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Conventional beamforming is a common method tolibeasound sources with a microphone
array. The method, which is based on the delaysamd-beamforming, provides an estimate
value for the source strength at a given spatiaitipo. It suffers from low spatial resolution at
low frequencies, high side lobe levels and requinesuser to initialize a two dimensional scan
area at a certain distance from the array whichticarble source identification. In this work we
use the global optimization method Differential Exmn to efficiently search for source loca-
tions. The source locations maximizes the agreefetvteen the modelled signal and meas-
urement. This method also allows for inclusion arenunknowns, such as environmental pa-
rameters or a search in three dimensions. Usinglated data, results show that the acoustic
source can be identified very accurately with gepditial resolution.

1. Introduction

Beamforming is a widely applied method for imagmmjse sources [1,2]. The method is based
on the phase differences between the microphoraethair known locations. The general approach
is to define a number of scan points and estinfeesburce amplitude for each point. These ampli-
tudes are often depicted in a so-called source ma@n image where high levels indicate the pres-
ence of a source.

In general, side-lobes and potentially grating ¥ohee visible in the source plots as well, indicat-
ing high levels at locations where actually no sbeaurce is present. This approach of calculating
the levels for all scan points can be considereahasxhaustive search for those locations with high
levels. A major drawback of such an exhaustivectesa that it restricts the problem to a limited
number of unknowns. Typically, beamforming is apglifor source determination in two dimen-
sions, often using a scan plane parallel to theyaat a fixed distance.

In this work we use optimization methods to overedims drawback with the possibility to ex-
tend this search to more unknowns, for example sgfeed of sound. The presence of sidelobes,
however, might result in the optimization often eerging to these "local optima" while missing
the global optimum. In contrast to local searchhuods, global optimization methods have the ca-
pability to escape local optima. This ability issestial for the application considered with side-
lobes present. We introduce the use of global apétion method Differential Evolution [3,4] to
locate the source positions. The method will bdiago a case of benchmark data for array meth-
ods [5]. A case with a single acoustic source issatered.
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2. Signal model

To derive the signal model a wavefield is considagenerated by. acoustic monopoles where
each monopole is located ®f, andl =1,...,L. Let the microphone positiom be given a,,,

wherem=1,...,M and M the total number of microphones in the array. &l array output
vectory for frequencyw is [6]

V(@) =8, DS (@), @

wherea =[a -4, ]T is the steering vectos the acoustic waveform of sourtand[[T de-

notes the transpose of the vector. The elemeatfof a microphonemis given by

- rI_O e‘iw(fl m7h ,o)/c
i

A m ) )

,m
with ¢ the speed of sound,, =|xs, ~X,|andr, , =|xs, —x,|the distance between the source and

microphone and distance between the source anartég centre location, respectively. Eqg.(1) can
also be written as

y(w) =A(w)s(w) ®3)

with A(w) =[a,(Xs,, @), ...,a (Xs, ,w)] the M XL steering matrix and(w) =[s(a), ..., s (@)]" the

signal waveforms. The cross spectral matrix (CSMje received microphone signals is then giv-
en as

C=y(wy" (), (4)

where ()" denotes the conjugate transpose of the argumeinig Usth Eq.(3) and Eq.(4% can be
written as

C=APA", (5)

where

P =s(w)s" (w) . (6)

For uncorrelated sourcd? is a diagonal matrix where each element presastpawer of a source.

In general the covariance matrix is obtained eitinem actual measurements or synthesized
from model predictions. For this research the datssidered is synthetic data and is obtained from
benchmark cases that were generated in the frarkeafothe workshop Benchmarking Array
Analysis Methods in Dallas 2015 [5].

The approach taken in delay-and-sum beamforming iseat each grid point as a potential
source location and estimate the source strendtieagrid point as

y(xtw)z%a“ (X, )C(@alx, @), @)
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where ¥ is the beamformer output, i.e, the estimate forstnerce strength at grid poirt. Using
Eq.(7) is known as conventional beamforming.

For the work considered in the current contributeodifferent approach is taken. Here, Eq.(3)
and alternatively Eq.(59re used as the forward model. An objective fum¢temmetimes denoted
as energy function, is defined that provides a mneafor the difference between the measured
CSM and that predicted from Eq.(3) or Eq.¢yen a set of values for the unknown parameters.
The energy function used in this work is definedi7ds

Een(9) = Z{[real(c) - rea(Cg)]2 +[ imagC) - imaéCg)T} (8)

whereC is the cross spectral matrix as provided by theksfwp, Cis the modelled covariance
matrix corresponding to parameter vecgpcontaining the trial values for the unknown parterse
For example, in the case of one source it coulekelihe form ofg :g(xsyl,sl) which would be 4

parameters considering only the spatial positioth amplitude of the source. The summation for
Eq.(8) is over alMxM elements of the matrices containing the differertmetweenC andC,. The

covariance matrices are for specific frequengy

3. Differential Evolution

Differential evolution (DE) is a method that optezas a problem by iteratively trying to improve
candidate solutions with regard to a given meastiguality [4]. The subsequent iterations are de-
noted as generations. DE makes use of a populafioandidate solutions per generation and cre-
ates new candidate solutions by combining existings, and then keeping improved candidate
solutions. For creating the new candidate solutionghe next generation, promising solutions of
the current population are selected. Still, towalfor escaping local optima, also less good sohgtio
have a probability of being selected for creatieg/itandidate solutions. This probability decreases
for subsequent generations.

