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Abstract 
Introduction: Breast reconstruction after a mastectomy is crucial to improve a patient’s quality 
of life. The Deep Inferior Epigastric artery Perforator (DIEP) flap procedure is considered the 
golden standard for breast reconstruction. Three-dimensional (3D) visualization methods have 
shown promise in providing a better understanding of Computed Tomography Angiography 
(CTA) information and potentially reducing operative time. However, for these methods manual 
segmentation of the perforators is needed, which is time-consuming and prone to variability. 
Automated segmentation using Deep learning (DL) can potentially overcome these limitations 
and provide accurate and efficient segmentation of the DIEP flap perforators. This study aimed to 
evaluate the application of DL for automated perforator segmentation in DIEP flap breast 
reconstruction, improving the efficiency and objectivity of DIEP flap perforator segmentation. 

Materials and methods: The dataset comprised 25 CTA scans for training and validation, and 5 
CTA scans for testing. DL was employed for automated segmentation, and quantitative evaluation 
included metrics such as Dice coefficient score, recall, precision, surface distance, and centerline 
overlap. The qualitative evaluation involved grading the clinical acceptability of segmentations by 
four experienced plastic reconstructive surgeons. 

Results: On the training set, a Dice score of 0.58 (±0.08) and a true positive centerline overlap of 
0.66 (±0.10) were achieved for perforator segmentation. The DL model successfully segmented 
the intramuscular main branch, but some perforators were missed in the subcutaneous fat tissue. 
Combined grading by all surgeons showed no statistical difference between manual and 
automated segmentations and both segmentations were evaluated as clinically acceptable. 

Conclusion: Automated DL segmentation holds promise for enhancing the efficiency and 
objectivity of identifying DIEP flap perforators in CTA images, providing an alternative to manual 
segmentation. Nonetheless, further research is needed to refine the automated segmentation 
results and to validate the generalizability and clinical applicability of the DL segmentation 
approach in larger patient cohorts and different clinical settings.



9 

List of abbreviations 
2D Two-dimensional 

3D Three-dimensional 

ASSD Average Symmetric Surface Distance 

CTA Computed Tomography Angiogram 

DIEP Deep Inferior Epigastric artery Perforator 

DL Deep Learning 
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1 Introduction 
Breast cancer is the most prevalent cancer worldwide and the second leading cause of cancer-
related death in women (1). Although breast-conservative treatment has increased due to early 
detection and improved treatments, a mastectomy, involving removal of all breast tissue, may still 
be required or preferred (2). Additionally, the number of prophylactic mastectomies in women 
with a genetic higher risk for breast cancer has increased over time (3). A mastectomy can be 
traumatic and is associated with unaesthetic results, and high-quality breast reconstruction is 
crucial for the quality of life of patients (4, 5). In addition to improving body image, successful 
breast reconstruction can also result in better psychological patient well-being. 

Following mastectomy, the Deep Inferior Epigastric artery Perforator (DIEP) flap procedure is 
considered the gold standard for breast reconstruction (6, 7). In DIEP flap breast reconstruction, 
skin, and subcutaneous tissue, together with one or more perforating vessels from the epigastric 
vessels, are taken from the abdomen. Preserving as much muscular tissue as possible, the flap 
perforators and corresponding veins are dissected through the rectus abdominis (RA) muscle (8). 
Subsequently, the subcutaneous tissue, skin, veins, and perforators are transplanted to the 
recipient’s breast to recreate a naturally appearing breast (see Figure 1). The wide variety in the 
vascular anatomy of the lower anterior abdominal wall between patients (6, 9, 10) complicates 
the procedure and can increase the operative time. To optimize the time to harvest the DIEP flap, 
preoperative imaging can be used to visualize and map the perforators (11, 12). It has 
demonstrated to reduce operative time, surgeon stress, and postoperative complications in DIEP 
flap breast reconstruction (13-15). 

 

Figure 1. Deep Inferior Epigastric artery Perforator (DIEP) flap procedure. In this surgery, the skin, and subcutaneous 
fat tissue, together with one or more perforating vessels from the epigastric vessels, are taken from the abdomen and 

transplanted to the recipient’s breast. The muscle is preserved during surgery. Image from (16). 
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Preoperative visualization of the abdominal vascular anatomy with Computed Tomography 
Angiography (CTA) is the gold standard for the identification of perforators for DIEP flap breast 
reconstruction (17-19). The current visualization, however, is limited by display in two-
dimension (2D) only. Three-dimensional (3D) visualization has been suggested and investigated 
for DIEP flap breast reconstruction. Compared to identification solely on 2D CTA scans, 3D 
visualization provides a better understanding of the CTA information and reduces the operative 
time spent on the dissection of the perforators (20). 

For DIEP flap breast reconstruction, different 3D visualization methods have been proposed to 
assist in the identification of the perforators and intraoperative mapping. These methods include 
the projection of the perforators on the abdomen, virtual reality, augmented reality, and y, and 
creating a 3D-printed model of the abdominal wall's vascular anatomy (20-25). However, the 
previous studies exploring these 3D visualization methods relied on manual segmentation of the 
flap perforators, which is known to be time-consuming and subjective. 

Fully automated methods offer the potential for faster and more objective perforator 
segmentation in DIEP flap breast reconstruction. However, to date, there is no automated method 
for the segmentation of the DIEP flap perforator vessels available. Semi-automated methods using 
supervised identification with computer-aided detection to support the perforator identification 
have been described previously (26-28). In these studies, a vessel centerline tracking method was 
used, resulting in the reduction of the time required for perforator annotation. However, user 
input was still needed by manually marking perforators, and the reported outcomes did not 
include the most commonly used performance evaluation metrics for 3D medical imaging 
segmentation (29). These metrics are relevant for the assessment of segmentation results, 
reproducibility, and comparability of the outcomes (30). Deep Learning (DL) could provide a fully 
automated segmentation method and is already widely used in research for several complex 
medical imaging tasks (31), including (micro)vessel segmentation (32, 33). Nonetheless, the small 
caliber of the DIEP flap perforator vessels (~ 1 – 3.5 mm) (34) and the low contrast to the 
surrounding tissue provide a challenge for the direct application of existing DL vessel 
segmentation methods. 

Therefore, this study aimed to evaluate the application of DL for automated perforator 
segmentation in DIEP flap breast reconstruction, to improve the efficiency and objectivity of DIEP 
flap perforator segmentation.
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2 Materials and methods 
2.1 Dataset 
In this study, we included 30 anonymized abdominal CTA scans acquired for preoperative 
planning of unilateral or bilateral DIEP flap breast reconstruction in the Erasmus MC between 
2020 and 2022. The selection of scans within this timeframe was based on the availability of 
adequate contrast. We included the first 30 scans that met this criterion, excluding two scans with 
insufficient contrast uptake. The average age of 26 of the 30 patients was 48 (± 8.31) years. For 4 
patients, the age was unknown. 

Out of the 30 scans, two scans were acquired with a Siemens Naeotom Alpha, with a slice thickness 
of 0.6 mm, and the rest of the scans were obtained on a Siemens Somatom Drive, Edge Plus, 
Somatom Force or Somatom Definition Edge, reconstructed with a slice thickness of 0.75 mm. The 
peak kilo voltage of the generator ranged from 70 to 120 kVp, the average X-ray tube current was 
378 (± 172.60) mA, and the spiral pitch factor ranged from 0.60 to 0.95. The collimation width 
used was 0.40 mm for the photon counting CTA scans and 0.60 mm for the other scans. For all 
patients, Iomeron was used as contrast agent. 

2.2 Manual cropping 
Prior to manual annotation and model training, the scans were manually cropped using 3D slicer1 
(version 5.0.3) (35). The CTA scans were loaded as DICOM into 3D Slicer. The images were 
cropped to obtain the same input sizes and to only include the region of interest for the DIEP 
segmentation. The cropping area used had a region of interest with dimensions of 512 voxels (x; 
width) x 220 voxels (y; depth) x 700 voxels (z; height). The placement of the region of interest 
was determined based on the location of the most medial aspect of the umbilicus. The center of 
the upper axis of the cropping region was aligned 3 mm superior to this determined location, as 
generally, perforators above this area are not used as flap perforators. This alignment was 
discussed with two plastic reconstruction surgeons with over 15 years of experience in DIEP flap 
breast reconstruction. The cropped scans were stored in NIfTI file format. More details on the 
manual cropping can be found in Appendix A, section 3. 

2.3 Manual data annotation 
The segmentation process involved annotating the following structures on the cropped scans: the 
rectus abdominis (RA) muscle, subcutaneous fat tissue, skin tissue, and the DIEP vessels. This 
annotation was performed semi-automatically using 3D slicer. Segmentation was supported with 
thresholding and region-growing-based algorithms. For the DIEP vessels, the draw tube function 
was used, which creates a tube along manually placed markers (see Figure 2). A comprehensive 
protocol, including all steps and software requirements for the manual annotation process, can be 
found in Appendix A, section 4. 

All annotations were performed by one Technical Medicine Master student. Subsequently, a 
random subset of annotations (n = 6) was independently reviewed by two plastic reconstruction 
surgeons to ensure accuracy. Their observations and evaluations were combined and thoroughly 
discussed until a consensus was reached regarding the annotated structures. Adjustments, if 
 

1 http://www.slicer.org 
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required, were made to the segmentations accordingly. The segmented RA muscle, fat tissue, and 
skin tissue were then exported as a single binary mask that contained the information of all three 
segmentations. In cases where adjustments were necessary, the segmentations were modified 
accordingly. The segmented RA muscle, fat tissue, and skin tissue were exported as one binary 
mask, containing the information of the three segmentations, and stored in NIfTI file format. The 
DIEP segmentation was exported and stored in the same format. 

