_<format>.py Python scripts for data loading & visualization.

Sensors: ’dvs’, ’imu’, ’radar’, and ’optitrack’.
Formats: ’ros’, or ’csv’.

12 Code ./sample_visualization_<format>.py Python scripts for data loading & visualization.
All sensors rendered in one unique frame.
Formats: ’ros’, or ’csv’.

13 Code ./convert_rosbags_to_csv.py Python script for conversion of ROS bags to CSV.
14 Text ./Readme.md Detailed description on how to use the dataset.

3 RESULTS
3.1 Dataset overview
The dataset contains a total of 1369 samples combining the data
collected from the sensors embedded onboard the MAV, for a total
of 92 GB after data compression. An overview of the files enclosed
in the dataset is proposed in Table 2 (Extensions 1–14). All the
data provided in the dataset are time-synchronized by means of
the internal clock of the Odroid XU4 on which our ROS node for
data acquisition is executed. First, the data for all sensors and all
trials are provided in both ROS bag (Extension 3) and CSV (Ex-
tensions 4–7) formats, with the exception of the video recorded
from the RGB camera, available under AVI format (Extension 8).
A Python script is made available for conversion between ROS
bags and CSV files (Extension 13). While ROS-based formatting is
convenient for direct use in ROS, all data are also available in CSV
format, making them easily used in standard frameworks (MATLAB,
Python, C/C++, etc.). The ground truth position and orientation of
the MAV w.r.t. time is provided by the OptiTrack motion capture
system, and is available both in the ROS bags (Extension 3, under
the topic /optitrack/pose) and in the dedicated CSV files (Exten-
sion 7). The Cartesian coordinates of the MAV are given in meters,
while the orientations are given in quarternions (a,b, c,d), with the
following representation: a + i ·b + j · c +k ·d , where (i, j,k) are the
fundamental quaternion units. Lastly, an overview of the dataset is
available in the trial_overview.csv file (Extension 2). This file con-
tains information about the position of the obstacle in the flying
arena for each sample, along with the lighting conditions (100 Lux
vs. 1 − 3 Lux ). The first column provides the ID of the sample test,
which can appear twice (in two consecutive rows) in case there are
two obstacles in the arena. The three adjacent columns contain the
(x ,y, z) coordinates (expressed inm) of the obstacle given by the
OptiTrack motion capture system. The next column features the
lighting condition, followed by the initial rotation offset along the

y axis in all OptiTrack measurements for the corresponding sample.
The last column aims at telling the user whether the video from
the RGB camera is available or not. Indeed, during the recordings,
a total of 216 samples were saved without video recording because
of hardware issues.
Content of the ROS bags – The ROS bags contain data from
all sensors except the RGB camera, and including the OptiTrack
ground truth data. The data are recorded within messages ’msg’
corresponding to the following ’topics’:

(a) /optitrack/pose: contains the timestamp (i.e.,
msg.header.stamp), the (x ,y, z) positions (e.g.,
msg.pose.position.x, in meters), and the (a,b, c,d) quaternions
(e.g., msg.pose.orientation.x);

(b) /dvs/events: contains a list of events including the times-
tamp (i.e., msg.events[i].ts), the (x ,y) pixel coordinates (e.g.,
msg.events[i].x), and the polarity (i.e., msg.events[i].polarity);

(c) /dvs/imu: contains the timestamp (i.e., msg.header.stamp),
the linear accelerations (e.g., msg.linear_acceleration.x, in
m/s2), and the angular velocities (e.g.,msg.angular_velocity.x,
in rad/s);

(d) /radar/data: contains the timestamp (i.e., msg.ts),
along with the (I ,Q) vectors for both antennas (e.g.,
msg.data_rx1_re, msg.data_rx1_im). Each of these vectors
consist of 1D arrays of 2048 float values.

Content of the CSV files – Alternatively to the ROS bags, we also
provide a series of CSV files for each of the aforementioned ROS
topics. For each CSV file, the first column provides the timestamp
(expressed in nanoseconds). The next columns contain the sensor
data:

(a) optitrack.csv: first the x , y, and z positions (in meters), fol-
lowed by the a, b, c , d quaternions;

(b) dvs.csv: first the x and y pixel coordinates, then the polarity
p ∈ {−1,+1};
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Figure 4: Visualization of a dataset sample. (A) RGB camera. (B) DVS camera. (C) Radar sensor (linear and logarithmic scales).
(D-E) 2D and 3D representations of the ground truth trajectory of the MAV (OptiTrack). (F-H) IMU plots (angular rates).

(c) imu.csv: first the linear accelerations (in m/s2) and then
followed by the angular velocities (in rad/s) along the x , y,
and z axes;

(d) radar.csv: the first 2048 columns contain real values from
the first antenna, followed by the 2048 next columns con-
taining the imaginary values for the same antenna, and so
on with the second antenna.

An overview of the sensors’ outputs for a given dataset sample
is provided in Fig. 4 (sample no. 10). This trial has been performed
under full light conditions and with one unique obstacle.

3.2 Parsing and indexing
In order to help users handling the dataset, we provide a series of
Python scripts for data loading and visualization (Extensions 11,
12). In particular, for each type of sensor except for the RGB camera
video, a Python script allows the user to load and plot the result of a
specific sample for both ROS bags and CSV files formats. Similarly,
another Python script automatically loads and displays all sensors
data (including the RGB camera) in a convenient way, again for
both ROS bags and CSV files.

3.3 Calibration of the visual sensors
A set of calibration files (Extensions 9, 10) are provided to the users
for both cameras. The calibrations were performed using a checker-
board. In the case of the standard RGB camera, the checkerboard
(8 × 5 squares, length: 2.4 cm) was printed and presented in front
of the camera. We then use a Python script to apply the pinhole
camera model and the calibration tools available in OpenCV to
determine the calibration parameters. Due to the neuromorphic
nature of the visual information, DVS cameras require the checker-
board to move over time. A checkerboard is automatically rendered
on a computer screen using a MATLAB script (adapted from [16]
and [13]). While the DVS is recording events, the checkerboard
flickers at a predetermined rate. Several recordings are made from
distinct positions and orientations of the sensor, while the checker-
board dimensions are kept constant. The recorded files are then
processed to determine the undistorted maps for calibration.

3.4 Sensor coordinate systems
The coordinate frame conventions are shown in Fig. 5. Furthermore,
a post-processing step that is applied to align the OptiTrack coor-
dinate frame with the orientation of the MAV. This is required to
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Figure 5: Coordinate systems of the drone and sensors.

compensate for the yaw offset (orientation w.r.t. the Y-axis, Fig. 2)
of the OptiTrack during the initialization phase. The correction is
performed every time the OptiTrack is reinitialized. The resulting
correction values are provided in the dataset overview file (Exten-
sion 2) within the 6th column (‘OptiTrack initial y rotation offset‘,
values given in rad). To apply the correction, simply add the an-
gle offset to the OptiTrack orientation (after quaternion-to-Euler
conversion) to yield the true orientation of the MAV.

4 CONCLUSION
The Obstacle Detection and Avoidance (ODA) dataset for drones
has been introduced [6]. Including raw data from a relevant range of
sensors for obstacle detection, it aims at helping investigations on
obstacle detection and avoidance in a challenging context (dim light
condition, low-textured environment, obstacle within the drone’s
course), as demonstrated in recent work on radar-based obstacle
avoidance [21]. In addition, the visual information available in the
dataset makes it possible to use it for visual inertial odometry (VIO)
and course estimation as shown in [5], thus opening a wide range
of applications in autonomous navigation of drones in complex
environments.
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