DE starts with an initial population of randomlyosien parameter value combinations. The pop-
ulation consists off members, each containing trial values for the omkn parameters. At each
generation, a partner population is created fragmptbpulation members, , as

hk,u = gk,r1 + F(gk,r2 _gk,r3)’ (9)

with u, rq, 1o, 130 {1, 2, ...,q}, integer and mutually exclusive arfédla scalar multiplication fac-
tor between 0 and 1. The valuesffgrr,, r3 are chosen at random. A higher valug=oindicates an
increased difference between original parameteregg| , and those contained in the partner popu-

lationh, .

The next step is to calculate its descendgntby applying crossover tg, , andh, , with a
probability p. . For each parameterof d, , we get

if rand[0,1], < p,

g =% Mrand0dl, <p. (10)

h if rand0,1], > p,
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with rand[0,1] the v-th evaluation of the uniform distribution with uals between 0 and 1. Setting
the value ofp. high means that more values are replaced by thagugpopulation, while a low
value of p. results in generations that differ only slightigardless of the value Bf.

To create the new generatiér+1from the previous generatidn, the membeg, ,is replaced

by d,, only if it yields a smaller value for the energy€tion E as
d if E(d, ) <E
k+1,u = “ R ( k‘U) (ngU) ' (11)
' gk,u If E(dk,u) 2 E(gk,u)

Doing this for all members in the population we obtain the next generatkoriL. This process
is repeated foN; generations.
The performance of global optimization methods, their success in locating the global opti-

mum in an efficient way, is dependent on a numlfesoecalled setting parameters. For DE these
are

* Population sizq,

* Multiplication factorF ,

» Crossover probability,,
* Number of generatiors, .

These settings must be set beforehand to suitahles, and can be problem specific, to maximize
the probability to locate the global optimum. Instwork the best values for the parameters were
found to beg = 128,F = 0.35,p; = 0.75 and\g = 600.

4. Results

For the test case a single monopole source is aemsl, located at; = (0.3 m, 0.4 m, 1.0 m)

with source amplitude of 1 Pa. The array consit#8amicrophones. Figure 1 shows the array ge-
ometry. The data provided is simulated data angistsof the cross spectral matrix of the micro-
phone measurements at the frequencies 500 Hz @O 500 Hz steps.
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Figure 1: Array geometry for test case 1.

As a reference we start with applying conventidnedmforming for which we define a scan
plane at the source location parallel to the arfde plane was set at= 1.0 m. Beamforming is
performed for 500 and 5000 Hz. It can be seena!t 0 Hz signal has a wider main lobe than 5000
Hz, but many more side lobes can be seen at 5000 tHe 54 to 72 dB range.
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Figure 2: Beamforming for 500 and 5000 Hz.

Figure 3 shows the results for the same frequencies bygubim proposed inversion method, em-
ploying the energy function. To obtain this resh# settings of DE were setdo= 128,Ng = 600,

pc = 0.75 and- = 0.35. The number of independent runs was sg0td-or both frequencies it can
be seen that the source position is retrieved ctlyresince the values fog, y andz that correspond

to the lowest energy values are in agreement \nettrue source position. The value for the ampli-
tude is obtained correctly at 1 Pa. To show the ohtconvergencesigure 4 is given, where the
energy is given for the number of generations.rRost runs convergence to the correct position is
achieved well within the 600 generations. For 5B@0three runs are seen not to have reached zero
energy value at 600 generations. This correspomdsarts being stuck in a local optima. Having
additional generations for higher frequencies aawesthis.
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Figure 3: Inversion for 500 and 5000 Hz for spapiasition and amplitude of the source.
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Figure 4: Energy as function of the generations@® and 5000 Hz.
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5. Summary and conclusion

In this work an alternative method is presentetbtalize the acoustic sources using a micro-
phone array. Use is made of the global optimizatr@thod Differential Evolution (DE). For this
purpose an energy functions is formulated whicts uke cross spectral matrix (CSM) of the meas-
urement and signal model.

A simulated single monopole case was used to afiseggerformance of localization. The opti-
mization method showed that it could easily idgntife source for both 500 and 5000 Hz. Both
spatial position and amplitude of the source cpwaded to the lowest energy level.

This work shows that using global optimization noeth can prove very useful for acoustic
source localization. Source localization is easiyended in the third dimension. Additional ad-
vantage is the possibility to include even morenavins, such as environmental parameters. The
energy function can be adapted to the situatidmat. It can account for multiple sound sources,
reflections or refractions of the sound, thus ey the actual measurement environment to a
large extent.
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