 
Figure 2. Manual segmentation of deep inferior epigastric artery perforators on a CTA scan. (a-c) Axial view of CTA 

scan where the tube wire function was used to perform the segmentation of the perforator vessels, (d) 3D view tube 
wire segmentation. 

2.4 Deep learning models 
In this study, we evaluated two DL models: no new U-Net (nnU-Net) (version 1) (36) and Dual 
branch Topology-aware U-Net (DTUNet) (37). nnU-Net was evaluated in various experiments, 
and a pre-trained DTUNet was only used and evaluated for inference. 

2.4.1 nnU-Net 
nnU-Net is an open-source network, that can be trained for various imaging segmentation tasks. 
It is a self-adapted framework and includes preprocessing of the images. The network 
architecture itself, training, and post-processing of the images. nnU-Net is based on the U-Net 
architecture (38) and is designed to handle various 2D and 3D imaging techniques. The wide 
applicability of nnU-Net was shown by applying the model to 53 segmentation tasks, including a 
diversity of imaging types, structures, and properties. 

The preprocessing, framework, training, and post-processing steps for nnU-Net used in our study 
include: 

• Preprocessing: No adaptations were made to the original nnU-Net preprocessing pipeline. 
nnU-Net automatically determines the preprocessing parameters based on the data 
fingerprint. The determined intensity normalization for CT scans includes percentile 
clipping and z-score normalization with the global foreground mean and standard 
deviation. Our input data was anisotropic, which means that nnU-Net used third-order 
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spline interpolation for resampling in the in-plane dimensions and nearest-neighbor 
interpolation for resampling in the out-of-plane dimension. For the corresponding 
annotations, the same resampling strategy is performed, yet only nearest neighbor 
interpolation is used to ensure the labels remain binary. 

• Framework: In our experiments, the 3D full-resolution U-Net and an ensemble of the 3D 
full-resolution and 3D full-resolution cascade U-Net networks were used.  

• Training: 5-fold cross-validation was used for training. For the tissue segmentations, 1000 
epochs, and for DIEP segmentation, 1500 epochs were used. No additional adaptations 
were made to the nnU-Net training strategy. A wide range of data-augmentation methods 
were used, including rotations, scaling, mirroring, brightness, contrast, Gaussian noise, 
Gaussian blur, simulation of low resolution, and gamma correction, leading to an 
increased amount of training data. Moreover, the Stochastic Gradient Descent optimizer 
and cross-entropy loss function were used. nnU-Net uses a learning rate schedule starting 
with a high learning rate that decays during learning. The initial learning rate starts at 1e-
3 and is reduced by a factor of 10 when the validation loss plateaus. The minimum learning 
rate is 1e-6. 

• Post-processing: nnU-Net post-processing steps include a combination of connected 
component analysis, hole filling, and morphological operations. However, in our results, 
no differences were observed when comparing the raw and post-processed predictions, 
indicating that the post-processing steps did not affect the results. 

For training and evaluating nnU-Net, the dataset was randomly divided into a train and test set of 
25 and 5 scans, respectively. The RA muscle, fat, and skin segmentations were used separately 
from the DIEP segmentations. 

2.4.2 DTUNet 
DTUNet is a network developed for automated brain vessel extraction from CTA images. Brain 
vessel segmentation poses the challenge of segmenting small blood vessels. Considering the 
similar challenges encountered in DIEP vessel segmentation makes the application of DTUNet 
interesting for our case.  

• Preprocessing: The preprocessing steps consisted of clipping the voxel intensities 
between -100 and 1500 HU and normalization to a range of 0-1. Furthermore, the 
intensities of the pixels in the subcutaneous fat tissue were scaled to the same median 
intensity of the RA muscle tissue in the DIEP scan (see Figure 3b). This scaling process was 
performed because the contrast between the vessels and subcutaneous fat tissue did not 
present the same low contrast as observed in brain vessels. Subsequently, the images were 
masked using the manually annotated RA muscle and fat tissue masks to only provide 
results for the region of interest (see Figure 3c). 

• Framework: The DTUNet architecture consists of a dual-branch 3D U-Net with one branch 
for vessel centerline, and one branch for lumen segmentation. In our study, we only 
extracted the results from the lumen segmentation branch. The 3D-UNet consisted of a 
classic encoder architecture with a depth of four layers, with the addition of a fusion block 
to concatenate the two branches, using PyTorch. The network was trained using a 
topology-aware loss function, consisting of the Dice loss for the lumen segmentation. 
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• Post-processing: DTUNet was trained on brain vessel CTA images to predict all vessels 
within these input images. Since there were no ground truth annotations of all vessels in 
the CTA scans, additional post-processing steps were performed to remove small 
structures in the lateral parts of the fat tissue and small segments (<10 pixels) to eliminate 
noise. Furthermore, the Superficial Inferior Epigastric Artery (SIEA) vessels were 
manually removed. 

 
Figure 3. Intensity scaling of subcutaneous fat tissue to the median intensity value of rectus abdominis muscle in an 

abdominal CTA. Scans viewed in the axial plane. (a) Original CTA scan; (b) Scan after scaling intensity in subcutaneous 
fat tissue; (c) Scan masked to subcutaneous fat, muscle tissue, and the dilated region around muscle tissue. 

2.5 Quantitative evaluation 
The main evaluation metrics used in medical image segmentation include overlap-based metrics 
and distance-based metrics. This section outlines the metrics we used to evaluate the 
performance of DL models for DIEP segmentation. 

2.5.1 Overlap-based metrics 
The Dice similarity coefficient (DSC), recall, and precision, are commonly used overlap-based 
metrics for the evaluation of the performance of DL models for medical image segmentation (29). 
These measures are bounded between 0 and 1, with a score of 1 indicating a perfect alignment 
between the automated and manual segmentations.  

The DSC (39) measures the overlap between the automated and the manual segmentation 
(ground truth), and is defined using overlap partitions, including the true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN): 

𝐷𝑆𝐶 = 2 𝑥 𝑇𝑃
2 (𝑇𝑃+𝐹𝑃+𝐹𝑁)  (1) 

In addition to the DSC, recall, and precision were evaluated. Recall, or sensitivity, measures the 
proportion of voxels successfully detected by the automatic segmentation, while precision 
measures the accuracy of positive predictions. The recall was included as an evaluation metric 
since it is desired to miss as fewest perforators as possible, thus aiming for a high recall. Precision 
was evaluated since it represents the proportion of automated predicted vessels that are true 
positives, which gives us information on whether the automated predicted perforators are actual 
true positives. The recall and precision are defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

  (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

  (3) 
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2.5.2 Distance-based metrics 
Distance-based metrics, such as the Average Symmetric Surface Distance (ASSD), are 
recommended for evaluating the performance of DL models for small segments (29). In this study, 
the ASSD was included as metric for quantitative evaluation of the automated segmentation 
performance. The ASSD measures the average of all distances at every point on their contour (40), 
where a distance of 0 mm would refer to a perfect segmentation. 

2.5.3 Distance-overlap derived metrics 
Most widely used distance-based metrics only look at maximum or average values of the surface 
distances. These outcomes, however, can be highly affected by outliers and consist of only a single 
averaged or maximum value. For visualization of the DIEP vessels, small differences between a 
manual and automated segmented vessel may still be quantified as true vessel. It is therefore 
relevant to have insight into the distribution of the differences between the manual and the 
automated segmentation. It was discussed with two surgeons, that for our application, a 1.0 mm 
difference between the manual and the automated segmentation centerlines was still acceptable 
(true positive). 

We defined two metrics that represent this accepted difference in distance: the True Positive 
Centerline Rate (TPCR), computed by dividing the number of TP centerline points by the total of 
ground truth centerline points; and the False Positive Centerline rate (FPCR), defined as the ratio 
between FP points and the total number of ground truth centerline points. These metrics give a 
more valuable insight into the performance of the model for our application since it provides 
information on the actual ratio of the prediction that is suitable for clinical use. 

For the TPCR and FPCR metrics we first extracted the centerlines of both the manual and the 
automated DIEP segmentation. Secondly, for each point on the centerline of the automated 
prediction the Euclidian distance to the closest point on the manual centerline was computed, and 
vice versa. When the computed distance was less than 1.0 mm the point was labeled as TP, while 
a distance equal to or greater than 1.0 mm was counted as. Both the TPCR and FPCR are bounded 
between 0 and 1, where a score of 1 indicates perfect performance of the automated DL model in 
terms of centerline overlap alignment. More detail on the computation and definition of these 
metrics is provided in Appendix B. 

2.5.4 Metric computation 
The metrics were computed using masked labels. Masking of the DIEP segmentations was 
performed to exclude the area where the perforator branches from the femoral artery (see Figure 
4). The manual and automated DIEP segmentations were masked using the manually annotated 
RA muscle and fat tissue. To still include the perforator main branch outside of the RA muscle 
tissue, the RA muscle mask was dilated using binary dilation from the SciPy (41) library, 
implemented in Python (version 3.9.16), with five iterations. The metrics were computed using 
the masked labels since the large caliber of the area where the DIEP branches from the femoral 
artery could highly affect the outcomes, and only the small caliber of the DIEP vessels is of our 
interest. 

All metrics were computed with the left and right perforators separated. This means that the 
automated prediction and corresponding manual annotation were sliced in half. Metrics were 
computed on the separated vessels to obtain comparable results for all experiments. 
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Figure 4. Visualization of masked segmentation of the deep inferior epigastric artery perforator labels that were used 

in the quantitative metric evaluation. (a) original manual annotation; (b) masked manual annotation. 

2.6 Qualitative evaluation 
When evaluating the performance of DL segmentation models, quantitative metrics are commonly 
used to measure the differences between manual and automated segmentation However, these 
metrics alone may not provide a comprehensive assessment of the clinical acceptability of the 
automated segmentations. To ensure the clinical utility of the automated DIEP segmentations, it 
is essential to obtain qualitative feedback from clinical experts. Therefore, in addition to 
quantitative metrics, the clinical acceptability of the automated DL segmentations of the DIEP 
vessels was evaluated. 

Four plastic reconstructive surgeons from the Erasmus MC, each with over 15 years of experience, 
participated in the qualitative evaluation of the DIEP segmentations. These surgeons were 
independent of the manual annotations and model training process. For the evaluation, a grading 
scale was used to record the acceptability of the presented segmentation by blinded surgeons. The 
surgeons were asked to assign a grade to each DIEP segmentation using the grading rates 
provided in Table 2. To minimize bias in the rating process, the type of segmentation (manual or 
automated) was not disclosed during the rating. A total of 15 CTA scans were included in this 
clinical evaluation. 

The manual and automated segmentations of each subject were graded in a randomized order. 
The CTA scans and segmentation masks of the DIEP were visualized in axial view on a 2D screen 
in 3D Slicer, where the original scan was shown parallel to the scan with segmentation (Figure 5). 
Segmentations for the same subject were graded at least one week apart to reduce the bias of 
seeing the same images twice. 

First, the mean grading scores of the manual and automated segmentations for each surgeon were 
compared to assess whether there was a difference in grading of the two segmentation methods 
by one surgeon. Subsequently, the mean scores of all surgeons for both the manual and automated 
segmentations were compared. Finally, the inter-rater agreement of the grading scores for each 
subject was assessed. 
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Table 2. Grading scheme used for clinical acceptability evaluation of deep inferior epigastric artery perforator 
segmentations in computed tomography angiogram. 

Grade Definition 

0 Not acceptable, manual (re)drawing of the entire structure is 
required 

1 Acceptable, but corrections necessary, perforator(s) missing 
suitable as ideal flap perforators. 

2 
Acceptable, only minor corrections necessary. Perforator(s) 
missing, but not suitable or relevant for ideal flap perforator 
selection. 

3 Accepted, no corrections necessary for clinical use. 

 
Figure 5. Parallel view in 3D Slicer that was shown to the surgeons during grading the acceptability of manual and 

automated segmentation of the deep inferior epigastric artery perforators (red) on CTA. 

2.7 Statistical analysis 
For the quantitative metrics, the mean and standard deviation were reported. The mean was 
computed as the micro average, defined as: 

𝑀𝑒𝑡𝑟𝑖𝑐𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 1
𝑛

∗ (𝑀𝑣1 + 𝑀𝑣2 + ⋯ 𝑀𝑣n)  (4) 

Where n represents the number of validation or test cases in a set, and Mv1 represents the metric 
for one validation or test subject. 

Statistical analysis was performed using Python (version 3.9.13) with functions from the SciPy 
library (41). A p-value lower than 0.05 was considered statistically significant. For statistical 
analysis of the qualitative evaluation, the paired t-test or Mann-Whitney U test was used 
depending on the characteristics of the data. Specifically, the paired t-test was utilized when 
analyzing paired data with equal dataset sizes, while the Mann-Whitney U test was used for 
comparisons involving unequally sized datasets. The decision to use the Mann-Whitney U test was 
motivated by the small dataset sizes and the observed lack of normality in the data. Alternatively, 
if the dataset sizes were larger or the data met the assumptions of normality, an independent t-
test would have been used instead. 

For the clinical acceptability ratings, the gradings of the manual and automated segmentation for 
each surgeon and the gradings for the two methods of all surgeons combined were compared 
using the Wilcoxon signed-rank test. This is a non-parametric statistical test that is used to 
compare two paired samples. 
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For assessment of the inter-rater agreement between the clinical experts, the Fleiss’ Kappa was 
used. This measures the extent of agreement between the ratings of the surgeons occurring by 
change, where values closer to 1.00 indicate a higher agreement among multiple raters (42). 
Generally, values above 0.80 indicate excellent or almost perfect agreement, values between 0.60 
and 0.79 indicate substantial agreement, and values below 0.60 indicate moderate, fair, or poor 
agreement (43). However, given the participation of only four surgeons in the qualitative 
evaluation, the Fleiss' Kappa can yield small values due to minor disagreements among the 
surgeons. To complement the assessment of the inter-rater agreement, the percentage agreement 
between the surgeons was also examined. This provides a measure of the proportion of 
segmentations where the surgeons' ratings agreed.
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3 Automated segmentation experiments 
3.1 nnU-Net RA muscle, subcutaneous fat tissue, and skin tissue segmentation 
nnU-Net was trained and evaluated with quantitative metrics for automated segmentation of the 
RA muscle, subcutaneous fat tissue, and skin tissue using the 25 scans in the train set. The 3D full-
resolution and an ensemble with the 3D full-resolution and the 3D full-resolution cascade model 
were both trained and evaluated. We quantitatively evaluated the automated segmentations using 
the DSC score, recall, and precision. Moreover, we qualitatively evaluated the results by 
visualizing the predictions of the RA muscle. We focused more on the visualization of the RA 
muscle since for use in clinical practice, visualization of the segmented perforators and the muscle 
is most relevant compared to the other tissue structures. Based on the quantitative measures and 
visualization, as well as the ease of use and training, the best model was evaluated with the test 
set. 

3.2 DIEP vessel segmentation experiments 
3.2.1 nnU-Net 
Different training set compositions were used to evaluate the performance of nnU-Net for DIEP 
segmentation. Training with different training set sizes was performed to evaluate the 
performance of nnU-Net using the framework’s original settings for our dataset. Moreover, we 
evaluated the influence of training when splitting the scans in half, since the input scan size 
influences the patch size used when training with nnU-Net. It was evaluated what influence this 
would have on the performance. 

The training compositions used in these nnU-Net experiments included: 

• Small train set: Training with 15 of the 25 scans in the training set using the 3D full-
resolution model. This experiment was performed to evaluate the influence of dataset size 
on the model performance. 

• Full train data: The network was trained with all train data (n = 25) using the 3D full-
resolution model. 

• Left and right perforators separated: Scans were divided into two halves, resulting in 
separate input data for both the right and left DIEP vessels. The 3D full-resolution model 
was again used for training. 

• Ensemble of networks: An ensemble of the 3D full-resolution network and the 3D full-
resolution cascade network was used on the training set composition with the perforators 
separated. It was assessed whether using this ensemble would improve the segmentation 
performance. 
 

The different experiments on training with different training compositions are summarized in 
Table 1. 
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Table 1. Training set compositions investigated in training and testing nnU-Net for deep inferior epigastric artery 
perforator segmentation on CTA scans. Each training set composition was trained for 1500 epochs, without any 

additional adaptions to the nnU-Net default configurations and settings. 3D fullres = 3D full-resolution U-Net model; 
3D cascade = 3D full-resolution cascade model.  

Training set composition nnU-Net framework Image size (x, y, z) Patch size (x, y, z) # train 

Small train set 3D fullres 512, 220, 700 160, 64, 224 15 

Full train data set 3D fullres 512, 220, 700 160, 64, 224 25 

Left and right perforators 
separated 

3D fullres 256, 220, 700 96 , 96, 256 50 

Ensemble(3D fullres, 3D cascade) 256, 220, 700 96 , 96, 256 50 

 
3.2.2 DTUNet 
Inference with the pre-trained DTUNet was performed on the small training set composition (n = 
15) used in the previous experiments. It was assessed whether this performance was suitable for 
our application based on quantitative and visual evaluation. 

3.3 DIEP vessel segmentation evaluation with outer-cross validation 
Because of our small dataset (n = 30), outer-cross validation was performed to evaluate whether 
the best-performing model would still achieve the same performance when using different train 
and test splits. In outer-cross validation, the dataset is divided into multiple non-overlapping train 
and test sets. For each iteration, a different split is used, ensuring that all samples are included in 
the test set at least once. Consistency and similarity in the results obtained from different outer-
cross validation splits would indicate that the model's performance is not highly dependent on 
the specific initial train-test split. By employing outer-cross validation and observing consistent 
results across iterations, we aimed to strengthen the validity and reliability of our findings.
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4 Results 
4.1 RA muscle, subcutaneous fat tissue, and skin tissue segmentation 
Segmentation of the RA muscle, subcutaneous fat tissue, and skin tissue resulted in a mean DSC 
score of respectively 0.92 (± 0.02), 0.96 (± 0.06), and 0.85 (± 0.09) using the 3D full-resolution 
network. For the ensemble of the 3D full-resolution and 3D full-resolution cascade network, mean 
DSC scores of 0.92 (± 0.02), 0.97 (± 0.04), and 0.85 (± 0.09) were measured. All the quantitative 
metrics for the tissue segmentations are presented in Table 3. 

While both the full-resolution and the ensemble of networks resulted in the same mean DSC score, 
a significant difference (p = 0.002) for the RA muscle, favoring the ensemble model, was observed. 
Nonetheless, when visually comparing the predicted segmentations of the two network 
configurations, no clinically relevant differences were identified. A visual comparison of the 
predicted segmentations for a subset of CTA scans can be found in Appendix C, Figure C1. Since 
using one model for prediction is computationally less expensive and quicker, we evaluated the 
3D full-resolution model with the test set. 

Using the 3D full-resolution U-Net network on the test set resulted in a mean DSC score for the RA 
muscle, fat tissue, and skin tissue of 0.90 (± 0.03), 0.97 (± 0.02), and 0.86 (± 0.04) respectively. 
The DSC, recall, and precision are listed in Table 3. The results of the statistical analysis can be 
found in Appendix C, Table C1. Visualization of the automated predicted tissue segmentations of 
the test set can be found in Appendix C, Figure C2. 

Table 3. nnU-Net performance for automated rectus abdominis muscle, subcutaneous fat tissue, and skin tissue 
segmentation. The mean value and standard deviation of the metrics are presented. The models used consisted of the 

3D full-resolution U-Net and an ensemble of the 3D full-resolution and 3D full-resolution cascade U-Net networks. The 
test set was evaluated using the 3D full network. * Indicates that there was a significant difference (p < 0.05) between 

the 3D full-resolution network and ensemble, or between the full-resolution network cross-validation and test 
outcomes. DSC = Dice similarity coefficient; RA = rectus abdominis. 

 RA Muscle Fat tissue Skin tissue 

 DSC Recall Precision DSC Recall Precision DSC Recall Precision 

3D fullres 0.92 ± 0.02 0.93 ± 0.05 0.92 ± 0.06 0.96 ± 0.04 0.96 ± 0.06 0.97 ± 0.03 0.85 ± 0.09 0.87 ± 0.10 0.87 ± 0.13 

Ensemble 0.92* ± 0.02 0.93 ± 0.05 0.92 ± 0.05 0.97 ± 0.04 0.96 ± 0.06 0.97 ± 0.02 0.85 ± 0.09 0.87* ± 0.10 0.87 ± 0.13 

Test 0.90 ± 0.03 0.93 ± 0.05 0.89 ± 0.07 0.97* ± 0.02 0.97* ± 0.04 0.97* ± 0.03 0.86 ± 0.04 0.88 ± 0.07 0.85 ± 0.08 

 
4.2 DIEP vessel segmentation experiments 
4.2.1 nnU-Net 
With the small train set, an average DSC score of 0.55 (± 0.08), and TPCR of 0.61 (± 0.11) were 
obtained for automated DIEP segmentation. Using the full train data set and the 3D full-resolution 
model on the separated perforator set, both resulted in a DSC score of 0.58 (± 0.08), with TPCR 
values of 0.63 (0.11) and 0.66 (± 0.10) respectively. The ensemble of the 3D full-resolution and 
3D cascade model resulted in a DSC score of 0.60 (± 0.08), and TPCR of 0.66 (± 0.10). All the 
quantitative metrics for DIEP segmentation, obtained through cross-validation using nnU-Net 
with different training set compositions and networks, are summarized in Table 4. The loss curves 
for the experiments are provided in Appendix C, Figure C3. 
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Figure 6 shows the box plots of the results, with statistically significant differences indicated. For 
all but one, a statistically significant difference for the DSC was found. For the TPCR, a statistically 
significant difference was found between the full train set composition and both the 3D full-
resolution (p = 0.01) and the ensemble of two U-Net networks (p = 0.02). All the outcomes of the 
statistical analysis can be found in Appendix C, Table C2. 

Although the DSC scores were comparable, the use of the separated train set composition is 
slightly more supported based on the results and significant differences. When comparing the 
quantitative results of the ensemble of the 3D full-resolution and 3D full-resolution cascade 
networks with the results of solely the 3D full-resolution model, the ensemble resulted in a 
statistically significant higher DSC (p = 0.02) and precision (p = 0.03). However, upon the visual 
comparison of the cross-validation predictions between the 3D full-resolution network and the 
ensemble of networks, no clinically relevant differences were observed (see Figure 7). 

Table 4. Quantitative metrics for different experiments with nnU-Net for automated deep inferior epigastric artery 
perforator segmentation on CTA. The mean value and standard deviation of the metrics are presented. ASSD = 

average symmetric surface distance; DSC = Dice similarity coefficient; FPCR = false positive centerline rate; TPCR = 
true positive centerline rate. 

Training set 
composition 

Network DSC Recall Precision ASSD TPCR FPCR 

Small train 
data set 

3d fullres 0.55 ± 0.08 0.46 ± 0.11 0.70 ± 0.10 2.00 ± 1.11 0.61 ± 0.11 0.08 ± 0.04 

Full train 
data set 3d fullres 0.58 ± 0.08 0.50 ± 0.12 0.72 ± 0.12 1.89 ± 0.88 0.63 ± 0.11 0.10 ± 0.06 

Left and right 
perforators 
separated 

3d fullres 0.58 ± 0.08 0.52 ± 0.10 0.71 ± 0.09 1.75 ± 0.87 0.66 ± 0.10 0.11 ± 0.05 

Ensemble 0.60 ± 0.08 0.52 ± 0.10 0.71 ± 0.09 1.75 ± 0.87 0.66 ± 0.10 0.10 ± 0.05 
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Figure 6. Boxplots of the quantitative metrics in the nnU-Net experiments for deep inferior epigastric artery 

perforator segmentation when training different training set compositions. The small (n = 15) and full (n = 25) train 
sets were trained with the 3D full-resolution network, and 5-fold cross-validation was used for training. The full 
training set with the left and right perforators separated was trained with the 3D full-resolution and the 3D full-
resolution cascade model. ASSD = average symmetric surface distance (in mm); DSC = Dice similarity coefficient; 

FPCR = false positive centerline rate; TPCR = true positive centerline rate; * 1.00e-02 < p <= 5.00e-02; 
**: 1.00e-03 < p <= 1.00e-02. 
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Figure 7. Visualization of automated segmentation of the deep inferior epigastric artery perforators for three CTA 

scans using nnU-Net with different networks. The first row displays the manual and automated predicted 
segmentation with the 3D full-resolution U-Net network, while the second row represents the ensemble of networks. 

No clinically relevant differences were observed when visually comparing the cross-validation predictions of the 
networks. DSC = Dice similarity coefficient; FPCR = false positive centerline rate; TPCR = true positive centerline rate; 

TP = true positives; FN = false negatives; FP = false positives. 

4.2.2 DTUNet 
After the manual post-processing steps, the average DSC between the manual and predicted 
segmentation was found to be 0.35 (± 0.11). The average TPCR was 0.38 (± 0.14). In addition, the 
DTUNet recall, precision, ASSD, and FPCR were 0.25 (± 0.11), 0.66 (± 0.17), 5.21 (± 2.84), and 0.10 
(± 0.08) respectively. Figure 8 illustrates the automated segmentation results obtained by DTUNet 
before and after manual post-processing for the subject with the lowest and the subject with the 
highest TPCR. 
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Figure 8. Visual result of comparison of automated predictions with the pre-trained DTUNet and the manual 

segmentation before and after post-processing. DSC = Dice similarity coefficient; FPCR = false positive centerline rate; 
TPCR = true positive centerline rate; TP = true positives; FN = false negatives; FP = false positives. 

4.3 DIEP vessel segmentation evaluation with outer-cross validation 
The nnU-Net was used for outer-cross validation, as it demonstrated superior performance 
compared to DTUNet for our specific application. Since the 3D full-resolution U-Net model showed 
no visual differences when compared to the ensemble of two U-Net models, and using one model 
is computationally less expensive, we evaluated the 3D full-resolution model in the DIEP outer-
cross validation. 

Table 5 summarizes the quantitative metrics for the different train-test splits. Overall, the results 
across all folds demonstrated comparable performance, which validates the findings in our 
experiments. However, one split showed a statistically significant difference for the TPCR 
between the training and test set (p = 0.01) of the cross-validation results, and for one split, the 
precision of the test set was significantly different (p = 0.00) compared to the training set and the 
test set of the initial train-test split used in the experiments (p = 0.01). Detailed results of the 
statistical analysis can be found in Appendix C, Table C3. The average prediction time for one scan 
across the six repeated train-test splits was 231.17 (± 48.41) seconds. 

During visual observation, we noticed that the automated segmentation successfully captured the 
main intramuscular DIEP branch, but it had difficulty identifying vessels in the subcutaneous fat. 
Interestingly, the 3D full-resolution model predicted some perforators that were overlooked in 
the manual segmentation. Figure 9 provides a visual representation of a test subject where the 
automated segmentation missed perforators, as well as another test subject where a perforator 
was overlooked in the manual segmentation. 

A visualization of the manual and automated segmentations of the DIEP, along with the RA muscle, 
fat tissue, and skin tissue for one CTA scan, is provided in Appendix C, Figure C5.  



27 

Table 5. Results of nnU-Net using an ensemble of the 3D full-resolution and 3D full-resolution cascade U-Net network 
for segmentation of the deep inferior epigastric artery perforators on CTA. The first train set split corresponds to the 

initial train test split used in our experiments. ASSD = Average Symmetric Surface Distance; CV = cross-validation; DSC 
= Dice similarity coefficient; FPCR = false positive count; TPCR = True positive centerline rate; * = significantly 

different compared to the same split’s CV results; ÿ = significantly different compared to the #1 test results. 

Train test split  DSC Recall Precision ASSD TPCR FPCR 

#1 
CV 0.58 ± 0.08 0.52 ± 0.10 0.71 ± 0.09 1.75 ± 0.87 66% ± 10% 0.11 ± 0.05 

Test 0.55 ± 0.05 0.47 ± 0.09 0.70 ± 0.09 1.52 ± 0.25 63% ± 9% 0.08 ± 0.05 

#2 
CV 0.58 ± 0.07 0.51 ± 0.09 0.70 ± 0.10 1.67 ± 0.69 65% ± 10% 0.11 ± 0.05 

Test 0.58 ± 0.10 0.49 ± 0.14 0.74 ± 0.07 2.22 ± 1.31 64% ± 11% 0.11 ± 0.04 

#3 
CV 0.59 ± 0.07 0.53 ± 0.09 0.71 ± 0.10 1.76 ± 1.04 67% ± 9% 0.10 ± 0.05 

Test 0.55 ± 0.10 0.47 ± 0.12 0.67 ± 0.08 2.22 ± 1.06 57% ± 10%* 0.09 ± 0.04 

#4 
CV 0.58 ± 0.08 0.50 ± 0.10 0.70 ± 0.10 1.79 ± 0.87 64% ± 10% 0.10 ± 0.05 

Test 0.60 ± 0.06 0.52 ± 0.09 0.75 ± 0.10 1.83 ± 0.97 66% ± 7% 0.09 ± 0.04 

#5 
CV 0.59 ± 0.08 0.51 ± 0.11 0.71 ± 0.08 1.86 ± 0.90 64% ± 10% 0.11 ± 0.05 

Test 0.59 ± 0.05 0.57 ± 0.10 0.65 ± 0.16 1.40 ± 0.46 70% ± 11% 0.13 ± 0.07 

#6 
CV 0.58 ± 0.08 0.50 ± 0.10 0.69 ± 010 1.77 ± 0.74 64% ± 10% 0.10 ± 0.05 

Test 0.59 ± 0.04 0.48 ± 0.07 0.81 ± 0.06*ÿ 1.56 ± 0.46 65% ± 7% 0.09 ± 0.04 
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Figure 9. Visualization of automated segmentation outcomes for two test cases. The axial slices of the CTA scans are 

presented using a CT-abdomen window leveling in 3D Slicer. (a) Visualization of a false negative automated 
perforator; (b) Visualization of a false positive automated perforator that was missed in the manual annotation. DSC = 

Dice similarity coefficient; FPCR = false positive centerline rate; TPCR = true positive centerline rate; TP = true 
positives; FN = false negatives; FP = false positives. 

4.4 Qualitative evaluation 
The mean grades for the manual and automated segmentations were respectively 2.52 (± 0.62) 
and 2.37 (± 0.73). All except one rated both segmentations above 2.00. However, one surgeon gave 
a rating above 2.00 for the manual segmentation but not for the automated segmentation (1.67 ± 
0.70). There were no statistical differences observed between the two segmentations for 
individual surgeons or in the combined result. Table 6 provides the mean grading scores for each 
individual surgeon, as well as the overall gradings and accompanying statistical results. Figure 10 
visually presents the scores attributed by each surgeon separately. Appendix C, Table C4, and 
Figure C4 offer a detailed comparison of the results obtained from the evaluation of each of the 15 
CTA scans individually. 

The inter-rater agreement, as measured by Fleiss' Kappa, was 0.06 for manual segmentations, 
0.02 for automated segmentations, and 0.04 when combining both segmentations. This indicated 
a very low level of agreement among the surgeons. The percentage agreements were respectively 
13%, 7%, and 7%, for manual, automated, and combined gradings. The results for pair-wise 
percentage agreement are provided in Appendix C, Table C5. 
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Table 6. Mean acceptability score and the corresponding p-value (Wilcoxon signed-rank test) for surgeon qualitatively 
evaluating manual and automated deep inferior epigastric artery vessel segmentations. The mean scores are 

presented with ± one standard deviation. Four plastic reconstructive surgeons graded manual and automated 
segmentations of 15 CTA scans. A 4-point scale was used for grading: 0 = not acceptable; 1 = Acceptable, but 

corrections necessary; 2 = Acceptable, only minor corrections necessary; 3 = Accepted, no corrections necessary for 
clinical use. 

Surgeon Mean acceptability score p-value (Wilcoxon test) 

 Manual Automated  

A 2.13 ± 0.72 1.67 ± 0.70 0.08 

B 2.73 ± 0.72 2.60 ± 0.49 0.32 

C 2.47 ± 0.50 2.73 ± 0.44 0.10 

D 2.73 ± 0.44 2.47 ± 0.72 0.21 

All 2.52 ± 0.62 2.37 ± 0.73 0.13 

 
Figure 10. Distribution of clinical acceptability scores assigned by each surgeon for manual and automated 

segmentations. The segmentations of 15 CTA scans were graded using a 4-point scale: 0 = not acceptable; 1 = 
Acceptable, but corrections necessary; 2 = Acceptable, only minor corrections necessary; 3 = Accepted, no corrections 

necessary for clinical use. Note that grade 0 was not assigned by any of the surgeons.  
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5 Discussion 
The presented study aimed to evaluate the utility of DL segmentation for automated DIEP vessel 
segmentation in breast reconstruction surgery. 3D visualization of the perforators has shown to 
provide a better understanding of the anatomy and could reduce the harvest time of the DIEP flap. 
These 3D visualization methods, however, involve manual segmentation of the perforators, which 
is time-consuming, subjective, and prone to inter- and intra-observer variability. Automated 
segmentation using DL networks has the potential to overcome these limitations and provide 
more accurate and efficient segmentation of the DIEP vessels. 

5.1 Quantitative results 
Using automated DL for segmentation of the RA muscle, subcutaneous fat tissue, and skin tissue, 
resulted in high DSC scores for the test set. This means that there was a substantial overlap and 
agreement between the automated and manual segmentations, demonstrating the effectiveness 
of the DL model in accurately delineating these structures. These results, however, were not 
unexpected since the manual segmentation of the structures was already supported by intensity 
thresholding algorithms and the contours of the structures are distinguishable from their 
background. Nonetheless, the use of nnU-Net for the segmentations offers the advantage of 
providing an objective and fully automated result. For skin tissue, however, a simpler method such 
as volume rendering would suffice and yield faster results. Kreher et al. (2022) presented a U-Net 
network for muscle segmentation on CT scans evaluated using 130 scans and reported a DSC score 
of 0.86 (± 0.12) for segmentation of the RA muscle (44). Islam et al. (2022) reported a DSC score 
of 0.94 (± 0.04) for RA muscle segmentation when training with 1070 scans (45). In our study, we 
obtained a DSC score of 0.92 (± 0.02) on our training set. This indicates that using nnU-Net for RA 
muscle segmentation using a limited amount of data already shows comparable results with other 
studies. 

The automated DIEP vessel segmentation on the initial test set resulted in a mean DSC of 0.58 (± 
0.08) and a TPCR of 63% (± 9%), indicating moderate agreement between the automated and 
manual segmentations. However, a relatively low recall score of 0.47 (± 0.09) indicated that the 
model missed some perforators, which was evident during the visualization of the automated 
segmentations. Conversely, the precision score of 0.70 (± 0.09) highlighted that the majority of 
the predicted vessels were true positives rather than false positives. Further supporting this 
finding, the low FPCR of 0.08 (± 0.05) indicated that the segmentation model accurately identified 
DIEP vessels in the images. 

Studies that have used deep learning for intracranial blood vessel segmentation on CTA scans 
have reported DSC scores of 0.91 and 0.87 on their respective datasets (33, 46), and the original 
study of DTUNet reported an ASSD of 0.84 (± 0.07) mm (37). While both intracranial blood vessel 
segmentation and DIEP vessel segmentation share the challenge of segmenting small vessels, the 
former has seen more advanced developments, leading to superior quantitative performance. 
Nevertheless, as the first study to explore DL for automated DIEP vessel segmentation, our 
obtained DSC score of 0.58 shows promise as a foundation. With further refinement and 
substantial expansion of the dataset, there is potential for improved performance to be achieved. 
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5.2 Qualitative results 
As shown in Table 6, the gradings assigned by all surgeons for both manual and automated 
segmentations reveal no statistically significant difference between the two methods, and both 
segmentations were evaluated as clinically acceptable. However, the inter-rater agreement (0.04) 
and percentage agreement (7%) when combining all gradings indicate a low level of agreement 
among the surgeons. It is important to note that the limited number of participating surgeons in 
the evaluation may contribute to these low values. A more comprehensive assessment of the inter-
rater agreement would require the involvement of a larger number of surgeons or segmentations. 

Although the segmentations in our study were evaluated as clinically acceptable, it is worth noting 
that surgeons may have individual preferences regarding visualization. In our study, we only 
presented the axial view of the original CTA scans to the surgeons. However, some surgeons may 
be accustomed to assessing the DIEP anatomy using the maximum intensity projection scan or by 
viewing the scan from different planes. This variation in preferences could potentially impact the 
surgeons' grading. Another noteworthy observation from the evaluation was the potential 
influence of scan quality on the grading assigned by surgeons. We observed a bias towards 
assigning lower grades to both the manual and automated segmentations for CTA scans with 
lower image quality. This suggests that image quality plays a role in the surgeons' perception and 
assessment of the segmentations. 

5.3 Future directions for clinical use 
Although the presented study shows promising results for automated DL segmentation of DIEP 
vessels in breast reconstructive surgery, further improvement and development is necessary for 
clinical acceptability and use in clinical practice. Based on our quantitative and qualitative results, 
different recommendations can be made. 

First, transfer learning and training could be used to further improve the performance of 
automated DL segmentation for DIEP vessels. In this study, transfer learning was not 
experimented with, but it could help improve the performance of the segmentation network by 
leveraging pre-trained models. Second, future studies could investigate the possibility of 
automatically calculating the perforator caliber, orientation, and distance of the segmented 
vessels to the umbilicus, both horizontally and vertically. This information could help surgeons in 
determining the most suitable vessel for flap harvesting and improve surgical outcomes. 

Finally, it is worth investigating how the clinical acceptability of automated segmentations in 3D 
can be investigated. The set-up for our qualitative evaluation in 2D was based on previous studies 
that examined the clinical acceptability of automated segmentations for clinical applications using 
qualitative evaluation (47-49). However, acceptability in 2D may not accurately reflect the 
acceptability of segmentations in 3D. In our study, we chose not to evaluate the segmentations in 
3D, as the differences between manual and automated segmentation would have been too 
apparent, and due to the potential impact of the visual-spatial ability of a surgeon on the 
qualitative grading when visualizing the results in 3D (50-52). Visual-spatial ability refers to the 
ability to perceive, analyze, and mentally manipulate visual information and understand how 
objects and spaces are arranged in relation to each other (53, 54). To date, no study has evaluated 
the clinical acceptability of automated segmentation for 3D visualization, which could be of 
interest for future research. 
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5.4 Limitations 
The methods and experiments used in this study were subject to several limitations that may have 
impacted the results. First, a limited amount of annotated data was used for both training and 
testing, which could have affected the model’s performance and may have contributed to a weaker 
statistical power. While there were no significant differences between the experiment with the 
small and full datasets, the addition of only 10 scans for training already showed less overfitting 
when evaluating the loss curves. Therefore, a larger annotated dataset could have potentially 
improved the performance of the model. Secondly, there was a wide range of scan quality which 
could not only have influenced the quantitative but also the qualitative results. 

Furthermore, the manual segmentations of the perforators may have been inadequate. Although 
the learning curve was corrected by checking earlier annotations, the results showed that some 
perforators were still missed in the manual segmentations (see Figure 9). Another limitation of 
the manual annotations includes that only the DIEP vessels were annotated. Since the slices also 
contained other similar vessels, it would have been easier for the model to have also included the 
SIEA vessels. Finally, this study did not include external validation to evaluate the performance 
on an independent dataset, which could have provided more robust validation of the model's 
generalization to new datasets. 
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6 Conclusion 
This study investigated the application of DL for automated perforator segmentation in DIEP flap 
breast reconstruction. Overall, our findings suggest that automated DL segmentation holds the 
potential to enhance the efficiency and objectivity of identifying DIEP vessels in CTA images, 
offering an alternative to manual segmentation. Nonetheless, further research is needed to refine 
the automated segmentation results and to validate the generalizability and clinical applicability 
of the DL segmentation approach in larger patient cohorts and different clinical settings. 

Ethics statement 
For this study, the Medical Research Involving Humans Subject Act (WMO) does not apply. 
Approval for the use of the CTA scans in our study investigating DIEP vessel segmentation and 
visualization for preoperative imaging was obtained from the medical ethical review committee. 
for preoperative imaging. For the clinical acceptability evaluation, the participants gave their 
informed written consent in participating in the experiment. 
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Appendix A - Manual segmentation protocol 
 
1 Requirements 

• Abdominal computed tomography angiography (CTA) scan (slice thickness of 0.6 – 0.75 
mm) 

• 3D Slicer (version 5.0.3) (http://www.slicer.org/) with FastMarching extension a 
a Can be downloaded from the 3D Slicer manager. 

2 Import data from XNAT 

1. Login to XNAT and open the project-ID “diap” (MEC-2020-0504).  
2. Select patient.  
3. Select the CT-scan. 
4. Select “Download images” and select the 0.75 CTA DICOM file of the abdomen. 
5. Click download. 

 
3 Cropping images in 3D Slicer 

3.1 Load scan data 

1. Open 3D Slicer 
2. Click “Load DICOM Data” 

 
3. Click “Import DICOM files” 

 
4. Select the folder with the DICOM file. 
5. Select scan and click “Load.” 

 
3.2 Crop volume in 3D Slicer 

1. Switch to the “Markups” module and create a “Line” markup. 
2. Position the first point (L1) at the height of the umbilicus using the different viewing plane 

(see Figure A1) 
3. Position the second point (L2) 3000mm superior to L-1 in the sagittal viewing plane (see 

Figure A1) 
a. The exact position of the markup can be changed in the Markup module. 

 
Figure A1. Sagittal view of mark-ups for cropping the image. L1 = first marker point; L2 = second marker point; L = length 

between L1 and L2 
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4. Switch to “Crop Volume” module 
This module can be found with “Find module”. Search for “Crop Volume” and press “Switch to 
module”. 

5. Create a new input ROI (Region of Interest) named “R”. Select “Create new AnnotationROI 
as…”. The input ROI must be named “R”, else there will be an error in the next step. 

 
6. Open the “Python Interactor”(small blue and yellow symbol on the far right on the top 

toolbar). Copy and paste the following code in the interactor: 
# specify desired dimensions in voxels 
radiusIJK = [512, 220, 700] 
# assign the first volume node in the data module to a variable 
volumeNode = slicer.util.getNode('vtkMRMLScalarVolumeNode1') 
# assign roi node to a variable 
roiNode = slicer.util.getNode('R') 
# get the size of the volume voxels 
spacing = volumeNode.GetSpacing() 
# convert the number of pixels to measurements in mm 
radiusRAS = [(radiusIJK[0]*spacing[0])/2, (radiusIJK[1]*spacing[1])/2, 
(radiusIJK[2]*spacing[2])/2] 
# change the size of the ROI 
roiNode.SetRadiusXYZ(radiusRAS)  

(This code sets the ROI in the 3D Slicer panels to a volume of 512x220x700 voxels.) 
7. Manually adjust the center superior ROI position to align it with the L-2 markup (see 

Figure A2). 

 
Figure A2. Sagittal view of aligning the region of interest (ROI) for cropping the image. Orange dot = center of ROI; White 
dots = edges ROI; green dots = anterior and posterior middle points of ROI; Blue dot = middle of superior side of the ROI; 

L1 = first marker point; L2 = second marker point; L = length between L1 and L2 

8. Align the ROI to cover the entire anterior abdominal skin in all axial slices. 
a. Do not change the dimensions of the ROI. If this occurs, then run the previous 

code again. 
9. In the Advanced settings, set the “Fill value” to -1000 (HU air) and select interpolated 

cropping (keep interpolator on linear). 
10. Press “Apply”. 

 
3.3 Export cropped scan 

3.3.1 Export to DICOM 
1. After cropping the volume, switch to the “Add DICOM Data” module. 

 
2. In the “loaded data” panel, right-click on the cropped volume and rename the file to 

“patientID_cropped”. 
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3. Right click on the cropped volume and select “Export to DICOM…”.

 
4. Change the “Seriesdescription” to “Cropped”. 
5. Export the file to the desired folder (use the default, “Scalar Volume” export type). 

 
3.3.2 Export to NiFTI (.nii.gz) 
To train the nnU-Net, the cropped scan volumes need to be saved in .nii.gz format!  

1. Switch to the “Data” module. 
2. Right-click on the cropped scan volume and select “Export to file...”. 
3. Name the file “diep_patientID_0000”. 

a. For use with nnU-Net, the patientID needs to be in an XXX-digit format (e.g., 001, 
002, etc.). 

Example file name: DIEP_001_0000.nii.gz. 
4. Select the desired folder to save the cropped scan. 
5. Press “Save”. 

Note: for reproducibility, notate the ROI coordinates, these can be found in “MRML node information” 
under “Node information” in the “Data” module. 

4 Segmentations 

4.1 Import data 

1. Repeat all steps in 3.1 (Load scan data) but select and import the cropped DICOM file. 
Or continue in 3D slicer after the previous step (cropping image), delete the original volume, 
and only work on the cropped scan. 

4.2 Tissue annotations in 3D Slicer 

4.2.1 Rectus Abdominis annotation 
1. Open the “Segmentation editor” module.  
2. Make sure that the master volume is set to the cropped scan. 
3. Add a new segment and rename the segment to “Muscle.” 
4. Select “Paint” and activate “Sphere brush.” 
5. Paint several spheres inside the abdominal muscle tissue (see Figure A3) 

 
Figure A3. Axial view of spheres (green) painted inside the abdominal muscle tissue. 
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6. Select “Fast Marching” and set the “Maximum volume” to 6.00%. 
7. Click “Initialize” and check the segmentation in the 3D view window. 

a. Click “Show 3D” 
b. Center the view in the 3D window . 

8. Adjust the “Segment volume” to reduce artifacts. 
9. Press “Apply”. 
10. Adjust the segmentation manually using “Scissors” and “Erase” to remove remaining 

artifacts. 
11. Select “Smoothing”, select “Closing” (kernel size 3.00 mm), and press “Apply”. 
12. Check the slices and adjust the segmentation manually to remove artifacts and fill the 

remaining holes. 

 

Figure A4: Anterior view of (a) rectus abdominis tissue after “Fast marching” at 6.00% Maximum volume and 85% Segment volume; 
(b) result after manually removing artifacts and manually filling gaps with “Paint” function; (c) final segmentation result a fter 

smoothing closing operator and filling remaining holes. 

4.2.2 Fat tissue annotation 
The steps for the fat tissue annotation are similar to the muscle tissue annotation (section 4.2.1).  

1. Add a new segment and rename the segment to “Fat.” 
2. In “Masking” select editable area “Outside other segments” and “Modify other segments” 

on “Allow overlap”. 
3. Select “Paint” and activate “Sphere brush.” 
4. Paint several spheres inside the anterior abdominal fat tissue. Make sure to place the 

spheres distributed in the entire region (see Figure B5).  

 
Figure A5. 3D view of painted spheres (yellow) for the fat tissue segmentation. Green = rectus abdominal muscle tissue 

segmentation 

5. Select “Fast Marching” and set the “Maximum volume” to 40.00% (if needed, adjust to a 
higher or lower value based on the size of the fat region). 

6. Click “Initialize” and check the segmentation in the 3D view window. 
7. If necessary, adjust the “Segment volume” to reduce artifacts. 
8. Press “Apply”. 
9. Adjust the segmentation using “Scissors” and “Erase” to remove the remaining artifacts. 
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10. Select “Smoothing”, select “Closing” (kernel size 3.00 mm), and press “Apply”. Adjust the 
kernel size if holes are not filled sufficiently.  

11. Check the slices and adjust the segmentation manually to remove artifacts and fill the 
remaining holes. In Figure 6 the results before and after this step are visualized.  

 

 

Figure A6. (a) Anterior view of lower anterior abdomen fat tissue after “Fast marching” at 40.00% Maximum volume and 90% 
Segment volume (b) posterior side view of the fat tissue; (b) anterior view of the result after manually removing artifacts and 

manually filling gaps with “Paint” function, and the smoothing closing operator; (d) posterior side view of the final segmentation 
result. Yellow = fat tissue segmentation, green = rectus abdominis segmentation 

4.2.3 Skin tissue annotation 
1. Add a new segment and rename the segment to “Skin.” 
2. Check that in “Masking” the selected editable area is still “Outside other segments” and 

that “Modify other segments” is set to “Allow overlap”! 
3. Click on the “Threshold” effect and set the threshold range to intensities that the skin 

region is within these intensities (see Figure A7). The fat tissue layer can also be in-
between these intensities.  

 
Figure A7. Threshold effect for skin tissue segmentation. Red = threshold area; green = rectus abdominis muscle 

segmentation 

4. Click “Apply”. 
5. In “Island”, select “Keep selected island” and click on one of the pixels containing the skin 

layer. 
a. If this does not result in sole the skin layer, the segmented pixels behind the fat 

tissue could still be connected. Adjust the parts where the segmentation connects 
with artifacts using the eraser and/or scissors, and repeat “Keep selected island”.  

6. Select “Smoothing”, select “Closing” (kernel size 3.00 mm), and press “Apply”. Adjust the 
kernel size if holes are not filled sufficiently. 
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7. Adjust the segmentation using “Scissors” and “Erase” to remove remaining artifacts. A 
result of a skin segmentation is visualized in Figure A8.  

 

 

Figure A8. (a) Anterior view of skin tissue segmentation after thresholding; (b) posterior side view of a result after thresholding; (c) 
anterior view of a result after “Keep selected island”; (d) posterior view of skin tissue segmentation after “Keep selected island”, 
removing artifacts and filling holes. Red = skin tissue segmentation; green = rectus abdominis segmentation; yellow = fat tissue 

segmentation 

4.2.4 Perforator annotation 
1. in “Masking” set the selected editable area to “Everywhere” and keep “Modify other 

segments” on “Allow overlap”! 
2. In “Threshold” set the threshold range to intensities that cover the femoral artery and 

press “Use for masking” (see Figure A9) 
3. Create a new segment named “DIEP”! 
4. Using the “Paint” effect, manually fill in parts of the femoral artery to obtain segment parts 

of the Femoral artery inferior and superior to the DIEP branch (see Figure A9) 
5. Create a new segment (use the default name or change the name is desired) 

6. Select “Draw tube” . 
7. Using control points with the “Draw tube” effect, follow the DIEP vessel and place marker 

points (see Figure A10). Press “Apply” when done with a vessel segment (keep the 
interpolation at “Cardial spline”). 

a. Adjust the threshold in the masking setting when segmenting the vessel. 
b. Adjust the radius of the tube if needed. 
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Figure A9. Screenshot of 3D Slicer scene for manual deep inferior epigastric artery segmentation. In the views the axial, coronal, and 

sagittal computed tomography angiograms respectively. In the upper right view, the 3D view of the segment. 

 
Figure A10. Screenshot of 3D Slicer scene for manual deep inferior epigastric artery segmentation using the “Draw tube” effect to 
segment the vessel. In the views the axial, coronal, and sagittal computed tomography angiograms respectively. In the upper right 

view, the 3D view of the marker points. The red dots are marker points; The blue lines indicate the tube path. 

8. Create a new segment and repeat the previous steps until the whole vessel is segmented 
(see Figure A11a for a result). 

a. Using “Draw tube” again in a segment will replace the previous tube, therefore a 
new segmented needs to be created for each annotated vessel part. 

b. For each vessel part, adjust the threshold and/or radius if needed. 
9. When done for all parts, go to “Logical operators”  
10. In the segmentation editor, select the DIEP segment. 
11. In “Logical operators”, set the operation to “Add” and select a vessel segment. 
12. Press “Apply”. 
13. Repeat this step until all vessel segments are added to the DIEP segment (see Figure A11b 

for a result). 

 

Figure A11. Anterior 3D view of right deep inferior epigastric artery perforator (DIEP) segmentation with 3D slicer. (a) Result of 
different vessel parts annotated using “Draw tubes”. In red the femoral part. In blue and yellow colors, the annotated vesse l parts; 

(b) results of the vessel after adding up the vessel parts.  
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14. Delete the vessel branch segments. 
15. Check the DIEP segmentation. 
16. Add vessel branches by repeating the previous steps. Figure A12 shows the results of the 

DIEP segmentation for one subject. 

 
Figure A12. Anterior 3D view of a result of deep inferior epigastric artery perforator (DIEP) segmentation with 3D slicer. 

4.3 Export data 

4.3.1 Tissues 
1. Go to the “Segmentation” module. 
2. Make only the muscle, fat, and skin tissue visible. 
3. In Export/Import models and label maps select “Export to new label map” as “output 

node” 
4. In the advanced settings, set “Exported segments” to “Visible” and the “Reference volume” 

to the cropped scan. 
5. Click “Export”. 
6. Go to the “Data” module. 
7. Right-click on the created binary label map and select “Export to file…”. 
8. Change the filename to “TASKID_patientID.nii.gz” (TASKID for tissues used in this study is 

“tiss”) 
9. Change the desired folder for the segmentation to be saved in. 
10. Select the file format .nii.gz. 
11. Click “Export”. 

To export the tissue masks separately, only make the desired tissue segmentation visible, and 
repeat the same steps. 

4.3.2 Perforators 
1. Go to the “Segmentation” module. 
2. Make only the DIEP vessel segmentation visible. 
3. In Export/Import models and label maps select “Export to new label map” as “output 

node” 
4. In the advanced settings, set “Exported segments” to “Visible” and the “Reference volume” 

to the cropped scan. 
5. Click “Export”. 
6. Go to the “Data” module. 
7. Right-click on the created binary label map and select “Export to file…” 
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8. Change the filename to “TASKID_patientID.nii.gz” (TASKID for DIEP vessels used in this 
study is “diep”). 

9. Change the desired folder for the segmentation to be saved in. 
10. Select the file format .nii.gz. 
11. Click “Export”. The results of a DIEP and tissue segmentation are shown in Figure A13. 

 

 

Figure A13. 3D view of the result of deep inferior epigastric artery perforator (DIEP), rectus abdominal muscle, 
anterior abdominal fat, and anterior skin layer segmentation with 3D slicer. Surface smoothing is turned off. (a) 

Anterior view of DIEP and muscle; (b) right side view of DIEP and muscle; (c) right side view of all segmentations; (d) 
superior view of all segmentations; (e) posterior view of all segmentations. Red = DIEP; green = rectus abdominal 

muscle; yellow = fat tissue; brown = skin tissue.
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Appendix B – Centerline distance-based metrics 
For the evaluation of the model performance, the distances between the centerlines of the 
predicted and manual segmentation were evaluated. It was discussed with two surgeons, that for 
our application, 1.0 mm of difference was still accepted (true positive). Two metrics were defined 
for this quantitative evaluation: True Positive Centerline Rate (TPCR) (Equation 1) and False 
Positive Centerline Rate (FPCR) (Equation 2). 

𝑇𝑃CR = 𝑇𝑃
# 𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

  (1)  𝐹𝑃CR = 𝐹𝑃
# 𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

  (2) 

A centerline point was marked true positive (TP) when the distance from the ground truth 
centerline to the closest centerline point of the prediction was smaller than 1.0 mm, and a 
centerline point was marked false positive (FP) when the distance from the prediction centerline 
to the closest centerline point of the ground truth equaled or was larger than 1.0 mm. This 
computation and definitions are visualized in Figures B1 and B2. In these figures, the false 
negative (FN) and FP computed for the distances from automated to manual centerline points are 
also visualized, however, these were not reported or used in our defined metrics. The code used 
to compute the distances between the centerline points is provided on the next page. 

 
Figure B1: Visualization of metric definition. Distances < 1 mm were still considered a true positive, whereas points 
with distances ≥ 1 mm were either false negative or false positive. Automated = automated segmentation; FP = false 

positives; Manual = manual segmentation; TP = true positives. 

 
Figure B2: (a) Histogram of distances computed from the manual to the automated segmentation centerline points; 

(b) Histogram of distances computed from the automated to the manual segmentation centerline points. Automated = 
automated segmentation; FP = false positives; GT = ground truth; Manual = manual segmentation; TP = true positives; 

TP = true positives. 
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def centerline_distances(path_gt, path_pred): 
    """ 
    This function first extracts the centerlines of two binary masks (.nii.gz) format.  
    Secondly, for each non-zero point in one binary array, it computes the distance (in pixels) 
    to the closest non-zero point in the oposite binary array, and vice versa.  
 
    Parameters 
    ---------- 
    path_gt : str 
        Path to folder with ground truth .nii.gz files. 
    path_pred : str 
        Path to folder with predicted .nii.gz files. 
 
    Returns 
    ------- 
    dis_pred_gt : list 
        List with distances between the points on the centerline of the prediction 
        and the closest point on the centerline of the centerline of the ground truth. 
    dis_gt_pred : list 
        List with distances between the points on the centerline of the ground truth 
        and the closest point on the centerline of the centerline of the prediction. 
    """ 
     
    # load data  
    gt_data = nib.load(path_gt).get_fdata() 
    pred_data = nib.load(path_pred).get_fdata() 
    # skeletonize gt and prediction 
    skeleton3d_gt = skeletonize_3d(gt_data) 
    skeleton3d_pred = skeletonize_3d(pred_data) 
    # voxel dimensions 
    sampling_gt = nib.load(path_gt).header.get_zooms() 
    sampling_pred = nib.load(path_pred).header.get_zooms() 
     
    # Compute the Euclidean distance transform of the binary arrays 
    dist_transform_gt = distance_transform_edt(~skeleton3d_gt, sampling = sampling_gt) 
    dist_transform_pred = distance_transform_edt(~skeleton3d_pred, sampling = sampling_pred) 
     
    # Initialize lists to store the distances 
    dis_pred_gt = [] 
    dis_gt_pred = [] 
     
    # For each non-zero point in the first binary array, 
    # find the nearest non-zero point in the distance transform of the second binary array 
    for i,j,k in np.argwhere(skeleton3d_pred): 
        local_dist_transform = dist_transform_gt[i, j, k] 
        closest_point = np.unravel_index(np.argmin(local_dist_transform), local_dist_transform.shape) 
        closest_point = np.array(closest_point) - 1 
        distance = local_dist_transform[tuple(closest_point)] 
        dis_pred_gt.append(distance) 
 
    # For each non-zero point in the first binary array, 
    # find the nearest non-zero point in the distance transform of the second binary array 
    for i,j,k in np.argwhere(skeleton3d_gt): 
        local_dist_transform = dist_transform_pred[i, j, k] 
        closest_point = np.unravel_index(np.argmin(local_dist_transform), local_dist_transform.shape) 
        closest_point = np.array(closest_point) - 1 
        distance = local_dist_transform[tuple(closest_point)] 
        dis_gt_pred.append(distance) 
 
    return dis_pred_gt, dis_gt_pred 
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Appendix C - Supplementary tables and figures 
Table C1. Statistical comparison of two models' cross-validation results and the cross-validation and test outcomes. 
Fullres refers to the 3D full-resolution network, and ensemble to the ensemble of the 3D full-resolution and the 3D 

full-resolution cascade U-Net networks. DSC = Dice similarity coefficient, RA = Rectus Abdominis muscle; * = 
significantly different (p < 0.05). 

  DSC Recall Precision Statistical test 

RA  
Fullres vs ensemble 0.00* 0.06 0.18 Paired t-test 

Fullres vs test 0.28 0.83 0.11 Mann-Whitney U 

Fat tissue 
Fullres vs ensemble 0.54 0.93 0.33 Paired t-test 

Fullres vs test 0.00* 0.01* 0.01* Mann-Whitney U 

Skin tissue 
Fullres vs ensemble 0.11 0.02* 0.94 Paired t-test 

Fullres vs test 0.91 1.00 0.79 Mann-Whitney U 

Table C2. Statistical comparison between cross validation results of nnU-Net experiments with different training set 
compositions. Fullres refers to the 3D full-resolution network, and ensemble to the ensemble of the 3D full-resolution 
and the 3D full-resolution cascade U-Net networks. ASSD = average symmetric surface distance; DSC = Dice similarity 

coefficient; FPCR = false positive count; TPCR = true positive centerline rate; * = significantly different p < 0.05). 

 DSC Recall Precision ASSD TPCR FPCR Statistical test 

Small set vs. full set 0.14 0.11 0.53 0.51 0.51 0.45 Mann-Whitney U 

Small set vs. separated fullres 0.03* 0.02* 0.78 0.48 0.14 0.06 Mann-Whitney U 

Small set vs. separated ensemble 0.01* 0.01* 0.67 0.36 0.12 0.14 Mann-Whitney U 

Full set vs. separated fullres 0.00* 0.07 0.34 0.62 0.01* 0.30 Paired t-test 

Full set vs. separated ensemble 0.00* 0.03 0.56 0.64 0.02* 0.54 Paired t-test 

Separated fullres vs separated ensemble 0.02* 0.09 0.03* 0.96 0.97 0.17 Paired t-test 

Table C3. Statistical comparison between repeated train-test splits and the initial train-test split. ASSD = average 
symmetric surface distance; CV = cross-validation; DSC = Dice similarity coefficient; FPCR = false positive centerline 

rate; TPCR = true positive centerline rate; * = significantly different (p < 0.05). 

Train-test split  DSC Recall Precision ASSD TPCR FPCR Statistical test 

#1 Test vs. CV 0.12 0.13 0.96 0.71 0.40 0.08 Mann-Whitney U 

#2 

Test vs. CV 0.71 0.49 0.24 0.27 0.70 0.96 Mann-Whitney U 

CV vs. CV #1 0.17 0.20 0.61 0.53 0.58 0.93 Paired t-test 

Test vs. test #1 0.56 0.72 0.26 0.16 0.93 0.18 Paired t-test 

#3 

Test vs. CV 0.17 0.21 0.16 0.19 0.01* 0.60 Mann-Whitney U 

CV vs. CV #1 0.81 0.74 0.87 0.95 0.59 0.71 Paired t-test 

Test vs. test #1 0.82 0.97 0.30 0.12 0.12 0.49 Paired t-test 

#4 

Test vs. CV 0.36 0.53 0.25 0.96 0.43 0.45 Mann-Whitney U 

CV vs. CV #1 0.09 0.10 0.70 0.79 0.23 0.40 Paired t-test 

Test vs. test #1 0.19 0.34 0.09 0.44 0.48 0.64 Paired t-test 

#5 

Test vs. CV 0.73 0.13 0.07 0.12 0.07 0.29 Mann-Whitney U 

CV vs. CV #1 0.75 0.70 0.98 0.47 0.40 0.85 Paired t-test 

Test vs. test #1 0.20 0.09 0.27 0.54 0.25 0.18 Paired t-test 

#6 

Test vs. CV 0.43 0.41 0.00* 0.55 0.99 0.48 Mann-Whitney U 

CV vs. CV #1 0.12 0.26 0.27 0.92 0.31 0.75 Paired t-test 

Test vs. test #1 0.20 0.96 0.01* 0.85 0.80 0.53 Paired t-test 
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Table C4. Results for qualitative evaluation of manual and automated DIEP segmentation for each CTA scan. A total of 
four plastic reconstructive surgeons (A-D) graded the manual and automated segmentation of 15 CTA scans using a 4-

point grading scale. 0 = not acceptable; 1 = Acceptable, but corrections necessary, perforator(s) missing suitable as 
ideal flap perforators; 2 = Acceptable, only minor corrections necessary. Perforator(s) missing, but not suitable or 

relevant for ideal flap perforator selection; 3 = Accepted, no corrections necessary for clinical use. All represents the 
mean and standard deviation of the gradings of all surgeons combined. A = automated segmentation; M = manual 

segmentation. 

Scan Surgeon A Surgeon B Surgeon C Surgeon D All 
 M A M A M A M A M A 

1 3 1 3 3 2 3 3 3 2.75 ± 0.43 2.50 ± 0.87 

2 2 1 3 3 3 3 3 1 2.75 ± 0.43 2.00 ± 1.00 

3 2 2 3 3 3 3 3 3 2.75 ± 0.43 2.75 ± 0.43 

4 3 3 3 3 3 2 3 2 3.00 ± 0.00 2.50 ± 0.50 

5 2 1 3 2 2 3 3 3 2.50 ± 0.50 2.25 ± 0.83 

6 3 1 2 2 2 3 2 3 2.25 ± 0.43 2.25 ± 0.83 

7 2 2 2 2 2 3 2 3 2.00 ± 0.00 2.50 ± 0.50 

8 3 1 3 3 3 3 2 1 2.75 ± 0.43 2.00 ± 1.00 

9 3 2 3 3 3 3 3 3 3.00 ± 0.00 2.75 ± 0.43 

10 1 1 3 2 2 2 3 3 2.25 ± 0.83 2.00 ± 0.71 

11 1 2 3 3 2 3 3 2 2.25 ± 0.83 2.50 ± 0.50 

12 2 2 3 2 2 2 3 2 2.50 ± 0.43 2.00 ± 0.00 

13 1 1 1 2 3 3 2 2 1.75 ± 0.83 2.00 ± 0.71 

14 2 3 3 3 3 3 3 3 2.75 ± 0.43 3.00 ± 0.00 

15 2 2 3 3 2 2 3 3 2.50 ± 0.50 2.50 ±0.50 

 

Table C5. Pair-wise percentage agreements between surgeons for manual and automated deep inferior epigastric 
artery perforator segmentation. A total of four surgeons (A-D), graded a total of 15 CTA scans using a 4-point grading 

scale. All refers to the percentage agreement for gradings of both the manual and automated segmentations 
combined. 

Pair Method 
 Manual Automated All 

A, B 20% 27% 10% 

A, C 20% 20% 10% 

A, D 20% 27% 10% 

B, C 13% 7% 7% 

B, D 13% 13% 7% 

C, D 13% 7% 7% 
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Figure C1. Visualization of cross-validation segmentation results of nnU-Net for automated segmentation of the rectus 
abdominis (RA) muscle. Predictions with the 3D full-resolution network and predictions when using an ensemble of 

the 3D full-resolution (3D Fullres) and 3D full-resolution cascade (Ensemble) network are shown. The DSC for the RA 
muscle segmentations is presented. Automated = automated segmentation; DSC = Dice similarity coefficient. 
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Figure C2. Visualization of segmentation results of nnU-Net for automated segmentation of the rectus abdominis (RA) 
muscle (green), subcutaneous fat tissue (yellow), and skin tissue (red). The scans are axial views of CTA scans. In the 
3D models, the ground truth and predicted RA muscle segmentations are shown in the anterior view. The DSC scores 

for the RA muscle segmentations are presented. Automated = automated segmentation; DSC = Dice similarity 
coefficient; Manual = manual segmentation. 
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Figure C3. Loss curves of experiments using nnU-Net and the 3D full-resolution U-Net model for segmentation of deep 
inferior epigastric artery perforators on CTA. The validation and loss mean values of 5-folds are plotted with one 

standard deviation range.
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Figure C4. Distribution of clinical acceptability scores for manual and automated segmentations across the CTA scans. 
The scores were assigned by four surgeons to the segmentations of 15 CTA scans using a 4-point grading scale: 0 = not 

acceptable; 1 = Acceptable, but corrections necessary, perforator(s) missing suitable as ideal flap perforators; 2 = 
Acceptable, only minor corrections necessary. Perforator(s) missing, but not suitable or relevant for ideal flap 

perforator selection; 3 = Accepted, no corrections necessary for clinical use. None of the surgeons assigned a score of 
0 to any segmentation. 
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Figure C5. Visualization of the manual and automated segmentations of the (a) Rectus Abdominis muscle, (b), fat 
tissue, (c) skin tissue, and (d) deep inferior epigastric artery perforators for the CTA scan of one patient. 
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